
A11101 310571

NBSIR 82-2625

A Taxonomy of Tool Features for

the Ada* Programming Support
Environment (APSE)

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Institute for Computer Sciences and Technology

Center for Programming Science and Technology

Washington, DC 20234

Final Report

December 1982

Issued February 1983

10

;&

>-2656

)32

Prepared for:

Department of Defense
Ada Joint Program Office

801 N. Randolph, Suite 1210
Arlington, VA 22209

*Ada is a registered trademark of the U.S. Department of Defense

NBSIR 82-2625

A TAXONOMY OF TOOL FEATURES FOR
THE Ada* PROGRAMMING SUPPORT
ENVIRONMENT (APSE)

NATIONAL BUREAU

OF STANDARDS
library

WAR 16 1983

r\oV clq-c rcy<

5^ -oH^-5^

Prepared by:

Raymond C. Houghton, Jr.

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Institute for Computer Sciences and Technology

Center for Programming Science and Technology

Washington, DC 20234

Final Report

December 1982

Issued February 1983

Prepared for:

Department of Defense
Ada Joint Program Office

801 N. Randolph, Suite 1210
Arlington, VA 22209

*Ada is a registered trademark of the U.S. Department of Defense

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

FOREWORD

The subject of the taxonomy that is presented in this report
is the Ada Program Support Environment (APSE) [D0D 8 O] . The
categories within the taxonomy are features of the APSE. Two
criteria are used in the selection of features:

1. A feature must be within the current state of software
development practice, that is, there must be examples of
existing tools that are currently being used by the Federal
Government or industry.

2. A feature must be useful for the development of Ada
software and may, in some cases, be explicitly oriented toward
the language.

Note that the second criterion requires a judgemental decision on
the usefulness of a feature.

Many valuable comments were received on earlier drafts of
this report and the contributions are appreciated. The author
would like to thank the following people for their review: P.
Powell, M. Branstad, B. Brosgol, L. Weissman, P. Henderson,
L. Druffel, A. Wasserman, D. Wallace and P. Freeman. The
author would especially like to thank the following people for
their in-depth comments: P. Oberndorf, J. Tippett, M.
Shahdad, H. Fischer, P. Scheffer, S. Saib, A. Gargaro, V.
Castor, F. Cox, J. Ahders, J. Kerner, P. Blackledge, R.
Reed, and D. Sen. This work was supported by the Ada Joint
Program Office under a special agency agreement with the National
Bureau of Standards.

NOTE: Certain commercial products a-re identified in this report
as examples of specific concepts. In no case does such
identification imply recommendation or endorsement by the
National Bureau of Standards, nor does it imply that the product
identified is necessarily the best for the purpose.

)

.

'

'

1

-

TABLE OF CONTENTS

Page

1. Introduction 1

2. Classes and Processes of the APSE 2

3. Tool Primitives 12

4. Summary of the APSE Taxonomy 14

5. References 15

Appendices

Appendix A. Prioritization of Tool Features

Appendix B. NBS/ICST Taxonomy of Tool Features

'

v --y
‘v \m

'

4

.

v

\

.

Page 1

1. Introduction

A taxonomic classification is an ordered arrangement that
begins with the broadest, most inclusive categories and ends with
the narrowest, most specific categories. Taxonomic
classifications have several uses including: (1) familiarization
with the terminology associated with a subject, (2) obtaining a
broad overview of an area, and (3) as a starting point for
obtaining in-depth information on a certain subject. In this
report, a taxonomic classification will be referred to as a
taxonomy. Although, strictly speaking, taxonomy is a science. A
taxonomic classification is often referred to as a taxonomy, e.g.
Taxonomy of Computer Science and Engineering [AFIP80] , Software
Engineering Standards Taxonomy (IEEE Software Engineering
Standards Project, L. Tripp, Chairperson)

.

In this report, the taxonomy developed by the National
Bureau of Standards^ Institute for Computer Sciences and
Technology (NBS/ICST) is used as a basis for the development of
an APSE taxonomy and for the comparison of the features provided
by the Ada Language System (ALS) and the Ada Integrated
Environment (AIE) * . The ALS and the AIE are Minimal Ada
Programming Support Environments (MAPSE's) . Therefore, the APSE
taxonomy includes many additional features, including many that
are specified in [D0D8O]

.

Where the NBS/ICST Taxonomy is concerned with a broad range
of features offered by all types of software development tools
(see Appendix B) , the scope of the APSE taxonomy has been limited
to tool features that are within current technology and that are
oriented to the Ada language. It is anticipated that the APSE
taxonomy will be used as a basis for the development of
additional tools for the APSE, particularly in the management
area (Appendix A) . Consequently, the selected features involve a
low implementation risk.

Finally, the features of the APSE taxonomy are expected to
support the properties of METHODMAN (Software Development
Methodologies for Ada) [Druf82] , which are currently being
defined by Freeman and Wasserman [Free82] . Of course, some
properties of METHODMAN will be more susceptable to automation
than others and those that are susceptable to automation may be
methodology dependent.

The features in the APSE taxonomy are presented in Section

* The ALS is being developed by Softech, Inc. under contract to
the U.S. Army. The AIE is being developed by Intermetrics, Inc.
under contract to the U.S. Air Force. The implementation of
tool features in the ALS may differ significantly from
implementations in the AIE. To gain a complete understanding of
the differences between these systems, further analysis at lower
levels of detail is necessary.

Page 2

2. All features discussed are oriented at the user level. That
is, the user is aware of and can either instantiate or apply the
feature directly. Features that can be methodology dependent are
indicated. Section 3 includes discussion of the underlying
features of the APSE. These are called tool primitives and they
are necessary to support the features presented in Section 2.

Appendix A contains a prioritization of the tool features.
Appendix B contains the NBS/ICST Taxonomy.

2. Classes and Processes of the APSE

The APSE taxonomy is a hierarchical arrangement of software
tool features as shown in Figure 1.

/
/
/ \

{in} {fn
/ / /

/ / /
/ / /

[I] [C] [T]

/ / /
/ / /

/ / /
[1-4] [1-4] [1-5] [1-11]

\

{out}
\ \ \
\ \ \
\ \ \

[G] [U] [M]

\ \
\ \
\ \

\
\
\

1-6] [1-3] [1-6] [1]

Figure 1. APSE Taxonomy

The highest level (@) is the most abstract and covers all the
features below it. The second level of the taxonomy covers the
basic processes of the APSE. These are input (in), function
(fn)

,

and output (out)

.

At the third level are the classes of
tool features. These are subject (I)

,

control (C)

,

transformation (T)

,

static analysis (S)

,

dynamic analysis (D)

,

management (G)

,

user output (U)

,

and machine output (M)

.

The
fourth level is the feature level. At this level each of the
features of the APSE taxonomy is defined. In some cases, the
fourth level has been further expanded to a fifth level. The
ranges between brackets signify the number of features in each of
the classes.

In the sections that follow, the functional classes
(management, static analysis, dynamic analysis, and
transformation) are discussed according to their importance and
impact on the APSE. This is followed by a brief discussion of
the input/output features. Since many of the features in the
APSE taxonomy are also in the NBS/ICST taxonomy, the reader is

Page 3

requested to refer to Appendix B for additional description and
definition of the features that are common to both taxonomies.

Management.

The most important area that is necessary to support a

development methodology is tool support for management. Table 1

shows that the ALS and AIE provide support for configuration
management and Ada library management. The APSE Taxonomy
specifies many additional features that are important to the
management of software development.

MANAGEMENT

ALS AIE APSE Taxonomy

Configuration Ctrl
Information Mgt

Ada Library Mgt

Configuration Ctrl
Information Mgt

Ada Library Mgt

Configuration Ctrl
Information Mgt

Ada Library Mgt
Specification Mgt
Data Dictionary Mgt
Ada Package Mgt
Test Mgt

Project Mgt
Cost Estimation
Scheduling
Tracking

Table 1. Management

Information Management . In addition to Ada library management,
the APSE taxonomy includes design management, requirements
management, data dictionary management, Ada package management,
and test data management. All of these features can be
implemented in the APSE through use of the data base support
provided by the Kernel Ada Programming Support Environment
(KAPSE' The KAPSE will be accessible through the standard KAPSE
interface which is being defined by the KAPSE Interface Team
(KIT) [Ober82] . One of these features, specification management,
is somewhat methodology dependent.

