
R afara
NBS
Publi-

natl ins; of stand & tech Cation

A 1 1 1 D

b

iMooin o2-261 9

Functional Specifications for A
Federal Information Processing
Standard Data Dictionary System

U S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Center for Programming Science and Technology

Institute for Computer Sciences and Technology

Washington, DC 20234

January 1 983

QC
100 iPARTMENT OF COMMERCE

, U56 VL BUREAU OF STANDARDS

82-2619

1983

I

I

I

I

1

I

1

I

I

I

I

[

I

I

I

I

I

I

NATIONAL BUREAtJ
OF STANDARDS

LIBRARY

FEB 7 1983
hoi Code - ’Kef
QC loo

NBSIR 82-2619

FUNCTIONAL SPECIFICATIONS FOR A
FEDERAL INFORMATION PROCESSING
STANDARD DATA DICTIONARY SYSTEM

Editors

Patricia A. Konig

Alan Goldfine

Judith J. Newton

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Center for Programming Science and Technology

Institute for Computer Sciences and Technology

Washington, DC 20234

January 1 983

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler. Director

.
' 1

' '

<

‘4 •

•

:
’

PART I

TABLE OF CONTENTS

PREFACE
1. INTRODUCTION

Page

viii

1.1 Background 2

1.2 Expected Benefits 3

1.3 ICST Project Approach and Status 4

1.3.1 Project Approach 4

1.3.2 Project Status 5

1.4 Scope of Report 7

2. MANAGEMENT OVERVIEW 8

2.1 BACKGROUND 8

2.2 FUNCTIONAL SPECIFICATIONS FOR THE FIPS DDS 9

2.3 STRUCTURE OF THE DDS .• 10

2.3.1 The Dictionary 10
2.3.2 The Dictionary Schema 11
2.3.3 Customizing the DDS 14

2.4 THE SYSTEM STANDARD SCHEMA 14

2.4.1 System Standard Entity-Types 14
2.4.2 System Standard Relationship-Types 15
2.4.3 System Standard Attribute-Types 16

2.5 THE DDS COMMAND LANGUAGE 17

2.5.1 Interaction with the Dictionary Schema 17
2.5.2 Interaction with the Dictionary 18

2.6 THE DDS SOFTWARE INTERFACES 21

2.7 SECURITY FACILITIES OF THE FIPS DDS 22

l

PART II

TABLE OF CONTENTS

PAGE

ERRATA - - • ERRATA- 1

1. INTRODUCTION , 1- 1

2. THE DDS ENVIRONMENT AND DDS DEFAULTS 2- 1

2.1 THE DDS ENVIRONMENT 2- 1

2.2 DDS DEFAULTS 2- 2

2.2.1 MODE FOR MAINTENANCE OF THE DICTIONARY SCHEMA 2- 2

2.2.2 MODE FOR MAINTENANCE OF THE DICTIONARY 2- 3

2.2.3 DEFAULT STATUS 2- 3

2.2.4 VERSION DEFAULT 2- 4

2.2.5 CODE VALUES DEFAULT 2- 5

3. THE DICTIONARY AND DICTIONARY SCHEMA AND
THEIR STRUCTURE 3- 1

3.1 THE STRUCTURE OF THE DICTIONARY SCHEMA 3- 2

3.1.1 META-ENTITY-TYPES 3- 3

3.1.2 META-RELATIONSHIP-TYPES 3- 6

3.1.3 META-ATTRIBUTE-TYPES OF META-ENTITY-
TYPES 3- 8

3.1.4 META-ATTRIBUTE-TYPES OF META-RELATION-
SHIP-TYPES 3- 22

3.1.5 THE STATUS FACILITY OF THE DICTIONARY
SCHEMA 3- 31

3.1.6 THE STAGE FACILITY OF THE DICTIONARY
SCHEMA 3- 32

3.2 THE DICTIONARY SCHEMA 3- 33

3.3 CUSTOMIZATION OF THE DICTIONARY SCHEMA 3- 34

3.4 THE DICTIONARY 3- 35

4. THE SYSTEM-STANDARD SCHEMA 4- 1

4.1 ENTITY-TYPES 4- 2

4.2 RELATIONSHIP-TYPES 4- 11A

4.3 RELATIONSHIP-CLASS-TYPES 4- 41

4.4 ATTRIBUTE-TYPES 4- 44

4.5 ATTRIBUTE-GROUP-TYPES 4- 58

4.6 ATTRIBUTE-TYPE-VALIDATION-PROCEDURE 4- 62

4.7 ATTRIBUTE-TYPE-VALIDATION-DATA 4- 63

4.8 STATUS-NAME 4-6 3

4.9 STAGE-NAME 4- 55

iii
(Rev. of 7-82 doc.)

4.10 ATTRIBUTE-TYPES AND ATTRIBUTE-GROUP-TYPES
ASSOCIATED WITH ENTITY-TYPES 4- 65

4.11 ATTRIBUTE-TYPES AND ATTRIBUTE-GROUP-TYPES
ASSOCIATED WITH RELATIONSHIP-TYPES 4- 74

5. COMMANDS FOR INTERACTION WITH THE DICTIONARY
SCHEMA 5- 1

5.1 SCHEMA MAINTENANCE COMMANDS 5- 1

5.1.1 ABOLISH-META-ENTITY COMMAND 5- 3

5.1.2 ABOLISH-META-ENTITY-WITH-LOCK COMMAND 5- 5

5.1.3 ABOLISH-META-RELATIONSHIP COMMAND 5- 5

5.1.4 ALTER-META-ENTITY COMMAND 5- 7

5.1.5 ALTER-META-ENTITY-WITH-LOCK COMMAND 5- 12

5.1.6 ALTER-META-RELATIONSHIP COMMAND 5- 12

5.1.7 CHANGE-META-NAME COMMAND 5-14
5.1.8 CREATE-META-ENTITY COMMAND 5- 15

5.1.9 CREATE-META-RELATIONSHIP COMMAND 5- 21

5.1.10 REPLACE-META-RELATIONSHIP COMMAND 5- 24

5.2 SCHEMA REPORTING COMMANDS 5- 27

5.2.1 IS-META-RELATED-COMMAND 5- 27

5.2.2 META-CATALOG -COMMAND 5- 28

5.2.3 META-LIST-COMMAND 5- 29

5.2.4 META-TRACE COMMAND 5-32

6. COMMANDS FOR INTERACTION WITH THE DICTIONARY 6- 1

6.1 GENERAL RULES 6- 1

6.1.1 ENTITY-NAME RULES 6- 2

6.1.2 USE-AS-IDENTIFIER ATTRIBUTE-TYPE RULES 6- 3

iv

6.1.3 ATTRIBUTE RULES 6- 5

6.1.4 TEXT ATTRIBUTE-TYPES 6- 8

6.1.5 RULES FOR USAGE-NAMES ATTRIBUTE-GROUPS.... 6- 10

6.1.6 AUDIT ATTRIBUTE-TYPES 6- 12A

6.1.7 NULL ATTRIBUTES 6- 12A

6.2 QUALIFICATION 6- 13

6.2.1 QUALIFY COMMAND 6- 16

6. 2. 1.1 ENTITY-SELECTION CLAUSE 6- 19

6. 2.1.2 ALTERNATE-NAME-SELECTION CLAUSE 6- 21

6. 2. 1.3 PRIMARY-NAME-RESTRICTION CLAUSE 6- 24

6. 2. 1.4 RELATIONSHIP-RESTRICTION CLAUSE 6- 26

6. 2. 1.5 AUDIT-ATTRIBUTE-RESTRICTION CLAUSE 6- 30

6. 2. 1.6 ATTRIBUTE-RESTRICTION CLAUSE 6- 32

6. 2. 1.7 TEXT-STRING-RESTRICTION CLAUSE 6- 35

6. 2. 1.8 CLASSIFICATION-RESTRICTION CLAUSE 6- 36

6.2.2 UNION, INTERSECTION, SET-DIFFERENCE COMMANDS 6- 38

6.2.3 DISQUALIFY-LIST COMMAND 6- 40

6.2.4 SAVE-LIST COMMAND 6- 41

6.2.5 RUN COMMAND 6-4 3

6.2.6 DROP-PROCEDURE COMMAND 6- 44

6.2.7 LIST-QUALIFICATIONS COMMAND 6- 45

6.3 MAINTENANCE COMMANDS 6- 46

6.3.1 ADD-ENTITY COMMAND 6- 46

6.3.2 ADD-RELATIONSHIP COMMAND 6- 51

6.3.3 CHANGE-STATUS COMMAND 6- 58

6.3.4 COPY COMMAND 6- 62

6.3.5 DECLARE COMMAND 6- 65

6.3.6 DELETE-ENTITY COMMAND 6- 69

6.3.7 DELETE-RELATIONSHIP COMMAND 6- 71

6.3.8 MODIFY-ENTITY COMMAND 6- 77

6.3.9 MODIFY-RELATIONSHIP COMMAND... 6-81
6.3.10 RENAME COMMAND 6- 84

6.3.11 RENUMBER COMMAND 6- 87

V
(Rev. of 7-82 doc.)

6.4 REPORT COMMANDS 6-91
6.4.1 CATALOG COMMAND 6-91
6.4.2 IMPACT-OF-CHANGE COMMAND 6- 98

6.4.3 IMPLICIT-ENTITIES COMMAND 6-105

6.4.4 LIST COMMAND 6-107

6.4.4A ORPHANED-ENTITIES COMMAND 6-108

6.4.4B PRODUCE-SYNTAX COMMAND 6-108B

6.4.5 VERSION-REPORT COMMAND 6-108E

6.5 QUERY COMMANDS 6-111

6.5.1 GENERAL QUERY COMMAND 6-111

6.5.2 SAVE-QUERY COMMAND 6-113

6.5.3 RUN-QUERY COMMAND 6-114

6.5.4 DELETE-QUERY COMMAND 6-115

6.5.5 LIST-QUERIES COMMAND 6-115

6.5.6 SPECIAL QUERY COMMANDS 6-116

6.5.6.

1

IMPLICIT-ENTITY QUERY 6-116

6 . 5. 6 . 2 ENTITY-AND-ATTRIBUTE QUERY • 6-117

6 . 5. 6 . 3 ALTERNATE-NAME-AND-CONTEXT QUERY 6-118

6 . 5.6.4 CONTAINS-STRING QUERY 6-119

6 . 5. 6 . 5 RELATIONSHIP QUERY 6-120

6 . 5. 6.

6

AUDIT QUERY 6-121

6 . 5. 6 . 7 CLASSIFICATION QUERY 6-122

7. DDS SOFTWARE INTERFACES 7- 1

7.1 GENERATE-STRUCTURE-FOR-COBOL COMMAND 7- 1

7.2 THE EXPORT/IMPORT FACILITY 7- 9

7.2.1 INTEGRITY CONSIDERATIONS 7- 9

7.2.2 SCHEMA EQUIVALENCE AND THE ESSENTIAL SCHEMA 7- 11

7. 2. 2.1 EXTRACT-ESSENTIAL-SCHEMA COMMAND 7-13
7. 2. 2.

2

COMPARE-ESSENTIAL-SCHEMAS COMMAND 7-15
7.2.3 EXPORT/IMPORT PROCEDURE 7- 16

7.2.4 EXPORT/IMPORT COMMANDS 7- 18

7. 2. 4.1 EXTRACT-SUBSET COMMAND 7- 19

vi (Rev. of 7-82 doc.)

7. 2. 4.

2

CREATE-DICTIONARY COMMAND 7- 23

7. 2. 4.

3

LOAD-DICTIONARY COMMAND 7- 25

7. 2. 4.

4

IMPORT-SUBSET COMMAND 7- 26

7.3 DDS PROGRAM INTERFACE - THE CALL DDS COMMAND 7- 29

8. DICTIONARY ADMINISTRATOR COMMANDS AND TOOLS 8- 1

8.1 THE DDS SECURITY FACILITY 8- 1

8.1.1 DICTIONARY-USER ENTITY-TYPE 8- 2

8.1.2 RULES FOR THE ENTITY-TYPE DICTIONARY-USER 8- 11

8.1.3 ACCESS-CONTROLLER ENTITY-TYPE 8- 12A

8.1.4 RULES FOR THE ENTITY-TYPE ACCESS-CONTROLLER 8- 14

8.1.5 EFFECTS OF THE DDS SECURITY FACILITY 8- 14

8. 1.5.1 QUALIFICATION COMMANDS 8- 14

8. 1.5.

2

MAINTENANCE COMMANDS 8- 15

8. 1.5.

3

REPORT COMMANDS 8- 16

8. 1.5.

4

QUERY COMMANDS 8- 17

8. 1.5.

5

DDS SOFTWARE INTERFACE COMMANDS 8- 17

8.2 LOCAL SECURITY COMMANDS 8- 18

8.2.1 ADD-SECURITY COMMAND 8- 18

8.2.2 DELETE-SECURITY COMMAND 8- 20

8.2.3 MODIFY-SECURITY COMMAND 8- 21

8.2.4 ASSIGN-KEY COMMAND 8- 24

8.2.5 DELETE-KEY COMMAND 8- 27

8.3 DICTIONARY ADMINISTRATOR TOOLS 8- 29

8.3.1 TOOLS FOR DICTIONARY SET UP 8- 29

8.3.2 TOOLS FOR DICTIONARY CONTINUITY 8- 30

8.3.3 TOOLS FOR PERFORMANCE IMPROVEMENT 8- 31

APPENDIX A A- 1

APPENDIX B B- 1

vii
(Rev. of 7-82 doc.)

PREFACE

We gratefully acknowledge the cooperation of the
Federal users and developers of Data Dictionary Systems who
assisted the Institute for Computer Science and Technology
in identifying current and projected Federal requirements
for data dictionary software. The names of the participat-
ing individuals are listed in alphabetical order.

Capt. Dennis Bruns
Charles W. Burlingame
Peter Cuomo
Phillip Dawson
Ruth Dyke
Mary Kay Daniels Ganning
Ann Glascock
Josi Hillary
Carolyn Jackson
R. Scott Jennings
Neil S. Jarrett, Jr.
Brenda King
Jeanne Kline
Belkis Leong-Hong
Robert Levi
Robert Lovelace
John Martin
Susan McFarland
Daniel Moreno

Linda Moyer
Cameron Murchison
Harvey Payne
James Radosevich
Ric Rawson
Nancy Reid
Lawrence Ries
Pat Robinson
Bruce Rosen
William J. Ross
William Selfridge
Major Charles Shidesky
Lt. Daniel Simes
Jerry Szablonsky
Lt. Bridgette Taylor
Catherine Ward
Sheila Watkins
Roxanne Williams
Margaret Wisner

Two members of the Data Management and Programming Languages
Division read and criticized early versions of this report.
They are Helen Wood, Division Chief, and Roy Saltman, Group
Leader. Part II of this report was prepared for the Insti-
tute for Computer Sciences and Technology by Dr. Henry
Lefkovits, Dr. Edgar Sibley, and Dr. Anthony J. Winkler of
Alpha Omega Group, Inc. We urge readers to provide comments
and to further interact with us on this document. Responses
should be directed to the address below.

Mrs. Patricia A. Konig
Institute for Computer Sciences

and Technology
National Bureau of Standards
Technology Building, Room A265

Washington, D.C. 20234

viii

FUNCTIONAL SPECIFICATIONS FOR A
FEDERAL INFORMATION PROCESSING STANDARD

DATA DICTIONARY SYSTEM

Editors
Patricia A. Konig

Alan Goldfine
Judith J. Newton

This interim report contains Functional
Specifications for the basic functions that data
dictionary software must perform to satisfy
Federal agency requirements. The functionality
specified will be incorporated into a planned
Federal Information Processing Standard (FIPS)
Data Dictionary System (DDS) . The complete FIPS
DDS also will contain additional specifications
for such things as the user interface. Comments
are being solicited from Federal agencies and sup-
pliers of data dictionary software to determine
any modifications that should be made to the Func-
tional Specifications. Information about the ef-
fort to develop the planned FIPS DDS and a Manage-
ment Overview of the Functional Specifications ap-
pear in Part I of this document. The Functional
Specifications are in Part II.

Key words: Computer program; data dictionary sys-
tem; data inventory; data management; data stan-
dards; database; database management system; docu-
mentation; Federal Information Processing Stan-
dards Publication; requirements; software.

