
AlllOb 1713QM

NATL INST. OF STAND & TECH

111

NBSIR 83-2639

Cost-Benefit Impact Study on the
Adoption of the Draft Proposed
Revised X3.23 American National
Standard Programming Language
COBOL

Prepared for

U.S. DEPARTMENT OF COMMERCE
Center for Programming Science and Technology
Data Management and Programming Languages Division

Washington, DC 20234

March 1983

NBSIR 83-2639
<

COST-BENEFIT IMPACT STUDY ON THE
ADOPTION OF THE DRAFT PROPOSED
REVISED X3.23 AMERICAN NATIONAL
STANDARD PROGRAMMING LANGUAGE
COBOL

national bureau

of STANDARDS
LIBRARY

APR 8 1983

mvaoe.-ctf

Marco Fiorello

Fiorello, Shaw, and Associates

John Cugini

Institute for Computer Science and Technology

March 1983

Prepared for

U.S. DEPARTMENT OF COMMERCE
Center for Programming Science and Technology

Data Management and Programming Languages Division

Washington, DC 20234

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS. Ernest Ambler. Director

TABLE OF CONTENTS

ABSTRACT 2

EXECUTIVE SUMMARY 3

1.0 INTRODUCTION 4

1.1 Background And Overview 4

1.2 Study Objectives 4

1.3 Study Scope And Qualifications 5

1.4 Reasons For Revising The Current COBOL Standard . 6

2.0 TECHNICAL ISSUES 7

2.1 Substantive Changes And Related Issue? 7

3.0 METHODOLOGY AND ANALYSIS 8

3.1 Framework 8

3.2 Base Case Statistics 8

3.3 Impact Areas 19
3.4 Quantitative Impacts 19
3.5 Qualitative Impacts 32
3.6 Sensitivity Analysis 35

4.0 FINDINGS 38
4.1 Interpretation 38
4.2 Recommendations 38

REFERENCES 41

APPENDIX A BASIC COST-BENEFIT ANALYSIS METHODOLOGY

APPENDIX B INCOMPATIBILITIES BETWEEN COBOL-74 (FIPS 21-1) AND
COBOL-8X [ANS-81]

APPENDIX C SOURCES OF SAMPLE PROGRAMS AND AGENCIES INTERVIEWED

APPENDIX D SYSTEM DESIGN FOR THE ANALYSIS OF SAMPLE COBOL
PROGRAMS

EXHIBITS:

3-1 Base Case Parameters 10
3-2 Distribution of Programs by Size 11
3-3 Distribution of Programs by Age 13
3-4 Summary of Incompatibility Frequencies 14
3-5 Proposed COBOL Revisions - Potential Impact Areas . . 17
3-6 Impact Parameters and Factors 20
3-7 Complexity Classes 25
3-8 Cost Analysis of Incompatibilities 31

3-

9 Sensitivity Analysis 37

4-

1 Summary of Impacts for the Proposed COBOL Standard . 40

Page 2

ABSTRACT

The purpose of the study is to assess the estimated costs and
benefits for the Federal Government which would result from
adoption of the proposed revision of American National Standard
COBOL as a Federal Information Processing Standard (FIPS)

.

Potential benefits of $90.2 million have been identified,
stemming primarily from improved productivity in both the
development and maintenance of COBOL programs. Estimated costs
of $17.9 million have been identified, arising principally from
the effort needed to convert old COBOL programs to the new
specification, which is incompatible in some respects with the
current specification. In support of the study, we conducted
interviews with Federal ADP managers and officials, and also
analyzed over one thousand Federal COBOL programs for various
syntactic characteristics. The study concludes that the
potential benefits of a new standard outweigh the estimated
costs.

Key words: COBOL; compatibility of programming language
standards; conversion costs for COBOL programs.; cost-benefit
analysis of COBOL standards; Federal use of COBOL; FIPS for
COBOL; standardization of COBOL.

Page 3

EXECUTIVE SUMMARY

The revision of a widely-used language standard, such as COBOL,
necessarily involves a trade-off between enhancement of the
language and compatibility with existing code.

Potential costs are concentrated in the conversion of old code.
This cost depends strongly on the frequency and complexity of the
various changes being made to COBOL.

Potential benefits are expected both in the development of new
code and the maintenance of existing code, as modern coding
techniques become prevalent in the Federal Government.

While not exact, it is possible to make a quantitative estimate
of these costs and benefits. The result of the analysis herein
is a potential cost of $17.9 million and estimated benefits of
$90.2 million (net benefit: $72.3 million).

The maximization of benefits and minimization of costs depends
strongly on good DP management practice. In particular, DP staff
should be encouraged to take advantage of the new features
provided in the revision of COBOL, and there should be a
systematic effort to discourage the use of features which are
being dropped from the standard.

Page 4

1.0 INTRODUCTION

1.1 Background And Overview

The goals of the ICST Federal ADP standards program are to
develop and issue standards and guidelines for competitive and
economic procurement of data processing equipment, efficient
management and utilization of ADP, improved protection of ADP
resources, and increased productivity of the Federal work force.

This analysis concerns Federal Information Processing
Standard (FIPS) COBOL, one of the high level programming language
standards. The basic objectives of these standards are: (1) to
achieve the long-recognized advantages that are inherent in the
use of higher level languages, and (2) to maximize and protect
program investments by making it easier and less expensive to
exchange programs among different computer systems, including
replacement systems.

In developing and maintaining standards and guidelines for
ADP activities within the Federal government, ICST works closely
with voluntary standards bodies, such as the American National
Standards Institute (ANSI) and the International Standards
Organization (ISO). FIPS 21-1, the current Federal standard for
COBOL, is based on ANSI standard X3. 23-1974 [ANS-74] (often
called COBOL-74) . ANSI committee X3J4 has proposed a revision to
COBOL-74, and it is this revision which is under review by
various ANSI participants, including ICST. Such a revision is of
interest to ICST since it represents a potential basis for a
revised FIPS for COBOL.

This study is presented in four major sections and four
appendices. In the rest of this section, the study objectives,
scope and qualifications, and rationale for the proposed changes
are presented. Section two identifies the major technical issues
concerning the proposed changes. Section three presents the
study methodology and analysis used to determine the cost and
benefits. Lastly, section four presents the interpretations of
the study findings and the recommendations. The references
follow the main body of the report. Appendix A contains an
outline of the study methodology, Appendix B contains a list of
the substantive changes potentially affecting existing COBOL
programs, Appendix C provides a list of the agencies visited and
the agencies which supplied sample programs, and Appendix D
describes the automated system which was used to analyze the
sample programs.

1.2

Study Objectives

The specific objectives of this study are to assess the
costs and benefits to the Federal ADP community of the proposed
changes to COBOL-74, and to recommend one of the following
actions: (a) reject the proposed revision and continue with FIPS

Page 5

21-1 (this is the status quo, or so-called "Base Case" option)

,

(b) adopt the ANS X3.23 proposed revision as a new FIPS (21-2) ,

or (c) attempt to modify the revision so as to limit costs or
enhance benefits to the Federal Government, thus establishing it
as a more valuable base for a new FIPS.

1.3 Study Scope And Qualifications

This study scope is limited to the COBOL-related impacts on
the Federal ADP community. Of course similar impacts may be
expected in the private sector insofar as the characteristics of
its COBOL usage resemble those of the Federal sector.

In this analysis, we are concerned with impacts that may
result if the proposed changes to ANSI COBOL-74 are also adopted
in the FIPS for COBOL. Data available on applications software
development and maintenance in the Federal government are general
and approximate in nature, and are particularly limited regarding
any one specific programming language such as COBOL (although
COBOL is by far the most commonly used language within the
Federal government, and therefore can hardly be regarded as
atypical) . We augmented the available general data with staff
interviews at nine Federal agencies and with a detailed analysis
of a sample of 1068 COBOL programs from eleven Federal agencies.
Appendix C shows which agencies participated in the interviews
and which contributed sample programs.

The more detailed information obtained from the interviews
and sample program analysis enabled us to estimate the magnitudes
of the likely costs and benefits attributable to the adoption of
the proposed, revised COBOL standard. However, these estimates
are not intended as precise determinations of those costs and
benefits, as they necessarily reflect many approximations and
subjective inputs and interpretations.

The revision of the ANSI COBOL Standard is an ongoing
process at the time of this writing, and the conclusions of this
report are accordingly subject to change. ANSI committee X3J4
has the responsibility for acting on public comments and a

definitive evaluation must wait until the revision takes final
shape. If warranted by further changes in the proposed revision,
or by additional data gathered from Federal agencies, this report
may be updated at a later time to reflect those changes.

The principal assumptions and specifications used in this
study include:

1. The new FIPS will be introduced in 1984 and the first
compilers will be available in 1984 - 1985.

2. The study horizon is 10 years, 1984 - 1993.

Page 6

3. Static relationships are appropriate, and the statistics
and trends derived from the 1979 - 81 Federal ADP data
are representative for the study horizon.

4. A new FIPS for COBOL would be complied with, converted
to, and utilized in the same way FIPS 21-1 (COBOL-74)
was, relative to FIPS 21 (COBOL-68)

.

5. The impacts will be based on the changes proposed in
[ANS-81] , (the blue book) which was current as of
September 1981 and upon relevant subsequent actions by
ANSC/X3J4.

6. The impact of a revised COBOL standard will be assessed
relative to the existing standard FIPS 21-1 (COBOL-74) .

Thus, as far as possible, any impacts stemming from
COBOL-74 itself will be discounted, since its adoption
is not at issue.

7. The cost estimates will be made in 1983 constant
dollars.

1.4 Reasons For Revising The Current COBOL Standard

The reasons most frequently given in support of the proposed
changes to the current ANSI COBOL standard are that they will
improve the language's capabilities and ease-of-use, and limit or
remove error-prone, useless, and redundant features [NELS-81a]

,

[NELS-81b] , [DUBN-81] . The intent is to enhance application
programming productivity, facilitate program portability and
improve program maintainability.

Notwithstanding the apparent compatibility of the above
considerations with the official objectives of FIPS COBOL, the
bottom-line criterion by which a new COBOL standard must be
judged is whether or not the Federal ADP community will be better
off adopting the proposed changes, as compared to the current way
of doing business.

Page 7

2.0 TECHNICAL ISSUES

In this section the proposed changes are identified, and
various related technical issues are discussed.

2.1 Substantive Changes And Related Issues

Of interest in this analysis are those proposed changes that
are expected to have a substantive effect on existing programs.
Also, enhancements to the language (which do not affect existing
programs) are examined for their potential impact.

The basic technical issues related to all the proposed
changes fall into four categories:

1. Productivity - How do the changes affect COBOL's scope
of application and use of new programming techniques?

2. Maintenance - How do the changes affect COBOL's
error-prone and ambiguous features and the
maintainability of programs?

3. Conversion - How do the changes affect the portability
of COBOL programs across various systems? Do they
protect the investment in existing COBOL programs?

4. Training - Do the changes make it easier to learn and
remember the COBOL language?

Without question, the dominant technical issue on the cost
side is that of conversion. This cost manifests itself as the
extra effort needed to purge existing programs of code dependent
on features of COBOL-74 which have been deleted or changed. As
opposed to this cost, which is concentrated and visible, the
benefits are necessarily somewhat more speculative and dispersed
more evenly throughout Federal ADP practice (and are accordingly
more difficult to measure exactly)

.

Page 8

3.0 METHODOLOGY AND ANALYSIS

3.1 Framework

The cost-benefit analysis framework used in this study is
based on the preliminary guidelines presented in [FIOR-78]

:

1. Specification of the Goals and Objectives

2. Preparing the Standard Definition Statement

3. Defining the Base Case

4. Selecting the Cost-Benefit Impact Areas

5. Constructing the Model

6. Obtaining the Data

7. Estimating and Evaluating the Cost-Benefit

8. Presenting and Interpreting the Results

Steps 1 and 2 are discussed in Sections 1 and 2, pertinent
results from steps 3-7 are presented below in this Section, and
step 8 is discussed in Section 4 on Findings.

3.2

Base Case Statistics

The Base Case statistics are derived from various reference
materials, cited at the end of this document, and the study
survey and program sample. The pertinent statistics are
summarized in Exhibits 3-1 to 3-5, and brief descriptions are
given below.

3.2.1 Programmer Pool -

o For the past 10 years the number of Federal agency staff
programmers has remained fairly steady in the range of
118,000 to 120,000 staff-years [NBS-81] .

o Of those work-years, roughly 60% were primarily for
COBOL-related activities in 1980, with a growth to 65%
projected for 1985 [GRAY-81]

.

o Depending upon the Federal agency, the annual programmer
turnover rate will vary from a low of 10% to a high of
30%. A reasonable average appears to be 20%.

Page 9

o All of the agencies contacted have or arrange training
courses for new programmer staff.

o In most installations, more than half of the staff are
devoted to maintenance (corrective, adaptive and
perfective) activities which reflects the life cycle
distribution of application software costs [LISW-81]

,

[GA0-81b] , [BOEH-81]

.

o Based on very limited data, it appears that on the
average a programmer spends 15% to 25% of available time
performing the coding function.

3.2.2 COBOL Program Inventory -

o There are roughly 500,000 application software programs
in the Federal inventory. Of these, 50 to 60% are in
some form of COBOL.

o Very few, 5-10%, of these 250,000 to 300,000 COBOL
programs are in full conformance with the current COBOL
FIPS 21-1 [SHOE-80]

.

o The average COBOL program in our sample contains about
1270 lines of source code (see Exhibit 3-2) and was
developed about 6.0 years ago (see Exhibit 3-3). This
latter figure compares reasonably well with the 5.4 year
estimate in [GAO-81b]

.

In our sample of 1068 COBOL programs, with over 1.3 million
lines of code from 11 Federal agencies, roughly 80% use one or
more of the 50 proposed incompatible changes analyzed in this
study. if we discount the somewhat special case of the
incompatibility concerning the DISPLAY verb (see below) , this
figure drops to about 40%. The specific frequencies of
occurrence are shown in Exhibit 3-4. See Appendix B for a
description of the incompatibilities, by number.

Note that in Exhibit 3-4 the statistics are broken down by
contributing agency, as well as by individual incompatibility.
In cases where there were two separate systems within one agency,
these systems were kept separate in the figure; thus, eleven
agencies accounted for thirteen systems. Since each agency
contributed a different number of programs, there is some
question as to whether the summary statistics should be weighted
by program, or by agency. Both are computed and displayed.
Where necessary for the analysis, we used a reasonable
intermediate figure. Of course, the greater the disagreement
between the two averages, the greater the uncertainty about what
percentage is truly representative of the entire Federal
inventory.

co

M
0)

fa
<u

g

Jh

to

fa

<D

(0

to

u
d)

CO

tO

OQ

I

co

fa
•H
X!