Specification management refers to the control of
requirements and design specifications. Specification management
tools are somewhat methodology dependent because associated with
these tools are usually requirement and design specification
languages with formal procedures for their use. However, there
may or may not be controlling elements in the tools that prevent
one from deviating from the formal procedures, e.g., review and
approval mechanisms, required record keeping of scope changes,
strategy changes, justification, and rectification. Examples of
specification management tools with associated methodologies are
REVS [Alfo80] and SARA [Pena81] . Examples of tools which do not

Page 4

require formal procedures to be used in association with a

specification language are MEDL-R and MEDL-D [Houg82] . The
latter tools emphasize the management of requirements and design
information and are more independent of the development
methodology.

Systems which aid the management of data specifications are
commonly called data dictionary systems. Data dictionary systems
have been available for years [Leon77] but their potential in
software development has not been fully utilized. Data
dictionary systems can be a valuable tool over the entire life
cycle of systems and software [FIPS76] . For example, during the
requirements definition phase, information is collected about
data type and usage requirements. This information can then be
used in the production of data descriptions for individual
software packages and procedures, and in conjunction with other
analysis capabilities (see cross reference and data flow
analysis)

.

Ada package management provides a way to avoid redundant
coding by identifying packages that already perform certain
functions. It keeps track of the functionality of packages and
retrieves information about packages that provide capabilities of
interest to the user. Capturing the functionality of Ada
packages is a current objective of research. However, an interim
solution to package management can be implemented through keyword
specification and retrieval in a manner similar to library
systems. A recent paper [Lecl82] describes a browse
documentation system that is very similar in concept.

Test data management is a feature that is used throughout
the development process. Test data is derived in all phases of
software development and is stored and tracked by the management
system. When the system under development is executable, either
through simulation, stubs, or code, test data management usually
works in conjunction with regression testing (see dynamic
analysis) . Test data and test results are controlled, stored,
retrieved, and compared by the system. Programs are initiated
through a test driver that implements the regression testing
feature. Examples of tools that provide test data management and
regression testing features are AUTORETEST [ASDS79] , DRIVER
[ASDS79], and MSEF [Eane79]

.

Project Management . The APSE taxonomy includes three types of
project management features. The first, cost estimation, has
been the subject of concentrated research. Several models
[DACS79] [Boeh81] have been developed to estimate cost. Examples
of tools that implement models are SLIM [Putn81] and PRICE-S
[Frei79] . Because cost estimation is dependent on the practices
and experience of a software development organization, the tools
include many tailoring parameters that can be set and tuned for
the specific organization.

Page 5

The second and third project management features are
scheduling and tracking. Scheduling assesses and predicts cost
expenditures, personnel activity, and task relationships for a
development effort. Tracking provides a mechanism for recording
and retrieving cost expenditures, personnel activity, task
relationships, project status reports, productivity measurements,
and resource utilization. Output from tools with these features
usually includes varied graphical representations including
activity diagrams, milestone charts, and histograms. Using the
data produced by cost estimation, these tools can show actual
costs versus predicted labor and cost expenditures. Using data
from the information management features, productivity measures
such as lines of code per day, lines of re-used code, changes in
error and modification rates, average program size and
complexity, and average execution time can be provided. Examples
of tools that provide scheduling and tracking features include
ASA-PMS [Houg82] , PAC II [ASDS79] , and PDSS [ASDS79]

.

Static Analysis

Static analysis is addressed to a limited extent by the ALS
and the AIE. Most of the features provided are a result of
compiling or linking. Since it is important to uncover errors as
early in software development as possible, the APSE taxonomy
includes features that provide static analysis earlier in the
life cycle, including the analysis of specification languages.

Static analysis should be provided at any level indicated by
the user and could include library analysis, package analysis,
task analysis, program analysis, or subprogram analysis. The
extent of analysis provided is dependent on the information
available. That is, analysis may not be complete until code is
available and compiled. For example, complete auditing of Ada
package utilization requires an analysis of the effects of
elaboration. Since this is best handled at the intermediate code
level, auditing may not be complete until all Ada code is present
in the package.

Page 6

STATIC ANALYSIS

ALS AIE APSE Taxonomy

Cross Reference

Type Analysis
Interface Analysis I

Statistical Profiling -

Cross Reference

Type Analysis
Interface Analysis

Type Analysis
Interface Analysis
Statistical Profiling
Cross Reference
Auditing
Complexity Measurement
Completeness Checking
Consistency Checking
Structure Checking
Reference Analysis

Table 2. Static Analysis

Type analysis and interface analysis are provided by both
the ALS and the AIE as a result of the Ada language requirements.
However, separate compilation of procedures can delay interface
checking until the procedures are linked. This is not a
recommended practice because it uncovers errors very late in the
development process. With knowledge of the requirements, design,
and data definitions, both analyses can be performed earlier in
the development process. Most VHLL (Very High Level Language)
processing tools, in particular those that process requirements
and design languages [Alfo80] [Teic77] [Pena81] provide these
features

.

Statistical profiling of statement types used by Ada
programs can provide useful information to language designers and
managers. Managers can use this information to determine
programming style among their staff. For example, the data could
show that a programmer avoids the package construct, uses many
GOTO" s , or often uses the inline pragma. Language designers and
standards committees find statistical profiles useful in
identifying popular and unpopular language constructs. The
usefulness of statistical profiles is emphasized in a paper by
Knuth [Knut71] . The ALS provides statistical profiles for
compilation units (e.g. separately compiled procedures and
packages) , 5ut does not provide this feature at higher levels.

Cross reference is a common feature provided by many
compilers, including the ALS and AIE Ada compilers. Although
cross references are easily generated from symbol tables produced
by compilers, they are not often used because of the overwhelming
amount of information that is provided. Even cross reference
listings of small programs can be quite lengthy. This problem
can be alleviated through a retrieval mechanism that could be
provided by the data dictionary. Cross references for design and
requirement specifications could be provided in the same manner.

Page 7

Auditing for Ada programs could include such checks as
packages opened (WITH) but never referenced, packages referenced
(USE) but never used, missing parts of procedures and packages,
use of non-standard or non-portable constructs, dangerous
practices (e.g., suppression of exception checks), poor
programming practice (e.g., excessive use of GOTO's, no
introductory comments, oversized modules) , and general
information (e.g., overloading conditions). Examples of tools
which provide this capability for other languages include FCA
[Smit76], AUDIT [Culp75] , PBASIC [Hopk80] , and PFORT [Dona80]

.

Complexity Measurement is a technique which can be applied
to Ada designs and programs. Two recognized techniques for
measuring complexity are McCabe's Cyclomatic Complexity [McCa76]
and Halstead's Software Science [Hals77] . Because McCabe's
measure is based on structure, it can be easily applied to
detailed software designs. However, little progress has been
made in measuring complexity of requirements or high level
designs, areas where the payoff potential may be the greatest.
Tools which provide complexity measurement include DARTS [Houg82]
and SAP/H [Houg82]

.

Completeness checking and consistency checking are two
features that are applied across and within a development stage
of the software life cycle. In order to automatically test for
completeness or consistency of requirements and designs, a formal
specification language is required. Tools which use formal
proofs to demonstrate consistency are available but most are
still considered research tools. Tools which perform consistency
and/or completeness checking include AFFIRM [Thom81] , PSL/PSA
[Teic77] , and REVS [Alfo80]

.

A feature often provided by compilers is structure checking.
Structure checking is a feature that recognizes flaws in a
program or design structure. Results of a survey of compilers
[Shad82} found occurrences of the following types of structure
checking in Fortran and Cobol Compilers: unreachable statements,
null- transfer statements (i.e., a branch to the next statement),
null-body loops, empty programs, and self-transfer statements
(infinite loops) . In addition to these types of structure
checking, there are also tools that check for violation of
structured programming constructs (e.g., COBOL STRUCT [FSWE80]),
and in some cases these tools perform restructuring of the code
(e.g., The Engine [Lvon81])

.

Reference analysis detects errors in the definition and use
of data. To completely check for this type of error, it is
necessary to generate a program graph and to check data
references on each path. With this level of checking, errors
such as variables defined but never used, variables used but
never defined, and variables defined and then subsequently
redefined before being used can be checked on all paths through a

program. The tool which promulgated this technique is DAVE
[Oste76]

.

Page 8

Dynamic Analysis .