- 1-

PART I

1. INTRODUCTION

1.1 Background

As the world's largest user of information processing
technology, the Federal government is highly dependent on
the use of this technology for carrying out government-wide
programs and delivering essential public services. Accord-
ingly, data management software is a tool of rapidly in-
creasing importance which merits special attention in its
acquisition and use. The Institute for Computer Sciences
and Technology (ICST) , in its role as information technology
standards-maker for the Federal government, is addressing
the need for standards and guidelines in this area through
its Data Management Program.

A key software component for the management of informa-
tion resources is the Data Dictionary System (DDS) . A Data
Dictionary System is a computer software system that pro-
vides facilities for recording, storing, and processing in-
formation about an organization's significant data and data
processing resources. But, while the DDS alone is a valu-
able aid to organizing and maintaining data, its utility is
severly limited if attention is not paid to such important
attributes as integrity, portability, and intercommunica-
tions .

ICST is developing a Federal Information Processing
Standard (FIPS) Data Dictionary System. The FIPS DDS will
be a software specification which Federal agencies may use
for procurement purposes in conjunction with Federal Proper-
ty Management Regulations (FPMR) . The FIPS DDS Specifica-
tions will not require an agency to use a data dictionary or
to use one in a prescribed manner. This report, an interim
publication, contains specifications for the basic functions
that software supporting a DDS must perform to satisfy
Federal requirements.

- 2-

1.2 Expected Benefits

Together with the necessary management support and con-
trols, a DDS can help Federal agencies:

o Control and manage their information resources.

o Increase inter- and intra-agency communication and
sharing of iftformation resources.

o Eliminate redundant data collection.

o Develop and modify products throughout a system life
cycle

.

o Standardize data elements.

o Document pertinent information about databases,
files, computer programs, and manual and automated
systems

.

A FIPS for a Data Dictionary System will provide addi-
tional benefits. In addition to containing standard specif-
ications which can be used in the selection, evaluation, and
procurement of DDS software, the FIPS DDS will aid in the
portability of the DDS contents. Portability is the ability
to transfer data from one DDS to another, without being re-
quired to:

o Recreate or re-enter data descriptions, except by an
unload/reload process; or

o Modify significantly the DDS application that is be-
ing transported.

The FIPS DDS also will support portability of acquired
skills. Agency personnel will not need additional training
to learn new user languages in order to use another DDS.

- 3-

1.3 ICST Project Approach and Status

1.3,1 Project Approach. The objective of the ICST project is
to develop specifications that will support Federal agency
requirements, and that will be implemented by a wide spec-
trum of software suppliers and thus will be available "off-
the-shelf." The project, which was initiated late in fiscal
year 1979, is based on the following approach:

1. Close and continuing interaction with Federal users
to determine which specific capabilities are re-
quired by a sufficiently large segment of the
Federal community.

2. In-depth technological assessments and intensive
consultation with hardware and software vendors, the
research community, and Federal developers of in-
house data dictionary systems, to determine:

o Whether it is technologically practical to
develop a particular capability in the near fu-
ture, i. e. next 3 to 5 years; and

o If technically feasible, whether it is economical
for the software industry to produce such a capa-
bility in a competitive market.

3. Solicitation of comments and suggestions from all
affected communities throughout the entire develop-
mental process by issuing periodic reports and con-
ducting workshops.

4. Continuing interchange with the American National
Standards Institute (ANSI) Technical Committee,
X3H4, to ensure consistency with the planned nation-
al standard for a DDS, named the Information
Resource Dictionary System (IRDS)

.

5. Coordination with the Office of Management and Budg-
et (OMB) to:

o Evaluate the prototype Federal Information Loca-
tor System (FILS) that OMB adopted in implement-
ing the Paperwork Reduction Act of 1980 (P.L.
96-511) ; and

o Ensure that the planned FIPS DDS is compatible
with FILS when it becomes fully operational.

- 4 -

1.3.2 Project Status. The work plan for developing a FIPS
DDS was divided into the following five phases:

1. State-of-the-art assessment of DDS technology.

2. Requirements Definition.

3. Development of preliminary DDS Functional Specifica-
tions .

4. Development of complete FIPS DDS Specifications.

5. Specification of Optional FIPS DDS Module (s) to pro-
vide additional capabilities.

During the first phase, relevant literature and exist-
ing commercial and Federally-developed data dictionary sys-
tems were analyzed. Features and capabilities in the current
generation of DDS 1 s were identified. A preliminary assess-
ment identified projected technological trends and issues
that warranted further investigation. The following two pro-
ducts were published during the first phase:

1. Prospectus for Data Dictionary System Standard ,

NBSIR 80-2115. The Prospectus discusses the use of
data dictionaries and describes ICST's plans to
develop a Federal Information Processing Standard
for Data Dictionary Systems. ICST encouraged tech-
nical input regarding the appropriate content for a
FIPS DDS.

2. Guideline for Planning and Using a Data Dictionary
System , Federal Information Processing Standard Pub-
lication (FIPS PUB) 76. This publication discusses
the capabilities and uses of data dictionary sys-
tems. It also provides Federal agencies with basic
guidance on DDS selection, planning for the use of a

DDS, DDS implementation, and operational usage of a
DDS.

In the second phase of the project, interviews were
conducted with Federal agencies to identify current and pro-
jected requirements for data dictionary software. Interview
results, as well as comments received on the Prospectus, are
summarized in Federal Requirements for a Federal Information
Processing Standard Data Dictionary System (NBSIR 81-2354) .

This report was disseminated, in the fall of 1981, to
Federal agencies. The report also was sent to suppliers of
data dictionary software and other individuals and organiza-
tions in the private sector who are working with data dic-
tionar ies

.

- 5 -

Using the results of the first two phases, ICST worked
closely with the ANSI X3H4 Technical Committee and with na-
tionally recognized experts on data dictionary systems to

develop the DDS Functional Specifications that appear in

Part II of this report. In addition, three Federal agency
workshops were held to review and refine Federal require-
ments for the planned FIPS DDS. Invitations to the
workshops were extended to Federal agency representatives
who were knowledgeable about data dictionary concepts, ex-
isting capabilities, and uses of a DDS. Thirty-eight people
from the following Federal agencies attended one or more of
the workshops:

Department of Agriculture
Department of Commerce

National Bureau of Standards
National Oceanic and Atmospheric Administration

Department of Defense
Office of the Assistant Secretary of Defense (Comptroller)
Defense Communications Agency
Defense Intelligence Agency
Department of the Air Force, Headquarters
Department of the Army, Concepts Analysis Agency
Military .Sealift Command
National Security Agency

Department of Energy
Department of Health and Human Services

Social Security Administration
Department of Interior

Office of the Secretary
Bureau of Land Management
Bureau of Mines

Department of Labor
General Services Administration
Library of Congress
National Aeronautics and Space Administration
Small Business Administration
U.S. Postal Service
U.S . Treasury

Bureau of Government Financial Operations
Internal Revenue Service

Veterans Administration

Presentations and discussions at the first workshop
focused on some of the underlying issues and the preliminary
conclusions from the Federal Requirements for a Federal
Information Processing Standard Data Dictionary System . At
this workshop, the Federal attendees agreed upon such things
as the integrity rules and audit requirements that should be
included in the Functional Specifications. The second and
third workshops focused on the structural model and

- 6-

functionality of the specifications. The DDS Functional
Specifications that appear in this report contain prelim-
inary material reviewed during the workshops with the modif-
ications that Federal representatives felt were needed to
satisfy agency requirements. This document represents the
results of the third phase of work.

Work on the fourth phase started in October, 1982. Two
products, which will constitute the FIPS DDS, are scheduled
for development during this phase. These products are the
"DDS User Manual" and the "DDS Implementors' Manual." The
"DDS User Manual" will contain the specification of the user
interfaces. These specifications will include the complete
syntax and semantics of all commands, except for features
that are specified to be implementor defined. Also included
will be specifications for a "help" facility, possible error
conditions, the resulting error messages, and the actions to
be taken in case of errors.

The "DDS Implementors' Manual" will contain guidance
that is to be observed by an implementor. This guidance will
be in part an extract of the DDS Functional Specifications.
ICST expects that additional modifications will be made to
these Functional Specifications as a result of a workshop
conducted for suppliers of data dictionary systems, inter-
views with DDS vendors, additional Federal agency workshops,
and comments received on this report. Current plans are to
publish the complete FIPS DDS in Fiscal Year 1985. An addi-
tional interim report is scheduled to be published in Fiscal
Year 1984 to obtain comments on the planned final draft of
the FIPS DDS.

1.4 Scope of Report

Readers of the remainder of this report are presumed to
be familiar with general data processing concepts and with
the concepts and purpose of a data dictionary system.
Readers are referred to the earlier publications cited in
this Introduction for an overview of the concepts, purpose,
and capabilities of DDS's.

A Management Overview of the DDS Functional Specifica-
tions appears in Part I, Chapter 2. The DDS Functional
Specifications appear in Part II of this report.

- 7 -

2 . MANAGEMENT OVERVIEW

2 . 1 BACKGROUND

Ease of use and flexibility of use are the two major
Federal requirements that were identified during both the
Federal interviews and the Federal agency workshops. Two
prime areas of data dictionary use also were identified. The
most important use is and will continue to be oriented to-
ward data management, i.e., to inventory, describe, and
standardize data. In the second area, many agencies use a

DDS to help manage their ADP resources and provide support
for requirements analysis, ADP systems planning and design,
change- impact analysis and documentation. An important cri-
terion for an acceptable DDS is a user interface that is
easy to learn and use.

Federal agencies also will use the FIPS DDS in a
variety of hardware and software environments. To provide
the needed flexibility, a "core" DDS and optional modules
have become basic concepts. The DDS Functional Specifica-
tions represent the "core" DDS. They provide basic support
for the prime areas of use identified in the Federal govern-
ment and can be implemented on small computers as well as
medium and large-size computer systems. (The feasibility of
implementing the specifications on a small computer system
is addressed in Appendix A.) Each additional module will
contain more advanced features which will result in a more
powerful and complex DDS. An example of a future DDS option-
al module is an interface to Database Management Systems
that conforms .to standards being developed by the American
National Standards Institute and ICST.

The Functional Specifications are based on an entity-
relationship-attribute (E-R-A) structure. For the purposes
of this document, the following definitions are used for
these terms:

Entity - any named concept, object, person, event, pro-
cess, or quantity that is the subject of stored or col-
lected data. An entity-type is a class of entities that
have the same attributes.

Relationship - a pr e-determined ordering between pairs
of entities.

Attribute - a property or characteristic of an entity.

- 8 -

A DDS entity represents or names an object, person,
etcetera, but it is not the actual data that exists in a
file or database. Thus, a DDS entity might be "social-
security-number" or "payroll record." It would not be the
actual social security number "123-45-6789" or the actual
content of a payroll record. Similarly, an attribute
represents a characteristic of an entity. An example of an
attribute of "social-security-number" is length, e.g., 9

characters. An example of a relationship is "payroll record
contains social-security-number .

"

In order to provide additional flexibility in the use
of the "core" data dictionary, capabilities are specified to
customize or augment the types of entities, relationships,
and attributes that are delivered as part of every software
package that conforms to the FIPS DDS. Specification of this
customization capability involves several "levels," with a
higher level representing a more abstract concept. A rather
precise formalism is used in the language of the Functional
Specifications to denote the level being addressed. The lev-
els are discussed in Section 2.3 and illustrated in Table 1.
Most users of a FIPS DDS will not be aware of the higher
levels but Federal agencies will need someone knowledgeable
about these higher levels to act as a Dictionary Administra-
tor. Responsibilities of the Dictionary Administrator would
include customizing the DDS to satisfy unique agency re-
quirements .

The command language presented in the DDS Functional
Specifications is used to illustrate the DDS functionality.
The entire syntax is hypothetical, and no indication whatso-
ever is intended that this syntax will be used in the FIPS
DDS. As discussed in the Introduction, questions regarding
the user interface are being addressed in the current
development effort.

2.2 FUNCTIONAL SPECIFICATIONS FOR THE FIPS DDS

The DDS has three major components:

1. the Dictionary — the data contained within the
DDS.

2. the Dictionary Schema— a description of the generic structure of the
dictionary.

- 9-

3 . the Dictionary Processing System — the set of pro-
grams which interact with the dictionary and dic-
tionary schema to provide the functionality of the
DDS.

2.3 STRUCTURE OF THE DDS

2.3.1 The Dictionary.

The basic unit is the entity . Relationships connect
pairs of these entities, and both entities and relationships
have attributes assigned to them—values representing pro-
perties or characteristics.

A small subset of the dictionary might conceptually
have the form given in Figure 1.

Figure 1

-10-

Figure 2 illustrates a specific (and totally hypotheti-
cal) example of the typical Entity-Relationship-Attribute
structure given in Figure 1.

Figure 2

* The dates are in compressed format. This date represents
May 19,1982.

2.3.2 The Dictionary Schema.

Attributes can be organized into sets called
attribute-types , so that each member of a set represents a
like characteristic. For example, "DATE CREATED" is a typi-
cal attr ibute-type

.

-11-

Similarly, entities can be organized into entity-types .

All instances of a specific entity-type have similar or
identical characteristics or attr ibute- types . "Social-
security-number " is an example of an "element" entity- type.

In the same manner, relationships can be grouped into
relationship-types . All relationships, which are instances
of a relationship-type, have attributes from the collection
of attribute-types associated with that relationship-type

.

"System-contains-program" and " record-contains-element" are
examples of relationships. (The concept of "type" is gen-
erally regarded as a collection of "instances.")

These "types" form the basis of the dictionary
schema—the collection of structures that describes the dic-
tionary. The schema also contains structures used for the
validation of attributes in the dictionary and for the sup-
port of the DDS status and staging facilities.

This entity-relationship-attribute construction used
for the dictionary can be used to model the schema as well.
Thus the DDS contains a "me ta-schema, " or schema describing
the schema. (The concept of "meta" is defined as data about
data.) At this "meta" level, the three concepts "entity-
type," "relationship-type," and "attr ibute- type" are all
"meta-entity-types. " Instances of these concepts are "meta-
entities" which are conceptually connected by "meta-
relationships." "Meta-attributes" can be associated with
both the "meta-entities" and the "meta-relationships."

Table 1 gives examples of typical entries at each lev-
el. The first row of table entries ("Entity-Type," "Ele-
ment," and "Social-Security-Number") are used to identify
social security number. Data about "Social Security Number"
appears at the Dictionary Level. Individual social security
numbers, e.g., "123-45-6789" and "678-92-1234," are not in
the dictionary - they are in a seperate file or database.
"Element" appears at the Dictionary Schema Level to denote
that social security number is a data element. At the
highest level, the Schema Model Level, "Entity-Type" indi-
cates that social security number is an entity and not a re-
lationship or attribute. More elaborate examples of the use
of meta-attributes are given in Part II, Appendix B.

-12-

SCHEMA MODEL LEVEL SCHEMA LEVEL DICTIONARY LEVEL

Typical
Meta-Entity-Types

Typical
Entity-Types,

Relationship-Types

,

and Attribute-Types

Typical
Entities

,

Relationships,
j

and Attributes

Element
Social-Security-

Number
Agency-Name

Entity-Type Record Employee Record
Payroll Record

•

Document Form 1040
FIPS Guideline

Relationship-Type
Record-Contains-
Element

Payroll-Record-
j

Contains-
Employee-Name

Attribute-Type

Length 9 Characters

Creator ADP Division

Table 1

- 13 -

2.3.3 Customizing the DPS.

All the formalism at the meta-level is necessary for
specifying the most important use of the meta-
structures—the customization of the data dictionary system.

Certain entity-, relationship-, and attribute-types are
standard within the DDS (see Section 2.4.1.), but agencies
may need to augment this collection in order to satisfy
their unique requirements. The DDS facility that supports
customization uses the meta-structures. The Dictionary Ad-
ministrator has a full set of commands available to invoke
the customization facility in order to modify or augment the
"system standard schema."

2.4 THE SYSTEM STANDARD SCHEMA

In order for the FIPS DDS to provide Federal agencies
with the full benefits of inter- and intra-agency communica-
tion, the specifications include a specific collection of
entity-types, r elationship-types , and attr ibute-types . This
collection, called the "system standard schema," is expected
to be delivered as part of every software package conforming
to the Federal Information Processing Standard. An agency
can then augment this collection using the customization fa-
cility discussed in Section 2.3.3.

