
AlllOl 310S0S PUBUCATIONS
-

NBSIR 82-2631 (AF)
s

i

Initial Graphics Exchange
Spec if i

c

ation (IGES) , Ve rs 1on 2.0
1

I
I

![,

j|y

'

»

I

'i<

*

r

U S. DEPARTMENT OF COMMERCE
Mationa! Eureau of Standards

National Engineering Laboratory

Center for Manufacturing Engineering

Automated Production Technology Division

Washington, DC 20234

February 1 983

fQn-

iluo

U56
U.S. DEPARTMENT OF COMMERCE

1983

NATIONAL BUREAU OF STANDARDS

ACKNOWLEDGEMENT

The IGES authors wish to acknowledge the work of Mary Marello

in the word processing of this document. Her patience, dedication

and expertise were invaluable. Her assistance with consistency

and formatting was most appreciated. Thank you, Mary, for an

outstanding job.

NBSIR 82-2631 (AF)

INITIAL GRAPHICS EXCHANGE
SPECIFICATION (IGES), VERSION 2.0

KATIONAL BUREAU:
OF STANDARDS

UBRARY

MAR 1 (j

r\o{
1983

Bradford M. Smith, IGES Chairman, National Bureau of Standards

Kalman M. Brauner, Ph.D., The Boeing Company
Philip R. Kennicott, Ph.D,, General Electric

Michael Liewald, The Boeing Company
Joan Wellington, National Bureau of Standards

U.S. DEPARTMENT OF COMIVIERCE
National Bureau of Standards

National Engineering Laboratory

Center for Manufacturing Engineering

Automated Production Technology Division

Washington, DC 20234

February 1 983

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

'.o

V;,- 1

Ky' '

' ; .-/I t:

The following IGES committee members contributed to this document

Frances Akridge, Lockheed-Georgia Co., Marietta, GA

Robert Ard, ADRC, Milford, OH
Carole Avery, The Boeing Company, Seattle, WA
Peter Benjamin, Lockheed Missiles and Space, Sunnyvale, CA

Ted Berenyi, Deere S Company, Moline, IL

Istvan Bodnar, Control Data Corp., Arden Hills, MN
Walt W. Braithwaite, The Boeing Company, Seattle, WA

Ray Brengs, David Taylor RSD Center, Bethesda, MD
David Briggs, The Boeing Company, Seattle, WA
Pat Brown, Intergraph, Huntsville, AL
William Burd, Sandia Labs., Albuquerque, NM
Mike Butler, Martin Marietta, Orlando, FL
Richard Carey, The Boeing Company, Seattle, WA
Ted Berenyi, Deere & Company, Moline, IL

Carole Avery, The Boeing Company, Seattle, WA
Noel Christensen, Bendix Corp., Kansas City, MO

Robert Colsher, Gerber, South Windsor, CT

Jason Costantino, CADAM Inc., Burbank, CA
Rick Counter, IBM, Poughkeepsie, NY
Don Crockett, Vought Corp., Dallas, TX
Ralph Dratch, Booz, Allen £ Hamilton, Cleveland, Ohio
David Ellis, Holliston, MA
Joseph Finnegan, McDonnell Douglas, St. Louis, MO
Edward Fournier, Softech, Bedford, MA
David Fredricks, CADAM Inc., Burbank, CA
Richard Fuhr, The Boeing Company, Seattle, WA
Roger Gale, General Dynamics, Pomona, CA
William Geoghegan, Bath Iron Works, Bath, ME
Albert Gibbons, Westinghouse Electric Corp., Pittsburgh, PA
Brian Giles, Xerox Corp., Webster, NY
William Gruttke, McDonnell Douglas, St. Louis, MO
James Gorman, Bell Telephone Labs., North Andover, MA
Douglas Hakala, Manufacturing Data Systems, Inc., Ann Arbor, MI
William Hinton, General Motors, Pontiac, MI
Jack Horgan, Applicon Corp., Burlington, MA
Robert Houk, Martin Marietta, Denver, CO
Stephen J. Kaminski, Magnavox Research Center, Torrence, CA
J. C. Kelly, Sandia Labs., Albuquerque, NM
C. Richard Lewis, General Motors, Warren, MI
Robert Lord, McDonnell Douglas, St. Louis, MO
David Maltz, McDonnell Douglas, St. Louis, MO
William Magretta, Computervision, Bedford, MA
Ralph Mayer, Computervision, Bedford, r<LA

Wayne McClelland, 3DRC, Cincinnati, Ohio
Don Meagher, Phoenix Data Systems, Albany, NY
William Korbholz, Xerox Corp., El Segundo, CA
James Miller, Control Data, Arden Hills, MN
David Moore, Microsoft Corp., Seattle, WA
Roger Nagel, Lehigh University, Bethlehem, PA
Paul Nelson, General Motors, Warren, MI
Janet Oakes, McDonnell Douglas, St. Louis, MO

Larry Olson, Martin Marietta, Denver, CO

Curt Parks, General Dynamics, Pomona, CA
Andrew Pauker, Computervision, Bedford, MA
Robert Peterson, ITT Research Institute, Chicago, IL

James Pierce, Xerox Corp., El Segundo, CA
Mark Quinlan, CALMA, San Diego, CA
Garry Redden, Ford Motor Co.

,
Dearborn, MI

Robert Rosen, Harry Diamond Labs., Adelphi, MD
Patrick Rourke, Newport News Shipbuilding, VA
Wes Rutherford, The Bendix Corp.

,
Kansas City, MO

Randy Schmid, McDonnell Douglas, St. Louis, MO
Dirk Schroeter, Martin Marietta, Orlando, FL
Gary Silverman, IBM, Los Angeles, CA
Chia-Hui Shih, General Dynamics, San Diego, CA
Paul Serednicky, IBM ,

Poughkeepsie, NY
Jim Snyder, Union Carbide, Oak Ridge, TN
Randy Terada, CADAM Inc., Burbank CA
David Theilen, The Bendix Corp., Kansas City, MO
Wayne Tiller, SDRC, Milford, Ohio
Mimi Vaillancourt

,
Computervision, Bedford, MA

Earl Weaver, USA Ballistic Research Lab., Aberdeen Proving Ground, MD
Uwe Weissflog, IBM, Los Angeles, CA
Ron Wong, Ford Motor Co., Dearborn, MI

foreword

Version 2.0 of the Initial Graphics Exchange Specification (IGES) represents both a refinement
and extension of the earlier published work. Clarity and precision of the Specification have
been dramatically improved as the result of wider public review and comment plus feedback
from an ever increasing amount of implementation and testing. In addition, many extensions
and enhancements have been incorporated in the Specification to expand its capability to com-
municate a wider range of product data developed and used by computer aided design and manu-
facturing systems. Despite these extensions cind enhancements, Version 2.0 remains nearly

upward compatible with Version 1.0. The only exception is a change in the Text Font Definition
entity. The Version 2.0 document was approved in July 1982 by the IGES committee structure.

The many changes dispersed throughout the Version 2.0 document make it difficult for a reader

to compare it with the earlier work. This task is compounded by a substantial change in the
basic format of presentation. Hence, it is useful here to elaborate the primary differences

that do exist. In addition, the reader of the document is aided by vertical bars in the margin

that identify areas of non-trivial change. Of course, a complete record of every change is

available from the Extensions and Repairs Committee's formal Change Control System which
documents both the request for a change and the actual text modifications to implement the

change.

Changes that will be noted in the Specification can be classified into four general areas: editorial,

consistency, clarification, and technical extension. Editorial changes include the usual grammar,
spelling, punctuation, etc. that are discovered with each re-reading. Changes to improve the

consistency of the document include the use of the same terminology throughout, the establish-

ment of a common format, and the defining of all terms before their use. In addition, a Glossary
of Terms and an Index of Topics have been added. These changes are not denoted by change
bars.

Users of Version 2.0 of the IGES Specification will be pleased to see the many technical extensions

which have been added to augment its capability and expand it into new areas. Many geometry
entities have been enhanced in scope to be more generally applicable. Included here are the

parameterization in the Ruled Surface entity, a more general form of the Tabulated Cylinder

entity, and the means of relating the Surface of Revolution entity to the common geometrical

surfaces like spheres and cones.

Two new geometry entities, a Rational B-Spline Surface entity and a related Rational B-Spline

Curve entity, were added in Version 2.0. The addition of these entities is expected to provide

a much more general approach for surface and curve representation. Algorithms were developed
for an exact conversion between the Rational B-Spline method and the Bezier method of represen-

tation. New structural entities were also developed and documented for both rectangular and
circular arrays of geometric entities.

In the annotation area. Version 2.0 improves on the earlier work by specifying a much larger

set of text fonts, although additional work remains to be done here. Improvements have been
made in the clarity of intent for positioning and scaling of text material and in a more clearly

defined Angular Dimension entity.

Two major applications areas have been addressed by Version 2.0: finite element modeling
data and electronics printed wiring board product data. The earlier IGES Specification contained
no means of handling this data, yet both are widely used applications on CAD/CAM systems.

The geometry of a finite element is defined by the ordered connection of geometric points
called nodes. Communication of this data through IGES Version 2.0 is handled by defining the
nodes with the Node entity. The node connectivity is defined by the Finite Element entity.

To complete the finite element definition, new properties will be defined to communicate such
items as modulus of elasticity, Poisson's ratio, thermal conductivity, moment of inertia, sheer
modulus, and physical constraints.

The second major applications area addressed in the extended Specification is the communication
of printed wiring board product data. Extensions in this area are intended to provide for transfer-
ring the physical shape of metallization on each layer, the location and size of drilled holes,

the location and identification of components and their pins, the connectivity of certain component
pins and their associated named signals, and the functional use of entities by graphics systems
level. Some beginning is made into the transfer of design rules and in transferring schematic
drawings, but only the physical design transfer is thought to approach complete coverage.

Altogether, four new geometric entities are provided for efficient transfer of commonly used

printed wiring board graphical elements, eight new properties are defined to preserve design

characteristics, one new associativity is specified for signal connectivity, and one change is

introduced so that an IGES property may apply to levels as well as to individual entities.

A frequent criticism of the IGES format has been the anticipated large file lengths due primarily

to the ASCII character representation. Included in Version 2.0 are the details of an optional

or alternate binary format representation which addresses the problems of file size and processing

speed. While efficiency improvements vary with word length and other variables, analysis

of 20 IGES production files has estimated the savings in file size of 50 - 68%.

In total, the IGES Version 2.0 document is a major improvement in the Specification. It refines

and more precisely describes the Version 1.0 capability as well as extends IGES into new geometry
and application areas. Altogether, the document represents the discussions from 98 Change
Requests which generated 56 documented Change Orders from the earlier work.

TABLE OF CONTENTS

List of Figures vi

List of Tables viii

1 General 1

1.1 Purpose 1

1.2 Field of Application 1

1.3 Concepts of Product Definition 2

1.4 Concepts of the File Structure 3

1.5 Concepts of the Information Structures for Wire-Frame
Model Descriptions 6

1.5.1 Property Entity 7

1.5.2 Associativity Entities 7

1.5.3 View Entity 7

1.5.4 Drawing Entity 8

1.5.5 Transformation Matrix Entity 8

1.5.6 Macro Entities 8

1.6 Appendices 8

2 Data Form 9

2.1 General 9

2.2 ASCII Format 9

2.2.1 Constants 9

2.2.2 Free Format Rules 14

2.2.3 File Structure 15

2.3 Binary Format 38

2.3.1 Constants 38

2.3.2 File Structure 45

Geometry 60

3.1 General 60
3.2 Circular Arc Entity 64

3.3 Composite Curve Entity 67

3.4 Conic Arc Entity 71

3.5 Copious Data Entity 76
3.6 Plane Entity 79

3.7 Line Entity 84
3.8 Parametric Spline Curve Entity 87
3.9 Parametric Spline Surface Entity 93

3.10 Point Entity 98
3.11 Ruled Surface Entity 100

3.12 Surface of Revolution Entity 106
3.13 Tabulated Cylinder Entity 111

iii

3.14 Transformation Matrix Entity 114

3.15 Linear Path Entity 117
3.16 Simple Closed Area Entity 118

3.17 Flash Entity 119

3.18 Rational B-Spline Curve Entity 122

3.19 Rational B-Spline Surface Entity 126
3.20 Node Entity 129
3.21 Finite Element Entity 133

Non-Geometry 142

4.1 General 142

4.2 Annotation Entities 143

4.2.1 Construction 143
4.2.2 Definition Space 143

4.2.3 Entity Type/Type Number 145

4.2.4 Angular Dimension Entity 146

4.2.5 Centerline Entity 151

4.2.6 Diameter Dimension Entity 153

4.2.7 Flag Note Entity 156

4.2.8 General Label Entity 160

4.2.9 General Note Entity 163

4.2.10 Leader (Arrow) Entity 173
4.2.11 Linear Dimension Entity 179

4.2.12 Ordinate Dimension Entity 181

4.2.13 Point Dimension Entity 183

4.2.14 Radius Dimension Entity 186

4.2.15 Section Entity 189

4.2.16 Witness Line Entity 192

4.3 Structure Entities 194

4.3.1 Entity Type/Type Number 194

4.3.2 Associativity Definition Entity 195

4.3.3 Associativity Instance Entity 197

4.3.4 Drawing Entity 221

4.3.5 Line Font Definition Entity 225

4.3.6 MACRO Capability 230

4.3.6.1 General 230

4.3.6.2 MACRO Definition Entity 232

4.3.6.3 MACRO Instance Entity 233

4.3.7 Property Entity 256

4.3.8 Subfigure Definition Entity 265

4.3.9 Subfigure Instance Entities 266

4.3.9.1 Singular Subfigure Instance Entity 266

4.3.9.2 Rectangular Array Subfigure Instance Entity 268

4.3.9.3 Circular Array Subfigure Instance Entity 270

4.3.10 Text Font Definition Entity 272

4.3.11 View Entity 278

IV

281APPENDIX A: Spline Representations

A1 Introduction 281

A2 Spline Functions 281

A3 Spline Curves 283

M Rational B-Spline Curves 284
A3 Spline Surfaces 286
A6 Rational B-Spline Surfaces 288

A7 References 288

APPENDIX B: Electrical Example 290

APPENDIX C: Part File Examples 297

APPENDIX D; Glossary 306

APPENDIX E: Index of Topics 319

V

LIST OF FIGURES

Figure No.1-

1 Categories of Product Definition 4

2-

1 Start Section 16

2-2 Directory Entry (DE) Section 27
2-3 Parameter Data Section 35
2-4 Terminate Section 37
2-5 Format of Control Byte 40
2-6 Integer Primitive Format 41

2-7 Floating Point Primitive Format 43

2-8 Text String Primitive Format 44
2-9 Binary IGES General File Structure 46
2-10 Format of Binary Information Section 49

2-11 Format of Start Section 52

2-12 Global Section Format 53
2-13 Format of DE Subrecord 55

2-14 Format of Parameter Section 57

2-

15 Format of Terminate Section 59

3-

1 Examples of the Circular Arc Entity 65
3-2 Example of the Composite Curve Entity 69
3-3 Examples of the Conic Arc Entity 74
3-4 Examples of the Plane Entity 80

3-5 Single Parent Associativity As Used With a

Collection of Bounded Planes 81

3-6 Examples of the Line Entity 85

3-7 Example of Parametric Spline (2D) Curve Entity 89

3-8 Examples of the Parametric Spline Curve Entity 90

3-9 Example of the Parametric Spline Surface Entity 95

3-10 Examples of the Point Entity 99

3-11 Example of the Ruled Surface Entity 102

3-12 Examples of the Ruled Surface Entity 103

3-13 Examples of Surface of Revolution Entity 107

3-14 Surface of Revolution Start and Terminating Angles 108

3-15 Example of the Tabulated Cylinder Entity 112

3-16 Flash Entities 120

3-17 Displacement Components 130

3-18 Node Definition in Each Coordinate System 132

3-

19 IGES Finite Element Topology Set 136

4-

1 Construction of ZT Depth of Annotation Entities 144

4-2 Angular Dimension; Construction of Arcs
in the Associated Leaders 147

4-3 Examples of the Angular Dimension Entity 148

4-4 Examples of the Centerline Entity 152

4-5 Examples of the Diameter Dimension Entity 154

vi

II

I

j

' u Flag Note 156

'th7 Examples of the Flag Note Entity 157

|!f-8 Examples of the General Label Entity 161

Examples of the General Note Entity 164

1

Font 1001 165

iMl Font 1002 166

|<f-12 Character Set and Octal Code for Font Code Zero 167

General Note Text Construction 168
General Note Example of Text Operations 169

i4-t5 Examples of the Leader Entity 174

i^ie Structure of Leaders Internal to a Dimension 175
lir-17 Arrowhead Definitions 177

j4-18 Examples of the Linear Dimension Entity 180

Examples of the Ordinate Dimension Entity 182

%20 Examples of the Point Dimension Entity 184

^21 Examples of the Radius Dimension Entity 187

4-22 Examples of the Section Entity 190

4-23 Examples of the Witness Line Entity 193

4-24 Associativity Instance and Related Entities 201

4-25 Drawing Entity Example 1 222

4-26 Drawing Entity Example 2 223
4-27 Construction of Line Fonts 228
4-28 Use of Subfigure with Line Fonts 229

4-29 Example of Triangle MACRO 237

4-30 Line Widening Examples 260

4-31 Subfigure Origin 267
4-32 Example of a Character Definition 276

4-33 Second Character Definition Example 277

B-1 Schematic 291
B-2 Signal Associativity 292

B-3 Partitioning Associativity 294

B-4 Layout 295

C-1 Sample Part 298

C-2 Sample Part 2 301

Yll

LIST OF TABLES

Table No.

2-1 Parameters in the Global Section 17

2-2 Directory Entry Field Description 23

3-1 Finite Element Topology 135

C-1 Encoded File 299

C-2 Encoded File 302

1

1

I

r

V

viii

INITIAL GRAPHICS EXCHANGE SPECIFICATION (IGES)

Version 2.0

1 GENERAL

1.1 Purpose

This document establishes information structures to be used for the digital

representation and communication of product definition data. Use of the specifi-

cation established herein permits the compatible exchange of product definition

data used by various CAD/CAM (Computer Aided Design and Computer Aided

Manufacturing) systems.

1.2 Field of Application

This Specification specifies a file structure format, a language format, and the

representation of geometric, topological, and non-geometric product definition

data in these formats. Product definition data represented in these formats will be

exchanged via a variety of physical media. The specific features and protocols for

the communications media are the subject of other standards. The methodology

for representing product definition data in this Specification is extensible and

independent of the geometric modeling methods used.

Section 2 defines the communications file structure and format. It explains the

function of each of the five major segments of an IGES file. The geometry data

representation in Section 3 deals with two- and three-dimensional edge-vertex

models and with simple surface representations. Section 4 specifies non-geometric

representations, including common drafting practices, data organization methods,

and data definition methods.

1

In Sections 3 and k, the product is described in terms of geometric and non-

geometric information, with non-geometric information being divided into annota-

tion, definition, and organization. The geometry category consists of elements

such as points, lines, arcs, cubic splines and parametric surfaces which model the

product. The annotation category consists of those elements which are used to

clarify or enhance the geometry, including dimensions, drafting notation, and text.

The definition category provides the ability to define specific properties or

characteristics of individual or collections of data entities. The structure category

identifies groupings of elements from geometric, annotation, or property data

which are to be evaluated and manipulated as single items.

1.3 Concepts of Product Definition

This Specification is concerned with the data required to describe and communi-

cate the essential engineering characteristics of physical objects as manufactured

products. Such products are described in terms of their physical shape, their

dimensions, and information which further describes or explains the product. The

processes which generate or utilize the product definition data typically include

design, engineering analysis, production planning, fabrication, material handling,

assembly, inspection, marketing, and field service.

/

The requirements for a common data communication format for product definition

can be understood in terms of today's CAD/CAM environment. Traditionally,

engineering drawings and associated documentation are used to communicate

product definition data. Commercial interactive graphics systems, originally

developed as aids to producing these two-dimensional drawings, are rapidly

developing sophisticated three-dimensional edge-vertex modeling capability. In

2

parallel, extensive research work is being conducted in advanced geometric

modeling techniques (e.g., parametric representations and solid primitives) and in

CAM applications utilizing product definition data in manufacturing (e.g., NC

machining and computer-controlled coordinate measurement). The result is rapid

growth of CAD/CAM applications which should be able to exchange product

definition data, but which usually employ incompatible data representations and

formats. In addressing this compatibility problem, this Specification is concerned

with needs and capabilities of current and advanced methods of CAD/CAM product

definition development.

Product definition data may be categorized by their principal roles in defining a

product. An example of such a categorization is presented in Figure 1-1. This

Specification specifies communication formats (information structures) for subsets

of the product definition.

1.4 Concepts of the File Structure

A format to allow the exchange of a product definition between CAD/CAM

systems must, as a minimum, support the communication of geometric data,

annotation, and organization of the data. The file format defined by this

Specification treats the product definition as a file of entities, each entity being

represented in an application-independent format, to and from which the native

representation of a specific CAD/CAM system can be mapped. The entity

representations provided in this Specification include forms common to the

CAD/CAM systems currently available and forms which support the system

technologies currently emerging.

3

ADMINISTRATIVE

Product Identification

Product Structure

DESIGN/ANALYSIS

Idealized Models

BASIC SHAPE

Geometric

Topological

AUGMENTING PHYSICAL CHARACTERISTICS

Dimensions and Tolerances

Intrinsic Properties

PROCESSING INFORMATION

PRESENTATIONAL INFORMATION

FIG, 1-1 CATEGORIES OF PRODUCT DEFINITIOH

The fundamental unit of information in the file is the entity. Entities are

categorized as geometric and non-geometric. Geometric entities represent the

definition of the physical shape and include points, curves, surfaces, and relations

which are collections of similarly structured entities. Non-geometric entities

typically serve to enrich the model by providing a viewing perspective in which a

planar drawing may be composed and by providing annotation and dimensioning

appropriate to the drawing. Non-geometric entities further serve to provide

specific attributes or characteristics for individual or groups of entities and to

provide definitions and instances for groupings of entities. Typical non-geometric

entities for drawing definition, annotation, and dimensioning are the view, drawing,

general note, witness line, and leader. Typical non-geometric entities for

attributes and groupings are the property and the associativity entities.

A file consists of five or six sections; a binary section in the case of the binary

format, start, global conditions, directory data, parameter data, and terminator. A

file may include any number of entities of any type as required to represent the

product definition. Each entity occurrence consists of a directory entry and a

parameter data entry. The directory entry provides an index and includes

descriptive attributes about the data, while the parameter data provides the

specific entity definition. The directory data are organized in fixed fields and are

consistent for all entities to provide simple access to frequently used descriptive

data. The parameter data are entity specific and are variable in length and

format. The directory data and parameter data for all entities in the file are

organized into separate sections, with pointers providing bi-directional links

between the directory entry and parameter data for each entity.

Each entity defined by the file structure of Section 2 has a specific assigned entity

type number. While not all are assigned at this time, entity numbers 0001 through

5000 are allocated for specific assignment. Entity type numbers 5001 through 9999

are available for user specified assignment. The Index of Terms (Appendix E)

includes an alphabetical listing of entity types.

Some entity types include a form number as an attribute. The form number serves

to further define or classify an entity within its specific type.

The entity set includes provision for associativities and properties. The associativ-

ity provides a mechanism to establish relationships among entities, and to define

the meaning of the relationship. The property allows specific characteristics, such

as color, to be assigned to an entity or collection of entities. Each entity format

includes structure for an arbitrary number of pointers to associativities and

properties. The file structure provides for both standard associativities and

properties to be included in the Specification, and unique definitions which will be

defined by the user.

1.5 Concepts of the Information Structures for Wire-Frame Model Descriptions

The wire-frame model refers to the entity set defined by Sections 3 and 4, and

comprises an entity-based product definition file. The entity types, as described in

1.4, are categorized as geometric and non-geometric. In general, the geometric

entities are defined independently of one another (surfaces are an exception).

Features have been provided to define and compose relationships among entities to

enhance the model. The non-geometric entities include structures in which an

entity may be defined by a collection of other entities and structures which are

independent.

6

Several entity types which are used to provide relations or definitions are essential

to the file structure methodology of this Specification and are described below.

1.5.1 Property Entity . The PROPERTY entity allows non-geometric numeric or textual

information to be related to any entity. Any entity occurrence may reference one

or more property entity occurrences as required.

Property entities themselves may exist independently of other entities. In this

case the property is defined to be a property of the level indicated in the level

field of the directory entry (DE) of the property. This allows for a general

property to apply to all entities of a given level or for the assignment of an

applications function to a level. Because the level field in DE is also allowed to

point to an associativity of levels, properties could be applied to multiple levels.

1.5.2 Associativity Entities. The Associativity Entities are designed for use when

several entities must be logically related to one another. Two types of entities are

involved here: ASSOCIATIVITY DEFINITION and ASSOCIATIVITY INSTANCE.

The associativity definition entity is used to specify the structure of the logical

relationship, and the associativity instance entity is used to specify the information

involved in a particular occurrance of the relationship.

Some associativities are defined as part of this Specification. These intrinsic

definitions include GROUP and DEFINITION LEVEL associativities, and are defined

in Section 4.3.

1.5.3 View Entity. A drawing or equivalent human-readable representation of the

geometric model of a product Is a two-dimensional projection of a selected subset

of the model, together with non-geometric information such as text. The VIEW

entity and VIEWS VISIBLE form of associativity control such representations.

These provide information for orientation, clipping, line removal, and other

characteristics associated with individual views rather than with the model itself.

1.5.4 Drawing Entity. The DRAWING entity allows a set of views to be identified and

arranged for human presentation. Note that the view and drawing entities contain

only the rules and parameters for extracting drawings from the geometric model.

The actual product definition is not duplicated in various views, eliminating risk of

conflicting or ambiguous information.

1.5.5 Transformation Matrix Entity. The TRANSFORMATION MATRIX entity allows

translation and rotation to be applied to any geometric entity in the construction

of the model and to the development of views of the model.

1.5.6 Macro Entities . This Specification includes a MACRO DEFINITION entity for

defining new entity types which may then be used in the defining file in the same

manner as the intrinsically defined entities. A language for defining these new

entity types is specified in 4.3.6.

1.6 Appendices

As an aid to the implementor/user, a series of appendices is included with this

Specification. The first three appendices provide examples of specific utilization.

Appendix A provides explanation of spline representation and approaches for

conversion techniques. Appendix B provides an example of an electrical applica-

tion, and Appendix C, two mechanical examples. The last two appendices, a

Glossary and an Index of Terms have been added as references for the user.

3

2 DATA FORM

2.2

2.2.1

2.2.1.

1

General

Two different formats are defined to represent IGES data. These formats are

ASCn and Binary, where the ASCII format utilizes a character oriented (card

image) structure and the Binary format utilizes a byte oriented (bit string)

structure. In each case, the parameter definitions in the file sections are

identical. The two formats provide alternatives for ease of use and file size

trade-offs. The ASCII format is comparatively simple but can yield excessive

data volumes. The Binary format is more complex but offers a data volume

reduction of approximately 60% (as compared to ASCII).

The constants, free format rules, and file structure are discussed in terms of

the ASCn format. Following this discussion, the binary format is Introduced

together with necessary changes in constants and file structure.

ASCII Format

The file is written on 80 column records, using the ASCII (Code Extension

Techniques for Use with the 7-bit Coded Character Set of x\merican National

Standard Code for Information Interchange (ASCII) X3.4-1968, xANSI X3.41-

1974.) character set.

Constants

This Specification defines five types of constants; integer, floating point,

string, pointer, and language statement.

Integer Constants . An integer constant is composed of one or more

numerical characters. Although formally called an integer constant, it is

more commonly called a fixed-point or integer number because of the fact

that the decimal point is always assumed to be located to the right of the last

numerical character of the number.

An integer constant may be positive, zero, or negative. While a positive

integer number can have the special character plus (+) as its leading

character, if an integer number is unsigned and nonzero, the Specification

assumes it to be positive. An integer number must comply with the following

four rules:

a. It must be a whole number. That is, it cannot contain a decimal point.

b. If negative, the special character minus (-) must be the leading

character.

c. It cannot contain embedded commas.

d. Its maximum magnitude can be either plus or minus 2**(N-1) -1 (where

N is parameter seven from the global section).

The following are examples of valid integer constants (assuming N is 32).

1

150

2147483647
0

-10

-2147483647
+3451

2.2. 1.2 Floating-Point Constants . This Specification permits both single and double

precision floating-point constants. The precision of these constants is

specified in the global section, in parameters 8 through 11.

A single precision floating-point number may be expressed with or without an

exponent. Double precision constants must be in exponential form.

A floating-point constant without an exponent is composed of one or more

numerical characters and the special character period (.) that may be

followed by one or more of these numerical characters to form what is called

the fractional part of the constant. Sometimes called a real constant, it is

more commonly called a floating-point constant to reflect the fact that the

-i n

decimal point can be moved or floated to the beginning, middle, or end of the

numerical characters forming the number. Floating-point constants may be

positive, zero, or negative. A positive floating-point constant can have the

special character plus (+) as its leading character. If a floating-point

constant is unsigned and nonzero, the Spectification assumes it to be positive.

A floating-point constant must comply with the following four rules:

a. If negative, the special character minus (-) must be the leading

character.

b. It must contain a decimal point.

c. It cannot contain embedded commas.

d. The size of the number must be compatible with the parameters in the

global section.

A floating-point constant may be expressed in exponential form. Single

precision floating-point numbers use the letter "E" in the exponent, while

double precision floating-point constants use the letter "D" in the exponent.

A floating-point constant in exponential form begins with a constant (real or

integer) followed by an exponent letter ("E" or "D") followed by an integer

constant. The first constant is called the mantissa and the second constant,

the exponent. The value of the resultant floating-point constant is the value

of the mantissa multiplied by ten raised to the power specified in the

exponent. The precision of allowable numbers for the mantissa and exponent

are given in the global section. Examples of floating-point constants are

below:

Single precision non-exponent form:

264.091

0 .

-0.58
+4.21

Single precision exponent form;

1.36 E 01

12.943E1
-13.09E-2
123.409E-^

0.1 E-3
l.OE+4

Double precision exponent form;

145.98763D+04
2145.980001D-5
0.123456789D 9

Note;

Double precision floating-point constants must use the exponential

form.

2.2. 1.3 String Constants . A string constant in this Specification uses the Hollerith

form as found in the ANSI specification of Fortran (Programming Language

Fortran ANSI X3.9-1978). A string constant is preceded by an unsigned

integer, and the letter "H". String constants have the following rules;

a. The string is preceded by a count of characters and the letter "H".

b. Any character from the ASCII set may appear in the string. (Blanks and

the field and record delimiters have no special meaning within a string

constant.)

c. String constants may cross record boundaries in the file (other con-

stants may not). When a string constant does cross a record boundary,

the last usable column on the current record is concatenated with

column one on the succeeding record. The last usable column on

parameter records is column 64; on other records it is column 72.

d. There is no limit on the size of a string constant.

Examples of valid string constants are;

3K123
10HABC.,:ABCD
12H HELLO THERE
8H0.^57E03

2.2. 1.4 Pointer Constants . A pointer constant is a one to seven digit integer

identifying a record in the same subsection or an alternate subsection. The

pointer value corresponds to the sequence number of the target record. The

subsection of the target record is context determined. Where the pointer is

an optional parameter, its use is denoted by a leading minus (-) sign. All

other instances are unsigned. Pointers requiring less than seven non-zero

digits are valid with or without the leading zeros. The pointer specification

may not exist across record boundaries.

The sequence number for each section begins with 0000001 and numbering

continues sequentially until ending at the appropriate number for the section.

Leading zeros in the sequence field may be optionally replaced with blanks.

The number must be right justified. The letter codes for column 73 are as

follows;

SECTION LETTER CODE

a. Start Section S

b. Global Section G

c. Directory Entry Section D

d. Parameter Data Section P

e. Terminate Section T

2.2. 1.5 Language Statement Constant . The language statement constant is an

arbitrary string of alpha-numerics, punctuation, and blanks. Tne string is not

preceded by the character count and hollerith delimiter 'H'. Language

statements have a syntax which is fully defined in 4.3.6. The length of the

string may be determined through the ,parameter data record count in the

directory entry for the entity.

1 o

2. 2.2 Free Format Rules

The data in several sections of the file may be entered in free format. The

free format feature allows the specification of parameters in a prescribed

order but does not specify a location on the record image. When free format

is permitted, the following rules apply;

a. Blanks are ignored.

b. The field delimiter (default is comma) is used to separate parameters.

c. The record delimiter (default is semicolon) is used to terminate the list

of parameters.

d. When two commas appear adjacent to each other (or separated only by

blanks) the parameter is not specified in the file and should be given a

default value.

e. If a semicolon appears before the list of parameters is complete, all

remaining parameters should be given default values.

f. Blanks are not ignored in string constants. In addition the comma and

semicolon are treated as characters in a string constant and do not have

the meaning specified in (b) through (e).

g. Text parameters may be split between two records if necessary,

whereas numerical parameters and pointers together with their accom-

panying delimiters are not to be so split.

h. Unless otherwise specified, the default values for a numeric argument

and for a text argument are zero and a null string respectively. It is

the responsibility of the pre-processor which creates a standard file to

make sure that the default value is a reasonable one for the particular

parameter.

2.2.3 File Structure

The file contains five subsections which must appear in order as follows:

a. Start Section

b. Global Section

c. Directory Entry Section

d. Parameter Data Section

e. Terminate Section.

2. 2. 3.1 Start Section

The start section of the file is designed to provide a man-readable prolog to

the file. There must be at least one start record, and all records in the

section must have the letter S in column 73 and a sequence number in column

74 through 80 (See 2. 2. 1.4). The information in columns 1 through 72 is not

formatted in any special way except that the ASCII character set must be

used. An example of a start section is shown in Figure 2-1.

YVA

START SECTIOIM

THIS SECTION IS A MAN READABLE

PROLOG TO THE FILE, IT CAN CONTAIN

AN ARBITRARY NUfVlBER OF RECORDS

S0000001

S0000002

S0000003

USIIMG ASCII CHARACTERS IPJ COLUMnJS 1-72 S0000020

FIG, 2-1 START SECTION

2. 2.3.2 Global Section

The global section of the file contains the information describing the pre-

processor and information needed by the post-processor to handle the file.

All records in the global section shall contain the letter G in column 73 and a

sequence number (See 2.2. 1.4). The first two global parameters are used to

redefine the delimiter and end of record characters if necessary. The default

characters are "comma" and "semicolon" respectively.

The fjarameters for the global section are input in free format as described in

2.2.2. As implied in 2.2.2, the global parameters will end with the end of

record delimiter. If the global section specifies new delimiter characters,

they take over immediately and are used in the global section as well as the

rest of the file. This is possible, because the comma and semicolon delimiter

functions are the first two global parameters. The form of a new delimiter

character is similar to any text string: IH character . It is expected that if

the comma and semicolon delimiters are not to be changed, the global section

will begin with to indicate the default values are desired.

The parameters in the global section are described in Table 2-1 and the para-

graphs that follow. Unless explicitly stated, no defaults are provided.

TABLE 2-1 PARAMETERS IN THE GLOBAL SECTION

PARAMETER FIELD TYPE DESCRIPTION

«

1

2

3

4

5

6

7

8

String

String

String

String

String

String

Integer

Integer

Delimiter character (default=,)

End of record delimiter (default=;)

Product identification from sending system

File name

System ID

. Vendor

. Software version

ANSI Standard translator version

Number of bits for integer representation

Number of bits in a single precision floating

point exponent

IT

9 Integer Number of bits in a single precision floating

point mantissa

10 Integer Number of bits in a double precision exponent

11 Integer Number of bits in a double precision mantissa

(TO SYSTEM)

12 String Product identification for the receiving

system

(FILE INFORMATION)

13 Floating point Model space scale

(example; .125 indicates a value 1. 0:8.0 real

world)

14 Integer Unit flag

15 String Units. Two units have been defined: 4H INCH

for unit flag = 1 and 2HMM for unit flag = 2

16 Integer Maximum number of line weight gradations (1-

32768). Refer to the directory entry para-

meter 12 (See 2.2.3. 3) for use of this para-

meter.

17 Floating point Size of maximum line width in units. Refer to

the directory entry parameter 12 (See 2.2.3.3)

for use of this parameter.

18 String Date & time of file generation

13HYYMMDD.HHNNSS where;

YY is year (last 2 digits)

MM is month (01-12)

DD is day (01-31)

HH is hour (00-23)

NN is minute (00-59)

SS is second (00-59)

19 Floating Point Minimum user-intended resolution or granu-

larity of the model expressed in units defined

by parameter 15 (example .0001)

18

20 Floating point Approximate maximum coordinate value oc-

curring in the model expressed in units defined

by parameter 15. (Example: 1000.0 means for

all coordinates IXj,
1 y1, \Z\ — 1000.)

21 String Name of author

22 String Organization

19

2. 2. 3. 2.1 Delimiter Character. This parameter indicates which character is to be

used to separate parameter values in the Global and Parameter Data sections.

Each occurrence of this character denotes the end of the current parameter and

the start of the next parameter. Two exceptions exist: (1) string

constants in which the delimiter character may be part of the hollerith

string; (2) language statements in which the delimiter character may be a

part of the language syntax. The default value is a comma. See

2.2.2

2.2.3.2.2 End of Record Delimiter. This parameter indicates which character is to be

used to denote the end of a list of parameters in the Global section and

each Parameter Data section entry. Each occurrence of this character

denotes the end of the current parameter list. Two exceptions exist: (1)

string constants in which the delimiter character may be part of the

hollerith string; (2) language statements in which the delimiter character

may be a part of the language syntax. The default value is a semicolon.

See 2.2.2.

2.2.3.2.3 Product Identification From Sender. This is the name of another identifier

which is used by the sender to reference this product.

2.2.3.2A File Name. This is the name of the IGES file.

2.2.3.2.5 System ID. This parameter is an identification code which should uniquely

identify the system which generated this file. It includes both the name of

the system and the version of software on that system.

2. 2. 3. 2.

6

Translator Version. This parameter identifies the version of the translation

software which created this file.

2.2.3.2.1 Number of Bits for Integer Representation. This parameter indicates how

many bits are present in the integer representation of the sending system.

This parameter sets limits on the range of values for integer parameters in

the file.

20

2. 2. 3. 2.

8

Number of Bits in a Single Precision Floating Point Exponent. This

parameter indicates how many bits are present in the exponent portion of

the floating point number representation on the sending system. This

parameter sets limits on the magnitude of floating point values in the file.

2.2.3.2.9 Number of Bits in a Single Precision Floating Point Mantissa. This

parameter indicates how many bits are present in the fractional part of the

floating point number representation on the sending system. The value of

this parameter sets a limit on the precision of single precision floating

point values in the file.

2.2.3.2.10 Number of Bits in a Double Precision Floating Point Exponent. This

parameter indicates the number of bits in the exponent portion of the

double precision floating point number representation on the sending

system. The value sets limits on the magnitude of double precision floating

point values in the file.

2.2.3.2.11 Number of Bits in a Double Precision Mantissa. This parameter indicates

the number of bits in the fractional portion of a double precision floating

point number representation on the sending system. This value sets a limit

on the precision of double precision floating point values in the file.

2.2.3.2.12 Product Identification for the Receiver. This is the name or identifier

which is intended to be used by the receiver to reference this product.

2.2.3.2.13 Model Space Scale. The ratio of model space to real world space.

2.2.3.2.14 Unit Flag. An integer value denoting the measuring system used in the file.

The values in the file are assumed to be:

Unit flag = 1 (Inches)

= 2 (Millimeters)

= 3 (See Parameter 15 for name of units)

21

This is the controlling definition of units. A value of '3' should only be used

when it is intended to transfer data to a system using the same units, in

which case parameter 15 may provide additional information as to those

units.