W
En

W Eh

U CO
fa W
D
O fa
CO O

fa
W
Eh

fa
2
g
<
fa

uM
Eh
CO

Eh
fa
O

>H

fa
fa
fa

JZ
X
fa

2
O
M
EH
fa
M
fa

U
CO
fa

fa
o
CQ
2
Jh
co

fa
Q
O
2

u
M
Eh

CO
M
2M
CO
co
fa
fa

0)

g fa >1 <u
(0 to <1) >H
jh g > a
OVH M g '1 ,—

,

1—, 1—

,

i—

,

,

0 fa 3 to in r—t <—

i

1—1 1—

1

i—

1

<N CN X) jq
JH CO CO CO f" 00 .-I 00 00 00 00 00 H •—

i

fa fa 1 1 00 1 1 1 1 1 00 00
>i >i fa >H 1 Jh SS Jh U U 1 1

Eh P TD TJ O <C CO < fa < CO CO O O
co co 3 3 D fa CQ fa O fa V O < <
<j a) fa fa a O 2 U CQ O fa fa U OW CQ CO CO 1-J 1 1 1 i—1

1

—i 1—1 1—1 '

—

1

O o o dP dP dP dPo o ID o 1 O Oo CM o CM VO CO
1

•. i-l *
o o in
o CM \
CO i-l rH

rH
1
1

co

•

u
JH K. t

>i M T3\ o o o dP dP CO dJ CM dP dPO o o O O •H M • O Oo o CM o CM ID fa CO CO VO
o i—

l

10 3 fa
o 00 •H TO CMo tD 1—

1

a T3o CM 1—

1

CD to

CM a. c
{/> CO 3

JH -
<D o
M O
3 00

o o o dP dP a - dP dPo o o LD ID g r- I O O
o CO o fa 0 CM LD ID

1 —

i

CJ v>o ID —

•

o I—

1

CM 1—

1

cn
G
•H CO CD <D

<u >1 g g
0 g J-l JH to •H M •»H

P fa g fa •H 0 d) M C M
O to fa CO p 5 g 1 CDP CQ JH (0 J-l g fa >h e JH

CO O cn P to 4H CM to VM JH <d a CD CD

0 O 0 co a) fa fa JH >1 to (0 g 0 g O
o co u >4 to to cn jh M QJ g fa g C

fa i—

1

fa fa 1 P P 0 to w >, (0 CD to to

fa M to \ to J-l CO CO JH t-l 1 JH > JH G
C fa JH CO J-I <y fa to d) VM cn cd cn cd

<V 0) co (1) cn e fa fa fa CO fa fa 0 TD 0 -u

g 04 TD g c id e Q a o fa X to Jh Jh C
C 0 <d to •H <u to < cn < CQ to P f0 P a s dl -H
JH 1—

1

fa Jh fa fa JH c o JH to fa CO <d to

OJ oj cn cn fa -H 4H u <D 3 •H VM C *m e
> > • 0 • • 0 0 'O 0 T3 C t0 Jh 0 0
0 o 0 M 0 0 JH 0 c d) C > d> c c
O T3 2 fa 2 2 fa <#> o dP o fa c < 04 dP 0 dP 0

fa fa fa 2 fa CO Jh Eh Eh

u u fa a fa CO <C a a 2
o 2 2 2 fa u fa CO fa fa

i'

i

LINES/NO.

PGMS/CUMULATIVE

%

PGMS/CUMULATIVE

%

LINES

100/

36/

3.37%/

0.19%

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

x
X

X
X
X
X
X
X
X
X
X X
X X
X X

. X XXXXXXXXXXXXXXXXXXXXXX
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X
X
X
X

X X
X X
X XXXXXXXXXXXXXXXXXXXXXXXX..XXX

X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X x X X

X
X
X
X
X
X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X XX
X X
X X
X X
X X
X X
X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

X
X
X
X
X
X X
X XXX
X
X
X
X

X
X
X

X
X
X
XXXXXXXXXXXXXXXXXXXXXXXXX

X
X X
X X
X X
X X
X X
XX..

X X X X
X X X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X Xxxx

X
X
X

<#><#><#>(#><#>!#><#>(#>(#>(#>(#>(#>

: x
! X X
X X X
X X X X X
X X X XXX X X
X X X XXX X X
X X X XXX X X X X
X X X XXX X X X X X X
X X X XXX X X X X X X X X X X
X X X XXX X
X X X XXX X X X X X X X X X X X X X X X XXX XXX X X X
dP dp dp dP dP dP dp dPo 00 00 CM CO 00 o CM VO I"* ON O TT CM 00 in in in r- vo CO ON CO CM in VO
CO O CO ON C'H in CO o CO CO 00 •'T ON in rH O vo VO CM VO CO •*9* in m m r- rH

<N m VO 00 o O rH CO in vo r- r- oo 00 ON O o rH CM co in vo r- 00 00 00 ON om in in in in vo VO VO VO VO VO VO vo vo VO VO vo r- r-~ r- r* r* r- r* r- 00

\\\\w\ \\\\\\\\\\\\\\\ssN\\\\
<#> dP dP c#>c#>c#> dP dP dP dp dPo O OV •<T o in co on co in •<r co rH O ON 00 r- ^ CM H O a\ vo in CO CO CO rH O
r- VO CO o oo m VO rH 00 h ov co in ON rH CM CO in o co m vo r- *H CO vo VO VO ON O
v

O

oo on on o OHHtN CM CM co CO CO CO h* m in in in in VO VO VO vo vo vo
00 00 00 oo oo on on ov ov ov <j\ on <Tv on ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON

H CM ID [— o ro VO

dP # DC dP
T •O' <Tl r-l

(N O O .H

\
dP <#> dP
<r h in
o rr r~

OO^O^O^O^O^O^O^O^O^O^O^O^O^O^OO^O^O^OO^O OOO OOO OOOOOO O OO OOOOOO OOO o' o' O OC3C3C3oo
r'im*jtinior-co(riO>-i<Nro'i, inier~coaio>-((Nm'», invDr-'00(7io<HfNro*i'inior-co(riOrHCNr>-)*rini©r~co<jio.-j cNr'i^in

Exhibit 3-2 (continued)

5600/ 2/ 97.19%/ 80.95% XX
5700/ 2/ 97.38%/ 81.77% XX
5800/ 0/ 97.38%/ 81.77%
5900/ 0/ 97.38%/ 81.77%
6000/ 1/ 97.47%/ 82.20% X

6100/ 1/ 97.57%/ 82.65% X
6200/ 0/ 97.57%/ 82.65%
6300/ 1/ 97.66%/ 83.11% X

6400/ 0/ 97.66%/ 83.11%
6500/ 0/ 97.66%/ 83.11%
6600/ 3/ 97.94%/ 84.54% XXX
6700/ 1/ 98.03%/ 85.03% X
6800/ 0/ 98.03%/ 85.03%
6900/ 0/ 98.03%/ 85.03%
7000/ 1/ 98.13%/ 85.53% X
7100/ 2/ 98.31%/ 86.56% XX
7200/ 1/ 98.41%/ 87.08% X
7300/ 0/ 98.41%/ 87.08%
7400/ 0/ 98.41%/ 87.08%
7500/ 0/ 98.41%/ 87.08%
7600/ 0/ 98.41%/ 87.08%
7700/ 1/ 98.50%/ 87.64% X
7800/ 1/ 98.60%/ 88.21% X
7900/ 0/ 98.60%/ 88.21%
8000/ 1/ 98.69%/ 88.79% X
8100/ 1/ 98.78%/ 89.39% X
8200/ 1/ 98.88%/ 89.98% X
8300/ 0/ 98.88%/ 89.98%
8400/ 1/ 98.97%/ 90.59% X
8500/ 0/ 98.97%/ 90.59%
8600/ 1/ 99.06%/ 91.21% X
8700/ 0/ 99.06%/ 91.21%
8800/ 1/ 99.16%/ 91.85% X
8900/ 0/ 99.16%/ 91.85%
9000/ 2/ 99.34%/ 93.16% XX
9100/ 0/ 99.34%/ 93.16%
9200/ 0/ 99.34%/ 93.16%
9300/ 1/ 99.44%/ 93.83% X

10800/ 1/ 99.53%/ 94.62% X

11900/ 1/ 99.63%/ 95.49% X

13500/ 1/ 99.72%/ 96.47% X

14200/ 1/ 99.81%/ 97.50% X

17100/ 1/ 99.91%/ 98.74% X

17300/. 1/100. 00%/100. 00% X

Exhibit 3-3 Distribution of Programs by Age

MONTHS/NO. PGMS/CUMULATIVE % PGMS

6/ 15/ 2.41% XXXXXXXXXXXXXXX
12/ 37/ 8.36% XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
18/ 24/ 12.22% XXXXXXXXXXXXXXXXXXXXXXXX
24/ 44/ 19.29% XX
30/ 30/ 24.12% XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
36/ 36/ 29.90% XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
42/ 25/ 33.92% XXXXXXXXXXXXXXXXXXXXXXXXX
48/ 25/ 37.94% XXXXXXXXXXXXXXXXXXXXXXXXX
54/ 23/ 41.64% XXXXXXXXXXXXXXXXXXXXXXX
60/ 23/ 45.34% XXXXXXXXXXXXXXXXXXXXXXX
66/ 36/ 51.13% XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
72/ 32/ 56.27% XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
78/ 13/ 58.36% XXXXXXXXXXXXX
84/ 20/ 61.58% XXXXXXXXXXXXXXXXXXXX
90/ 28/ 66.08% XXXXXXXXXXXXXXXXXXXXXXXXXXXX
96/ 24/ 69.94% XXXXXXXXXXXXXXXXXXXXXXXX

102/ 28/ 74.44% XXXXXXXXXXXXXXXXXXXXXXXXXXXX
108/ 11/ 76.21% XXXXXXXXXXX
114/ 10/ 77.81% XXXXXXXXXX
120/ 16/ 80.39% XXXXXXXXXXXXXXXX
126/ 13/ 82.48% XXXXXXXXXXXXX
132/ 23/ 86.17% XXXXXXXXXXXXXXXXXXXXXXX
138/ 17/ 88.91% XXXXXXXXXXXXXXXXX
144/ 12/ 90.84% XXXXXXXXXXXX
150/ 9/ 92.28% XXXXXXXXX
156/ 13/ 94.37% XXXXXXXXXXXXX
162/ 7/ 95.50% XXXXXXX
168/ 1/ 95.66% X
174/ 12/ 97.59% XXXXXXXXXXXX
180/ 8/ 98.87% XXXXXXXX
186/ 4/ 99.52% XXXX
192/ 0/ 99.52%
198/ 1/ 99.68% X
204/ 1/ 99.84% X
210/ 1/100.00% X

dP dP dP dP dP dP dP dP dP
in CM 00 O 00 VO ON 00o O rH o rH in ro ro rH

•

rH vo *d* in O rH o ON 00 CM

(M 00
ON VO
ro oO rH
r^*
ro

ro
rH H*

ro o
00 iH
cn

VO oo o
dP dP dP dP dP dP dP dP dPoH'j, oini/iH^oooo;(soooo^oon^a'oooooco^aNa'oo
oo in rH o h H rH in on <}• vo on cs on in

h* in
roo

r*
in

ON CM
VO o
O CM
ro r-
vo vo

in
in in

dP dP dP dP dPdPdP dPdPooooooooooocor-ooooo o h ro in-aNOOoooinroooooo oo in oh cm cm o

rH O
00 CM
ro

in **o oo

on ro
rH ro
cm r-

cx> o
in vo

dPdPdP dP dPdPdP dPdPOiHOOOOOOOOOOOOOOOOOrOOl^OOOOOOOOOOOOooo o ooo oo

o
rH
=**=

vo r*
vo r-
in
on
CM
CM

on 00o ro

in
CM

00 O
ro rH

• •

rH 00
oo in
av ro
CM CM

VO CM
rH

o in
vo
VO

H* *d*
CM VO

^5* rHO VO

ON CO

dPdPdP dP dPdPdP dPdPOiHr^OrHinoooooavaiooooo onr- ONONOOooo^rooooo
CM CM tT CM o vo OCNCMVO in H O

Wr^\\n\o\\\\H\\w\ d\r^ \H\\\\\\o\o\\o ro cm o rH in o ooomrHooooo ocMOrHooooo^rr^o ooo ^ rH r* in
CM rH

vo ro
vo ^

vo

CM CMo vo
CM
in

ro o
CM ^
CM 00
ON VO

rH
rH CM

00 O
in cm
00 00

r- vo
CM O

in on
vo in

dP dP dP dP dP dP dP dP dPoooooorHrooooooooooooroooooooooooovomroooO O ro O O ON O rHOOvO

dPdPdP dP dPdPdP dPdPOVOOOO^finOOOOOOOOOOOOOinvOrO^OOOOOrHrHOOOOvo^ro o o o oo vo o

ON rH
“'d

4 rH
r*

in r*

o ro
r- vo

vo
rH o

dPdPdP dP dPdPdP dPdPOOOOOOOOOOOOOOOOOO OOO OOOOOOOOOOOOOOOO o ooo oo

on r*
00
rH

rHo

r* in
on in
ro rH
vo

cm ro
oo

in in

in vo
on o>

o ON
in vo
r* on

ON CM
VO 00

^ vo
CM CM

dP dP dP dP dP dP dP dP dP dP“OrHroooinooooooooooooorHcor^TfooooorHcor^^roo
in rH ro o o © in r* rH oo r-

i • • • • ••• • •\\oWin\o\\\\o\\\\\ o\o \n\\\\\\in \ro\\OH OO O OOOO OOOOO rH 00 ooooovo oo oo
*4 rH CM ro

CU 2 dPdPdP dP dPdPdP dPdPooovooooooooooooooorHin^rooomooooorHinrHinoo
rH O O O VO in rH vo vo

f
ro ro
ro ON
in cm
ro
rH
in

in vo
oo vo
CM

r- cm
vo vo

• •

cm r-m on
r- rH
rH CM

00 TT
on r-

• •o r"
r- oo
vo *<r

vo ON

vo ro

^ CM
vo o

dPdPdP dP dPdPdP dPdPoooooooooooooooooincMinmmcMooooo^'r-vooNOOO OO O rHiHcOONrHiH rorocM

dPdPdP dP dPdPdP dPdPocMrooooooooooooooooocMroiHCMoooooromooooooo o o o in in o

in in
•'d

4 in
ino
ro

vo vo
ro cm

•• on

ao

9 b
as
55
J

dp ^p ^p jpOCM^OOOOOOOOOOOOOOOOCM^r^rOOOOOOOOOOOO
vo o o o o vo r- oo

• • « • ••• ••
.o \o\\

dPdPdP dP dPdPdP dPdPOOOOOOOOOOOOOOOOOOOrO^OOOOOOOrHrHOOOOooo o o in o rH ro o

I

cm ro in vo co <jn oS 33333 3 5 338333 3 83

Exhibit

3-4

(continued)

00
dP

a ino £ 3
• •o o

rH
as

•M*
CO 3 in

00
• • • •

SO CN o CO

dP
.
dP _ .

dP <r

oo r-
•h oo

O CM
r*

s

dP # # # # tfd #OfNOOOOOOOOOO'^MC'HO)^3HhOH^OhVOOOHO)OhOnh
vo vo co h o in cm cm os o co ^p o os os oo r*

in
dP # # dP # dP dP # dPdPdPcor^ooooooooorHvooooocor^OQOOOocMrHoooo^p^pooo
in oo o o in o o p* o co »h o

dP dP dP dP dP dP dP dP dPdPdPONcooooo©©ooooooooocMincMin©oo©ooo©»HmcMr^or^aD
as ooovovooo co vo cm

OOiOhH
00
in

dP dP dP dP dP dP dP dP dP dP dPWCMOOOOOOOOOOOrHi-)^r-lr-(r^^'COO<-lf-(OC>«POOOOOCM^l OOO
in o vo vo cm oo iH in vo cu o x* r» o

• ••••••• • • •

N'vf\\\\\\\\\\o\H\H\n\M\\^wrow\o\r- \\o
CM ft O O O O O O O O O O » xr VD n vf N O 4 ON ooo VO o o
cn ro cm «rm

dP dP dP dP dP dP dP dP dP dP dPOOOOOOOOOOOOOOOOOVNOOOOOOOOrHcr. oooooomoooo ooorHooo or^ o

dP dP
VO ro as
r* rH 00

• •

CM as o
ao

dP dP dP
^P rH CO CO CO
os r- r- O P-
oo • oo • TP •\ CO
r-f 00

\HO 00 >£
«*P o O
CO CO in
<J\ 00 CM

dP dP dP
in o in o O rH
co o co o CO P-

•\ O \o \mo o rH O VO 00
VO rH VO rH »H
^P CO rH

dP dP dP
^P O 00 O CO O
»H O O O

• •\ O \ in
<n r- CM rH
rH CO CM
rH

dP dP dPO P- O CM rHo r- o p" in
• •

>g vo o in asO .-1 H* rH in
00 ^P
rH rH

dP dP dPo m o in rH CO
co as co as VO

•\ oo \co
p r- cm r»
rH rH
CM CM

dP dP dP
CM cm p- rH OS
TP VO H* VO CO O

• •\ f' \r» \<N
cm as o as O P-
vo H4 vo
00 00 CM

dP dP dP
cm r- CM P* oo as
in oo in oo CO CM

• • •\ PO \rH
CO 00 rH 00 TP voo O* as
in Tp

dP dP dP
00 CO 00 CO CO P-

r* P* CM
• •\ <N \<N \ r~

*p r- P- CM CM
as as rH

dP dP dP dP dP dP dP dP dP dP dPrOOOOOOOOOOOOOOOOCNr'OOOOOOI^x*OOOOVO<MO--HPr>
in o o o o o o r- orn xr crv

(N OOOOOOOOOCN

dP dP dP dP dP dP dP dP dP dP dPooooooooooooooooogocooooooogocooooocovoooqo © © © r** © © r* ocom* o
• • H • •

CM \\\ O\ CMWOOOO CM VO O O
co

CM^OOOOOOOOOOOOOOOOOOOOOOO»HugOOOOjdjjHOO«

dP
^p o
00 ^P
rH •

CM §S

s

dP
*p o
00 <*PH •

\oo
cm as
r*

dP
r* r-
CM *P
cm .\ r*
oo r*
oo
inH

dP
^P CM
in oo

a>
•

•H . .