2.4.1 System Standard Entity-Types. Reflecting DDS usage in
the Federal government, the system standard schema provides
for eight data, process, and external entity-types:

Data Entity-Types

1. ELEMENT, to describe instances of data belonging to
an organization. Typical ELEMENTS are "social secu-
rity number" and "agency name."

2. DOCUMENT, to describe instances of human readable
data collections. Typical DOCUMENTS are "Form 1040"
and "FIPS Guideline."

3. RECORD, to describe instances of logically associat-
ed data. Typical RECORDS are "employee record" and
"payroll record."

4. FILE, to describe instances of an organization's
data collections. Typical FILES are "roster" and
"accounts receivable."

-14-

Process Entity-Types

5. SYSTEM , to describe instances of collections of
processes and data. Typical SYSTEMS are "personnel
system" and "airline reservation system."

6. PROGRAM, to describe instances of automated
processes. Typical PROGRAMS are "roster update" and
" COBOL comp i le r .

"

7. MODULE, to describe instances of automated processes
which are either logical subdivisions of program en-
tities or independent processes which are called by
program entities. Typical MODULES are "sort
records" and "main program."

External Entity-Types

8. USER, to describe members belonging to an organiza-
tion who use or are responsible for data in the data
dictionary system. Typical USERS are "John Doe" and
"personnel division."

Additionally, DICTIONARY-USER (to identify individuals
and access privileges) and ACCESS-CONTROLLER entity-types
are specified for the Dictionary Administrator to use in the
management of the DDS's security system.

2.4.2 System Standard Relationship-Types.

The collection of relationship-types provided by the
system standard schema is summarized by Table 4-1 on pages
4-12 through 4-15 of the DDS Functional Specifications.
This collection of 50 relationship- types includes virtually
all the connections between system standard entity-types
that might prove useful to most agencies most of the time.

Most of these relationship-types are themselves grouped
into classes, although there are a few such as STANDARD-FOR
that are not included in a class. The six main classes are:

1. CONTAINS, to describe instances of an entity being
composed of other entities. A typical CONTAINS
relationship- type is RECORD-CONTAINS-ELEMENT , which
has as a possible instance the relationship
"Payroll-r ecord-contains-employee-name .

"

2. PROCESSES, to describe associations between DATA and
PROCESS enti ty-types . A typical PROCESSES
relationship-type is SYSTEM-PROCESSES-FILE, which
has as a possible instance the relationship
" budge t-system-processes-cost-center-f ile .

"

- 15-

3. RESPONSIBLE-FOR, to describe associations between
entities representing organizational components and
other entities to denote organizational responsibil-
ity. A typical RESPONSIBLE-FOR relationship-type is

USER-RESPONSIBLE-FOR-DOCUMENT, which has as a possi-
ble instance the relationship "personnel-off ice-
responsible-for-SF-171.

"

4. RUNS, to describe associations between USER and PRO-
CESS entity-types, illustrating that a person or or-
ganizational component is responsible for running a

certain process. A typical RUNS relationship-type
is USER-RUNS-PROGRAM, which has as a possible in-
stance the relationship "John-Doe-runs-system-
backup.

"

5. TO, which describes "flow" associations between PRO-
CESS entity-types. A typical TO relationship- type
is MODULE-TO-MODULE , which has as a possible in-
stance the relationship "main-program-to-sort-
routine," (indicating flow of control or data within
a program)

.

6. DERIVED-FROM, describing associations between enti-
ties where the target entity is the result of a cal-
culation involving the source entity. A typical
DERIVED-FROM relationship-type is DOCUMENT-DERIVED-
FROM-FILE , which has as a possible instance
"annual-report-der ived-from-plans-f ile.

"

2.4.3 System Standard Attribute-Types.

The attribute-types developed for inclusion in the sys-
tem standard schema are the ones that agencies generally
want applied to system standard entity-types. Among the 35
attribute-types in this collection are some that are common
to all entity-types, including

o attr ibute-types that provide audit trail informa-
tion. A typical audit attr ibute- type is DATE-
CREATED, which has as a possible instance "810101."

o attribute-types that provide general documentation
for entities, for example DESCRIPTION, and CLASSIFI-
CATION .

Other system standard attr ibute-types are associated with
just one or a few entity-types. For example, ACCESS-METHOD,
with possible attribute instance "indexed sequential," is
unique to the FILE entity- type.

- 16-

Table 4-2 on pages 4-66 and 4-67 of the DDS Functional
Specifications summarizes these associations.

As an additional feature of the system standard schema,
certain relationship-types have attribute-types associated
with them. For example, the attribute-type REL-POSITION,
associated with the RECORD-CONTAINS-ELEMENT relationship-
type, can be used to document the relative position of an
ELEMENT within a RECORD. Thus, n

3
n might be the REL-

POSITION attribute that applies to the "employee-record-
contains-social-secur ity-number" relationship.

2.5 THE DDS COMMAND LANGUAGE

' The DDS command language, designed merely to illustrate
the DDS ' s functionality, contains facilities for interacting
with both the dictionary schema and the dictionary itself.

2.5.1 Interaction with the Dictionary Schema.

The commands available for interaction with the schema
fall into two broad categories:

Schema Maintenance Commands

To add a new entity-, relationship-, or attribute-type,
a dictionary administrator would use the CREATE-META-ENTITY
command, since the above types are all meta-entities. To
modify or delete a type the ALTER-META-ENTITY and ABOLISH-
META-ENTITY commands are used, respectively. For example,
ABOLISH-META-ENTITY DATABASE would delete an already exist-
ing DATABASE entity-type and

CREATE-META-ENTITY
ATTRIBUTE-TYPE WEIGHT

would create a new attribute-type called WEIGHT.

The mechanism that specifies that a particular attribute-
type is associated with a particular entity- (or relation-
ship-) type is the meta-relationship. Thus, once a new
attribute-type has been created it is assigned to the ap-
propriate entity-type by using the CREATE-META-RELATIONSHIP
command.

CREATE-META-RELATIONSHIP
EQUIPMENT AND WEIGHT

assigns the attr ibute-type WEIGHT to the entity-type EQUIP-
MENT. The ALTER- and ABOLISH-META-ENTITY commands are

- 17-

analogous

.

Schema Reporting Commands

Since these commands are designed for the use of the
Dictionary Administrator, the reports generated are normally
general listings and catalogs of the schema entries. The
commands include META-CATALOG, which produces a report on
the entire contents of the schema; META-LIST, which lists
all valid meta-attributes and meta-relationships of the
specified meta-entities; and META-TRACE, which produces a

report on all meta-entities which are related (via a meta-
relationship) to a specified meta-entity.

2.5.2 Interaction with the Dictionary.

The facilities available for modifying and reporting on
the dictionary content are more elaborate than those for in-
teracting with the schema. In particular, the Dictionary
Administrator or dictionary user can use fairly powerful
search criteria to identify dictionary entities for subse-
quent reporting or manipulation. This process, called
qualification , results in a list of the names of the desired
entities. The resulting qualification list can be used as
input to other commands.

Qualification

The eight categories of qualification (combinations of
which can be used in a command) are;

1. Selection by entity-type-name (e.g. FILE) or by
specific entity-name (e.g. "payments-receivable")

;

2. Selection by using an alternate name instead of a
primary name;

3. Restriction of entity selection based on some
characteristic of the primary name, such as length
(e.g. "LENGTH = 10") or a specific character string
in the primary name (e.g. "STARTS-AS prog");

4. Restriction based on whether or not a specific enti-
ty is connected to another through a named
relationship-type (e.g. "payroll-record CONTAINS
social-security-number")

;

5. Restriction based on the name of the person who
created or last changed the entity, the date the en-
tity was created or last changed, or on the number
of changes to the entity that have been made;

- 18 -

6. Restriction based on the values of specific attri-
butes;

7. Restriction based on the presence of specific char-
acter strings in attributes composed of text (e.g.
"CONTAINS social-security") . Two such system stan-
dard attribute- types are DESCRIPTION and COMMENTS;
and

8. Selection through the use of classification keywords
(which are the attributes of the attribute- type
CLASSIFICATION) . The presumption here is that the
agency using the DDS first defines a list of "legal"
keywords (e.g. a Thesarus) . The dictionary adminis-
trator or user then selects CLASSIFICATION attri-
butes from this list when defining entities, and
thus the keywords are subsequently available for
qualification purposes.

Existing qualification lists, considered as sets of en-
tities, can be acted upon by the union, intersection, and
set difference operators to produce new lists. Other facil-
ities for manipulating qualification lists exist as well.
These qualification lists also can be named, saved, and
later re-used.

Dictionary Maintenance Commands

The dictionary and schema maintenance facilities are
quite analogous. For clarity in the DDS Functional Specifi-
cations, parallel commands have deliberately been given very
different names in the hypothetical command language. Thus
one would CREATE-META-ENTITY at the Dictionary Schema Level
and ADD-ENTITY at the Dictionary Level. Likewise, one would
ALTER-META-RELATIONSHIP at the Dictionary Schema Level and
MODIFY-RELATIONSHIP at the Dictionary Level. This does not
imply that separate, parallel commands will be used in the
final user interface.

Dictionary Reporting Facilities

These commands perform the central function of produc-
ing reports on the contents of the dictionary. Three re-
porting commands of special interest are:

1. The CATALOG command to report on selected entities
and specified relationships of these entities by
showing the attributes of each. The full qualifica-
tion facility is available. A typical CATALOG com-
mand might be

- 19 -

CATALOG
FILE-A, FILE-B
SEQUENCE: ENTITY-NAME

which produces a report giving the names FILE-A and
FILE-B , together with all the attributes of these
two entities, and

CATALOG
QUALIFY ENTITY-TYPE
PROGRAM, MODULE
LANGUAGE = COBOL
SEQUENCE: ENTITY-NAME

which produces a list of all programs and modules
written in COBOL.

2. The LIST command, which produces a report containing
the primary names of entities of designated entity-
types.

3. The IMPACT-OF-CHANGE command, which identifies all
entities in the dictionary which might be affected
in some manner by changes to designated entities
(chosen by qualification) . For example,

IMPACT-OF-CHANGE
QUALIFY ENTITY-TYPE ELEMENT
FILE-CONTAINS-ELEMENT
REPORT-DERIVED-FROM-FILE
SYSTEM-PROCESSES-FILE
SEQUENCE: REPORT-SET ENTITY-NAME

This command generates a list of:

1. All element names;

2. For each of these elements, all file names that
contain occurrences of this element (i.e. con-
nected by a FILE-CONTAINS-ELEMENT relation-
ship) ; and

3. For each of these files, the names of all re-
ports that are derived from and all systems
that process the file (i.e. connected to the
file by REPORT-DERIVED-FROM-FILE and SYSTEM-
PROCESSES-FILE relationships, respectively)

In short, this report would tell the user precisely which
files, reports, and systems (as documented in the DDS) would
be affected by a change to each element.

- 20-

Dictionary Query Commands

A query facility is included as an important part of
the DDS Functional Specifications. While the dictionary re-
porting capabilities can be used to generate a short report
which may be returned on-line to a user terminal, the use of
the report facility is expected to be less flexible than the
query facility. The simple queries, used to generate simple
outputs, use the qualification facilities as basic building
blocks, but also use special keywords to simplify the user's
task. For example, both

QUERY
QUALIFY
ALL
STRING = "person"

and

QUERY
STRING "person"
IN PRIMARY-NAME

return the names of all entities that contain the string
"person" in their primary-name.

To prevent an unexpectedly large output from being re-
turned to the user terminal every query command first re-
turns a count of qualified entities to the user. The user
can then direct further query output to an alternate loca-
tion.

2.6 THE DDS SOFTWARE INTERFACES

The DDS Functional Specifications include three inter-
faces with other software systems:

1. There are commands to produce, from the dictionary,
representations of data usable within an ANSI COBOL
program. In particular, this facility can produce a
DATA DIVISION, including File and Working Storage
Sections

.

2. There are commands that transfer a selected portion
of the contents of one dictionary which conforms to
the FIPS DDS to another FIPS dictionary. This
"export/import" capability improves the portability
of dictionaries, but it does involve a nontrivial
transfer—two different schemas are involved. Such
a transfer might cause serious integrity problems,

- 21-

so the specifications require that the basic struc-
tures of the schemas corresponding to the two dic-
tionaries be "essentially" identical.

3. There are commands that provide access to a diction-
ary from a program written in any standard language
that has a CALL facility.

2.7 SECURITY FACILITIES OF THE FIPS DDS

The DDS security feature consists of three levels of
access control:

1. The first level controls the access to both the Dic-
tionary Processing System and to specified dic-
tionaries. This level is provided by the implemen-
tor of the DDS software in a manner which is an op-
tion of the implementor.

2. The second level of control, the "global" level, oc-
curs through dictionary entities of the type
DICTIONARY-USER and their attributes. These enti-
ties specify the permissions that have been granted
to a user in terms of the commands that the user can
execute against specific entity-types in a con-
trolled or uncontrolled status, in the dictionary.
Likewise, privileges can be assigned to specified
relationship-types. Attributes also are used to
specify privileges of a dictionary user with respect
to the schema.

3. The third level of control, the "local" level, oc-
curs through dictionary entities of the type
ACCESS-CONTROLLER and their attributes. Any entity
can be protected at this level by establishing a re-
lationship in the dictionary between that specific
entity and an entity of the type ACCESS-CONTROLLER.
As part of the creation of an ACCESS-CONTROLLER en-
tity, the DDS also creates an attribute of type
READ-LOCK and an attribute of type WRITE-LOCK.
Corresponding attributes of type READ-KEY and
WRITE-KEY can then be assigned to designated users
to provide them with keys. The keys allow the exe-
cution of specific commands on an entity that has
local protection. Global protection has precedence
over local protection in the sense that local pro-
tection is not checked unless the user has global
permission for the command on the entity-type in
question.

- 22-

PART II

DDS FUNCTIONAL SPECIFICATIONS

ERRATA

The July 1982 version of the DDS Specifications, as revised,
contains a number of recognized omissions and inconsistencies
which have not yet been corrected. This Errata will discuss the

major ones.

1 . Names of Entities in the Dictionary

The structure of the name of a dictionary entity is discussed in

Section 3.4; however, the rules specified there are not adhered
to closely in the body of the specification. To recapitulate
briefly, an entity has a primary name which is unique in the
dictionary. This primary name is a concatenation of the assigned
name and the version number.

o The assigned name of an entity is declared in either an

ADD-ENTITY, RENAME, or COPY command. For those commands,
the rule stating that "entity-name cannot be the primary
name of an entity in the dictionary" should be replaced
by "the assigned name specified cannot be the assigned
name of an entity in the dictionary". Similarly, for

entity-types where it is stated that "entities have
system-generated primary names", this should state that

"entities have system-generated assigned names".

o In line with the above, the meta-attribute-types MINIMUM-
NAME-LENGTH, MAXIMUM-NAME-LENGTH, PICTURE, and ID-START
of meta-entities of type entity-type should refer to the

assigned name of an entity instead of, as stated in the
specification, the primary name of an entity.

o In other commands, in general, whenever the primary name
of an entity is to be spec i f i ed , th i s should be replaced
by "the primary name or the assigned name of an entity".

If the latter is used, the version number corresponding

Errata 1 (Rev. of 7-82 doc.)

to the VERSION-DEFAULT in effect will be used to

construct the primary name of the entity being addressed

in the command. There are isolated exceptions to this

statement

.

o In a number of places in the specification the phrase

"multiple versions of an entity" is used. Such state-

ments should be replaced by "a set of entities which have

the same assigned name", as the phrase used is meaning-
less .

2, Attributes of Entities of Type DICTIONARY-USER

The attributes of entities of type DICTIONARY-USER are used to

designate the permissions and exclusions for the use of the

dictionary system that are in effect for a given user. Such

attributes may contain schema descriptors of type entity-type,
r e 1 a t i onsh i p-type , or status. The specification should state
that

:

o It is not specified that these attributes, when entered
into the dictionary, will be checked as being valid
schema descriptors.

o A schema descriptor may be deleted from the schema even
though it exists as an attribute of an entity of type
DICTIONARY-USER. Moreover, such a deletion will not
affect its existence as an attribute, i.e., the scope of
the deletion is limited to the schema. A similar
situation is in effect if a schema descriptor is renamed
through the use of the command CHANGE-META-NAME.

o The scope of the Schema Reporting Commands of Section 5.2

is limited to the schema, and as such, does not extend to

the attributes of entities of type DICTIONARY-USER. It
is intended that dictionary commands be used to report on
the attributes of these entities.