Dynamic analysis is provided by the debugger in the ALS and
the AIE. Two performance related features, tuning and timing
analysis, are also planned for the ALS. Tuning and timing data
are useful for determining how many times and how long parts of
programs are being executed. Tuning and timing analysis should
also provide data on concurrency of tasks, that is, it would be
useful to know the times that tasks are initiated, completed, and
executing concurrently. Three other dynamic analysis techni ues
that are useful testing features are included in the APSE
Taxonomy. These features are assertion checking, coverage
analysis, and regression testing. All three of these features
are performed in conjunction with the test data management
capability which was discussed previously. Examples of
regression testing tools were also given previously.

ALS

Timing Analysis
Tuning Analysis
Tracing/Debugging

DYNAMIC ANALYSIS

AIE

Tracing/Debugging

APSE Taxonomy

Timing Analysis
Tuning Analysis
Tracing/Debugging
Regression Testing
Assertion Checking
Coverage Analysis

Table 3. Dynamic Analysis

Assertion checking was a feature that was at one time part
of the Ada language (Preliminary Ada) , but was taken out in later
revisions. Assertions, which can be implemented as special
comments in a program, are useful for several purposes. Their
most informal use is as an understanding mechanism. Assertions
can be used to declare relationships or states that are assumed
to be true at certain points in a program. Thus, a programmer
can use assertions for debugging. Assertions can also represent
relations or states assumed true at a higher level of
abstraction. Using assertions in this manner allows one to test
consistency between the design and code. If assertions are
placed in the code so that there is a mapping from each assertion
to each design specification or to each requirements
specification, then assertions can be used to compute design or
requirements coverage. Tools which provide assertion checking
include RXVP80* [Saib81] , Fortran-77 Analyzer [TRW81] , and PET
[Stuc76]

.

* RXVP80 is a registered trademark of General Research
Corporation

.

Page 9

Coverage analysis is a traditional feature provided by
dynamic analysis tools. Because of the longevity, many tools
have been developed and enhanced to provide coverage analysis.
Since coverage analysis provides managers with actual testing
metrics, the most important effect that it has is that it
encourages programmers to develop testable software. That is, in
order to get a high percentage of program coverage, a programmer
must try to make all parts of the program accessible for testing.
[Houg82] lists 40 coverage analysis tools for FORTRAN, JOVIAL,
COMPASS, COBOL, PL/1 and Pascal. Through use of the tuning
feature, the ALS partially supports coverage analysis by
identifying parts of a program that have not been executed.
However, the ALS does not compute coverage percentages.

Transformation.

Because the ALS and the AIE are required to provide the
minimal programming support for Ada, they have a majority of the
transformation features necessary to support other features in
the APSE Taxonomy. Syntax-directed editing is the only
exception. This feature should use tool primitives that are
necessary to support compilation, i.e. lexical analysis, syntax
analysis, and data base management. Syntax-directed editing is a
capability that has been the subject of recent research. The
result has been the production of several viable prototypes
[Arch81] [Feil81] [Fisc81] [Teit81] [Wilc76]

.

ALS

Formatting
Optimization
Compilation
Instrumentation

TRANSFORMATION

AIE

Formatting
Optimization
Compilation

APSE Taxonomy

Formatting
Optimization
Compilation
Instrumentation
Editing

Syntax Direction

Table 4. Transformation

Input/Output.

Subject Input . Table 5 shows that the addition of specification
languages is the only change in the main input (or subject) of
the APSE when compared to the ALS and the AIE. This statement is
true only because most of the additional functions that require
input are included with other categories. For example, since
assertions are represented as comments in Ada code they are
included with code input.

Page 10

SUBJECT

ALS AIE APSE Taxonomy

Text Input
Data Input
Code Input

Ada Code

Text Input
Data Input
Code Input

Ada Code

Text Input
Data Input
Code Input

Ada Code
VHLL Input

Specification Languages

Table 5. Subject

Control Input . Table 6 presents the control features. The
additional functions that require control input are also included
with other categories. For example, commands to initiate static
and dynamic features are included with the command category.
Pipes, the exception, refer to the command piping mechanism that
is attributed to Unix (TM) [Ritc74]

.

ALS

Parameters
Commands
Command Procedures

CONTROL

AIE

Parameters
Commands
Command Procedures
Pipes

APSE Taxonomy

Parameters
Commands
Command Procedures
Pipes

Table 6. Control

User Output. Several output features have been added to the APSE
Taxonomy. Graphics includes output such as, activity diagrams,
milestone charts, tree diagrams, message charts, and state
charts. Much of the graphics output is attributed to the added
project management features. Other output, except on-line
assistance, is included with other user output features.

Page 11

USER OUTPUT

ALS AIE APSE Taxonomy

Diagnostics
Listings
Text
Tables

Diagnostics
Listings
Text
Tables

Diagnostics
Listings
Text
Tables
Graphics
On-Line AssistanceOn-Line Assistance On-Line Assistance

Command Assist Command Assist Command Assistance
Error Assistance
On-Line Tutor
Definition Assistance
Menu Assistance

Table 7. User Output

On-line assistance is a user interface feature that is part
of the input/output process of the APSE. The APSE taxonomy
includes on-line assistance capabilities beyond the command
assistance that is provided by the ALS and the AIE. It includes
error assistance, on-line tutoring, definition assistance, and
menu assistance. These additional features tend to make the user
interface more friendly to the unfamiliar user and more helpful
to the familiar user.

The most important aspect of on-line assistance is that it
should be context sensitive. That is, if the APSE has just
issued an error message to a user and the user responds with
"help error", then the system should assume that the error
message requires further explanation. This same technique, when
applied to command assistance, allows the first request to be a
brief mind-jogging message that aids the more experienced users.
The second request can go into more detail. Menu assistance
should also be context sensitive in that it should only identify
those commands that can be issued from the current state. For
example, if a user is working with the editor, the "help menu"
should list only editor commands.

Definition assistance is the ability to make queries on the
use of terminology (i.e., "help define KAPSE"). Definition
assistance should not only include terms associated with the Ada
environment but also with the Ada language, such as "generic",
"pragma", "overloading", "package", etc. Further options of
definition assistance should be a browse capability, an ability
to add new terms, and the presentation of an example, if
applicable.

One of the most difficult problems for a new user of a
system is simply getting started. Lists of commands and command
descriptions do not help the new user because for many systems
the amount and depth of the information provided can be
overwhelming. What is more advantageous for a new user is a

Page 12

step-by-step tutorial introduction with exercises and a

capability to try out various commands without doing harm to
oneself or any other users on the system.

An example of a system which provides context sensitive,
query-in-depth command, error, and definition assistance is
discussed in [Rell81] . Example dialog is presented in [Rell81a]

.

A system which also includes much user assistance along with an
on-line tutor is the SIGMA message processing service [Roth79]

.

Machine Output . Table 8 presents the output from the APSE which
is destined for other machine environments. Since the main
purpose of the APSE is for the development of embedded code for
other systems, object code for the target system is the only
machine output. The NBS/ICST taxonomy includes additional
classes of machine output, but since the APSE is a self-contained
environment, the user is not aware of these other classes and
they are not included.

ALS

Object Code

MACHINE OUTPUT

AIE APSE Taxonomy

Object Code Object Code

Table 8. Machine Output

3. Tool Primitives

Each of the features in the APSE taxonomy implies the
existence of basic tools or tool primitives that support the
feature. Tool primitives are the basic building blocks that
support the features that are available to the user. All
features in themselves imply at least one tool primitive; for
example, cost estimation implies a cost estimizer, auditing
implies an auditor, coverage analysis implies a coverage
analyzer. Some features imply the existence of primitives that
are not directly part of the taxonomy or that support more than
one taxonomy feature. The following list includes these
primitives followed by the features that they support:

Data Base Manager - supports most APSE features especially
information management and project management.

Graph Generator, Graph Analyzer, Data Flow Analyzer
support complexity measurement (McCabe's measure)

,

structure checking, reference analysis, and
optimization by constructing, traversing, and analyzing
a specification of the program graph.

Page 13

Profile Generator - supports complexity measurement
(Halstead's measure) and statistical profiling.

Comparator - supports regression testing and configuration
management.

Compiler primitives (lexical analyzer, syntax analyzer,
semantic analyzer, parser, and symbol table generator)
- support compilation and other features that deal
directly with the languages accepted by the APSE.