4J rH
dP xH <*> rH dPOOO H H 00 ^p ino H N H Q H’P
• XI C w •\\o •H \ 00 \ino o U H Cl qj in cm

S 1/1 x ^

Q in in
C cm H
^ \ va
in vo as
in vo

CM
9

dP
•*p cm
VO CM

\^’
as co
co

dP dP dP dPo in oo in in co in OS rH
co in CM vo CM CO Tp VO

•\\<M \os \HO VO CM as oo CM P" in co
CO co VO as

r* •• vo

CM OS
oo as

§>B
< in
n as

ft <#>

HJlvf
a vo

-\rom <Ti iH
in

i <#>

I
i— n

i"

; \ nl
av rH

dP
in in

•H
•V dP
3 *p in

CM rH rH rH CO
o •

\vo
co as aJ oo in
VO CM
CM

8

•H VO
J3 m

<n w

'

JJ

•H£xf
•y o

S ® 2 cJ £D *r l£3 r- ?5 o» o <n r> xr in vo i" oo <n o ^ <n ro xr in
<n Nnnnnnnnn^ xr xr « xr xr xr xf xf in m in in in in

Exhibit 3-4 (continued)

SUMMARY OF RESERVED WORDS:

RESERVED WORD OCCURRENCES

ALPHABET 2

CLASS 24

DAY-OF-WEEK 11
END-READ 7

END-RETURN 2

END-WRITE 2

EXTERNAL 22

FALSE 12
INITIALIZE 32
OTHER 34

REFERENCE 2

STANDARD-2 1

TRUE 17

Exhibit 3-5 Proposed COBOL Revisions - Potential Impact Areas

Impacts Evaluated Not Evaluated

Impact Areas Quantitative
and Elements Assessment

Qualitative
Assessment

Potential
Impacts

I. Procurement

Compiler Costs X

II. Operations

Training X

Program Development X

Program Maintenance X

Management of
Programming X

Documentation of
Application Software X

Processing Efficiency X

III. Conversion

Conversion of
Application Software X

IV. Automated Functional
Area Performance

Functional Enhancement X

Requirements Analysis X

Program Life Span X

V. General

Programmer Transferability X

Page 18

Another point about interpretion of the statistics is that
the detection of incompat ibilt ies was done by a syntactic scan of
the source code. Where the incompatibility involves a syntactic
change (e.g., the deletion of ENTER) , this is a reliable
procedure. In those cases where the semantics are being changed
or clarified (EXIT PROGRAM closing out PERFORMS, e.g.), however,

can be done is to look for source code where such a
make a difference. This analysis
worst-case estimate, and is not

The DISPLAY incompatibility (number
especially striking example of this. Syntactically,
every single occurrence of the DISPLAY verb as an
incompatibility, even though the great majority of vendors
currently implement this verb as described .in the proposed
revision. See Appendix D for details concerning each
i ncompa t ib i 1 i ty

.

the best that
change might
therefore, a
realistic.

represents

,

necessarily
53) is an
we counted

The age of programs was determined simply by the contents
(if any) of the DATE-WRITTEN paragraph. This is, of course, not
a foolproof metric. Moreover, it is not as easy as might be
supposed to formulate a precise definition of program age (e.g.,
how much does a program have to be altered before we would say
that the old program has not merely been modified, but has been
replaced by a new, different program?) . Nonetheless, we feel the
data is worth presenting, and it does agree with a previous GAO
estimate. We were able to find a DATE-WRITTEN entry in 58% of
the sample programs.

3.2.3 Application Program Conversion And Maintenance -

In the current setting, the source code for application
programs is updated for a variety of reasons:

1. Conversion to a new or modified host system (hardware or
software)

2. Accommodating modified functional requirements

3. Correction of errors detected in the code

4. Re-programming to reduce the number of compilers used or
to improve processing efficiency

There are no specific data on the updating attributable to
each of the above causes; only general statistics on the average
life cycle of a program are available.

The interviews with Federal ADP managers revealed that COBOL
programs are recompiled at least once a year because of
maintenance activities. In some installations, programs are
recompiled as many as 6 times annually. A reasonable average is
2-3 times per year.

Page 19

3.3 Impact Areas

FIPS cost-benefit impact areas are ADP-related activities in
which resources and/or outputs are potentially affected by the
proposed COBOL revisions. For this analysis, five major areas of
ADP activities were examined: Procurement, Operations,
Conversion, Automated Function Performance, and General. The 12
individual impact elements within the 5 areas that were analyzed
in this study are listed in Exhibit 3-5. The impact elements
fall into three categories: quantitative, qualitative, and
potential. The type of analysis associated with each of the
impact elements is designated by an "X" in the appropriate column
of Exhibit 3-5.

Of the 12 impact elements listed in Exhibit 3-5, it was
possible to assess three quantitatively: Program Development,
Program Maintenance, and Program Conversion. For these impact
elements, we were able to construct rough cost-benefit models,
and, importantly, adequate data was available.

Of the remaining impact elements, six were assessed
qualitatively and three were identified for their potential (but
not measured) impacts. Qualitative arguments are provided for:
Training, Processing Efficiency, Functional Enhancement,
Requirements Analysis, Program Life Span, and Programmer
Transferability. For these impact elements, there were strong
subjective inferences or plausible arguments that some aspect of
an impact can occur. These impact estimates, though imprecise,
represent potentially valuable and relevant aspects of the
cost-benefit effects of the proposed revisions to Standard COBOL.

The remaining three elements, Compiler Costs, Management,
and Documentation, are identified principally to indicate that
they were reviewed for potential impacts. For these elements,
there seemed to be no basis for estimating any discernible
effects of adoption of a new COBOL standard. They are noted in
this analysis because they fill out the set of impact elements
that should generally be considered in the cost-benefit
evaluation of a high level language standard.

3.4 Quantitative Impacts

Given the limitations of the data and process models that
are available to describe the application software life cycle,
our formulations will attempt to reflect only a rough,
first-order measurement of the impacts. Such secondary effects
as interest on cost or benefits as distributed over time would be
far less in magnitude than the margin of uncertainty about the
primary estimates and so would add little to the analysis.

CA
M fa
CO Eh

< <
OQ 2
W Eh
<J W
05 W
D
O fa
CO O

dJ CD 0) dJ
4-1 4-1 4J 4-1

<0 CO 03 fd

E E E E
•H •H •H •H i ,—

,

4-> 4J 4J 4-1 CM CM
to CO CO co 00 00
d> <u o <u 1

U U
4-> 4J 4-> -l-> CO CO
CO CO CO co O U
O CD <u 0> fa fa
OQ OQ OQ OQ '—

*

1—

>

uM
Eh

CO
H
2

dP
in

dP dP dP
O CO o
«—I VO

dP dP dP dP dP
m m o o o
CM r- <Ti o

m o o o
• • • • •

OV f-H o o o
H ro OMN o

VO
CM

CM
CO
ov

Eh
fa
O

Eh
CO
fa

>H

fa
fa
fa —
M fa
fa Q
O

EH 2
CO w

dP
O

dP dP dP
in iH O

r~

•'* o o r* o
dP dP dP dP dP
o m in o o r" oo ^ o
r-i^<r«-av i—i cm co oo o

co vo
CM

CO

l-l

o
-u

u
fd

fa

T>
c
fd

co

V-l

<D
4-1

d)

e
(0

l-l

(0

fa

4-1

o
03

a
eM

VO
I

CO

4->

•H
jQH
x:
x
w

CO
CO
fa
fa

05
fa
Eh

fa

<
fa

Eh
fa
M
05

U
CO
fa
a

fa
o
CQ
2
>H

CO

00 CM 00 o o
dP dP dP dP dP dP dP dP dP • • • • •

in CM in O O O in O O in in 00 o o
• 00 CM vo 00 rH CM r- vo o
o CO vo

CM
•H

r-H CM CO 'd' in rH CM CO in
X II II ll II n n II ll ll II

u l-l l-l 00 CO CO co CO to CO CO CO co CO

fd 0 0 1 14

d> 4-1 4-> fa d>

4-1 cn >i O O O X
0 c fd fd to m -i-i

•H U 14-1 4-4 E o 0
dP co o <d u

3 a CO CO i-i x
• •

CT* cn cn 0 4J O
u 4J co C c 0 4-> -H 1

#H
0 CO d) •H •H IH £ a, 4-j

4-> l-l u > > a ts <u <d d)

O •H 3 <T5 fd <d c U E rH -U
(0 44 4J co co cn -u o CO 0 <d cd

vw fd C l-l -H 3 4-> 3 1-4

to <u cn <d •H (D 4J CO 3 c C
(l) U 14-1 c o 4-> > O <d 0 <d c >1
O <u •H c CO c c d> •H E 0 (d

C E X E <d •H 0 3 O' n 0 4J •H TJ
CCS E oo E c X O -n C 0 4J (d <U CO \
4J <0 1 id <y CD C -H u r—

H

CJI 14 CO

Du u fa M 4J d) 0 4J dJ co <d d) d)

<v tnO cn c 4-4 JQ O ns 4-4 r—

4

c i-i > c
O 0 OQ 0 •H 0 T3 0 XI rd <u c •H
o u O u fd 0 C (fa •H 1-4 > 0 rH

< cuu fa 2 dP 4JH 3 dP 4-> 4-J < o

co

fa

fa fa CO fa
fa co co U CO U
< fa 2 2 Eh 2

Average

automatic

-

630

-

[FCSC-82]

conversion

rate

(lines/day)

Page 21

3.4.1 Program Development -

The impact on the program development process is expected to
be positive; that is, the new features are expected to save
programmer time when coding and interpreting specifications.
However, given typical settings in which either slack time or
overtime is present, the productivity gains will often be
invisible. The productivity gains are an opportunity benefit
which may not necessarily be realizable.

The proposed revised Standard COBOL features which have the
potential to enhance programmer productivity include the
following:

1. Nested programs provide a facility for segmenting large
programs into smaller logical units. This should
improve both the reliability of these programs, since
access to the data in the program can be controlled, and
also their maintainability, since such programs are
easier to comprehend.

2. Scope delimiters assist in the generation of structured
code. While structured programming is possible within
COBOL-74, there are a number of anomalous cases where
the structuring has to be done using some artificial
means, such as PERFORM, because the ability to group
statements directly is not present. The delimiters will
make the coding smoother and less error-prone.

3. Reference modification allows the programmer to access
any part (substring) of a character field without having
to re-define the item. This is a very important
capability in string manipulation, which can otherwise
be clumsy and error-prone. This capability exists in
many high level languages (including FORTRAN 77)

,

but
not in COBOL-74.

4. EVALUATE statement incorporates a well-known construct
from structured programming practices, the multi-way
conditional. In COBOL-74, the only reasonable way to
handle such logic is with the GO TO. . .DEPENDING ON
statement, which has all the usual problems associated
with use of the GO TO.

5. Other constructs which should prove useful in clearing
up previously awkward aspects of COBOL are the ability
to: PERFORM routines in-line, set up tables with more
than three dimensions, accept as well as generate
numbers in edited form, and INITIALIZE the values in
tables.

Of the above, we were able to search the sample programs for
programming practices in which features (3) and (4) could have
been used and would have saved time for the programmer. For

Page 22

feature (3)

,

we searched for data items defined as PIC X (one
character only) with an OCCURS clause. For feature (4)

,

we
searched for GO TO. . .DEPENDING ON. In our sample, roughly 22% of
the programs could have employed feature (3) and 5% could have
used feature (4)

.

Feature (1) will be especially useful for organizing large
programs. Exhibit 3-3 shows that programs of size greater than
1500 lines of source code account for approximately 65% of all
the lines of code (even though they constitute only 25% of all
programs)

.

We note that all COBOL programs can make use of feature (2)

.

Moreover, in the interviews conducted with representatives of the
various Federal agencies, this enhancement was the one most often
cited as potentially improving programming practice.

Thus, we anticipate that the enhancements to COBOL will
apply to some degree to virtually all programs in the Federal
inventory. For a considerable percentage of the code, the effect
will be quite significant.

The basic equation used to estimate the impact of the
revised standard on the development of new COBOL programs is
given below:

Program
Development
Impact

Where:

i =

NDP =

PAS =

CSP =

PDT =

PPM =

PSF =

10

= \~
[(NDP) (PAS) (CSP) (PDT) (PPM)] x [(PSF) (AF) (i)

]

/_
i=l

years; 1 , . . .

,

10

Number of programmer staff-years

Programmer annual salary

% of programmers working on COBOL programs

% of programmers in program development

% of ADP staff time coding

Programming savings factor

Acceptance factor of the revised Standard COBOLAF

Page 23

AF and PSF have been assigned values of 10% per year and 5%,
respectively, and are shown in Exhibit 3-6.

Applying the most likely values to the above parameters from
Exhibits 3-1 and 3-6, yields

10
Program
Development = \ [(118 , 000) ($27 , 800) (0 . 5) (0 . 4) (0 . 2)] x
Impact /_ [(0.05) (0.1) (i)]

i=l

= $36,100,000 (in 1983 constant dollars for ten years and
rounded to the nearest $100,000)

3.4.2 Program Maintenance -

Program maintenance concerns those activities involving
correcting, perfecting and adapting existing application
software, and currently represents 50-70% of the program life
cycle costs [BOEH-81] , [GAO-81b] , [LISW-81]

.

The principal way in which the proposed changes to standard
COBOL would impact on the maintenance function is by increasing
the under standability of COBOL programs, and by reducing the
error-prone features of COBOL-74. The enhancements to the
language cited above under Program Development apply strongly to
Program Maintenance also, since they make it easier to read code
as well as to write it. Many of the proposed 50 incompatibility
changes are intended to eliminate or clarify certain error-prone
or ambiguous features of the current COBOL standard.

Theoretically, the proposed changes (enhancements and
incompatibilities) can 1) reduce the incidence of programming
errors and thus reduce subsequent corrective efforts, 2) enhance
the processing performance of a program and reduce subsequent
perfective efforts, and 3) enable a program to be more easily
adapted to other ADP environments or to accommodate program
changes. Mitigating against any near-term, significant impacts,
however, are the staff slack and overtime absorbing conditions
noted in the productivity discussion, and the fact that the vast
majority of maintenance is for a large inventory of existing
programs that will likely be converted at a rather slow pace.

To the extent that one can quantify program maintenance
impacts attributable to the proposed changes, they are most
likely to be found in an opportunity cost argument for freeing up
staff resources. A rough approximation to these potential
savings is given by the equation below:

Page 24

10
Program
Maintenance
Impact

= \ [(NDP) (PAS) (CSP) (PMT)] x [(MSF) (AF) (i)

]

Where NDP, PAS, CSP, and AF are the same as in
the previous equation,

PMT = % of programmers in program maintenance

MSF = Maintenance savings factor

MSF is given a most likely value of 1%. We note that this
formulation assumes that maintenance savings will accrue for only
those programs that utilize the proposed new features, which is
up to 50% in year 5 for the value chosen for AF.

Applying the values for the parameters from Exhibits 3-1 and
3-6, yields:

3.4.3 Program Conversion -

Software conversion is the transformation, without
functional change, of computer programs and data elements to a
new hardware or software processing environment. The greater the
degree of incompatibility between the source and target systems
and setting, the more difficult the conversion.

Clearly, there will be an extra cost associated with moving
programs from a COBOL-74 compiler to a "COBOL-8x" (this is the
name sometimes used to refer to the proposed new standard)
compiler insofar as there are incompatibilities between the two.
This cost is the object of the quantitative analysis. It is also
true, however, that in those cases involving the definition by
the proposed revision of features which had been ambiguous or
implementation-defined, there will be an associated benefit.
This is because future conversions within the COBOL-8x standard
will not be vulnerable to different implementation of these
features.

10
Program
Maintenance =

Impact
\ [(118,000) ($27,800) (0.5) (0.6)] x

; [(0.01) (0.1) (i)

]

$54,100,00 (in 1983 constant dollars for ten years
and rounded to the nearest $100,000)

Exhibit 3-7 Complexity Classes
(Please see Appendix B for a description of the
incompatibilities, by number.)