Errata 2 (Rev. of 7-82 doc.)

3 . Meta-entities of Type Attribute-Type-Validation-Data

The current specification states that there may exist at most one

meta-entity of type Attribute-Type-Validation-Data for any meta-
entity of type attribute-type. This restriction should be

replaced by the following:

o There may exist more than one meta-entity of type Attri-
bute-Type-Validation-Data for a meta-entity of type
attribute-type subject to the following condition:

If more than one meta-entity of type Attribute-Type-
Validation-Data exists for a meta-attribute of type
attribute-type, then the m e t a - a t t r i b u t e of type
VALUE/RANGE must be the same for all of them.

o If more than one such meta-entity of type Attribute-Type-
Validation-Data exists for a meta-attribute of type
attribute-type, validity of attributes of this attribute-
type will be determined by a logical OR operation, i.e.,

an attribute will be valid if it is valid according to

any one Attribute-Type-Validation-Data meta-entity.

4. The MODIFY-ENTITY Command

The MODI FY-ENTITY Command specified in 6.3.8 can exist in two
forms, only the first one of which is given. The second form
provides for a set of entities to be modified to be stated in a

list-name in the same manner as this is done for the DELETE-
ENTITY command. In this form of the command:

o The version number option is not available.

o The modification specified in clause-1, ... apply to all

the entities included in list-name.

Errata 3 (Rev. of 7-82 doc.)

5 . Inverse Names of Relationship-types and Relationship-
class-types

The DDS Functional Specifications provide the capability for

assigning an inverse name to every relationship-type and rela-

tionship-class-type, but the commands for interaction with the

dictionary do not mention the use of an inverse name.

The rules for each command in which a relationship-type or rela-

tionship-class-type is used should be augmented in the following

manner

:

In place of using the name of a relationship-type or rela-
tionship-class-type with members entity-1 (as the first
member of the relationship or relationship-class) and

entity-2 (as the second member), the inverse name can be

used. In this case entity-2 should be specified as the

first member and entity-1 as the second member. For example
the command

ADD-RELATIONSHIP
SYSTEM-CONTAINS-PROGRAM
A-SYSTEM, XY123

can equally be expressed as

ADD-RELATIONSHIP
PROGRAM-CONTAINED- IN-SYSTEM
XY123 , A-SYSTEM

Errata 4 (Rev of 7-82 doc.)

CHAPTER 1. INTRODUCTION

Part II of the DDS FUNCTIONAL SPECIFICATIONS contains the
functional specifications of the core standard Data Dictionary
System.

For purposes of the present document, a Data Dictionary System
(DDS) is defined as a computer software system that provides
facilities for recording, storing, and processing information
about an organization's significant data and data processing
resources

.

The DDS has three components:

1. The Dictionary Schema which describes the structure of

the Dictionary. Whenever no ambiguity exists, the
Dictionary Schema will be referred to as the "Schema".

2. The Dictionary which is the structured collection of

entities and relationships and their associated
attributes

.

3. The Dictionary Processing System which is the set of

programs in the DDS which interact with the Dictionary
and Dictionary Schema in order to provide the
functionality of the DDS.

The specification of the DDS is given in the following seven
chapters

:

o Chapter 2 discusses the environment in which the DDS

operates, as well as the defaults that exist for the

system.

1 1

o Chapter 3 presents the specification of the

and the Dictionary Schema in terms of their

characteristics

.

Dictionary
structural

o Chapter 4 contains the specification of the Dictionary

Schema that is part of the core standard DDS (i.e. the

system-standard schema, as defined below).

o Chapter 5 contains the

that are available for :

Schema, including thos
for customization of

installation and making

o Chapter 6 contains the

that are available
Dictionary.

specification of the commands

Interaction with the Dictionary

e commands that are available
the Dictionary Schema to an

extensions to it.

specification of the commands
for interaction with the

o Chapter 7 presents the specification of the interfaces
of the DDS to other software systems.

o Chapter 8 contains the specification of the commands
and utilities that are required by the Dictionary
Administrator. This chapter also contains the speci-
fication of the security facilities of the DDS and the

description of the commands associated with these
facilities.

useu 111Consideration must be given to the fact that the syntax
this document is intended to be only illustrative. No
implication whatsoever is intended that this syntax will or
should be used in the core standard. It then follows that the
entire question of the user interface to the DDS is not addressed
in this document. It is recognized that it is intended that the
DDS be usable by a wide range of users, some of which will not
have a technical data processing background or training. Under
these circumstances it is not only desirable, but mandatory, that
at least a part of the DDS functionality be available through a

1 2

user-friendly interface. This problem is to be addressed at the
time the syntax of the DDS is designed. The current document
contains only the specification of the functionality of the DDS,

and does not address the manner in which this functionality can
be invoked by a user of the DDS.

The following Definitions will be used throughout this specifica-
tion:

The term Implementor of the DDS is used to denote the person or
organization producing the software which embodies the function-
ality of the DDS standard.

The term Installer of the DDS is used to denote the person or

group of persons working for an organization which has acquired a

DDS responsible for placing the DDS on the organization's
computer system and making its functionality accessible to the

organization. The time at which this activity occurs is referred
to as the Installation Time of the DDS.

The term Dictionary Administrator is used to denote the person or

group of persons with the on-going responsibility for making the

dictionary system and the data contained in it available to the

organization which uses it. Among other duties, the dictionary
administrator will be responsible for customization of the
dictionary schema at installation time and throughout the life of

the dictionary system. It is assumed that the dictionary
administrator will also be responsible for the security of the

dictionary system and its overall integrity.

The System-Standard Dictionary Schema is the dictionary schema

that is produced by the implementor of the DDS. The system-
standard schema is composed of system-standard entity-types,
system-standard relationship-types, system-standard attribute-

types, and system-standard control descriptors.

The DDS system contains facilities through the use of which the

system-standard schema can be modified. These facilities will be

referred to as Extensibility Facilities.

1-3

A number of examples are presented throughout this document. It

their presence is for illustrative purposes,

the use of extensibility facilities is found in Appendix B.

not to be considered

the only reason for

A major example on

in Append ix B .

1 4

CHAPTER 2 THE DDS ENVIRONMENT AND DDS DEFAULTS

2.1 THE DDS ENVIRONMENT

[This section will discuss the operating environment of the DDS

relative to the computer system and its system software on which
the DDS resides.

In particular, a discussion will be given of the functional
requirements that the host system software will have to satisfy
for the log-on to the dictionary system. As part of the log-on
the verification of the user will have to occur, and the results
passed on to the DDS.

As part of the log-on, the user will identify the dictionary that

is to be worked on by means of the statement

DICTIONARY = dictionary-name

and verification will occur that the user is entitled
the dictionary named. After completion of work on

dictionary, a user may, by means of the command

to access
the named

DICTIONARY = dictionary-name-1

access another dictionary under
again verification will occur to

to the dictionary named.]

control of the same
insure that the user

DDS, where
has access

2 1

2.2 DDS DEFAULTS

In this section the existing DDS defaults will be discussed. The

meaning of these defaults is that they represent conditions which

are in effect at the beginning of each session or run unit, and

remain in effect until changed. Such a change is effected by the

user by issuing a command of the form

DEFAULT-NAME = default-value

Such a command can be issued at any time during a session or run

unit immediately preceding a command.

2.2.1 MODE FOR MAINTENANCE OF THE DICTIONARY SCHEMA

All commands that cause a modification to be made to the
dictionary schema are executable in one of two modes:

o CHECK: In this mode the command will only be checked
for errors and no update to the schema will take
place.

o UPDATE: In this mode the command, if error-free,
will cause a modification to the schema to take place.

The default mode is CHECK. The mode can be changed by means of
the command

SCHEMA-MODE = UPDATE

and this mode remains in effect for the session or run unit until
modified by the command

SCHEMA-MODE = CHECK

2 2

2.2.2 MODE FOR MAINTENANCE OF THE DICTIONARY

Similarly to the dictionary schema, all commands that cause a

modification to be made to the dictionary are executable in one

of two modes:

o CHECK: In this mode the command will only be checked
for errors and no update to the dictionary will take
place

.

o UPDATE: In this mode the command, if error-free,
will cause a modification to the dictionary to take
place

.

The default mode is UPDATE. The mode can be changed by means of
the command

DICTIONARY-MODE = CHECK

and this mode remains in effect for the session or run unit until
modified by the command

DICTIONARY-MODE = UPDATE

2.2.3 DEFAULT STATUS

As discussed in Section 3.1.5, the DDS has a status facility that

provides two kinds of statuses for entities in the dictionary.
One such status is known as the CONTROLLED status, and there
exist rules for structural integrity for entities in this status.

For example, it is not possible that if the PAYROLL-RECORD
contains the element EMPLOYEE-ID, that PAYROLL-RECORD be in the

CONTROLLED status, and EMPLOYEE-ID not be in the CONTROLLED
status. Whenever a new entity is added to the dictionary, it

must be entered as being in a status other than the CONTROLLED
status. There exists for each user of the dictionary a status
which exists as the default at the beginning of a session or run

unit, such that if the user adds an entity into the dictionary it

will be placed into that status. Based on decisions made by the

2 3

Dictionary Administrator, there may be a single default status

for all users of the dictionary, or a set of these with users

being assigned to one of the set based on the tasks that are

currently being carried out by the user.

The status with which the user is working may be changed by means

of the command

DEFAULT-STATUS = STATUS-NAME

where STATUS-NAME cannot be the name of the CONTROLLED status.

Execution of this command is also subject to the security
provisions of the DDS. The command will only be allowed to

execute if the user of the dictionary has been given access to

the status being specified. Details of the security provision of

the DDS are given in Chapter 8.

2.2.4 VERSION DEFAULT

Facilities are provided in the DDS for an entity to exist
multiple times in the dictionary, these various instances being
distinguished from each other by different version numbers which
are assigned by the system (and optionally by a user of the DDS)

in a chronological manner. The purpose of the version default is

to indicate to the DDS which versions of entities the user wishes
to work with. The default in effect at the beginning of a

session or run unit is for the user to work with the latest
version (i.e. the one with the highest version number) of each
entity. This can be changed by the command

DEFAULT-VERSION = STATUS-NAME

where STATUS-NAME is the name of the CONTROLLED status, as
discussed above. Execution of this command, which is subject to
the security provisions discussed in Chapter 8, will indicate
that the user wishes to work with entities in the CONTROLLED
status. The user may return to the original default with the
command

DEFAULT-VERSION = LATEST

2 4

Provisions exist in the commands specified in Chapter 6 for the
user to select a specific version of an entity by specifying the

version number of the entity.

2.2.5 CODE VALUES DEFAULT

As described in Section 3.1.3, facilities exist in the DDS to

store in the schema sets of codes and their transliterated
values. The option exists for the user to specify whether a

report or the output to a query shall contain code values or

transliterated values.

The default in existence at the beginning of a session or run

unit is for transliterated values to be displayed in a report or

response to a query. This default can be changed by the command

CODE-VALUES-DEFAULT = CODE

and can be returned to the original default by the command

CODE-VALUES-DEFAULT = LITERALS

2 5

2 - 6

CHAPTER 3^ THE DICTIONARY AND DICTIONARY SCHEMA AND THEIR
STRUCTURE

In this chapter we will describe the Dictionary and the
Dictionary Schema and their structural characteristics. For this

purpose we will use an Entity - Relationship - Attribute (E-R-A)

model, as follows:

o There exists a set of entities

.

o There exists a set of relationships, each one of which
is an ordered pair of entities

.

o There exists a set of attributes, each one of which is

associ ated with an ent ity and/or a relationship.

o Each entity has a unique name, which is referred to as

the primary name of the entity.

o There exists a set of entity-types, such that each
entity is of exactly one entity-type.

o There exists a set of relationship-types, such that
each relationship is of exactly one relationship-type.

o There exists a set of attribute-types, such that each

attribute is of exactly one attribute-type.

o Each entity-type, relationship-type, and attribute-
type has a unique name.

We will use the following terminology throughout this document:

o An entity, relationship, or attribute will be referred

to as a Descriptor.

o An entity-type, relationship-type, or attribute-type
will be referred to as a Schema Descriptor.

3 1

There exists a potential ambiguity and resultant confusion in the

application of these terms to both the Dictionary and Dictionary

Schema. In order to clarify which one of these levels is being

discussed, the "entities" in the Dictionary Schema will be refer-

red to as "meta-entities", the "relationships" between these are

referred to as "meta-relationships", and the "attributes" exis-

ting for both of these as "meta-attributes". Similarly, the

types of these will be referred to as "meta-entity-types", "meta-

relationship-types", and "meta-attribute-types".

3.1 THE STRUCTURE OF THE DICTIONARY SCHEMA

The structure of the Dictionary Schema is described in terms of:

a) a set of meta-entity-types

b) a set of meta-relationship-types

c) a set of meta-attribute-types

such that:

1. A meta-relationship-type is a named ordered pair, each
member of which is a meta-entity-type.

2. Every meta-attribute-type is associated with a meta-
entity-type and/or a meta-relationship-type.

3. Every me ta-ent i ty-type , meta-relationship-type, and
meta-attribute-type has a unique name.

Since the Dictionary Schema describes the structure of the
Dictionary it then follows that:

Every Schema Descriptor is a meta-entity.

3-2

The order of presentation in this section is as follows:

o We will first specify the meta-entity-types that exist
in the structure of the dictionary schema.

o This will be followed by the specification of the
meta-relationship-types that exist in the structure of

the dictionary schema.

o We then specify the meta-attribute-types that exist
for meta-entity-types, followed by the specification
of meta-attribute-types for meta-relationship-types.

o A limited number of examples are given within this
specification; the bulk of the examples dealing with

this subject is deferred to Appendix B.

3.1.1 META-ENTITY-TYPES

The following meta-entity-types exist in the structure of the
dictionary schema:

1 . ENTITY-TYPE

Meta-entities of this type correspond to entity-types,
instances of which are in the dictionary.

2. RELATIONSHIP-TYPE

Meta-entities of this type correspond to relationship-
types, instances of which are in the dictionary.

3. RELATIONSHIP-CLASS-TYPE

Meta-entities of this type correspond to relationship-
class-types (i.e., sets of r e 1 a t i o n s h i

p- 1 y pe s) ,

instances of which are in the dictionary.

3 3 (Rev. of 7-82 doc.)

4. ATTRIBUTE-TYPE

Meta-entities of this type correspond to attribute-

types, instances of which are in the dictionary.

5. ATTRIBUTE-GRQUP-TYPE

Meta-entities of this type correspond to attribute-
group-types (i.e., ordered tuples of attribute-types,

instances of which are in the dictionary)

.

6. ATTRIBUTE-TYPE-VALIDATION-PROCEDURE

Meta-entities of this type represent procedures that

exist for validation of attributes of a given
attribute-type

.

7. ATTRIBUTE-TYPE-VALIDATION-DATA

Meta-entities of this type represent data that is used

in conjunction with attribute-type-validation-
procedures

.

8. STATUS-NAME

A status represents the condition or quality of an
entity. Meta-entities of this type name the statuses
that exist in the dictionary, and represent the rules
that exist for status integrity of structures.

9. STAGE-NAME

A stage is a subdivision of the System Life Cycle.
Meta-entities of this type name the stages that exist
in the dictionary.

The meta-attribute-types that pertain to each one of these meta-
entity-types will be discussed in 3.1.3.

Examples of the foregoing are the following:

SYSTEM, FILE, and ELEMENT are instances of the meta-

3-4

entity-type ENTITY-TYPE.

FI LE -CONTAINS -RECORD and RECORD-CONTAI NS -ELEMENT are
instances of the meta-entity-type RELATIONSHIP-TYPE.

LANGUAGE (as it pertains to a program) and ALTERNATE-NAME
of an element are instances of the me ta-ent i ty-type
ATTRIBUTE-TYPE.

A relationship-class-type is a set of relationship-types.
The utility of this construct is that it permits sets of

relationship-types to be grouped in terms of a single
concept, with the individual relationship-types only dif-
fering in terms of the entity-types involved. As an
example, the concept of "CONTAINS" is applicable to a

variety of en t i ty-types , such as a FILE "CONTAINS" a

RECORD, or a RECORD "CONTAINS" an ELEMENT. Here
"CONTAINS" is a relationship-class-type composed of the

given relationsh i p- types. Relationship-class-types also
have significance from the point of view of the structure

of the command language. For purposes of simplicity and

ease-of-use it is desirable to allow users of the DDS to

use names of relationship-class-types, as opposed to

forcing them to use the names of the relationship-types,
of which there are many more than names of relationship-
class-types.