2.2.3.2.15 Units. A text string naming the unit of measure in the system,

(e.g. 4HINCH)

2.2.3.2.16 Maximum Number of Line Weight Gradations. This is the number of equal

subdivisions of line thickness.

2.2.3.2.17 Size of Maximum Line Width in Units. This is the actual width of the

thickest line p>ossible in the (scaled) file.

2.2.3.2.18 Date and Time of File Generation. This is a time stamp of when the file

was created. (See Table 2-1.)

2.2.3.2.19 Minimum User-Intended Resolution. This parameter indicates the smallest

distance in model space units that the system should consider as discern-

able. Coordinate locations in the file which are less than this distance

apart should be considered to be coincident.

2.2.3.2.20 Approximate Maximum Coordinate Value. This is an upper bound on the

value of coordinate data. The absolute magnitude of all coordinates is less

than or equal to this value.

2.2.3.2.21 Name of Author. The name of the person responsible for the generation of

the data contained in this file.

2.2.3.2.22 Organization. The organization or group with whom the author is associated.

Z2.3.3 Directory Entry Section

The directory entry section has one directory entry for each entity in the

file. The directory entry for each entity is fixed in size and contains twenty

fields of eight characters each spread across two consecutive eighty charac-

ter records. Data are right justified in each field.

The purposes of the directory entry section are to provide an index for the file

and to contain attribute information for each entity. The order of the

directory entries within the directory entry section is arbitrary with the

exception that a definition entity must precede all of its instances.

Some of the fields in the directory entry can contain either an attribute value

directly, or a pointer to a set of such values. In these fields, a negative

number indicates a pointer, while a positive number indicates an attribute

value. Table 2-2 and the following paragraphs describe each directory entry

field. For those fields accommodating either an attribute value or a pointer,

there are two descriptions given. Figure 2-2 gives an abbreviated listing of

the fields making up the directory entry for each entity.

TABLE 2-2 DIRECTORY ENTRY FIELD DESCRIPTION

NO. FIELD NAME MEANING AND NOTES

1 Entity Type Number Identifies the entity type.

2 Parameter

Data Pointer

Pointer to the first record of the parameter

data for the entity. The letter P is not

included.

3 Version Number The version number indicates how to interpret

the parameter data for this entity. This value

will be 1 for all entities in the initial release

of this Specification.

Version = Pointer Pointer to the first record of directory entry

of the definition entity that specifies this

entity's meaning. The letter D is not included.

23

4 Line Font Pattern Selection of a system line font.

Number 1 = Solid

2 = Dashed

3 = Phantom

4 = Centerline

Line Font Pattern Pointer to the directory entry of a line font

Pointer definition entity.

5 Level Number Entity is defined on this level.

Level = Pointer Pointer to the directory entry of a property

entity (Form 1) which contains a list of levels

on which the entity is defined.

6 View Pointer Pointer to the directory entry of a view entity

(410) or to views visible associativity entities.

(402, Forms 3 or 4)

7 Defining Matrix

Pointer

Pointer to the directory entry of a trans-

formation (entity type number 124) matrix

used in defining this entity; zero implies the

identity transformation matrix will be used.

8 Label Display

Associativity Pointer

Pointer to the directory entry of a label

display associativity (Form 3).

9 Status Number Provides four two-digit status values.

1-2 Blank Status

00 Visible

01 Blanked

3-4 Subordinate Entity Switch

00 Independent

01 Physically Dependent

02 Logically Dependent

03 Both (01) and (02)

2h

5-6 Entity Use Flag

00 Geometry

01 Annotation

02 Definition

03 Other

04 Logical

7-8 Hierarchy

00 Global top down

01 Global defer

02 Use hierarchy property

Example; If an entity A has 00 in its DE

status digits 7 and 8, all entities

subordinate to A will have the

attributes assigned to A. Conse-

quently, the attributes assigned to

all entities subordinate to A are

ignored.

If an entity A has 01 in its DE

status digits 7 and 8, the entities

immediately subordinate to A

will retain their own status.

Consequently, the attributes

assigned to A are ignored.

10 Section Code <5c

Sequence Number

If an entity A has 02 in its DE

status digits 7 and 8, the status

of each attribute is determined

by the hierarchy property entity

which is pointed to by a pointer.

Physical count of this record from the begin-

ning of the directory entry section, preceded

by the letter D (odd number).

11 Entity Type Number (Same as Field 1.)

25

12 Line Weight Number System display thickness; given as a gradation

value in the range of 0 to the maximum

(parameter 16 of the global section). Thus,

display thickness is:

(Line Weight Number) » 17)

(Global parameter 16).

If 0 is specified, the receiving system's

default line weight is to be used.

13 Pen Number Pen or color number.

14 Parameter Record Number of records in the parameter data for

Count Number this entity.

15 Form Number Certain entities have different interpreta-

tions. These interpretations are uniquely iden-

tified by a form number. Possible form num-

bers are listed within each entity description.

16-17 Reserved for

future use

18 Entity Label Up to eight alphanumeric characters (right

justified).

19 Entity Subscript

Number

1 to 8 digit unsigned number associated with

the label.

20 Section Code and

Sequence Number
Same meaning as field 10

(even number).

26

DIRECTORY

ENTRY

(DE)

SECTION

1

{

a 1 s •

lU 1
^

CO 1

o
SEQ#

D

20

STATUS
«rs 9 ENTITY

SUB.
SCRIPT n 19

LABEL DISPLAY

8 ENTITY LABEL

DEFINING
MATRIX

7 RESERVED 17

VIEW

6
RESERVED 16

LEVEL 5
FORM

NUMBER » IS

LINE

FONT

PATTERN
4

PARA.
METER

RECORD COUNT n 14

VERSION 3 PEN NUMBER n 13

PARA-
METER DATA 2 LINE WEIGHT n 12

•

y

ENTITY

TYPE

NO.

f 1 ENTITY

TYPE

NO.

^

'

/t 11

’2

2
CO

a
lU
2
(O
<
X
ocu
H
2
O
fiL

cc
tu
I-
2
5
a
oc

o
ec a; oc
UJ ai uj
OQ K a
S 2 5
D O 3
2 o. Z
I 1 I

It A ^

•fc

1. aa003H 2 QU003U

LJ>
LU
cs:

5
CM

I

CM

CD

I

27

2.2.3.3.1 Entity Type Number. An integer number indicating the type of entity.

2.2.3. 3. 2 Parameter Data Pointer. This is the sequence number of the first

parameter data record for this entity. The letter P is not included.

2.2.3. 3. 3 Version Number. For a positive value, this indicates the IGES version to

which the entity conforms. For a negative value, the absolute value of this

field is interpreted as a pointer to the structure definition entity which

specifies the schema for this entity type number.

2.2.3. 3. 4 Line Font Pattern Number. This indicates a display pattern to be used to

display a geometric entity. A positive value indicates that the receiving

system's corresponding version of the solid, dashed, phantom and centerline

fonts should be used. A negative value indicates that the absolute value

should be interpreted as a pointer to a line font definition entity

(entity number 304) which provides the information specifying the display

pattern.

2.2.3. 3. 5 Level Number. This value specifies a graphic display level or levels to be

associated with this entity. A positive value indicates the graphic level

this entity exists on. A negative value indicates the absolute value should

be interpreted as a pointer to a property entity (entity number 406, form

number 1) which contains a list of levels to be associated with the entity.

This feature allows an entity to exist on multiple graphic levels.

2.2.3. 3. 6 View Pointer. This value is a pointer to the directory entry of a view

entity (entity number 410) or a Views Visible Associativity (entity number

402, form 3 or 4) which defines the viewing perspective to be used to

display the entity. The Views Visible Associativity allows the specification

of view dependent characteristics for entities associated with this view.

2.2.3. 3. 7 Defining Matrix Pointer. This value is a pointer to the directory entry of a

transformation matrix entity (entity number 124). This entity provides

four form numbers to indicate the interpretation of the matrix. Form 0

indicates that the matrix defines a local coordinate system in which the

28

entity coordinate data is defined. Form 10, 11 and 12 define specific

cartesian, cylindrical and spherical coordinate systems respectively. A

pointer value of zero indicates that the transformation matrix is the

identity matrix.

2. 2. 3. 3.

8

Label Display Associativity Pointer. This is a pointer to the directory

entry of a label display associativity (entity number 402, form 5) which

defines how the entity's label and subscript are to be displayed in different

views.

2.2.3.3.9 Status Number. This value contains four pieces of information which are

concatenated together into a single integer number. The individual values

are described in the following paragraphs.

2.2.3.3.9.1 Blank Status. This value defines whether the entity is meant to be visible

on the output device of the receiving system. A value of 00 implies the

entity is to be displayed and a value of 01 implies the entity is not to be

displayed.

2.2.3.3.9.2 Subordinate Entity Switch. This value indicates whether or not the entity

is referenced by other entities in the file. This implies whether or not the

receiving system's processor needs to "remember" this entity because it is

involved in the processing of other entities. The values are defined as

follows:

00: The entity is an independent entity not referenced (i.e. pointed

to) by any other entities in the file. It is not involved in the

processing of other entities.

01: The entity is an element of a geometric or annotative entity

structure and is not intended to exist independently outside the

context of that geometric or annotative entity structure.

Processing of this entity should be deferred until the processing

of the geometric or annotative entity structure.

29

02; The entity is a member of (i.e. is pointed to by) a logical

relationship structure such as an associativity or a subfigure.

The entity is not dependent on the processing of the logical

relationship structure for its existence.

03: Both conditions 01 and 02 above apply to this entity.

2.2.3. 3. 9.3 Entity Use Flag. This indicates the intent of the entity. It classifies the

entity as intending to serve in the following manners;

00; The entity is used to define the geometry of the structure of

the product.

01: The entity is used to add annotation or description to the file.

This includes geometric entities used to form annotation or

description.

02; The entity is used in definition structures of the file. It is not

intended to be valid outside of the other entities which refer-

ence the definition structure. An example is the entities in a

subfigure definition. They are intended to be valid in the

subfigure instances that reference the subfigure definition.

This class includes all entities in the 300 entity type number

range.

03 (other):

The entity is being used for other purposes such as defining

structural features in the file. This category corresponds

roughly to the 400 range, but there are exceptions. For

example, a subfigure instance (408) could define geometry, thus

having an entity use flag = 0 or it could define a drawing

format, thus having an entity use flag =01. An associativity

instance would ordinarily have the value 03. Exceptions include

connect nodes and text nodes (value = 00) and associativities

concerned with display where it would have the value 01. The

view and drawing entities have value 01 (annotation). Transfor-

30

mation depends on its use; If used only for annotation (e.g.,

defining a view) the value is 01; if used for defining geometry

or for defining geometry and annotation, value is 00.

04 (logical):

The entity defines virtual geometry present because of the

instancing of a structural entity such as a text node and

connect node.

Default;

Entity use is geometry.

2.2.3. 3. 9.4 Hierarchy. This value indicates the relationship between entities in a

hierarchical structure and is used to determine which entity's directory

entry attributes should be applied. Three values are provided:

00; The directory entry attributes will apply to entities subordinate

to this entity.

01: The directory entry attributes of this entity will not apply to

subordinate entities.

02: The hierarchy property determines which attributes from this

entity are to be applied to subordinate entities.

2.2.3.3.10 Sequence Number. A number which specifies the position of the DE record

in the directory entry section. The first record is record number 1, the

second 2, etc. Successive records each increment this value by 1 (no gaps

allowed) with each directory entry consisting of exactly 2 records; thus the

sequence number of the first DE record for any entity is always odd and

the sequence number of the second record is always even.

2.2.3.3.11 Entity Type Number. This is the same as Field 1.

2.2.3.3.12 Line Weight Number. This value denotes the thickness (or width) with

which an entity should be displayed. A specific series of possible

thicknesses are specified by global parameters 16 and 17. The largest

31

thickness possible is that specified in global parameter 17 and is denoted by

setting this value equal to the value in global parameter 16. The smallest

thickness possible is equal to the result of dividing global parameter 17 by

global parameter 16 and is denoted by setting this value equal to 1.

Thicknesses between the smallest and largest thickness are available in

increments equal to the smallest possible thickness and are denoted by

setting this value equal to the integer number of (adjacent) increments

required.

A value of 0 indicates that the default line weight display of the receiving

system is to be used.

2.2.3.3.13 Pen Number. This value indicates a pen selection that the entity is to be

displayed with on a plotting device. It may be interpreted to provide color

selection for multi-color display devices.

2.2.3.3.1if Parameter Record Count Number. This is the number of records in the

parameter data section which contain the parameter data for this entity.

2.2.3.3.15 Form Number. This value indicates an individual interpretation of the

entity to be used when processing the parameter data for this entity. Some

entity types allow multiple interpretations of their parameter data. This

parameter along with the entity type number uniquely identify the inter-

pretation of the parameter data.

2.2.3.3.16 Reserved Field. This field is reserved for future use and should be left

blank.

2.2.3.3.17 Reserved Field. Same as Field 16.

2.2.3.3.18 Entity Label. This is an alphanumeric identifier or name for this entity. It

is used in conjunction with the entity subscript number (Field 19) to provide

an alphanumeric identifier for the entity.

2.2.3.3.19 Entity Subscript Number. This is a numeric qualifier for the entity label

(Field 18).

2.2.3.3.20 Sequence Number. Same as 2.2.3.3.10

32

2.2.3.4 Parameter Data Section

The parameter data section of the file contains the parameter data associated

with each entity. The following information is true for all parameter data.

2.2.3. 4.1 Parameter data are placed in free format (see 2.2.2) with the first field

always containing the entity type number. Therefore, the entity type

number and a field delimiter (default is comma) precede parameter one of

each entity. The free field part of the parameter record ends in column

64. Columns 66 through 72 on all parameter records contain the sequence

number of the first record in the directory entry of the entity for which

parameter data is being presented. Column 73 of all records in the

parameter section shall contain the letter P and columns 74 through 80

shall contain the sequence number (See 2.2. 1.4)

2.2.3.4.1.1 With the exception of text strings, all parameter values are restricted from

crossing record boundaries. Thus, numeric values must start and end on the

same record and the terminating delimiter must be on the same record.

When a text field does cross record boundaries, column 64 on the current

record is considered to be next to column 1 on the next record. Parameters

to be defaulted are indicated by two field delimiters (default is comma) with

zero or more intervening blank characters. A record delimiter (default is

semicolon) indicates that the parameter list is complete and any remaining

parameters should receive default values. A record delimiter should always

be the last character of a parameter set even if all parameters were

explicitly specified.

2.2.3. 4.2 Note that two groups of parameters appear at the end of nearly all entities.

The first of these general parameters, the set of back pointers/text pointers,

serves two purposes. There is an option in the associativity definition to

specify that back pointers are required. If this option is chosen, an entity

which is pointed to by the associativity must have a pointer in its own

parameter list pointing back to the associativity, i.e., a back pointer. This

back pointer will appear in the first group of parameters.

33

A second purpose for the first group of general parameters is to allow an

entity to point to text which is associated with that particular entity. This is

done by inserting a pointer to a general note in the first group of general

parameters. Thus, there are only two types of entities which can be pointed to

by the first group of general parameters; an associativity instance which

points to the entity and a general note.

The second group of general parameters is used to point to property entities

which may be associated with the particular entity.

2.2.3. 4.3 Any desired comment may be added after the record delimiter. Note that

additional records may be used for this purpose by keeping the directory

entry pointer in columns 65-72 constant. Figure 2-3 shows a parameter

section.

3h

PARAIVIETER

DATA

SECTSOW

•-Q
CO

\

SEQUENCE NUMBER
SEQUENCE NUMBER

SEQUEIMCE

IMUMBER

Q_ Q_ Gu

X X X
H H H
X X X
til LU w
Q Q Q

CO CO CO< < <
E s s
S s gO O oa O o
>• >• >-
ffl X X
Q o H 9 • #

Q
LU LU LUH H H< < <X X X< < <
CL X X

• UJ LU LUo w CO X
2 CO CO XX X X XX UJ lU U
>• H
H lii

LU LU

>- ^ s s
H < < <
X cc

2w S:

X
<X

X
<•
X

<
H
2
Ui
D

W Q
CO 2
E <
H CL

o£

1“
2 “i

o >
l!J CO

E 2
Q 5m LU

X “
H
O
H
CO
H
2
5
£L

X
H
O.

X
LU
X
S
X
2 Q

LU
LU

£j;o S
2 X
!U ^^ §

lU lU 2
Q CO

3 5

FIG.

2-3

PARAMETER

DATA

SECTION

2.2.3.5 Terminate Section

There is only one record in the terminate section of the file. It is divided

into ten fields of eight columns each. The terminate section must be the last

record of the file. It has a "T" in column 73 and columns 74 through 80

contain the sequence number with a value of one (1).

The fields on the terminate record contain the character representing the

section type and the last sequence number used in each of the previous

sections. The fields are defined below and shown in Figure 2-4.

FIELD COLUMNS

1 1-8

2 9-16

3 17-24

4 25-32

5-9 33-72

10 73-80

SECTION

Start Section

Global Section

Directory Entry Section

Parameter Section

(not used)

Terminate Section

TERMIWATE

SECTIOiM

I

i

I

(

2.3 Binary Format

I

1

The format defined in Section 2.2, refered to as ASCII IGES, has 80
j

character fixed length records. This format, although usable by a wide
i

community, creates files that can be quite large. In an attempt to i

minimize required file size and speed numerical conversion, this section ^

describes a binary representation of the IGES data which may be used as an
|

I

alternative format to ASCII IGES. All entity parameterizations and data
|

organization are otherwise identical to the ASCII form.
|

The described format is intended to be treated as a
{

continous bit stream by the sending and receiving systems. Thus the data

may be blocked or grouped in any way acceptable to the sending and

receiving systems. The data is transportable by all current communication

protocols with the data treated as "transparent" or bit stream data. Each

data set may be stored as a bit stream on other media, such as tape or disk

in any format supported by the system which preserves the integrety of the

bit streams. Data blocking is considered to be the province of the

operating systems on the various support systems. For this reason data

blocking was not considered as a part of the ASCII IGES Specification.

Therefore, data blocking will not be considered a part of the Binary IGES

Specification.

'

j

2.3.1 Constants . The following constants need to be represented in

Binary IGES
|

i

o integer numbers

o floating point numbers

o text strings

o pointers

o language constants

t

A control byte will precede each value or set of values of the same type, I

unless otherwise specified. The control byte will specify the format of the

following value or set of values, the quantity of subsequent values with

38

.1

1

:

! 2.3. 1.1

I

2.3.1.

2

1

I

that format, and whether values other than the initial value following the

control byte are present. If the control byte indicates that values

subsequent to the initial value of the set are absent, all subsequent values,

up to the quantity indicated are assumed to have the same value as the

initial value following the control byte.

The repetition portion of the control byte is unsigned and biased by 1 so

that the true quantity of numbers to which the repetition field applies is

one more than the unsigned value of the field.

The format of the control byte is as shown in Figure 2-5.

Integer Numbers. Integer numbers will conform to a specified structural

standard.

The structure of an integer number shall be a sign bit followed by a two’s

complement integer of length i-1 as shown in Figure 2-6.

The generator of IGES data can select two lengths, i, of integer data.

The length of single length data is i^ and the length of double length data is

M*

Floating Point Numbers. Floating point numbers will conform to a

specified structural standard.

The structure of a floating point number shall be a sign bit followed by a

biased exponent value of NX bits which is a power of 2, and a normalized

binary fraction of NF bits. The fraction lies between 0.5 (inclusive) and 1.0

(exclusive). The value of the number is the sign applied to the fractionai

part multiplied by two raised to the power specified by the exponent part.

The sign field consists of one bit. A sign of 0 indicates a positive number

and a sign of 1 denotes a negative number. The exponent field consists of

NX bits and is interpreted as an unsigned integer, BX, often referred to as

the biased exponent. The value of the exponent is its unbiased value X

which is obtained by deducting the bias B=2**(NX- 1). A special interpreta-

tion is given to a biased exponent of zero, as discussed later.

39

CONTROL

BYTE

FORMAT:

UJ
CO
UJ
oc
a.

<
u

>•
X
a.

H”
cn z

UJ
cn

<n UJ
UJ zX a.

CO
UJ

Q.
OL
<
UJ
h-
>•
a

aa

ou
CO

X
I-

> u
a <

CO < UJ
»-

u 2 z z
H-

£3

X
tr
o

<
UJ
a.

CO O
t- oX

oX oX
u. UJz a. CO

X oz cs

UJ - ^

tl. X. X 1-
o <

CO CO
UJ

ca

o
XX
C5

XX
a

<
cX

<
oX

UJ UJ H- X X X X
CO X K H-

—1 •J CO z z z< <> > o o
z u. o X z CO CO

CO
o o a X •M

UJ X o O u CJ o
r— h- < z z X X•• CO u > X X X X M

C3 X UJ
1 X X X X X

UJ •• X _j H- X 1-
cu u. X o X X X X X X CO
UJ UJ X X X X X X H-
cs * >- < C3 a a a Z

-J X X 2 X z X Xz _J o X mm o M o o X
r

o < o CO o CO a X H-

u_ Lu X
11 II tl If ft ft

<
Ui
ca

•HI — X
n. o r-i* Xz o (N ro ID VO

(1 a Q n II n II B U

<
'

—

a.

UJ
c.

or
c

uo

FIG.

2-5

FORMAT

OF

CONTROL

BYTE

kl

1 .

The fraction field consists of NP bits interpreted as the low order bits of a

normalized (NF+l)-bit fraction part, F. Since the most significant bit of a

normalized fraction is always 1 it is not explicitly represented.

Numbers with a non- zero biased exponent have a value given by:

(_^)SIGN,2(BX-B),p

When the biased exponent is zero, the number is interpreted as follows:

1. SIGN = 0. The number represented is zero, regardless of the contents

of the fraction field.

2. SIGN = 1. The number represented is a reserved operand.

The structure of a floating point number is shown in Figure 2-7.

The generator of IGES data can select two lengths of floating point

data by specifying the length of each exponent (NX) and the length of

each fractional portion (NF).

2.3. 1.3 Text Strings. Text Strings will conform to a specified structural

standard.

Following the control byte will be a character count with a length of i^.

Where the character count exceeds the capability of an i^ length

integer, the text string is broken up into substrings. In order to indicate

that another substring follows the current string, a negative character

count is used. The number of characters in the substring is the absolute

value of the character count. A positive character count indicates the

last substring.

The structure of the text string is shown in Figure 2-8.

h2

+X

cs
UJa

o
a.

o

a<
a.

+X

<o or:o
UJzK
U.
O

h-OZ
UJ

u<z
u.

>
<

u.z
CO
H-

fia

o::;

a_

UJz
t-

u.

>
-Jz
o
a
Uia (/)

z K
-j —
CJ S3

CO u_— o
<0 itj

g ±
UJ >-
tsi J

s-
I

*

o- o
Ui

*"

P !2

UJ

o
CLX
UJ

o
(O

oZ UJ

z >
o S3
u

CO-

,aa

CO
H-

o
Q_

CZ

<Co

rv.
I

CNJ

CD

2.3.1.

4

Pointers. Pointers will conform to a specified structural standard.

The structure of a pointer shall be a 32 bit integer. The pointer shall

contain the relative byte position of the entity byte count of the DE or

PD entity to which it is pointing. A pointer to the first DE entity will

have a value of 1. A pointer to the second DE entity will have a value

equal to the number of bytes of the first DE entity plus one. A pointer

to the first PD entity will have a value of 1. Pointers with values of

zero or negative are not actual pointers but may have a default

meaning depending upon the IGES interpretation. For exampie, a

defining matrix pointer of zero would imply that the identity matrix is

to be used. This case might also be handled by using the control byte,

instead, to indicate a default value.

2.3. 1.5 Language Primitives. Language primitives are the text strings of the

MACRO definition entity which, in ASCII IGES, are not preceded by nH

and are terminated with a record delimiter. In Binary IGES the format

of language primitives will be identical to text strings. Each language

primitive (MACRO statement) will be an individual text string.

2.3.2 File Structure. The general file structure is as shown in Figure 2-9 and

is comprised of the following six sections:

o

o

o

o

o

o

Following each section is zero, one or many 8-bit null padding charac-

ters, represented by the ASCII letter N. These characters do not belong

to the section and have no meaning. They are provided to assist the

creator of an IGES file with physical system limitations such as word or

sector boundaries.

Binary information section

Start section

Global section

Directory entry section

Parameter Data section

Terminate section

45

I
>

\

I

I

t

U6

A

FIG.

2-9

BINARY

IGES

GENERAL

FILE

STRUCTURE

Several files can be concatenated by following the terminate section of

the first file with the binary information section of the second file.

Following the terminate section of the last file shall be zero, one, or

many null padding characters followed by an 8-bit end of information

designator, the ASCII letter E. Any information following the letter E

shall be ignored.

2.3.2.1 Binary Information Section. The format of the binary information

section is as shown in Figure 2-10. It is comprised of the following data

items, all of which are integers unless otherwise specified.

o Binary identification section identifier consisting of the ASCII

letter B.

o Binary identification section byte count. This byte count

excludes the 5 bytes required for the section identifier and

section byte count. This byte count also excludes any null

padding characters. The value of this byte count will be 75.

o Length i^ of single length integer primitives.

o Length i^ of double length integer primitives.

o Length NX^ of exponent of single precision floating point

primitives.

o Length NF^ of binary fraction of single precision floating point

primitives.

o Length NX^ of exponent of double precision floating point

primitives.

o Length NF^ of binary fraction of double precision floating point

primitives.

o ASCII letter B.

o Binary information section displacement. This is the byte count

of the total length of the binary information section including

all null padding characters. This length is the actual length

from the initial B of the binary information section up to but

not including the S of the start section.

o ASCII letter S.

o Start section displacement. This is the byte count of the total

length of the start section including all control bytes and null

padding characters. This length is the actual length from the

initial S of the start section up to but not including the G of the

global section.

o ASCII letter G.

o Global section displacement. This is the byte count of the total

length of the global section including all control bytes and null

padding characters. This length is the actual length from the

initial G of the global section up to but not including the D of

the directory entry section.

U8

BINARY
INFORMATION

SECTION

byte

count

O-X

CO
u.

o>
X

I
s'-

OI

at

A

S S

<j ~“ u
u <
“wSis^
Q MM

s

> UiA

o»-a3 ^a s'
m

O S
oe » Ui

" o T— Uj “
U» ft

2z"
«VrHuj

“o:u5
. Oui
'U.M

— o

«t

CO-
H-

OI

«CJ O
Oco e:
< Ui

H*

%
c9

— uS Ui
CB lO
Ui

Ui

ii=<'Ui
«o

o> au

ao
w

CO

M CO

a

ou

><

COz
o

u
Ui
CO

o
u.

>•
a<z

Ui

Mo
Ui

lb

oz
•

LU
GO

CD
r—

H

I

CSJ

LL.

U9

o Directory entry section displacement. This is the byte count of

the total length of the descriptive entity section including all

control bytes and null padding characters. The length is the

actual length from the initial D of the directory entry section

up to but not including the P of the parameter data section,

o ASCII letter P.

o Parameter data section displacement. This is the byte count of

the total length of the parameter data section including ail

control bytes and null padding characters. This length is the

actual length from the initial P of the parameter data section

up to but not including the T of the terminate section,

o ASCII letter T.

o Terminate section displacement. This is the byte count of the

total length of the terminate section including all null padding

characters. This length is the actual length from the initial T

of the terminate section up to but not including either the

letter B of binary information section of the next binary ICES

file, the initial character of the start section of an ASCII ICES

file, or the letter E of the end of information designator,

o 31 unassigned bytes,

o ASCII letter B.

o 6 ASCII blanks or zeroes,

o ASCII character 1.

No control bytes are applied to this section. Thus the characters in the

equivalent of columns 73 through 80 of the binary information section are

similar in format to the section identification of ASCII ICES and can be

used to determine if a file is ASCII or binary. If the file contains an S in

column 73 of its first 80 bytes, it is ASCII. If it contains a B, it is binary.

50

2. 3. 2. 2 Start Section. The format of the start section is as shown in Figure 2-11.

It is comprised of the following data items:

o A start section identifier consisting of the ASCII letter S

o Byte count for the start section. The byte count excludes the 5

bytes required for the start section identifier and section byte

count. This byte count also excludes any null padding charac-

ters.

o One or more language or text primitives which are logically

equivalent to columns 1 through 72 of ASCII ICES. There is no

required physical correspondence between ASCII ICES card

images and language/text primitives in that one language/text

primitive may contain the equivalent of several complete or

partial ASCII ICES card images. Carriage return characters

may be embedded in the language/text primitives. Control

bytes only apply to the language and text primitives. No

control bytes precede the section identifier and byte count.

2.3. 2.3 Global Section. The format of the global section is as shown in Figure 2-

12. The global section is comprised of the following data items:

o Global section identifier consisting of the ASCII letter G

o Global section byte count. This byte count excludes the 5 bytes

required for the global section identifier and the section byte

count. This byte count also excludes any null padding charac-

ters.

o 22 global parameters.

Control bytes apply only to the 22 global parameters.

The global parameters have the same sequence and meaning as the ASCII

IGES global parameters with the exception that global parameters 1

(delimiter character), 2 (end of parameter delimiter), 7 (number of bits for

integer representation), 8 (number of bits in a single precision floating

point exponent), 9 (number of bits in a single precision floating point

THE

FORMAT

OF

THE

LANGUAGE/TEXT

PRIMITIVES

IS

AS

SHOWN

IN

FIGURE

m
I

CV3

CO
UJ-
>•
a

oa

ou
UJ
><

oo
CO

UJ

u.

at
tn
UJ

f
V

!

)
»

FIG.

2-11

FORMAT

OF

START

SECTION

I

LD

1

mantissa), 10 (number of bits in a double precision exponent), and 11

(number of bits in a double precision mantissa) shall be ignored in binary

IGES. The binary information section shall supersede these global para-

meters.

2.3. 2.4 Directory Entry Section. The format of the directory entry section is as

shown in Figure 2-13. The directory entry section is comprised of the

following data items:

o Directory entry section identifier consisting of the ASCII letter

D

o Directory entry section byte count. This byte count excludes

the 5 bytes required for the section identifier and section byte

count. This byte count also excludes any null padding charac-

ters.

o For each directory entry, the following 17 data fields are

present:

entity byte count, which is composed of the lengths,

including control bytes, of the subsequent 16 data fields,

entity type

parameter data pointer (relative to the parameter data

section)

version number

line font

level number

view pointer (relative to the directory entry data section)

defining matrix pointer (relative to directory entry data

section)

label display associativity

status number

line weight

pen number

form number

reserved field 1

reserved field 2

entity label

entity subscript

SECTION

BYTE

COUNT

*
CO

VO
h-

CO

LINE FONT STATUS NUMBERS
ENTITY

LABEL

VERSION NUMBER LABEL DISPLAY ASSOCIATIVITY RESERVED

FIELD

2

PARAMETER

DATA

POINTER

DEFINING MATRIX POINTER
RESERVED

FIELD

1

ENTITY TYPE VIEW POINTER
PEN NUMBER

ENTITY

BYTE

COUNT LEVEL
NUMBER LINE WEIGHT

Ur>H

h- cnO LUZ I—
>-O CDO
_J

VO o
LU o:

tu o
<_}

LU
VO LU
LU >
3C <

Q
a::O
c_)
LU
q::
ca
ZD
oo

Q
LUO
h-
<C

QZO
LU

'—

I

I

CNI

LD

sr

VO
CO o

Di I—O '

<c
LU 2:
Cl. <_>
LU <
CO LU

55

Control bytes apply only to the last 16 data fields.

The directory entry data fields, except for the entity byte count, are

identical to and have the same sequence as the ASCII ICES fields. Within a

single ICES file, the length of DE record for each entity (in bytes) shall be

consistent. If in the future additional fields are required, it is preferable

to increase the number of fields for each directory entry and add any new

fields subsequent to existing fields.

2.3.2. 5 Parameter Section. The format of the parameter data section is as shown

in Figure 2-14. The parameter data section is comprised of the following

data items;

o Parameter data section identifier consisting of the ASCII letter

P

o Parameter data section byte count. This byte count excludes

the 5 bytes required for the section identifier and section byte

count. This byte count also excludes any null padding charac-

ters.

o For each parameter data entity, the following data fields are

required:

entity byte count, which is composed of the lengths,

including control bytes, of all subsequent data fields for

this entity.

^tity type

directory entry pointer (relative to directory entry

section)

parameter data

Control bytes apply only to the entity type, directory entry pointer and

parameter data fields.

The parameter data entity fields, except for the entity bv'te count, are

identical to and have the same sequence as the ASCII ICES fields.

__ Z'

+
A9

CN

CO

CO-
0

CO
H-

0

<o
s
UJ

UJ
2;<
ca<
a.

UJ
>
K >
a. H-

SO 2
CO UJ
UJ
Q

UJ

UJ
a.>

UJ

>
H-

UJ

3
OU
UJ

>0

CO
UJ
H->0

Os

ou
UJ
><

oo
CO
a
UJ

u.

UJ
V3
UJ

t-<
UJ0 0 CJ

>-
.V—

UJ 0 <0 lu UJ UJ

C_J
LU
00

cs:
LU

LD

2.3.2.6 Terminate Section. The format of the terminate section is as shown in

Figure 2-15. The terminate section is comprised of the following data

items;

o Terminate section identifier consisting of the ASCII letter T

o Terminate section byte count. This byte count excludes the 5

bytes required for the section identifier and section byte count.

This byte count also excludes any null padding characters,

o ASCII letter B

o Binary identification section byte count, including the section

identifier, and section byte count, but excluding any null

padding characters,

o ASCII letter S

o Start section byte count, including the section identifier,

section byte count, and all control bytes but excluding any null

padding characters,

o ASCII letter G

o Global section byte count, including the section identifier,

section byte count, and all control bytes but excluding any null

padding characters,

o ASCII letter D

o Directory entry section byte count, including the section identi-

fier, section byte count, and all control bytes but excluding any

null padding characters,

o ASCII letter P

o Parameter data section byte count, including the section iden-

tifier, section byte count, and all control bytes but excluding

any null padding characters.

The terminate section has no control bytes applied to any of its data.

58

I

CO

CO
1—

CO

•

O

CMn
CO
»—

A
START SECTION

BYTE

COUNT

CD

CO

A

•
CO

<Nm
CO
H-

A
BINARY

SECTION

BYTE

COUNT.

-
CO
H*

A

•

A

M
r>

CO
H-

A
SECTION

BYTE

COUNT*

CO

CO
»-

A

•
H*

UJ><

cn UJ
a •-
-j >-
LU 03

O
UJ s
CO (—
UJ zX oK u

59

FIG.

2-15

FORMAT

OF

TERMINATE

SECTION

GEOMETRY3

3.1 General

This section gives information concerning the geometry entity types available

to be used in the entity-based product definition file.

3.1.1 Descriptions of the various directory entry fields were given in 2.4. These

fields remain the same across all entities.

3.1.2 In this section, those entities making extended use of field 15 in the directory

entry (Form Number) are indicated, and the various options are listed.

3.1.3 The parameter data entry for each entity is also described in this section.

The fields for this entry vary from entity to entity.

3.1.4 This section introduces a model space concept and a definition space concept.

Model space is three-dimensional Euclidean space, the space in which the

"model" (or product) being represented resides. The model space X, Y, Z

coordinate system is a right-handed Cartesian coordinate system. It is fixed

relative to the model.

3.1.5 Definition space is also three-dimensional Euclidean space, but has its own

right-handed Cartesian XT, YT, ZT coordinate system. In contrast to model

space where a single fixed coordinate system exists, the definition space

coordinate system may vary from entity to entity. The origin of a definition

space coordinate system may be any point in model space, and the orientation

may be arbitrary with respect to model space. It is assumed that the unit of

length is always the same in both the model space and the definition space

coordinate systems.

3.1.6 The definition space concept allows the use of a temporary coordinate system

in positioning certain geometric entities into model space. This concept

plays a simplifying role that is most apparent in connection with those

entities which can be contained within a single plane. Use of definition space

entails initially describing an entity in definition space, and then converting

6o

this to a model space description. Thus, a rotation matrix and a translation

vector, if needed, are used to generate model space coordinates from

definition space coordinates. The rotation matrix and the translation vector

are both treated within the transformation matrix entity.

3.1.7 There are two equivalent points of view that can be taken concerning how the

geometric entity is related to model space from its definition space descrip-

tion. In order to examine these with minimum involvement, the translation

vector is assumed to be the zero vector. This implies that the origin of the

definition space coordinate system coincides with the origin in the model

space coordinate system.

3.1.8 The first point of view imagines that the two coordinate systems are initially

coincident (that is, X axis to XT axis, etc.) but that the XT, YT, ZT

coordinate frame is free to rotate relative to the X, Y, Z frame. The

geometry entity is then considered to be defined relative to the XT, YT, ZT

frame, and the rotation matrix then rotates this frame, geometry included, so

that the geometry entity is positioned as desired relative to the X, Y, Z

frame.

3.1.9 The second point of view imagines that the XT, YT, ZT frame is initially

situated so that the geometry entity within definition space is positioned in

the desired manner relative to model space. The rotation matrix then leaves

the geometry entity fixed, but rotates the XT, YT, ZT frame. At the

completion of the rotation, the XT, YT, ZT frame becomes the X, Y, Z

frame. The result is that the geometry entity is then positioned as desired

relative to the X, Y, Z frame.

3.1.10 It is to be emphasized that the discussion here pertains to a single rotation

matrix whose action in transforming coordinates can be viewed intuitively in

two ways. Each point of view stresses the temporary nature of the XT, YT,

ZT system, insofar as what is ultimately of interest is the relationship of the

geometry entity to the X, Y, Z frame.

3.1.11 From what has been said, it can be seea that the rotation matrix is always an

orthogonal matrix with determinant equal to one.

6l

3.1.12 In a case when the geometry entity to be located within model space can be

contained within a single plane, it can likewise be seen that the definition

space concept can be used in such a way that the geometry entity as initially

described in definition space can be considered to lie in the XT, YT-plane

(i.e., the plane ZT=0). From this, it is then convenient to also allow entities

to be situated in definition space in any plane parallel to the XT, YT plane

(i.e., ZT=arbitrary constant).

3.1.13 As indicated in 1.5.5, each entity in this section is acted upon by a

transformation matrix. This implies that each entity makes use of the

definition space concept, i.e., is defined initially in definition space, and

then transformed into model space. Thus the complete definition of a

geometry entity, with respect to model space, involves the transformation

matrix. However, in some instances, it may very well be that the transfor-

mation matrix will leave adl coordinates unchanged. This will be the case

exactly when the rotation matrix is the identity matrix and the translation

vectory is the zero vector. (In this situation, a convention can be used to

prevent unnecessary processing. See the explanation given in 2.2. 3.3 for Field

7 of the directory entry.)

3.1.14 Within model space, circular arcs, conic arcs, straight lines, and parametric

splines arising from the circular arc entity, the conic arc entity, the line

entity, or the parametric spline entity, respectively, are directed curves i.e.,

have an associated start point and terminate point. (An "end point" of a

curve may be either a start point or a terminate point.) Any curve resulting

from an instance of the composite curve entity is also a directed curve.

For each of these entity types, the manner of assigning one of the two

possible directions is discussed within the description of each individual

entity.

3.1.15 Within the entity descriptions that follow, some refer to a "counterclockwise

direction" with respect to a sense of rotation in the XT, YT plane. Since the

XT, YT plane is located within three dimensional XT, YT, ZT space, this

phrase is ambiguous unless a viewing direction is specified from which to

view the rotation within the plane. The viewing direction is taken to be from

the positive ZT axis looking "down" upon the XT, YT plane. Then, if a clock

were imagined to be lying "face up" in the XT, YT plane, i.e., so as to be

62

readable from the chosen viewing direction eilong the ZT axis - the phrase

"counterclockwise direction" refers to the sense of rotation which is opposite

the sense of rotation of the hands of the clock. This same notion of the

meaning of counterclockwise carries over to any plane that is parallel to the

XT, YT plane.