1 . Reprogramming: Software is totally
system capability lacking in
Reprogramming involves redeveloping
application logic because the
fundamental to the initial design.

dependent on a source
the target environment,
extensive portions of the

absent capability is

Incompatibilities: None.

2.

Major program logic modification: Some of the code is
sensitive to the source hardware or operating system, and
equivalent features are lacking in the target environment.
Such logic modification depends on either familiarity with
the application or system software, or extensive
documentation.

Incompatibilities: 7, 11, 20, 22, 29, 41, 42, 43

3.

Minor program logic modification: Required changes depend on
other portions of the code being changed first and a
multi-pass automatic translator is not available. While the
changes require programming skill, they do not require a

knowledge of the functions performed by the software.

Incompatibilities: 4, 5, 9, 10, 12, 13, 15, 17, 18, 19, 23,
24, 25, 26, 27, 28, 32, 33, 34, 35, 36, 40, 45, 46, 47, 49,
50, 51, 54

4.

Simple syntax translation: This class typically involves
translation between different dialects of the same high-level
language. A technician can prepare and submit translator
jobs without knowledge of programming or the program being
converted.

Incompatibilities: 1, 2, 3, 6, 8, 14, 16, 21, 30, 31, 37,
38, 39, 44, 48, 52, 53, 55

5. Software transference

:

This class comprises software which
does not require any translation, but only a simple transfer
from source to target environment and possibly some
recompiling and relinking. Translation is not necessary
because the source and target operating systems, compilers,
character sets, and collating sequences are basically
identical

.

Incompatibilities: None.

Page 26

Programs may be brought into conformance with C0B0L-8x in
the following ways:

1. recoding for the sole purpose of conforming to the new
standard

2. recoding in conjunction with a system conversion to a
new host system

3. recoding in conjunction with normal software maintenance
requiring re-compilation

4. reprogramming to meet new functional requirements of the
application

In assessing the impact of the incompatibilities, it is
useful to consider the Federal COBOL inventory as a whole, and to
ask how many of these programs will eventually be converted to
C0B0L-8x (as opposed simply to being left &s is until no longer
needed), and in which of the four ways above this will occur.
The list above is ordered from greatest impact per program to
least impact. At one extreme, if a program is converted purely
for the sake of conformance, then the entire cost of conversion
is attributable to the adoption of the new standard. At the
other extreme, if a program is completely re-designed anyway,
there is no measurable additional cost in seeing that it conform
to the standard. Midway between these cases would be bringing a
program into conformance in conjunction with some other form of
updating, be that conversion or maintenance. While there is some
extra effort involved, much of the conversion overhead (e.g.,
re-compilation, re-testing) is "free," in that it would be done
even if the two versions of the standard were completely
compatible. It is worth recalling that programs are recompiled
rather frequently (at least once a year) for routine maintenance,
and so there is plenty of opportunity for recoding in category 3.

The cost impact is the additional effort expended in each of
the above categories. Based on interviews with Federal agencies,
and also on a review of the transition process from COBOL-68 to
COBOL-74, we conclude that very few, if any, conversions will be
done merely for the sake of conformance. This has never been the
practice in the past. Moreover, the introduction of such a
practice is neither required nor envisaged by existing or planned
FIPS for high level programming languages. This policy is stated
explicitly in the three most recently issued FIPS for programming
languages (FIPS 21-1 COBOL, FIPS 68 Minimal BASIC and FIPS 69
FORTRAN) wherein it is noted that: "It is not intended that
existing programs be rewritten solely for the purpose of
conforming to the standard."

Also, the previous experience in making the transition from
COBOL-68 to COBOL-74 indicates that installations will continue
to maintain the compiler for the previous version of the standard
for a considerable time after introduction of the new version.

Page 27

We conclude, then, that the cost of achieving conformance in
categories 1 and 4 is negligible, because virtually no conversion
will be done in category 1 and there is no impact on conversion
in category 4.

Measurable costs, then, are confined to categories 2 and 3,

which we will treat together. The key questions are how many
conversions will be done this way (as opposed to category 4 or
not being done at all) , and how much extra effort will be
introduced by the incompatibilities.

The first question, the percentage of programs to be
converted, may be approached by noting some of the
characteristics of the age of programs (see Exhibit 3-3) . The
statistics on age allow us to formulate only a rough guess as to
the pattern of longevity for the current Federal inventory. Note
that the statistics are for the age of existing programs. This
age distribution would directly reflect longevity only if we
assumed that COBOL programs were being created at a constant rate
over the last 15 years or so - clearly not the case.
Nonetheless, almost any reasonable model one can develop which
assumes an average age of six years for Federal COBOL programs
will yield a result no greater than 70-75% for the share of
programs which will be converted to COBOL-8x over the next ten
years.

For example, let us consider a simple model wherein a given
agency decides to adopt the COBOL-8x standard in the following
way:

1. The conversion will take place over a two-year period,
during which both a COBOL-8x compiler and the current
compiler are available.

2. Conversion to the new standard will be done in
conjunction with normal maintenance.

3. Existing programs will continue to "die" at the normal
rate of 15% per year (equivalent to exponential
distribution, with average age equal to six years)

.

4. New programs will be written to conform to the COBOL-8x
standard.

Such a model yields a result of 72% of existing code
undergoing conversion. Of course this model is highly
susceptible to optimization. For instance, the death rate for
programs could be accelerated as the normal weighting factors
affecting the decision to patch or re-write a given program are
tipped in favor of re-writing. In anticipation of the
conversion, management guidelines could greatly reduce the
incompatibility in new code produced .in the year or two preceding
the transition period (e.g., no use of ENTER, the new reserved
words) . Of course this code could not take advantage of the new

Page 28

features of C0B0L-8x, but it would be compatible nonetheless. Or
the transition period could be stretched out to three years;
this alone would reduce the proportion to 61%.

Next, we must consider the degree of extra effort entailed
by the incompatibilities. As part of the effort to develop a
model to quantify the conversion cost impacts, we reviewed the
conversion models and analyses in [BOEH-81] , [DITT-80]

,

[OLIV-79]
, [FCSC-81] and [FCSC-82] . All these models have

similar assumptions and basic structures. They use adaptation or
adjustment factors, subjective/experience-based impacts, classes
of conversion complexity, cost-per-line of code, and various
conversion task work breakdowns. For this analysis, we* decided
to utilize various parts of the Federal Conversion Software
Center model [FCSC-82] . Its formulation is exclusively oriented
to and based on Federal ADP systems. Also it reflects [LIV-79]
and [FCSC-81] , and it provides reasonable definitions of the
conversion complexity classes and of average conversion
cost-per-line of code by class. Through the use of this model,
we can express in a precise way the intuitively natural notion
that the costliness of a given incompatibility will depend
strongly on how frequently the incompatibility is used (as
measured by the sample) and how complex a conversion it entails
(as reflected in the assignment of incompatibilities to
complexity classes, see below)

.

The basic equation for the cost of source code conversion in
the FCSC model is:

5

SD \ SSDs

s=l

Where:

s = Complexity class (1 = most complex, 5 = least)

SSDs = Staff-days for required for class s.

SD = Total staff-day cost

The SSD for each s is, in turn, evaluated by:

(LOCs) (1-Ts

)

(LOCs) (Ts)

SSDs +
MCPRs ACPR

Where

:

LOCs = Lines of code to be converted in class s

Page 29

Ts = Percentage (expressed as a fraction) of lines
of code capable of being correctly translated
automatically for class s.

MCPRs = Average manual conversion productivity rate
for class s

ACPR = Average automatic conversion productivity rate

Exhibit 3-7 describes the complexity classes. The
assignment of incompatibilities to these classes is based on a
technical review of the current and proposed standards, and also
on information obtained from the various donor agencies regarding
the way in which they use certain features. The only parameter
which will be affected by the incompatibilities is LOCs. By
increasing the complexity of a conversion, an incompatibility
will increase LOCs for more complex classes and decrease it
correspondingly for less complex classes. It is convenient to
manipulate the above model so as to isolate just this crucial
piece of information:

5

Incremental
Conversion = \
Impact /

s=l

Where:

BLCs = Percentage of lines of code in class s', base case

CLCs = Percentage of lines of code in class s, after impact
of incompatibilities

s-1 5

= (BLCs) (1 - FRCi) + (FRCs) (

“ BLCi)

l_ /_
i=l i=s+l

Where FRCx is the percentage of all programs forced
up to class x by incompatibilities. Note that the
first term reflects the loss of programs from class
s to more complex classes, and the second term
reflects the gain from less complex classes.

TL = Total lines of code to be converted

[CLCs - BLCs] x [

(1-Ts) TS
+] x (TL)

MCPRs ACPR

Page 30

We will assign values to MCPRs, APCR, and Ts based on
cautious estimates derived from [FCSC-82] , see Exhibit 3-6.
Further, we shall assume an average salary of $27,800, as before,
and 213.2 staff-days per year, again from [FCSC-82]. This allows
us to derive a cost per line for each conversion class. Also our
model should reflect explicitly the judgment about how many lines
of code will be converted. Thus, the final form of our model
equation is:

5

Incremental
Conversion = (NCS) (NLP) (NCP) V" [CLCs - BLCs] (CCLs)
Impact /

s=l

Where:

BLCs and CLCs are as before,

NCS = Fraction of COBOL programs which will undergo
conversion as in category 2 or 3, described above.

NLP = Average number of lines per COBOL program

NCP = Number of COBOL programs in Federal inventory

CCLs = Conversion cost per line for class s

(1 - Ts) Ts
= [+] (PAS) / (SDY)

MCPRs ACPR

(Where SDY = 213.2 staff-days per staff-year, and
PAS = $27,800 programmer annual salary)

Personnel costs are an appropriate basis for classes 1-4
because they are labor-intensive activities. They are a rough
but reasonable surrogate for machine time and/or amortization
rates for the 5th class, because those costs per line are so
small regardless of the cost basis.

The determination of values for BLCs can only be an
estimate. Note that as one assigns higher percentages to the
more complex classes of the base case, the cost impact decreases.
Further, the base case no doubt differs for category 2

(conversion) and category 3 (maintenance) . We arrived at base
case values (See Exhibit 3-8) based on consultation with the
Director of the Federal Conversion Support Center and members of
the Federal COBOL Task Group, a group of representatives of
Federal agencies which use COBOL extensively. The values used
represent base case estimates for conversion (as opposed to
maintenance) and so are somewhat pessimistic.

Exhibit

3-8

Cost

Analysis

of

Incompatibilities

co •

c CO

0 0
•H C
r-H o CM CO H1 rH •H

-P i—

1

• • • • • rH
O -H o »

—
1 in CO O

<0 e 1 CM + + c
a 1 0
e </> •H
H rH

rH
•rH

E
S-l CM
0 to- •

co a, in •sr CM rH CM
j VO m CM O >i CM
CJ -P' 0 • • • • • rH CM
u w C vo CM o o o 0

0 *H 1 1 i 1 i co II

u rH •rH

o E
0 0
S-l S-l

a CP
c 0
•H • dP dP dP dP dP TS S-l

jQ o CM rH CO O T3 a
0 -H • • • • (0 \
CP S-i o rH r-~ CO

C -P + CM i—

i

1 -U 0
(13 W + l 0 c
XI -H c H
U TS

0
i—

1

T3 O
cp—- t-~

C • CO CM
•H jQ 0 rH
-P -H dP dP dP dP dP S-l

ID H M o CM rH r- O 3 -P

o 3 -p • • • • CP 0
iJ CO CO o 1—

1

r- i—

1

•H
U <u -h in iw CO

E—- rH 0
-H S-l

CP
0 -P 0

• -P —

v

0 S-l

CO CO Q • a,
CPTS dP dP dP dP dP CP

co o a) to o CM co O • c o
a s-i o to • • • •H o
PS Oj S-i (C3 O vo CO C xs o
Eli 0 "—

1

CM in 0 c
o •rH 3 o— rH 0 in

rH p CM
•H

0 —

.

E mh V|H

CO •

(0 X! u>
0 0

O -H ~

—

0 dP
CO S-l CO O
U o 4J dP dP dP dP dP <Ti 3
q co co o O O uo in • 0
CQ (0 -H CM r- r-- o c

CO T3 rH 0 o
1 X!

XI
• • 0

>1 -P co

-P — o 0
•H CO 0 X!
X a
0 E -P

rH CO M o
a CO 0
E (C3 1-

1

CM CO in -P a
0 i—

1

0 E
u u M

Page 32

Values for FRCs were taken from an analysis of the sample
programs. We assigned each of the incompatibilities to one of
the five complexity classes and then, by successively masking off
the effects of the incompatibilities for each class, (from less
to most complex) determined the percentage of programs which
would be forced to each of the classes. See Exhibit 3-7 for the
assignment of incompatibilities to complexity classes. We then
assumed that this "forcing up" was independent of, and therefore
uniformly distributed over, the base case. This assumption is
expressed in the derivation for CLCs, above. The entire
conversion cost analysis is summarized in Exhibit 3-8. The
result is a total cost of $17.9 million.

There were a few incompatibilities which could not be
detected syntactically. A brief discussion of the more important
of these is given to complete the impact analysis for conversion.

1. C0B0L-8x specifies the semantics for the case in which
there is no next executable statement. Presumably, very
few programs rely on the implementor-defined semantics
(because it is undefined in COBOL-74) for this
situation. Since the semantics simply involves where
flow of control will go next, it should be relatively
easy to change those programs which are affected.
Diagnosing the change in behavior may be a significant
problem.

2. C0B0L-8x allows reading past end of file. Although most
programs use AT END, there should be very few, if any,
whose algorithm allows reading past end of file. It is
easy enough to install a switch to detect this
situation, if need be. The major effect (whether for
good or ill, an open question) will be in program
development, not conversion.

3. C0B0L-8x specifies that STOP RUN closes all files. We
assume that few programs rely on the implementor-defined
semantics of leaving files unclosed. The only effect of
this condition is necessarily outside the program, and
it is probable that whatever effect is being achieved
can be duplicated with job control statements.

3.5 Qualitative Impacts

Several types of impacts which may result from the
implementation of the proposed changes to COBOL-74 could not be
quantified in this analysis. Lack of adequate data and the
intangible characteristics of the impact are the principal
reasons. These qualitative impacts are worth noting because they
are legitimate considerations in a pre- or post- implementation
assessment of a FIPS.

Page 33

The qualitative impact discussions are presented in their
order of appearance in Exhibit 3-5. Each impact is described in
terms of its basic characteristics and whether its effects are
expected to be positive or negative.

3.5.1 Training -

In this analysis, training costs are the expenditure of
resources to teach a staff the new revised Standard COBOL, over
and above the teaching costs expected in the Base Case. For the
study horizon this impact will be negative; that is, additional
costs above the base case level are expected.

Training expenses typically consist of the cost of 1)
instructor time and course preparation, 2) facilities, materials,
workshops, and 3) trainee time during the course.

For this formulation, the first two items are judged to be
insensitive to the proposed changes, and the third item, trainee
time, will be used as the surrogate parameter for the training
impact. Further, we make the following assumptions:

1. All programmers (including those with prior experience)
reporting to a new job require a training course. The
revised Standard and Base Case costs for these
programmers are essentially the same.

2. Recurring career enhancement training is essentially the
same for the revised Standard and Base Case settings.

The only significant additional cost, therefore, will be
when programming staff must be trained "out of sequence," i.e.,
earlier than in the base case because of a conversion to
C0B0L-8x. We do not expect this impact to be very great, and
almost certainly it will be an order of magnitude lower than the
quantitatively evaluated impacts discussed above.

3.5.2 Processing Efficiency -

The premise underlying this impact is that, on the average,
in a setting where there are many programmers of varying
expertise, a high order language such as COBOL can permit
efficient use of the computer system resources. The changes
proposed are expected to enhance the processing efficiency of
programs in COBOL, and the overall effect for this impact area
should be positive.

Another possible effect, which would be negative, is the
cost of maintaining an extra compiler while undergoing transition
to C0B0L-8x. Our study survey showed, however, that

Page 34

installations typically support at least two COBOL compilers
anyway. There will be very little, if any, detectible increase
in operating costs traceable to adoption of a new standard. In
any event, such a cost would be borne by a compiler for any new
standard, even one that was fully upward compatible.