The concept of an attribute-group-type is introduced to

accomodate the requirement that in some cases two or more
attributes need to be viewed as an ordered set. The
simplest such case is where attributes are needed to

describe a set of lower and upper bounds, and it is then
necessary to be able to specify that the first lower bound
and the first upper bound go together, the second lower
bound and the second upper bound go together, etc. In

this case an attribute-group-type called RANGE can be

introduced whose (ordered) members are attribute-types
LOWER BOUND and UPPER BOUND. It should be noted that if

so desired, a user may view each attribute-type in the

attribute-group-type by itself, i.e. as an attribute-type

of the schema element. Thus, in the example used, the

attribute-type UPPER-BOUND, for instance, may be queried
outside the context of the attribute-group-type RANGE.
Update operations on such attribute-types will, in gen-

3 5

eral, however, be restricted to the context of the

attribute-group-type, unless one of the a t t r i bute-types
has a meaning by itself outside the context of the

attribute-group-type. This is not the case in the example

we have been dealing with, but does occur in the

attribute-group-type IDENTIFICATION-NAMES which we will

discuss later.

Both ATTRIBUTE-TYPE-VALIDATION-PROCEDURE and ATTRIBUTE-
TYPE-VALIDATION-DATA meta-entities serve the purpose of

allowing that attributes of a given entity-type can be

restricted to either a predefined list of values or

ranges

.

The meta-entity-type STATUS-NAME permits the quality of

dictionary entities to be recorded; for example the

STATUS-NAME called OPERATIONAL might be used to designate
that a SYSTEM and its constituents are being used in a

"production" environment.

An instance of the meta-entity-type STAGE-NAME,
example DESIGN, allows entities in the dictionary
characterized as being in the design stage, which in

case is a recognized phase of the system life cycle.

for
to be

this

3.1.2 META-RELATIONSHIP-TYPES

A meta-relationship-type is a named ordered pair of meta-enti-
ties. We use the notation

M-R-T (meta-entity-name-1 , meta-entity-name-2)

to denote a meta-relationship-type which has as members the meta-
entities with names meta-entity-name-1 and meta-entity-name-2.
No ambiguity will be found to exist in this notation, as there
will exist no more that one meta-relationship-type with a given
pair of meta-entities as members.

Meta-attribute-types that apply to these meta-relationship-types
will be given later in 3.1.4.

3 6

The following meta-relationship-types exist in the structure of

the dictionary schema (a brief statement of their usage being
given for illustrative purposes):

1. M-R-T (RELATIONSHIP-TYPE, ENTITY-TYPE)

Serves to specify the entity-types that are members
of a relationship-type.

2. M-R-T (ENTITY-TYPE, ATTRIBUTE-TYPE)

Serves to specify that an a t t r i but e-type pertains
to an entity-type.

3. M-R-T (RELATIONSHIP-TYPE, ATTRIBUTE-TYPE)

Serves to specify that an a t t r i bute- type pertains
to a relationship-type.

4. M-R-T (RELATIONSHIP-CLASS-TYPE, RELATIONSHIP-TYPE)

Serves to specify that a r e 1 a t i onsh i p- type is

included in a relationship-class-type.

5. M-R-T (ATTRIBUTE-GROUP-TYPE, ATTRIBUTE-TYPE)

Serves to specify that an attribute-type is a

member of an attribute-group-type.

6. M-R-T (ENTITY-TYPE, ATTRIBUTE-GROUP-TYPE)

Serves to specify that an a t t r i bu te-g roup- type
pertains to an entity-type.

7. M-R-T (RELATIONSHIP-TYPE, ATTRIBUTE-GROUP-TYPE)

Serves to specify that an attribute-group-type
pertains to a relationship-type.

8. M-R-T (ATTRIBUTE-TYPE, ATTRIBUTE-TYPE-VALIDATION-
PROCEDURE)

Serves to indicate that an attr ibute-type-val ida-

3 7

tion-procedure is to be used for an attribute-type.

9. M-R-T (ATTRIBUTE-TYPE, ATTRIBUTE-TYPE-VALIDATION-DATA)

Serves to indicate the list of values or ranges

that are used in the validation of the attributes
of an attribute-type.

3.1.3 META-ATTRIBUTE-TYPES OF META-ENTITY-TYPES

The following meta-attribute-types apply to all meta-entities of

type ENTITY-TYPE:

DATE-CREATED- IN-SCHEMA

Date and time of creation of the meta-entity in the

schema; generated by the system; is not modifiable by

a user.

CREATED- IN-SCHEMA-BY

Identification of the dictionary user responsible for

the creation of the meta-entity in the schema; cannot
be modified by a user.

DATE-LAST-MODI FI ED- IN-SCHEMA

Date and time of the last modification of the meta-
entity in the schema; generated by the system; is not
modifiable by a user.

LAST-MODI FI ED- IN-SCHEMA-BY

Identification of the user responsible for the latest
modification of the meta-entity in the schema; cannot
be modified by a user.

NUMBER-OF-TIMES-MODIFIED-IN-SCHEMA

The number of modifications of a meta-entity in the

3 8

schema; generated by the system; cannot be modified by

a user.

BASIC/EXTENDED

An indicator that shows whether the meta-entity is

part of the system-standard schema or was created by

the installation.

SYSTEM-LOCK

An indicator, which, when it has the value ON, will
disallow any attempt to delete this meta-entity.

INSTALLATION-LOCK

Similar to SYSTEM-LOCK, but special commands are
available to override this lock.

PURPOSE

A user-supplied string of text intended to be used for

a description of the meta-entity and its purpose.

MINIMUM-NAME-LENGTH

The minimum number of characters which the primary
name of an entity of the given entity-type must have.

MAXIMUM-NAME-LENGTH

As above, giving the maximum length.

PICTURE

The picture of the primary name of an entity.
Multiple meta-attributes are allowed, in which case
the name must be one of the representations given.

SYSTEM-GENERATED

The primary name of an entity is generated by the
system. In this case a value of the meta-attribute-
type ID-START must be given; the first name generated

3-9 (Rev. of 7-82 doc.)

will be this value and subsequent names will be formed

by incrementing the preceding name by 1.

ID-START

The starting value for system-generated primary names.

It must be of the form A...N..., where A denoted any

alphanumeric character and N is an integer. If this

option is used, any values specified for the meta-

attribute-types MINIMUM-NAME-LENGTH, MAXIMUM-NAME-
LENGTH, and PICTURE are ignored.

CONNECTABLE

Specifies whether or not a relationship-type can be

defined by a user of which this entity-type is a

member

.

ALTERNATE-ENTITY-TYPE-NAME

An alternate name for the entity-type which is unique

in the schema.

ENTITY-CLASS

This meta-attribute-type specifies whether the entity-
type represents DATA, PROCESS, EXTERNAL, or SECURITY
entities. This meta-attribute-type is used in the
definition of some relationship-class-types in the
system-standard schema.

3 10 (Rev. of 7-82 doc.)

The following meta-attribute-types apply to all meta-entities of

the type RELATIONSHIP-TYPE:

DATE-CREATED- IN-SCHEMA

Date and time of creation of the meta-entity in the

schema; generated by the system; is not modifiable by

a user.

CREATED- IN-SCHEMA-BY

Identification of the dictionary user responsible for

the creation of the meta-entity in the schema; gene-
rated by the system; cannot be modified by a user.

DATE-LAST-MODI FI ED- IN-SCHEMA

Date and time of the last modification of the meta-
entity in the schema; generated by the system; is not

3 10A (Rev of 7-82 doc.)

modifiable by a user.

LAST-MODI FI ED-IN-SC HEMA-BY

Identification of the user responsible for the latest
modification of the meta-entity in the schema; gene-
rated by the system; cannot be modified by a user.

NUMBER-OF-TIMES-MODI FI ED-IN-SCHEMA

The number of modifications of a meta-entity in the
schema; generated by the system; cannot be modified by

a user.

BASIC/EXTENDED

An indicator that shows whether the meta-entity is

part of the system-standard schema or was created by

the installation.

SYSTEM-LOCK

An indicator, which, when it has the value ON, will
disallow any attempt to delete this meta-entity.

INSTALLATION-LOCK

Similar to SYSTEM-LOCK, but special commands are
available to override this lock.

PURPOSE

A user-supplied string of text intended to be used for

a description of the meta-entity and its purpose.

INVERSE-NAME

An optional meta-attribute-type that provides a name
for the relationship-type that allows a relationship
to be specified in the inverse order.

3 11

STATUS-RELATED

Specifies whether or not the relationship-type is used

in the integrity rules for the "CONTROLLED" status,

which is discussed in Section 3.1.5. The default

value is NO.

SEQUENCED

Specifies whether or not the instances of the

relationship-type are sequenced. The default value is

NO.

SEQUENCE-PARAMETER

Specifies, in the case where instances are sequenced,

the manner in which they are to be sequenced. It is

required in that case.

The following meta-attribute-types apply to all rmeta-ent i ties of

type RELATIONSHIP-CLASS-TYPE:

DATE-CREATED-IN-SCHEMA

Date and time of creation of the meta-entity in the
schema; generated by the system; is not modifiable by

a user.

CREATED-IN-SCHEMA-BY

Identification of the dictionary user responsible for

the creation of the meta-entity in the schema; gene-
rated by the system; cannot be modified by a user.

DATE-LAST-MODI FI ED-IN-SCHEMA

Date and time of the last modification of the meta-
entity in the schema; generated by the system; is not
modifiable by a user.

3 12

LAST-MODI F I ED-IN-SCHEMA-BY

Identification of the user responsible for the latest
modification of the meta-entity in the schema; gene-
rated by the system; cannot be modified by a user.

NUMBER-OF-TIMES-MODIF I ED-IN -SCHEMA

The number of modifications of a meta-entity in the
schema; generated by the system; cannot be modified by

a user.

BASIC/EXTENDED

An indicator that shows whether the meta-entity is

part of the system-standard schema or was created by

the installation.

SYSTEM-LOCK

An indicator, which, when it has the value ON, will
disallow any attempt to delete this meta-entity.

INSTALLATION-LOCK

Similar to SYSTEM-LOCK, but special commands are
available to override this lock.

PURPOSE

A user-supplied string of text intended to be used for

a description of the meta-entity and its purpose.

INVERSE-NAME

An optional meta-attribute-type that provides a name
allowing for the relationship-group to be specified in

the inverse order.

3 13

The following meta-attribute-types apply to all meta-entities of

type ATTRIBUTE-TYPE:

DATE-CREATED-IN-SCHEMA

Date and time of creation of the meta-entity in the

schema; generated by the system; is not modifiable by

a user.

CREATED-IN-SCHEMA-BY

Identification of the dictionary user responsible for

the creation of the meta-entity in the schema; gene-
rated by the system; cannot be modified by a user.

DATE-LAST-MODI FI ED-IN-SCHEMA

Date and time of the last modification of the meta-
entity in the schema; generated by the system; is not

modifiable by a user.

LAST-MODI FI ED-IN-SCHEMA-BY

Identification of the user responsible for the latest
modification of the meta-entity in the schema; gene-
rated by the system; cannot be modified by a user.

NUMBER-OF-TIMES-MODI FIED-IN-SCHEMA

The number of modifications of a meta-entity in the
schema; generated by the system; cannot be modified by
a user.

BASIC/EXTENDED

An indicator that shows whether the meta-entity is
part of the system-standard schema or was created by
the installation.

SYSTEM-LOCK

An indicator, which, when it has the value ON, will

3 14

disallow any attempt to delete this meta-entity.

INSTALLATION-LOCK

Similar to SYSTEM-LOCK, but special commands are
available to override this lock.

PURPOSE

A user-supplied string of text intended to be used for

a description of the meta-entity and its purpose.

MINIMUM-LENGTH

Specifies the minimum number of characters which an

attribute of the given type must have.

MAXIMUM-LENGTH

Same as above, but for maximum length.

PICTURE

The picture of an attribute of the given type.
If multiple pictures are used, the attribute must be

one of the representations given.

ALTERNATE-ATTRIBUTE-TYPE-NAME

As for entity-types, allows an alternate unique name
to be used for the attribute-type.

3 15 (Rev. of 7-82 doc.)

SYSTEM-GENERATED

Specifies that the attributes of the given type are

generated by the system. In this case a value of the

meta-attribute-type ID-START must be given; the first

attribute generated will be this value and subsequent
attributes will be formed by incrementing the prece-
ding name by 1.

ID-START

The starting value for system-generated attributes. It

must be a string of the form A...N..., where A denotes
an alphanumeric character and N an integer. If the

system-generated attributes option is used, any values

specified for the meta-attribute-types MINIMUM-LENGTH,
MAXIMUM-LENGTH, and PICTURE are ignored.

3 15A (Rev. of 7-82 doc.)

The following meta-attribute-types apply to all meta-entities of

type ATTRIBUTE-GROUP-TYPE

:

DATE-CREATED-IN-SCHEMA

Date and time of creation of the meta-entity in the

schema; generated by the system; is not modifiable by

a user.

CREATED-IN-SCHEMA-BY

Identification of the dictionary user responsible for

the creation of the meta-entity in the schema; gene-
rated by the system; cannot be modified by a user.

DATE-LAST-MODI F IED-IN-SCHEMA

Date and time of the last modification of the meta-
entity in the schema; generated by the system; is not

modifiable by a user.

LAST-MODI FI ED-IN-SCHEMA-BY

Identification of the user responsible for the latest

modification of the meta-entity in the schema; gene-
rated by the system; cannot be modified by a user.

NUMBER-OF-TIMES-MODI FIED-IN-SCHEMA

The number of modifications of a meta-entity in the
schema; generated by the system; cannot be modified by

a user.

BASIC/EXTENDED

An indicator that shows whether the meta-entity is

part of the system-standard schema or was created by
the installation.

SYSTEM-LOCK

An indicator, which, when it has the value ON, will

3 16

disallow any attempt to delete this meta-entity.

INSTALLATION-LOCK

Similar to SYSTEM-LOCK, but special commands are
available to override this lock.

PURPOSE

A user-supplied string of text intended to be used for

a description of the meta-entity and its purpose.

The following meta-attribute-type applies to all meta-entities of

type ATTRIBUTE-TYPE-VALIDATION-PROCEDURE

:

PURPOSE

A string of text intended to be used for a description
of the meta-entity and its purpose.

No other meta-attribute-types exist for meta-entities of this
type, as no facilities exist in the DDS core standard for modi-
fying existing meta-entities of this type or creating new ones.

The following meta-attribute-types apply to all meta-entities of

type ATTRIBUTE-TYPE-VALIDATION-DATA:

DATE-CREATED-IN-SCHEMA

Date and time of creation of the meta-entity in the

schema; generated by the system; is not modifiable by

a user.

CREATED- IN-SCHEMA-BY

Identification of the dictionary user responsible for

the creation of the meta-entity in the schema; gene-
rated by the system; cannot be modified by a user.

3 17

DATE-LAST-MODI FI ED- IN-SCHEMA

Date and time of the last modification of the meta-

entity in the schema; generated by the system; is not

modifiable by a user.

LAST-MODI FI ED- IN-SCHEMA-3

Y

Identification of the user responsible for the latest

modification of the meta-entity in the schema; gene-

rated by the system; cannot be modified by a user.

NUMBER-OF-T I MES-MODI FI ED- IN-SCHEMA

The number of modifications of a meta-entity in the

schema; generated by the system; cannot be modified by

a user.

BASIC/EXTENDED

An indicator that shows whether the meta-entity is

part of the system-standard schema or was created by

the installation.

PURPOSE

A user-supplied string of text intended to be used for

a description of the meta-entity and its purpose.

VALUE/RANGE

(a) If VALUE is specified as the meta-attribute,
the meta-attribute-type DATA-VALUE will con-
tain discrete values against which validation
will take place.

(b) If RANGE is specified, the meta-attribute-type
DATA-RANGE will contain ranges against which
validation will occur.

There is no default for this meta-attribute-type.

3 18 (Rev. of 7-82 doc.)

DATA-VALUE

The meta-attributes of this meta-attribute-type only
apply when VALUE/RANGE has been specified as VALUE.
In that case the meta-attributes represent the
allowable values for the attribute-type that is

connected to the ATTRIBUTE-TYPE-VALIDATION-DATA meta-
entity. In addition to the allowable value, a meta-
attribute may also optionally contain a string of

literals that can, for example, provide the explana-
tion of the value specified. The maximum length of

the string is an implementor option.