3.1.16 Entity type numbers from 100 through 199 are reserved for geometry

entities. The following entity type numbers have been assigned:

Entity Type Entity Type Number

Circular Arc Entity 100

Composite Curve Entity 102

Conic Arc Entity 104

Copious Data Entity 106

Plane Entity 108

Line Entity 110

Parametric Spline Curve Entity 112

Parametric Spline Surface Entity 114

Point Entity 116

Ruled Surface Entity 118

Surface of Revolution Entity 120

Tabulated Cylinder Entity 122

Transformation Matrix Entity 124

Linear Path Entity 106

Simple Closed Area Entity 106

Flash Entity 125

Rational B-Spline Curve Entity 126

Rational B-Spline Surface Entity 128

Node 134

Finite Element 136

o3

3.2 Circular Arc Entity

A circular arc is a connected portion of a parent circle which consists of

more than one point. The definition space coordinate system is always

chosen so that the circular arc lies in a plane either coincident with or

parallel to the XT, YT plane.

3.2.1 A circular arc determines unique arc end points and an arc center point (the

center of the parent circle). By considering the arc end points to be

enumerated and listed in an ordered manner, start point first, followed by

terminate point, a direction with respect to definition space can be asso-

ciated with the arc. The ordering of the end points corresponds to the

ordering necessary for the arc to be traced out in a counterclockwise manner.

This convention serves to distinguish the desired circular arc from its

complementary arc (complementary with respect to the parent circle). Refer

to Section 3.1.15 for information relating to use of the term counterclockwise.

3.2.2 The direction of the arc with respect to model space is determined by the

original counterclockwise direction of the arc within definition space, in

conjunction with the action of the transformation matrix on the arc.

3.2.3 In the event that a parameterization is required but not given, the default

parameterization is:

C(t) = Center + (R*cos t, R*sin t)

t ^ t < t,
o 1

0£t < 2 7T

t < ?,<t +2 7T
o 1 o

3.2.4 Examples of the circular arc entity are shown in Figure 3-1. In Example 3 of

Figure 3-1, the solid arc is defined using point A as the start point and point

B as the terminate point. If the complementary dashed arc were desired, the

first endpoint listed in the parameter data entry would be B, and the second

would be A.

64

65

FIG.

3-1

EXAMPLES

OF

THE

CIRCULAR

ARC

ENTITY

3.2.5 Directory Data

ENTITY TYPE NUMBER : 100

3.2.6 Parameter Data

Parameter Value Format Comment

1 ZT Floating Point Parallel ZT displace-

ment of arc from XT,
YT plane

2 XI Floating Point Arc center abscissa

3 Y1 Floating Point Arc center ordinate

4 X2 Floating Point Start point abscissa

5 Y2 Floating Point Start point ordinate

6 X3 Floating Point Terminate point

abscissa

7 Y3 Floating Point Terminate point ordi-

nate

8 N Integer Number of back

pointers (to associativ-

ity entities)/text

pointers (to general note

entities)

9 DE Pointer

. . •

Pointers to associativ-

• • •

ities or general notes

8+N DE Pointer

9+N M Integer Number of properties

10+N DE Pointer

• • •

Pointers to properties

9+N+M DE Pointer

6c

3.3 Composite Curve Entity

A composite curve is a connected curve that results from the grouping of certain

individual constituent entities into a logical unit.

3.3.1 A composite curve is defined as an ordered list of entities of the following types;

point, line, circular arc, conic arc, parametric spline. The list of entities appears

in the parameter data entry. There, each entity to appear in the defining list is

indicated by means of a pointer to the directory entry of that entity. The order

within the defining list is derived from the order of the listing of these pointers.

3.3.2 Each constituent entity exists as an independent entity, and thus has its own

transformation matrix and display attributes. Each constituent entity may have

text or properties associated with it.

3.3.3 A composite curve is a directed curve, having a start point and a terminate

point. The direction of the composite curve is induced by the direction of the

constituent curve entities (i.e., those constituent entities other than the point

entity) in the following way: The start point for the composite curve is the start

point of the first curve entity appearing in the defining list. The terminate point

for the composite curve is the terminate point of the last curve entity appearing

in the defining list. Within the defining list itself, the terminate point of each

constituent curve entity has the same coordinates as the start point of the

succeeding curve entity.

3.3.4 The point entity is included as an allowable entity type because of a specific

functional capability deemed desirable. The desirable functional capability is to

be able to attach data to either the start point or the terminate point of any of

the constituent curve entities in the defining list. (Intuitively, this capability

allows data to be attached to any of the "corners" of the composite curve or to

either of its end points.) When used in a certain well-defined way, the point

entity can provide this functional capability. Accordingly, there are certain

restrictions regarding the use of the point entity in this entity. They are:

a. Two point entities cannot appear consecutively in the defining list.

67

b. If a point entity and a curve entity are adjacent in the defining list,

then the coordinates of the point entity must agree with the

coordinates of the terminate point of the curve entity whenever the

curve entity precedes the point entity, and must agree with the

coordinates of the start point of the curve entity whenever the curve

entity follows the point entity.

c. A composite curve cannot consist of a point entity alone.3.3.5

An example of a composite curve entity is shown in Figure 3-2

3.3.6 Directory Data

ENTITY TYPE NUMBER : 102

3.3.7 Parameter Data

Parameter Value Format

1 N Integer

2 DE Pointer

N+1 DE Pointer

N+2 NA Integer

N+3 DE Pointer

Comment

Number of entities

Pointers to directory

entries for the constituent
entities

Number of back pointers (to

associativity entities)/text

pointers (to general note

entities)

Pointers to associativities

or general notes

N+2+NA DE Pointer

N+3+NA M Integer Number of properties

68

FIG.

3-2

EXAMPLE

OF

THE

COMPOSITE

CURVE

EfITITY

Parameter Value Format Comment

N+4+NA DE Pointer

N+3+NA+M DE Pointer

Pointers to properties

TO

3.4 Conic Arc Entity

A conic arc is a bounded connected portion of a parent conic curve which

consists of more than one point. The parent conic curve is either an ellipse, a

parabola, or a hyperbola. The definition space coordinate system is always

chosen so that the conic arc lies in a plane either coincident with or parallel

to the XT, YT plane. Within such a plane, a conic is defined by the six

coefficients in the equation.

A*XT^ + B*XT*YT + C*YT^ + D*XT + E*YT + F = 0

3.4.1 Each coefficient is a real number. The definitions of ellipse, parabola, and

hyperbola in terms of these six coefficients are given below.

3.4.2 A conic arc determines unique arc endpoints. A conic arc is defined within

definition space by the six coefficients above and the two endpoints. By

considering the conic arc endpoints to be enumerated and listed in an ordered

manner, start point first, followed by terminate point, a direction with

respect to definition space can be associated with the arc. In order for the

desired elliptical arc to be distinquished from its complementary elliptical

arc, the direction of the desired elliptical arc must be counterclockwise with

respect to its major and minor axes. In the case of a parabola or hyperbola,

the parameters given in the parameter data section uniquely define a portion

of the parabola or a portion of a branch of the hyperbola; therefore, the

concept of a counterclockwise direction is not applied. Refer to Section

3.1.15 for information concerning use of the term ’’counterclockwise".

3.4.3 The direction of the conic arc with respect to model space is determined by

the original direction of the arc within definition space, in conjunction with

the action of the transformation matrix on the arc.

71

3.4.4 The definitions of the terms ellipse, parabola, and hyperbola are given in

terms of the quantities Ql, Q2, and Q3. These quantities are:

Q1 = determinant of

A B/2 D/2

B/2 C E/2

D/2 E/2 F

Q2 = determinant of
A B/2

B/2 C

Q3 = A + C

3.4.5 A parent conic curve is

An ellipse if Q2>0 and Ql * Q3<0.

A hyperbola if Q2<0 and Ql/0.

A parabola if Q2 = 0 and Ql/0.

An example of each type of conic arc is shown in Figure 3-3.

3.4.6 In the event that a parameterization is required but not given, the default

parameterization is:

C(t) = Center + (rotation) * A(t)

2
where: parabola A(t) = (t /a, t)

ellipse A(t) = (a*cos t, b*sin t)

0<t < 2ir
O

t^<. t
,

t +2*^

hyperbola A(t) = (a*sec t, b-*tan t)

-7t/2<tQ< t <t^<'”/2

12

3.4.7 Field 15 of the directory entry accommodates a Form Number. For this

entity, the options are as follows:

FORM Meaning

0 Form of parent conic curve must be determined from conic
equation.

1 Parent conic curve is an ellipse (See example 1, Figure 3-3).

2 Parent conic curve is a hyperbola (See example 2, Figure 3-3).

3 Parent conic curve is a parabola (See example 3, Figure 3-3).

3.4.8 Directory Data

ENTITY TYPE NUMBER : 104

3.4.9

Parameter Data

Parameter Value Format Comment

1 A Floating Point Conic Coefficient

2 B Floating Point Conic Coefficient

3 C Floating Point Conic Coefficient

4 D Floating Point Conic Coefficient

5 E Floating Point Conic Coefficient

6 F Floating Point Conic Coefficient

7 ZT Floating Point Parallel ZT Displace-

ment of Conic Arc

from XT, YT plane

8 XI Floating Point Start Point Abscissa

9 Y1 Floating Point Start Point Ordinate

10 X2 Floating Point

T3

Terminate Point

Abscissa

T Ll

•

FIG.

3-3

EXAMPLES

OF

THE

CONIC

ARC

ENTITY

11 Y2 Floating Point Terminat

Ordinate

Point

12 N Integer

13 DE Pointer

Number of back

pointers (to associ-

ativity entitiesVtext

pointers (to general

note entities)

Pointers to associa-

tivities or general

notes

12+N DE Pointer

13+N M Integer
Number of properties

14+N DE Pointer
Pointers to properties

13+N+M DE Pointer

3.5 Copious Data Entity

This entity stores data points in the form of pairs, triples, or sextuples. An

interpretation flag value signifies which of these forms is being used. This

value is one of the parameter data entries. The interpretation flag is

abbreviated below by the letters IF.

3.5.1 Data points within definition space which lie within a single plane are

specified in the form of XT, YT coordinate pairs. In this case, the common

ZT value is also needed. Data points arbitrarily located within definition

space are specified in the form of XT, YT, ZT coordinate triples. Data points

within definition space which have an associated vector are specified in the

form of sextuples; the XT, YT, ZT coordinates are specified first, followed by

the i, j, k coordinates of the vector associated with the point. (Note that, for

an associated vector, no special meaning is implicit.)

3.5.2 Field 15 of the directory entry accommodates a Form Number. For this

entity, the options are as follows:

FORM Meaning

1 Data points in the form of coordinate pairs. All data points lie in

a plane ZT= constant. (IF=1)

2 Data points in the form of coordinate triples. (IF=2)

3 Data points in the form of sextuples. (IF=3)

11 Data points in the form of coordinate pairs which represent the

vertices of a planar, piecewise linear curve (piecewise linear

string is sometimes used). All data points lie in a plane

ZT=constant. (IF=1)

12 Data points in the form of coordinate triples which represent the

vertices of a piecewise linear curve (piecewise linear string is

sometimes used). (IF=2)

13 Data points in the form of sextupies which represent the vertices

of a piecewise linear curve (piecewise linear string is sometimes
used) (IF=3)

Centerline through points (IF=1)

76

20

21 Centerline through circle centers (IF=1)

31 Section Form 31 (IF=1)

32 Section Form 32 (IF=1)

33 Section Form 33 (IF=1)

34 Section Form 34 (IF=1)

35 Section Form 35 (IF=1)

36 Section Form 36 (IF=1)

37 Section Form 37 (IF=1)

38 Section Form 38 (IF=1)

40 Witness Line (IF=1)

63 Simple Closed Area (IF=1)

3.5.3 Refer to the centerline, section, and witness line entities in Section 4 of this

Specification for examples of the Form Numbers in the range 20-40. Each of

these annotation entities contains a description of how the associated copious

data are to be interpreted.

3.5A Directory Data

ENTITY TYPE NUMBER : 106

3.5.5 Parameter Data

Parameter Value Format Comment

1 IF Integer Interpretation flag

IF=1; X, y pairs, common z

IF=2; X, y, z coordinates

IF=3; X, y, z coordinates and
i, j, k vector

2 N Integer Number of 2 - tuples,

3

- tuples, or 6 - tuples

3 Data Points Floating Point If IF=1, K=3+2N. (In this case,

this third parameter is a ZT dis-

placement.)

If IF=2, K=2+3N.
If IF=3, K=2+6N.

K

K+1 NA Integer

K+2 DE Pointer

Number of back pointers (to

associativity entities)/text

pointers (to general note

entities)

Pointers to associativities or

general notes

K + l+NA DE Pointer

K+2+NA M Integer Number of properties

K+3+NA DE Pointer Pointers to properties

K+2+NA+M DE Pointer

T8

3.6 Plane Entity

The plane entity can be used to represent an unbounded plane, as well as a

bounded portion of a plane. No preferred positioning with respect to

definition space is assumed. In either of the above cases, the plane is defined

within definition space by means of the coefficients A, B, C, D, where

A*XT + B*YT + C*ZT = D

for each point lying in the plane, and having definition space coordinates

(XT, YT, ZT).

I

I

j

i

3.6.1 The definition space coordinates of a point, as well as a size parameter, can

' be specified in order to assist in defining a system-dependent display symbol.

;

These values are parameter data entries six through nine, respectively. This

information, together with the four coefficients defining the plane, provides

,1
sufficient information relative to definition space in order to be able to

j!

position the display symbol. (In Examples 1 and 3 of Figure 3-4, the dashed

I

curve and the crosshair together constitute the display symbol.) Setting the

size parameter to zero indicates that a display symbol is not intended.

I 3.6.2 The case of a bounded portion of a fixed plane is indicated by the existence

of a pointer to a closed curve lying in the plane. This is parameter five. The

only self-coincident points for this curve are the start point and the

terminate point. Setting this pointer to zero indicates the case of an

unbounded plane.

j

j

3.6.3 The case of a bounded portion of a fixed plane minus some portion(s) of that

plane, such as those shown in Figure 3-5, may be expressed through the use of

the Single Parent Associativity (Type 402, Form 9) where the outer closed

I

curve defines the parent bounded plane and each internal closed curve defines

some child bounded plane to be subtracted from the parent. Each of these

planes (parent and child) is a separate plane entity in the IGES file and has a

backpointer to the associativity structure. The child plane entity will have a

subordinate entity switch class of 01.

T9

\ X \

n
LU

CL
2
<
X
LlI

D
LU
Q
Z
D
O
DD
Z
D

I 1

!

X
I

! I

ill

Q_
:e
<
X
LU

Q
LU
D
Z
D
O
CD
Z
D

80

FIG.

3-4

EXAMPLES

OF

THE

PLANE

ENTITY

G
LiJ
CO

CO
CO UJ

<C
>" _J
t— Q-

h- f=5
<c zr

CJ oO OQ
CO
CO Li-
ce O

81

3.6.4 Field 13 of the directory entry accommodates a Form Number. For this

entity, the options are as follows:

FORM Meaning

+1 Bounded planar portion is considered positive.

-1 Bounded planar portion is considered negative (hole).

3.6.5 Directory Entry Data

ENTITY TYPE NUMBER : 108

3.6.6 Parameter Data

Parameter Value Format Comment

1 A Floating Point

2 B Floating Point

Coefficients of Plane

3 C Floating Point

4 D Floating Point

3 PTR Pointer Pointer to directory

entry of closed curve
entity or 0

6 X Floating Point XT coordinate of loca-

tion point for display

symbol

7 Y Floating Point YT coordinate of loca-

tion point for display

symbol

8 Z Floating Point ZT coordinate of loca-

tion point for display

symbol

9 SIZE Floating Point Size parameter for dis-

play symbol

10 N Integer Number of back point-

ers (to associativity en-

tities)/text pointers (to

general note entities)

11 DE Pointer Pointers to associativ-

ities or general notes

82

10+N DE Pointer

11+N M Integer Number of properties

12+N DE Pointer Pointers to properties

11+N+M DE Pointer

83

3.7 Line Entity

A line is a bounded, connected portion of a parent straight line which consists

of more than one point. No preferred positioning with respect to definition

space is assumed.

A line is defined by its end points. Each end point is specified relative to

definition space by a triple of coordinates. With respect to definition space,

a direction is associated with the line by considering the start point to be

listed first and the terminate point second.

The direction of the line with respect to model space is determined by the

original direction of the line within definition space, in conjunction with the

action of the transformation matrix on the line. Examples of the line entity ,
are shown in Figure 3-6. B

3.7.1 In the event that a parameterization is required but not given, the default B
parameterization is: B

C(t) = + t(P2-Pj) 01 1 i 1 B
3.7.2 Directory Entry Data B

ENTITY TYPE NUMBER : 110 B
3.7.3 Parameter Data B

Parameter Value Format Comment B

1 XI Floating Point Start Point PI B
2 Y1 Floating Point

3 Z1 Floating Point

4 X2 Floating Point Terminate Point P2

5 Y2 Floating Point

6 Z2 Floating Point

7 N Integer Number of

back pointers

(to associa-

tivity entities/text

pointers (to

general note
entities)

8U

LjJ

0.

::e

<
X
lU

85

FIG.

3-6

EXAMPLES

OF

THE

LINE

ENTITY

DE Pointer Pointers to T
associativities t

or general
. 1

notes

7+N DE Pointer HI'

8+N M Integer Number of properties,

i|

9+N DE Pointer Pointers to

properties

8+N+M DE Pointer

86

3.8 Parametric Spline Curve Entity

(Consult Appendix A for additional mathematical details)

The parametric spline curve is a sequence of parametric polynomial segments

of degree 1, 2, or 3 in at least one of the defining equations. This entity also

represents the various splines used in present day systems (linear, quadratic,

cubic, Wilson-Fowler, modified Wilson-Fowler and B-splines). The CTYPE

value in Parameter 1 indicates the type of curve under consideration.

3.8.1 The N pxDlynomial segments are delimited by the breakpoints t(l), t(2),

...,t(N+l). The coordinates of the points in the i-th segment of the curve are

given by the following cubic polynomials (the coefficients D, or C and D will

be zero if the polynomials are of degrees 2 or 1, respectively);

X(u)=AX(i)+BX(i)*s+CX(i)*s^+DX(i)*s^

Y(u)=AY(i)+BY(i)*s+CY(i)*s^+DY(i)*s^

Z(u)=AZ(i)+BZ(i)*s+CZ(i)*s^+DZ(i)*s^

where

t(i)lu5t(i+l), i=l,...,

s=u-t(i)

3.8.2 If the spline is planar, it should be parametrized in terms of the X and Y

polynomials only. The Z polynomial will then be zero except for the AZ(i)

term which indicates the Z-depth in definition space. To enable determina-

tion of the terminate point and derivatives without computing the poly-

nomials, a dummy N+lst polynomial segment is included in the entity. The

parameter t(N+2) is not provided for this segment since the terminate point

of the dummy segment and the derivatives at that point are implied by the

N+lst segment coefficients.

3.8.3 There is a parameter H which specifies the degree of continuity at the

breakpoints with respect to arc length. H=0 means that the curve is

continuous but is not necessarily differentiable with respect to arc length at

a breakpoint. H=1 means that the curve is differentiable with respect to arc

length at each breakpoint but may have an undefined curvature at a

breakpoint. H = 2 means that the curve has well-defined curvature at all

87

breakpoints with respect to arc length parameterization. Parameterization

with respect to arc length is chosen to express H because arc length moves

along the curve at unit speed and is therefore able to detect jaggedness in the

curve.

3.8.4 An example of a parametric spline is shown in Figure 3-7. Additional

examples are shown in Figure 3-8.

3.8.5 Directory Data

ENTITY TYPE NUMBER ; 112

3.8.6 Parameter Data

Parameter Value Format Comment

1 CTYPE Integer Spline Type

(l=Linear

2=Quadratic

3=Cubic

4=Wilson-Fowler

5=Modified
Wilson-Fowler

6=B Spline)

2 H Integer Degree of con-

tinuity with

respect to arc

length

3 NDIM Integer 2=planar

3=non-planar

4 N Integer Number of seg-

ments

88

z
UJ

as
UJO

UJH”
ujtnz
2 UJ
<>-(n
q:2uj
< 20:

aDQ.
o

o

\ H

n n

M N

Y V
D 3
II »

N NW w
X >-

o o
+ +

f\l

M Nw w

V V
2 2
» ti

M N
X >-

u u
+. +

CVJ M

>-

CD

X
00

QL

1 1
— fVJ n

D — •- <
>- >•

» c* < < < < 0)
• m . UJ

rj
N >— n

t X >- 1-

CD CD X X X X <
+ + < < < < >

M fV/ a—
CVJ m UJ

X >- Q. Q. Q. a Q
< <
II II

D Dw
X >•

z
UJ ••

SCSI
o
Ljcr
(niii

(C5
Oo
L.Z

89

FIG.

3-7

EXAMPLE

OF

THE

PARAMETP.IC

SPLINE

(2D)

CURVE

ENTITY

T

FIG.

3-8

EXAMPLES

OF

PARAMETRIC

SPLINE

CURVE

ENTITY

Parameter Value Format Comment

5 T(l) Floating Point Break points of

• • piecewise

• • polynomial

•

5+N

•

T(N+1)

6+N AX(1) Floating Point X coordinate

polynomial

7+N BX(1)

8+N CX(1)

9+N DX(1)

10+N AY(1) Y coordinate

11+N BY(1) polynomial

12+N CY(1)

13+N DY(1)

14+N AZ(1) Z coordinate

15+N BZ(1) polynomial

16+N CZ(1)

17+N DZ(1)

Subsequent X, Y, Z

polynomials

(A dummy segment included only to indicate the value of the spline and its derivatives at

the end point)

Last polynomial

6+13*N AX(N+1) floating Point X value at endpoint

BX(N+1) X first derivative

CX(N+1) X second

derivative/2!

91

DX(N+1) X third

derivative/3!

AY(N+1) Y jX)lynomial

BY(N+1)

CY(N+1)

DY(N+1)

AZ(N+I)

BZ(N+1)

CZ(N+I)

DZ(N+1)

Z polynomial

TOTAL ENTRIES (TE) = 5+N+12*(N+l)

TE+1 NA Integer Number of back
pointers (to associa-

tivity entities)/text

pointers (to general

note entities)

TE+2 DE Pointer Pointers to associa-

tivities or general

notes

TE+l+NA DE Pointer

TE+2+NA M Integer Number of properties

TE+3+NA DE Pointer Pointers to proper-

• • •

ties

TE+2+NA+M DE Pointer

92

3.9 Parametric Spline Surface Entity

(Consult Appendix A for additional mathematical details)

The param.etric spline surface is a grid of parametric polynomial patches.

Because of its generality, this entity also represents the various surfaces used

in present day systems (Coons, Bezier, B-spline, Ferguson, Cartesian product

surfaces). PTYPE in the Parameter Data Section indicates the type of patch

under consideration.

3.9.1 The MxN grid of patches is defined by the u breakpoints tu(l), ... ,
tu(M + i)

and the v breakpoints tv(l), ... ,
tv(N+l). The coordinates of the points in

each of the patches are given by the general bicubic polynomials (given here

for the (i, j) Patch).

X(u,v) = AX(i,j)+BX(i,j)*s+CX(i,j)*s^+DX(i,j)*s^

+ EX(i,j)*t+FX(i,j)*t*s+GX(i,j)n*s^+HX(i,j)n*s^

+ KX(i,j)*t^+LX(i,j)*t^*s+MX(i,j)*t^*s^+NX(i,j)*t^*s^

+ PX(i,j)*t^+QX(i,j)n^*s+RX(i,j)^t^*s^+SX(i,j)n^*s^

Y(u,v)

Z(u,v)

where

tu(j)l u S tu(j+l),
j
= l, ... ,

M

s=u-tu(j)

and

tv(i)l v£ tv(i+l). i=l, ... ,
N

t=v-tv(i).

3.9.2 To provide edge values and derivatives without evaluating polynomials, an

additional dummy row and column of patdies is included in the entity.

93

3.9.3 An example of the bicubic surface is shown in Figure 3-9.

3.9.U Directory Data

ENTITY TYPE NUMBER : 11^

3.9.5 Parameter Data

Parameter Value Format Comment

1 STYPE Integer Spline Type

(l=Linear

2=Quadratic

3=Cubic

4=Wilson-Fowler

5=Modified

Wilson-Fowler

6 = B spline)

2 PTYPE Integer Patch Type

(l=Cartesian

Product

0=Unspecified)

3 M Integer Number of u

segments

4 N Integer Number of v

segments

5 TU(1) Floating Point Breakpoints in

u (u values of

grid lines)

5+M TU(M + 1)

94

2Zww

2-W W
D>
»-h-
•• ••

D>

D>
l-f-
• • ••

D>

N
<
II

>
*

D
N

LU
<->
cC
LL.
or
IZ3
c/5

LlJ

a.
c/5

<->

LU

<c
cn
CC
Q-

o
LU
-U
Q_

X

cn
I

CD

Ll_

95

Parameter

6+M

6+M+N

7+M+N

22+M+N

23+M+N

38+M+N

39+M+N

54+M+N

Value Format Comment

TV(1) Floating Point Breakpoints in v

(v values of grid

lines)

TV(N+1)

AX(1,1) Floating Point X Coefficients of

. (1,1) Patch

5X(1,1)

AY(1,1) Y Coefficients of

(1,1) Patch

SY(1,1)

AZ(1,1) Z Coefficients of

(1,1) Patch

SZ(1,1)

Coefficients of

(1,2) Patch

(1,N+1)

(2,1) Patch

96

Parameter Value Format Comment

(2, N+1)

(M + 1,1) Patch

(M + 1,N+1)

TOTAL ENTRIES = 6+M+N+48*(M + l)*(N+l)=TE

TE+1 NA Integer Number of back

pointers (to

associativity

entitiesVtext pointers

(to general note

entities)

TE+2 DE Pointer Pointers to associa-

tivities or general

notes

• • •

TE+l+NA DE Pointer

TE+2+NA MA Integer Number of properties

TE+3+NA DE Pointer Pointers to properties

TE+2+NA+MA DE Pointer

97

3.10 Point Entity

A point is defined by its coordinates in definition space. Examples of the

point entity are shown in Figure 3-10.

3.10.1 Directory Data

ENTITY TYPE NUMBER ; 116

3.10.2 Parameter Data

Parameter Value Format Comment

1 X Floating Point Coordinates

2 Y Floating Point of point

3 Z Floating Point

4 PTR Pointer Pointer to directory

entry of

subfigure instance

specifying the display

symbol.

If 0, no display symbol

specified.

5 N Integer Number of back point-

ers (to associativity en-

titiesVtext pointers (to

general note entities)

6 DE Pointer Pointers to associativi-

ties or general notes

5+N DE Pointer

6+N M Integer Number of properties

7+N DE Pointer Pointers to proper-

• • •

ties

i+N+M DE Pointer

98

n
QJ
-j
CL

S
<
X
LU

99

3.11 Ruled Surface Entity

A ruled surface is formed by moving a line connecting points of equal relative

arc length (Form 0) or equal relative parametric value (Form 1) on two

parametric curves from a start point to a terminate point on the curves. The

parametric curves may be points, lines, circles, conics, parametric splines, or

any parametric curves defined in IGES (both planar and non-planar).

3.11.1 Assume the two curves are expressed as the parametric functions (Cl^(t),

ClY(t)» Cl
2
(t)) and (C2^(s), C2 y(s), with some range a^ t£b and

c^ s.id, then the coordinates of the points on the ruled surface can be

written as

X(u,v) =(l-v)*Cl^(t)+v*C2^(s)

Y(u,v) =(l-v)*ClY(t)+v*C2Y(s)

Z(u,v) = (l-v)*Cl2(t)+v*C22(s)

where

o£ u 1 1,

Oi. V ll

t = a+u*(b-a)

s = c+u*(d-c)

Cl(t) and C2(s) are said to be of equal relative parametric value if t and

s are evaluated at the same u value.

3.11.2 The above set of equations corresponds to the case DIRFLG=0. In this case,

the first point of curve 1 is joined to the first point of curve 2 and the last

point of curve 1 to last point of curve 2.

If DIRFLG=1, then the first point of curve 1 is joined to the last point of

curve 2, the last point of curve 1 to the first point of curve 2, and the

parameter 5 is given by 5 = (l-u)*b.

3.11.3 If DEVFLG = 1, then the surface is a developable surface; if DEVFLG=0,

the surface may or may not be a developable surface.

100

M

3.11.4 Field 15 of the directory entry accommodates a Form Number. For this

entity the options are as follows;

FORM MEANING

0 Equal relative arc length

1 Equal relative parametric values.

The default is FORM 0.

3.11.5 An example of the Ruled Surface Entity is shown in Figure 3-1

examples are shown in Figure 3-12.

. Additional

101

102

103

3.11.6 Directory Data

ENTITY TYPE NUMBER : 118

3.11.7 Parameter Data

Parameter Value Format Comment

1 DEI Pointer Pointer to first

curve

2 DE2 Pointer Pointer to

second curve

3 DIRFLG Integer Direction flag

(0=join first to

first, last to

last

l=join first to

last, last to

first)

4 DEVFLG Integer Developable

surface flag

(l=Developable,

0=Possibly not)

5 N Integer Number of

back pointers

(to associativ-

ity entities)/

text pointers (to

general note

entities)

6 DE Pointer Pointers to

associativities

or general

• • •

notes

5+N DE Pointer

Parameter Value Format Comment

6+N M Integer Number of pro-

perties

7+N DE Pointer Pointers to pro-

• • •

perties

•

•

6+N+M

•

DE

•

Pointer

105

3.12 Surface of Revolution Entity

A surface of revolution is defined by an axis of rotation (which must be a line

entity), a generatrix, and start and terminate rotation angles. The surface is

created by rotating the generatrix about the axis of rotation through the

start and terminating angles. Since the axis of rotation is a line entity, it

contains in its Parameter Data section the coordinates of its start point first,

followed by the coordinates of its terminate point. This gives the axis of

rotation an implicit direction. Using this direction, we can place the eye at

the terminate point and look toward the face of a clock centered at the start

point and lying in a plane perpendicular to the axis of rotation. This enables

one to talk about clockwise and counterclockwise rotations, and this is the

method used to measure the angles of rotation (counterclockwise is in the

positive direction). The generatrix may be a conic arc, line, circular arc,

parametric spline curve, or composite curve.

3.12.1 Examples of surface of revolution entities are shown in Figure 3-13.

3.12.2 The start and terminate angles of the surface can be explained by

geometric construction. Refer to Figure 3-1^ and the following:

a. Select a point on the generatrix which does not lie on the axis of

rotation; label the point PI.

b. Construct a line through PI such that it is perpendicular to the axis of

rotation extended; label this line LI.

c. Construct a plane PNl containing LI and perpendicular to the axis of

rotation.

d. All rotations in the plane PNl about the axis of rotation are applied

counterclockwise according to the method described in 3.12.

Rotate counterclockwise the line LI and the point selected from the

generatrix the number of radians indicated in the start angle resulting

in The location is labeled LOCI.

io6

lOT

AXIS

OF

REVOLUTION

X

(

108

FIG.

3-14

SURFACE

OF

REVOLUTION

START

AND

TERMINATING

ANGLES

f. Rotate counterclockwise the line LI and the point selected from the

generatrix an additional number of radians given by the terminate

angle minus the start angle resulting in The second location of

the point is labeled LOC2.

g. The resulting surface is that generated by rotating the generatrix from

LOCI to LOC2.

109

3.12.3 Directory Data

ENTITY TYPE NUMBER : 120

3.12.4 Parameter Data

Parameter Value Format Comment

1 DEI Pointer Pointer to a line (axis

of revolution)

2 DE2 Pointer Pointer to generatrix

3 SA Floating point Start angle in radians

4 TA Floating point Terminate angle in

radians

3 N Integer Number of back

pointers (to associa-

tivity entities)/text

pointers (to general

note entities)

6 DE Pointer Pointers to associa-

tivities or general

• • •

notes

3+N DE Pointer

6+N M Integer Number of properties

7+N DE Pointer Pointers to properties

6+N+M DE Pointer

110

3.13 Tabulated Cylinder Entity

A tabulated cylinder is a surface formed by moving a line segment called the

generatrix parallel to itself along a curve called the directrix. This curve

may be a line, circular arc, conic arc, parametric spline curve, or composite

curve.

3.13.1 It must be pointed out that different parameterizations of the generating

curves will produce different parameterized surfaces, but the underlying point

set surface will still be the same. Assuming a parameterization u on the

directrix and v on the generatrix, both of which run from 0 to 1, we can

express the points on the surface by

X(u,v) = CX(u)+v*(LX-CX(0))

Y(u,v) = CY(u)+v*(LY-CY(0))

Z(u,v) = CZ(u)+v*(LZ-CZ(0))

where o£u^l, 0^v.ll

and CX, CY, CZ represent the X, Y, Z components, respectively, along the

directrix curve, while (CX(0), CY(0), CZ(0)) and (LX, LY, LZ) represent

the coordinates of the start and terminate points, respectively, of the

generatrix.

3.13.2 An example of the tabulated cylinder is shown in Figure 3-15.

3.13.3 Directory Data

ENTITY TYPE NUMBER ; 122

3.13.4 Parameter Data

Parameter Value Format Comment

1 DEI Integer Pointer to directrix

curve

2 LX Floating Point Coordinates of the

terminate point of

the generatrix. The

start point of the

generatrix is identi-

cal with the start

point of the

111 directrix.

FIG.

3-15

EXAMPLE

OF

THE

TABULATED

CYLINDER

ENTITY

Parameter Value Format Comment

3 LY Floating Point

LZ Floating Point

5 N Integer Number of back

pointers (to associa-

tivity entitiesVtext

pointers (to general

note entities)

6 DE Pointer Pointers to associa-

tivities or general

notes.

5+N DE Pointer

6+N M Integer Number of properties

7+N

•

DE Pointer Pointers to properties

N+M DE Pointer

113

3.14 Transformation Matrix Entity

The Transformation Matrix is an entity which contains a three by three

rotation matrix R and a translation

vector T = T
1

The referencing entity will have a pointer value in its directory entry. The

pointer will be to the directory entry of the transformation matrix. A zero

pointer in the directory entry implies the identity rotation matrix with no

translation vector as explained in 2.4.7.

The notation for the matrix operation is;

^11 ^12 Ri3 XT x~

^21 ^22 ^23 • YT + ^2 = Y

R
3 I

R
32

R
33

ZT ^3 Z

3.14.1 Field 15 of the directory entry accommodates a form number. For this

entity, the options are as follows;

Form Meaning

0 (Default) The transformation matrix moves the associated entity

from definition space to model space by first applying the rotation R,

then the translation T.

The XT, YT, ZT coordinates refer to the definition space of the

referencing entity.

The matrix represents a right hand coordinate system. The column

vectors (^iiR2i’^3p’ i = 1» 2, 3 form an orthonormal system.

^
21 ’ ^ 3p vector in the direction of the definition space

X-axis. (^
12 ’ ^22’ ^32^ vector in the direction of the

definition space Y-axis. ^23’ ^33^ vector in the

direction of the definition space Z-axis.

Il4

10 The transformation matrix defines a cartesian coordinate system.

11 The transformation matrix defines a cylindrical coordinate system.

12 The transformation matrix defines a spherical coordinate system.

3.14.2 Form numbers 10, 11 and 12 are used for entities that require a reference

to a specific coordinate system. When the transformation matrix is used

to define specific coordinate systems, the R and T parameters are used

as follows;

^11 ^12 ^^13 ~Xn Xm

^21 ^22 R
23

Yn + ^2 = Ym

R3I R
32

Zn Zm

where the columns of the matrix are the unit vectorial directions

of the Xn, Yn, and +Zn axes respectively of the local coordinate system.

This relationship is defined below.

+Xn = Rll*i + R2i*j + R31»K

+Yn = Ri2‘ + R
22 J

+ ^32*^

+Zn II 70
VjJ

+ ^^23^ + R33k

The R and T values are defined in coordinate system m, the reference

coordinate system. Xn, Yn and Zn are the coordinates defined in

local coordinate system n while Xm, Ym, and Zm are the correspond-

ing coordinates in reference coordinate system m.

115

3.14.3 Directory Data

3.14.4

ENTITY TYPE NUMBER 124

Parameter Data

Parameter Value Format Comment

1 Rll Floating Point Top Row

2 R12 Floating Point

3 R13 Floating Point

4 T1 Floating Point

5 R21 Floating Point Second Row

6 R22 Floating Point

7 R23 Floating Point

8 T2 Floating Point

9 R31 Floating Point Third Row

10 R32 Floating Point

11 R33 Floating Point

12 T3 Floating Point

13 N Integer Number of

14

14+N+M

DE

DE

Pointer

13+N DE Pointer

14+N M Integer

15+N DE Pointer

Pointer

pointers (to asso-

ciativity entities)/text

pointers (to general

note entities)

Pointers to

associativities

or general

notes

Number of properties
.

Pointers to properties

ll6

3.15 Linear Path Entity

The linear path entity is an ordered set of points in either 2- or 3-dimensional

space. These points define a series of linear segments along the consecutive

points of the path. The segments may cross or be collinear. Paths may close,

i.e., the first path point may be identical to the last.

The linear path is implemented as two forms of the copious data block (entity

number 106). Form 11 is for 2-dimensional paths and form 12 is for 3-

dimensional paths. This entity will be closely associated with properties

indicating functionality and fabrication parameters, such as Line Widening.

3.15.1 Directory Data

ENTITY TYPE NUMBER; 106

3.15.2 Parameter Data

Parameter data for this entity is described in section 3.5.

117

3.16

3.16.1

3.16.2

Simple Closed Area Entity

A simple closed area entity is a bounded region of XY coordinate space

represented by a set of points that form a series of connected linear segments.

These segments must form a closed loop, i.e., the first point of the area

and the last point must be identical. No segments of this entity are allowed

to intersect or be coincident except for the closing of the entity at the

initial and final points. This entity will be closely related to properties

that indicate functionality of closed regions, such as Region Fill and Region

Restriction.

The area is implemented as Form 63 of entity 106, the Copious Data Block.

Directory Data

ENTITY TYPE NUMBER; 106

Parameter Data

Parameter data for this entity is described in section 3.5.

3.17 Flash Entity

3.17.1

3.17.2

A flash entity is a point in the ZT=0 plane that locates a specific instance

of a particular closed area. That closed area can be defined in one of two

ways. First, it can be an arbitrary closed area defined by any entity capable

of defining a closed area. The points of this entity must all lie in the ZT=0

plane. Second, it can be a member of a predefined set of flash shapes.

This definition is determined by the form number as follows:

Form: 0 defined by attached entity

1 circular

2 rectangle

3 donut
4 canoe

In the latter case, parameters 3 thru 5 of the flash entity control the final

size of the flash. Figure 3-16 indicates the usage of those parameters for

the specific flash forms. Those parameters are ignored in form zero.

Directory Data

ENTITY TYPE NUMBER: 125

Parameter Data

Parameter Value Format Comment

1 X Floating Point X reference of

flash

2 Y Floating Point Y reference of

flash

3 PI Floating Point First flash sizing

parameter
4 P2 Floating Point Second flash sizing

parameter
5 R Floating Point Rotation of flash

about reference

point

6 DE Integer DE of defining

entity (or 0)

Number of entries = K = 6

119

DinENSlON

I’

n

OIRnElER

OF

CIRCLE

OinENOlON

1

•

OinnETER

OF

OUTER

CIRCLE

120

REFERENCE

FOINT

19

CENTER

OF

RECTONGLE

REFERENCE

FOINT

19

CENTER

OF

OHAFE

K+1 NA Integer Number of associated

•

entities

•

K+NA+1 DE Pointer

K+NA+2 NP Integer Number of associated

•

properties

•

•

K+NA+NP+2 DE Pointer

See Figure 3-16.