3.5.3

Functional Enhancement -

Using a high order language such as COBOL often leads to
improvements in the application functions. Frequently fewer
programs are needed, data collection is simplified, and manual
operations can be eliminated.

To the extent the proposed changes can improve the accuracy
of reports by reducing errors and awkward operations, there can
be a contribution to the functions supported by COBOL programs
that can use these changes. We expect that these impacts will be
positive but indirect and slight.
3.5.4

Requirements Analysis -

The process of specifying functional requirements, and then
translating those requirements into program specifications for
coding, is affected directly by the choice of programming
language. To the extent users can communicate their needs fully
and verify the programmed results easily, the requirements
analysis process becomes more efficient and effective. All
procedural software languages are artificial relative to English.
The likelihood of the solution being incorrect, or even of the
wrong problem being formulated, increases when it is more
difficult for the user and programmer to communicate about the
requirements. To the extent that a programmer can express the
needs of the user with the help of constructs directly available
in COBOL, the communication process between the two is enhanced.

The proposed changes are expected to reinforce this process
of better communications about the application requirements
analysis by reducing the ambiguous and error-prone features of
the existing COBOL standard, as well as by introduction of the
new features mentioned earlier. This impact will be positive but
indirect and slight.

3.5.5

Program Life Span -

A program with a longer effective life span is preferable to
one with a shorter life, under the same operating conditions.
The benefits accrue from reduced applications programming, and
also, if reusable code modules are constructed, from reduced
corrective maintenance costs.

Page 35

The proposed changes should extend the useful life of COBOL
programs in two ways. First, by defining previously
vendor-dependent features of the language, programs will become
more portable, and hence less likely to be discarded when
converting to a new hardware system. Second, there are various
new language features which enhance the modularity of the
language. Modularized programs are more easily maintained; a
radical change in one part does not affect the rest of the code
and so there is no need to discard the entire structure and
re-write from scratch. This impact will be positive but slight,
as COBOL programs are already rather long-lived.

3.5.6 Programmer Transferability -

Since the late 1960"'s, the pool of personnel interested and
trained in COBOL has grown dramatically. A greater supply of
personnel already familiar with the language in use reduces
training and learning time and makes it easier to recruit staff
to use COBOL. Given the turnover ratio in the military and
civilian sectors, enhanced programmer transferability is clearly
a benefit to Federal agencies that use COBOL.

As mentioned earlier, there are many cases where the
proposed revision clarifies or defines language features which
were ambiguous or implementor-defined in COBOL-74. Thus, the
proposed changes will inprove the ability of programmers to
migrate from one implementation to another. Of the qualitative
effects of the proposed changes, this impact area is the most
significant.

3.6 Sensitivity Analysis

The principal objective of a sensitivity analysis is to
assess the degree of variation in the cost/benefit impact
estimates generated by changes in the study assumptions, and to
provide insight into the validity of the study findings (see
Exhibit 3-9 for a summary) . Therefore, we will discuss in
greater depth those assumptions which are most subject to doubt
and which affect the outcome most strongly.

3.6.1 Benefits -

The benefits, as is typically the case for standards, are
broad but shallow. Estimating the breadth (i.e., scope) of the
benefit is relatively simple: clearly the impact extends
throughout the use of COBOL in - the Federal government. The
difficulty is in arriving at a reasonable estimate for the depth:
how much good will the new standard do in an "average" Federal
agency? We have tried to be cautious in our estimates of the

Page 36

programming savings factor (PSF) and maintenance savings factor
(MSF) . The less precise of these is probably MSF. If we assume
that MSF is 2%, instead of 1%, the maintenance benefit increases
by $54 million. Such a value is well within reason, but cannot
be demonstrated with the available data.

The only point to be made beyond this is that the standard,
per se, can offer only a potential for savings in program
development and maintenance. The real izat ion of that potential
depends on several factors, but especially on good DP management
practices.

3.6.2 Cost -

We will now examine those assumptions upon which depends the
most likely cost estimate of $17.9 million.

The base case distribution for conversions (BLCs) is not
directly supported by any available data (see Exhibit 3-8) . If
we assume that conformance to C0B0L-8x will be accomplished in
conjunction with normal Software maintenance, rather than
conversion, we might plausibly conclude that the base case values
are 0%, 0%, 45%, 50%, and 5%, i.e. there will be more class 3

complexity because maintenance may well involve functional
changes, whereas conversion, by definition, does not. Under this
assumption, the cost estimate becomes $13.2 million.

Clearly, the bulk of the cost stems from those
incompatibilities which both occur frequently and force a class 3

modification. There are four of these that deserve some
individual comment:

1. Deleting MEMORY SIZE from the standard

2. Deleting ENTER from the standard

3. Defining the effect of EXIT PROGRAM on PERFORMS

4. Defining the order of evaluation of subscripts within
PERFORMS

Items 3 and 4 cannot reasonably be changed back to the
original specification of COBOL-74. They simply define the
semantics of two cases which were not described in COBOL-74.

For item number 1, the effect was completely dependent on
the implementation in any event; almost all modern systems
accept such information as part of their system control language.

For item number 2, it is technically feasible to keep the
specifications of COBOL-74. If this were done the cost estimate
would shrink to $11.3 million. There would also be, however, an

Page 37

adverse effect on the benefit side. ENTER was deleted precisely
because it encourages the development of code which is
error-prone and difficult to maintain. It would take only a 7%
reduction of the benefits to cancel out the $6.6 million cost
savings.

It is worth noting that in all four cases above, programs
depending on the COBOL-74 specification were not guaranteed to be
portable by that specification; all four changes are examples of
taking aspects of the COBOL-74 standard which were ill-defined
(purposely or not) to begin with, and either deleting the feature
outright, or simply defining its effect. In none of these cases
is a truly well-defined portable feature being affected.

The final issue is what policy Federal agencies will adopt
governing coding practices in the years leading up to the actual
transition to a C0B0L-8x implementation. We have somewhat
pessimistically assumed that, as new code replaces discarded
programs, it will have the same degree of incompatibility. If,
on the other hand, new code under development were monitored for
conformance to C0B0L-8x, then the effective percentage of code
needing actually to undergo conversion (parameter NCS) would
shrink from 70% to 50% within a few years. A figure of 50%
implies conversion costs of $12.8 million.

Exhibit 3-9 Sensitivity Analysis

Assume Assume
MSF = 1% MSF = 2%

most likely
assumptions

Benefit: 90.2 144.3
Cost: -17.9 -17.9

Net: 72.3 126.4

base case
distribution:
0,0,45,50,5

Benefit: 90.2 144.3
Cost: -13.2 -13.2

Net: 77.0 131.1

assume ENTER
unchanged, 10%
benefit loss

Benefit: 81.2 129.9
Cost: -11.3 -11.3

Net: 69.9 118.6

NCS =50% Benefit: 90.2 144.3
Cost: -12.8 -12.8

Net: 77.4 , 131.5

(All figures in $ millions)

Page 38

4.0 FINDINGS

4.1 Interpretation

This study shows that the effect of revising the COBOL
standard as proposed should not be dramatic, either for good or
ill (see Exhibit 4-1) . There is a real opportunity to improve
certain features of the language which should not be ignored, but
the changes will hardly revolutionize COBOL programming in the
Federal sector. At the same time, there will be some problems
created by incompatibility, but these are not unusual, either in
kind or in degree. Nor should it be surprising that the effect
is relatively small; the proposed revision is just that: a
revision of an existing standard - and not that markedly
different from it.

It is important to put the projected costs and benefits into
perspective. An effect of $100 million, spread out over ten
years, represents 0.3% of the salaries (unadjusted) of Federal
programmers over that same period. Also, the incompatibility
problem in particular needs to be addressed. There was a virtual
consensus among the ADP personnel we interviewed that modifying
source code was among the easier aspects of conversion. They had
experienced far more difficulty with conversion of data and of
job control code. Some agencies actually had to write their own
I/O routines, rather than use those of the new system, because of
data incompatibility between the old and new systems. When asked
what their biggest problem was, most answered, "the lack of
documentation." One interviewee characterized this as the problem
of "portability of programs between programmers."

4.2

Recommendations

4.2.1 Incompatibility -

There is no need to improve compatibility between the
current and proposed versions of COBOL. While there are
theoretical problems, the way in which COBOL is actually used in
the Federal government renders them relatively minor. The
introduction of any further incompatibilities, however, should be
subject to careful evaluation, to ensure that their impact is no
more adverse than those considered in this study.

It is important that Federal ADP managers be alerted to the
advent of COBOL-8x, and its subsequent impact. In particular,
ICST will provide guidance concerning the monitoring of new code
under development. Such simple steps as avoiding the use of
ENTER will have a large payoff later on when agencies undergo
conversion to COBOL-8x.

Also, it is important that automatic conversion be
accessible to Federal users. When new compilers start reaching
the market, concerned Federal agencies should determine whether

Page 39

automated translators are available. If not, they should
seriously consider co-sponsoring the production of such a
software tool.

4.2.2 Education -

ICST will make a vigorous effort to see that the Federal
government reaps the full benefit of a new COBOL standard. The
new features will help Federal users only if they are known and
understood by both programmers and managers. ICST will promote
correct use of the new features through a variety of media:
guidelines, workshops, and the Federal COBOL Task Group.

4.2.3 Timing -

The benefits of revising the COBOL standard are largely
associated with the COBOL programs yet to be written. The costs
are associated with those which already exist and depend on
features unique to COBOL-74. Therefore, the sooner the standard
becomes known and adopted, the better. The problems of
incompatibility, real as they are, do not justify delaying the
ongoing maintenance and improvement of the COBOL language.

Page 40

Exhibit 4-1 Summary of Impacts for the Proposed COBOL Standard
(Including All Incompatibility Changes Proposed)

IMPACT AREA QUANTITATIVE (1) QUALITATIVE

Program Development $36,100,000

Program Maintenance $54,100,000

Program Conversion ($17,900,000)

Training - Negative, Slight

Processing Efficiency - Positive, Slight

Functional Enhancement - Positive

,

Slight

Requirements Analysis - Positive, Slight

Program Life Cycle - Positive

,

Slight

Programmer Transferability Positive, Moderate

NET TOTAL $72,300,000 Positive, Slight

(1) Constant 1983 dollars, summed over 1984-1993; all figures
rounded to the nearest $100,000. Figures in parentheses
are negative.

Page 41

REFERENCES

[ANS-74

]

Technical Committee X3J4, American National Standard
programming language COBOL , ANS X3. 23-1974, ANSI,
May, 1974

[ANS-81] Technical Committee X3J4, Draft Proposed Revised
X3.23 American National Standard Programming Language
COBOL, ANS, Sep. 1981.

[BOEH-7 6a] Boehm, B. W. "Software Engineering," IEEE
Transactions on Computers, Vol. I, C. 25, No. 12,
December, 1976.

[BOEH-7 6b] Boehm, B. W. , Brown, J. R. , and Lipow, M.
"Quantitiative Evaluation of Software Quality",
Proceedings of Second International Conference on
Software Engineering, 1976.

[BOEH-81] Boehm, B. W. Software Enginering Economics, Prentice
Hall, Inc., Englewood Cliffs, New Jersey, 1981.

[BROO-75] Brooks, F. P. The Mythical Man-Month: Essays on
Software Engineering, Addison, Wesley, Reading,
Massacusetts , 1975.

[BROO-80] Brooks, R. E. "Studying Programmer Behavior
Experimentally: The Problems of Proper Methodology",
Communications of the ACM, Vol. 23, No. 4, April,
1980

[CHFS-81] Christensen, K. , Fitsos, G. P., Smith, C. P. "A
Perspective on Software Science", IBM Systems
Journal, Vol. 20, No. 4, 1981.

[CROW-79] Crowley, J. D. "The Application Development Process:
What^s Wrong with It", JDC Associates,- Walnut Creek,
California, 1979.

[CURT-80] Curtis, B. "Measurement and Experimentation in
Software Engineering", Proceedings of the IEEE, Vol.
68, No. 9, 1980

[DITT-80] Dittman, J. T. Transferability Factor Manual,
Veterans Administration, Columbia, MD, March 1981.

[DUBN-81]

[DEUT-75]

Dubnow, A. "A Point-by-Point Rebuke of Revision
Efforts on COBOL Standards", Data Management,
December 1981.

Deutsch, D., et al. An Assessment of the NBS Project
for Federal Standardization of the COBOL Computer
Programming Language, NBS Working Note, June 1975.

[DEUT-75]

Page 42

[DEUT-76

]

[FCSC-81]

[FCSC-82]

[FIOR-78]

[GAO-77]

[GAO-80]

[GA0-81a]

[GA0-81b]

[GAO-82]

[GRAY-79]

[GRAY-81]

[JONE-77]

Deutsch, D. Approval of Federal Government COBOL
Standards and Software Management: Survey Results,
NBS IR 76-1100, NBS, August 1976.

FCSC, Review and Analysis of Conversion
Cost-Estimating Techniques , GSA/FCSC-81/001 , Federal
Conversion Support Center, Falls Church, Virginia,
April 1981.

FCSC, Federal Conversion Support Center Conversion
Cost Model (Version 2) , GSA, Office of Software
Development, Report No. GSA/FCSC-82/001 , Falls
Church, Virginia, June 1, 1982.

Fiorello, M. and Jaffin, S. Costs and Benefits of
Federal Automated Data Processing Standards

:

Guidelines for Analyses and Pr el iminary Estimating
Techniques, Logistics Management Institute, Wash.

,

DC, 1978.

Comptroller General, Millions in Savings Possible in
Converting Programs from one Computer to Another,
GAO, FGMSD-77-34 , September 15, 1977

Comptroller General, Continued Use of Costly

,

Outmoded Computers Tn Federal Agencies Can Be
Avoided , GAO, AFMD-81-9, December 15, 1980

Comptroller General, Government-Wide Guidel ines and
Management Assistance Center Needed to Improve ADP
Systems Development, GAO, AFMD-81-20, February 20,
1981.

Comptroller General, Federal Agencies^ Maintenance of
Computer Programs: Expensive and Undermanaged , GAO,
AFMD-81-25 , February 1981.

Comptroller General, Improving COBOL Appl ications Can
Recover Significant Computer Resources, GAO,
AFMD-82-4 , April 1, 1982.

Gray, M. G. Computers in the Federal Government

:

A
Compilation of Statistics - 1978 , NBS Special
Publication 500-46, Institute for Computer Sciences
and Technology, National Bureau of Standards,
Washington, DC 1979.

Gray, M. G. An Assessment and Forecast of ADP in the
Federal Government , NBS Special Publication 500-79,
Institute for Computer Sciences and Technology,
National Bureau of Standards, Washington, DC, 1981.

Jones, C. Program Quality and Prorammer Productivity ,

IBM, TR 62.764, San Jose, California, January 1977.

Page 43

[LISW-81]

[MANT-81]

[MOHA-81]

[MUNS-78]

[NBS-72]

[NBS-75

]

[NBS-81]

[NELS-81a]

[NELS-81b]

[OSD-81]

[OTTE-79]

[OLIV-79

]

[SHOE-80

]

Lientz, B. and Swanson, E. "Problems in Application
Software Maintenance", Communications of the ACM ,

Vol. 24, No. 11, November 1981.

Mantei, M. "The Effect of Programming Team Structures
on Programming Tasks", Communications of the ACM,
Vol. 24, No. 3, March 1981.

Mohanty, S. N. "Software Cost Estimation: Present and
Future", Software - Practice and Experience, Vol. 11,
1981.

Munson, J. B. "Software Maintainability: A Practical
Concern for Life-Cycle Costs", Proceedings of
COMPSAC , November 1978.

NBS , Common Business Oriented Language - COBOL, NBS,
FIPS Pub 21, March 15, 1972.

NBS, COBOL , NBS, FIPS PUB 21-1, December 1, 1975.

The Effects of Future Information Processing
Technology on The Federal Government ADP Situation ,

A. D. Little, Inc. , General Systems Group, Inc.

,

Aurora Associates, Inc., NBS GCR 81-342, NBS,
September 1981.

Nelson, D. "Letter to R. Shoor of Computer World",
Control Data Corporation, Sunnyvale, California,
February 4, 1981.

Nelson, D. "Letter to Mr. R. Widmer, TWA," Control
Data Corporation, Sunnyvale, Calif., January 27,
1981.