As an example, suppose that an attribute-type-
validation-data meta-attribute is used to store a list

of allowable codes, and that, for instance 29 is the

code that is used for the state-name Ohio. This could

be expressed by the clause

DATA-VALUE = 29 "OHIO".

DATA-RANGE

The meta-attributes of this meta-attribute-type only
apply when VALUE/RANGE has been specified as RANGE. In

that case the meta-attributes represent the allowable
ranges for the attribute-type that is connected to the

ATTRIBUTE-TYPE-VALIDATION-DATA meta-entity. In

addition to the allowable range a meta-attribute may
also optionally contain a string of literals that can,

for example, provide the explanation of the range
specified. The maximum length of the string is an

implementor option.

The following meta-attribute-types apply to all meta-entities of

type STATUS-NAME:

DATE-CREATED-IN-SCHEMA

Date and time of creation of the meta-entity in the

schema; generated by the system; is not modifiable by

3 19

a user.

CREATED-IN-SCHEMA-BY

Identification of the dictionary user responsible for

the creation of the meta-entity in the schema; gene-

rated by the system; cannot be modified by a user.

DATE-LAST-MODIFIED-IN-SCHEMA

Date and time of the last modification of the meta-
entity in the schema; generated by the system; is not

modifiable by a user.

LAST-MODI FI ED-IN-SCHEMA-BY

Identification of the user responsible for the latest

modification of the meta-entity in the schema; gene-

rated by the system; cannot be modified by a user.

NUMBER-OF-TIMES-MODI FIED—IN-SCHEMA

The number of modifications of a meta-entity in the
schema; generated by the system; cannot be modified by

a user.

BASIC/EXTENDED

An indicator that shows whether the meta-entity is

part of the system-standard schema or was created by

the installation.

STATUS-LOCK

An indicator which, when set to the value YES, will
disallow this meta-entity to be deleted.

CONTROLLED/UNCONTROLLED

An indicator which serves to identify whether the
STATUS-NAME meta-entity represents a controlled or
uncontrolled status (the definition of these terms
being given in Section 3.1.5). Exactly one controlled
status exists in the schema. The default for this

3 20

meta-attribute is UNCONTROLLED.

PURPOSE

A user-supplied string of text intended to be used for

a description of the meta-entity and its purpose.

The following meta-attribute-types apply to all meta-entities of

type STAGE-NAME:

DATE-CREATED- IN-SCHEMA

Date and time of creation of the meta-entity in the
schema; generated by the system; is not modifiable by

a user.

CREATED- IN-SCHEMA-BY

Identification of the dictionary user responsible for

the creation of the meta-entity in the schema; gene-
rated by the system; cannot be modified by a user.

DATE-LAST-MODIFIED- IN-SCHEMA

Date and time of the last modification of the meta-
entity in the schema; generated by the system; is not

modifiable by a user.

LAST-MODI FI ED-IN-SCHEMA-BY

Identification of the user responsible for the latest

3 21 (Rev. of 7-82 doc.)

modification of the meta-entity in the schema; gene

rated by the system; cannot be modified by a user.

NUMBER-OF-TIMES-MODI FI ED-IN-SCHEMA

The number of modifications of a meta-entity in the

schema; generated by the system; cannot be modified by

a user.

BASIC/EXTENDED

An indicator that shows whether the meta-entity is

part of the system-standard schema or was created by

the installation.

PURPOSE

A user-supplied string of text intended to be used for

a description of the meta-entity and its purpose.

3.1.4 META-ATTRIBUTE-TYPES OF META-RELATIONSHIP-TYPES

The following meta-attribute-types apply to the meta-relation-
ship-type

M-R-T (RELATIONSHIP-TYPE , ENTITY-TYPE)

DATE-CREATED- IN-SCHEMA

Date and time of creation of the meta-entity in the
schema; generated by the system; is not modifiable by
a user.

CREATED-IN-SCHEMA-BY

Identification of the dictionary user responsible for
the creation of the meta-entity in the schema; gene-
rated by the system; cannot be modified by a user.

3 22

BASIC/EXTENDED

An indicator that shows whether the meta-entity is

part of the system-standard schema or was created by

the installation.

PURPOSE

A user-supplied string of text intended to be used for

a description of the meta-entity and its purpose.

POSITION

Meta-attributes of this type are either FIRST or

SECOND, and are used to designate whether the entity-
type in the meta-relationship-type is the first or

second member of the r e 1 a t i onsh i p-type specified.
This me t a-a t t r i bute- type is required for every such
meta-relationship-type

.

For example, if a relationship-type named WROTE
existed with members PROGRAMMER and PROGRAM (in

that order) , then the meta-relationship-type

M-R-T (WROTE, PROGRAMMER)

would have the meta-attribute-type POSITION with
value FIRST, and the meta-relationship-type

M-R-T (WROTE, PROGRAM)

would have the value SECOND for this meta-
attribute-type.

The following meta-attribute-types apply to the meta-relation-
ship-type

M-R-T (ENTITY-TYPE , ATTRIBUTE-TYPE

)

DATE-CREATED-IN-SCHEMA

Date and time of creation of the meta-entity in the

3 23

schema; generated by the system; is not modifiable by

a user.

CREATED-IN-SCHEMA-BY

Identification of the dictionary user responsible for

the creation of the meta-entity in the schema; gene-

rated by the system; cannot be modified by a user.

BASIC/EXTENDED

An indicator that shows whether the meta-entity is

part of the system-standard schema or was created by

the installation.

PURPOSE

A user-supplied string of text intended to be used for

a description of the meta-entity and its purpose.

SINGULAR/PLURAL

If the value SINGULAR is specified, every entity of

the type given in the command can have at most one
attribute of the type stated in the command. If the

value PLURAL is specified, multiple attributes may
occur for a single entity.

MAXIMUM-NUMBER-OF-OCCURRENCES

This meta-attribute-type is only valid when the speci-
fication for SINGULAR/PLURAL is PLURAL, and specifies
the maximum number of occurrences of attributes for a

single entity. The default value is an implementor-
defined maximum value for the system.

USE-AS-IDENTIFIER

If the value YES is specified, the designated
attribute-type can be used as an identifier for enti-
ties of the entity-type stated in the meta-relation-
ship. The system will assure that these attributes
are unique within the dictionary, as is the case with
the primary name of an entity. As will be discussed

3 24

in Section 6.1.2, such attributes can be used in

certain commands in place of the primary name of an

entity

.

The following meta-attribute-types apply to the meta-relation-
ship-type

M-R-T (RELATIONSHIP-TYPE, ATTRIBUTE-TYPE)

DATE-CREATED- IN-SCHEMA

Date and time of creation of the meta-entity in the
schema; generated by the system; is not modifiable by

a user.

CREATED- IN-SCHEMA-BY

Identification of the dictionary user responsible for

the creation of the meta-entity in the schema; gene-
rated by the system; cannot be modified by a user.

BASIC/EXTENDED

An indicator that shows whether the meta-entity is

part of the system-standard schema or was created by

the installation.

PURPOSE

A user-supplied string of text intended to be used for

a description of the meta-entity and its purpose.

SINGULAR/PLURAL

If the value SINGULAR is specified, every entity of

the type given in the command can have at most one
attribute of the type stated in the command. If the

value PLURAL is specified, multiple attributes may
occur for a single entity.

3 25

MAXIMUM-NUMBER-OF-OCCURRENCES

This meta-attribute-type is only valid when the speci-

fication for SINGULAR/PLURAL is PLURAL, and specifies

the maximum number of occurrences of attributes for a

single entity. The default value is an implementor-
defined maximum value for the system.

The following meta-attribute-types apply to the meta-relation-
ship-type

M-R-T (RELATIONSHIP-CLASS-TYPE , RELATIONSHIP-TYPE

)

DATE-CREATED-IN-SCHEMA

Date and time of creation of the meta-entity in the

schema; generated by the system; is not modifiable by

a user.

CREATED-IN-SCHEMA-BY

Identification of the dictionary user responsible for

the creation of the meta-entity in the schema; gene-
rated by the system; cannot be modified by a user.

BASIC/EXTENDED

An indicator that shows whether the meta-entity is

part of the system-standard schema or was created by
the installation.

PURPOSE

A user-supplied string of text intended to be used for
a description of the meta-entity and its purpose.

3 26

The following meta-attribute-types apply to the meta-relation-
ship-type

M-R-T (ATTRIBUTE-GROUP-TYPE , ATTRIBUTE-TYPE

)

DATE-CREATED-IN-SCHEMA

Date and time of creation of the meta-entity in the
schema; generated by the system; is not modifiable by

a user.

CREATED- IN-SCHEMA-BY

Identification of the dictionary user responsible for

the creation of the meta-entity in the schema; gene-
rated by the system; cannot be modified by a user.

BASIC/EXTENDED

An indicator that shows whether the meta-entity is

part of the system-standard schema or was created by

the installation.

PURPOSE

A user-supplied string of text intended to be used for

a description of the meta-entity and its purpose.

GROUP-POSITION

Served to specify the position that the attribute-type
has in the ordered set that constitutes the attribute-
group-type. Allowable attributes are FIRST, SECOND,
... . This meta-attribute is required for every meta-
relationship-type of this kind.

The following meta-attribute-types apply to the meta-relation-
ship-type

M-R-T (ENTITY-TYPE, ATTRIBUTE-GROUP-TYPE)

3-27

DATE -CREATED- IN-SCHEMA

Date and time of creation of the meta-entity in the

schema; generated by the system; is not modifiable by

a user.

CREATED- IN-SCHEMA-BY

Identification of the dictionary user responsible for

the creation of the meta-entity in the schema; gene-

rated by the system; cannot be modified by a user.

BASIC/EXTENDED

An indicator that shows whether the meta-entity is

part of the system-standard schema or was created by

the installation.

PURPOSE

A user-supplied string of text intended to be used for

a description of the meta-entity and its purpose.

SINGULAR/PLURAL

If the value SINGULAR is specified, every entity of
the type given in the command can have at most one
attribute-group of the type stated in the command. If

the value PLURAL is specified, multiple attribute-
groups may occur for a single entity.

MAXIMUM-NUMBER-OF-OCCURRENCES

This meta-attribute-type is only valid when the
specification for SINGULAR/ PLURAL is PLURAL, and

specifies the maximum number of occurrences of
attribute-groups for a single entity. The default
value is an implementor-defined maximum value for the
system.

3-28

The following meta-attribute-types apply to the meta-relation-
ship-type

M-R-T (RELATIONSHIP-TYPE r ATTRIBUTE-GROUP-TYPE

)

DATE-CREATED-IN-SCHEMA

Date and time of creation of the meta-entity in the
schema; generated by the system; is not modifiable by

a user.

CREATED- IN-SCHEMA-BY

Identification of the dictionary user responsible for

the creation of the meta-entity in the schema; gene-
rated by the system; cannot be modified by a user.

BASIC/EXTENDED

An indicator that shows whether the meta-entity is

part of the system-standard schema or was created by

the installation.

PURPOSE

A user-supplied string of text intended to be used for

a description of the meta-entity and its purpose.

SINGULAR/PLURAL

If the value SINGULAR is specified, every relationship
of the type given in the command can have at most one

attribute-group of the type stated in the command. If

the value PLURAL is specified, multiple attribute-
groups may occur for a single relationship.

MAXIMUM-NUMBER-OF-OCCURRENCES

This meta-attribute-type is only valid when the speci-

fication for S INGULAR/PLURAL is PLURAL, and specifies
the maximum number of occurrences of attribute-groups

for a single relationship. The default value is an

implementor-defined maximum value for the system.

3 29

The following meta-attribute-types apply to the meta-relation-

ship-type

M-R-T (ATTRIBUTE—TYPE , ATTRIBUTE-TYPE-VALIDATION-

PROCEDURE)

DATE-CREATED- IN-SCHEMA

Date and time of creation of the meta-entity in the

schema; generated by the system; is not modifiable by

a user.

CREATED-IN-SCHEMA-BY

Identification of the dictionary user responsible for

the creation of the meta-entity in the schema; gene-
rated by the system; cannot be modified by a user.

BASIC/EXTENDED

An indicator that shows whether the meta-entity is

part of the system-standard schema or was created by

the installation.

PURPOSE

A user-supplied string of text intended to be used for

a description of the meta-entity and its purpose.

The following meta-attribute-types apply to the meta-relation-
ship-type

M-R-T (ATTRIBUTE-TYPE , ATTRIBUTE-TYPE-VALIDATION-DATA)

DATE-CREATED-IN-SCHEMA

Date and time of creation of the meta-entity in the
schema; generated by the system; is not modifiable by
a user.

3-30

CREATED- IN-SCHEMA-BY

Identification of the dictionary user responsible for

the creation of the meta-entity in the schema; gene-
rated by the system; cannot be modified by a user.

BASIC/EXTENDED

An indicator that shows whether the meta-entity is

part of the system-standard schema or was created by

the installation.

PURPOSE

A user-supplied string of text intended to be used for

a description of the meta-entity and its purpose.

3.1.5 THE STATUS FACILITY OF THE DICTIONARY SCHEMA

The dictionary schema recognizes two different kinds of STATUS-
NAME meta-entities:

o There exists a single STATUS-NAME for which the meta-
attribute-type CONTROLLED/UNCONTROLLED has the value
CONTROLLED.

o There exist one or more STATUS-NAME meta-entities for

which the meta-attribute-type CONTROLLED/UNCONTROLLED
has the value UNCONTROLLED.

These meta-entities do not participate in any meta-relationships

and have meta-attributes of the meta-attribute-types previously
specified

.

The semantics of these statuses is described in detail as part of

the commands specified in Chapter 6, and can be characterized as

follows

:

An entity always is in one status.

3 31 (Rev. of 7-82 doc.)

When an entity is added to the dictionary it must be in an

UNCONTROLLED status. One such status is designated for

every user as being the default status for such new enti-

ties being added.

When an entity is in the CONTROLLED status it may not be

modified or deleted.

Structural integrity of the CONTROLLED status is enforced

by the system based on relationships that are instances of

relationship-types which are members of the relationship-

class-types CONTAINS and PROCESSES. For this purpose the

following hierarchy (from highest to lowest) of entity-
types is used:

SYSTEM
PROGRAM
MODULE
FILE

DOCUMENT
RECORD
ELEMENT

No facilities exist in the core standard for

are created through extensibility facilities
this hierarchy.

entity-types that
to participate in

Examples of the structural integrity of the CONTROLLED status are
given in the discussion of the CHANGE-STATUS command.

3.1.6 THE STAGE FACILITY OF THE DICTIONARY SCHEMA

The system-standard schema does not contain any STAGE-NAME meta-
entities and it is expected that each installation will create
such schema descriptors with names that agree with the system
life cycle methodology in use at the installation. The names
assigned to these schema descriptors will be the attributes of
the STAGE attribute-type.

3-32 (Rev. of 7-82 doc.)

These meta-entities do not participate in any meta-relationships
and have the meta-attribute-types already specified.

3.2 THE DICTIONARY SCHEMA

The Dictionary Schema consists of:

a) a set of entity-types

b) a set of relationship-types

c) a set of attribute-types

d) a set of relationship-class-types

e) a set of attribute-group-types

f) a set of ATTRIBUTE -TYPE-VALIDATION-PROCEDURES

g) a set of ATTRIBUTE-TYPE-VALIDATION-DATA

h) a set of STATUS-NAMEs

i) a set of STAGE-NAMES

The usage of the term Schema Descriptor is extended to include
any member of one of the sets a) through i).

Any member of one of the sets f) through i) will be referred to

as a Control Descriptor of the Schema. As the name implies, the

control descriptors contain information that is used in the

control and integrity features for the dictionary and the schema
as well as the operation of the DDS.

The schema also contains instances of the meta-relationship-types
specified in 3.1.2, as well as instances of the meta-attribute-
types specified in 3.1.3 and 3.1.4.