Program Instrumenter - supports assertion checking, coverage
analysis, timing analysis. Works in conjunction with
the compiler primitives.

Command Interpreter - supports control features.

State Tracker - supports context sensitive on-line
assistance by keeping track of the current state of the
user. Also supports "split screen" capabilities and
background tasks.

Because each of these primitives supports more than one
feature in the APSE, their output should become part of the
database. For example, the coverage analyzer should not perform
lexical and syntax analysis of a program if it has already been
performed by the compiler. The coverage analyzer should instead
use the intermediate form (e.g., Diana) of the program. This
information should be available in the database.

Page 14

4. Summary of the APSE Taxonomy

INPUT
Subject Control Input

Text Input
Data Input
Code Input
Ada Code Input
VHLL Input
Specif iciat ions

Parameters
Commands
Command Procedures
Pipes

FUNCTION

Transformation Static Analysis

Formatting
Optimization
Compilation
Instrumentation
Editing
Syntax Direction

Management

Configuration Control
Information Management

Type Analysis
Interface Analysis
Statistical Profiling
Cross Reference
Auditing
Complexity Measurement
Completeness Checking
Consistency Checking
Structure Checking
Reference Analysis

Ada Library Mgt Dynamic Analysis
Specification Mgt
Data Dictionary Mgt
Ada Package Mgt
Test Mgt
Project Management
Cost Estimation
Scheduling
Tracking

Timing Analysis
Tuning Analysis
Tracing/Debugging
Regression Testing
Assertion Checking
Coverage Analysis

OUTPUT
User Output Machine Output

Diagnostics
Listings
Text
Tables
Graphics
On-Line Assistance
Command Assistance
Error Assistance
On-Line Tutor
Definition Assistance
Menu Assistance

Object Code

Page 15

5. References

[AFIP80] AFIPS Taxonomy Committee, "Taxonomy of Computer Science
& Engineering", AFIPS Press, 1980.

[AlfoSO] M. w. Alford, "Software Requirements Engineering
Methodology (SREM) at the Age of Four", Proceedings of
COMPSAC 80, October 1980.

[Arch81] J. Archer, Jr., R. Conway, "COPE: A Cooperative
Programming Environment", Dept, of Computer Science TR
81-459, Cornell University, June 1981.

[ASDS79] , "Software Tools: Catalogue and
Recommendations", Applied Systems Design Section, TRW
Defense and Space Systems Group, January 1979.

[Boeh31] 3. W. Boehm, "Software Engineering Economics",
Prentice- Hall, Englewood Cliffs, N.J., 1931.

[Culp75] L. M. Culpepper, "A System for Reliable Software
Engineering", IEEE Transactions on Software
Engineering, June 1975.

[DACS79

]

, "Quantitative Software Models", Data and
Analysis Center for Software, SRR-I, March 1979.

[D0D 8 O] , "Requirements for Ada Programming Support
Environments, STONEMAN* , U.S. Dept. of Defense,
February 1980.

[Dona 80

]

John D. Donaboo and Dorothy Swear inger, "A Review of
Software Maintenance Technology", Rome Air Development
Center, RADC-TR-80-13 , February 1980.

[Druf 82] L. E. Druffel, Letter to the Editor of Software
Engineering Notes, April 1982.

[Eane79] Eanes, Hitchon, Thall, and Brac'<ett, "An Environment
for Producing Well-Engineered Microcomputer Software"

,

Proceedings of the 4th International Conference on
Software Engineering, September 19"9.

[Feil81] P. H. Feiler and R. Medina-Mora, "An Incremental
Programming Environment", Proceedings of the 5th
International Conference on Software Engineering, March
1981.

[FIPS76] , "Guideline for Planning and Using a Data
Dictionary System", Dept. of Commerce FIPS PUB

"
6 ,

August 1980.

[Fisc81] C. N. Fischer, G. Johnson, and J. Mauney , "An
Introduction to Release I of Editor Allan Poe". Report,
Dept. of Computer Science, University cf

Page 16

[Free82]

[Frei79]

[FSWE80]

[Hals77]

[Hopk80]

[Houg82]

[Knut71]

[Lecl82]

[Leon77]

[McCa76

]

[Lyon73]

[Lyon81]

[Ober 82]

[Oste76]

Wisconsin-Madison , July 1981.

P. Freeman and A. I. Wasserman, "Software
Development Methodologies and Ada", Ada Joint Program
Office, November 1982.

F. R. Freiman and R. E. Park, "Price Software Model
Version 3: An Overview", Workshop on Quantifiable

Software Models, IEEE Cat. No. TH0067-9, October 79.

"Federal Software Exchange Catalog" General
Services Administration, GSA/ADTS/C-80/3

,

FSWEC-80/0118, September 1980.

M. H. Halstead, "Elements of Software Science",
Elsevier - North Holland Pub. Co., New York, 1977.

T. R. Hopkins, "PBASIC—A Verifier for Basic",
Software-Practice and Experience, October 1980.

R. C. Houghton, Jr., "Software Development Tools",
NBS Special Publication 500-88, March 1982.

D. Knuth, "An Empirical Study of FORTRAN Programs",
Software-Practice and Experience, 1971.

Y. Leclerc, S. W. Zucker, and D. Leclerc, "A
Browsing Approach to Documentation", Computer, June
1982.

B. Leong-Hong and B. Marron, "Technical Profile of
Seven Data Element Dictionary/Directory Systems", NBS
Special Publication 500-3, February 1977.

T. J. McCabe, "A Complexity Measure", IEEE
Transactions on Software Engineering, Vol SE-2,
December 1976.

G. Lyon, "Static Language Analysis", National Bureau
of Standards Technical Note 797, October 1973.

M. J. Lyons, "Salvaging Your Software Asset",
Proceedings of the National Computer Conference, May
1981.

P. A. Oberndorf, Chairman, "Kernel Ada Programming
Support Environment (KAPSE) Interface Team: Public
Report, Volume 1", Naval Ocean Systems Center, NOSC TD
509, April 1982.

L. J. Osterweil and L. D. Fosdick, "DAVE - A
Validation Error Detection and Documentation System for
FORTRAN Programs", Software-Practice and Experience,
October 1976.

Page 17

[Paig74]

[Pene81]

[Putn81]

[Rell81]

[Rell81a]

[Ritc74]

[Roth79]

[Saib81]

[Shad82]

[Smit76]

[Stuc76]

[Teic77]

M. R. Paige and J. P. Benson, "The Use of Software
Probes in Testing FORTRAN Programs", Computer, July
1974.

M. H. Penedo, "SARA as a Tool for Software Designs
Building-Block Modelling and Composition", Proceedings
of the NBS/IEEE/ACM Software Tool Fair, R. Houghton,
Ed., NBS Special Publication 500-80, October 1981.

L. H. Putnam, "SLIM: A Quantitative Tool for
Software Cost and Schedule Estimation", Proceedings of
the NBS/IEEE/ACM Software Tool Fair, R. Houghton, Ed.,
NBS Special Publication 500-80, October 1981.

N. Relies and L. A. Price, "A User Interface for
Online Assistance", Proceedings of the 5th
International Conference on Software Engineering, March
1981.

N. Relies and L. A. Price, "A User Interface for
Online Assistance", Proceedings of the NBS/IEEE/ACM
Software Tool Fair, R. Houghton, Ed., NBS Special
Publication 500-80, October 1981*.

D. M. Ritchie and K. Thompson, "The UNIX
Time-Sharing System", Communications of the ACM, July
1974.

Rothenberg, J., "On-Line Tutorials and Documentation
for the SIGMA Message Service", Proceeding of the
National Computer Conference, 1979.

S. H. Saib, J. P. Benson, C. Gannon, and W. R.
DeHaan, "RXVP80 (TM) : A Software Documentation,
Analysis, and Test System", Proceedings of the
NBS/IEEE/ACM Software Tool Fair, R. Houghton, Ed., NBS
Special Publication 500-80, October 1981.

M. Shadad, E. Libster, "Compiler Features: A
Survey", NBS-GCR-82-418 , December 1982.

P. Smith, "Fortran Code Auditor: User^s Manual", Rome
Air Development Center, RADC-TR-76-395, December 1976.

L. G. Stucki, "The Use of Dynamic Assertions to
Improve Software Quality", McDonnell Douglas
Astronautics Company-West, MDC G6588, November 1976.