Office of Software Development, Software Improvement
- A Needed Process in the Federal Government , GSA,
OSD-81-102, Falls Church, Virginia, June 3, 1981.

Ottenstein, L. M. "Quantitative Estimates of
Debugging Requirements", IEEE Transactions on
Software Engineering , Vol. SE-5, 1979.

Oliver, P. , Handbook for Estimating Conversion Costs
of Large Business Programs , ADPESO, U.S. Navy,
Washington, DC, February 1979.

Shoemaker, D. Br ief Case Studies on the
Implementation of FIPS PUB 21-1 Federal Standard
COBOL and Problems Associated with ADP Systems
Programs and Data Conversions , Shoemaker
ADP/Telecommunications Standards Consultant,
Woodbridge, VA, November 1980.

Page 44

[SHOE-81] Shoemaker, D. and Aurora Assoc. , Inc. Product
Utilization Survey of the Federal Information
Processing Standards Program , Aurora Associates,
Inc., Washington, D.C., September 1981.

[STEW-81] Stewart, S. "Memorandum - Comments on Proposed ANSI
COBOL," Institute for Computer Sciences and
Technology, NBS , December 23, 1981.

[YOUR-79] Yourdon, E. The Second Structured Revolution ,

Yourdon, Inc., New York, 1978.

APPENDIX A

BASIC COST-BENEFIT ANALYSIS METHODOLOGY

The cost-benefit methodology is based on the 1978
preliminary guidelines for impact assessments of standards
[FIOR-78]

.

1. Specifying the Goals and Objectives for the Standard.
Identifies which ICST goal(s) and objectives (s) the
prospective standard is expected to contribute to and
achieve, respectively.

2. Preparing the Standards Def ini tion Statement.
Summarizes all the essential information about the
standard necessary to conduct the cost-benefit analysis.
At a minimum this includes:

How the standard will be developed, used and
supported.

Essential assumptions and information for the cost
and benefit estimates submitted.

The historical data trail on the evolution of the
standard's design and development, and the
corresponding impact and cost estimates from the
beginning to the formal implementation of the
standard. The trail is provided by the
chronological sequence of updated definition
statements

.

A basis for a critical review of the standard's
objectives and a discussion on how well the proposed
design and development process will satisfy them.

Descriptions of the areas of high technological risk
and cost-benefit uncertainty.

The statement can also reference selected information in
the backup material that documents the cost and benefit
estimates. Each time a cost-benefit analysis is
prepared, a Standard Definition Statement will also be
prepared. In this way, the statement provides a readily

BASIC COST-BENEFIT ANALYSIS METHODOLOGY Page A-2

available audit trail and a basis for critical review of
the standard.

3. Defining the Base Case. Defines the status quo for
those cost-benefit impact dimensions relevant to the
standard. The Base Case can be defined for one or
several FIPS that are under consideration. The several
FIPS case would occur where the impacts from two or more
alternatives tend to overlap, and the individual impacts
are not readily distinguishable.

4. Selecting the Cost-Benefit Impact Areas. Specifies cost
and benefit impact areas relevant to the standard. A
standard will require certain costs for development,
implementation, validation and maintenance. In
addition, there are costs that can be incurred by the
Federal ADP installations that utilize the standard. On
the benefit side, a standard will typically tend to have
its major economic impacts in one of three areas:
procurement, operations, or conversion. These impact
areas and elements further delineate how a standard
contributes to the ICST goals and objectives concerned
with achieving economies in ADP procurement, operations,
and conversion. Table A-l gives the list of impact
areas

.

5. Constructing the Cost-Benef it Analysis Model

.

Provides
the appropriate model form to quantify the cost and
benefit impacts expected of the standard. The model is
used to estimate the flows of costs and benefits
attributable to the standard over time.

6. Obtaining Data. Collects the data to perform the
analysis. In addition we expect to utilize the data
from the cost-benefit analysis of selected, individual
standards

.

7. Estimating and Evaluating the Cost-Benefit. Represents
the consolidation of the qualitative and quantitative
analyses performed up to this point. The basis of the
cost-benefit analysis will be the generation of the Base
Case parameters and the computation, within specific
confidence intervals, of the effect a new standard
scenario will have on cost levels. The techniques used
to generate the figures comprising the Base Case address
the areas of: (1) level of expected resource
consumption, (2) Federal ADP installations' unit cost
for each resource, and (3) projected impact(s) of the
proposed ADP standard. To aid in this process, cost
element equations will be used. To determine the net
cost-benefit impact of a FIPS, the costs to the Federal
Government (specifically ICST) of developing and
implementing the FIPS will be defined and incorporated
into the analysis.

BASIC COST-BENEFIT ANALYSIS METHODOLOGY Page A-3

8. Presenting and Interpreting the Results. Translates the
cost-benefits attributable to the FIPS in the context of
the Federal Agencies that will likely be impacted by the
standard. This step is crucial as it specifies whether
actual budget dollars will be changed (such as in
procurement impacts) or whether the impacts are
productivity changes (such as when a resource is freed
up for other activities)

.

BASIC COST-BENEFIT ANALYSIS METHODOLOGY Page A-4

Table A-

1

COST-BENEFIT IMPACT ELEMENTS100

PROCUREMENT
101 Hardware
102 Software
103 Testing
104 Planning and Analysis
105 Initial Training
106 Documentation
107 Installation

200

OPERATIONS
201 Operating
202 System Management
203 Maintenance

203.1 Hardware Maintenance
203.2 Software Maintenance

204 Programming
205 Ongoing Training
206 Facilities
207 Security Provisions

300

CONVERSION
301 Program Transfer
302 Retrofit

400

SYSTEM PERFORMANCE
401 Computer System
402 Applications Software
403 System Users

500

COMPUTER MISUSE
501 Errors and Omissions
502 Computer-related Fraud and Embezzlement
503 Privacy Intrusion
504 Alteration of Computer Records
505 Theft of Computer Information
506 Unauthorized Usage
507 Denial of Service
508 Equipment Damage

APPENDIX B

INCOMPATIBILITIES BETWEEN COBOL-74 AND COBOL-8X

Description of Incompatibilities, by Number

1. Deletion of rule providing for substitution of double
characters for a single character.

2. When figurative constant ALL literal is not associated
with another data item, its length is that of the
string, rather than one.

3. (Withdrawn) Figurative constant ALL literal cannot be
associated with a numeric or numeric edited data item.

4. (Withdrawn) The implicit description of the special
register DEBUG-ITEM has been changed.

5. MEMORY SIZE clause deleted.

6. The word ALPHABET is now required before alphabet-name
in the SPECIAL-NAMES paragraph.

7. The collating sequence for an indexed file is defined as
the native sequence in effect at file creation, not that
of the PROGRAM COLLATING SEQUENCE clause (previously
undefined)

.

8. The literal within the CURRENCY SIGN clause may not be a

figurative constant.

9. The relative key data item specified in the RELATIVE KEY
phrase must not contain the PICTURE symbol "P".

10. Each file in a series of files sharing the same physical
reel of tape must be created with a uniform labelling
convention. A sort or merge file may not be specified
in the MULTIPLE FILE TAPE clause.

11. RERUN clause deleted.

INCOMPATIBILITIES BETWEEN COBOL-74 AND COBOL-8X Page B-2

12. Files for which the LINAGE clause has been specified
must not be opened in EXTEND mode.

13. When a receiving item is a variable-length data item and
contains the object of the DEPENDING ON phrase, the
maximum length of the item will be used (as opposed to
the actual current length)

.

14. Digit positions specified by PICTURE "P" will be
considered to contain zeros only in numeric operations
(as opposed to operations involving non-numeric
operands)

.

15. Evaluation of complex conditions takes place in
hierarchical order, left to right, and terminates as
soon as the truth value is determined (previously
undefined)

.

16. ALPHABETIC class condition accepts lowercase as well as
uppercase letters.

17. (Withdrawn) ALTER statement deleted.

18. CANCEL statement closes all files (previously
undefined)

.

19. CLOSE statement cannot contain both the NO REWIND phrase
and the REEL/UNIT phrase.

20. KEY phrase of the DISABLE statement deleted.

21. Subscripts within the REMAINDER clause are evaluated
after results stored in GIVING operand (previously
undef ined)

.

22. KEY phrase of the ENABLE statement deleted.

23. ENTER statement deleted.

24. When there is no next executable statement in a called
program, an implicit EXIT PROGRAM is executed
(previously undefined)

.

25. EXIT PROGRAM closes out all PERFORMS in the called
program (previously undefined)

.

26. Order of evaluation of subscripts within INSPECT
statement is defined (previously undefined)

.

27. No two files in a MERGE statement may be specified in
the SAME AREA or SAME SORT-MERGE AREA clause. The only
files in a MERGE statement that can be specified in the
SAME RECORD AREA clause are those in the GIVING phrase.

INCOMPATIBILITIES BETWEEN COBOL-74 AND COBOL-8X Page B-3

28. (Withdrawn) The 1-0 and EXTEND phrase of OPEN cause
non-existing files to be created.

29. REVERSED phrase of OPEN deleted.

30. Order of initialization of multiple VARYING identifiers
in PERFORM is specified (previously undefined)

.

31. Within the VARYING. . .AFTER phrase of the PERFORM
statement, identifier-2 (the higher level control
variable) is augmented before identifier-5 (the lower
level control variable) is set (as opposed to the
reverse order)

.

32. Execution of READ after the at-end condition occurs is
now permitted.

33. The INTO phrase of READ cannot be specified unless: (a)

the data item of the INTO phrase and all records
associated with the file are group items or
alphanumeric, or (b) there is only one record
description associated with the file.

34. If a RECEIVE gets a partial message, the next RECEIVE
must specify the fully qualified queue structure to get
the rest of the message (previously undefined)

.

35. The INTO phrase of RETURN cannot be specified unless:
(a) the data item of the INTO phrase and all records
associated with the file are group items or
alphanumeric, or (b) there is only one record
description associated with the file.

36. STOP RUN closes all files (previously undefined)

.

37. Order of evaluation of subscripts within STRING
statement is defined (previously undefined)

.

38. In the UNSTRING statement, subscripts of delimiting
identifiers are evaluated once, immediately before
examination of the sending field for delimiters (as

opposed to repeated evaluation)

.

39. The WRITE statement must not contain both the ADVANCING
PAGE and END-OF-PAGE phrases.

40. (Withdrawn) Independent segments deleted.

41. Concept of current record pointer changed to file
position indicator.

42. For relative or indexed files, an OPEN I-O, followed by
WRITE statements, followed by READ NEXT causes the READ
to access the first currently existing record, not
whichever record was first at the time of the OPEN.

INCOMPATIBILITIES BETWEEN COBOL-74 AND COBOL-8X Page B-4

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

If an alternate key of reference is changed by REWRITE
to a value between the current and next value in the
file, a subsequent READ NEXT will obtain that same
record

.

The following reserved words have been added:

ALPHABET
ALPHANUMERIC
BINARY
CONTENT
DAY-OF-WEEK
END-COMPUTE
END-EVALUATE
END-PERFORM
END-RETURN
END-START
END-UNSTRING
EXTERNAL
INITIALIZE
OTHER
PURGE
STANDARD-2
TRUE

ALPHABETIC-LOWER
ALPHANUMERIC-EDITED
CLASS
CONTINUE
END-ADD
END-DELETE
END-IF
END-READ
END-REWRITE
END-STRING
END-WRITE
FALSE
NUMERIC-EDITED
PACKED-DECIMAL
REFERENCE
TEST

ALPHABETIC-UPPER
ANY
COMMON
CONVERTING
END-CALL
END-DIVIDE
END-MULTIPLY
END-RECEIVE
END-SEARCH
END-SUBTRACT
EVALUATE
GLOBAL
ORDER
PADDING
REPLACE
THEN

New 1-0 status values have been added.

New communication status key values have been added.

Certain error conditions have been defined for
exponentiation (previously undefined)

.

When a COPY statement spans several lines, the whole
statement is processed, even if some continuation lines
are marked as debugging lines.

Order of evaluation of subscripts within PERFORM
statement is defined (previously undefined).

STOP eliminates from the queue any message partially
received by the run unit (previously undefined).

New communication error key values have been added.

COPY in a comment-entry is treated as a comment, not a
true COPY statement (previously undefined)

.

After DISPLAY is executed, the output device advances to
the beginning of the next line (previously undefined).

The description of a data-item referenced in PROCEDURE
DIVISION USING . . . must not contain a REDEFINES phrase.

INCOMPATIBILITIES BETWEEN COBOL-74 AND COBOL-8X Page B-5

55. When the FOOTING phrase is not specified in LINAGE,
footing area exists (previously undefined) .

no

APPENDIX C

SOURCES OF SAMPLE PROGRAMS AND AGENCIES INTERVIEWED
/

Sample programs were obtained from the following agencies:

1. Department of Agriculture (IBM)

2. Air Force Data Systems and Design Center (Burroughs and
Honeywell)

3. Army Materiel Support Systems Agency (IBM)

4. Bureau of the Census (UNIVAC)

5. Computer Systems Command (IBM)

6. Defense Logistics Agency (IBM)

7. Defense Mapping Agency (Burroughs and UNIVAC)

8. Housing and Urban Development (UNIVAC)

9. Bureau of Mines (Burroughs)

10.

National Bureau of Standards (UNIVAC)

. Naval Data Automation Command (IBM)11

SOURCES OF SAMPLE PROGRAMS AND AGENCIES INTERVIEWED Page C-2

Interviews were held with the following:

1. George Baird, Director, Federal Software Testing Center
and John Caron, Director, Federal Conversion Support
Center (both within General Services Administration)

2. Gene Lynd and Kurt Molholm, ADPE Replacement Office,
Defense Logistics Agency

3. Steven Merritt, Accounting and Financial Management
Division, General Accounting Office

4. James Squier, Office of Information and Management
Services, National Oceanic and Atmospheric
Administration

5. Kenneth Cammie, Foreign Trade Division, Bureau of the
Census

6. Robert Ridgely, Office of Systems Integration, Social
Security Administration

7. Edward Crim and Roland Crenwelge, Information Storage
and Retrieval Division, Defense Mapping Agency

8. John Roach, Joan Sullivan, and Kurt Kroeger, Management
Systems Division, National Bureau of Standards

9. James Flaherty and Lisa Pershing,
Division, Internal Revenue Service

System Support

SOURCES OF SAMPLE PROGRAMS AND AGENCIES INTERVIEWED Page C-3

Questions for COBOL 8X Impact Study

The objective of this analysis is to determine the costs and
benefits to the Federal ADP community if the COBOL-8X prospective
FIPS is adopted. There are two fundamental dimensions we need to
understand in order to assess the potential impacts:

1. The current base case setting regarding the investment,
utilization, and associated costs of COBOL-related
activities in the Federal ADP community

2. The specific ways the prospective C0B0L-8X FIPS differs
from - and would cause changes to - the current
COBOL-related activities.

Questions of interest include:

1. How many COBOL programs are there in the Federal
inventory? What is the average COBOL program lifetime?
What is the annual rate of growth of the COBOL
inventory?

2. What is the distribution of COBOL programs by compiler
type (e.g., FIPS 21, FIPS 21-1, etc.)? What % of the
COBOL programs are in full compliance with COBOL
standards? Which standards?

3. What is the average turnover rate (replacement rate) for
COBOL compilers? How does it compare with the turnover
rate of hardware systems?

4. What is the distribution of the number of COBOL
compilers per ADP installation? What is the extra
effort involved to maintain an additional compiler?

5. How many of the items, proposed to be changed in COBOL
8X , are used currently? What is the frequency of use
per COBOL program? What is the distribution?

6. How will the proposed changes affect current programming
and maintenance practices? Are there reasonable
implications for productivity, reduction of errors,
documentation, processing performance, etc.?

7. How will the C0B0L-8X changes affect future conversions?
Will they increase the conversion effort? Will the
impact be different for different manufacturers'
systems?

8. What are the major problems with the development and
maintenance of applications programs - Programmer
turnover, high error rates, poor documentation, etc.?
Will the proposed COBOL 8X changes have a positive or
negative affect on these problems?

APPENDIX D

SYSTEM DESIGN FOR THE ANALYSIS OF SAMPLE COBOL PROGRAMS

This appendix summarizes the system which was set up to
detect and count occurrences of the various incompatibilities.
Although the system is largely automated, human intervention was
either allowed or required at certain stages. In particular the
RESOLVER program makes it possible to view the actual portions of
source code which generated the recording of an incompatibility.