3 33

3.3 CUSTOMIZATION OF THE DICTIONARY SCHEMA

The core standard contains the specification of a System-Standard

Schema , as given in Chapter 4, which consists of a specific set

of entity-types, relationship-types, and attribute-types, which

are supported by the DDS core standard. There exists a recog-

nized need to provide facilities that allow an installation to

augment this system-standard schema. To this effect the core

standard contains facilities that allow an installation to define

new schema descriptors and to connect them with meta-relation-
ships, and to assign meta-attributes to both of these. The
facilities required for this purpose will be referred to as the

Extensibility Facility of the DDS. The commands available to

invoke these facilities are specified in Chapter 5. Commands are

also specified that allow modifications (i.e., alterations and
deletions) of the dictionary schema, as well as provide for query
and reporting on the contents of the dictionary schema.

The domain of usage of the extensibility facility includes the
system-standard schema with the following exception:

o Certain descriptors in the system-standard schema are
identified with the value ON for the meta-attribute-
type SYSTEM-LOCK. The existence of these descriptors
is required for certain parts of the functionality of

the DDS, and as such, no commands are provided for
their deletion.

o Certain descriptors in the system-standard schema are
identified with the value ON for the meta-attribute-
type INSTALLATION-LOCK. Whereas the existence of
these descriptors is not essential for the operation
of the DDS, it is unlikely that they would ever be
deleted by an installation. Normal maintenance
commands are inhibited from operating on such
descriptors, and a special set of such commands are
provided for them.

A potential objection to the inclusion of extensibility
facilities in the core standard was that this specification
should not be limited to implementations on relatively large

3-34

computer systems. Appendix A, which is not considered to be part
of the specification of the core standard, presents a discussion
showing how these facilities can be implemented with a

relational DBMS, such a system being commonly available on even
very small computers. The implementation method presented is not

to be considered to be mandatory in the standard, but is only
presented as a verification of feasibility of achieving such an

objective

.

3.4 THE DICTIONARY

The Dictionary consists of

a) a set of entities

b) a set of relationships

c) a set of attributes

such that:

1. Every entity has exactly one entity-type, which exists
in the schema.

2. Every relationship has exactly one relationship-type,
which exists in the schema.

3. Every attribute has exactly one attribute-type, which
exists in the schema.

4. The dictionary is subject to the integrity rules for

statuses specified in the schema.

5. The attributes in the dictionary are subject to the

attribute-type-validation-procedures and attribute-
type-val idat ion-data in the schema.

6. Every entity in the dictionary has a name, which is

called the primary name of the entity. The primary
name of an entity is unique in the dictionary.

3 35 (Rev. of 7-82 doc.)

7 . The primary name of an entity is composed of two parts

which are concatenated to form the primary name. The

first part is the assigned name of the entity and the

second part is the version number. The default for

version number is the integer "1".

8. The assigned name of an entity is specified when the

entity is created in the dictionary through the use of

either an ADD-ENTITY, COPY, or RENAME command (which

are discussed in Chapter 6). This name either

a) is assigned by the user, or

b) is generated by the dictionary system for

every entity whose entity-type has been

designated as having s y s t e m -ge ne r a t e

d

primary names.

The assigned name specified in one of these commands
cannot be the assigned name of an entity existing in

the dictionary.

9. Entities for which the primary name is generated by
the system are instances of an entity-type for which
the meta-attribute-type SYSTEM-GENERATED has the value
YES, and the required ID-START meta-attribute has been
specified. Such an entity-type will be referred to as

having system-generated assigned names. Rules gover-
ning such entity-types will be discussed in the rules
for the commands for interaction with the dictionary.

10.

The assigned name of an entity is subject to naming
rules existing in the schema.

3 36 (Rev. of 7-82 doc.)

CHAPTER 4 THE SYSTEM STANDARD SCHEMA

In this chapter we will specify the schema descriptors that are

contained in the system-standard schema, along with the
applicable meta-attributes that exist for them.

There exist certain

every descriptor in

show:

meta-a ttr ibute-types which are assigned to

the system-standard schema. These are to

o which descriptors were included in the system-
standard schema versus having been added during a

customization step;

o audit-oriented data on the creation and modifica-
tion of schema descriptors;

o control features associated with a meta-entity.

The order of presentation in this section will be the following:

We will first specify the entity-types that exist
in the system-standard schema with the meta-
attributes that exist for them (Section 4.1).

o This will be followed by the specification of the

relationship-types and their meta-attributes.
(Section 4.2).

o Next we will specify the relationship-class-types

that exist in the system-standard schema, and also

specify the relationship-types of which they are

composed (Section 4.3).

o We will then specify the attribute-types that exist

in the system-standard schema and their meta-attri-
butes. We will defer at this point the specifica-

4 1

tion of which entity-types and/or relationship-
types these apply to (Section 4.4).

o This will be followed by the specification of the

attribute-group-types, showing which attribute-
types are included in them (Section 4.5).

o Next the specification of attribute-type-valida-
tion-procedures will be given (Section 4.6).

o This will be followed by the specification of the

attribute-type-validation-data meta-entities in the

system-standard schema (Section 4.7).

o We will then discuss the STATUS-NAME meta-entities
in the system-standard schema (Section 4.8).

o This will be followed by the specification of

STAGE-NAME meta-ent i ti tes in the system-standard
schema (Section 4.9).

o The last item will be a listing of all entity-types
and relationship-types showing the attribute-types
that are associated with them (Sections 4.10 and

4.11) .

4 . 1 ENTITY-TYPES

The following entity-types, with their associated meta-
attributes, exist in the system-standard schema:

1. ENTITY-TYPE NAME = SYSTEM

PURPOSE = "To describe instances of collections of
processes and data."

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

4 2

DATE-CREATED-IN-SCHEMA
will have an implementor-defined value showing that

this descriptor is part of the system-standard
schema

.

CREATED-IN-SCHEMA-BY
will have an implementor-defined value showing that

this descriptor is part of the system-standard
schema

.

DATE-LAST-MODIFIED-IN-SCHEMA
will have a null value.

LAST-MODI FI ED- IN-SCHEMA-BY
will have a null value.

NUMBER-OF—TIMES-MODI FI ED—IN-SCHEMA = "0"

CONNECTABLE = YES

ENTITY-CLASS = PROCESS

2. ENTITY-TYPE NAME = PROGRAM

PURPOSE = "To describe instances of automated
processes .

"

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

DATE-CREATED-IN-SCHEMA
will have an implementor-defined value showing that

this descriptor is part of the system-standard
schema

.

CREATED- IN-SCHEMA-BY
will have an implementor-defined value showing that

this descriptor is part of the system-standard
schema

.

4 3

DATE-LAST-MODIFIED-IN-SCHEMA
will have a null value.

LAST-MODI FI ED-IN-SCHEMA-BY
will have a null value.

NUMBER-OF-TIMES-MODIFIED-IN-SCHEMA = "0"

CONNECTABLE = YES

ENTITY-CLASS = PROCESS

3. ENTITY-TYPE NAME = MODULE

PURPOSE = "To describe instances of automated
processes which are either logical
subdivisions of PROGRAM entities or
independent processes which are called by

PROGRAM entities.”

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

DATE-CREATED-IN-SCHEMA
will have an implementor-defined value showing that

this descriptor is part of the system-standard
schema

.

CREATED-IN-SCHEMA-BY
will have an implementor-defined value showing that
this descriptor is part of the system-standard
schema

.

DATE-LAST-MODI FI ED-IN-SCHEMA
will have a null value.

LAST-MODI FI ED-IN-SCHEMA-BY
will have a null value.

NUMBER-OF-TIMES-MODIFIED-IN-SCHEMA = ”0"

4 4

CONNECTABLE YES

ENTITY-CLASS = PROCESS

4. ENTITY-TYPE NAME = FILE

PURPOSE = To describe instances of an organization's
data collections."

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

DATE-CREATED- IN-SCHEMA
will have an implementor-defined value showing that

this descriptor is part of the system-standard
schema

.

CREATED- IN-SCHEMA-BY .

will have an implementor-defined value showing that

this descriptor is part of the system-standard
schema

.

DATE-LAST-MODI FI ED-IN-SCHEMA
will have a null value.

LAST-MODI FI ED-IN-SCHEMA-BY
will have a null value.

NUMBER-OF-TIMES-MOD I FI ED- IN-SCHEMA = "0"

CONNECTABLE = YES

ENTITY-CLASS = DATA

5. ENTITY-TYPE NAME = RECORD

PURPOSE = "To describe instances of logically
associated data which belongs to the
organization .

"

4 5

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

DATE-CREATED-IN-SCHEMA
will have an implementor-defined value showing that

this descriptor is part of the system-standard

schema

.

CREATED-IN-SCHEMA-BY
will have an implementor-defined value showing that

this descriptor is part of the system-standard
schema

.

DATE-LAST-MODI FI ED- IN-SCHEMA
will have a null value.

LAST-MOD I FI ED-IN-SCHEMA-BY
will have a null value.

NUMBER-OF-TIMES-MODI FI ED-IN-SCHEMA = "0"

CONNECTABLE = YES

ENTITY-CLASS = DATA

6. ENTITY-TYPE NAME = DOCUMENT

PURPOSE = "To describe instances of human-readable
data collections.”

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

DATE-CREATED-IN-SCHEMA
will have an implementor-defined value showing that
this descriptor is part of the system-standard
schema

.

4-6

CREATED-IN-SCHEMA-BY
will have an implementor-defined value showing that

this descriptor is part of the system-standard
schema

.

DATE-LAST-MODI FI ED- IN-SCHEMA
will have a null value.

LAST-MODI FIED-IN-SCHEMA-BY
will have a null value.

NUMBER-OF-TIMES-MODIFIED-IN-SCHEMA = "0"

CONNECTABLE = YES

ENTITY-CLASS = DATA

7. ENTITY-TYPE NAME = ELEMENT

PURPOSE = "To describe instances of data belonging to

the organization."

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

DATE-CREATED-IN-SCHEMA
will have an implementor-defined value showing that

this descriptor is part of the system-standard
schema

.

CREATED-IN-SCHEMA-BY
will have an implementor-defined value showing that

this descriptor is part of the system-standard
schema

.

DATE-LAST-MODIFIED-IN-SCHEMA
will have a null value.

LAST-MODI FI ED-IN-SCHEMA-BY
will have a null value.

4 7

NUMBER-OF-TIMES-MODIFIED-IN-SCHEMA = "
0
"

CONNECTABLE = YES

ENTITY-CLASS = DATA

8. ENTITY-TYPE NAME = USER

PURPOSE = "To describe instances of members or collec-

tions of members belonging to the organiza-

tion using the facilities available in the

data dictionary system. This entity must
not be confused with the entity-type
DICTIONARY-USER, which denotes persons who

access the dictionary system."

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

DATE-CREATED- IN-SCHEMA
will have an implementor-defined value showing that

this descriptor is part of the system-standard
schema

.

CREATED-IN-SCHEMA-BY
will have an implementor-defined value showing that
this descriptor is part of the system-standard
schema

.

DATE-LAST-MODIFIED-IN-SCHEMA
will have a null value.

LAST-MODI F I ED-IN-SCHEMA-BY
will have a null value.

NUMBER-OF-TIMES-MODI FI ED-IN-SCHEMA = "0"

CONNECTABLE = YES

ENTITY-CLASS = EXTERNAL

4 8

9. ENTITY-TYPE NAME = DICTIONARY-USER

PURPOSE = "To describe individuals who are users of

the data dictionary system and to record
their access privileges to the dictionary.
Entities of this type are used exclusively
in the management of the security facility
of the dictionary system, and are not
available through its generally available
facilities."

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

DATE-CREATED-IN-SCHEMA
will have an implementor-defined value showing that

this descriptor is part of the system-standard
schema

.

CREATED- IN-SCHEMA-BY
will have an implementor-defined value showing that

this descriptor is part of the system-standard
schema

.

DATE-LAST-MODI FI ED-IN-SCHEMA
will have a null value.

LAST-MOD I FI ED-IN-SCHEMA-BY
will have a null value.

NUMBER-OF-TIMES-MODI FI ED-IN-SCHEMA = "0"

CONNECTABLE = NO

ENTITY-CLASS = SECURITY

10. ENTITY-TYPE NAME = ACCESS-CONTROLLER

PURPOSE = "To specify access restrictions to an entity

or set of entities in the dictionary.

4 9

Entities of this type are used exclusively

in the security facility of the dictionary

system.

"

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

DATE-CREATED- IN-SCHEMA
will have an implementor-defined value showing that

this descriptor is part of the system-standard
schema

.

CREATED- IN-SCHEMA-BY
will have an implementor-defined value showing that

this descriptor is part of the system-standard
schema

.

DATE-LAST-MODI FI ED-IN-SCHEMA
will have a null value.

LAST-MODI FI ED- IN-SCHEMA-BY
will have a null value.

NUMBER-OF-TIMES-MODI FI ED-IN-SCHEMA = "0"

CONNECTABLE = NO

ENTITY-TYPE = SECURITY

The purpose of the entity-types DICTIONARY-USER and
ACCESS-CONTROLLER will be explained in Chapter 8 where
the secur i ty/access control facility for the
dictionary and dictionary schema will be specified.

Notes

:

1. The meta-attribute for SYSTEM-LOCK is YES in the case
of all entity-types whose value for the meta-
attribute-type ENTITY-CLASS is DATA. Commands exist
in the core standard that depend on the existence of
these entity-types in the schema.

4 10 (Rev. of 7-82 doc.)

2. Meta-attributes for meta-attribute-types

INSTALLATION-LOCK
SYSTEM-GENERATED
META-KEY
MINIMUM-NAME-LENGTH
MAXIMUM-NAME-LENGTH
PICTURE

are not specified. These meta-attributes can be

declared by an installation, if so desired. The
commands specified in Chapter 5 are to be used for
these declarations.

3. The meta-attribute-type CONNECTABLE has the value NO

for the meta-entity-types DICTIONARY-USER and ACCESS-

CONTROLLER to indicate that no relationship-type with
one of these entity-types as a member can be created
by a user. The meta-entity-type ACCESS-CONTROLLER is

a member of a number of relationship-types, however,
these are either a part of the system-standard schema
or are established by the system as part of the crea-

tion of a new entity-type in the schema.

4 11 (Rev. of 7-82 doc.)

4.2 RELATIONSHIP-TYPES

The following relationship-types, and their associated meta-
attributes, exist in the system-standard schema. The entity-
types that are members of the relationship-types are also given.
A summary of these relationship-types, showing the entity-types
that are members is given in the Entity-type - Relationship-type
matrix in Table 4-1. The following notation is used:

1 - denotes the first member of the relationship-type,

2 - denotes the second member of the re 1 a t i onsh i p- type

,

and

R - denotes the the same entity-type is both the first and

second member of the relationship-type.

The relationship-class-type (as specified in Section 4.3) to

which a r e 1 a t i onsh i p- type belongs, is shown as a heading in the
rows of the matrix.

4 11A (Rev. of 7-82 doc.)

ENTITY-TYPE RELATIONSHIP-TYPE MATRIX

SYS PRO MOD FIL DOC REC ELE USR

CONTAINS

FI LE-CONTAINS-FILE

FI LE-CONTAINS-RECORD

FI LE-CONTAINS-ELEMENT

RECORD-CONTAINS-RECORD

RECORD-CONTAINS-ELEMENT

ELEMENT-CONTAINS-ELEMENT

DOCUMENT-CONTAINS-DOCUMENT

DOCUMENT-CONTAINS-RECORD

DOCUMENT-CONTAINS-ELEMENT

SYSTEM-CONTAINS-SYSTEM

SYSTEM-CONTAINS-PROGRAM

SYSTEM-CONTAINS-MODULE

PROGRAM-CONTAINS-PROGRAM

PROGRAM-CONTAINS-MODULE

MODULE-CONTAINS-MODULE

R

1 . 2 .

1 . . 2

• • R .

1 2

. . . R

. R . .

1 2 \ .