D. Teichroew and E. Hershey III, "PSL/PSA: A
Computer-Aided Technique for Structured Documentation
of Information Processing Systems", IEEE Transactions
on Software Engineering, Vol SE-3, No 1, 1977.

Page 18

[Teit81]

[Thom81]

[TRW81]

[Wilc76]

R. T. Teitelbaura and T. Reps, "The Cornell Program
Synthesizer: A Syntax-Directed Programming
Environment", Communications of the ACM, September
1981.

D. H. Thompson, et. al. , "Specification and
Verification of Communication Protocols in AFFIRM",
USC/Information Sciences Institute, ISI/RR-81-88

,

February 1981.

, "FORTRAN 77 Analyzer: Users Manual", TRW
Sales No. 36098.000, Prepared under contract for the
National Bureau of Standards, 1981.

T. R. Wilcox, et. al., "The Design and
Implementation of a Table Driven Interactive Diagnostic
Programming System", Communication of the ACM, November
1976.

APPENDIX A

PRIORITIZATION OF TOOL FEATURES

In the earlier drafts of this report, reviewers were asked
to comment on the importance of the features included in the APSE
taxonomy. Most reviewers accepted the high level prioritization
that was implied by the report. That is, tool support for
management is the most important area. All reviewers felt that
all the features mentioned would be of some use in the APSE.

The table that follows presents a feature level
prioritization based on the comments received. Each of the
features is presented in the same order as the report and is
categorized according to the perceived priority.

MANAGEMENT
Configuration Ctrl
Information Mgt

Ada Library Mgt
Specification Mgt
Data Dictionary Mgt
Ada Package Mgt
Test Mgt

Project Mgt
Cost Estimation
Scheduling
Tracking

STATIC ANALYSIS
Type Analysis
Interface Analysis
Statistical Profiling
Cross Reference
Auditing
Complexity Measurement
Completeness Checking
Consistency Checking
Structure Checking
Reference Analysis

Required
X
X
X
X

X
X
X

X

Important Useful

X
X

X
X
X
X
X

X

X
X

X

X

X
X
X

PRIORITIZATION OF TOOL FEATURES Page A-2

DYNAMIC ANALYSIS
Required

X
Important

Timing Analysis - X
Tuning Analysis - X
Tracing/Debugging X —

Regression Testing - X
Assertion Checking - -

Coverage Analysis - X
TRANSFORMATION X -

Formatting X -

Optimization X -

Compilation X -

Instrumentation - X
Editing X -

Syntax Direction - X
INPUT/OUTPUT X -

On-Line Assistance X -

Command Assistance X -

Error Assistance X -

On-Line Tutor - -

Definition Assistance - -

Menu Assistance - X

Useful

X

X
X

APPENDIX B

THE NBS/ICST TAXONOMY OF SOFTWARE TOOL FEATURES

January 19, 1982

Introduction .

The taxonomy is a hierarchical arrangement of software tool
features and is illustrated in Figure 1. The highest level (@)
is the most abstract and covers all the features below it. The
second level of the taxonomy covers the basic processes of a
tool: input (in) , function (fn)

,

and output (out) . At the third
level are the classes of tool features: subject (I) , control
input (C) , transformation (T)

,

static analysis (S) , dynamic
analysis (D) , management (G) , user output (U) , and machine output
(M) . The ranges in brackets signify the number of features in
each of the classes. At the fourth level or feature level of the
hierarchy are a total of 64 tool features. In some cases the
fourth level has been further expanded to a fifth level to
provide further differentiation (not shown in figure 1)

.

/
{@}

/
/
/

/

{in} { fn
/ / /

/ / /
/ / /

[I] [C] [T]

/ /
/ /

/ /

\
\

{out}
\ \ \
\ \ \
\ V \

[G] [U] [M]

\ \
\ \
\ \

\
\
\

[1-4] [1-2] [1-7] [1-14] [1-10] [1-13] [1-6] [1-8]

Figure 1. Taxonomy of Tool Features

THE NBS/ICST TAXONOMY OF SOFTWARE TOOL FEATURES Page B-2

The Taxonomy .

Input. Tool input features are based on the forms of input which
are provided to a tool. These features fall into two classes,
one which is based on what the tool should operate on, i.e., the
subject, and the other based on how the tool should operate,
i.e., the control.

INPUT

Subject Control Input

11 . Text Cl. Commands
12. VHLL C2. Parameters
I2A. Description Language
I2B. Requirements Language
I2C. Design Language
13. Code
14. Da ta

Table 1. Input

a. Subject (Key: I). The subject is usually the main input
to a tool. It is the input which is subjected to the main
functions performed by a tool. The four types of subjects
are text, VHLL (very high level language), code, and data.
Although the difference between these types is somewhat
arbitrary, the taxonomy has very specific definitions for
each.

11. Text - accepts statements in a natural language form.
Certain types of tools are designed to operate on text
only (e.g., text editors, document preparation systems)
and require no other input except directives or
commands

.

12. VHLL - accepts a specification written in a very high
level language that is typically not in an executable
form. Tools with this feature may define programs,
track program requirements throughout their
development, or synthesize programs through use of some
non-procedural VHLL. There are three recognized types
of VHLL's. Each is briefly described as follows:

I 2A. Description Language - accepts a formal
language with special constructs used to describe
the subject in a high-level non-procedural form.
An example of a description language is
Backus-Naur Form (BNF)

.

I2B. Requirements Language - accepts a formal
language with special constructs and verification
protocols used to specify, verify, and document

THE NBS/ICST TAXONOMY OF SOFTWARE TOOL FEATURES Page B-3

requirements. Examples of requirements languages
include the Problem Statement Language [Teic77]
and the Requirements Statement Language [Bell77]

.

I2C. Design Language - accepts a formal language
with special constructs and verification protocols
used to represent, verify, and document a design.
Design languages are normally procedural, that is,
they specify how a program is going to work in an
algorithmic manner. An example of a design
language is Program Design Language [Cain75]

.

13. Code - accepts a program written in a high level
language, assember, or object level language. Code is
the language form in which most programming solutions
are expressed.

14. Da ta - accepts a string of characters or numeric
quantities to which meaning is or might be assigned.
The input (e.g. raw data) is not in an easily
interpreted, natural language form. A simulator that
accepts numeric data to initialize its program
variables is an example of a tool that has data as
input.

Some tools, such as editors, operate on any if the four of
these input forms. In cases such as this, the input form is
chosen from the viewpoint of the tool. Since most editors
view the input form as text, the correct subject for this
tool is text.

b. Control Input (Key: C) . Control inputs specify the type
of operation and the detail associated with an operation.
They describe any separable commands that are entered as
part of the input stream.

Cl. Commands - accepts character strings which consist
primarily of procedural operators, each capable of
invoking a system function to be executed. A directive
invoking a series of diagnostic commands (i.e., TRACE,
DUMP, etc.) at selected breakpoints is an example. A
tool that performs a single function will not have this
feature but will most likely have the next.

C2. Parameters - accepts character strings which consist
of identifiers that further qualify the operation to be
performed by a tool. Parameters are usually entered as
a result of a prompt from a- tool or may be embedded in
the tool input. An interactive trace routine that
prompts for breakpoints is an example of a tool with
parametric input.

THE NBS/ICST TAXONOMY OF SOFTWARE TOOL FEATURES Page B-4

Function . The features for this class are shown in Table 2.

They describe the processing functions performed by a tool and
fall into four classes: transformation, static analysis, dynamic
analysis, and management.

FUNCTION

Transformation Static Analysis

Tl. Editing SI. Auditing
T2. Formatting S2

.

Comparison
T3. Instrumentation S3. Complexity Measurement
T4

.

Optimization S4

.

Completeness Checking
T5

.

Restructur ing S5

.

Consistency Checking
T6. Translation S6

.

Cross Reference
T6A. Assembling S7

.

Data Flow Analysis
T6B. Compilation S8. Error Checking
T6C. Conversion S9

.

Interface Analysis
T6D. Macro Expansion S10. Scanning
T6E. Structure Preprocessing Sll. Statistical Analysis
T7. Synthesis S12. Structure Checking

S13. Tvpe Analysis
Dynamic Analysis S14. Units Analysis

S15. I/O Specification Analysis
Dl. Assertion Checking
D2. Constraint Evaluation Management
D3. Coverage Analysis
D4 . Resource Utilization Gl. Configuration Control
D5. Simulation G2. Information Management
D6. Symbolic Execution G2A. Data Dictionary Management
D7

.