121

3.18 Rational B-Spline Curve Entity

The rational B-spline curve may represent analytic curves of general interest.

This information is important to both the sending and receiving systems. The

directory entry form number parameter is provided to communicate this

information. It should be emphasized that use of this curve form should be

restricted to communications between systems operating directly on rational

B-spline curves and not used as a replacement for the analytic forms for

communication. A tutorial on the mathematical details of rational B-splines

is given in a separate publication available from the National Bureau of

Standards.

If the rational B-spline curve represents a preferred curve type, the form

number corresponds to the most preferred type. The preference order is

from 1 through 5 followed by 0. For example, if the curve is a circle or

circular arc, the form number is set to 2. If the curve is an ellipse with

unequal major and minor axis lengths, the form number is set to 3. If the

curve is not one of the preferred types, the form number is set to 0.

Field 15 of the directory entry accommodates a form number. For this

entity, the options are as follows;

Form Meaning

0 Form of curve must be determined from the

rational B-spline parameters.

1 Line

2 Circular arc

3 Elliptical arc

4 Parabolic arc

5 Hyperbolic arc

If the curve lies entirely within a unique plane, the planar flag (PROPl) is set

to 0, otherwise it is set to 1. If it is set to 0, the plane normal (parameters

15+A+4K through 17+A+4K) contain a unit vector normal to the plane

containing the curve.

122

If the beginning and ending points on the curve are identical, PROP2 is set to

1. If they are not equal, PROP2 is set to 0.

If the curve is rational (does not have all weights equal), PROP3 is set to 0. If

all weights are equal to each other, the curve is non-rational and PROP3 is

set to 1.

If the curve is periodic with respect to its parameter, set PROP4 to 1,

otherwise set PROP4 to 0.

3.18.1 Directory Data

ENTITY TYPE NUMBER: 126

3.18.2 Parameter Data

Parameter Value Format Comment

1 K Integer Upper index of

2 M Integer

sum

Degree of basis

3 PROPl Integer

functions

=0 - non-planar

4 PROP2 Integer

= 1 - planar

=0 - open curve

5 PROP 3 Integer

= 1 - closed

curve

=0 - rational

6 PROP4 Integer

=1 - non-

rational

=0 - non-

(Let N = K - M + 1, A = N + 2M)

periodic

= 1 - periodic

123

7 T(-iM)

•

Floating Point Knot Sequence

•

•

7+A

•

T(N+M)

8+A W(0) Floating Point Weights

9+A+K W(K)

10+A+K X-coord. of P(0) Floating Point Control Points

11+A+K Y-coord. of P(0)

12+A+K Z-coord. of P(0)

10+A+4K X-coord. of P(K)

11+A+4K Y-coord. of P(K)

12+A+4K Z-coord. of P(K)

13+A+4K V(0) Floating Point Starting para-

meter value

14+A+4K V(l) Floating Point Ending para-

meter value

13+A+4K X-coord. of NORM Floating Point Unit Normal (if

16+A+4K Y-coord. of NORM
curve is planar)

17+A+4K Z-coord. of NORM
(Let D = 18+A+4K)

D E Integer Number of

backpointers to

associativity

entities plus

number of text

pointers to

general note

entities

12h

D+1 DE Pointer Pointers to

associativities

or general

notes

D+E DE Pointer

D+E+1 F Integer Number of

properties

D+E+2 DE Pointer Pointers

• • •

to properties

•

D+E+F+1

•

DE

•

•

Pointer Pointers to

properties

3.19

3.19.1

3.19.2

3.19.3

Rational B-Spline Surface Entity

A tutorial on the mathematical details of rational B-splines is given in a

separate publication available from the National Bureau of Standards.

The rational B-spline surface may represent various analytical surfaces of

general interest. This knowledge is important to both the generating and

receiving system. The directory entry Form Number parameter is provided

to communicate such information.

If the rational B-spline surface represents a preferred surface type, the form

number corresponds to the most preferred type. The preference order is

from 1 through 9 followed by 0. For example, if the surface is a right

circular cylinder, the form number is set to 2. If the surface is a surface of

revolution and also a torus, the form number is set to 5 . If the surface is not

one of the preferred types, the form number is set to 0.

Field 15 of the directory entry accommodates a form number. For this entity

the options are as follows;

Form Meaning

0 Form of the surface must be determined from the rational

6

2

7

8

3

1

9

5

B-spline parameters

Plane

Right circular cylinder

Cone

Sphere

Torus

Surface of revolution

Tabulated cylinder

Ruled surface

General quadric surface

126

3.19.4 If, for each fixed value of the second parameter the resulting curves which

are functions of the first parameter are closed, set PROPl to 1, otherwise

set PROPl to 0. Similarly, if for each fixed value of the first parameter the

resulting curves which are functions of the second parameter are closed, set

PROP2 to 1, otherwise set PROP2 to 0.

3.19.5 If the surface is rational (does not have all weights equal) set PROP3 to 0. If

all weights are equal to each other, the curve is non-rational and PROP3 is

set to 1.

3.19.6 If the surface is periodic with respect to the first parameter, set PROP4 to 1,

otherwise set PROP4 to 0. If the surface is periodic with respect to the

second parameter, set PROP5 to 1, otherwise set PROP5 to 0.

3.19.7 Directory Data

ENTITY TYPE NUMBER: 128

3.19.8 Parameter Data

Parameter Value Format Comment

1 K1 Integer Upper index of first

sum
2 K2 Integer Upper index of second

sum
3 Ml Integer Degree of first set of

basis functions

4 M2 Integer Degree of second set of

basis functions

5 PROPl Integer =0 Open in first para-

metric direction

= 1 Closed
6 PROP2 Integer =0 Open in second

parametric direction

= 1 Closed
7 PROP3 Integer =0 Rational

= 1 Non-rational

8 PROP4 Integer =0 Non-periodic in first

parametric direction

= 1 Periodic in first

parametric direction

9 PROP5 Integer =0 Non-periodic in

second parametric di-

rection

= 1 Periodic in second
parametric direction

Let N1 = K1 - Ml + 1, N2 = K2 - M2 + 1,

A = N1+2M1, B = N2 + 2M2, C = (K1 + 1) (K2 + 1)

IPT

Floating Point First knot sequence10 S(-Ml)
• •

• •

• •

10+A S(N1+M1)

11+A T(-M2) Floatingpoint Second knot sequence

11+A+B KN2 + M2)

12+A+B W(0,0) Floating Point Weights

13+A+B W(1,0)

13+A+B+C W(K1,K2)

1^+A+B+C X-coord. of P(0,0) Floating Point Control Points

15+A+B+C Y-coord. of P(0,0)

16+A+B+C Z-coord. of P(0,0)

17+A+B+C X-coord. of P(1,0)

18+A+B+C Y-coord. of P(1,0)

19+A+B+C Z-coord. of P(1,0)

11+A+B+4C X-coord. of P(K1, K2)

12+A+B+4C Y-coord. of P(K1, K2)

13+A+B+4C Z-coord. of P(K1,K2)

14+A+B+4C U(0) Floating Point Starting parameter

value for first basis

15+A+B+4C U(l) Floating Point Ending parameter value

for first basis

16+A+B+4C V(0) Floating Point Starting parameter

value for second basis

17+A+B+4C V(l) Floating Point Ending parameter value

for second basis

i

128

3.20 Node Entity

The node entity is a geometric point used in the definition of a finite

element. Directory entry field 7 points to a labeled definition coordinate

system transformation matrix. Coordinate angles for the cylindrical and

spherical coordinate systems are specified in degrees.

3.20.1 Every node has a nodal displacement coordinate system associated with it.

This is form 10, 11, or 12 of the transformation matrix entity which provides

translational and rotational components for load, restraint and displacement

results.

The origin of the nodal displacement coordinate system is always the location

of the node. However, the orientation of the nodal displacement axes

depends on the location of the node and the type of displacement coordinate

system being referenced. Cartesian (Rectangular), cylindrical and spherical

are the three possible types.

If the displacement coordinate system is cartesian, then the nodal displace-

ment axes are parallel to the respective referenced coordinate system. This

is illustrated in Figure 3-1 7(a) Cartesian.

For the cylindrical type, the orientation of the nodal displacement axes

depends on the coordinate value of the node as defined in the referenced

displacement coordinate system. The nodal displacement axes are respec-

tively in the radial, tangetial and axial directions as illustrated in Figure 3-

17(b) Cylindrical.

Finally, for spherical, the orientation of the nodal displacement axes depend

on both the 0 and JD coordinates of the node as defined in the referenced

displacement coordinate system. The nodal displacement axes are respec-

tively in the radial, meridional and aximuthal directions as indicated in

Figure 3- 17(c) Spherical.

If a node lies on the polar axes of either the cylindrical or spherical

coordinate system, the nodal displacement axes are defined parallel to the

referenced displacement coordinate system axes. For cylindrical the first

129

X

FIG. 3-17 DISPLACEMENT COMPONENTS

axis is the (0=0) axis and the third axis is the polar axis. For spherical the

first axis is the (0=0) axis while the third axis is the polar axis. The second

axis of both systems is defined by the appropriate cross product of the

previously defined axes,

3.20.2 Directory Data

ENTITY TYPE NUMBER: 134

Entity Label: Node Label (Optional)

Entity Subscript: Node Number (Required)

3.20.3 Parameter Data

Parameter Value Format Comment

1 X/R/R Floating Point First nodal coordinate
2 Floating Point Second nodal coordi-

nate

3 Z/Z/0 Floating Point Third nodal coordinate

4 NDPCS Pointer Pointer to the Nodal
Displacement Coordi-
nate System entity.

Default (zero) is Global

Cartesian Coordinate
System.

5 N Integer Number of back
pointers (to associativ-

ity entities)/text

pointers (to general
note entities)

6 DE Pointer Pointers to associativ-

• • •

ities or general notes

•

3+N

•

•

DE

•

Pointer

6+N M Integer Number of properties

7+N
•

DE
•

Pointer

•

Pointers to properties

•

•

6+N+M

•

•

DE

•

•

Pointer

131

3.20.4 Figure 3- IS illustrates the definition of a node in the three coordinate

systems.

CARTESIAN CYLINDRICAL SPHERICAL

FIG. 3-18 NODE DEFINITION IN EACH COORDINATE SYSTEM

132

3.21 Finite Element Entity

A finite element is defined by an element topology (i.e., node connectivity)

along with physical and material properties.

3.21.1 Table 3-1 lists the data to define the element topology. Figure 3-19

illustrates the node connectivity for each element topology.

3.21.2 In Table 3-1 the IGES element name is an English abbreviation or acronym

describing the element. The element topology type is an integer number

which will appear as the first parameter of the parameter data. The order is

an integer identifying the order of an edge where 0=not applicable, l=linear,

2=parabolic and 3=cubic. The number of nodes from table N will appear as

the second parameter of the finite element parameter data. A missing node

in the connectivity sequence will have its corresponding pointer value equal to

zero.

3.21.3 Directory Data

ENTITY TYPE NUMBER; 136

Entity Label: Element Label (Optional)

Entity Subscript: Element Number (Required)

3.21.4 Parameter Data

ameter Value Format Comment

1 ITOP Integer Topology Type. See
attachment.

2 N1 Integer Number of Nodes de-

fining Element. See
note.

3 DE Pointer Pointer to first node

defining element. See

• • •

note.

•

•

Nl+2

•

DE

•

•

Pointer Pointer to last node
defining element

Nl+3 ETYP String Element type name

133

IntegerNl+4 N

Nl+N+3 DE Pointer

Number of back
pointers (to associativ-

ity entities)/test

pointers (to general

note entities)

Pointers to associativ-

ities or general notes

Nl+N+4
•

DE Pointer

Nl+N+5 M Integer Number of properties

Nl+N+6 DE
•

Pointer Pointers to properties

NI+N+M+5

•

•

DE Pointer

134

TABLE 3-1 IGES/FINITE ELEMENT TOPOLOGY

ELEMENT DATA CHART

Element Data

IGES Element Number Number Number
Element Topology Order of of of

Name Type Nodes Edges Faces

BEAM 1 1 2 1 0

LTRIA 2 1 3 3 1

PTRIA 3 2 6 3 1

CTRIA 4 3 9 3 1

LQUAD 5 1 4 4 1

PQUAD 6 2 8 4 1

CQUAD 7 3 12 4 1

PTSW 8 2 12 9 5

CTSW 9 3 18 9 5

PTS 10 2 16 12 6

CTS 11 3 24 12 6

LSOT 12 1 4 6 4

PSOT 13 2 10 6 4

LSOW 14 1 6 9 5

P50W 15 2 15 9 5

CSOW 16 3 24 9 5

LSO 17 1 8 12 6

PSO 18 2 20 12 6

CSO 19 3 32 12 6

ALLIN 20 1 2 1 0

APLIN 21 2 3 1 0

ACLIN 22 3 4 1 0

ALTRIA 23 1 3 3 0

APTRIA 24 2 6 3 0

ALQUAD 25 1 4 4 0

APQUAD 26 2 8 4 0

SPR 27 0 2 0 0

GSPR 28 0 1 0 0

DAMP 29 0 2 0 0

GDAMP 30 0 1 0 0

MASS 31 0 1 0 0

RBDY 32 0 2 0 0

135

FIG. 3-19 IGES FINITE ELEMENT TOPOLOGY SET

BEAM
El=l,2 •

1 El 2

LTRIA - Linear Triangle

El = l,2 Fl=l,2,3,

E2=2,3
E3=3,l

3

PTRIA - Parabolic Triangle

EU1,2,3 F1=1,2,3,4,5,6,

E2=3,4,5
E3=5,6,1

CTRIA - Cubic Triangle

E1=1,2,3,4 F1=1,2,3,4,5,6,7,8,9,

E2=4,5,6,7
E3=7,8,9,1

5

LQUAD - Linear Quadrilateral

El = l,2 Fl=l,2,3,4,

E2=2,3
E3=3,4
E4=4,l

PQUAD - Parabolic Quadrilaterial

El = l,2,3 Fl = l,2,3,4,5,6,7,8,

E2=3,4,5
E3=5,6,7
E4=7,8,l

136

7.

CQUAD - Cubic Quadrilaterial

El = l,2,3,4

E2=^f,5,6,7

E3=7,8,9,10
E4=10,ll,12,l

Fl=l, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

10 9 8

8.

PTSW - Parabolic Thick Shell Wedge
El=l,2,3 E4=7.8.9 E7=l,7
E2=3,4,5 E3=9,10,ll E8=3,9
E3=3,6,l E6=ll,12,7 E9=5,ll

Fl = l,2,3,4,5,6,

F2=7,8,9,10,ll,12,

F3=l,2,3,9,8,7

F4=3,4,5,ll,10,9

F5=5,6,l,3,6,l,7,12,ll

11

9.

CTSW - Cubic Thick Shell Wedge
EUl, 2,3,4 E4=10,ll, 12,13

E2=4,3,6,7 E3=13, 14, 13,16

E3=7, 8,9,1 E6=16,17,18,10
Fl=l,2,3,4,3,6,7,8,9,

F2=10,ll, 12,13,14,13,16,17,18
F3=l, 2,3, 4, 13,12,11, 10

F4=4,3,6,7,16,13,14,13

F3=7, 8,9,1, 10, 18,17,16

E7=l,10
E8=4,13

E9=7,16

16

10 . Parabolic Thick Shell 15 14

11 .

137

12.

LSOT - Linear Solid Tetrahedron
El = l,2 E4=l,4
E2=2,3 E5=2,4
E3=3,l E6=3,4
Fl = l,2,3,

F2=l,2,4,

F3=2,3,4,

F4=3,l,4
13.

PSOT - Parabolic Solid Tetrahedron
El=l,2,3, E4=l,7,10
E2=3,4,5 E3=3,8,10
E3=5,6,l E6=5,9,10
Fl=l,2,3,4,5,6,

F2=l,2,3,8,10,7

F3=3,4,5,9,10,8

F4=5,6,l,7,10,9

14.

LSOW - Linear Solid Wedge
El=l,2 E4=4,5 E7=l,4

E2=2,3 E3=5,6 E8=2,5
E3=3,l E6=6,4 E9=3,6
Fl=l,2,3,

F2=4,5,6

F3=l,2,5,4

F4=2,3,6,5

F5=3, 1,^,6

13. PSOW - Parabolic Solid Wedge
El = l,2,3 E4=10,ll,12 E7=l,7,10
E2=3,4,3 E3=12,13,14 E8=3,8,12

E3=3,6,l E6=14,13,10 E9=3,9,14
Fl = l,2,3,4,3,6,

F2=10,ll,12,13,14,15

F3=i,2,3,8,12,ll,i0,7

F4=3,4,3,9,14,13,12,8

F5=5,6,l,7,10,13,14,9

3

6

14

16. CSOW - Cubic Solid Wedge
El = l,2,3,4 E4=16,17,18,19
E2=4,5,6,7 E3=19,20,21,22
E3=7,8,9,l E6=22,23,24,16
Fl = l,2,3,4,5,6,7,8,9,

F2=16, 17, 18, 19, 19,20, 21, 22, 23,24
F3=l, 2,3,4,11,14,19,18,17,16,13,10
F4=4,5,6,7,12,i5,22,21,20,19,14,ll

F5=7,8,9,l,10,13,16,24,23,22,13,12

E7=l, 10,13,16
E8=4,il, 14,19

E9=7, 12,13,22

138
1

2 3
4

817. LSO - Linear Solid

£1=1,2 £5=3,6 £9=1,3
£2=2,3 £6=6,7 £10=2,6
£3=3,4 £7=7,8 £11=3,7
£4=4,1

F1 = 1,2,3,4,

£2=5,6,7,8

£3=1, 2,6,5
£4=2,3,7,6

£3=3,4,4,8

£6=4,1, 3,8

£R=R,5 £12=4,8

4

1

7

6

2

18. PSO - Parabolic Solid

El=l,2,3 £7=17,18,19

E2=3,4,5 £8=19,20,13
E3=3,6,7 £9=1,9,13

£4=7,8,1 £10=3,10,13
£3=13,14,15 £11=5,11,17
£6=13,16,17 £12=7,12,19

Fl=l,2,3,4,3,6,7,8

£2=13,14,13,16,17,18,19,20
£3=1,2,3,10,13,14,13,9 £5=3,6,7,12,19,18,17,11

£4=3,4,3,11,17,16,13,10 £6=7,8,1,9,13,20,19,12

19. CSO - Cubic Solid

£1=1, 2,3,4
£2=4,3,6,7

£3=7,8,9,10

£4=10,11,12,1

£5=21,22,23,24

£6=24,23,26,27
£7=27,28,29,30

£8=30,31,32,21

£9=1,13,17,21

£10=4,14,18,24
£11-7,15, 19, 27

£12=10,16,20,30

£1 = 1,2,3,4,3,6,7,8,9,10,11,2

£2=21,22,23,24,23,26,27,28,29,30,31,32

£3=1,2,3,4,14,18,24,23,22,21,17,13

£4=4,3,6,7,13,19,27,26,25,24,18,14

£5=7,8,9,10,16,20,30,29,28,27,19,13

£6=10,11,12,1,13,17,21,32,31,30,20,16

139

ALLIN - Axisymmetric Linear Line
El=l,2 No Faces

APLIN - Axisymmetric Parabolic Line
El=l,2,3 No Faces

ACLIN - Axisymmetric Cubic Line
El = l,2,3,4 No Faces

ALTRIA - Axisymmetric Linear Triangle

El=l,2

E2=2,3 No Faces
E3=3,l

APTRIA - Axisymmetric Parabolic Triangle

El=l,2,3
E2=3,4,5 No Faces
E3=5,6,l

ALQUAD - Axisymmetric Linear Quadrilateral

El = l,2

E2=2,3
E3=3,4 No Faces
E4=4,l

APQUAD - Axisymmetric Parabolic Quadrilateral

El = l,2,3

E2=3,4,5

E3=5,6,7 No Faces
E4=7,8,l

SPR - Spring

No edges or faces

GSPR - Grounded Spring
o

—

nnnp—|jii

DAMP - Damper

GDAMP - Grounded damper
l»

MASS - Mass

0

a D

RBDY - Rigid Body

4 NON-GEOMETRY

4.1 GENERAL

This section contains capabilities for representing non-geometry and includes;

o Annotation Entities

o Structure Entities

Entity numbers from 200 through 499 are reserved for this Section. In

addition, some non-geometric entities make use of entity type number 106

(copious data).

Ik2

4.2 Annotation Entities

4.2.1 Construction . Many annotation entities are constructed by using other

entities. For example, the linear dimension entity will contain a pointer to

two witness line entities (a form of copious data), two [X>inters to leader

(arrow) entities, and one pointer to a general note entity.

4.2.2 Definition Space . An annotation entity may be defined in XT, YT, ZT

definition space (see the discussion in Section 3.1) or in a two-dimensional

space associated with a drawing entity (Entity type number 404).

In the case of XT, YT, ZT definition space, a transformation matrix may be

applied to locate the annotation entity within model space.

Within the XT, YT, ZT definition space, subordinate entities to an annotation

entity may have different ZT displacements. For example, within the linear

dimension, a different ZT value may be found in each of: general note,

leader, and witness lines (which are pointed to in the linear dimension

parameter data). An example showing the use of ZT displacement (DEPTH) is

shown in Figure 4-1.

While the option of having dimensions occupy different planes exists, it is

expected that only a single plane will be used. The reason for its existence is

due to the structure of annotation entities. As each dimension may be

comprised of several subordinate entities, each subordinate entity by its

definition has the ability to stand alone and may require its own ZT

displacement. When used in conjunction with other entities as a subordinate

to a primary entity, it is likely, though not necessary, that each ZT is

identical.

z
o

o
LjJ

cr

4:

U)
liJ

h-
<
O

I o
H- Z
Q. —
UJ
Q X

h-
.. CL

LU
UJ O
Z
j b

fe|
I tn
h“
O UJ

ihh

FIG.

H-1

CONSTRUCTION

OF

ZT

DEPTH

OF

ANNOTATION

ENTITIES

Entity Type/Type Number .

The following entities are defined in this section:

Entity Type Entity Type Number

Angular Dimension Entity 202

Centerline Entity 106

Diameter Dimension Entity 206

Flag Note Entity 208

General Label Entity 210

General Note Entity 212

Leader (Arrow) Entity 214

Linear Dimension Entity 216

Ordinate Dimension Entity 218

Point Dimension Entity 220

Radius Dimension Entity 222

Section Entity 106

Witness Line Entity 106

4.2.4 Angular Dimension Entity. An angular dimension entity consists of a general

note, zero, one or two witness lines, two leaders, and an angle vertex point.

Refer to Figure 4-2 for examples of angular dimensions. If two witness lines

are used, each is contained in its own copious data entity.

Each leader consists of at least one circular arc segment with an arrowhead

at one end. The leader pointers are ordered such that the first circular arc

segment of the first leader is defined in a counterclockwise manner from

arrowhead to terminate point, and the first circular arc segment of the second

leader is defined in a clockwise manner. (Refer to 3.1.15 for information

relating to the use of the term counterclockwise).

4.2.4. 1 Section 4.2.10 contains a discussion of multi-segment leaders. For those

leaders in angular dimension entities consisting of more than one segment,

the first two segments are circular arcs with a center at the vertex point.

The second circular arc segment is defined in the opposite direction from the

first circular arc segment. Remaining segments, if any, are straight lines.

Any leader segment in which the start point is the same as the terminate

point is to be ignored. This convention arises to facilitate the definition of

the second circular arc segment in the bottom leader in Fig. 4-2. Example 1

in Fig 4-3 illustrates a leader with three segments.

Refer to Figure 4-3 for examples of angular dimensions.

lk6

V
0)

n

H-
<

•—4

Q o q;2 Q- LU
O Qu Q <
LU CC LU
C/5 *—

«

X
H- OF

mDH

oco
LJQ.
o q:
<XljJ
UJUJO
-Jf-<

2: orj cruj
MiH

0
Qu

LUt
Q
<

LULU_J
x> •

LU H“ UJX
i—

>J tux
CL LL. ZX»-
ZD 0
0
LU Ll.OZO

cruj
<LlJh-
s=z

JjJh——
ZLUO
HtDQ.

li-O }

—

Olucc
l“<

cn <c H*
3 -Jtn—D
DOUJ
<-JX
lX<h-
o

lU o
XLUZ
HCD<

X
ILI

J”.

q:
LU
>

FIG.

il-2

ANGULAR

DIMENSION:

CONSTRUCTION

OF

ARCS

IN

.

THE

ASSOCIATED

LEADERS

FIG.

H-3

EXAMPLES

OF

THE

ANGULAR

DIMENSION

ENTITY

4.2.4.2 Directory Data

ENTITY TYPE NUMBER ; 202

4.2. 4.3 Parameter Data

Parameter Value Format Comment

1 GN Pointer Pointer to general note
directory entry

2 W1 Pointer Pointer to first wit-

ness line directory

entry or 0

3 W2 Pointer Pointer to second
witness line directory

entry or 0

4 XT Floating Point Coordinates of ver-

tex point

5 YT Floating Point

6 R Floating Point Radius of leader arcs

7 A1 Pointer Pointer to 1st leader

directory entry or 0

8 A2 Pointer Pointer to 2nd leader
directory entry or 0

9 N Integer Number of back
pointers (to associa-

tivity entities)/text

pointers (to general
note entities)

10 DE Pointer Pointers to associa-

tivities or general

• • •

notes

•

9+N

•

DE

•

•

Pointer

l49

10+N

11+N

M Integer Number of properties

DE Pointer Pointers to properties

10+N+M DE Pointer

Centerline Entity

The centerline entity takes one of two forms. The first, as illustrated in

Figure 4-4, Examples 1 and 2, appears as crosshairs and is normally used in

conjunction with circles. The second type (Example 3) is a construction

between 2 positions.

The Centerline entities are stored as a form of copious data. The associated

matrix transforms the XT-YT plane of the centerline into model space. The

coordinates of the centerline points describe the centerline display symbol.

The display symbol is described by line segments where each line is from

^^n’ '^n’ V’ ^^n+1’ ^n+1’ ^n+P ^ = U3,5,...,N-1

Examples of the centerline entity are shown in Figure 4-4.

151

I

n
LlI

Q.

<
X
UJ

LU.

+

N

\ y
' Ql

~T^
/ <

LU

FIG.

£1-4

EXAMPLES

OF

THE

CENTERLINE

ENTITY

^.2.6 Diameter Dimension Entity

A diameter dimension consists of a general note, one or two leaders, and an

arc center point. If a second leader does not exist, its pointer value will be 0.

Refer to Figure 4-5 for examples of the diameter dimension entity. The arc

center coordinates are used for positioning the diameter dimension line

relative to the arc being dimensioned.

4.2.6.1 Directory Data

ENTITY TYPE NUMBER : 206

4.2. 6.2 Parameter Data

Parameter Value

1 NE

Format

Pointer

Comment

Pointer to general

note directory entry

2 A1 Pointer Pointer to first lead-

er directory entry

3 A2 Pointer Pointer to second

leader directory entry

4 XT Floating Point

5 YT Floating Point

6 N Integer

Arc center coordin-

ates

Number of back

pointers (to associa-

tivity entitiesVtext

pointers (to general

note entities)

153

FIG.

4-5

EXAMPLES

OF

THE

DIAMETER

DIMENSION

ENTITY

Value Format CommentParameter

7 DE Pointer Pointers to associa-

tivities or general

notes

6+N DE Pointer
i

7+N M Integer Number of properties

8+N DE Pointer Pointers to properties

DE7+N+M Pointer

4.2.7 Flag Note Entity

A flag note entity is label information formatted as shown in Figure 4-6. The

rotation angle overrides the general note rotation angle and placement.

Additional examples of the flag note entity are shown in Figure 4-7.

The flag note entity may be defined with or without associated leaders.

NOTE: Box outlined within flag illustrates bounds of text and should not be

interpreted as sub-symbol.

Fig. 4-6 FLAG NOTE

4.2.7. 1 The flag note is constructed from information defined in the general note

entity. This data is the character height and number of characters. For this

reason, no geometric definition is explicit within the definition of the flag

note entity.

The following specifications apply to Figure 4-6.

Variables:

H = Height CH = Character height

L = Length NC = Number of characters

TL = Text Length (in general note)

T = Tip Length A = Rotation angle in radians

156

157

Formulas:

TL = (.8)(CH)(NC)+(.4)(CH)(NC-1)

H = (2)(CH)

L = (TL)+(.^)(CH)

T = (.5)(H)/TAN35°

Restrictions:

H shall never be less than .3 in.

L shall never be less than .6 in.

T shall never be less than .214 in.

4. 2.7.2 Directory Data

ENTITY TYPE NUMBER : 208

4.2. 7.3 Parameter Data

Parameter Value Format Comment

1 XT Floating Point Lower left corner

coordinate
2 YT Floating Point

3 ZT Floating Point

4 A Floating Point Rotation angle in

radians

5 DENOTE Pointer Pointer to general

note directory entry

6 N Integer Number of arrows
(leaders)

7 DEI Pointer Pointers to associated

leaders

6+N

158

Parameter Value Format Comment

7+N NA Integer Number of back
pointers (to associa-

tivity entitiesVtext

pointers (to general
note entities)

8+N DE Pointer Pointers to associa-

tivities or general

• • •

notes

7+N+NA

•

•

DE Pointer

8+N+NA M Integer Number of properties

9+N+NA DE Pointer Pointers to properties

8+N+NA+M

•

DE Pointer

159

^•2.8 General Label Entity . A general label entity consists of a general note with

one or more associated leaders.

Examples of general label entities are shown in Figure ^8

4.2.8.1 Directory Data

ENTITY TYPE NUMBER ; 210

4.2. 8.2 Parameter Data

Parameter Value Format Comment

1 DENOTE Pointer Pointer to associated

general note

2 N Integer Number of leaders

3 DE Pointer Pointers to associated

leaders

N+2

N+3 NA Integer Number of back
pointers (to associa-

tivity entitiesVtext

pointers (to general

note entities)

N+4 DE Pointer Pointers to associa-

tivities or general

notes

N+3+NA DE Pointer

i6o

FIG.

«l-8

EXAMPLES

OF

THE

GENERAL

LABEL

ENTITY

Parameter Value Format Comment

N+4+NA M Integer Number of properties

N+5+NA DE Pointer Pointers to properties

N+^+NA+M DE Pointer

162

General Note Entity. A general note entity consists of text, a starting point,

text size, and angle of rotation of the text. Examples of general notes are

shown in Figure 4-9. The FC value indicates the font number and is an

integer. Positive values are pre-defined fonts. Negative values point to user

defined fonts or modifications to a pre-defined font.

The following fonts will be defined:

1. Standard Block
2. LeRoy
3. Futura
4. Fastfont

3. Calcomp
6. Comp 80

7. Micro-Film Standard
8. ISO Standard
9. DIN Standard
10. Military Standard

11. Gothic
12. News Gothic
13. Lightline Gothic
14. Simplex Roman
13. Italic

16. APL
17. Century Schoolbook
18. Helvetica

0. Symbol Fonts
1001. Symbol Font 1

1002. Symbol Font 2

Fonts in the 1000 series display symbols mapped onto ASCII characters

as shown in Figures 4-10 and 4-11. They do not specify a character display

font.

Font 0 is an old symbol font and should no longer be used. Figure 4-12
is a mapping symbol definition for font 0.

If the FC number is not sufficient to describe the font, a text font definition

entity may be used to define the font. If a text font definition is being used,

the negative of the pointer value for the directory entry of the text font

definition entity is placed in the FC parameter. The use of the values WT,

HT, SL, A, and text start point are shown in Figure 4-13.

The parameters for the text block are applied in the following order;

(See Figure 4-14)

163

utn

ca
UJH

cn

LU
J
CL
2
<
X
iLl

N
UJ

CL
2
<
X
UJ

LU

CL
2
<
X
LU

a
3
1
V
1*

0

x'
X
3
X

1
V
0
1

X
n
3
A

in

LU
-j
CL
2
<
X
LU

'2
M
S
SR
a
HmX

LU-

CL
2
<
X
lU

l6U

FIG.

i|-9

EXAFiPLES

OF

THE

GENERAL

NOTE

ENTITY

Column 1 Displayable Font
Column 2 ASCII Character

Disp. ASCII
Font Char.

SP

1 1

• •

«

$ $

% %

& &

1 •

((

)•
)

*
•

+

+ 9

f t

-

• •

/ /

0 0

1 1

2 2

Disp. ASCII
Font Char.

1

3 3

4 4

1

5 5

1
6 6

1
7 7

8 8

1
^ 9

•
1

• •

1 •

1
#

•
9

I < <

1
** -

1
> >

1

?

1
e e

1

^ A

1

^ .B

c C

D D

E E

Disp. ASCII
Font Char.

F F

G G

H H

I I

J

<

J

K K

L L

M M

N R

0 0

P P

Q Q

R R

S S

mA T

u U

V V

w w

X
i

-

Disp. ASCII
Font Char.

Y Y

Z Z

I [

\ \

1 1

A 1 A

- -

1 1

a

d: b

C7 c

- 1

o e

// f

hi "1

h

4* j

k

Disp. ASCII
Font Char.

1

(m) m

n

O o

© P

1 q

© r

(D 8

t

O u

A V

0 u

X

X y

Y

{ (

1

)

1
1

} }

— —

FIG. ii-10 FONT 1001

i6'5

Column 1 Displayable Font
Co^-umn 2 ASCII Character

Disp.
Font

ASCII
Char.

SP

1 1 .

• •

#

0
$

S %

& 6

1 t

((

))

*

+ +

•

— -

• •

/ /

0 0

1 1

2
!

^

Disp. ASCII

3 3

4 4

5 5

6 6

7 7

8 8

9 9

•
•

m
•

7
•
§

< <

8 8

> >

••

•
*>
•

•

% e

A A

B B

C C

D D

E E

Disp. ASCII
Font rhqr .

F p

G G

H K

I I

J J

R K

L L

M M

N N

0 0

P P

Q Q

R R

S S

T T

U D

V V

w w

X X

Disp. ASCII
Font Char.

Y X

z z

I I

\ \

1 1

A A

1

.

t

X a

b

c

d

A e

f

X 5

1 h

5^ i

r
4 j

h

Disp. ASCII
Font Char.

\/ 1
1

1

A
1

i

n

•

n

E
1

0
1

+ P
1

q

•¥ r

s

t
|;

6
u

T V I

u
j

u X
1

1

X
y

m.
z

£

V

}

I

FIG, 4-11 FOMT 1002

0 X 27 (j 56 « 105 Z 134 \ 163 ©
1

•

30 X 57 / 106
• F 135 1 164

2
< 31 oc 60 0 107 G 136

A
165 ©

3
> 32 6 61 1 110 H 137 166 A 1

4 33 p 62 2 111 I 140
\

167 O i

34 7T 63

•

3 112 J 141 £. 170 ^
i

6 X 35
—

64 4 113 K 142 ttl 171 ^ 1

'• 7 n 36 + 65 5 114 L 143 Z7 172 Y

10
j.
T 37

o
66' 6 115 M 144 173 {

1

f 40 SP 67 7 116 N 145 o 174 1

12 Z3 41 1
• 70 8 117 0 146 // 175 }

i 13 V 42
II

71 9 120 P 147 /y 176 —

14 A 43 rr 72
•
• 121 Q 150

j
r 177

15 44 $ 73
0

$ 122 R 151

FONT CODF => C

ASCI 1 CODF TC

CHARACTER I'.Ar

16 z 45 of
A9 74 < 123 S 152

17 k 46 Si 75 S 124 T 153

20 i 47

‘
1

76 > 125 U 154 ±
21 50 (77 • 126 V 155 ®
22 - 51) 100 (3 127 w 156 0

' 23 <> 52 101 A 130 X 157 O

*24 0 53 + 102 B 131 Y 160 ©
1

25
(1

*r
. 54 % 103 C

t

132 Z 161 (L

i 26
ll

55 —
104 0 133 1 162 ©

FIG. 4-12 CHARACTER SET S OCTAL CODE FOR FONT CODE ZERO

iSi ^

FIG.

i|-13

general

note

TEXT

CONSTRUCTION

HORIZONTAL

TEXT

VERTICAL

TEXT

fnc) tun

169

FIG.

i|-14

pERAL

NOTE

EXAMPLE

OF

TEXT

OPERATIONS

1) Define the box height (HT) and box width (WT).

The rotate internal text flag indicates whether the text box is filled with

horizontal text or vertical text. The box width is measured from the

text start point in the positive XT direction and the box height is

measured in the positive YT direction from the text start point, before

the rotation angle (A) is applied.

2) The slant angle is then applied to each individual character. For

horizontal text it is measured from the XT axis in a counterclockwise

direction. For vertical text the slant angle is measured from the YT

axis.

3) The rotation angle is then applied to the text block. This rotation is

applied in a counterclockwise direction about the text start point. The

plane of rotation is the XT, YT plane at the depth ZT (where ZT is the

value given for the text start point).

4) The mirror operation is performed last. The value 1 indicates the mirror

axis is the (rotated) YT axis through the text start point. The value 2

indicates the mirror axis is the rotated XT axis.

170

4.2.9.1 Directory Data

ENTITY TYPE NUMBER : 212

.2.9.2 Parameter Data

Parameter Value Format Comment

1 NS Integer Number of text strings in

general note

2 NCI Integer Number of characters in

first string (TEXTl)

3 WTl Floating Point Box width

4 HTl Floating Point Box height

5 FCl Integer Font characteristic

6 SLl Floating Point Slant angle of TEXTl in

radians (tr/2 is the value
for no slant angle and is

the default value)

7 A1 Floating Point Rotation angle in

radians for TEXTl

8 Ml Integer Mirror flag (0-no mirror, 1-

YT mirror axis, 2-Xt
mirror axis)

9 VHl Integer Rotate internal text flag

(0-text horizontal, 1-text

vertical)

10 XTl Floating Point First text start point

11 YTl Floating Point

12 ZTl Floating Point Z depth from XT, YT
plane

13 TEXTl String First text string

14 NC2 Integer Number of characters in

second text string

171

1+NS*12

2+NS*12

3+NS*12

2+NS*12+N

3+NS*12+N

4+NS*12+N

3+NS*12+N+M

TEXTNS Character Last text string

N Integer Number of back pointers

(to associativity entities)

/text pointers (to general
note entities)

DE Pointer Pointers to associativities

or general notes

DE Pointer

M Integer Number of properties

DE

•

Pointer

•

Pointers to properties

•

•

DE Pointer

172

^.2.10 Leader (Arrow) Entity . A leader consists of one or more line segments

except when the leader is part of an angular dimension (see 4.2.4). The first

segment begins with an arrowhead. There will be ten different arrowheads

and the selection is made by assigning values to FORM (see 4.2.10.1).

Remaining segments successively link to a presumed text item. The leader

entity includes parameters to define the size and shape of the arrowhead and

the end points of each segment of the leader. An individual segment is

assumed to extend from the end point of its predecessor in the segment list

to its defined end point. Examples of leaders are shown in Figure 4-15.

In the use of angular, diameter, and linear dimension, there are instances

where the text is exterior to the line or arc lying between the two arrows. In

these situations, it remains the case that the appearance of two arrows

implies the use of two leaders. These are formed by dividing the line or arc

lying between the two arrows into two non-overlapping segments. Refer to

Figure 4-16.

Some leaders (for example, the leader involved with the radius dimension in

Figure 4-16) give the appearance of locating an arrow interior to a

segment. This is not the case. However, there are two overlapping

segments. The first segment begins at the arrow and, -in the radius dimension

example, ends at the center of the arc or circle being dimensioned. The

second segment then overlaps the first, retraces the first in the opposite

direction, and extends it. Leaders of this type for other types of dimensions

are constructed similarly. For cases involving angular dimension, the first

two segments are arcs.