SYSTEM DESIGN FOR THE ANALYSIS OF SAMPLE COBOL PROGRAMS Page D-2

System Design for COBOL Incompatibility Sampling

Tapes ::rom various Federal agencies

V

1. Transfer
2. ad hoc -

3. SCAN01 -

4. DUPCHK -

5. UNDUP -

to disk
Assure margins aligned, delete trailing blanks to
save space
assure COPY entries are filled in (#147)
all four divisions present (#149)
check any non-blanks past cc. 72 (#155)
check for duplicate PROGRAM-ID (#150)
eliminate any duplicates found and compress

V
Disk files - one per source program,
numbered sequentially:
DMAB 0 001. COB CENSOOOl.COB ...
DMABO 002 . COB CENS0002.COB ...
etc

.

User suppl
mnemonic

,

last file
of series.

ies agency
first and
number

V

V V V

SCANO

1

SCANnn • • • SCAN99
preliminary handles handles a series
val idi ty
check

case #nn of easy cases

V v V
DMABO 1 . DAT DMABnn.DAT ... DMAB99.DAT
CENS01.DAT CENSnn.DAT ... CENS99.DAT

V

SCAN53 run
interactively to
parse DATE-WRITTEN

V
DMABO 1 . DAT (with computed dates)
CENS01.DAT

(continued)

SYSTEM DESIGN FOR THE ANALYSIS OF SAMPLE COBOL PROGRAMS Page D-3

* . DAT files (Record format:
agency, COBOL program number, line 1, line 2,
incompatibility code, certainty code (? or !)

or other supplementary information)

V

RESOLVER
I

- goes thru .DAT files according to interactive
commands and displays COBOL lines which
generated the various incompatibility records

V
DMAB01.DAT, DMAB02.DAT, . . .CENS01.DAT, CENS02.DAT, . .

.

(cleaned up versions)

V

STATSGEN
|

- generates various statistics, as requested
(by agency, incompatibility, ...)

V
STATS. PRT (reports)

Limitations:
Does not handle/distinguish qualified names - unpredictable
results for certain incompatibilities.

Does not analyze CORRESPONDING into elementary operations.

Assumes that a new data-descr iption entry begins on a new line.

SYSTEM DESIGN FOR THE ANALYSIS OF SAMPLE COBOL PROGRAMS Page D-4

Summary of treatment of incompatibilities, along with other
features detected for various reasons (see notes)

.

01 X 11 M 21 M
02 M 12 P (12) 22 M
03cP (03) 13 S 23 M
0 4cM 14 S 24 X
05 M 15 P (0 3) 25 M
06 M 16 M 26 S
07 M 17cM 27 S
08 M 18 M 28cM
09 S 19 M 29 M
10 M 20 M 30 P (30)

31 P (30) 41 X 51 M
32 X 42 P (4 2) 52 M
33 P (3 3) 43 P (4 2) 53 M
34 M 44 S 54 S

35 P (33) 45 M 55 P (12)
36 X 46 M 56 U
37 P (37) 47 M 57 N
38 P (37) 48 P(01) 58 N
39 S 49 P (30) 59 U
40cS 50 M 60 U

147-155 E

Key: c - incompatible in Sep. 81 document, but
since withdrawn

S - handled by a single program
M - handled by the catchall program, SCAN99
X - not detectible - ignored
P - handled together with another related case

(lower number used for program name)
E - these are not actual incompatibilities, but aspects

of a program indicating its readiness for processing,
plus some global information; all these are handled by
SCAN01, which documents their individual meaning

N - these are cases where new features of 8x might
profitably be used instead

U - code unused

Program # handles incompatibilities
1 48,147-155
3 3,15
9 9

12 12,55
13 13
14 14
26 26
27 27
30 30,31,49
33 33,35
37 37,38
39 39
40 40
42 42,43
44 44
54 54
57 57,58
99 2,4-8,10,11,16-23,25,28,29,34,45-47,50-53
not detected: 1,24,32,36,41

SYSTEM DESIGN FOR THE ANALYSIS OF SAMPLE COBOL PROGRAMS Page D-5

Documentation of Scanners for COBOL Impact Study

The following is a short description, for each of the
incompatibilities identified in the Draft Proposed Revised X3.23
American National Standard Programming Language COBOL, of the
rationale of the approach taken, and the algorithm implemented in
the syntactic analysis. It should be noted that the syntactic
analysis is not in all cases a foolproof method for finding all
incompatibilities. In some cases, incompatibilities cannot be
identified at all through syntactic analysis; conversely, in
other cases, the analysis can only find an upper bound (worst
case) for the number of incompatibilities. Nonetheless, it is
plausible to suppose that the analysis yields a roughly reliable
measure of the prevalence of features which would be affected by
the changes proposed in the draft.

Incompatibility: 1

Rationale: Since the character substitution is
implementor-defined, this is a case of implementor-defined syntax
(not merely semantics) and thus is undetectible.

Syntactic Analysis: None.

Incompatibility: 2

Rationale: The only place where the 74 standard allows an ALL
literal which is not associated with another item is in the
SPECIAL-NAMES paragraph.

Syntactic Analysis: There is a search for ALL within
SPECIAL-NAMES within ENVIRONMENT DIVISION.

Incompatibility: 3

Rationale: The contexts in which ALL may be associated with a
numeric are in a MOVE or a comparison.

Syntactic Analysis: The DATA DIVISION is scanned and a list is
constructed of all numeric items, determined as an item
containing a PICTURE clause, whose picture-string does not
contain A or X. Only elementary names are entered in the list,
not the full qualified n:-e. Then, within the PROCEDURE
DIVISION, a scan is made for MOVE ALL and for IF, WHEN, or UNTIL
(which introduce a condition) . For MOVE ALL, all the receiving
items are checked against the list, and it's a hit when one is
found. For the conditions, they are

'

broken up, if necessary,
into the simple conditions connected by AND or OR. Each simple
condition is checked for a relation, with all the various

SYSTEM DESIGN FOR THE ANALYSIS OF SAMPLE COBOL PROGRAMS Page D-6

spellings (<, LESS , LESS THAN , etc.) and the comparands are
analyzed to see if one is an ALL literal and the other a numeric.
Abbreviated conditions are also handled and the "type" of the
default comparand (whether ALL or numeric or neither) is saved
and applied to later comparands. Thus: ''IF ALL "9" = ALPHA-ITEM
OR NUMERIC-ITEM' will be detected as a hit.

Incompatibility: 4

Rationale: The definition of some of the debug items has
changed, but not others. Any occurrence of a name whose
definition has changed is counted (including group items
containing a changed item)

.

Syntactic Analysis: The PROCEDURE DIVISION is scanned for any
occurrence of DEBUG-ITEM, DEBUG-SUB-1, -2, or -3.

Incompatibility: 5

Rationale: Any occurrence is incompatible.

Syntactic Analysis: There is a search for MEMORY within the
OBJECT-COMPUTER paragraph within the ENVIRONMENT DIVISION.

Incompatibility: 6

Rationale: This is partially undetectible, since the option
'alphabet-name IS implementor-name' is a hard to isolate. But
any of the reserved words unique to the clause are detected.

Syntactic Analysis: There is a search for STANDARD-1, NATIVE,
THROUGH, THRU, or ALSO within the SPECIAL-NAMES paragraph within
the ENVIRONMENT DIVISION.

Incompatibility: 7

Rationale: Since this is a change in semantics, the best that
can be done is to look for cases where it can occur. The only
simple way to do this is to detect use of an indexed file,
together with the use of the PROGRAM COLLATING SEQUENCE clause.
In the absence of this clause, the default is native, and so the
new rule that native is used for indexed files would not result
in different program behavior. Clearly, this is a worst-case
analysis, since very few if any uses of indexed files rely on
behavior other than what 8x specifies.

Syntactic Analysis: The OBJECT-COMPUTER paragraph is scanned for

SYSTEM DESIGN FOR THE ANALYSIS OF SAMPLE COBOL PROGRAMS Page D-7

SEQUENCE. If found, a switch is set indicating its presence.
Then, there is a search for ORGANIZATION followed by optional IS,
followed by INDEXED within the FILE-CONTROL paragraph within the
ENVIRONMENT DIVISION. If both INDEXED and SEQUENCE are found, a
hit is recorded.

Incompatibility: 8

Rationale: Any occurrence is incompatible.

Syntactic Analysis: Within SPECIAL-NAMES, within ENVIRONMENT
DIVISION, there is a search for CURRENCY, then an optional SIGN,
then IS, then SPACE, ZERO, QUOTE, HIGH-VALUE, or LOW-VALUE.

Incompatibility: 9

Rationale: Any occurrence is incompatible.

Syntactic Analysis: There is a search for ACCESS, optional MODE,
optional IS, any COBOL word, RELATIVE, optional KEY, optional IS,
and then the COBOL word which names the data-item, within
FILE-CONTROL paragraph. A table of all such data-names is
constructed. The DATA DIVISION is then scanned for these items
and their picture strings are examined for the occurrence of P.
For each one found with PICTURE P, a hit is recorded.

Incompatibility: 10

Rationale: It is impossible to determine the exact conditions
called for, so a search is made simply for the occurrence of the
MULTIPLE FILE TAPE clause. As is usual when the incompatibility
is semantic, this analysis yields a worst-case result, since most
such clauses will not actually cause the incompatible behavior.

Syntactic Analysis: There is a search for MULTIPLE FILE within
the I -O-CONTROL paragraph within the ENVIRONMENT DIVISION.

Incompatibility: 11

Rationale: Any occurrence is incompatible.

Syntactic Analysis: There is a search for RERUN within the
I -O-CONTROL paragraph within the ENVIRONMENT DIVISION.

SYSTEM DESIGN FOR THE ANALYSIS OF SAMPLE COBOL PROGRAMS Page D-8

Incompatibility: 12

Rationale: Any occurrence is incompatible.

Syntactic Analysis: The FILE SECTION of the DATA DIVISION is
scanned and each FD is checked for the presence of the LINAGE
clause. A table is constructed of all qualifying fd-names. The
PROCEDURE DIVISION is then scanned and each OPEN statement is
examined to see if any of the LINAGE fd-names are opened in
EXTEND mode. The scanner handles the opening of multiple modes
and multiple files in one statement. Thus if X is an fd-name
with LINAGE , it will be detected in: "OPEN INPUT A, B EXTEND C,
D , X, E, OUTPUT F."

Incompatibility: 13

Rationale: Although this is a semantic change, it can be
isolated syntactically. This is because the difference depends
not on the logical flow of the algorithm, but only on the
particular structure of the data-item and then its use as a
receiving field.

Syntactic Analysis: First the DATA DIVISION is scanned and an
array keeps track of the current data structure. The path from
root (01 level data-name) to the current data-item is maintained.
Whenever a DEPENDING ON clause occurs, all containing items are
saved and associated with the DEPENDING ON variable, since their
lengths depend on it. Then the program is re-scanned and on this
second pass of the DATA DIVISION, once again the current path
within the data structure is maintained. A search is made for
the names of variables which were the object of the DEPENDING ON
clause (i.e., for those items upon which thse length of other
data-items depend) . When one is found, a check is made for all
the group items containing it, to see whether the length of any
of them depend on it (as determined by the table built during the
first pass) . If any such is found, then it is put into a second
table, which therefore contains exactly those items which both
depend on a given variable for their length and also contain that
variable. Finally, the PROCEDURE DIVISION is scanned and the
verbs ACCEPT, RECEIVE. . .INTO, RETURN. .. INTO, READ... INTO, MOVE,
and UNSTRING examined to see whether their receiving items are
among those in the second table.

Incompatibility: 14

Rationale: It"s not completely clear just which cases constitute
an incompatibility. The view taken is that whenever a PICTURE P
item is used and associated with a non-numeric item or appears in
a context where non-numeric operands are allowed, the behavior
may be different and so is incompatible.

SYSTEM DESIGN FOR THE ANALYSIS OF SAMPLE COBOL PROGRAMS Page D-9

Syntactic Analysis: First, the DATA DIVISION is scanned and two
lists are constructed: first a list of all PICTURE P data-items
(i.e., any item whose picture string contains at least one P) and
second a list of all elementary numeric items, except those in
the first list. Then, in the PROCEDURE DIVISION, there is a
search for situations, either where a PICTURE P item is
associated with a non-numeric item, or where it is not associated
with any item, but appears in a context where it will be treated
as a non-numeric operand. The first case is covered by examining
all MOVES and conditions (introduced by IF, WHEN, or UNTIL) to
see if a PICTURE P item is moved to or from, or compared to, a
non-numeric item. Multiple receiving fields in the MOVE are
handled, as are complex conditions and abbreviated conditions.
The second case is covered by looking for a PICTURE P item as an
operand of ACCEPT, DISPLAY, or INSPECT.

Incompatibility: 15

Rationale: Again, it is not clear just what constitutes an
incompatibility. We distinguished two cases: first any compound
condition, and second, the use of a compound condition in a
program which bore traces of use of the DEBUGGING module. In the
first case, the only possible difference is that while a program
running under the "*74 rules might abort by evaluating
(unnecessarily) a given component of a condition, the same
program, under ^8X would keep running. The records generated to
denote these cases were flagged with a

'
7 '

. In the second case,
use of DEBUGGING with ALL REFERENCES might work somewhat
differently, since the evaluation of a later component of a
condition might trigger a debugging report that would not appear
if the evaluation were omitted.

Syntactic Analysis: The PROCEDURE DIVISION is scanned for all
conditions (introduced by IF, WHEN, or UNTIL), which are examined
for AND or OR. The resulting error file is generated with '

7
' to

indicate a questionable incompatibility. A later routine scans
for the use of the word DEBUGGING anywhere within the
ENVIRONMENT, DATA, or PROCEDURE DIVISION (except in a comment
.line or nonnumeric literal), or for D in column 7. Either of
these is taken as evidence of debugging, and the records for
those programs are changed to indicate a possible
incompatibility.

Incompatibility: 16

Rationale: Any occurrence is incompatible.

Syntactic Analysis: The PROCEDURE DIVISION is scanned for the
presence of ALPHABETIC.

SYSTEM DESIGN FOR THE ANALYSIS OF SAMPLE COBOL PROGRAMS Page D-10

Incompatibility: 17

Rationale: Any occurrence is incompatible.

Syntactic Analysis: The PROCEDURE DIVISION is scanned for the
presence of ALTER.

Incompatibility: 18

Rationale: This is a semantic clarification, so all that can be
done is a worst-case search for all places where there might be a
different effect. It is not obvious whether most compilers
already close files upon CANCEL or not.

Syntactic Analysis: The PROCEDURE DIVISION is scanned for the
presence of CANCEL.

Incompatibility: 19

Rationale: Any occurrence is incompatible.

Syntactic Analysis: The PROCEDURE DIVISION is scanned for REEL
or UNIT, followed by an optional WITH, followed by NO REWIND.

Incompatibility: 20

Rationale: Any occurrence is incompatible.

Syntactic Analysis: The PROCEDURE DIVISION is scanned for
DISABLE, then OUTPUT or INPUT with optional TERMINAL, then a
COBOL word, then an optional WITH, and then KEY.

Incompatibility: 21

Rationale: This is a semantic clarification. The scanner looks
for any case of a REMAINDER with a subscripted variable.

Syntactic Analysis: The PROCEDURE DIVISION is scanned for
REMAINDER followed by a COBOL word, followed by '

.

Incompatibility: 22

Rationale: Any occurrence is incompatible.

Syntactic Analysis: The PROCEDURE DIVISION is scanned for

SYSTEM DESIGN FOR THE ANALYSIS OF SAMPLE COBOL PROGRAMS Page D-ll

ENABLE, then OUTPUT or INPUT with optional TERMINAL, then a COBOL
word, then an optional WITH, and then KEY.

Incompatibility: 23

Rationale: Any occurrence is incompatible.

Syntactic Analysis: The PROCEDURE DIVISION is scanned for the
presence of ENTER.

Incompatibility: 24

Rationale: This situation cannot be detected syntactically.

Syntactic Analysis: None.

Incompatibility: 25

Rationale: This is a semantic clarification. The scanner finds
all instances of EXIT PROGRAM, which represents an upper bound on
the true incompatibilities (different behavior)

.

Syntactic Analysis: The PROCEDURE DIVISION is scanned for the
presence of EXIT PROGRAM.