Timing G2B

.

Documentation Management
D8. Tracing G2C. File Management
D8A. Breakpoint Control G2D. Test Data Management
D8B. Data Flow Tracing G3. Project Management
D8C. Path Flow Tracing G3A. Cost Estimation
D9. Tuning G3B. Resource Estimation
DIO. Regression Testing G3C

.

Scheduling
G3D. Tracking

Table 2. Function

a. Transformation (Key: T) . Transformation features describe
how the subject is manipulated to accommodate the user's
needs. They describe what transformations take place as the
input to the tool is processed. There are seven
transformation features. Each of these features is briefly
defined as follows:

Tl. Editing - modifying the content of the input by
inserting, deleting, or moving characters, numbers, or
data

.

THE NBS/ICST TAXONOMY OP SOFTWARE TOOL FEATURES Page B-5

T2 . Formatting - arranging a program according to
predefined or user defined conventions. A tool that
"cleans up" a program by making all statement numbers
sequential, alphabetizing variable declarations,
indenting statements, and making other standardizing
changes has this feature.

T3 . Instrumentation - adding sensors and counters to a

program for the purpose of collecting information
useful for dynamic analysis [Paig74] . Most code
analyzers instrument the source code at strategic
points in the program to collect execution statistics
required for assertion checking, coverage analysis, or
tuning. See Dl,D3, and D9.

T4 . Optimization - modifying a program to improve
performance, e.g. to make it run faster or to make it
use fewer resources. Many vendors" compilers provide
this feature. There are many tools that claim this
feature, but do not modify the subject program.
Instead, these tools provide data on the results of
execution which may be used for tuning purposes. See
D9

.

T5. Restructuring - reconstructing and arranging the
subject in a new form according to well-defined rules.
A tool that generates structured code from unstructured
code is an example of a tool with this feature.

T6 . Translation - converting from one language form to
another. There are five types of translation features.
Each is defined as follows:

T6A. Assembling - translating a program expressed in
an assembler language into object code.

T6B. Compilation - translating a computer program
expressed m a problem-oriented language into
object code.

T6C. Conversion - modifying an existing program to
enable it to operate with similar functional
capabilities in a different environment. Examples
include CDC Fortran to IBM Fortran, ANSI Cobol
(1968) to ANSI Cobol (1974) , and Pascal to Pi/1.

T6D . Macro Expansion - augmenting instructions in a

source language with user defined sequences of
instructions in the same source language.

T6E. Structure Preprocessing - translating a

computer program with structured constructs into
its equivalent without structured constructs.

THE NBS/ICST TAXONOMY OF SOFTWARE TOOL FEATURES Page B-6

T7. Synthesis - generating programs according to
predefined rules from a program specification or
intermediate language. Tools that have this feature
include program generators, compiler compilers, and
preprocessor generators.

b. Static Analysis (Key: S) . Static analysis features
specify operations on the subject without regard to the
executability of the subject [Howd78] . They describe the
manner in which the subject is analyzed. There are 15
static analysis features. Each is briefly described as
follows:

51. Auditing - conducting an examination to determine
whether or not predefined rules have been followed. A
tool that examines the source code to determine whether
or not coding standards are complied with is an example
of a tool with this feature.

52. Comparison - determining and assessing similarities
between two or more items. A tool that determines
changes made in one file that are not contained in
another has this feature.

53. Complexity Measurement - determining how complicated
an entity (e.g. , routine, program, system, etc.) is by
evaluating some number of associated characteristics
[Mcca76] [Hals77] . For example, the following
characteristics can impact complexity: instruction
mix, data references, structure/control flow, number of
interactions/interconnections, size, and number of
computations

.

54. Completeness Checking - assessing whether or not an
entity has all its parts present and if those parts are
fully developed [Boeh78] . A tool that examines the
source code for missing parameter values has this
feature.

55 . Consistency Checking - determining whether or not an
entity is internally consistent in the sense that it
contains uniform notation and terminology [Walt78] , or
is consistent with its specification [Robi77] . Tools
that check for consistent usage of variable names or
tools that check for consistency between design
specifications and code are examples of tools with this
feature.

56. Cross Reference - referencing entities to other
entities by logical means. Tools that identify all
variable references in a subprogram have this feature.

57 . Data Flow Analysis - graphical analysis of the
sequential patterns of definitions and references of
data [Oste76] . Tools that identify undefined variables

THE NBS/ICST TAXONOMY OF SOFTWARE TOOL FEATURES Page B-7

on certain paths in a program have this feature.

58 . Error Checking - determining discrepancies, their
importance, and/or their cause. Tools used to identify
possible program errors, such as misspelled variable
names, arrays out of bounds, and modifications of a
loop index are examples of tools with this feature.

59. Interface Analysis - checking the interfaces between
program elements for consistency and adherence to
predefined rules and/or axioms. A tool that examines
interfaces between modules to determine if axiomatic
rules for data exchange were obeyed has this feature.

510. Scanning - examining an entity sequentially to
identify key areas or structure. A tool that examines
source code and extracts key information for generating
documentation is an example of a tool with this
feature

.

511. Statistical Analysis - performing statistical data
collection and analysis. A tool that uses statistical
test models to identify where programmers should
concentrate their testing is one example. A tool that
tallies occurrences of statement types is another
example of a tool with this feature.

512 . Structure Checking - detecting structural flaws
within a program (e.g. improper loop nestings,
unreferenced labels, unreachable statements, and
statements with no successors)

.

513. Type Analysis - evaluating whether or not the domain
of values attributed to an entity are properly and
consistently defined. A tool that type checks
variables has this feature.

514. Units Analysis - determining whether or not the
units or physical dimensions attributed to an entity
are properly defined and consistently used. A tool
that can check a program to ensure variables used in
computations have proper units (e.g. hertz =

cycles/seconds) is an example of a tool with this
feature.

515. I/O Specification Analysis - analyzing the input and
output specifications in a program usually for the
generation of test data. A tool that analyzes the
types and ranges of data that are defined in an input
file specification in order to generate an input test
file is an example of a tool with this feature.

c. Dynamic Analysis (Key: D) . Dynamic analysis
features specify operations that are determined during or

— ' io-* takes place [Howd78a] . Dynamic analysis

THE NBS/ICST TAXONOMY OF SOFTWARE TOOL FEATURES Page B-8

features differ from those classified as static by virtue of
the fact that they require some form of symbolic or machine
execution. They describe the techniques used by the tool to
derive meaningful information about a program's execution
behavior. There are 10 dynamic analysis features. Each is
briefly described as follows:

Dl. Assertion Checking - checking of user-embedded
statements that assert relationships between elements
of a program. An assertion is a logical expression
that specifies a condition or relation among the
program variables. Checking may be performed with
symbolic or run-time data. Tools that test the
validity of assertions as the program is executing or
tools that perform formal verification of assertions
have this feature.

D2. Constraint Evaluation - generating and/or solving
path input or output constraints for determining test
input or for proving programs correct [Clar76] . Tools
that assist in the generation of or automatically
generate test data have this feature.

D3. Coverage Analysis - determining and assessing
measures associated with the invocation of program
structural elements to determine the adequacy of a test
run [Fair78] . Coverage analysis is useful when
attempting to execute each statement, branch, path, or
iterative structure (e.g., DO loops in FORTRAN) in a
program. Tools that capture this data and provide
reports summarizing relevant information have this
feature

.

D4 . Resource Utilization - analysis of resource
utilization associated with system hardware or
software. A tool that provides detailed run-time
statistics on core usage, disk usage, queue lengths,
etc. is an example of a tool with this feature.

D5. Simulation - representing certain features of the
behavior oT a physical or abstract system by means of
operations performed by a computer. A tool that
simulates the environment under which operational
programs will run has this feature.

D6. Symbolic Execution - reconstructing logic and
computations along a program path by executing the path
with symbolic rather than actual values of data
[Darr78]

.

D7 . Timing - reporting actual CPU, wall-clock, or other
times associated with parts of a program.

THE NBS/ICST TAXONOMY OF SOFTWARE TOOL FEATURES Page B-9

D8 . Tracing - monitoring the historical record of
execution of a program. There are three types of
tracing features. Each is described as follows:

D8A. Breakpoint Control - controlling the execution
of a program by specifying points (usually source
instructions) where execution is to be
interrupted

.