L

173

\
s

tn

ijj I
_j =
CL °
2 X^ <

^ o
LJJ z

<

u.o
CO
LU

a.

X
LU

IT 4

1

1

1}

i:

li

*

EXAMPLES

OF

LEADERS

INTERNAL

TO

A

DIMENSION

O
QJ
O

0
1
tn

(n
<
Q
U
O
>
a
QJ
(Q

cr
QJo
<
Qi

QJ
X

cn
X
QJ
O
<
QJ

tn
Xu
o
<
Ul

s

5
u.

tn
UJ

<
Z

< Q3 tro o— o> u
Q (iJ

Z 2— <
tn

b - b

Q
QJ
as —
o>
-JX
-J<
GO)
k.tn
wQJ

CJ
XUJ
QiZ
G
<in
QJ<

tn
h"'

zK
z HQZ — zo.
o mm

o a. OX
CL Q.QJ

a X
»- z Q»-
01 o XQX u
—

•

to I>
Q. tn f-GD

1 1 1

< CQ O

175

FIG.

/|-16

STRUCTURE

OF

LEADERS

INTERNAL

TO

A

DIMENSION

4.2.10.1 FORM Definition

FORM Meaning

NUMBER Arrowhead Type

1 Open Triangle

2 Triangle

3 Triangle (filled in)

4 No arrowhead

5 Circle

6 Circle (filled in)

7 Rectangle

8 Rectangle (filled in)

9 Slash

10 Integral sign centered at the end point of the first

segment

4.2.10.2 Examples of each FORM are shown in Figure 4-17.

176

ITT

4.2.10.3 Directory Data

ENTITY TYPE NUMBER: 214

4.2.10.4 Parameter Data

Parameter Value Format Comment

1 N Integer Number of segments

2 ADI Floating Point Arrowhead height

3 AD2 Floating Point Arrowhead width

4 ZT Floating Point Z depth

5 XH Floating Point Arrowhead coordinates

6 YH Floating Point

7 X Floating Point Segment tail

coordinate pairs

. Y Floating Point

6+2N

7+2N NA Integer

8+2N DE Pointer

Number of back
pointers (to associativ-

ity entries)/text

pointers (to general

note entities)

Pointers to associativ-

ities or general notes

7+2N+NA DE Pointer

8+2N+NA M Integer Number of properties

9+2N+NA DE Pointer Pointers to properties

8+2N+NA+M DE Pointer

1T8

4.2.11

4.2.

4.2.

Linear Dimension Entity . A linear dimension consists of a general note, two

leaders, and zero to two witness lines. Refer to Figure 4-18 for examples of

linear dimensions.

11.1 Directory Data

ENTITY TYPE NUMBER ; 216

11.2 Parameter Data

Parameter Value Format Comment

1 DENOTE Pointer Pointer to general note direc-

tory entry

2 DEARRWl Pointer Pointer to first leader directory
entry

3 DEARRW2 Pointer Pointer to second leader direc-

tory entry

4 DEWITl Pointer Pointer to witness line direc-

tory entry, 0 if not defined

5 DEWIT2 Pointer Pointer to witness line direc-

tory entry or 0

6 N Integer Number of back pointers (to

associativity entitiesVtext

pointers (to general note

entities)

7 DE Pointer Pointers to associativities or

• • •

general notes

6+N

•

DE

•

•

Pointer

7+N M Integer Number of properties

8+N

•

DE

•

Pointer

•

Pointers to properties

•

7+N+M DE

•

Pointer

1T9

l80

FIG,

it-18

EXAMPLES

OF

THE

LINEAR

DIMENSION

ENTITY

4.2.12 Ordinate Dimension Entity. The ordinate dimension entity is used to indicate

dimensions from a common base line. Dimensioning is only permitted along

the XT or YT axis.

4.2.12.1 An ordinate dimension consists of a general note and a witness line or leader.

The values stored are pointers to the directory entry for the associated note

and witness line. Examples of ordinate dimensions are shown in Figure 4-19.

4.2.12.2 Directory Data

ENTITY TYPE NUMBER ; 218

4.2.12.3 Parameter Data

Parameter Value Format Comment

1 DENOTE Pointer

2 DEWIT Pointer

3 N Integer

4 DE Pointer

Pointer to general note
directory entry

Pointer to witness line direc-

tory entry or leader directory

entry

Number of back pointers (to

associativity entities)/text

pointers (to general note

entities)

Pointers to associativities or

general notes

3+N DE Pointer

4+N M Integer Number of properties

5+N DE Pointer Pointers to properties

4+N+M DE Pointer

l8l

.0713

n
LU

X
UJ

o
o
o •

o

OsJ

LU
-J
CL

<
X
LU

B^ZO*

I

COOO '

LU

CL

<
X
LU

F16.

4-19

EXAMPLES

OF

THE

ORDINATE

DIMENSION

ENTITY

4.2.13 Point Dimension Entity. A point dimension consists of a leader, text, and an

optional circle or hexagon enclosing the text.

4.2.13.1 The leader will always contain three segments, and its first and last segments

are always horizontal or vertical. If a hexagon encloses the text, it will be

described by a composite entity. If a circle or hexagon does not enclose the

text, the last segment of the leader will be horizontal and it will underline the

text.

4.2.13.2 Examples are shown in Figure 4-20.

l83

l84

FIG.

4-20

EXAMPLES

OF

THE

POINT

DIMENSION

ENTITY

4.2.13.3 Directory Data

ENTITY TYPE NUMBER : 220

4.2.13.4 Parameter Data

Parameter Value Format

1 DEI Pointer

2 DE2 Pointer

3 DE3 Pointer

4 N Integer

5 DE Pointer

Comment

Pointer to general note di-

rectory entry

Pointer to leader directory

entry

Pointer to circular arc, com-
posite, or 0.

Number of back pointers (to

associativity entities)/text

pointers (to general note

entities)

Pointers to associativities or

general notes

4+N DE Pointer

5+N M Integer Number of properties

6+N DE Pointer Pointers to properties

DE3+N+M Pointer

4.2.14 Radius Dimension Entity . A radius dimension consists of a general note, a

leader, and an arc center point, (XT, YT). Refer to Figure 4-21 for examples

of radius dimensions.

4.2.14.1

The arc center coordinates are used for positioning the radius dimension line

relative to the arc being dimensioned.

4.2.14.2

Directory Data

ENTITY TYPE NUMBER: 2224.2.14.3

Parameter Data

Parameter Value

1 DEN

2 DEP

3 XT

4 YT

5 N

Format

Pointer

Pointer

Floating Point

Floating Point

Integer

6 DE Pointer

Comment

Pointer to general note di-

rectory entry

Pointer to leader directory

entry

Arc center coordinates

Number of back pointers (to

associativity entitiesVtext

pointers (to general note

entities)

Pointers to associativities or

general notes

5+N DE Pointer

6^N M Integer Number of properties

QC

Parameter Value Format Comment

7+N

6+N+M

Pointer Pointers to properties

DE Pointer

188

4.2.15 Section Entity. A section entity is a copious data entity (see 3.5) of form

numbers 31 to 38. The form number describes how the data are to be

interpreted.

4.2.15.1

The point data contains a list of points (Xn, Yn) n=l, 2, . . . , N-1. (The Z

Vcdue is constant.

The display symbol is described by line segments where each line is from (Xn,

Yn, Zn) to (Xn+1, Yn+1, Zn+1) where n=l, 3, 5, ... ,
N-1.

4.2.15.2 These points represent line segments of the section display symbol.

4.2.15.3 The table below describes the use of the form number, and Figure 4-22 shows

examples of each possible form number. (Reference; American National

Standard, ANSI Y14.2M-1979, Line Conventions and Lettering)

Form number Display action

31 Display all line segments as solid lines. (iron,

brick, stone masonry)

32 Do not display every third line. All other lines

display as solid, (steel)

33 Display odd numbered lines as solid. Display

even numbered lines dashed. (bronze, brass,

copper)

34 Do not display every fifth line. All other lines

display as solid, (plastic, rubber)

35 Display odd numbered lines as solid. Display

even numbered lines with a centerline line

font, (fire brick, refractory material)

36 Display all lines with a centerline line font,

(marble, slate, glass)

189

190

FIG.

4-22

EXAMPLES

OF

THE

SECTION

ENTITY

Form number Display action

37 Display all line segments as solid lines, (lead,

zinc, magnesium, sound or heat insulation,

electrical insulation)

38 Display the first half of the lines with a solid

line font. Display the last half of the lines

with a dashed line font, (aluminum)

191

4.2.16 Witness Line Entity . A witness line is a form number 40 of a copious data

block that contains one or more straight line segments associated with

drafting entities of various types. Each line segment may be visible or

invisible. Refer to Figure 4-23 for examples.

4.2.16.1 If the witness line is suppressed, this is indicated by a 0 in the pointer field of

the drafting entity pointing to a witness line, or by setting the blank status of

the directory entry of the copious data entity for the witness line.

4.2.16.2 Within the copious data, there will be the location from which the witness

line gap must be maintained. This point is indicated in Figure 4-23 as PI.

The location will be the first point in the copious data. PI will be coincident

with the geometry being dimensioned or equal to P2 when the location of the

geometry is unknown. Note: for those annotation methods that do not allow

drafting entities to be displaced from the plane of annotation, coincident

with the geometry indicates that a line normal to the plane of annotation

connects PI and the point on the geometry being dimensioned. Note that all

points must be colinear, and that the number of points will be odd and at

least 3 (3, 5, 7, . . .), with alternating blank and displayed segments. The

examples in Figure 4-20 show the blanking of segments and the order of

points stored in the copious data.

192

I'

/

VISIBLE

SEGMENT

OF

WITNESS

LINE

-o
0L2

193

4.3 Structure Entities

4.3.1 Entity Type/Type Number

The following entities are defined in this section:

Entity Type Entity Type Number

Associativity Definition Entity

Associativity Instance Entity

Drawing Entity

Line Font Definition Entity

MACRO Definition Entity

MACRO Instance Entity

Property Entity

Subfigure Definition Entity

Singular Subfigure Instance Entity

Rectangular Array Subfigure Instance Entity

Circular Array Subfigure Instance Entity

Text Font Definition Entity

View Entity

302

402

404

304

306

600-699 as specified

by user

406

308

408

412

414

310

410

1

19h I

4.3.2 Associativity Definition Entity. The associativity definition entity permits

the preprocessor to define an associativity schema. That is, by using the

associativity definition, the preprocessor defines the type of relationship. It

is important to note that this mechanism specifies the syntax of such a

relationship and not the semantics.

4.3.2.

1

Schema. The definition schema allows the specification of multiple groups of

data which are called classes. A class is considered to be a separate list, and

the existence of several classes implies an association among the classes as

well as among the contents of each class.

4.3.2. 1.1 For each class, the schema has provision to specify whether or not back

pointers are required. A back pointer being required implies that an entity

which is a member of this associativity (when it is instanced) has a pointer to

the directory entry of the associativity instance in its back pointer parameter

section.

4.3.2.1.2 The provision in the schema to specify whether or not a class is ordered is

used to state whether the order of appearance of entries in the class is

significant.

4.3.2. 1.3 In the schema, "ENTRIES" are the members of the class. However, each

entry could be composed of several items. If multiple items are required,

they will be ordered. For example, if the entries were locations, each entry

might have three items to specify X, Y, and Z values.

4.3.2.1.4 The associativity definition will fix the number of classes for an associativity

and the number of items per entry in a particular class. Each associativity

instance will have a variable number of entries per class. In order to help

decode instances of the definition, each item is specified as a pointer (to an

entity directory entry) or a data value.

195

4.3.

2.2

Form . Two kinds of associativity are permitted within the file. Pre-defined

associativities will have form numbers in the range of 1 to 5000 and appear in

4.3.3. 3. The second kind of associativity is defined in the file by a

preprocessor (Form numbers 5001-9999). These definitions appear once in the

file for each form of associativity defined, and allow the preprocessor to fill

in the definition according to a schema which defines the details of the

associativity.

4.3. 2.2.1 The definition includes the associativity form, the number of class defini-

tions, the number and type of items in each entry, and whether back pointers

(from the entity to the associativity) are required. Each set of values (BP,

Order, N, and Item type) are considered a class. The pre-defined

associativity definitions are located in 4.3. 3.3. See 4.3. 3.3.1 for a complete

example of associativity.

4.3. 2.2.2 Directory Data

ENTITY NUMBER : 302

4.3. 2.2.3 Parameter Data

Parameter Value Format Comment

1 K Integer Number of class definitions

2 BPl Integer

1-

back pointers required

2-

no back pointers

3 ORl Integer

1-

ordered class

2-

unordered class

4 N1 Integer Number of items per entry

5 ITl(l) Integer

1-

pointer to a directory entry

2-

value

4+Nl

The items in parameters 2 through 4+Nl are repeated for each of the K classes.

196

4.3.3. Associativity Instance Entity . Each time an associativity relation is needed

in the file an associativity instance entity is used.

The form number of the associativity instance will identify the meaning of

the entity. If the form number is between 1 and 5000, the definition is

specified as described in 4.3.2. 2 and the version number of the associativity

instance will be 1. If the form number is between 5001 and 9999, an

associativity definition will occur in the file and the version number field of

the instance directory entry will contain a pointer to the directory entry of

the associativity definition.

Each entity that is a member of an associativity instance can contain a back

pointer (in the back pointer portion of its parameter data) to the associativity

instance.

The parameters K and Nl, N2, ...NK are specified in the associativity definition,

(see 4.3. 2. 2.3)

4.3.3. 1 Directory Entry

ENTITY TYPE NUMBER : 402

4.3. 3.2 Parameter Data

Parameter Value Format Comment

1 NEl Integer Number
one

of entries for class

2 NE2 Integer Number
two

of entries for class

K NEK Integer Number of entries for class K

19T

For K classes with (NE1,...,NEK) entries

with (Nl, . . . , NK) items per entry

Parameter Value Format Comment

K + 1 Class 1 Variable

•

•

Entry 1, Item 1

Item 2

• •

•

•

Variable

• •

• •

Item Nl

Variable

•

Entry 2, Item 1

•

•

Variable

•

•

Item Nl
•

•

•

Variable

•

•

Entry NEl, Item 1

•

•

•

• Item Nl

Class 2 Variable

•

Entry 1, Item 1

•

•

Variable

•

Item N2

Variable

•

Entry 2, Item 1

•

•

•

•

•

•

»

Item N2
•

•

Variable

•

•

Entry NE2, Item N2

•

Class K

•

Variable Entry 1, Item 1

X Class K Variable Entry NEK, Item NK

198

Parameter Value Format Comment

X+1 M Integer Number of back

pointers (to associativ-

ity entities)/text

pointers (to general

note entities)

X+2 DE Pointer Pointers to associativi-

•

ties or general notes

•

•

X+M+1 DE Pointer

X+M+2 N Integer Number of properties

X+M+3

•

DE Pointer Pointers to properties

•

•

X+M+2+N DE Pointer

199

4. 3. 3. 3 Pre-defined Associativities . As defined in 4.3.2. 2, the associativity definition

entity will only occur for Form Numbers 5001 through 9999. The following

paragraphs contain the definitions of the pre-defined associativities as they

would appear if they were defined by a user. Also included in this Section are

the descriptions of each associativity's parameters in a manner similar to

other entities in this Specification.

4.3. 3. 3.1 Form Number: 1 Group

The Group Associativity allows a collection of a set of entities to be

maintained as a single, logical entity. Figure 4-24 is an example.

The user should note Form Number 7 differs from Form Number 1 only in

that back pointers are not required in Form Number 7.

DEFINITION

Parameter Set Value Meaning

1 1

2 1

3

4

2

1

5 1

DESCRIPTION

Directory Data

ENTITY TYPE NUMBER: 402

FORM NUMBER: 1

One class

Back pointers required

Unordered

One item per entry

The item is a pointer

200

ASSOCIATIVITY

INSTANCE

201

FIG.

i\-2H

ASSOCIATIVITY

INSTANCE

AND

RELATED

ENTITIES

Parameter Data

Parameter Value Format Comment

1 N Integer Number of entries
2 DE Pointer Pointer to entity 1

3

•

DE
•

Pointer
•

Pointer to entity 2

•

N+1 DE
•

Pointer Pointer to entity N
N+2 N1 Integer Number of back pointers (to

associativity entitiesVtext

pointers (to general note
entities)

N+3 DE Pointer Pointers to associativities or

general notes
N+Nl+2 DE Pointer

N+Nl+3 M Integer Number of properties

N+Nl+4 DE Pointer Pointers to properties

N+Nl+M+3 DE Pointer

4.3.3.3.2 FORM NUMBER : 3 Views Visible

When an entity is to be displayed in a single view, a pointer to that view

entity is entered in parameter 6 of the entity's DE.

If an entity is to be displayed in more than one view, parameter 6 of its DE

contains a pointer to an instance of a form 3 associativity. This form of the

associativity contains 2 classes of information. The first class contains the

number of views visible followed by pointers to each of the view entities

visible in the specific associativity instance. The second class contains the

number of entities whose display is specified by this instance, followed by

pointers to each of the entities.

DEFINITION

Parameter Set Value Meaning

1 2 Two classes

(Class 1)

2 1 Back pointers required

3 2 Unordered

4 1 One item per entry

202

5 1 Item is a pointer

6

(Class 2)

2

(to view entity)

No back pointers

7 2 Unordered

I

^

I'

1 One item per entry

li 9 1 Item is a pointer

i

j

DESCRIPTION

i ENTITY TYPE NUMBER:

Directory Data

402

(to other entity)

1 FORM NUMBER

I
Parameter

: 3

Value Format Comment

N1 Integer Number of views visible

2 N2 Integer Number of entities displayed

3 DEVI

•

Pointer

•

in these views

Pointer to view entity

•

Nl+2

•

DEVNl

•

Pointer

Nl+3 DEI Pointer Pointer to entity whose dis-

• • •

play is being specified by this

associativity instance

•

' N1+N2+2

•

DEN2 Pointer Pointer to entity N2

N1+N2+3 N Integer Number of back pointers (to

N1+N2+4 DE Pointer

associativity entities)/text

pointers (to general note

entities)

Pointers to associativities or

general notes

I

203

N1+N2+N+3 DE Pointer

N1+N2+N+4 M Integer Number of properties

N1+N2+N+5 DE Pointer Pointers to properties

•

N1+N2+N+M+4

•

DE

•

Pointer

4.3.3.3.3 FORM NUMBER: 4 Views Visible, Pen, Line Weight

This associativity is an extension of Form Number 3. For those entities that

are visible in multiple views, but must have a different line font, pen number,

or line weight in each view, there will be an occurrence of the associativity

instance Form Number 4.

In the parameter data portion of the associativity instance, the parameter N1

will indicate the number of blocks containing the view visible, line font, pen

number, and line weight specifications. Each block will contain a pointer to

the view entity, a line font value or 0, a pointer to a line font directory entry

if the line font value was 0, a pen value, and a line weight value. Parameter

N2 will contain the number of entities which are members of this associativ-

ity (i.e., entities which have this particular display characteristic).

Note that N2 may often be 1. If more than one entity appears in Class 2 the

complete set of display characteristics in Class 1 apply to each entity in Class

2.

Parameter

1

2

3

4

5

Set Value

2

(Class 1 (View))

1

2

5

(Entry template)

1

Meaning

Two classes

Back pointers required

Unordered

Five items per entry

Pointer to view directory

entry

204

6

7

8

9

10

11

12

13

DESCRIPTION

ENTITY TYPE NUMBER:
FORM NUMBER: 4

2

1

2

2

Class 2 (entity)

2

2

1

1

Directory Data

402

Line font value

Pointer to line font directory

entry

Pen number (value)

Line weight (value)

No back pointers required

Unordered

One item per entry

Item is a pointer (to entity)

PARAMETER DATA

Parameter Value Format Comment

1 N1 Integer Number of blocks containing
the view visible, line font,

pen number, and line weight
information

2 N2 Integer Number of entities which
have this particular set of

display characteristics

3 DEVI Pointer Pointer to view entity 1

4 LF Integer Line font value or 0

5 DEFl Pointer If parameter 4 = 0, pointer to

a line font definition. Other-
wise = 0.

6 PNl Integer Pen number value 1

205

7 LWl Integer Line weight value 1

8 DEV2 Pointer Pointer to view entity 2

5*Nl+2 LWNl Integer Line weight value N1

5*Nl+3 DEI Pointer Pointer to entity 1

5*Nl+N2+2 DE Pointer Pointer to entity N

5*Nl+N2+3 N Integer Number of back pointers (to

associativity entitiesVtext

pointers (to general note
entities)

5*Nl+N2+4 DE Pointer Pointers to associativities

or general note entities

5*Nl+N2+N+3

•

DE

«

Pointer

5*Nl+N2+N+4 M Integer Number of properties

5*Nl+N2+N+5 DE Pointer Pointers to properties

N1+N2+N+M+4 DE Pointer

t

I

206

4.3.3.3.4 FORM NUMBER: 5 Entity Label Display

Some entities may have one or more possible displays for their entity labels,

depending on the view in which they are being displayed. For those entities,

there will be an occurrence of the associativity instance Form Number 5.

In the parameter data portion of the associativity instance, the parameter N1

will indicate the number of blocks containing label placement information.

Each block will contain a pointer to a view entity which specifies the view of

visibility. The remaining information (text location, leader, and level

number) applies to the label for that view.

DEFINITION

Parameter

1

2

3

4

5

6

7

8

9

10

Set Value

1

2

1

7

1

2

2

2

1

2

Meaning

One class

No back pointers

Ordered

Seven items per entry

Pointer to view directory

entry

XT of text location

YT of text location

ZT of text location

Pointer to leader directory

entry

11 1

Entity label level number

Pointer to entity

DESCRIPTION

Directory Data

ENTITY TYPE NUMBER: 402
FORM NUMBER: 5

PARAMETER DATA

Parameter Value Format Comment

1 N1 Integer Single entry

2 DEV Pointer Pointer to a view entity

3 XT Floating Point XT coordinate of text

location

4 YT Floating Point YT coordinate of text

location

5 ZT Floating Point ZT coordinate of text

location

6 DEL Pointer Pointer to leader

7 LLN Integer Entity label level number

8 DEI Pointer Pointer to entity which is be-

ing displayed

7*N1+1 DENI Pointer

7*Nl+2 N Integer Number of back pointers (to

associativity entities)/text

pointers (to general note

entities)

7*Nl+3 DE Pointer Pointers to associativities or

general notes

•

7*Nl+N+2 DE Pointer

7*Nl+N+3 M Integer Number of properties

7*Nl+N+4 DE Pointer Pointers to properties

7*Nl+N+M+3 DE Pointer

208

4.3.3.3.5 FORM NUMBER: 6 View List

This associativity has two classes. The first class has only one entry which is

a pointer to the directory entry of a specific view. The second class is a list

of entities (pointers to their respective directory entities) which are visible in

the view referenced in Class 1. Back pointers are required in both classes;

the view as well as all entities visible in the view must have pointers to this

associativity instance.

DEFINITION

Parameter Set Value Meaning

1 2 Two classes

Class 1 (view)

2 1 Back pointers required

3 2 Unordered

4 1 One item per entry

5 1 Pointer to view directory

entry

Class 2 (Entities)

6 1 Back pointers required

7 2 Unordered

8 1 One item per entry

9 1 Pointer to directory entry of

entity visible in view re-

ferred to in parameter 5

DESCRIPTION

Directory Data

ENTITY TYPE NUMBER: 402

FORM NUMBER: 6

209

PARAMETER DATA

Parameter Value Format Comment

1 1 Integer Single entry in first class

2 N1 Integer Number of entities in second
class

3 DEV Pointer Pointer to view entity

4 DEI Pointer Pointers to entities visible in

view specified in parameter 3

Nl+3 DENI Pointer

Nl+4 N Integer Number of back pointers (to

associativity entities)/text

pointers (to general note
entities)

Nl+5 DE Pointer Pointers to associativities or

general notes

Nl+N+4 DE Pointer

Nl+N+5 M Integer Number of properties

Nl+N+6 DE Pointer Pointers to properties

Nl+N+M+5 DE

•

Pointer

^. 3 . 3 . 3.

6

FORM NUMBER: 7 Group Without Back Pointers

DEFINITION

Parameter Set Value Meaning

1 1 One class

2 2 Back pointers not required

3 2 Unordered

4 1 One item per entry

5 1 The item is a pointer

DESCRIPTION

Directory Data

ENTITY TYPE NUMBER: 402

FORM NUMBER: 7

PARAMETER DATA

Parameter Value Format Comment

1 N Integer Number of entries

2 DE Pointer Pointer to entity 1

N+1 DE Pointer Pointer to entity N

N+2 N1 Integer Number of back pointers (to

associativity entities)/text

pointers (to general note

entities)

N+3 DE Pointer Pointers to associativities or

general notes

N+Nl+2

•

DE

•

Pointer

N+Nl+3 M Integer Number of properties

N+Nl+4 DE Pointer Pointers to properties

N+Nl+M+3 DE Pointer

4.3.3.3.7 FORM NUMBER; 8 Signal String

This associativity has four classes and is intended to represent a single signal

string. Class one provides all names of the signal in an order that should be

preserved. Class two collects together a set of connection nodes in the string

and thus can be considered as specifying the connections for the signal. Class

three relates the signal string to set of geometric entities on a schematic

drawing, while class four accomplishes the same thing with respect to the

implemented board or chip.

The geometric entities which may be members of classes 2 and 3 include

composite, copious (forms 11 or 12), or any of the entities which may be

members of composite.

DEFINITION

Parameter Set Value Meaning

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Class One — Signal Names
2

1

1

2

Class Two -- Connections

1

2

1

1

Class Three -- Schematic
1

1

1

1

Four classes

No back pointers

Ordered
One item per entry

Item is value

Back pointers

Unordered
One item per entry

Pointer to Connect Node

Back pointers

Ordered
One item per entry

Pointer to geometry
Class Four -- Board Implementation

Back pointers

Ordered
One item per entry

Pointer to geometry

212

DESCRIPTION

Directory Data

ENTITY TYPE NUMBER: 402

FORM NUMBER: 8

Parameter Value Format Comment

1 NS Integer Number of signal names
2 N1 Integer Number of Connection Nodes
3 N2 Integer Number of Entities in

Schematic signal string

4 N3 Integer Number of Entities in PWB
signal string

5 SIGl String Signal name

NS+4
•

SIGNS

NS+5
*

PTR Pointer Pointer to Connect Nodes
NS+Nl+4 PTRl Pointer

NS+Nl+5 PTR2 Pointer Pointer to Entity in Schema-
tic Signal String

NS+N2+N1+4 PTR2 Pointer

NS+N2+N1+3 PTR3 Pointer Pointer to entity in PWB
signal string

NS+N3+N2+N1+4 PTR3 Pointer

k (number of entries) = NS+N3+N2+N1+4
k+1 N Integer Number of back pointers (to

associativity entities)/text

pointers (to general notes)

k+2 DE Pointer Pointer to either an associa-

tivity or to a general note

k+N+1 DE Pointer

k+N+2 M Integer Number of properties

k+N+3 DE Pointer Pointer to property

k+N+M+2 Pointer

4.3. 3.3. 8 FORM NUMBER: 9 Single Parent Associativity

This associativity defines a logical structure of one independent (parent)

entity and one or more subordinate (children) entities.

Both parent and child entities require back pointers to this instance. Any

necessary display parameters are governed by the parent entity.

DEFINITION:

Parameter Set Value Meaning

1

2

3

5

1

1

1

1

One Class
Back pointers required

Ordered
The item is a pointer

DESCRIPTION

Directory Data

ENTITY TYPE NUMBER: 402
FORM NUMBER: 9

PARAMETER DATA

Parameter Value Format Comment

1 1 Integer

2 NC Integer

3 DE Pointer

4 DEI Pointer

Single Parent Entity

Pointer to Parent
Entity

Number of Children

Pointer to Parent

Entity

Pointer to Child

Entity 1

2+NC DENC Pointer

3+NC N Integer

Pointer to Child

Entity NC
Number of Back
Pointers (to associa-

tivity entities)/text

pointers (to general

note entities)

2lh

Parameter Value Format Comment

4+NC DE Pointer Pointers to associativ-

. • •

ities or general notes

•

•

3+NC+N DE
•

Pointer

4+NC+N M Integer Number of Properties

5+NC+N
•

DE
•

Pointer

•

Pointers to Properties

•

4+NC+N+M

•

•

DE

•

•

Pointer

215

4.3.3.3.9 FORM NUMBER: 10 Text Node

The purpose of the text node is to act as a template for future addition of

text. It is defined as an associativity to allow it to refer to multiple

instances of itself in those cases in which it is instanced as part of a

subfigure definition.

In accordance with the general rule of multiple-instanced entities, digits 5-6

of directory entry field 9 have the value 04, and class 1 consists of a pointer

to a point representing its original location followed by pointers to multiple

instances, if these exists.

Class 2 consists of those parameters of the general note which are pertinent

to the definition of a text template, as opposed to text itself. In general,

these consist of all parameters but the text string. The location is omitted

because it is included in class 1 as a pointer to a point representing the

geometric location of the text node.

An instance of a text node consists of this associativity, a point indicating

the position of the instance, and 1 or more general notes atached to the node

through the text pointers of the geometric entities. If parameters in the

general notes are null, the value of the same parameter in class 2 of the

associativity is taken as the default; non-null parameters over-ride the

defaults. In the cases of multiple instances from a subfigure, the general

notes representing text will be attached to the instance point (pointers 2, 3, .

. . in class 1).

As a text-type entity, the text node can be pointed to by the back

pointer/text pointer field in each IGES entity.

Note that the associativity definition has an unusual value for parameter 11

(font characteristic). The value 3 implies either a pointer or a data item. A

positive value implies a data item; a negative value implies the absolute

value is to be taken as a pointer.

216

DEFINITION

Parameter Set Value Meaning

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

DESCRIPTION

2

(Geometry Pointers)

1

1

1

1

(Text Description)

2

1

7

2

2

3

2

2

2

2

Two classes

Back pointers required

Ordered class

One item per entry
Item is pointer (to point

entity)

Back pointers not required

Ordered class

Seven items/entry
Box length
Box height

Font characteristic

Slant angle

Rotation angle

Mirror flag

Rotate internal flag

Directory Data

ENTITY TYPE NUMBER; 402
FORM NUMBER: 10

Parameter Value Format Comment

1 NP Integer Number of geometry
pointers

2 1 Integer One item in class

3 GPl Pointer Pointer to point

(original location)

4 GP2 Pointer Pointer to instance

point (first instance)

NP+2 GPNP
•

Pointer Pointer to instance

point (NP-1 instance)

NP+3 WT Floating point Box length
NP+4 HT Floating point Box height

NP+5 FC Integer

or pointer

Font characteristic

NP+6 SL Floating point
_ Slant angle of text

in radians. /2 is

the value for no

slant angle and
is the default value.

21T

NP+7 A Floating point Rotation angle

in radians for text.
NP+8 M Integer Mirror flag (0=no

mirror, 1=YT mirror
axis, 2=XT mirror

axis.)

NP+9 VH Integer Rotate internal

text flag

(0=text horizontal,

l=text vertical)

k (number of entries) =NP+9

k=l N Integer Number of back
pointers (to associa-

tivity entities)/text

pointers

notes)

(to general

k=2 DE Pointer Pointer to either

an associativity

or to

note
a general

k+N+1 DE Pointer
k+N+2 M Integer Number of properties

k+N+3 DE Pointer Pointer to property

k+N+M+2 DE
•

Pointer

4.3.3.3.10 FORM NUMBER: 11 Connect Node

The purpose of the connect node is to imply a logical connection betwen one

or more entities. In the case of an electrical application, this logical

connectivity would mean an electrical connection, but the connect node has

applicability in other applications such as piping.

The connect node is defined as a 2-class associativity with the second class

undefined.

In accordance with the general rule of multiple-instanced entities, digits 5-6

of directory entry field 9 have the value 04, and class 1 consists of a pointer

to the geometry representing the original location of the connect node,

followed by pointers to multiple instances, if these exist. Each of the

geometry entities is the point entity. In the case of a singly-instanced

connect node, the point represents the position of the connect node. In the

case of a multiply-instanced connect node (i.e., a connect node in a subfigure

definition), the first point in the class represents the defining location (in the

subfigure definition), while the remaining points represent instance locations

of the connect node.

The second class is intended to describe the properties of the connect node

such as physical connection constraints. Its definition will be developed in

the future when these requirements become more clear.

The name of a connect node is found in its entity label. If the name is longer

than 8 characters, the entity label is blank, and the name is found in a name

property attached to the entity. In the case of multiply-instanced connect

nodes, separate names can be attached to the instance points by the same

means.

DEFINITION

Parameter Set Value Meaning

1 2 Two classes

(Geometry pointers)

2 1 Back pointers required

3 1 Ordered class

4 1 One item per entry

5 1 Item is pointer (to pc

entity)

6 2 Back pointers not required

7 2 Unordered class

8 1 One item per entry
9 2 Item is data

DESCRIPTION

Directory Data

ENTITY NUMBER: 402
FORM NUMBER: 11

Parameter Value Format Comment

1 NC Integer Number of pointers

(to points)

2 NP Integer Number of entries ii

second class

219

3 PTl Pointer Pointer to defining

point (original

location)

4 PT2 Pointer Pointer to instance

point (first instance)

NC+2 PTNC Pointer Pointer to last

instance point (NC-1

instance)

NC+3 DTI Data First data entry

NC+NP+2 DTNP Data Last data entry

k (number of entries) = NC + NP + 2

k+1 N Integer Number of back

pointers (to associa-

tivity entities)/text

pointers (to general

notes)

k+N+1 DE Pointer

k+N+2 M Integer Number of properties

k+N+3 DE Pointer Pointer to property

k+N+M+2 DE Pointer

220

^.3.^ Drawing Entity . The drawing entity defines a collection of annotation

entities and views of geometrical entities which, together, constitute a single

representation of the part, in the sense that a real drawing constitutes a

single representation of a part in standard drafting practice. If desired,

multiple drawings can be included in a single file, referring to the same

model space.

Annotation entities can appear either in the drawing entity using parameters

3N+2,..., or in individual views.

The (XD, YD) coordinates define a drawing space which is different from

either model space or defintion space. The matrix associated with the view

entity transforms entities from model space into drawing space. Note that

drawing space is 2-dimensional, rather than 3-dimensional, as is the case with

model or definition space.

Refer to Figures 4-25 and 4-26 for an example of the use of the drawing

entity.

4.3.4. 1 Directory Data

ENTITY TYPE NUMBER : 404

4.3. 4.2 Parameter Data

Parameter Value

1 N

2 VPTRl

Format

Integer

Pointer

Comment

Number of view pointers

Pointer to directory entry of

first view entity

3 XDl

4 YDl

Floating Point Location in drawing

coordinates of origin of

Floating Point _ transformed view

5 VPTR2 Pointer Pointer to directory entry of

second view entity

221

VIEW

FIG. 4-25 DRAWING ENTITY EXAMPLE 1

223

Parameter

•

Value

•

Format Comment

•

3N+2

•

M Integer Number of annotation

entities

3N+3 DPTRl Pointer Pointer to first annotation

• •

entity in this drawing

•

TE=3N+M+2

•

TE+1 NA Integer Number of back pointers (to

associativity entities)/text

pointers (to general note

entities)

TE+2 DE Pointer Pointers to associativities or

general notes

TE+l+NA DE Pointer

TE+2+NA MA Integer Number of properties

TE+3+NA DE Pointer Pointers to properties

TE+2+NA+MA DE Pointer

224

4.3.5 Line Font Definition Entity . This entity is used only to generate line fonts.

A repeating pattern is specified with on or oK segments. A repeating

subfigure pattern is specified when Form=l. If Form=l, parameter 3

indicates the length of the first segment of the subfigure pointed to in

parameter 2, and parameter 4 is the scale factor to be applied to each

instance of the subfigure. If Form=l, parameters labeled 5 through M+2 will

not occur, and the parameters labeled M+3, M+4, are actually 5, 6. Figure 4-

27 demonstrates the use of the line font pattern. Figure 4-28 demonstrates

the use of a subfigure (Form=l).

Form Meaning

1 Parameter data contains pointer to subfigure.

2 Parameter data contains repeating structure description

4.3. 5.1 Directory Data

ENTITY TYPE NUMBER: 304

4.3. 5.2 Parameter Data

Parameter Value

1 M

Format

Integer

Comments

FORM=l (Subfigure)

M equals zero (0) is used to

specify that each subfigure

instance is oriented with its

axes in the same orientation

as the axes of the definition

space, respectively.

M equals one (1) is used to

specify that for each sub-

figure instance, the subfigure

is oriented with its X-axis

tangent to the referencing

entity at the instance origin

and in the direction of the

entity, and the Y-axis is

defined by the cross product

of the Z-axis of the defini-

tion space with the X-axis

tangent vector. The refer-

encing entity must lie in a

plane parallel to the XT, YT
plane.

225

FORM =2 (Repeating structure)

Number of segments in the
minimum repeating structure
of the line font (Mil 6).

2 LI

3 L2

4 L3
factor to be applied to the

subfigure. Otherwise L3 is

the length of the third

segment.

Floating Point

(or Pointer)

Length of the first segment.
If FORM=l, this is a pointer
to a subfigure to be used as

the repeat pattern.

Floating Point Length of the second seg-

ment. If FORM = l, L2 is the
length of the repeating

pattern.

Floating Point If FORM = l, L3 is a scale

M+1 LM Floating Point Length of the M th
segment.

M+2 B String

M+3 N Integer

M+4 DE Pointer

Up to 4 hexadecimal digits

representing whether or not a

segment is blank or not

blank. Ex: '5' would indicate

that segments 1 and 3 were
not blank. Bits are right jus-

tified.

Number of back pointers (to

associativity entities)/text

pointers (to general note

entities)

Pointers to associativities or

general notes

M+N-3 DE Pointer

M+N+4 MP Integer Number of [properties

M+N+5 DE Pointer Pointers to properties

M+N+MP+4 DE Pointer

M+2 B String

M+3 N

M+4 DE

Integer

Pointer

Up to 4 hexadecimal digits

representing whether or not a

segment is blank or not

blank. Ex; '5' would indicate

that segments 1 and 3 were
not blank. Bits are right jus-

tified.

Number of back pointers (to

associativity entities Vtext
pointers (to general note
entities)

Pointers to associativities or

general notes

M+N+3 DE Pointer

M+N+4 MP Integer Number of properties

M+N+5 DE Pointer Pointers to properties

M+N+MP+4 DE Pointer

I

i I

CO
_l

D
cc

I
H-

<
I I

cc
<
X
u

o
o
o
o • •

— h-

o z— o
Lj_

1

1

CD

z z
cr —
LlI h-
1— _l
F- 3
< LO

Q. LU
cr

h-

co

o

223

FIG.

4-27

CONSTRUCTION

OF

LINE

FONTS

lU

CL
2
<
X
til

ui
CL
D
2i

fe<
Do;
cn<

CL
QUJ

L1.UJ
CCoJ
UJ <
h-EU
z^in

O u
Q..J-

O •• •• .«

•• — (ViH
2 J

UJ
J
QL
2
<
X
Ui

Ui
CL
3
O
It.

ca
3
UI

1

2
O
a:
o

>
CL3
U

b
o
z
UI

UJ
z

o
UJ
X
in
<
a

0
1
cn

Ui
>
CL
3 UiU >

CL
3
U

cr
<
»-
0)

N

in

229

FIG.

/)-28

USE

OF

SUBFIGURE

WITH

LINE

FONTS

4.3.6 MACRO Capability

4.3. 6.1 General . This Specification provides a means for communicating 3-dimen-

sional and 2-dimensional geometric models and drawings. The Specification,

however, does not provide a format for every geometric or drafting entity

available on all currently used CAD/C.AM systems, and is thus a common

subset of such entities. To allow exchange of a larger subset of entities - a

subset containing some of the entities not defined in this Specification but

which can be defined in terms of the basic entities, the MACRO capability is

provided. This capability allows the use of the Specification to be extended

beyond the common entity subset, utilizing a formal mechanism which is a

part of the Specification.