Incompatibility: 26

Rationale: This is a semantic clarification for behavior that
occurs when subscripting is used in conjunction with INSPECT.
All such cases are detected.

Syntactic Analysis: The PROCEDURE DIVISION is scanned for
INSPECT and then the entire statement is scanned for a '

.

Incompatibility: 27

Rationale: Any occurrence is incompatible.

Syntactic Analysis: Within the I-O-CONTROL paragraph, two
entities are constructed. The first is an array of lists. Each
list in the array contains the fd-names appearing together in a

SAME AREA or SAME SORT or SORT-MERGE AREA clause. Thus, there is
a list for each such clause. The second is a list of all
fd-names appearing in any SAME RECORD clause. Then the PROCEDURE
DIVISION is scanned for MERGE. A list of fd-names is taken from

SYSTEM DESIGN FOR THE ANALYSIS OF SAMPLE COBOL PROGRAMS Page D-12

the MERGE , consisting of its primary operand and all file names
between USING and GIVING or OUTPUT PROCEDURE. Each file from
this list is compared against the SAME RECORD list and any match
is counted as an incompatibility. Then the GIVING file, if any,
is added to the list of MERGE fd-names. This complete MERGE list
is now compared to each of the lists in the array (i.e. each of
the AREA lists) . If at least two MERGE files are found in any of
these AREA lists, it is counted as an incompatibility.

Incompatibility: 28

Rationale: Any use of OPEN 1-0 or EXTEND is a potential
difference in behavior and so all are flagged.

Syntactic Analysis: The PROCEDURE DIVISION is scanned for any
occurrence of 1-0 or EXTEND.

Incompatibility: 29

Rationale: Any occurrence is incompatible.

Syntactic Analysis: The PROCEDURE DIVISION is scanned for the
presence of REVERSED.

Incompatibility: 30

Rationale: This change defines the order of at most three move
statements: MOVE FI TO VI, MOVE F2 TO V2 , MOVE F3 TO V3 , where
Fn is the FROM variable and Vn is the VARYING (or AFTER)
variable. The only case where this would make a difference is
where one of the Fn's depended on one of the Vn"s (other than the
one it is being moved to) . For instance, MOVE A TO B, MOVE C TO
A is order-dependent because the sending field of one depends on
the receiving field of the other. Likewise for MOVE A (S) TO B,
MOVE C TO S. This dependence is sought by the scanner.

Syntactic Analysis: The PROCEDURE DIVISION is scanned for
PERFORM statements with the VARYING option. All the control
variables (or literals) are captured. We use the convention that
Vn is the VARYING (or AFTER) variable, where n=l,2,3 (1 is the
"outer" or most inclusive variable, 3 the innermost) . Similarly,
the FROM operands are denoted by Fn. The primary name of the
Vn's (as opposed to subscripts) is isolated as DVn (for instance,
if V2 = 'A (2, X) ^

,

DV2 = 'A'). Each Fn is then checked to see
if any part of it (the primary or subscripts) depends on any of
the DVn's, other than the DVn with the same n. If any such
dependency is found, it is counted as an incompatibility.

SYSTEM DESIGN FOR THE ANALYSIS OF SAMPLE COBOL PROGRAMS Page D-13

Incompatibility: 31

Rationale: This change affects the order of two pairs of
operations: it switches MOVE F3 TO V3 and ADD B2 TO V2 and also
MOVE F2 TO V2 and ADD B1 TO VI, where Vn and Fn are as described
in number 30, and Bn is the BY variable. The only cases where
this makes a difference is, for the first pair, if F3 depends on
V2 or V2 or B2 on V3; for the second pair, if F2 depends on VI,
or B1 or VI on V2. These conditions are identified and counted
as incompatibilities when encountered.

Syntactic Analysis: The PROCEDURE DIVISION is scanned for
PERFORM statements with the VARYING option. All the control
variables (or literals) are captured. We use the convention, as
above, that Vn is the VARYING (or AFTER) variable, where n=l,2,3
(1 is the "outer" or most inclusive variable, 3 the innermost)

.

Similarly, the FROM operands are denoted by Fn and the BY
operands by Bn. The primary name of the Vn^s (as opposed to
subscripts) is isolated as DVn (for instance, if V2 = 'A (2, X)',
DV2 = 'A'). Then, the following checks are done:

Does: depend on:
VI DV2
V2 DV3
B1 DV2
B2 DV3
F2 DV1
F3 DV2

If any such dependency is found, it is counted as an
incompatibility.

Incompatibility: 32

Rationale: This is a semantic clarification; since any program
containing a READ statement with the AT END clause could be
affected, it was not deemed worth searching for, since almost all
programs would contain such a statement. The only change,
however, would be for a program which would have aborted on AT
END; such a program would now keep running (somewhat like number
15) .

Syntactic Analysis: None.

Incompatibility: 33

Rationale: Any occurrence is incompatible.

Syntactic Analysis: The FILE SECTION is scanned for all FD's and
SD^s. For each one, all the 01 entries are examined. A count is
kept of the number of 01's. Further, if any of them has a

SYSTEM DESIGN FOR THE ANALYSIS OF SAMPLE COBOL PROGRAMS Page D-14

PICTURE clause and the picture string is numeric (i.e., does not
contain either A or X) , then a switch is set. If, under an FD or
SD, there is more than one 01 and at least one has a numeric
PICTURE clause, then that fd-name or sd-name is added to a list
of such names. The PROCEDURE DIVISION is then scanned for all
occurrences of READ with the INTO option, and the fd-name of the
READ compared against the list. If it is found, an
incompatibility is recorded.

Incompatibility: 34

Rationale: This is a semantic change? it is very difficult to
analyze a program syntactically in a detailed way to see where it
would make a difference. Therefore, the scanner simply finds
instances of the RECEIVE statement.

Syntactic Analysis: The PROCEDURE DIVISION is scanned for the
presence of RECEIVE.

Incompatibility: 35

Rationale: Any occurrence is incompatible.

Syntactic Analysis: The analysis is the same as for number 33,
except that the PROCEDURE DIVISION is scanned for RETURN, rather
than READ.

Incompatibility: 36

Rationale: This is a semantic clarification; since any program
containing a STOP RUN statement could be affected, it was not
deemed worth searching for, since almost all programs would
contain such a statement. It is not clear what detectible effect
the new specification might have; presumably the state of the
unclosed files might be different.

Syntactic Analysis: None.

Incompatibility: 37

Rationale: This is a semantic clarification of the order in
which subscripts are evaluated within a STRING statement. It is
difficult to analyze the possible different effects beyond simply
noting whether subscripts are present.

Syntactic Analysis: The PROCEDURE DIVISION is scanned for the
STRING statement. The remaining text of the statement is scanned

SYSTEM DESIGN FOR THE ANALYSIS OF SAMPLE COBOL PROGRAMS Page D-15

for the presence of a '
.

Incompatibility: 38

Rationale: This could affect only those UNSTRING statements for
which the operand of the DELIMITED BY clause is subscripted. As
usual with semantic clarifications, this represents a worst-case
analysis of the incompatibility.

Syntactic Analysis: The PROCEDURE DIVISION is scanned for the
UNSTRING statement. Each the operands of the DELIMITED BY clause
(separated by OR) is isolated in turn, and examined for the
presence of a ' (taken to indicate subscripting).

Incompatibility: 39

Rationale: Any occurrence is incompatible.

Syntactic Analysis: The PROCEDURE DIVISION is scanned for the
WRITE statement. Within the text of the statement, a search is
done both for PAGE and for either EOP or END-OF-PAGE. If both
are found it is counted as an incompatibility.

Incompatibility: 40

Rationale: The only case in which the deletion of independent
segments could possibly affect the logical behavior of a standard
'74 program is when an independent segment executes an ALTER.
This change is really semantic, because syntactically, segment
numbers greater than 49 are still legal; they are. simply not
treated as independent. As usual for semantic changes, this is a
worst-case analysis, since not all such ALTERS will actually
cause different behavior.

Syntactic Analysis: The PROCEDURE DIVISION is scanned for
sections with segment numbers of 50 or greater. Within such
segments, all ALTERS are flagged as incompatibilities.

Incompatibility: 41

Rationale: This incompatibility has no effect on programs beyond
that specified in numbers 42 and 43.

Syntactic Analysis: None.

SYSTEM DESIGN FOR THE ANALYSIS OF SAMPLE COBOL PROGRAMS Page D-16

Incompatibility: 42

Rationale: The only case for which this can have an effect is
when a program contains an OPEN I-O, a READ NEXT, and a WRITE
statement for the same file. Such a combination does not, of
course, guarantee different behavior, which depends on the
program's logic flow. All the analysis attempts to do, however,
is note the presence of these three statements.

Syntactic Analysis: First, the FILE SECTION is ' scanned and a

table is built. Each entry in the table consists of one fd-name
and all associated 01-names. Then, within the PROCEDURE
DIVISION, there is a search for OPEN statements, READ statements
and WRITE statements. There is also a two-dimensional table
maintained, for which the first dimension indicates which file is
being checked, and the second dimension, which kind of statement
(OPEN, READ, or WRITE). When an OPEN is found, all the files (if
any) being opened as 1-0 are noted by an entry being made in the
appropriate slot of the table. When a READ is found, with the
NEXT option, an entry for that file is made in the table. When a
WRITE is found, the record-name is compared against the table
built during the scan of the FILE SECTION, to link it back with
the fd-name. Then an entry in the two-dimensional table is made
for that file. Whenever any entry is made in the table, a check
is done to see if the other two entries for that fd-name have
been filled. If so, this signifies the presence of all three
statements for that fd-name, and an incompatibility is recorded.

Incompatibility: 43

Rationale: The rationale is exactly the same as for number 42,
substituting REWRITE for WRITE.

Syntactic Analysis: Same as for number 42, substituting REWRITE
for WRITE.

Incompatibility: 44

Rationale: The presence of one of the new reserved words (other
than within a comment-line, a comment-entry as in the
IDENTIFICATION DIVISION, or a nonnumeric literal) as a
user-defined identifier is an incompatibility. If such a word is
used as a keyword of an implementor-defined extension, it is not
counted, since such use is neither guaranteed nor forbidden by
either the '74 or '8x standard.

Syntactic Analysis: The IDENTIFICATION DIVISION is skipped,
because reserved words in the comment-entries are insignificant.
The other divisions are scanned for any occurrence of any of the
new reserved words (except, of course, within comment-lines, or
nonnumeric literals) . Each occurrence is counted as an

SYSTEM DESIGN FOR THE ANALYSIS OF SAMPLE COBOL PROGRAMS Page D-17

incompatibility. The scanner also records which word was found.
Implementor extensions are deleted ad hoc.

Incompatibility: 45

Rationale: Any use of FILE STATUS is potentially incompatible,
although the precise analysis depends on the use of old
implementor-defined codes and their relation to the new codes.

Syntactic Analysis: The FILE-CONTROL paragraph within the
ENVIRONMENT DIVISION is scanned for any occurrence of STATUS.

Incompatibility: 46

Rationale: Any use of the communication status codes is
potentially incompatible, although the precise analysis depends
on the use of old implementor-defined codes and their relation to
the new codes. All CD's have an associated status key.

Syntactic Analysis: The COMMUNICATION SECTION of the DATA
DIVISION is scanned for the occurrence of any CD.

Incompatibility: 47

Rationale: Any occurrence is potentially incompatible; however,
a real incompatibility exists only if the operands are not
checked as being mathematically valid.

Syntactic Analysis: Within the PROCEDURE DIVISION, any
occurrence of " ** " is counted as an incompatibility.

Incompatibility: 48

Rationale: Any such COPY statement is potentially incompatible.

Syntactic Analysis: Whenever a COPY statement is found, a switch
is set if the end of the statement does not appear by the end of
that line. Subsequent lines are examined until either an end of
statement (signified by a " .

" followed by a space) or a debug
indicator ("D" in column 7) is found. If the debug indicator is
found, an incompatibility is recorded. If an end of statement is
found, the switch is re-set to indicate the end of the COPY
statement.

SYSTEM DESIGN FOR THE ANALYSIS OF SAMPLE COBOL PROGRAMS Page D-18

Incompatibility: 49

Rationale: Any subscript appearing within a PERFORM. . .VARYING
statement is potentially incompatible, since its setting could
occur any time during the processing of the PERFORM.

Syntactic Analysis: Within the text of all PERFORM. . .VARYING
statements, a search is done for any user-defined word (i.e. not
a reserved word), followed by a "(", to indicate subscripting.
Any such occurrence is recorded as an incompatibility.

Incompatibility: 50

Rationale: Since virtually all programs contain STOP, this
applies to any program doing a RECEIVE. Therefore, the scanner
merely finds instances of the RECEIVE statement.

Syntactic Analysis: The PROCEDURE DIVISION is scanned for the
presence of RECEIVE.

Incompatibility: 51

Rationale: This could potentially affect any program using an
output CD, since the error key is associated with such entities.

Syntactic Analysis: Within the COMMUNICATION SECTION, the
scanner looks for CD (in the A margin), followed by a COBOL word,
optionally followed by FOR, followed by OUTPUT.

Incompatibility: 52

Rationale: The only comment-entries are in the IDENTIFICATION
DIVISION. Any occurrence of the reserved word COPY therein is a
potential incompatibility. It would actually be incompatible
only if used as a COPY statement and not a comment.

Syntactic Analysis: The scanner looks for COPY anywhere before
the ENVIRONMENT DIVISION.

Incompatibility: 53

Rationale: Any DISPLAY is potentially incompatible. If,
however, the vendor performs the required positioning (which most
do)

,

then it would not be a real incompatibility.

Syntactic Analysis: The PROCEDURE DIVISION is scanned for the
presence of DISPLAY.

SYSTEM DESIGN FOR THE ANALYSIS OF SAMPLE COBOL PROGRAMS Page D-19

Incompatibility: 54

Rationale: Any such occurrence is incompatible.

Syntactic Analysis: Within the LINKAGE SECTION, a search is done
for 01, 77 or 1, followed by a COBOL word, followed by REDEFINES.
Such COBOL words are saved in a table. Then the PROCEDURE
DIVISION header is examined for the USING phrase, followed by any
COBOL words. If any of these COBOL words in the USING phrase
match any of those in the table, a hit is recorded.

Incompatibility: 55

Rationale: Any such occurrence is potentially incompatible.

Syntactic Analysis: The FILE SECTION is scanned for the presence
of LINAGE. When found, the remainder of the clause is searched
for the presence of FOOTING. If FOOTING is not found, a hit is
recorded.

*U.S. GOVERNMENT PRINTING OFFICE s 1983 0-380-997/857

U.S. DEPT. OF COMM. 1. PUBLICATION OR 2. Performing Organ. Report No. 3. Publication Date

BIBLIOGRAPHIC DATA
REPORT NO.

SHEET (See instructions) NBSIR 83-2639 March 1983

4. TITLE AND SUBTITLE
Cost-Benefit Impact Study on the Adoption of the Draft Proposed Revised
X3.23 American National Standard Programming Language COBOL

5. AUTHOR(S)

Marco Fiorello & John Cugini

6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions) 7. Contract/Grant No.

NATIONAL BUREAU OF STANDARDS and Aurora Associates, Inc.
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

S. Type of Report & Period Covered

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)

NBS

10. SUPPLEMENTARY NOTES

~| Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here)

The purpose of the study is to assess the estimated costs and benefits
for the Federal Government which would result from adoption of the

proposed revision of American National Standard COBOL as a Federal
Information Processing Standard (FIPS). Potential benefits of $90.2-
million have been identified, stemming primarily from improved
productivity in both the development and maintenance of COBOL programs.
Estimated costs of $17. 9-million have been identified, arising .princi-
pally from the effort needed to convert old COBOL programs to the new
specification, which is incompatible in some respects with the current
specification. In support of the study, we conducted interviews with
Federal ADP managers and officials, and also analyzed over one thousand
Federal COBOL programs for various syntactic characteristics. The study
concludes that the potential benefits of a new standard outweigh the

estimated costs.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

COBOL; compatibility of programming language standards; conversion costs
for COBOL programs; cost-benefit analysis of COBOL standards; Federal use
of COBOL; FIPS for COBOL; standardization of COBOL.

13. AVAILABILITY

|~x| Unlimited

| |
For Official Distribution. Do Not Release to NTIS

~| Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

[~x] Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

15. Price

*