D8B. Da ta Flow Tracing - monitoring the current
state of variables in a program. Tools that
dynamically detect uninitialized variables or
tools that allow users to interactively retrieve
and update the current values of variables have
this feature.

D8C . Path Flow Tracing - recording the source
statements and/or branches that are executed in a
program in the order that they are executed.

D9. Tuning - determining what parts of a program are
being executed the most. A tool that instruments a
program to obtain execution frequencies of statements
is a tool with this feature.

DlO . Regression Testing - rerunning test cases which a
program has previously executed correctly in order to
detect errors spawned by changes or corrections made
during software development and maintenance. A tool
that automatically "drives” the execution of programs
through their input test data and reports discrepancies
between the current and prior output is an example of a
tool with this feature.

d. Management (Key: G) - Management features aid the
management or control of software development. There are
three types of management features. Each is described as
follows:

Gl. Configuration Control - aiding the establishment of
baselines for configuration items, the control of
changes to these baselines, and the control of releases
to the operational environment.

G2 . Information Management - aiding the organization,
accessibility, modification, dissemination, and
processing of information that is associated with the
development of a software system.

G2A. Da ta Dictionary Management - aiding the
development and control of a list of the names,
lengths, representations, and definitions of all
data elements used in a software system.

THE NBS/ICST TAXONOMY OF SOFTWARE TOOL FEATURES Page B-10

G2B. Documentation Management - aiding the
development and control of software documentation.

G2C . File Management - providing and controlling
access to files associated with the development of
software

.

G2d. Test Data Management - aiding the development
and control of software test data.

G3. Project Management - aiding the management of a
software development project. Tools that have this
feature commonly provide milestone charts, personnel
schedules, and activity diagrams as output.

G3A. Cost Estimation - assessing the behavior of the
variables which impact life cycle cost. A tool to
estimate project cost and investigate its
sensitivity to parameter changes has this feature.

G3B. Resource Estimation - estimating the resources
attributed to an entity. Tools that estimate
whether or not memory limits, input/output
capacity, or throughput constraints are being
exceeded have this feature.

G3C. Scheduling - assessing the schedule attributed
to an entity. A tool that examines the project
schedule to determine its critical path (shortest
time to complete) has this feature.

G3D. Tracking - tracking the development of an
entity through the software life cycle. Tools
used to trace requirements from their
specification to their implementation in code have
this feature.

Output . Output features, which provide the link from the tool to
the user, are illustrated in Table 3. They describe what type of
output the tool produces for both the human user and the target
machine (where applicable) . Again using a compiler as an
example, the user output would be diagnostics and possibly
listings and tables (cross reference) , and the machine output
would be object code or possibly intermediate code.

THE NBS/ICST TAXONOMY OF SOFTWARE TOOL FEATURES Page B-ll

OUTPUT

User Output Machine Output

Ul. Computational Results Ml. Assembly Language
U2. Diagnostics M2. Da ta
U3. Graphics M3. Intermediate Code
U3A. Activity Diagrams M4. Object Code
U3B. Data Flow Diagrams M5. Prompts
U3C. Design Charts M6. Source Code
U3D. Histograms M7. Text
U3E. Milestone Charts M8

.

VHLL
U3F. Program Flow Charts
U3G. Tree Diagrams
U4. Listings
U5. Tables
U6

.

Text

Table 3. Output

a. User Output (Key: U) . User output features describe the
types of information that are returned from the tool to the
human user and the forms in which these outputs are
presented. There are six user output features. Each is
briefly described as follows:

Ul. Computational Results - output that simply presents
the result of a computation. The output is not in an
easily interpreted natural language form (e.g. text or
tables)

.

U2. Diagnostics - output that simply indicates what
software discrepancies have occurred. An error flag
from a compiler is an example.

U3 . Graphics - a graphical representation with symbols
indicating operations, flow, etc. There are seven
types of graphics output. Each is described as
follows

:

U3A. Activity Diagrams - diagrams presenting actions
or states of a software development activity and
their interrelationships. Also, diagrams
representing or summarizing the major aspects of
system performance. Examples of activity diagrams
are control diagrams, pert charts, and system
profiles.

U3B. Data Flow Diagrams - diagrams that represent
the path of data in the solving of a problem and
that define the major phases of the processing as
well as the various data media used. Examples of
data flow diagrams are Jackson diagrams [Jack75]

,

DFD" s [DeMa78] , and Bubble Charts [Your75]

.

THE NBS/ICST TAXONOMY OF SOFTWARE TOOL FEATURES Page B-12

U3C . Design Charts - charts which represent the
software architecture components, modules, and
interfaces for a software system. Examples of
design charts are HIPO diagrams, structure charts
and block diagrams.

U3D. Histograms - graphic representations of
frequency distributions where the graph height is
proportional to a class frequency. Tools that
perform statistical analysis or coverage analysis
often provide histograms.

U3E. Milestone Charts - a chart which represents the
schedule of events used to measure the progress of
software development efforts. Milestone charts
are often provided by project management tools.

U3F. Program Flow Charts - graphical representation
of the sequence of operations in a computer
program. Examples of program flow charts include
FIPS Flow Charts [FIPS72] , Chapin Charts [Chap74]

,

and Nassi-Shneiderman Charts [Nass73]

.

U3G. Tree Diagrams - diagrams that represent the
hierarchical structure of software modules or data
and is generated from a root node. A tree diagram
does not show iteration or cycles. An example of
a tree diagram is a "call tree" or module
hierarchical diagram.

U4. Listings - an output from the tool is a computer
listing of a source program or data and may be
annotated. Many different forms of listings can be
generated. Some may be user controlled through
directives

.

U5. Tables - an output from the tool is arranged in
parallel columns to exhibit a set of facts or relations
in a definite, compact and comprehensive form. A tool
that produces a decision table identifying a program's
logic (conditions, actions, and rules that are the
basis of decisions) is an example.

U6. Text - an output from the tool is in a natural
language form. The output may be a choice of many
different types of reports and the formats may be user
defined

.

b. Machine Output (Key: M) . Machine output features handle
the interface from the tool to either another tool or a
machine environment. They describe what a machine or tool
expects to see as output. There are eight machine output
features. Each is briefly described as follows:

THE NBS/ICST TAXONOMY OP SOFTWARE TOOL FEATURES Page B-13

Ml. Assembly Code - a low level code whose instructions
are usually in one-to-one correspondence with computer
instructions.

M2. Da ta - a set of representations of characters or
numeric quantities to which meaning has been assigned.
A tool generating input to a plotter is an example.

M3. Intermediate Code - code that is between source code
and assembly code. A tool producing P-code for direct
machine interpretation is an example.

M4. Object Code - code expressed in machine language
which is normally an output of a given translation
process. A tool producing relocatable load modules for
subsequent execution is an example.

M5. Prompts - a series of procedural operators that are
used to interactively inform the system in which the
tool operates that it is ready for the next input.

M6 . Source Code - code written in a high level procedural
language that must be input to a translation process
before execution can take place.

M7. Text - statements in a natural language form. A tool
producing English text which is passed to a word
processor is an example.

M8. VHLL - statements written in a very high level
language. A tool which produces a requirements
language or design language for use by another tool is
an example.

Background

The initial development of the taxonomy was performed under
contract [1] to the National Bureau of Standards. Since its
initial development, the taxonomy has evolved through in-house
and public review. The first public review of the taxonomy took
place at a workshop held at NBS on 11 April 1980. Continued
development by ICST has clarified the definitions and removed
several inconsistencies. This taxonomy was released for general
public review through two NBS reports [Houg81a] [ICST81] and two
conference papers [Houg81b] [Reif81a]

.

The workshop and the response to the publications led to the
formation of a review group composed of people from industry,
Government, and academe. Comments from this group plus

[1] Contract NB79SBCA0273 to SoHar, Inc. and SoHaR Subcontract
No. to? to Software Management Consultants.

THE NBS/ICST TAXONOMY OF SOFTWARE TOOL FEATURES Page B-14

adjustments made as a result of in-house classification
experience essentially formed the taxonomy that is reported in
this document. This revision was distributed to the review group
for approval on July 16, 1981. The comments received with
discussion, resolution, and summary statistics for each proposed
change are available from the Institute for Computer Sciences and
Technology, National Bureau of Standards, Technology Bldg., Room
B266, Washington, DC 20234.