The MACRO capability provides for the definition of a "new" entity in terms

of other entities. The "new" entity schema is provided in a MACRO
definition which occurs once for every "new" entity in the file.

A MACRO definition is written using the MACRO definition entity. The

parameter section of the entity contains the MACRO body. In the MACRO
body, six types of statements are usable. The statements permissable are the

assignment statement (LET), the entity definition statement (SET), and the

REPEAT and CONTINUE statements. The repeat statement defines a portion

of the body to be repeated and is terminated by a CONTINUE statement.

References to other MACRO definitions appear on a MREF statement. The

MACRO body is terminated by an ENDM statement. The details of the

MACRO syntax are given in 4.3. 6. 5.

Each of the statements In a MACRO definition entity is terminated by a

record delimiter (default: semicolon).

In order to use a "new" entity defined by the MACRO definition, a MACRO
instance is placed in the file. The directory entry portion of an instance

specifies the new entity type number in field 1 of the directory entry record

and refers to the definition by a pointer in the version number field. The

{parameters to the instance are placed in the parameter section of the

instance.

^ O

The directory entry section of a MACRO definition has the standard form.

The attributes 4 through 9, 12 through 15, 18, and 19 have no significance.

The default values for these attributes are taken from the directory section

of the MACRO instance (described in 4.3.6.3).

The parameter data section of a MACRO definition consists of MACRO

language statements in the ASCII character set. The statements are not in

hollerith form, i.e., they have no preceding "H" specification. The state-

ments are free format and may branch over record boundaries. Every

statement is terminated by a record delimiter.

A processor for the MACRO language in the Specification has been developed

and is available from the National Bureau of Standards.

4.3.6.2 MACRO Definition Entity. The MACRO definition entity specifies the action

of a specific MACRO. After having been specified in a definition entity, the

MACRO can be used as often as necessary by means of the MACRO instance

entity.

The MACRO definition entity differs from other entity structures in this

Specification by consisting only of text strings in the parameter data. The

text strings constituting the statements in the MACRO definition are not set

off by means of the nH structure of other text strings in this Specification

but rather consist only of the actual string terminated by a record delimiter.

4.3.6.2.1 Directory Data

ENTITY TYPE NUMBER: 306

4.3.6.2.2 Parameter Data

Parameter Value Format Comments

1 TEXT Language statement First statement

2 TEXT Language statement Second Statement

N TEXT Language statement Last statement

4.3.6.3 MACRO Instance Entity . A MACRO instance entity is used to invoke a

MACRO. The parameter data records of the instance contain values for the

arguments to the MACRO. This is similar to a standard entity entry.

The directory entry for a MACRO instance entity contains the attribute

values that are to be used as the default values during the expansion of the

MACRO. The only special field is the VERSION field, which contains a pointer

to the directory entry of the MACRO definition. The pointer is preceded by

a minus sign.

4.3. 6.3.1 Directory Data

ENTITY TYPE As defined for each MACRO in the range 600 to 699.

NUMBER;

Version field; Pointer to directory entry of MACRO definition, pre-

ceded by a minus sign.

Other attributes; Default values to be used during expansion of the

MACRO. Attributes listed as defaulting to /HDR

obtain their values from here. (See page 254.)

4.3. 6.3.2 Parameter Data

The parameter data section for an instance has the following form;

Parameter Value Format Comment

1 n Integer Entity type number of the

MACRO

2,...K As appropriate for the

particular MACRO
The values for the argu-

ments to the MACRO.

They must agree in format

and number with the argu-

ments in the MACRO
statement of the

definition.

Parameter Value Format Comment

K+1 N Integer Number of back pointers

(to associativity entities)/

text pointers (to general

note entities)

K-2 DE Pointer Pointers to associativities

or general notes

K-N+1 DE Pointer

K+N^2 M Integer Number of properties

K^N+3 DE Pointer Pointers to properties

K-N+M-2 DE Pointer

4.3. 6.4 Examples of MACRO usage;

The following MACRO creates an isosceles triangle, given a vertex point, a

base width, and a height.

Directory Data

ENTITY TYPE NUMBER: 306

Parameter Data

MACRO, 621, XI, Yl, Al, A2, K;

LET Z = 0;

SET #Linel = 110, XI, Yl, Z, K*(XUA1), (Y1-A2/2.), Z, 0, 0;

SET#Line2 = 110, K*(X1+A1), (Y1+A2/2.). Z,

KMXUAl), (Y1-A2/2.), Z, 0, 0;

SET #Line3 = 110, K*(X1+A1). (Y1-A2/2.), Z
XI, Yl, Z, 0, 0;

ENDM;

The MACRO can be used to create a triangle by creating an instance which

supplies the needed values for XI, Yl, Al, .A2, and K.

The parameter data section for the MACRO would have the following format:

Parameter Value Format Comment

1 621 Integer Entity type number of MACRO

2 X Floating point X coordinate of vertex

3 Y Floating point Y coordinate of vertex

4 A1 Floating point Height of triangle

5 A2 Floating point Base of triangle

6 K Integer Scaling factor

In particular, to create a triangle with a base of 5. and a height of 17., with a vertex at

(0,0), and scale factor 1, the following instance could be placed into the file:

Directory data: Entity type number 621

Version: -nnn, where "nnn" is the sequence number of the

directory entry of the definition.

Other attributes: As desired for default values during MACRO

expansion.

Parameter data:

621, 0., 0., 17., 5., 1;

(See Figure 4-29)

236

Yl
“

I

I

1

XI

FIG. ^-29 EXAMPLE OF TRIANGLE MACRO

These examples are meant to illustrate some of the capabilities of a MACRO.

Example 1: Repeated parallelograms

The following MACRO takes the coordinates of three points and a repetition

number as arguments and creates a pattern of repeated parallelograms. The

three points represent the corners of a parallelogram. The parallelogram will

be filled with similar parallelograms inside it. The argument NTANG

controls how many parallelograms will be drawn inside; NTANG represents

the number of parallelograms along any one side. For simplicity, the points

have been constrained to all lie in a plane parallel to the X-Y plane.

MACRO, 600, XI, Yl, X2, Y2, X3, Y3, Z, NTANG;

LET YHDEL = (Y3-YD/NTANG;

LET YVDEL = (Y2-YD/NTANG;

LET XHDEL = (X3-XD/NTANG;

LET XVDEL = (X2-XD/NTANG;

LET K = 0;

REPEAT NTANG +1;

SET #VLINE = no, X1=K*XVDEL, Y1=K*YVDEL, Z,

X3=K*XVDEL, Y3=K*YVDEL, Z, 0, 0;

SET //HLINE = no, X1=K*XHDEL, Y1=K*YHDEL, Z,

X2=K*XHDEL, Y2=K*YHDEL, Z, 0, 0;

LET K = K + 1;

CONTINUE;

ENDM;

An instance for this MACRO looks like this;

600, 2., 4., 6., 5., 1., 3;

238

Example 2

The following MACRO takes a point, a radius, and a number and creates

concentric circles out to the radius. A point is put into the center.

MACRO, 601, XC, YC, ZC, R, NCIRC;

LET DELTR = R/NCERC;

REPEAT NCIRC;

SET //CIR = 100, ZC, XC, YX, X, Y+R, X, Y+R, X, Y+R, 0, 0;

LET R = R - DELTR;

CONTINUE;

SET #PT = 116, XC, YC, ZC, 0, 0, 0;

ENDM;

An example of an instance;

601, 0., 0., 0., 20., 4;

This would create four concentric circles around the origin out to a radius of

20 .

Example 3:

This MACRO takes a point and a base length and constructs a ground symbol

(horizontally) at that point.

MACRO, 602, X, Y, Z, B;

LET DELY = B/6;

LET DELX = DELY;

SET #LINE1 = 110, X, Y, Z, X+B, Y, Z, 0, 0;

SET //LINE2 = 110, X+DELX, Y-DELY, Z, X+B-DELX, Y-DELY, Z, 0, 0;

SET //LINE3 = 110, X+2*DELX, Y-2*DELY, Z, X+B-2*DELX, Y-2*DELY, Z,

0
,
0

;

ENDM;

239

Variables . Variable names may be from one to six characters in length. The

first character must be one of the characters listed below. This character

determines the variable type. It is not possible to override the conventions.

The six character limitation includes the first character. Upper and lower

case letters are recognized as distinct, i.e., X is different from x. Variable

names longer than six characters may be used; however, only the first six

characters will be significant. Variable names may contain imbedded blanks.

These blanks are NOT taken as part of the name; therefore "A B" is

equivalent to "AB." Except for the first character, as outlined below, all

characters must be alphabetic (A-Z or a-z), or numeric (0-9).

Variable type

Integer

Real

Double precision

String

Pointer

First character

I-N, i-n

A-H, O-Z a-h, o-z

I

$

//

Examples of valid variable names are:

Integer: I3K ICOUNT KlOl NTIMES

Real: XYZ XI y2 QrsTul

Double: !h’ !xi !Y2 112341

String: $str $TITLE $label

Pointer: //line //note //REF //XYZl

max

Some invalid variable names:

$$$$ ($ not permitted after first character)

1X43B (1 may not be first character)

A.BC (. is illegal)

Note that there are no "reserved" words. Thus a variable name such as

"MACRO", which is identical to a statement keyword (described below),

will not confuse the interpreter, although it may confuse the user of such a

MACRO. It is suggested that these words be avoided.

2h2

4.3.6.5 MACRO Syntax

i

Constants . Constants may be integer, real or double precision. Integer

constants are distinguished by the lack of a decimal point and exponent.

Reals are distinguished by the presence of a decimal point or the presence of

an E exponent. The decimal point is optional ONLY when the E exponent is

present. Double precision constants are distinguished by the presence of a D

exponent, which is mandatory; a decimal point is optional. Any constant may

be preceded by a "+" or A "+" is assumed if neither is present. Exponents

may also contain a "+” or Constants may not contain a comma but may

contain imbedded blanks. Examples of valid constants follow:

Integer 3 4123 13152 +0 -0

(+0, 0 and -0 are equivalent)

Real: -1. 3.14159 6.62E-34 lElO 3.1E+3

Double: IDO ODO 3.1415926535897D3 -11562.18D-10

Examples of invalid constants include:

1,000 (commas not allowed)

ElO (need mantissa — use lElO instead)

3.1-06 (E or D cannot be implied)

The limitations on magnitude and accuracy are inherently machine dependent

and are specified in the global section of the file.

2hl

An instance;

602, 1., 6., 2., 1.3;

This last example demonstrates the use of various MACRO features. It is not

meant as an example of a "useful" MACRO.

MACRO, 613, NROW, NCOL, VDI5T, HDIST,!ANGLE;

LET /LABEL = 6HPOINTS;

LET !SIN =SDIN(!ANGLE); LET !COS = !COS = DCOS (lANGLE);

LET YHD = HOIST * !SIN;

LET XHD =HDIST !COS;

LET YVD =VDIST * !COS;

LET XVD = VDIST * (-!SIN);

LET IRC = 0; LET ICC = 0;

REPEAT NROW;

LET XCOL = IRC * XVD;

LET YCOL = IRC YVD;

REPEAT NCOL;

LET X = XCOL + ICC^XHD;

LET Y = YCOL + ICC^YHD;

SET #PT = 116, X, Y, 0., 0, !, //LINE, 0;

LET ICC = ICC + 1;

CONTINUE;

LET IRC = ICC + 1;

CONTINUE;

LET $NPTS = STRING(NROW*NCOL, 17);

LET /LABEL = $NPTS;

SET //LINE = no, 0., 0., 0., 10., 0., 0., 1, //CIRC, 0;

SET //CIRC = 100, 0., 0., 0., 10., 0., 10., 0., I, //LINE, 0;

MREF, 22, 601, 0., 0., 0., 10., 5;

ENDM;

An instance;

613, 4, 3, 0. 2, O.I, 7.85398D-0I;

240

Functions . Functions similar to FORTRAN library functions aire provided.

The rules for mixed mode, however, have been relaxed, so that it is not

necessary to use, for example, SQRT(2.) instead of SQRT(2). While this

assists the preprocessor writer in preparing MACROS, it places a responsi-

bility on the writer of a processor for the MACRO language in handling the

mixed mode. While the arguments can be mixed mode, note, however, that

functions do have a specific type of value that they return, i.e., integer, real,

or double precision. The functions are described here by the type of value

returned. The type of argument usually used is also noted; however, this is

primarily for aid in clearly documenting MACROS. For example, either

IDINTOd) or INT(!d) will work equally well, although the meaning might be a

little clearer with IDINTOd). Functions are only recognized in one case

(UPPER).

Functions returning integer values:

lABS(i)

Returns the absolute value of i.

ISIGN(i)

Returns i if i is positive, 0 if it is zero, or -1 if it is negative.

IFIX(x) or INT(x)

Returns the integer part of x.

IDINTOd)

Returns the integer part of !d.

Functions returning real values:

FLOAT(i)

Returns a real (floated) value for i, e.g., FLOAT(2) returns "2."

COS(x)

Returns cosine of angle x; angle in radians.

SIN(x)

Returns sine of angle x: angle in radians.

TAN(x)

Returns tangent of angle x; angle in radians.

ATAN(x)

Returns arctangent of x; angle returned in radians.

EXP(x)

Returns natural anti-logarithm of x ("e to the x").

ALOG(x)

Returns natural logarithm of x.

ALOGlO(x)

Returns common (base 10) logarithm of x.

ABS(x)

Returns absolute value of x.

SQRT(x)

Returns square root of x.

AINT(x)

Returns integer part of x, just like INT, but returns value in floating-point

form.

SIGN(x)

Returns 1 if x is greater than 0, 0 if x equals 0, and -1 if x is less than 0.

SNGLOd)

Returns single (real) value of double precision variable !d. As many

significant digits of !d as possible are given to the returned value.

Functions returning double precision values;

Returns "double precision"ed value of x. Note that this is merely a

conversion, not an extension. Thus, DBL(.333333333) will return .333333333D0,

but not .333333333333333333333333D0. Thus, DBLE(l./3.) is not necessarily

equal to 1D0/3D0.

DBLE(x)

2hh

DCOSOd)

Returns cosine of angle !d; angle in radians.

DSINOd)

Returns sine of angle !d; angle in radians.

DTANOd)

Returns tangent of angle !d; angle in radians.

DATANOd)

Returns arctangent of !d; value returned in radians.

DEXP(Id)

Returns natural anti-logarithm of !d("e to the !d").

DLOGOd)

Returns natural logarithm of !d.

DLOGlOOd)

Returns common (base 10) logarithm of !d.

DABSOd)

Returns absolute value of !d.

DSQRT(ld)

Returns square root of !d.

DSIGNCd)

Returns IDO if !d positive, ODO if zero, - IDO if negative.

Expressions . Expressions may be formed using the above functions, variables and

constants, and the following operators:

Function

addition

subtraction

multiplication

division

exponentiation

Symbol

+

*

/

**

The operators are evaluated in normal algebraic order, e.g., first exponentia-

tion, then unary negation, then multiplication or division, then addition or

subtraction. Within any one hierarchy, operators evaluate left to right.

Parentheses may be used to override the normal evaluation order, as in the

expression ”A*(B+C)," which is different from "A*B+C." Extra parentheses

do not alter the value of the expression; it is a good idea to use them, even if

not truly necessary. Examples of expressions include:

X + 1.0

-B+SQRT(B**2. -

I + 1

3.14159/2.

-X

!DELM!ALPHA-!BETA)

Except for the ** operator, it is never permissable to have two operators

next to each other, i.e., not 2*-2, but -2*2 or 2*(-2). Multiplication may not

be implied by parentheses, e.g., (A+B)(C+D) is illegal, and AB does not imply

A*B, but rather the separate variable AB.

Mode of expression evaluation . Unlike FORTRAN, mixed mode (integer

mixed with real, etc.) is permitted. Whenever two different types are to be

operated upon, the calculation is performed in the "highest" type. Integer is

the lowest type. Real is next, and Double precision is the highest. Note,

however, that this decision is made for each operation, not once for the

entire expression. Thus 1/3 + 1.0 evaluates to 1, because the "1/3" is done

first, and it is done in integer mode. Integer mode truncates fractions, and

does not round. Therefore, the expression "2/3+2/3+2/3" has a value of zero.

Statements . There are seven basic statements that can be used. They are:

^

LET

SET

REPEAT

CONTINUE

MACRO
ENDM

MREF

246

These "keywords" are recognized only in upper case, and every statement

must begin with one of these keywords. Statements are free format; blanks

and tabs are ignored except within strings. Statements may extend over

several records, or more than one statement may be present on a card. All

statements are terminated by a record delimiter which must be present.

LET statement (Arithmetic)

This is the basic assignment statement and is equivalent to the LET

statement of BASIC. The format of a LET statement is:

LET variable = expression;

The expression and the variable may be integer, real, or double precision;

they need not be of the same type. Note that this is an assignment statement

and not an algebraic equality. All of the variables on the right hand side of

the expression must have been previously defined; it cannot be assumed that

variables will default to zero if they are undefined. Some examples of legal

LET statements:

LET HYPOT = SQRT(A**2+B**2);

LET X = X + 1;

LET ROOTl = -B + SQRT(B*B - 4WC);

LETI = i;

LET !XYZ = 1*2;

LET START = 0;

LET Statement (String)

String variables allow characters to be manipulated. String variables may be

used in statements almost anywhere that any other variable type may be

used; exceptions are noted below.

String variables may be used in LET statements. Note that they shall not be

mixed with any other type of variable in a LET statement. Also note that

operations (i.e., +,-, *, etc.) are not possible with string variables. Two forms

of LET statement for string variables are possible:

2U7

LET $str = 23Hstring of 23 characters;

or

LET $stri = $str2;

In the first case, the 23 characters following the H are assigned to the string

variable $str. In the second Ccise, the string "$str2" is copied into "stri."

Examples of these statements include;

LET $title = 3HBox;

LET $label = 6HBottom;

LET $x = $label;

Note that if a string variable appears on the right hand side of the statement,

it must have been previously defined. Spaces are not ignored within a string

constant; they become part of the string. Any ASCII character may be part

of a string.

There is one other form for setting up a string. It involves the STRING

function. The STRING function may only appear in this form. Specifically, it

shall not appear in SET statement argument lists, MACRO statements, or

MREF statements. However, string constants, such as "SHstring," and

variables, such as "$x"
, may appear in SET statements and MACRO

statements.

The form of a STRING function statement is:

LET $str = STRING(expression, format);

where "expression" is any normal integer, real or double precision expression,

"$str" is a string variable name, and "format" is a format field similar to the

format fields usable in a FORTRAN FORMAT statement. The allowable

format fields are;

Iw

Fw.d

Ew.d

Dw.d

248

The effect of this statement is to convert the numeric value of the

expression into characters, i.e., the statement:

LET $PI = STRING(3.14159,F7.5);

will result in the same thing as

LET $PI = 7H3.14159;

Of course, the usefulness of the STRING function is that expressions can be

converted, rather than constants. Thus:

LET X = 1;

LET y = 2;

LET $xyz = STRING(x+y+l,F5.0);

will result in the same thing as

LET $xyz = 5H 4.;

The rules for the format fields follow the standard FORTRAN convention.

"Iw" causes integer conversion, resulting in "w" characters. "Fw.d" causes

real conversion, resulting in "w" characters, with "d" characters after the

decimal point. "Ew.d" results in real conversion, but using an exponent form

"Dw.d" is the same as "E" but for double values. Note that this is one place

where mixed mode is not allowed. The type of format field and the type of

the result of the expression must be identical.

SET statement

The SET statement establishes directory and parameter data entries for the

specified entity. The form is:

SET #ptr = entity type number, argument list;

"//ptr" is a pointer variable, such as "//XYZ"; "entity type number" is an IGES

entity type number, such as "110"; and "argument list" is a group of variables

which are to be written in the parameter data section of the entity.

249

Examples of this type of SET statement:

SET //LINE = 110,X1,Y1,Z,X2,Y2,Z,0,0;

SET //ABC = 228,Z,A+B/C,Y1,X2,Y2+1,0,0;

SET //qwe = 264,1 5Hstrings allowed, X,Y,$this2;

The argument list may contain expressions and may spread over more than

one record. At least one argument must be present, i.e., the argument list may

not be null. The entity type number may not be an expression. It must be an

integer constant. The pointer variable will be assigned a value corresponding

to the sequence number of the directory entry of the entity created.

The format of the argum.ent list written out in the parameter data section

depends on the type of argument in the list. Integer arguments will be

written in integer format, reals as reals, and doubles as doubles. Thus,

functions such as FLOAT, INT, DBLE, etc., might be of use in order to force

an expression that, for example, would normally evaluate to an integer value

to be written as a real number.

"Forward referencing" of pointers is legal in the argument list of a SET

statement. A pointer may appear in the argument list of a SET statement

that comes before the SET statement defining the pointer. The only

restriction is that any pointer so referenced must appear on the left hand side

of one SET statement.

Pointers which appear on the left hand side of more than one SET statement

or those which are located inside of REPEAT loops, should not be forward

referenced.

Note that the STRING function is not allowable in a SET statement -- use a

separate LET statement with a string variable instead.

250

REPEAT statement

The REPEAT statement causes a group of statements terminated by a

CONTINUE statement to be repeated a specified number of times. The form

of a REPEAT statement is:

REPEAT expression;

The expression is evaluated, and the resulting value is the number of times

the statements will be repeated. The expression may be of integer, real or

double type; in the case of real or double expressions, the result is truncated

to determine the repeat count. If the repeat count is zero or negative, the

group of statements is still executed one time.

Examples of REPEAT statements:

REPEAT 3;

REPEAT N+1;

REPEAT 0; (will still go through one time)

REPEAT X+Y;

There is a limit of ten REPEAT statements that may be nested inside one

another.

After a REPEAT statement such as REPEAT N it is legal to alter the value

of N. This does not affect the repeat count. Also note that REPEAT is

unlike a FORTRAN "DO" because there is no variable being incremented on

every pass.

CONTINUE statement

The CONTINUE statement marks the end of a REPEAT group. The form of a

CONTINUE statement is:

CONTINUE;

When a CONTINUE statement is encountered, the repeat count is decrement-

ed by one and checked to see if it is greater than zero. If it is, the

interpreter goes back to the first statement after the most recent REPEAT.

251

If not, then the next statement is jx-ocessed. The number of REPEAPs and

CONTINUE's in a MACRO should be the same. CONTINUE is not implied by

ENDM.

MACRO statement

Tne MACRO statem.ent is used to signify the start of a MACRO defLniticxi.

Tne format of a MACRO statement is:

MACRO, entiw t>pe number, argum.ent list;

wnere "entity t>pe number" is tne entity t\me number of the MACRO, and

"argumient list" is a list of parameters that are to be assigned values at

execution tlm.e. Pne argument list may not be null. The first statement in

every MACRO definition must be a MACRO statement. Note that the

arg-ument list may not contain expressions, only s>mbolic variable names of

tv'pe Lnteger, real, double pi-edsion, string, or pointer.

Tne MACRO statem:ent must be tne first statem&tt of the MACRO and there

may be no other MACRO statements inside a MACRO. Use the MREF

statem.ent to reference other MACROS but defining a MACRO inside of

anotner M.ACRO is meaningless.

Examples of a MACRO statement:

MACRO,61jOC1,Y1,X2,Y2.oA3C,#PR:

MACRO,62C..A.E.C;

macro.6:2,:x,:y,I;

ENDS'! statement

ENDM signifies tne end of a MACRO. Tne fcx'm of an ENDM statement is:

ENDM:

-AI M.ACROs mi'^t nave a~ ENDM statemient as their last statem^t. ENDM

is not imicliec bv tne enc of tne carameter cata section.

MREr er*i

The MREF 5ia*e~er.t Is jsec to refere-ce ar.ci-.er ’.L-.CRC

MACRO cefLriilon. The fonr.at cf a MREF naie~e": Is:

_--5.ce a

'ihere '’p*r" .T.ay be elirjer a pclnser .'ariable or ar. L~seger expressior. T'e

vai’oe refers to the cnrectcr>' er.try b.cck cf tr.e tefI~-ItIo~ of tr.e MACRO
beL~.g referer.cec. ”Er.tit\- t>pe r.-rrloer” Is tr.e er.t:t>- r.pe r._r"ter tf tre

MACRO oeh'-g referer.cec. TArg—

—

ert Esr" Is ar. arg_r".e~.t Est exactly Eke

5>TTibcEc r.actes focrc Ln the MACRO cefEEEoc tee vsl_es cf tr.e

expressions contaLrec in tre .MREF staterr.er.t. sc tra.t exec_tIoc cf tr.e

referencec NiA.CRO wIE start ^ctr. tre accrccriate v=__es. Note trat 'h.REF

foes .ret start exparalcr. cf tre referercec MACRO. Rat.rer It creates ar

ecEt>' ertr> Tthlch .T.ay later ce excarcec. It Is tr.js .ret pcsslb.e for a

M.\CRO bel.rg referer.cef to ~ave acres tc ar.v ef trese '^al_es e.xcect for

t.rose El t.re argtcr.ert Est. Ever t.rer. It Is ret pcsslb.e for t.re ccc_rrer.ee cf

a MREF 5tate~ert to alter ar.v of trese .a*_es.

cxaT.oIes of MRcr stateT.er.ts:

MREF.^ac:.6:COCI.VI.Cl.X2.Y2.3.1:

MREF.53.62I.A.3.3-X ^ -I.6^T.3..:.6HstrE:g.5x:

Attributes . Attributes may be set using the LET statement. The format for

doing so is:

LET /attribute name = expression;

or

LET /attribute name = /HDR;

The first form allows an attribute to be set to any constant value, including

numeric expressions. Note, however, that the use of expressions is discour-

aged. Attributes may also be set to string constants or string variables, but

not to the result of a STRING function.

Examples:

LET /LEV = 1;

LET /VIEW = 3;

LET /LABEL = 6HBottom;

LET /LABEL = $X;

The second form allows restoring an attribute to its default value.

Examples;

LET /LEV = /HDR;

LET /LABEL = /HDR;

The word "/HDR" is the only non-constant that is allowed on the right side of

an attribute assignment statement. The effect is to restore the value of the

attribute to what it was in the directory entry for the instance or, in some

cases, to a specified default value. The defaults are described below.

Attributes may not be mixed with any other variable type nor may they

appear anywhere but in the above two forms of LET statements.

The allowable attribute names and their defaults are given here. A default of

/HDR indicates that the attribute defaults to the value in the directory entry

of the instance.

/LFP /HDR

/LEV /HDR

/VIEW /HDR

/MTX /HDR

/CE 0

/BS /HDR

/SE subordinate

/ET /HDR

/LW /HDR
/PN /HDR

/FORM 0

/LABEL (blank)

/SUB 0

255

4.3.7 Property Entity . The property entity contains numerical or textual data. It

also has a form number to indicate its meaning. Certain generic Property

form numbers are described in the following sections and are expected to be

augmented by others in future versions of this Specification. Form numbers

in the range 5001 - 9999 are left undefined for users.

Note that properties can also point to other properties, as well as participate

in associativities or have attached text in the form of a general note.

4.3. 7.1 Directory Data

ENTITY TYPE NUMBER : 406

4. 3. 7.2 Parameter Data

Parameter Value Format Comment

1 N Integer Number of properties

2 Variable Property values

1+N

2+N NA Integer Number of back

3+N DE Pointer

pointers (to associativ-

ity entities)/text

pointers (to general

note entities)

Pointers to associativ-

2+n+NA DE Pointer

ities or general notes

3+N+NA M Integer Number of properties

4+N+NA DE Pointer Pointers to properties

,+n+na+m DE Pointer

2

3.7J

^.3.7.3,: FORM

St; Valjs

n: N\xrrer

-N1

Fcr e=cr. sr.tlt>- in tre file thct Is or —_IilpZe rs'^e^s. ther

occurrsr.es of t-ie property L-'.sta.-.cs iForrt 1\ ir. tre pete-teter :^te p

propsrty LrstEncs. tre pETE.'r. stsr N1 vzH cortEin tre ~-r-.oer ct
~

follo«ec by = list oi these leves, cEch sr.t:t>' f'Et is tei^rec or this

will contE:-. e poLrtsr (in the le^'sl nelc of c~e tl rectory ertr* ‘ to :

Lr.stEtce. A ciffsrent set oif "ruitiols levels *'11! res_t Ir e differ

LrstE-tce.

•atl! oe E"

tz cf. j^y^s

t zrcrerrv

i.3."3.2 FORM .Vv3!rFR: I Redon Restrlctior.

DEoCR'J^TION

This property Ellon'S entities t'Et cet. oefire regior.s to set ec EpcIIoEtloits

restriction over that redon. Tie rsstrictio'rs *ii ir^CEts i'ener e gi’*er,

apcIicEtions item must ie contp^ete.y ^ ithir. redors '*itt tris property or

completely outside such regfons. Tie restriction Etplies to e_I poirts of entitles

jsec to represent the =pp;icEt!or^ Item Etc to eL! pc.rts *iithin t*>e effect of toe

item i hen Ei properties. S'uch es line akicenirg. E-e Eoplieo.

EEcn of tre pErEmeters in this property vili tave one of toe folioiing three \E._es

indicating the region restriction reievEnt to the EopiicEtio>ns item:

K = 3 No restriction

K = 1 item micst oe insioe re don

K = 2 Item must oe outside redor.

Parameter Value Format Comment

1 3 Integer Three parameters

2 K=0, 1 or 2 Integer Electrical vias

3 K=0, 1 or 2 Integer Electrical components

4 K=0, 1 or 2 Integer Electrical circuitry

4.3.Z.3.3 FORM NUMBER: 3 Level Function

DESCRIPTION

This property provides a code which identifies the applications function of the

level. It also provides a value that can preserve a level-like value relevant to the

source system on a system to system transfer. Entities with the same level value

as the level value of this property are all associated with the applications function

the property describes. Transfer of applications data between systems that use a

level-like parameter to classify functions will be quite common. This property will

serve to guide that transfer. The property can be applied to multiple levels thru

use of an associativity of levels as indicated in the DE definition and IGES-defined

associativity number 2, Definition Levels.

Parameter Value Format Comment

2

FC

SL

Integer

Integer

Integer

Two parameters

Function description code

Source level

4.3.7.3.4 FORM NUMBER: 4 Region Fill Property

DESCRIPTION

This property helps define the functional value of any closed region. It classifies

the region as to its "filled” status. It will be used most often to identify which

region-defining entities are defining a functional region (or a gap in that region)

and which have other purposes. The actual function of the region will likely be

determined in conjunction with level or subfigure membership.

258

I

Parameter

1

2

Value Format

Integer

Integer

DES Integer

^.3.7.3.5 FORM NUMBER: 5 Line Widening

DESCRIPTION

Comment

Two parameters

Fill code:

0 solid fill

1 unfill (i.e., a gap in

solid fill)

2 meshed fill

DE of a section entity

defining linear segments of

meshed fill

(Note: Usage of the

Line Widening property

with the section entity

determines the actual

width of the mesh segments.)

This property defines the characteristics of entities when they are used to define

the location of items such as strips of metalization on printed wiring boards.

The justification flag terminology is interpreted as follows: right justified means

that a defining line segment forms the right edge of the widened line in the

!
direction from first defining point to second. Left justified is the opposite while

center justified indicates that the defining line segment splits the widening exactly

in half.

Figure ^-30 indicates the measurement of the property values.

259

LEFT

JUSTIFIED

CENTER

JUSTIFIED

RIGHT

JUSTIFIED

NO

EKTCNSION

NO

EKTEHSION

NO

EXTENSION

SQUARE

CORNERS

SQUARE

CORNERS

SQUARE

CORNERS

+

0 0

u. ac ^ «A9 tm»

*- z
CM

Z Us
a* 0 UJ
aM«r# Waa z 0 S </9 Z^ ® a

4M »« a
Ui w

mmIK W IMw z e tes X 0
z ^ =>

ZZ 3
U M «> w z s

4^ cL

40 za z K
"9 0 0— 4JK n
w z a

tej X au M «

IM X O^ W Zz . aMOO

260

FIG.

4-30

LINE

WIDENING

EXAMPLES

Parameters Value Format Comment

1

2

3

4

5

6

4.3.7.3.6

5 Integer

Floating Point

Integer

Integer

Integer

Floating Point

FORM NUMBER: 6 Drilled Hole

Five data items

Width of metalization

Cornering code:

0 rounded

1 squared

Extension flag with values:

0 No extension

1 One-half width extension

2 Extension set by parameter

Justification flag with

values:

0 center justified

1 left justified

2 right justified

Extension value if

parameter 4 = 2 (Note:

This value may be negative)

DESCRIPTION

The Drilled Hole property identifies an entity representing a drilled hole through a

printed circuit board. The parameters of the property define the characteristics of

the hole necessary for actual machining. The layer range indicated by parameters

5 and 6 refers to physical layers of the assembled printed circuit board.

261

Parameters Value Format Comment

1 5 Integer Five parameters

2 Floating Point Drill diameter size

3 Floating Point Finish diameter size

4 Integer Plating indication

(0 =no, 1 = yes)

5 Integer Lower numbered layer

6 Integer Higher numbered layer

4.3. 7.3.7 FORM NUMBER; 7 Reference Designator

DESCRIPTION

The Reference Designator property attaches a text string containing the value of a

component reference designator to an entity being used to represent an electrical

component.

Parameter Value Format Comment

1 1 Integer One [parameter

2 String Reference designator text

4.3.7.3.S FORM NUMBER; 8 Pin Number

DESCRIPTION

The Pin Number property attaches a text string representing a component pin

number to an entity being used to represent an electrical component's pin.

Parameter Value Format Comment

1 1 Integer One parameter

2 String Pin Number Value

262

4.3.7.3.9 FORM NUMBER; 9 Part Number

DESCRIPTION

The Part Number property attaches a set of text strings that define the common

electrical part numbers to an entity being used to represent an electrical

component. Null text values in any parameter will imply that the missing value is

not relevant to the transferred data.

Parameter Value Format Comment

1 4 Integer Three parameters

2 String Generic part number

or name

3 String MIL-STD part number

4 String Vendor part number

or name

5 String Internal part number

4.3.7.3.10 FORM NUMBER; 1C1 Hierarchy

DESCRIPTION

The hierarchy property provides the ability to control the hierarchy of each

directory entry attribute. This property is referenced when the directory entry

status digits 7 and 8 are 02.

Set

Parameter Value Format Value Comment

1 NP Integer 7 Seven parameters

2 LF Integer Line font

3 VU Integer View

4 LAB Integer Entity level

5 BL Integer Blank status

6 LW Integer Line weight

7 PEN Integer Pen number

263

8 N Integer Number of back pointers/

text pointers

NP+N+1 DE Pointer Pointer to associativities

or general notes

NP+N+2 DE Pointer

NP+M+3 M Integer Number of properties

NP+N+M + 1 DE Pointer

Acceptable values for parameters 2 through 7 are 0 and 1.

0 = use directory entry attribute value

1 = use the directory entry attribute of the subordinate entity

264

4.3.8 Subfigure Definition Entity . The subfigure definition entity is designed to support

the concept of a subpicture (if one equates drawing creation with graphics picture

processing). This entity permits a single definition of a detail to be utilized in

multiple instances in the creation of the whole picture. The contents of the

subfigure include a set of pointers to any combination of entities and other

subfigures. DEPTH indicates the actual nesting of the subfigures. If DEPTH=0,

the subfigure has no references to any subfigure instances. A subfigure cannot

reference a subfigure instcince that has equal or greater depth. A DEPTH=N

indicates there is a reference to a subfigure instance with DEPTH N-1.

4.3.8.1 Directory Data

ENTITY TYPE NUMBER : 308

4.3. 8.2 Parameter Data

Parameter Value Format Comment

1 DEPTH Integer Depth of subfigure (indicat-

ing the amount of nesting)

2 NAME String Subfigure name

3 N Integer Number of entities in the

subfigure

4 DE Pointer Pointers to the directory en-

tries for the associated

entities

•

N+3 Pointer

N+4 NA Integer Number of back pointers (to

associativities)/text pointers

(to general notes)

N+5 DE Pointer Pointers to associativities or

general notes

NA+N+4 DE Pointer

NA+N+5 M Integer Number of properties

NA+N+6 DE
•

Pointer Pointers to properties

M+N+NA+5
•

DE

•

•

Pointer

265

4.3.9 Subfigure Instance Entities . Each occurrence of a subfigure is defined by a

subfigure instance entity. This may exist as a single instance or as a two

dimensional array of the same subfigure.

Before placement by the subfigure instance, each entity is operated upon by

any defining matrix which may be associated with the individual entity. All

the entities are then scaled about the origin of the defined subfigure by

multiplying their model space coordinates by the scale factor in parameter 5.

If a matrix reference is specified by the subfigure instance, it is then applied

to the entities in the subfigure. The model space placement of the subfigure

instance is then used to translate the subfigure into the model space of the

file. See Figure 4-31 for an example of the placement of a subfigure.

In some applications of interactive graphics, entities exist which act as both

subordinate entities in the sense that they are part of a subfigure definition

and as independent entities in the sense that each subfigure instance results

in an entity, some properties of which differ from those of the same entity in

other instances. These entities are referred to as multiply-instanced.

Examples are Text Node and Connect Node.

The entity use flag (digits 5-6 of field 9 in the directory entry) will be set to

a value of 04 to designate such an entity. This value implies that the entity

is being used as a logical construct rather than an actual entity.

Each multiple-instancing entity is defined as an associativity. Class 1 of the

associativity contains pointers to any geometry associated with the entity.

The first pointer in class 1 always points to the original geometry. Additional

pointers point to additional instances of the geometry.

4. 3. 9.1 Singular Subfigure Instance Entity. This entity defines the occurrence of a single

instance of the defined subfigure.

266

01

267

FIG.

i|-31

SUBFIGURE

ORIGIN

4.3.9.1.1 Directory Data

ENTITY TYPE NUMBER : 408

4.3.9.1.2 Parameter Data

Parameter Value Format Comment

1 DE Pointer Pointer to subfigure
definition entry

2 X Floating Point Model space placement of

subfigure

3 Y Floating Point

4 Z Floating Point

5 s Floating Point Scale factor

6 N Integer Number of back pointers (to

associativity entitiesVtext

pointers (to general note
entities)

7 DE Pointer Pointers to associativities or

general notes

6+N DE Pointer
7+N M Integer Number of properties

8+N DE Pointer Pointers to properties

•

7+N+M
«

DE Pointer

4.3. 9.2 Rectangular Array Subfigure Instance Entity. The rectangular array produces

copies of an object called the base entity, arranging them in equally spaced

rows and columns. The following type of base entity can be selected: group,

subfigure instance, point, line, circular arc, conic arc, rectangular or circular

array. The number of columns and rows of the rectangular array, together

with their respective horizontal and vertical displacements are given. Also,

the coordinates of the lower left hand corner for the entire array is

indicated. This is where the first entity in the reproduction process is placed

and is called position No. l.The successive positions are counted vertically up

the first column, then vertically up the second column to the right, and so on.

The entire array can be tilted with respect to the screen by an angle of

rotation of the horizontal rows about the origin. This angle is measured in

degrees counterclockwise from the positive X-axis.

A DO-DON’T flag enables one to display only a portion of the array. If the

DO flag is chosen, half or fewer of the elements of the rectangular array are

to be defined. If the DON'T flag is chosen, half or more of the elements of

the rectangular array are to be defined.