Expansion Issues

Although it would be structurally satisfying to have all
features expanded to the same level (it would keep the taxonomy
looking like a trimmed pine) , there are many features which
represent relatively new technology that make this task
impossible. These areas are maturing and not yet well
understood. For example, features such as synthesis,
restructuring, complexity measurement, cost estimation,
regression testing, and constraint evaluation are the subject of
current research. Expansion of these features to the same level
as features such as translation, tracing, or project management
is premature.

Another reason for expanding to a lower level is to keep the
granularity of the taxonomy consistent at the bottom level. For
example, translation and instrumentation are both transformation
features at the fourth level. Translation, however is broader in
scope than instrumentation. Consequently, translation is further
expanded to keep the granularity of its features consistent with
other transformation features.

Missing Features

On occasion, a tool may have a characteristic that can not
be easily classified with the taxonomy. It may be that the
taxonomy is missing a feature. When this situation occurs, the
classification for this tool remains at the lowest level
possible. For example, it has been proposed that test generation
and query languages be added to VHLL Input. Since these
languages are not currently part of the taxonomy, the
classification would not proceed below VHLL Input. In a future
review of the taxonomy, test generation and query languages will
be reviewed for need, desirability, and appropriateness in the
taxonomy.

All occurrences of missing features are important to ICST.
The taxonomy reflects tool technology at the time of revision.
New features and new tools may require future changes to the
taxonomy to keep it up to date. Anyone with comments or problems
relating to the taxonomy is encouraged to forward them to ICST.
The address is Institute for Computer Sciences and Technology,
National Bureau of Standards, Technology Bldg., Room B266,
Washington, DC, 20234.

THE NBS/ICST TAXONOMY OF SOFTWARE TOOL FEATURES Page B-15

References

[Bell77]

[Boeh78]

[Cain75]

[Chap74]

[Clar76]

[Darr78]

[DeMa 7 8

]

[Fair 78]

[FIPS72]

[Hals77]

[Houg81a]

[Houg81b]

[Howd78]

T. E. Bell, D. C. Bixler and M. E. Dyer, "An
Extendable Approach to Computer-Aided Software
Requirements Engineering", IEEE Transactions on
Software Engineering, Vol SE-3, No 1, 1977.

B. W. Boehm, J R. Brown, H. Kaspar, M. Lipow, G.
J. MacLeod and M. J. Merritt, "Characteristics of
Software Quality", Nor th-Holland Publishing Company,
NY, 1978.

S. H. Caine and E. K. Gordon, "PDL: A Tool for
Software Design", Proceedings of the National Computer
Conference, 1975.

N. Chapin, "New Format for Flowcharts",
Software-Practice and Experience, Oct. -Dec. 1974.

L. A. Clarke, "A System to Generate Test Data and
Symbolically Execute Programs", IEEE Transactions on
Software Engineering, Vol SE-2, September 1976.

J. A. Darringer and J. C. King, "Applications of
Symbolic Execution to Program Testing", Computer, April
1978.

T. DeMarco, "Structured Analysis and System
Specification", Prentice-Hall, Inc., 1978.

R. E. Fairley, "Tutorial: Static Analysis and
Dynamic Testing of Computer Software", Computer, April
1978.

U. S. Dept. of Commerce, "Flowchart Symbols and
Their Usage in Information Processing", National Bureau
of Standards FIPS-PUB-24, June 1972.

M. H. Halstead, "Elements of Software Science",
Elsevier - North Holland Pub. Co., New York, 1977.

R. Houghton, "Features of Software Development
Tools", NBS Special Publication 500-74, February 1981.

R. Houghton, "An Inverted View of Software
Development Tools", Proceedings of the 20th Annual
Technical Symposium of the Washington, D.C. Chapter of
the ACM, June 1981.

W. E. Howden, "A Survey of Static Analysis Methods",
Tutorial: Software Testing and Validation Techniques,
IEEE Cat. No. EH0138-8 , 1978.

THE NBS/ICST TAXONOMY OF SOFTWARE TOOL FEATURES Page B-16

[Howd78a] W. E. Howden,"A Survey of Dynamic Analysis Methods",
Tutorial: Software Testing and Validation Techniques,
IEEE Cat. No. EH0138-8 , 1978.

[ICST81] , "Software Development Tools: A Reference
Guide to a Taxonomy of Tool Features", U. S.
Department of Commerce, LC-1127, February 1981.

[Jack75] M. A. Jackson, "Principle of Program Design"
Academic Press, 1975.

[Mcca76] T. J. McCabe, "A Complexity Measure", IEEE
Transactions on Software Engineering, Vol SE-2,
December 1976.

[Nass73] I. Nassi and B. Shneiderman, "Flowchart Technigues
for Structured Programming", SIGPLAN Notices of the
ACM, August 1973.

[Oste76] L. J. Osterweil and L. D. Fosdick, "DAVE - A
Validation Error Detection and Documentation System for
FORTRAN Programs", Sof tware~Practice and Experience,
October 1976.

[Paig74] M. R. Paige and J. P. Benson, "The Use of Software
Probes in Testing FORTRAN Programs", Computer, July
1974.

[Reif 80] D. Reifer and H. Montgomery, "Final Report, Software
Tool Taxonomy", Software Management Consultants Report
No. SMC-TR-00 4 , June 1980.

[Reif 81a] D. Reifer, "Tool Standards-It's About Time",
Proceedings of the Software Engineering Standards
Application Workshop, IEEE No. 81CH1633-7, August
1981.

[Robi77] L. Robinson and K. N Levitt, "Proof Techniques for
Hierarchically Structured Programs", Communications of
the ACM, April 1977.

[Teic77] D. Teichroew and E. Hershey III, "PSL/PSA: A
Computer-Aided Technique for Structured Documentation
of Information Processing Systems", IEEE Transactions
on Software Engineering, Vol SE-3, No 1, 1977.

[Walt78] G. Walters and J. McCall, "The Development of Metrics
for Software Reliability and Maintainability",
Proceedings of the Annual Reliability and
Maintainability Symposium, January 1978.

[Warn76] J-D. Warnier, "Logical Construction of Programs", New
York: Van Nostrand Reinhold Co., 1976.

3S«114A 'REV. Z-4C)

U.S. DEPT. OP COMM. 1 .

BIBLIOGRAPHIC DATA
SHEET (See mictions;

PUBLICATION OR
REPORT NO.

NBSIR 82-2625
4. TITLE AND SUBTITLE

A Taxonomy of Tool Features for the Ada

2. Performing Organ. Report No. 3. Publication Date

February 1333

Programming Support Environment (APSE)

5. AUTHOR(S)
Raymond C. Houghton, Jr.

6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions) 7. Contract/Gram t No.

NATIONAL 8UREAU OF STANDARDS
DEPARTMENT OF COMMERCE 1. Type of Report & Per od Covered

WASHINGTON, D.C. 20234
Final Reoort

9. SPONSOR NG ORGANIZATION NAME AND COMPLETE ADDRESS ('Street, City, Store, ZIP,

Department of Defense
Ada Joint Program Office

801 N. Randolph, Suite 1210
Arlington, VA 22209

IX). SUPPLEMENTARY NOTES

~ Doo.-er.: descrioes a cc-c-te r progra-; SF-185, FlPS Software S-— ary
,

is attachec

11. ABSTRACT A 200-*o'd or ess factua summary of most significant in formation. If rocument ncijdes a significant
bib o g'co h y o r iterature survey, mention it here)

A categorization of the software development tool features of the Ada Programming

Support Environment (APSE) is presented. The features or two Ada environments, the

Ada Language System (ALS) and the Ada Integrated Environment (AIE) , are compared.

The underlying features of the APSE are presented.

2. <EV •'•GFDS Six to twe /e entries; alphabeticc order; copitc ze or y proper -s-ss; and sec 2 -c:e <e. »z~:s by se- colon Sj

Ada Programming Support Environment; APSE; software development; software engnneernng;

software tools; taxonomy

13. AY AILAB _ TY 14. NO. OF
PRINTED PAGES

-- jnlir.i ted
—

For Officia Distribution. Do Not Release to NTIS
—

Order F'c— S-pe- -te-oent o f Docw— ents, o.S. Gove-r — ent Pr -ai-g OMice, Vi as- ~ gto-
, D.C.

2C'-02.

31

15. P- ce

7^ G'ter Frorr Nat ona ~echn ca 1 n formation Service (NT S), Spongfie d, VA. 22:6' S3 . 50