268

^.3.9.2.1 Directory Data

ENTITY TYPE NUMBER: 412

4.3. 9.2. 2 Parameter Data

Parameter Value Format Comment

1 DE Pointer Pointer to base entity

2 SC Floating Scale factor

3 X Floating Coordinates of point

4 Y Floating to be used as lower

3 Z Floating left hand corner of

array
6 NC Integer Number of columns
7 NR Integer Number of rows
8 DX Floating Horizontal distance

between columns
9 DY Floating Vertical distance be-

tween columns
10 AX Floating Rotation angle in de-

grees
11 LC Integer DO-DON'T list count =L.

(L=0 indicates all to be
displayed

12 IF Integer DO-DON'T flag

(DO=0; DON'T=l
13 N1 Integer Position number of

entity to be processed

(DO), or not to be pro-

cessed (DON'T)
10+LC NK
K(number of entries) = LC+10

Integer

K+1 N Integer Number of backpointers

(to associativity

entities)/text pointers

(to general note

entities)

K+2 DE Pointer Pointers to associativ-

ities or general notes

K+N+1 DE Pointer

K+N+2 M Integer Number of properties

K+N+3
•

DE
•

Pointer Pointer to property

•

•

M+(M)+2 DE Pointer

•

•

269

r<^

cj-

VO

CO

ON

4.3.9.3 Circular Array Subfigure Instance Entity

The circular array produces copies of an object called the bcise entity, arranging

them around the edge of an imaginary circle whose center and radius are

specified. The following type of base entity can be selected: group, point, line

circular arc, conic arc, rectaingular or circular array. The number of times that

the base entity is replicated is given, together with the angle the first replicated

entity makes with the positive X-axis running through the center of the

imaginary circle. This angle is called the start angle, and the location of this

replicated entity is called position No. 1. The successive positions follow a

counterclockwise direction around the imaginary circle and are distributed

according to a given delta angle.

A DO-DON'T flag enables one to display only a portion of the array. If the DO-

flag is chosen, half or fewer of the elements of the circular array are to be

defined. If the DON’T-flag is chosen, half or more of the elements of the

circular array are to be defined.

4.3. 9.3.1 Directory Data

ENTITY TYPE NUMBER: 414

4. 3. 9.3.2 Parameter Data

Parameter Value Format Comment

1

2

10

DE Pointer Pointer to base entity

NE Integer Total number of repli-

cated entities

X Floating Point Coordinates of center

Y Floating Point of imaginary circle

X Floating Point

R Floating Point Radius of imaginary

circle

AS Floating Point Start angle in degrees

AD Floating Point Delta angle in degrees

LC Integer DO-DONT list count =

L.

(L=0 indicates all repli-

cated entities to be dis-

played)

IF Integer DO-DON’T Flag

(DO=0; DON'T=l)

11 N1 Position number of en-

• •

tity to be processed

(DO), or not to be pro-

cessed (DON’T)

• •

10+LC NK

K(number of entries) = LC+10

K+1 N Integer Number of backpointers

K+2 DE Pointer

(to associativity

entities)/text pointers

(to general notes)

Pointer to either an

K+N+1 DE Pointer

associativity or to a

general note

K-N+2 M Integer Number of properties

K+N+3
•

DE
•

Pointer

•

Pointer to property

•

•

K+N+M+2 DE

•

Pointer

271

4.3.10 Text Font Definition Entity . This entity defines the appearance of charac-

ters in a text font. The data describing the appearance of a character may

be located by the Font Code (FC) and the ASCII character code. This entity

may describe any or all the characters in a character set. Thus, this entity

may be used to describe a comolete font or a modification to a subset of

characters in another font. When this entity is a modification to another

font, the Supercedes Font value (Field 3) indicates which font the entity

modifies. This value is an integer which indicates the font number to be

modified or the negative of the pointer value to the directory entry of

another text font definition entity. When this entity modifies another font,

i.e.. Field 3 references another font, the definitions in this entity supercede

the definition in the original font. For example, a complete set of characters

may have their font definition specified by this entity. Another text font

definition entity could reference the first definition and modify a subset of

the characters.

Each character is defined by overlaying an equally spaced square grid over

the character. The character is decomposed into straight line segments

which connect grid points. Grid points are referenced by standard cartesian

coordinates. The position of the character relative to the grid is defined by

two points. The character's origin point is placed at the origin (0,0) of the

grid and defines the position of the character relative to the text origin of

that character. The second point defines the origin point of the character

following the character being defined. This allows the spacing between

characters to be specified. Construction of text strings consists of placing

the character origin of the first character at the text string origin and

placing subsequent character origins at the location specified in the previous

character as the location of the next character's origin.

The parameterization of the character appearance is described by the motion

of an imaginary pen moving between grid points. Commands to move the pen

reference the grid location to which the pen is to move. The pen may be

"lifted" such that its movement is not displayed. The representation of the

movement of the pen is a sequence of pen commands and grid locations. The

pen is assumed to be down at the start of the stroking. Each movement of

the pen is represented by a pen updown flag and a pair of integer grid

coordinates. The pen up/down flag defaults to pen down. A flag value of 1

272

means the pen is to be lifted (i.e., display off) and moved to the next location

in the sequence. Upon arrival at this location the pen is returned to a "down"

position (i.e., display on)

The grid size is related to the text height through the scale parameter. This

parameter defines how many grid units equal one text height unit.

4.3.10.1 Directory Entry

ENTITY TYPE NUMBER : 310

4.3.10.2 Parameter Data

imeter Value Format Comment

1 FC Integer Font Number

2 FNAME String Font Name

3 SF Integer Number of the font which
this definition supercedes

4 SCALE Integer Number of grid units which
equal one text height unit

5 N Integer Number of characters in

this definition

6 ACl Integer ASCII code for first character

7 NXl Integer Grid location of the next

character's origin

8 NYl Integer

9 NMl Integer Number of pen motions for

first character

10 PFl^ Integer Pen up flag

0 = Down, 1 = Up

11 Xli Integer Grid location to which

the pen is to move

12 Y‘l Integer

273

Parameter Value Format Comment

9+NMl*3 AC2 Integer ASCII code for second character

10+NM1*3 NM2 Integer Number of pen motions
for second character

N

-4N+/ j 3*NMi
i=l

NA Integer Number of back pointers (to

associativity entities)/text

pointers (to general note
entities)

N

7+4N+E 3*NMi DE
i=l

Pointer Pointers to associativities or

general notes

N

ENA+7+4N+/ ^ 3*NMi M
i=l

N

ENA+8+4N 3*NMi DE
i=l

Integer

Pointer

Number of properties

Pointers to properties

M+NA+*+4N+

N

E 3*NMi
i=l

DE Pointer

An example of this entity using the character in Figure 4-32 is

FC 1

FNAME 8H

SF

SCALE 8

N 60

ACl 65

NXl 11

NYl 0

NMl 4

PFl 0

XI 8

Y1 4

PF2 0

X2 8

Y2 0

PF3 1

X3 2

Y3 2

PF4 0

X4 6

Y4 4

8H STANDARD

In the parameter section of the IGE5 file it would look like;

1,8HSTANDARD„8,60,63,11,0,4„8,4„8,0,1,2,4„6,4....

Figure 4-33 provides another example.

2T5

FIG, il-32 EXAMPLE OF A CHARACTER DEFINITION

276

4-< 4 4 4 4 44 4

4 4 444444 44444444
4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 44444444444 4 4

SCALE
4 4

4 4

4 4

4 4

4444444 44
4 4 4 4 4 4

4 4 4 4 4 4

(3 ,
2)

4 4 4

4 4

4-:^
GRID
ORIGIN

4 4 4 4

4 4 4 4

4 4

4 4

(5 .2)

4 4

(5 .0)4

(5.- 1)^

4 4 4 4

4 4

4

(9 .0)

©,

4 4

4 4

ORIGIN OF
NEXT CHARACTER

4 4 4 4

4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4

FIG. 4-33 SECOND CHARACTER DEFINITION EXAMPLE

27T

^.3.11 View Entity . The view entity defines a specific "look" of the model. Since

the "look" is taken to be axonometric, only a viewing direction need be

specified. This is specified by means of a defining matrix of the form found

in the transformation matrix entity. The default viewing direction is along

the positive Z axis toward the X, Y plane in model space. In its simplest

form the view entity consists of a view number and a pointer to a defining

matrix (in field seven of the view entity directory entry.)

In more complicated cases, the view entity also defines a scale and

optionally, a clipping box which control the projection of the view onto a

drawing plane. Following clipping and rotation, the scale parameter multi-

plies all model coordinates before they are translated and projected onto the

X, Y drawing plane.

If a clipping box is specified within model space, each entity is clipped at the

surface of the clipping box before scaling. This allows only portions of the

model to be shown in a particular view. The viewing box is specified by 4

pointers to entities defining the sides and possibly 2 additional entities

defining the front and back planes. (The entities defining the sides will be

plane entities .) The front and back are plane entities. If the front and back

are not specified, the clipping box is assumed to extend from plus to minus

infinity. Depending on the form of the view entity, the parameter list can

have 1, 2, 6, or 8 members, exclusive of associativity and property pointers.

Parameters two through eight that do not apply will be zero.

The clipping planes, when they are provided, must be consistent with the

viewing definition matrix. That is, the front and back clipping planes must be

normal to the viewing direction.

The view entity makes possible the selection of display characteristics for

each entity (font, weight, pen, etc.). These attributes are specified in a

views visible (form 4) associativity associated with a given entity. If a

display attribute is not specified, its default is 1. If no views visible

associativity exists for an entity, the entity is displayed with default

attributes in all views.

2J8

4.3.11.1 Directory Data

ENTITY TYPE NUMBER: 410

4.3.11.2 Parameter Data

Parameter Value Format Comments

1 VNO Integer View number

2 SCALE Floating Point Scale factor

3 FACl , Pointer Pointer to left

side of viewing
box

4 FAC2 Pointer Pointer to top of

viewing box

5 FAC3 Pointer Pointer to right

side of viewing
box

6 FAC4 Pointer Pointer to bottom
of viewing box

7 BAK Pointer Pointer to back of

viewing box

8 FRO Pointer Pointer to front

of viewing box

9 N Integer Number of back
pointers (to asso-

ciativity

entities)/text

pointers (to

general note
entities)

10 DE Pointer Pointers to asso-

ciativities or

• • •

general notes

•

•

9+N

•

DE

• ^

Pointer

279

Parameter Value Format Comments

10+N M Integer Number of properties

11+N DE
•

•

Pointer

•

Pointers to properties

10+N+M

•

DE Pointer

1

280

APPENDIX A

SPLINE REPRESENTATIONS

A1 INTRODUCTION

Section 3 of the Specification includes four different types of spline representa-

tions:

a. A Parametric Piecewise Cubic Polynomial (for curves)

b. A Rational B-Spline Curve

c. A Grid of General Bicubic Patches (for surfaces).

d. A Rational B-Spline Surface

Most of the spline types used in CAD/CAM systems can be mapped into these

representations without change in shape. Spline types supported in Section 3 of

this Specification include parametric cubics, piecewise linear, Wilson-Fowler,

modified Wilson-Fowler, rational and non-rational B-splines, rational and non-

rational cartesian product B-spline surfaces, and Coons' patches. Spline types not

supported include splines under tension and extended Coons' patches.

A2 SPLINE FUNCTIONS

In Section 3.8 of this Specification, spline curves are represented by a number of

cubic spline functions, one for each of the X,Y,Z coordinates. Each cubic spline

function S(u) is defined by

a. N: The number of segments,

b. t(l),...,t(N+l): The endpoints and the breakpoints separating the cubic

polynomial segments,

c. a(i),b(i),c(i),d(i), i=l,...,N+l: The coefficients of the polynomials representing

the spline in each of the N segments (the N+lst segment is not required to

define the spline, but is included to make the endpoint value and derivative

available without evaluating the polynomial).

28l

d. CTYPE: The spline type. (l=linear, 2=quadratic, 3=cubic, 4=Wilson-Fowler,

5=Modified Wilson-Fowler, 6 = B-spline).

e. H: Degree of continuity.

To evaluate the spline at a point "u", first determine the segment containing

"u", i.e., the segment ”i" such that t(i) u t(i+l), then evaluate the cubic

polynomial in that segment, i.e., compute

S(u) = A(i) + B(i)*(uu) + C(i)*(uu)**2 + D(i)*(uu)**3

where uu = u-t(i).

The polynomial is written in terms of the relative displacement uu (rather

than u) so that the values of the spline at the breakpoints can be read directly

out of the representation (i.e., S(t(i)) = A(i), i=l, ..., N+1). Computations

using the relative displacement also have less floating-point roundoff error.

This particular "piecewise polynomial" form is only one of many used to

represent the spline segments in CAD/CAM systems. Other representations

employed include:

a. End points E1,E2 and end slopes S1,S2: The spline can be evaluated

using the "Hermite" basis (see Ref. 2, page 59).

b. Values at four points: The spline value can be computed from the

Lagrange or Newton interpolation formulae (see Ref. 2).

c. End points and "control" points: There are a number of schemes for

computing splines from control points which will not be described here.

Reference 2 gives techniques for conversion between these representations.

282

Splines can also be represented as a linear combination of the B-spline basis

functions. In CAD/CAM systems, B-splines have been used directly in curve

fitting (e.g., the B-spline Bezier polygon (Ref. 4) and indirectly in various

spline calculations (e.g., computing a cubic spline interpolate). For every set

of breakpoints t(l),...,t(N+l) and degree of continuity H, a set of B-spline

functions B(l,u),B(2,u),...,B(n',u) can be constructed (see Ref. 2). Then, for

any piecewise polynomial S(u) with these breakpoints and continuity there is a

set of B-spline coefficients a(l),..., a(n’) such that S(u) can be represented as

a linear combination of these B-splines

S(u) = a(l)*B(l,u) + a(2)*B(2,u) + ... + a(n')*B(n',u)

where n' = (N-l)*(3-H)+4.

B-splines Ccin be computed from piecewise polynomials and vice versa (see

p.ll6 of Ref. 2 and subroutine BSPLPP in Ref. 2).

Several other types of spline representations (e.g., cardinal bases) have been

employed, but they are much less common and do not appear to present a

problem for this Standard.

A3 SPLINE CURVES

Since curves in CAD/CAM problems are frequently many-valued, spline

functions cannot represent such curves adequately. The most common

approach to curve fitting is to parameterize the curves, i.e., to represent

each curve as either two or three spline functions (one for each coordinate)

X(u) = Sx(u),

Y(u) = Sy(u), and

Z(u) = Sz(u)

which sketch out the curve as the parameter u varies from t(l) to t(N+l). All

of the spline function representations of the previous section can be

generalized to parametric curves and the algorithms for converting spline

283

curves from one representation to > the other follow easily from multiple

applications of the corresponding function conversion algorithms.

Wilson-Fowler Curves; In the early sixties, the Wilson-Fowler spline (a

special case of parametric cubics) was developed for curve fitting (see Ref.

1)). It is still used in many turnkey drafting systems. In the Wilson-Fowler

representation, each spline segment is defined in a separate coordinate

system whose X-axis begins at one endpoint of the segment and passes

through the other. Each spline segment is then defined by a cubic spline

function Swf(x) and the coordinates of the two endpoints. These Wilson-

Fowler splines can be converted to splines defined in Section 3.8 by rotating

the parametric spline (u,Swf(u)) back into the current coordinate system;

however, most types of splines defined in Section 3.8 cannot be converted to

Wilson-Fowler splines.

A4 RATIONAL B-SPLINE CURVES

A rational B-spline curve is expressed parametrically in the form

K

W(i)P(i)bj(t)

K

W(i)b.(t)

1=0

where the notation is interpreted as follows.

The W(i) are the weights (non-zero real numbers).

The P(i) are the control points (points in R).

The b. are the B-spline basis functions. These are defined as soon as we

specify their degree
,
M, and underlying knot sequence , T.

284

We do this as follows:

Let N = K - M + 1. Then, the knot sequence consists of the non-decreasing

set of real numbers.

T(-M), T(0), T(N), T(N+M)

The curve itself is parameterized for V(0)£t^V(l) where

T(0)i V(0)< V(l)i.T(N).

The B-spline basis functions b. are each non-negative piecewise polynomials

of degree M. The function bj is supported by the interval [j(i-M), T(i+lf| .

Between any two adjacent knot values T(j), T(j+1) the function can be

expressed as a single polynomial of degree M.

For any parameter value t between T(0) and T(N) the basis functions satisfy

the identity

K

E
i=0

If the weights are all positive, the curve G(t) is contained within the convex

hull of its control points.

There are a number of ways to precisely define the B-spline basis functions.

A recursive approach proceeds as follows.

Let N(t|t- denote the B-spline basis function of degree m supported

by the interval ft. , t; ^

With this notation, the degree 0 functions are simply characteristic functions

of a half-open interval.

285

N(t a,b) = 1 if b

0 otherwise

The degree k functions are defined in terms of those of degree k-1.

1
~

(t-SQ) N(t
I
Sq,...,s,^_i (s,^-t) N(t

I

Sp...,s,^)

+

Vi‘^0

Since some of the denominators will be 0 in the case of multiple knots, we

adopt the convention 0/0 = 0 in the above definition.

Rational Bezier curves (and surfaces), popular in the European CAD/CAM

community, can be expressed exactly as rational B-spline curves (and

surfaces). (See Ref. 7)

A5 SPLINE SURFACES

The spline surface defined in Section 3.9 is the analog of the spline curve,

i.e., it is also pieced together out of other primitive functions. The surface is

a grid of parametric bicubic patches defined by:

a. M: The number of grid lines in u.

b. tu(l),...,tu(M + l): The grid lines in u.

c. N: The number of grid lines in v,

d. tv(l),...,tv(N+l): The grid lines in v.

e. Ax(i,j),Bx(i,j),...,Ay(i,j),...,Az(i,j),...,i=l,...,M+l;j=l,...,N+l; The (M+1)*(N+1)

sets of 3*16 coefficients defining the bicubic polynomial for each of the

three coordinates of the patch. As for the parametric curve, additional

patches not strictly required to define the surface are included to make

the edge values and derivatives available without explicitly evaluating

the polynomicii.

286

f. CTYPE: The spline type. (Ulinear, 2=quadratic, 3=cubic, 4=Wilson-

Fowler, 5=Modified Wilson-Fowler, 6 = B-spline),

g. PTYPE: The patch type. (l=Cartesian product, 0=unspecified), and

h. H: Degree of continuity.

To evaluate the spline at a point "u,v", first determine the patch containing

the point "u,v" in the parameter grid, i.e., the patch ”i,j" such that

tu(i) i. u £ tu(i+l) and tv(j)£. v £.tv(j+l), then evaluate the bicubic polynomial

in that patch, i.e., compute

X(u,v) = Ax(i,j) *vv**0 *uu**0 + Bx(i,j) *vv**0 *uu**l

+ Cx(i,j) *vv**0 *uu*-*2 + Dx(i,j) *vv**0 *uu**3

+ Ex(i,j) *vv**l *uu**0 + Fx(i,j) *vv*»l *uu**l

+ Gx(i,j) *vv**l *uu**2 + Hx(i,j) *vv**l *uu**3

+ Kx(i,j) *vv**2 *uu'*"*‘0 + Lx(i,j) *vv**2 *uu**l

+ Mx(i,j) *ww**2 *uu**2 + Nx(i,j) *vv**2 *uu**3

+ Px(i,j) *vv**3 *uu**0 + Qx(i,j) *vv*-*3 *uu**l

+ Rx(i,j) *vv**3 *uu**2 + Sx(i,j) *w**3 *uu**3

Y(u,v) = Ay(i,j) . . .

Z(u,v) = Az(i,j) . . .

where uu = u - tu(i) and vv = v - tv(j)

The patches in the spline surface are equivalent to the bicubic surface patch

(or the Coons' patch, see p. 170, Ref. 5 for the conversion details). The

parameters of the Coons' patch are given as the corner points, corner slopes,

and twist vectors (similar in spirit to the point/slope representation for

curves).

287

However, because the Specification spline is more general than splines found

in many CAD/CAM systems (e.g., the APT Wilson-Fowler spline), shape-

preserving transformations out of the Specification spline format may not be

possible. Difficulties encountered include restrictions such as uniform

breakpoint spacing and smooth second derivatives. In these cases, the

conversion must be accomplished by an interpolation or smoothing process.

A6 RATIONAL B-SPLINE SURFACES

A rational B-spline surface is expressed parametrically in the form

G(s,t) =

K1 K2

E L
i^n i=n

K1 K2

E r
i=0 j=0

W(i,j)P(i,j)b.(s)b.(t)

W(i,j)b.(s)bj(t)

where the notation is analogous to that used for rational B-spline curves.

The W(i,j) are the weights (non-zero real numbers).

The P(i,j) are the control points (points in R).

The b- are the B-spline basis functions of degree M 1 determined by the knot

sequence S(-M1),...,S(N1+M1). The b. are the B-spline basis functions of

degree M2 determined by the knot sequence T(-M2),...,T(N2+M2). Here,

N1=K1-M1+1 and N2=K2-M2+1.

The surface itself is parameterized for U(0)is-U(l) and for V(0)ltlv(l)

where S(0)lU(0)< U(l)£ S(N1) and T(0)i.V(0)< V(l)iT(N2). (See Ref. 7)

A7 REFERENCES

(1) APT Computer System Manual. Volume 2 - Subroutine Library. IIT

Research Institute, 1968.

288

(2) C. deBoor. A E’ractical Guide to Splines. Springer-Verlag, 1978.

(3) S. A. Coons. "Surfaces for Computer Aided Design of Space Forms." MIT

Project MAC TR-41, June 1967.

(4) W. J. Gordon and R. F. Riesenfeld. "B-Spline Curves and Surfaces." in R.E.

Barnhill and R. F. Riesenfeld, ed. Computer Aided Geometric Design.

Academic Press, 1974.

(5) D. F. Rogers and J. A. Adams. Mathematical Elements for Computer

Graphics. McGraw-Hill, 1976.

(6) I. D. Faux and M. J. Pratt. Computational Geometry for Design and

Manufacture, John Wiley and Sons, 1979.

(7) Fuhr, Richard. A Tutorial on the Mathematical Details of Rational B-

Splines. National Bureau of Standards, (to come).

APPENDIX B

ELECTRICAL EXAMPLE

It is the purpose of this Specification to transfer information from processor to processor

in a computer-aided design and manufacturing system. As such, this Specification must

be able to completely represent a design at any point in its development.

As a "thought experiment" to test the hypothesis that the Standard can, in fact, represent

a product design throughout its lifetime, let us examine a simple electrical circuit shown

in Figure Bl. We will consider the signal string running from Pin R1 to Pin 6 of device

Dl. It should be pointed out that this scenario is only one of many electronic design

scenarios possible. A more likely one in terms of today’s capabilities would start with a

finished printed wiring board design.

At the earliest stage in its design, the signal string is represented only in its logical sense.

Figure B2 is a model of an associativity representing the logical signal string. Class 1 of

the signal string associativity shows its logical structure. In Figure E2, this is the branch

in the middle marked R1 and Dl-6. The signal name itself, SRI, is represented in the

associativity by means of a property.

The logical structure of the string is sufficient, for example, to represent the information

necessary for simulating the circuit. That is, if all signal strings were represented as in

class 1 of Figure B2, a logic simulator could be run which would simulate the circuit and

allow the engineer to verify that the circuit did, in fact, accomplish the design goals.

Similar information is necessary for generating test patterns to be applied to the

completed circuit to verify that the components and wiring in the circuit are, in fact,

correct and that the circuit functions as designed.

At the next stage in the design, our signal string and others like it are represented as a

schematic diagram. It is a simple matter to extend the associativity in Figure B2 to pick

up the details of the schematic diagram. In the case of SRI, this is represented by class 2

on the left-hand side marked "schematic goemetry."

Each of the pointers represented in Figure B2 as blanks would point to an element in the

signal string, i.e., a specific line in the schematic. The complete design, up to this point,

is represented by the schematic as shown in Figure Bl plus an associativity, such as the

one shown in Figure B2 for SRI, representing each of the signal strings in the schematic.

290

291

FIG.

B-1

SCHEMATIC

>-

292

FIG.

B-2

SIGNAL

ASSOCIATIVITY

Up to this point, we have assumed that the information necessary for constructing the

logical signal string existed before the schematic diagram was drawn. Our argument

would be equally valid if the schematic were drawn first and the logical signal strings

derived from it. The point is that both types of information—the logical signal strings and

the schematic diagram— cire essential to the design and must be represented both by the

design database and by a transmission medium, such as the Standard, which is intended to

transfer information in and out of this database.

If the associativities were produced first, they could come from such sources as a higher-

level design language or a set of boolean equations. If the schematic is produced first, the

information necessary to produce the associativities can be derived directly from the

schematic automatically by the interactive graphics system. There remains the question

of the signal names. In some cases these are meaningful to the user, and should be

entered interactively. In other cases, it is perfectly permissible to enter them

automatically using names generated by the design system.

The next step in the design of the circuit is partitioning the logical components (the

devices represented in this schematic) to physical components which will eventually be

placed on the finished printed wiring board. Such a procedure is called partitioning, and

the results of the partitioning process are represented in an associativity such as shown in

Figure B3. This relates the physical component U 1 to the three logical components, Nl,

N2, N3. Note that gate N4 is a part of physical component U2, the remainder of U2 being

unused. The pointers in the associativity represented in Figure E3 all point to subfigures.

The next step in a printed wiring board design is the placement and layout of the printed

wiring board itself. The result of this step is shown in Figure B4. The signal string we are

considering runs from Pin R1 to Pin 6 of physical device U3. This is shown dashed in

Figure B4. The pointers represented on the right-hand branch (class 3) of the associativity

shown in Figure B2 would each point to a segment of this wire run.

The entire board of Figure B4 would be represented in a similar fashion with the set of

associativities built up in the construction of the schematic diagram pointing to the

appropriate wire runs on the board using class 3. Thus, information is available for doing

comparisons between the board and the schematic and thereby verifying that the

implemented board agrees with the schematic and the set of logical signal strings.

293

29^

FIG.

B-3

PARTITIONING

ASSOCIATIVITY

ou>
— M n -T — — N

295

<-D

U-

I

Ail of the information described in this example can be placed in the single Standard

file. The method of doing so is to present the information in Figure B1 as a single

view, the information in Figure B4 as a single view, aind then, if desired, present the

appropriate view on each of two drawings. Such a mechanism serves to segregate the

information into either schematic diagram or board layout, but at the same time

maintains the information in the same data base so that the associativities which

point to the two drawings can function appropriately.

296

APPENDIX C

PART FILE EXAMPLES

This appendix contains two sample parts encoded in the Specification format. The sample

part which is shown in Figure Cl is a two-dimensional representation of a mechanical part

comprised of lines, circles, a linear dimension, a radius dimension, and an angular

dimension. The drafting entities, by definition, are made up of witness lines, general

notes and leader entities.

The encoded file is shown in Table Cl. On line P0000020 of the table, the degree symbol

is shown as a part of the angular dimension entity. This symbol is represented by the

octal constant 37 as dictated by the font code of zero; see Figure 4-11. Note that the

entities with entity type number 500 are also used to define the geometry and to add face

topology to the file.

The sample part shown in Figure C2 is an unknown application which has been included to

demonstrate the use of associativities and properties. It consists of an outline (entities 3-

18) together with several line segments and points in the interior. These interior line

segments and points are described by properties 5001-5003, as well as by associativity

5001. Note that each of the segments is represented as a composite entity.

The encoded file is shown in Table C2.

I

1

29T

1

II

298

FIG.

C-1

SAMPLE

PART

TABLE C-1 ENCODED FILE

SAMPLE PART
11H112C87901.5, 11HIGES SAMPLE, 6HME1 .00, 1H1 , 16,8,24,8 ,56, 1 1H112C87901

,0,1,4HINCH,1,. 01,13H800128 .093243, . 1345 , 800, 5HJ. DOE ,8HGRAPHICS;
12400000001 1 000000
124 1 MTX
11000000002 1 1 10 0 000000
110 0 1 1 L

11000000003 1 1 10 0 000000
110 0 1 1 L

11000000004 1 1 10 0 000000
110 0 1 1 L

11000000005 1 1 10 0 000000
110 0 1 1 L

11000000006 1 1 10 0 000000
110 0 1 1 L

11000000007 1 1 10 0 000000
110 0 1 1 L

11000000008 1 1 10 0 000000
110 0 1 1 L

11000000009 1 1 10 0 000000
110 0 1 1 L

11000000010 1 1 10 0 000000
110 0 1 1 L

1100000001

1

1 1 10 0 000000
110 0 1 1 L

10000000012 1 1 10 0 000000
100 0 1 1 c

11000000013 1 1
• 10 0 000000

110 0 1 1 L

21200000014 1 1 1200000055 0 000101
212 0 1 1

21400000015 1 1 1200000055 0 000101
214 0 1 1 1

21400000016 1 1 1200000055 0 000101
214 0 1 1 1

10600000017 1 1 1200000055 0 000101
106 0 1 1 40

21600000019 1 1 1200000055 0 000001
216 0 1 1

21200000020 1 1 1200000055 0 000101
212 0 1 1

21400000021 1 1 1200000055 0 000101
214 0 1 1 1

21400000022 1 1 1200000055 0 000101
214 0 1 1 1

S0000001
.5G0000001

G0000002
D0000001
1D0000002
D0000003
1D0000004
D0000005

2D0000006
D0000007
3D0000008
D0000009
4D0000010
D000001

1

5D0000012
D0000013
6D0000014
D0000015

7D0000016
D0000017

8D0000018
D0000019
9D0000020
D0000021

10D0000022

D0000023
1D0000024
D0000025

11D0000026
D0000027
D0000028
D0000029
DOOOOO 3O

DOOOOO 3 I

DOOOOO32
DOOOOO 33
DOOOOO 34
DOOOOO 35
DOOOOO 36
DOOOOO 37
DOOOOO 38
DOOOOO 39
D0000040
D0000041
D0000042

299

10600000023 1 1 1200000055 0 000101 D0000043
106 0 1 1 40 D0000044
20200000025 1 1 1200000055 0 000001 D0000045
202 0 1 1 D0000046
21200000026 1 1 1200000055 0 000101 D0000047
212 0 1 1 D0000048
21400000027 1 1 1200000055 0 000101 D0000049
214 0 1 1 1 D0000050
22200000028 1 1 1200000055 0 000001 D0000051
222 0 1 1 D0000052
10000000029 1 1 10 0 000000 D0000053
100 0 1 1 c 2D0000054
41000000030 1 00000001 000001 D0000055
410 1 D0000056
10600000018 1 1 1200000055 0 000101 D0000057
106 0 1 1 40 DOOOOO58
10600000024 1 1 1200000055 0 000101 D0000059
106 0 1 1 40 D0000060

124.1.0.

0.0.0.0.0.0.0.0.1.0.0.0.0.0.0.0.0.0.1.0.0.0;110.2.0175.1.4795.0.

0.4.4385.1.4795.0.0;110.4.4385.1.4795.0.

0.4.4385.2.7535.0.0;110.4.7785.3.0935.0.

0.5.9180.3.0935.0.0;
110.5.918.3.0935.0.

0.5.918.3.9005.0.0;
110.5.2455.4.4385.0.

0.2.0175.4.4385.0.0;
110.2.0175.4.4385.0.

0.2.0175.1.4795.0.0;
110.2.421.1.883.0.

0.3.228.1 .883.0.0;
110

. 3 . 228
.

1 . 883 .
0

.

0
. 3 . 228

. 3 . 228
.
0 . 0 ;

110.3.228.3.228.0.

0.2.421.3.228.0.0;
110.2.421.3.228.0.

0.2.421.1 .883.0.0;

100.0.

0.4.7785.2.7535.4.7785.3.0935.4.4385.2.7535;
110.5.918.3.9005.0.

0.5.2455.4.4385.0.0;
212.1

.6..

48.. 1 .0.1.570796.0.0.0.0. .807. 2. 8245. 0.0; 6H2. 9590;
214.1.

.

1. .08.0.0.1.157.4.4385.1.157.3.0245;
214.1

..

1. .08.0.0.1.157.1.4795.1.157.2.7245;

106.1.3.0.

0.1 .97844.4.4385.1.97844.4.4385.1.07888.4.4385;

106.1.3.0.

0.1.97844.1.4795.1.97844.1.4795.1.07888.1.4795;
216,27,29,31,33,79;
212.1 .8.

.

64. .1 .0.1.570796.0. 0.0.0. 6. 187. 4. 035.0. 0.8H38.6597;
214.1.

.

1.

.

08
.
0 . 0

.
6 . 38174 . 3 . 5295 .

6 . 17118 . 3 . 315 ;

214.1 .

.

1. .08.0.0.6.70059.4.4385.6.66967.4.7369;

106.1.3.0.

0.5.9485.3.8761 .5.9485.3.8761.6.44274.3.48071

;

106.1.3.0.

0.5.28456.4.4385.5.28456.4.4385.6.77872.4.4385;
202

, 37 , 43 ,
81

, 5 . 2455 , 4

.

4385 , 1

.

45509 ,39,41;
212.1

.7..

56. .1 .0.1 .570796. 0.0.0. 0.5. 142. 2.64.0. 0.7H. 3400 R;

214.2.

.

1 . .08.0.0.4.53809.2.99392.4.842.2.69.5.042.2.69;
222,00000047,00000049,4.7785,2.7535

;

100
.
0

.

0
.
4 . 035 . 3 . 766

.
4 . 4385

. 3 . 766
.
4 . 4385

. 3 . 766
;

410,1;
SOOOOOO 1 G0000002D0000060P0000030

0000000 IPOOOOOOl
00000003P0000002
00000005P0000003
00000007P0000004
00000009P0000005
0000001 1P0000006
000000 13P0000007
0000001 5P0000008
00000017P0000009
00000019P0000010
0000002 1P000001

1

00000023P0000012
00000025P0000013
00000027P0000014
00000029P0000015
OOOOOO 3 IPOOOOOI 6

00000033P0000017
00000057P0000018
00000035P0000019
00000037P0000020
00000039P0000021
00000041P0000022
00000043P0000023
00000059P0000024
00000045P0000025
00000047P0000026
00000049P0000027
0000005 1P0000028
00000053P0000029
00000055P0000030

T0000001

300

301

FIG.

C-2

SAMPLE

PART

2

TABLE C-2 ENCODED FILE

SAMPLE APPL
, .8HKLD7. DAT, 4 HAPPL ,2HAB, ,16,,,,, 4HAPPL,;
130000, .000001,10 . , 3HPRK, 3HCRD
. 302 1 1

302 1 5001
110 2 1 1 1

> 110 0 1 1

110 3 1 1 1
110 0 1 1

110 4 1 1 1
110 0 1 1

110 5 1 1 1

110 0 1 1

110 6 1 1 1

110 0 1 1

110 7 1 1 1

110 0 1 1

110 8 1 1 1

110 0 1 1

110 9 1 1 1

110 0 1 1

116 10 1 1 2

116 0 1 1

406 11 1

406 1 5001
116 12 1 1 2

116 0 1 1

406 13 1

406 1 5001
116 14 T

J. 1 2

116 0 i 1

406 15 1
406 1 5001
116 16 1 1 2

116 0 1 1

406 17 1

40 6 1 5001
116 18 1 1 2

116 0 1 1

406 19 1

406 1 5001
116 20 1 1 2

116 0 1 1

406 21 1

406 1 5001
116 22 1 1 2

116 0 1 1

406 23 1

40 6 1 5001
116 24 1 1 2

116 0 1 1
406 25 1

406 1 5001
102 26 1 1 2

102 0 1 1

110 27 1 1 2

110 0 1 1

406 28 1

406 1 5001
406 29 1

S0000001
,1,4HINCH,0,1. ,13K102780, G0000001

G0000002
D0000001
D0000002

00000000D0000003
D0000004

00000000D0000005
D0000006

00000000D0000007
D0000008

00000000D0000009
D0000010

000O3000DO000011
D0000012

00000000D0000013
D0000014

00000000D0000015
D0000016

00000000 D0 000017
D0000018

0 0 00 00 00D0 000019
D0000020
D0000021
D0000022

00000C00D0000025
D0000026
D0000027
D0000028

00000000D0000031
D0000032
D0000033
D0000034

00000000D0-000037
D00O0O38
DO000039
D0000040

00000000 D0 000043
D0000044
D0000045
D0000046

00000000D0000049
D0 0 00 050
D0000051
D0000052

00000000D000O055
D0000056
DO0C0057
D0000058

00000000D0000061
D0C00062
D0000063
D0000064

00000000D0000067
DO000068

00010000D0000069
D0000070
D0000071
D0000072
D0000073

302

406
406
406
102
102
110
110
406
406
406
406
406
406
102
102
110
110
406
406
406
406
406
406
102
102
110
110
406
406
406
40 6

402
402
406
406
102
102
110
110
40 6

406
406
405
406
406
102
102
110
110
406
406
406
406
406
406
102
102
110
110
406

1 5001
30 1

1 5002
31 1 1 2

0 1 1

32 1 1 2

0 1 1

33 1

1 5001
34 1

1 5001
35 1

1 5002
36 1 1 2

0 1 1

37 1 1 2

0 1 i
38 1

1 5001
39 1

1 5001
40 1

1 5002
41 1 1 2

0 1 1

42 1 1 2

0 1

43 1

1 5001
44 1

1 5001
45 -1

2 5001
47 1

1 5002
48 1 1 2

0 1 1

49 1 1 2

0 1 1

50 1

1 5001
51 1

1 5001
52 1

2 5002
54 1 1 2

0 1 1

55 1 1 2

0 1 1

56 1

1 5001
57 1

1 5001
58 1

1 5002
59 1 1 2

0 1 1

60 1 1 2

0 1 1

61 1

D0000074
D0000077
D0000078

00000000D0000079
D0000080

00010000D0000081
D0000082
D0000083
D0000084
D000O085
DO000086
D000O089
DO000090

00O00000D0000091
D0000092

00010000D0000093
D0000094
B0000095
D0000096
D0000097
D0000098
D0000101
D0000102

000000O0D0000103
D0000104

00010000D0000105
D0000106
D0000107
D0000108
D0000109
D0000110
D0000111

LINE=1 D0000112
D0000113
D0000114

00000000D0000115
D0000116

00010000D0000117
D0000118
D000011S
D0000120
D0000121
D0000122
D000O125
D0000126

00000000D0000127
D000012S

00010OO0D0000129
D0000130
D0000131
D0000132
D0OO0133
D0000134
D0000137
D00O0138

00000G00D0O0O139
BO000140

00010000B0C00141
DO000142
D0OO0143

303

5001406 1

406
406

62 1
1

406
406

63 1

1

30 2, 3, 1,2, 1,1, 1,1, 1,1, 1,1, 1,1; SIGNAL
110.0.

0.0.7.0.0;
110.7.0.

0.7.4.0;
110.7.4.0.

5.4.0;
110.5.4.0.

5.2.5.0;110.5.2.5.0.

3.2.5.0;110.3.2.5.0.

3.4.0;

5001

5002
ASOCIATIVITY DBF

110.3.4.0.

0.4.0;

110.0.

4.0.0.0.0;116.6.989593.0.

737364.0..1.111.1.21;
406,3,1K2,4K9361,1H0;AB2 PROPERTY116.5.116452.1.791873.0.

.2.111.111.1.27;
406,3,1H2,4H9361,1H0;AB2 PROPERTY
116.2.716055.

.

723489.0. .2.111.111.1.33;
406,3,1H2,4F9361,1H0;AB2 PROPERTY
116,-0.045094,0.834489,0,0,1,111,1,39;
406,3,1K2,4H9361,1H0 ;AB2 PROPERTY
116.6.351338.0.

862240.0..2.111.111.1.45;
406,3,1K2,4H9361,1HO;AB2 PROPERTY116.1.564420.3.193261.0.

.1.111.1.51;
40 6 , 3 , 1 K2 , 4 H9 3 6 1 , 1 H0 ; AB 2 PROPERTY
116.1.425669.0.

852240.0..3.111.111.111.1.57;
406,3,lH2,4n9361,lH0;AB2 PROPERTY116.3.215560.1.528246.0.

.2.111.111.1.63;
406,3,1H2,4H9361,1H0;AB2 PROPERTY
102,1,69,1,111,3,71,73,77;
110.3.215560.1.528246.0.

5.116452.1.791873.0;
406,1,58.4375;
406,4, 1K1,5H16384,1H0,3H125;AB1 PROPERTY
406,4 , 5H14344, 1H3 , 6HCODE=4 , 9HDEPTH=1 . 4 ; APPL PROPERTY
102,1,81,1,111,3,83,85,89;

110.2.716055.0.

723489.0.3.215560.1.528246.0;
406,1,58.4375;
40 6, 4, 181,5 81 638 4, 180, 38125 ;AB1 PROPERTY
406,4,5814344,183 , 68CODE=4 , 98DEPT8=1 . 3 ; APPL PROPERTY
102,1,93,1,111,3,95,97,101;

110.1.425669.0.

862240.0.2.716055.0.723489.0;
406,1,58.4375;
40 6, 4, 181, 5 81 6 38 4, 180, 38125 ;AB1 PROPERTY
406 , 4 ,5814344,183 , 68CODE=4 , 98DEPT8=1 . 4 ; APPL PROPERTY
102,1,105,1,111,3,107,109,113;
110,-0.045094,0.834489,0,1.425669,0.862240,0;
406,1,58.4375;
40 6, 4, 181, 5 81638 4, 180, 38125 ;AB1 PROPERTY

402.0.

15.0.37.103.55.115.49.31.91.61.79.25.67.43.127.19.139,
0,0;
406, 3, 5814344, 183, 68CODE=G ;APPL PROPERTY
102,1,117,1,111,3,119,121,125;

110.1.425669.0.

862240.0.1.564420.3.193261.0;
406,1,58.4375;
406,4 , 181,5 816 38 4, 180, 38125 ;AB1 PROPERTY
406,7,5814344, 183 , 68CODE=2 , 98DEPT8=3 . 4 , 108PITC8=0 . 33 , 138EFLENGTH
=1 . 34 , 158WALLT8ICK=0 .125 ;APPL PROPERTY
102,1,129,1,111,3,131,133,137;

110.5.116452.1.791873.0.

6.351338.0.862240.0;

D0000144
D0000145
D0000146
D0000149
D0000150

IP 1

3P 2

5P 3

7P 4

9P 5

IIP 6

13P 7

15P 8

17P 9

19P 10
21P 11
25P 12
27P 13
31P 14
33P 15
37P 16
39P 17
43P 18
45P 19
49P 20
51P 21
55P 22
57P 23
61P 24
63P 25
67P 26
69P 27
71P 28
73P 29
77P 30

79P 31
81P 32
83P 33
85P 34

89P 35

91P 36
93P 37
95P 38

97P 39
101P 40

103P 41

105P 42

107P 43

109P 44

lllP 45

lllP 46

113P 47

115P 48

117P 49

119P 50

121P 51

125P 52

125P 53

127P 54

129P 55

406,1,4H0.75;
406,4,1K1,5H16384,1H0,3H125;AB1 PROPERTY
406,4 , 5H14344, 1H3 , 6HCODE=4 , 9HDEPTH=1 . 5 ; APPL PROPERTY
102,1,141,1,111,3,143,145,149;
110,6.351338,0.862240,0,6.989593,0.737364,0;
406,1,58.4375;
40 6 , 4 , IHI , 5K16384 , 1H0 , 3H125 ; ABl PROPERTY
40 6 , 3 , 5H14344 , 1H3 , 6HCODE=0 ; APPL PROPERTY
SO000O01G0000002D0000150P 63

131P 56
133P 57
137P 58
139P 59
141P 60
143P 61
145P 62
149P 63

T0000001

APPENDIX D
IGES GLOSSARY

The spirit of this Glossary is to provide general, sometimes intuitive information pertaining

to certain phrases and concepts either appearing in or alluded to by this document. The
spirit is not to provide detailed mathematical definitions such as may be found within

the document itself.

ANGULAR DIMENSION ENTITY

An annotation entity designating the measurement of the angle between two geometric

lines.

ANNOTATION

Text or symbols, not part of the geometric model, which provide information.

ASSEMBLY (IEEE 200-1975)

A number of basic parts or subassemblies, or any combination thereof, joined together

to perform a specific function.

ASSOCIATIVITY

A structure entity, which defines a logical link or relationship between different

entities.

ASSOCIATIVITY DEFINITION ENTITY

A structure entity which designates the type (link structure) and generic meaning
of a relationship. (See PRE-DEFINED ASSOCIATIVITIES)

ASSOCIATIVITY INSTANCE ENTITY

A structure entity formed by assigning specific values to the data items defining

an associativity.

ATTRIBUTE

Information, provided in specific fields within the directory entry of an entity,

which serves to qualify the entity definition.

AXONOMETRIC PROJECTION

A projection in which only one plane is used, the object being turned so that three

faces show. The main axonometric positions are isometric, dimetric, and trimetric.

BACK POINTER

A pointer in the parameter data section of an entity pointing to an associativity

instance of which it is a member.

BLANK STATUS FLAG

A portion of the status number field of the directory entry of an entity designating
whether a data item is to be displayed on the output device.

BOUNDED PLANE

A finite region defined in a plane.

BREAKPOINT

A member of an increasing sequence of real numbers which is a subsequence of

the knot sequence used to specify parametric spline curves.

B-SPLINE BASIS

A set of functions which form a basis for the set of splines of specified degree
on a specified knot sequence. B-spline basis functions are characterized by being
splines of minimal support. See appendix A4 for more details.

CENTERLINE ENTITY

An annotation entity for representing the axis of symmetry for all symmetric views
or portions of views, such as the axis of a cylinder or a cone.

CIRCULAR ARC ENTITY

A geometric entity which is a connected portion of a circle or the entire circle.

CLASS

A group of data items pertinent to a common logical relationship in an associativity

definition.

CLIP

To abbreviate or terminate the intended display of an entity along an intersecting

curve or surface.

CLIPPING BOX

A bounding set of surfaces which abbreviate the intended display of data to that

portion which lies within the box.

CLIPPING PLANE

A bounding plane surface which abbreviates the intended display of data to that

portion which lies on one or the other side of the plane.

CLOSED CURVE

A curve with coincident start and terminate points. .

307

COMPLEMENTARY ARC

Either of the two connected components of a closed connected curve which has
been divided by two distinct points lying on the curve.

COMPONENT

Typically a synonym for part (e.g., resistor, capacitor, microcircuit, etc.), but also

may refer to a subassembly being treated as a part. The ICES representation of

a component may be a collection of entities, associativities, and properties.

COMPOSITE CURVE

A connected curve which is formed by concatenating two or more curve segments.

CONIC ARC ENTITY

A geometric entity which is a finite connected portion of an ellipse, a parabola,

or a hyperbola.

CONNECTED CURVE

A curve such that if for any two points PI and P2, one can travel from PI to P2
without leaving the curve.

CONSTITUENT

A member of a set.

CONTROL POINT

A point in definition space which appears in the numerator of the expression for

a rational B-spline curve or surface. If the weights are all positive, the resulting

curve or surface lies within the convex hull of the control points. Its shape resembles
that of the polygon or polyhedron whose vertices are the control points. A control

point is sometimes referred to as a B-spline coefficient. See appendices M and
A6 for more details.

COONS PATCH

A three dimensional surface.

COPIOUS DATA ENTITY

A geometric entity sometimes used as an annotation entity, containing arrays of

types of real numbers to which a specific meaning has been assigned. One form
number corresponds to one special meaning.

DEFINITION LEVEL (or DISPLAY LEVEL)

The graphics display level (or layer) on which one or more entities have been defined.

308

DEFINITION MATRIX

The matrix which transforms the coordinates represented in the definition space
into the coordinates represented in the model space.

DEFINITION SPACE

A local Cartesian coordinate system chosen to represent a geometric entity for
the purpose of mathematical simplicity.

DEFINITION SPACE SCALE

A scale factor applied within an entity definition space.

DEVELOPABLE SURFACE

A surface which can be unrolled onto a plane.

DIAMETER DIMENSION ENTITY

An annotation entity designating the measurement of a diameter of a circular

arc.

DIRECTED CURVE

A curve with an associated direction derived from the start and terminate points.

DIRECTORY ENTRY SECTION

The section of an ICES file, consisting of fixed field data items for an index and
attribute list of all entities in the file.

DIRECTRIX

The curve entity used in the definition of a tabulated cylinder entity.

DISPLAY SYMBOL

A method for graphically representing certain entities (plane, point, section) for

identification purposes.

DRAWING ENTITY

A structure entity which specifies the projection(s) of a model onto a plane, with
any required annotation and/or dimension.

EDGE VERTEX

A method of geometric modeling in which a two- or three-dimensional object

is represented by curve segments (edges of the object) connected to points or

vertices of the object. A higher level of topological information can be contained
in such a model than is implied by a 'wire-frame'' terminology, but in the context
of this specification the terms are used interchangeably.

309

ENTITY

The basic unit of information in a file. The term applies to single items which may
be individual elements of geometry, collections of annotation to form dimensions,
or collections of entities to form structured entities.

ENTITY LABEL

A one to eight character identifier for an entity. This term may implicitly include
the entity subscript, providing for additionail characters.

ENTITY SUBSCRIPT

A one to eight digit unsigned integer associated with the entity label. The label

and subscript specify a unique instance of an entity within an array of entities.

ENTITY TYPE NUMBER

An integer used to specify the kind of the entity. For example, the circular arc
entity has an entity type number of 100.

ENTITY USE FLAG

A portion of the status number field of the directory entry of an entity to designate

whether the entity is used as geometry, annotation, structure, logical, or other.

For example, a circle used as part of a point dimension would have an entity use

flag which designates annotation.

FINITE ELEMENT

A small part of a structure defined by the connection of nodes, material, and physical

properties.

FLAG NOTE ENTITY

An annotation entity which takes label information and formats it such that the

text is circumscribed by a flag symbol.

FLEXIBLE PRINTED CIRCUIT

An arrangement of printed circuit and components utilizing flexible base materials

with or without flexible cover layers.

FONT CHARACTERISTIC

An integer which is used to identify a text font. Font characteristic numbers may
be positive which indicate an IGES-defined text font or may be negative which
is interpreted as a text font definition entity.

FORM NUMBER

An integer which is used when needed to further define a specific entity. This becomes
necessary when there are several interpretations of an entity type. For example,

the form number of the conic arc entity indicates whether the curve is an ellipse,

hyperbola, parabola, or unspecified. The form number is also used when necessary

to supply sufficient information in the directory entry of an entity to allow the

structure of the parameters in the parameter data entry to be decoded.

310

GENERAL LABEL ENTITY

An annotation entity consisting of a general note with one or more associated leaders.

GENERAL NOTE ENTITY

An annotation which consists of text which is to be displayed in some specific size

and at some specific location and orientation.

GENERATRIX

The defining curve which is to be swept to generate a tabulated cylinder, or revolved

to generate a surface of revolution.

GEOMETRIC

Having to do with the shape information (points, curves, surfaces, and volumes),

necessary to represent some object.

GLOBAL SECTION

The section of an IGES file consisting of general information describing the file,

the file generator (pre-processor), and information needed by the file reader (post-

processor).

GRID

The set of (ui, vj) where ui and vj are the breakpoints on the u and v coordinates

respectively used to specify a parametric spline or rational B-spline surface. The
term grid is also applied to the projected image on the spline surface.

GROUND PLANE

A conductor layer, or portion of a conductor layer (usually a continuous sheet of

metal with suitable clearances), used as a common reference point for circuit returns,

shieldings, or heat sinking.

GROUP ASSOCIATIVITY

A predefined associativity for forming any collection of entities.

HIERARCHY

A tree structure consisting of a root and one or more dependents. In general, the

root may have any number of dependents, each of which may have any number of

lower-level dependents, and so on, to any number of levels.

INSTANCE

A particular occurrance of some item or relationship. Several instances may reference
the same item.

311

KNOT SEQUENCE

A nondecreasing sequence of real numbers used to specify parametric spline curves.

LABEL DISPLAY ASSOCIATIVITY

A pre-defined associativity that is used by those entities that have one or more
possible displays for their entity label. Entities requiring this associativity will

have pointers in their directory entry to a label display associativity instance entity.

LEADER ENTITY

An annotation entity, also referred to as arrow, which consists of an airrowhead

and one or more line segments. In the case of an angular dimension entity, the
line segment is replaced by a circular arc segment. In general, these entities are

used in connection with other annotation entities to link text with some location.

LEVEL

An entity attribute which defines a graphic display level to be associated with the entity.

LINE ENTITY

A geometric entity consisting of a straight segment connecting two points in space.

LINE FONT

A pattern for the appearance of a curve. The pattern is a repeating sequence of

blanked and unblanked line segments, or of subfigure instances.

LINE FONT DEFINITION ENTITY

A structure entity which defines a line font.

LINE WEIGHT

An entity attribute which is used to determine the line display thickness for that

entity.

LINEAR DIMENSION ENTITY

An annotation entity used to represent a distance between two locations.

MACRO BODY

The portion of a macro definition containing statements which define the action

of the macro.

MACRO DEFINITION ENTITY

The structure entity, containing the macro body within its parameter data section,

used to define a specific macro.

312

MACRO INSTANCE ENTITY

A structure entity which will invoke a macro which has been defined using a macro
definition entity.

MIRROR

To reflect through an axis.

MODEL SPACE

A right-handed three-dimensional Cartesian coordinate space in which the product
is represented.

NEGATIVE BOUNDED PLANAR PORTION

A hole.

NODE

A point in space used to define a finite element topology.

ORDINATE DIMENSION ENTITY

An annotation entity used to indicate dimensions from a common reference line

in the direction of the XT or YT axis.

ORTHONORMAL

A term describing two vectors which are orthogonal and of unit length.

PARAMETER DATA SECTION

A section of an IGES file consisting of specific geometric or annotative information
about the entities or pointers to related entities.

PARAMETRIC SPLINE CURVE ENTITY

A geometric entity consisting of polynomial segments subject to certain continuity conditions.

PARAMETRIC SPLINE SURFACE ENTITY

A geometric entity which is a smooth surface made from a grid of patches. The
patches are regions between the component parametric curves.

PARENT CURVE

The full curve on which a segment curve lies.

PATCH

A surface represented by parametric functions of two parameters which blend four

given boundary curves.

313

PLANE ENTITY

A geometric entity which is a surface with the property that the straight line passing
through any two distinct points on the surface lies entirely on the surface.

PLATED-THROUGH HOLE (ANSI/IPC-T-50B)

A hole in which electrical connection is made between internal or external conductive
patterns, or both, by the deposition of metal on the wall of the hole.

POINT ENTITY

A geometric entity which has no size but possesses a location in space.

POINT DIMENSION ENTITY

An annotation entity consisting of a leader, text, and an optional circle or hexagon
enclosing the text.

POINTER

A number that indicates the location of an entity within an IGES file.

POSITIVE BOUNDED PLANAR PORTION

The top of a peg.

POST-PROCESSOR

A program which translates a file of product definition data from the form of this

standard into the data base form of a specific CAD/CAM system.

PRE-DEFINED ASSOCIATIVITIES

Associativities which are defined within this standard.

PRE-PROCESSOR

A program which translates a file of product defintiion data from the data base

form of a specific CAD/CAM system into the form of this standard.

PRINTED BOARD (ANSI/IPC-T-50B)

The general term for completely processed printed circuit or printed wiring configur-

ations. It includes rigid or flexible, single, double, or multilayer boards.

PRINTED CIRCUIT (ANSI/IPC-T-50B)

A conductive pattern comprised of printed components, printed wiring, or a combina-
tion thereof, all formed in a predetermined design and intended to be attached

to a common base. (In addition, this is a generic term used to describe a printed

board produced by any of a number of techniques.)

3lh

PRINTED CIRCUIT BOARD (ANSI/IPC-T-50B)

A part manufactured from rigid base material upon which a completely processed
printed circuit has been formed.

PRINTED WIRING (ANSI/IPC-T-50B)

The conductive pattern intended to be formed on a common base, to provide point-
to-point connection of discrete components, but not to contain printed components.

PRODUCT DEFINITION

Data required to describe and communicate the characteristics of physical objects
as manufactured products.

PROPERTY ENTITY

A structure entity which allows numeric or text information to be related to other

entities.

RADIUS DIMENSION ENTITY

An annotation entity which is a measurement of the radius of a circular arc.

RATIONAL B-SPLINE CURVE

A parametric curve which is expressed as the ratio of two linear combinations of

B-spline basis functions. Each basis function in the numerator is multiplied by a

scalar weight and a vector B-spline coefficient. Each corresponding basis function

in the denominator is just multiplied by the weight.

i
RATIONAL B-SPLINE SURFACE

I

! A parametric surface which is expressed as the ratio of two linear combinations
of products of pairs of B-spline basis functions. Each product of basis functions

' in the numerator is multiplied by a scalar weight and a vector B-spline coefficient.

Each corresponding product of basis functions in the denominator is just multiplied

by the corresponding weight.
l'

'' REGION
j

I

ij The bounded area enclosed by a closed curve or a combination of curves.

II

RELATION
:l

1
An aspect or quality that connects two or more things or parts as being or belonging

or working together or as being of the same kind.

il
REPEATING PATTERN

j

An ordered sequence of items (elements) which, after, a certain point, repeats Itself.

il

315

RIGHT-HANDED CARTESIAN COORDINATE SYSTEM

A coordinate system in which the axes are mutually perpendicular and are positioned
in such a way that, when viewed along the positive Z axis toward the origin, the
positive X axis can be made to coincide with the positive Y axis by rotating the
X axis 90 degrees in the counterclockwise direction.

RULED SURFACE ENTITY

A surface generated by connecting corresponding points on two space curves by
a set of lines.

SECTION ENTITY

A pattern used to distinguish a closed region in a diagram. It is represented as

a form of the copious data entity.

SECTION DISPLAY SYMBOL

An arrangement of fonted straight lines in a repetitive planar pattern at a specified

spacing and angle.

SET (IEEE 200-1975)

A unit or units and necessary assemblies, subassemblies, and basic parts connected
or associated together to perform an operational function.

SPLINE

A piecewise continuous polynomial interpolation function.

START SECTION

The section of an IGES file containing a man-readable file prolog.

SUBASSEMBLY (IEEE 200-1975)

Two or more basic parts which form a portion of an assembly or a unit, replaceable

as a whole, but having a part or parts which are individually replaceable.

SUBFIGURE DEFINITION ENTITY

A structure entity which permits a single definition of a detail to be utilized in

multiple instances.

SUBFIGURE INSTANCE ENTITY

A structure entity which specifies an occurrence of the subfigure definition.

SUBORDINATE ENTITY SWITCH

A portion of the status number field of the directory entry of an entity. An entity

is subordinate if it is an element of a geometric or annotative entity structure or

is a member of a logical relationship structure. The terms subordinate and dependent
are equivalent within this document.

316

SURFACE OF REVOLUTION ENTITY

A geometric entity which is a surface generated by rotating a curve, called the

generatrix, about an axis, called the axis of rotation.

SYSTEM (IEEE 200-1975)

A combination of two or more sets, generally physically separated when in operation,

and other such units, assemblies, and basic parts necessary to perform an operational
function or functions.

TABULATED CYLINDER ENTITY

A geometric entity which is a surface generated by moving a line parallel to itself

along a space curve called the generatrix.

TERMINATE SECTION

The final section of an ICES file, indicating the sizes of each of the preceding file

sections.

TEXT FONT

The specification of the appearance of the characters.

TEXT FONT DEFINITION ENTITY

The entity used to define the appearance of characters in a text font. A character
is defined by pairing its character code with a sequence of display strokes and
positional information.

TRANSFORMATION MATRIX ENTITY

An entity which allows translation and rotation to be applied to other entities. This

is used to define alternate coordinate systems for the definition and viewing

TRANSLATION VECTOR

A three element vector which specifies the offsets (along the coordinate axes) required
I to move an entity linearly in space.

j

UNIT (IEEE 200-1975)
!

j

A major building block for a set or system, consisting of a combination of basic

parts, subassemblies, and assemblies packaged together as a physically independent
entity.

[,! VERSION NUMBER
i

A means for uniquely designating one specification definition or translator implemen-
tation from a preceding or subsequent one.

317

VIA HOLE (ANSI/IPC-T-50B)

A plated-through hole used as a through connection, but in which there is no intention

to insert a component lead or other reinforcing material.

VIEW ENTITY

A structure entity used to provide the definition of a human-readable representation
of a two-dimensional projection of a selected subset of the model and/or non-
geometry information.

VIEWING BOX

The clipping box used to define a view.

WEIGHT

A non-zero real number which appears in the numerator and denominator of the

expression for a rational B-spline curve or surface. Increasing the weight associated
with a particular control point will tend to draw the resulting curve or surface toward
that control point. See appendices A^ and A6 for details.

WIRE-FRAME

A method of geometric modeling in which a two- or three-dimensional object is

represented by curve segments which are edges of the object. In the context of

this specification, 'wire-frame' and 'edge-vertex' models are considered as the same
technique and the terms are used interchangeably.

WITNESS LINE

An annotation entity consisting of line segments and used in engineering drawings

to indicate the beginning or the end of a measurement.

318

APPENDIX E
INDEX OF TOPICS

li

•I

i

ANGULAR DIMENSION ENTITY m
1 ANNOTATION 2

1

ANNOTATION ENTITIES 143

ANGULAR DIMENSION 146

i! CENTERLINE 151

DIAMETER DIMENSION 153

•i FLAG NOTE 156

'i GENERAL LABEL 160
' GENERAL NOTE 163

LEADER (ARROW) 173

LINEAR DIMENSION 179

,

ORDINATE DIMENSION 181

1

POINT DIMENSION 183

RADIUS DIMENSION 186
' SECTION 189

i' WITNESS LINE 192

ARC CENTER POINT 153, 186

;

ARC LENGTH 100

: ARROWHEAD TYPE 176

ASCII 9

ASSOCIATIVITY 7

:| BOARD IMPLEMENTATION 212

; CONNECT NODE 218
’ CONNECTION 212
' ENTITY LABEL DISPLAY 207

i
GROUP 200, 210

PRE-DEFINED 200

SCHEMATIC 212

SIGNAL NAMES 212

SIGNAL STRING 212

f SINGLE PARENT 214

. TEXT NODE 216

1 VIEW LIST 209

VIEWS VISIBLE 7, 202

VIEWS VISIBLE, PEN, LINE WEIGHT 204

1 ASSOCIATIVITY DEFINITION ENTITY 195

1 ASSOCIATIVITY INSTANCE ENTITY 197

;j
ASSOCIATIVITY SCHEMA 195

i| ATTRIBUTE
ATTRIBUTES,' DIRECTORY ENTRY

5, 254

' BLANK STATUS 29

i
DEFINING MATRIX POINTER 28, 45, 54

ENTITY BYTE COUNT 54

1 ENTITY LABEL 32, 54

1 ENTITY SUBSCRIPT NUMBER 32, 54

1

ENTITY TYPE NUMBER 28, 31, 33, 54, 56

i
FORM. NUMBER 32, 54

1 LABEL DISPLAY ASSOCIATIVITY POINTER 29, 54

il
LEVEL NUMBER 28, 54

,1 LINE FONT PATTERN NUMBER 28, 54

I

LINE WEIGHT 32, 54

if PARAMETER DATA POINTER 28, 54

PARAMETER RECORD COUNT NUMBER 32

,|

PEN NUMBER

319

32, 54

STATUS NUMBER 29, 54

SUBORDINATE ENTITY SWITCH 29

VERSION NUMBER 28, 54

VIEW POINTER 28, 54

B-SPLINE
B-SPLINE BASIS FUNCTIONS
BACK POINTER
BICUBIC POLYNOMIAL
BINARY INFORMATION SECTION
BINARY REPRESENTATION

BINARY INFORMATION SECTION
DATA BLOCKING
DIRECTORY ENTRY SECTION
FILE STRUCTURE
FLOATING POINT NUMBERS
GLOBAL SECTION
INTEGER NUMBERS
LANGUAGE PRIMITIVES
PARAMETER SECTION
POINTERS
START SECTION
TERMINATE SECTION
TEXT STRINGS

BLANK STATUS
BOARD IMPLEMENTATION ASSOCIATIVITY
BOUNDED PLANE
BREAKPOINTS

88
283

33, 195

93
48

38
48
38

54

45
39

51

39

45

56

45
yi

58

42
29

212
79

87, 281

CARTESIAN COORDINATE SYSTEM
CENTERLINE ENTITY
CHARACTER APPEARANCE
CIRCULAR ARC ENTITY
CIRCULAR ARRAY SUBFIGURE INSTANCE ENTITY
CLASSES
CLIPPING
CLIPPING BOX
COMPOSITE CURVE ENTITY
CONIC ARC ENTITY
CONNECT NODE ASSOCIATIVITY
CONNECTIONS ASSOCIATIVITY
CONSTANTS

FLOATING-POINT
INTEGER
LANGUAGE STATEMENT
POINTER
STRING

CONSTITUENT ENTITY
CONTINUITY
CONTROL POINTS FOR B-SPLINE
COONS’ PATCH
COORDINATE SYSTEM

CARTESIAN
CYLINDRICAL
SPHERICAL

COPIOUS DATA ENTITY
CUBIC SPLINE

60, 132

151

272

64
270

195

7, 278
274
67

71

218, 266
212
9

10

9

13

13

12

67

87

287

60, 129

129

129

129
76
88

320

CYLINDRICAL COORDINATE SYSTEM 129

I

DATA FORM 9
i DEFINING MATRIX POINTER 28, 45, 54

DEFINITION 1

! DEFINITION LEVEL 7, 24

j

DEFINITION SPACE 60, 143
: DEGREE OF CONTINUITY 87, 28 Iff
' DEPTH 143, 265
' DEVELOPABLE SURFACE 100

:
DIAMETER DIMENSION ENTITY 153

i DIMENSIONS

I

ANGULAR DIMENSION ENTITY 146

1

DIAMETER DIMENSION ENTITY 153

I

LINEAR DIMENSION ENTITY 182

I

ORDINATE DIMENSION ENTITY 184

POINT DIMENSION ENTITY 186

I

RADIUS DIMENSION ENTITY 189
DIRECTED CURVE 62

DIRECTRIX 111

DIRECTORY ENTRY SECTION 23, 54

DISPLAY SYMBOL 79, 98, 192
DRAWING ENTITY 8, 223
DRILLED HOLE PROPERTY 261

DUMMY POLYNOMIAL SEGMENT 87

EDGE-VERTEX 1

ELECTRICAL EXAMPLE 286
ELEMENT TOPOLOGY 136

ELLIPSE 71

ENCODED FILES (EXAMPLES) 295, 300
ENTITY 3, 60

ANGULAR DIMENSION 149

ASSOCIATIVITY DEFINITION 198

ASSOCIATIVITY INSTANCE 200
CENTERLINE 154

CIRCULAR ARC 64
CIRCULAR ARRAY SUBFIGURE INSTANCE 129

COMPOSITE CURVE 67

CONIC ARC 71

I

COPIOUS DATA 76
DIAMETER DIMENSION 153

DRAWING 8, 221
FINITE ELEMENT ENTITY 133

FLAG NOTE 156

FLASH 119

GENERAL LABEL 160
! GENERAL NOTE 163

I LEADER (ARROW) 173

j

LINE 84

I LINE FONT DEFINITION 225
I LINEAR DIMENSION ' 179

LINEAR PATH 117

MACRO DEFINITION 232
MACRO INSTANCE 233

I
ORDINATE DIMENSION

321

PARAMETRIC SPLINE CURVE 87
PARAMETRIC SPLINE SURFACE
PLANE
POINT DIMENSION
POINT
PROPERTY
RADIUS DIMENSION
RATIONAL B-SPLINE CURVE
RATIONAL B-SPLINE SURFACE
RECTANGULAR ARRAY SUBFIGURE INSTANCE ENTITY
RULED SURFACE
SECTION
SIMPLE CLOSED AREA
SUBFIGURE DEFINITION
SUBFIGURE INSTANCE
SURFACE OF REVOLUTION
TABULATED CYLINDER
TEXT FONT DEFINITION
TRANSFORMATION MATRIX
VIEW
WITNESS LINE

ENTITY BYTE COUNT
ENTITY LABEL
ENTITY LABEL DISPLAY ASSOCIATIVITY
ENTITY SUBSCRIPT NUMBER
ENTITY TYPE NUMBER

93

79

183

98

256
186
122

126

268
100

77, 189
118

265
266
106

111

270

8, 114

7, 277
192

54

32, 54

207

32, 54

28, 31, 33, 54, 56, 63

ENTITY USE FLAG 30

FILE STRUCTURE
BINARY INFORMATION SECTION
DIRECTORY ENTRY SECTION
GLOBAL SECTION
PARAMETER SECTION
START SECTION
TERMINATE SECTION

FINITE ELEMENT ENTITY
FLAG NOTE ENTITY
FLASH ENTITY
FLOATING-POINT CONSTANT
FONT CHARACTERISTIC
FONT CODE
FORM NUMBER
FREE FORMAT

3, 15, 45
48

23, 54

17, 51

33, 56

15, 51

36, 58

133

156

119
10

163, 171, 216
272

32, 54
14

GENERAL LABEL ENTITY
GENERAL NOTE, POINTER TO
GENERAL NOTE ENTITY
GENERATRIX
GEOMETRIC
GEOMETRY

CIRCULAR ARC
COMPOSITE CURVE
CONIC ARC
COPIOUS DATA
LINE
PARAMETRIC SPLINE CURVE

160

34

163

106, 111

1

60
64

67
'

71

76
84
87

322

PARAMETRIC SPLINE SURFACE 93

PLANE 79
POINT 98
RATIONAL B-SPLINE CURVE 122

RATIONAL B-SPLINE SURFACE 126

RULED SURFACE 100

SURFACE OF REVOLUTION 106

TABULATED CYLINDER 111

TRANSFORMATION MATRIX 114

GLOBAL SECTION 17,51

GLOSSARY 306
GRID POINTS 272
GROUP 7

GROUP ASSOCIATIVITY 200, 210

HIERARCHY 31

HIERARCHY PROPERTY 263

HYPERBOLA 71

i INTEGER CONSTANT 9

KNOT SEQUENCE FOR B-SPLINE 124, 128

LABEL DISPLAY ASSOCIATIVITY, ENTITY 207
' LABEL DISPLAY ASSOCIATIVITY POINTER 29, 54
LANGUAGE STATEMENT CONSTANT 13

I

LEADER (ARROW) ENTITY 173

; LEVEL 7, 24

I LEVEL FUNCTION PROPERTY 258

:
LEVEL NUMBER 28, 54

j
LINE ENTITY 84

I LINE FONT DEFINITION ENTITY 225
. LINE FONT PATTERN NUMBER 28, 54

i

LINE REMOVAL 7
LINE WEIGHT 31, 54

1
LINE WIDENING PROPERTY 259
LINEAR DIMENSION ENTITY 179

LINEAR PATH ENTITY 117
LINEAR SPLINE 88

i MACRO 8, 230
i ATTRIBUTES 8, 230
1 CAPABILITY SECTION 230
DEFINITION ENTITY 232

I EXAMPLES 235
FORTRAN FORMAT 248
FREE FORMAT 231

INSTANCE ENTITY 233

I
LANGUAGE 231

PROCESSOR 231

I

STATEMENTS 246

1
STRING FUNCTION ' 248
SYNTAX 241

MACRO DEFINITION ENTITY 232

I

MACRO INSTANCE ENTITY 233

i
MACRO STATEMENT 252

323

MIRROR FLAG 171

MODEL 6
MODEL SPACE 60, 62
MODIFIED WILSON-FOWLER SPLINE 88

NODE ENTITY 129
NON-GEOMETRY 142

ORDINATE DIMENSION ENTITY 181

ORGANIZATION 2

ORIENTATION 7

PARABOLA 71

PARAMETER DATA POINTER 28, 54
PARAMETER DATA SECTION 33, 55
PARAMETER RECORD COUNT NUMBER 32
PARAMETERIZATIONS, DEFAULT

CIRCULAR ARC 64

CONIC ARC 71

LINE 84

PARAMETRIC PIECEWISE CUBIC POLYNOMIAL CURVE 281

PARAMETRIC SPLINE CURVE ENTITY 87
PARAMETRIC SPLINE SURFACE ENTITY 93

PART NUMBER PROPERTY 263
PATH ENTITY (SEE LINEAR PATH ENTITY) 117

PEN NUMBER 32, 54

PIN NUMBER PROPERTY 262

PLANE ENTITY 79
POINT DIMENSION ENTITY 183

POINT ENTITY 98
POINTER CONSTANT 13

POLAR AXES 129

PRE-DEFINED ASSOCIATIVITIES 200

PRODUCT DEFINITION 1, 2

PROPERTY 7, 34
DEFINITION LEVELS 257

DRILLED HOLE 261

HIERARCHY 263
LEVEL FUNCTION 258
LINE WIDENING 259
PART NUMBER 263
PIN NUMBER 262
REFERENCE DESIGNATOR 262

REGION RLL 258
REGION RESTRICTION 257

PROPERTY ENTITY 7, 256

QUADRATIC SPLINE 88

RADIUS DIMENSION ENTITY 186

RATIONAL B-SPLINE CURVE ENTITY 122

RATIONAL B-SPLINE SURFACE ENTITY 126

RECTANGULAR ARRAY SUBFIGURE INSTANCE ENTITY 268

REFERENCE DESIGNATOR PROPERTY 262

REGION FILL PROPERTY 258

REGION RESTRICTION PROPERTY 257

324

ROTATION
ROTATION MATRIX
RULED SURFACE ENTITY

SCHEMATIC ASSOCIATIVITY
SECTION ENTITY
SEXTUPLES
SIGNAL STRING ASSOCIATIVITY
SIGNAL NAMES ASSOCIATIVITY
SIMPLE CLOSED AREA ENTITY
SINGLE PARENT ASSOCIATIVITY
SLANT ANGLE
SPHERICAL COORDINATE SYSTEM
SPLINE CURVE
SPLINE CURVES SECTION
SPLINE FUNCTIONS SECTION
SPLINE REPRESENTATION

APT WILSON-FOWLER
BREAKPOINTS
B-SPLINE
B-SPLINE BEZIER POLYGON
CARTESIAN PRODUCT
CONTROL POINTS
COONS' PATCHES
CORNER POINTS
CORNER SLOPES
DEGREE OF CONTINUITY
EXTENDED COONS’ PATCH
GENERAL BICUBIC PATCH SURFACE
HERMITE BASIS
LAGRANGE INTERPOLATION FORMULA
MODIFIED WILSON-FOWLER SPLINE
NEWTON INTERPOLATION FORMULA
PARAMETRIC CUBIC SPLINE
PARAMETRIC PIECEWISE CUBIC POLYNOMIAL CURVE
PATCH TYPE
SPLINE CURVES SECTION
SPLINE FUNCTIONS SECTION
SPLINE SURFACES SECTION
WILSON-FOWLER SPLINE

SPLINE SURFACE
SPLINE SURFACES SECTION
START ANGLE
START POINT
START SECTION
STATUS NUMBER
STRING CONSTANT
STRING FUNCTION
STRUCTURE ENTITIES

ASSOCIATIVITY DEFINITION ENTITY
ASSOCIATIVITY INSTANCE ENTITY
GROUP ASSOCIATIVITY ENTITY
LINE FONT DEFINITION
MACRO DEFINITION ENTITY
MACRO INSTANCE ENTITY

8

61 , 62

100

212
189

77
212
212
118

214.

176

129

87
283
281

281

288
281 , 283
87 , 281 , 284
284
281

282
, 284

281

287

287
287
281

281
282

282

87
,
281

282
281

281

287
283
281

286
87

, 281

93 , 126
281

106

62
,
64

, 71
,
84

13
, 31

29
, 34

12

248
194

193

197

200, 210
223

232
233

325

PRE-DEFINED ASSOCIATIVITIES 200

PROPERTY ENTITY 256
SUBFIGURE DEFINITION ENTITY 265

SUBFIGURE INSTANCE ENTITY 266

TEXT FONT DEFINITION ENTITY 272

VIEW ENTITY 7, 278

VIEW LIST ASSOCIATIVITY 209

VIEWS VISIBLE 7, 202

VIEWS VISIBLE, PEN, LINE WEIGHT ASSOC. 204

STRUCTURES 6

SUBFIGURE DEFINITION ENTITY 265

SUBFIGURE INSTANCE ENTITY 266

SUBORDINATE ENTITY SWITCH 29

SURFACE OF REVOLUTION ENTITY 106

SURFACES
PARAMETRIC SPLINE SURFACE ENTITY 93

RATIONAL B-SPLINE SURFACE ENTITY 126

RULED SURFACE ENTITY 100

SURFACE OF REVOLUTION ENTITY 106

TABULATED CYLINDER ENTITY 111

TABULATED CYLINDER ENTITY HI
TERMINATE ANGLE 106

TERMINATE POINT 62, 64, 71, 84, 87

TERMINATE SECTION 36, 58

TEXT BOX 170

TEXT FONT DEFINITION ENTITY 272

TEXT NODE ASSOCIATIVITY 216, 266

TEXT (GENERAL NOTE) POINTER 34

TIP LENGTH 136

TRANSFORMATION MATRIX 62

TRANSFORMATION MATRIX ENTITY 8, 114

TRANSLATION 8

TRANSLATION VECTOR 61

TRIPLES 76

UNBOUNDED PLANE 79

VERSION NUMBER 28, 54

VERTEX POINT 1^6

VIEW ENTITY 7, 278

VIEW LIST ASSOCIATIVITY 209

VIEW POINTER 28, 54

VIEW PORT 222

VIEWING DIRECTION 62, 278

VIEWS VISIBLE ASSOCIATIVITY 7, 202

VIEWS VISIBLE, PEN, LINE WEIGHT ASSOCIATIVITY 204

WEIGHTS FOR B-SPLINE 124, 128

WILSON-FOWLER SPLINE 88

WIRE-FRAME 6

WITNESS LINE ENTITY 192

ZT DISPLACEMENT 62, 143

326

NBS-n4A (REV. 2-ec)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

2. Performing Organ. Report NoJ 3. Publication Date

4. TITLE AND SUBTITLE

Initial Graphics Exchange Specification (IGES) Version 2.0

5. AUTHOR(S)
Bradford Smith, Kalman Brauner, Philip Kennicott, Michael Liewald, Joan Wellington, et al

6. PERFORMING ORGANIZATION (if joint or other than NBS, see instructions)

national bureau of standards
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

FY1W-82-N5024
8. Type of Report & Period Covered

May /1980 - Nov 1982

9,

SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State, ZIP)

Air Force ICAM Program, (Integrated Computer Aided Manufacturing),
Wright-Patterson AFB, Ohio 45433

10.

SUPPLEMENTARY NOTES

I

I I
Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11.

ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here)

This document contains Version 2.0 of the Initial Graphics Exchange Specification, a defined

format for the creation of a file which enables data found in today's commercially available

CAD/CAM systems to be exchanged or archived. IGES, Version 1.0, published as NBSIR
80-1978 (R) in January 1980, consisted of entity definitions for geometry, drafting and struc-

tural information. Definition entities were provied as a means of expanding the utility

of IGES.

Version 2.0 of the Specification has been extended in the advanced geometry, electrical,

and finite element modeling areas. In addition, the Specification has been reformatted
and clarified to enable the user to reference the document more easily.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

Computer Aided Design (CAD), Computer Aided Manufacturing (CAM), design drawing,

electrical information, exchange format, finite element modeling, geometries, graphics.

13. AVAILABILITY

1 1
Unlimited

For Official Distribution. Do Not Release to NTIS

1 1

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

1 1
Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

is. Price

J
:.l' *

USCOMM-DC 6043-Fjgj'!'l.* 'Jj

‘

I

.)

r

j

!

I f

/

!

*,K