1 . 2

1 2

1 . 2

R

1 2

R

Table 4-1 (Part 1)

(Rev. of 7-82 doc.)4 12

SYS PRO MOD FIL DOC REC ELE USR

PROCESSES

SYSTEM-PROCESSES-ELEMENT

PROGRAM-PROCESSES-ELEMENT

MODULE-PROCESSES-ELEMENT

SYSTEM-PROCESSES-ELEMENT

PROGRAM-PROCESSES-RECORD

MODULE-PROCESSES-RECORD

SYSTEM-PROCESSES-FILE

PROGRAM-PROCESSES-FILE

MODULE-PROCESSES-FILE

SYSTEM-PROCESSES-DOCUMENT

PROGRAM-PROCESSES-DOCUMENT

MODULE-PROCESSES-DOCUMENT

1

1

1

2

2

2

1 . . 2

1 . 2

1 2

RESPONSIBLE-FOR

USER-RESPONSIBLE-FOR-SYSTEM 2

USER-RESPONSIBLE-FOR-PROGRAM . 2

USER-RESPONSIBLE-FOR-MODULE . . 2

Table 4-1 (Part 2)

1

1

1

(Rev. of 7-82 doc.)4 13

SYS PRO MOD FIL DOC REC ELE USR

USER-RESPONSIBLE-FOR-FILE

USER-RESPONSIBLE-FOR-DOCUMENT

USER-RESPONSIBLE-FOR-RECORD

USER-RESPONSIBLE-FOR-ELEMENT

1

1

2 . 1

2 1

RUNS

USER-RUNS-SYSTEM

USER-RUNS-PROGRAM

USER-RUNS-MODULE

2

2

2

TO

SYSTEM-TO-SYSTEM

PROGRAM-TO-PROGRAM

MODULE-TO-MODULE R

DERIVED-FROM

ELEMENT-DERIVED-FROM-ELEMENT .

FILE-DERIVED-FROM-FILE R

1

1

1

R

Table 4-1 (Part 3)

(Rev. of 7-82 doc.)4 14

SYS PRO MOD FIL DOC REC ELE USR

DOCUMENT-DERIVED-FROM-DOCUMENT

FILE-DERIVED-FROM-DOCUMENT

DOCUMENT-DERIVED-FROM-FILE

RECORD-DERIVED-FROM-DOCUMENT

DOCUMENT-DERIVED-FROM-RECORD

. R . .

12 ..
2 1 ..

2 1

1 2

STANDARD-FOR

HAS-SORT-KEY

HAS-ACCESS-KEY

1

1

R

2

2

Table 4-1 (Part 4)

. of 7-82 doc.)4 15 (Rev

1. RELATIONSHIP-TYPE NAME = FILE-CONTAINS—FILE

PURPOSE = "The FILE-CONTAINS-FILE relationship-type is

intended to be used to describe instances of

a file conceptually containing other files."

INVERSE-NAME = FILE-CONTAINED- IN-FILE

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = YES

First member: FILE

Second member: FILE

2. RELATIONSHIP-TYPE NAME = FILE—CONTAINS-RECORD

PURPOSE = "The FI LE-CONTA INS-RECORD relationship-type
is intended to describe the records that
constitute a file."

INVERSE-NAME = RECORD-CONTAINED- IN-FILE

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = YES

First member: FILE

Second member: RECORD

4-16 (Rev. of 7-82 doc.)

3. RELATIONSHIP-TYPE NAME FILE—CONTAINS—ELEMENT

PURPOSE = "The FILE-CONTAINS-ELEMENT relationship-
type is intended to describe the inclusion
of an element in a file."

INVERSE-NAME = ELEMENT-CONTA INED- IN-FILE

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = YES

First member: FILE

Second member: ELEMENT

4. RELATIONSHIP-TYPE NAME = RECORD—CONTAINS—RECORD

PURPOSE = "The RECORD-CONTA INS-RE CORD relationship-
type is intended to describe the inclusion
of a record in another record."

INVERSE-NAME = RECORD-CONTAINED- IN-RECORD

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = NO

First member: RECORD

Second member: RECORD

of 7-8 2

J'

doc .

)

4 17

5. RELATIONSHIP-TYPE NAME = RECORD—CONTAINS—ELEMENT

PURPOSE = "The RECORD-CONTAINS-ELEMENT relationship-

type is intended to describe the inclusion

of an element in a record."

INVERSE-NAME = ELEMENT-CONTAINED- IN-RECORD

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = YES

SEQUENCED = YES

SEQUENCE-PARAMETER = INTEGER

First member: RECORD

Second member: ELEMENT

6. RELATIONSHIP-TYPE NAME = ELEMENT—CONTAINS—ELEMENT

PURPOSE = "The ELEMENT-CONTAINS-ELEMENT relationship-
type is intended to be used to describe that
an element is composed of other elements."

INVERSE-NAME = ELEMENT-CONTAINED- IN-ELEMENT

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = YES

First member: ELEMENT

Second member: ELEMENT

4 18 (Rev. of 7-82 doc.)

7. RELATIONSHIP-TYPE NAME = DOCUMENT—CONTAINS—DOCUMENT

PURPOSE = "The DOC UMENT-CONTA INS-DOCUMENT relation-
ship-type is intended to describe instances
of documents being contained in other docu-
ments .

"

INVERSE-NAME = DOCUMENT-CONTAINED- IN-DOCUMENT

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = YES

First member: DOCUMENT

Second member: DOCUMENT

8. RELATIONSHIP-TYPE NAME = DOCUMENT—CONTAINS—RECORD

PURPOSE = "The DOCUMENT-CONTAINS-RECORD relationship-
type is intended to describe instances of

records being contained in a document."

INVERSE-NAME = RECORD-CONTAINED- IN-DOCUMENT

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

First member: DOCUMENT

Second member: RECORD

4-19 (Rev. of 7-82 doc.)

9. RELATIONSHIP-TYPE NAME = DOCUMENT—CONTAINS—ELEMENT

PURPOSE = "The DOCUMENT-CONTAINS-ELEMENT relationship-

type is intended to be used to describe

instances of elements being contained in a

document .

"

INVERSE-NAME = ELEMENT-

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = YES

-CONTAINED-IN-DOCUMENT

SEQUENCED = YES

SEQUENCE-PARAMETER = INTEGER

First member: DOCUMENT

Second member: ELEMENT

10. RELATIONSHIP-TYPE NAME = SYSTEM—CONTAINS—SYSTEM

PURPOSE = "The SYSTEM-CONTA INS-SYSTEM relationship-
type is intended to be used to describe that
one system is composed conceptually of other
systems .

"

INVERSE-NAME = SYSTEM-CONTAINED-IN-SYSTEM

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = YES

First member: SYSTEM

Second member: SYSTEM

4 20 (Rev. of 7-82 doc.)

11 RELATIONSHIP-TYPE NAME SYSTEM—CONTAINS—PROGRAM

PURPOSE = "The SYSTEM-CONTA I NS- PROGRAM relationship-
type is intended to be used to describe that

a program is considered conceptually to be

included in a system."

INVERSE-NAME = PROGRAM-CONTAINED- IN-SYSTEM

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = YES

First member: SYSTEM

Second member: PROGRAM

12. RELATIONSHIP-TYPE NAME = SYSTEM—CONTAINS—MODULE

PURPOSE = "The SYSTEM-CONTA I NS- MODULE relationship-
type is intended to be used to describe that

a module is considered conceptually to be

included in a system."

INVERSE-NAME = MODULE-CONTAINED- IN-SYSTEM

4 21 (Rev of 7-82 doc.)

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = YES

SEQUENCED = YES

SEQUENCE-PARAMETER = INTEGER

First member: SYSTEM

Second member: MODULE

13. RELATIONSHIP-TYPE NAME = PROGRAM—CONTAINS—PROGRAM

PURPOSE = "The PROGRAM-CONTAINS-PROGRAM relationship-
type is intended to be used to describe a

program calling programs."

INVERSE-NAME = PROGRAM-CONTAINED-IN-PROGRAM

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = YES

SEQUENCED = YES

SEQUENCE-PARAMETER = INTEGER

First member: PROGRAM

Second member: PROGRAM

14. RELATIONSHIP-TYPE NAME = PROGRAM—CONTAINS—MODULE

PURPOSE = "The PROGRAM-CONTAINS-MODULE relationship-
type is intended to be used to describe that
a program calls modules."

4 22

INVERSE-NAME MODULE-CONTAINED- IN-PROGRAM

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = YES

SEQUENCED = YES

SEQUENCE-PARAMETER = INTEGER

First member: PROGRAM

Second member: MODULE

15. RELATIONSHIP-TYPE NAME = MODULE—CONTAINS—MODULE

PURPOSE = "The MODULE-CONTA INS-MODULE relationship-
type is intended to be used to describe a

module calling modules.”

INVERSE-NAME = MODULE-CONTAIN ED- IN-MODULE

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = YES

SEQUENCED = YES

SEQUENCE-PARAMETER = INTEGER

First member: MODULE

Second member: MODULE

4 23

16. RELATIONSHIP-TYPE NAME = SYSTEM-PROCESSES-ELEMENT

PURPOSE = "The SYSTEM-PROCESSES-ELEMENT relationship-

type is intended to represent that a system

processes an element."

INVERSE-NAME = ELEMENT-PROCESSED-BY-SYSTEM

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = YES

First member: SYSTEM

Second member: ELEMENT

17. RELATIONSHIP-TYPE NAME = PROGRAM-PROCESSES-ELEMENT

PURPOSE = "The PROGRAM-PROCESSES-ELEMENT relationship-
type is intended to represent that a program
processes an element."

INVERSE-NAME = ELEMENT-PROCESSED-BY-PROGRAM

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = YES

First member: PROGRAM

Second member: ELEMENT

18. RELATIONSHIP-TYPE NAME = MODULE-PROCESSES-ELEMENT

PURPOSE = "The MODULE—PROCESSES—ELEMENT relationship-
type is intended to represent that a module
processes an element."

4 24 (Rev. of 7-82 doc.)

INVERSE-NAME ELEMENT-PROCESSED-BY-MODULE

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = YES

First member: MODULE

Second member: ELEMENT

19. RELATIONSHIP-TYPE NAME = SYSTEM-PROCESSES-RECORD

PURPOSE = "The SYSTEM-PROCESSES-RECORD relationship-
type is intended to represent that a system
processes a record."

INVERSE-NAME = RECORD-PROCESSED-BY-SYSTEM

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = YES

First member: SYSTEM

Second member: RECORD

20. RELATIONSHIP-TYPE NAME = PROGRAM-PROCESSES-RECORD

PURPOSE = "The PROGRAM-PROCESSES-RECORD relation-
ship-type is intended to represent that a

program processes a record."

INVERSE-NAME = RECORD-PROCESSED-BY-PROGRAM

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

4 25 (Rev. of 7-82 doc.)

STATUS-RELATED YES

First member: PROGRAM

Second member: RECORD

21. RELATIONSHIP-TYPE NAME = MODULE-PROCESSES-RECORD

PURPOSE = "The MODULE-PROCESSES-RECORD relationship-
type is intended to represent that a module

processes a record."

INVERSE-NAME = RECORD-PROCESSED-BY-MODULE

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = YES

First member: MODULE

Second member: RECORD

22. RELATIONSHIP-TYPE NAME = SYSTEM-PROCESSES-FILE

PURPOSE = "The SYSTEM-PROCESSES-FILE relationship-type
is intended to represent that a system pro-
cesses a file."

INVERSE-NAME = FILE-PROCESSED-BY-SYSTEM

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = YES

First member: SYSTEM

Second member: FILE

4 26 (Rev. of 7-82 doc.)

23 RELATIONSHIP-TYPE NAME PROGRAM—PROCESSES—FI LE

PURPOSE = "The PROGRAM-PROCESSES-FILE relationship-
type is intended to represent that a program
processes a file."

INVERSE-NAME = FILE-PROCESSED-BY-PROGRAM

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = YES

First member: PROGRAM

Second member: FILE

24. RELATIONSHIP-TYPE NAME = MODULE-PROCESSES-FILE

PURPOSE = "The MODULE-PROCESSES-FILE relationship-type
is intended to represent that a module pro-

cesses a file."

INVERSE-NAME = FI LE-PROCESSED-BY-MODULE

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = YES

First member: MODULE

Second member: FILE

25. RELATIONSHIP-TYPE NAME = SYSTEM-PROCESSES-DOCUMENT

PURPOSE = "The SYSTEM-PROCESSES-DOCUMENT relationship-
type is intended to represent that a system
processes a document."

4 27 (Rev. of 7-82 doc.)

INVERSE-NAME = DOCUMENT-PROCESSED-BY-SYSTEM

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = YES

First member: SYSTEM

Second member: DOCUMENT

26. RELATIONSHIP-TYPE NAME = PROGRAM-PROCESSES-DOCUMENT

PURPOSE = "The PROGRAM-PROCESSES-DOCUMENT relation-

ship-type is intended to represent that a

program processes a document."

INVERSE-NAME = DOCUMENT-PROCESSED-BY-PROGRAM

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = YES

First member: PROGRAM

Second member: DOCUMENT

27. RELATIONSHIP-TYPE NAME = MODULE-PROCESSES-DOCUMENT

PURPOSE = "The MODULE-PROCESSES-DOCUMENT relation-
ship-type is intended to represent that a

module processes a document."

INVERSE-NAME = DOCUMENT-PROCESSED-BY-MODULE

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

4 28 (Rev. of 7-82 doc.)

STATUS-RELATED YES

First member: MODULE

Second member: DOCUMENT

28. RELATIONSHIP-TYPE NAME = USER-REPONSIBLE-FOR-SYSTEM

PURPOSE = "The USER-RESPONSIBLE-FOR-SYSTEM relation-
ship-type is intended to represent that an

organizational component has responsibility
for a system."

INVERSE-NAME = SYSTEM-RESPONS IBI LITY-OF-USER

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = NO

First member: USER

Second member: SYSTEM

29. RELATIONSHIP-TYPE NAME = USER-REPONSIBLE-FOR-PROGRAM

PURPOSE = "The USER-RESPONSIBLE-FOR-PROGRAM relation-
ship-type is intended to represent that an

organizational component has responsibility
for a program."

INVERSE-NAME = PROGRAM-RESPONSIBILITY-OF-USER

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

4 29 (Rev. of 7-82 doc.)

STATUS-RELATED = NO

First member: USER

Second member: PROGRAM

30. RELATIONSHIP-TYPE NAME = USER-REPONSIBLE-FOR-MODULE

PURPOSE = "The USER-RESPONS I BLE-FOR-MODU LE relation-
ship-type is intended to represent that an

organizational component has responsibility
for a module."

INVERSE-NAME = MODULE-RESPONSIBILITY-OF-USER

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = NO

First member: USER

Second member: MODULE

31. RELATIONSHIP-TYPE NAME = USER-REPONSIBLE-FOR-FILE

PURPOSE = "The USER-RESPONSIBLE-FOR-FILE relationship-
type is intended to represent that an organ-
izational component has responsibility for a

file."

INVERSE-NAME = FILE-RESPONSIBILITY-OF-USER

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = NO

4 30

First member USER

Second member: FILE

32. RELATIONSHIP-TYPE NAME = USER-REPONS IBLE-FOR-DOCUMENT

PURPOSE = "The USER-RESPONSIBLE-FOR-DOCUMENT relation-
ship-type is intended to represent that an

organizational component has responsibility
for a document."

INVERSE-NAME = DOCUMENT-RESPONSIBILITY-OF-USER

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = NO

First member: USER

Second member: DOCUMENT

33. RELATIONSHIP-TYPE NAME = USER-REPONSIBLE-FOR-RECORD

PURPOSE = "The USER-RESPONS I BLE-FOR-RECORD relation-
ship-type is intended to represent that an

organizational component has responsibility
for a record."

INVERSE-NAME = RECORD-RESPONSIBILITY-OF-USER

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = NO

First member: USER

Second member: RECORD

4 31

34. RELATIONSHIP-TYPE NAME = USER-REPONSIBLE-FOR-ELEMENT

PURPOSE = "The USER-RESPONSIBLE-FOR-ELEMENT relation-

ship-type is intended to represent that an

organizational component has responsibility

for an element."

INVERSE-NAME = ELEMENT-RESPONSIBILITY-OF-USER

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = NO

First member: USER

Second member: ELEMENT

35. RELATIONSHIP-TYPE NAME = USER-RUNS-SYSTEM

PURPOSE = "The USER-RUNS-SYSTEM relationship-type is

intended to represent that a person or
organizational component is associated with
the running of a system."

INVERSE-NAME = SYSTEM-RUN-BY-USER

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

STATUS-RELATED = NO

First member: USER

Second member: SYSTEM

4 32

36. RELATIONSHIP-TYPE NAME USER-RUNS-PROGRAM

PURPOSE = "The USER-RUNS-PROGRAM relationship-type is

intended to represent that a person or
organizational component is associated with
the running of a program."

INVERSE-NAME = PROGRAM-RUN-BY-USER

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

STATUS-RELATED = NO

First member: USER

Second member: PROGRAM

37. RELATIONSHIP-TYPE NAME = USER-RUNS-MODULE

PURPOSE = "The USER-RUNS-MODULE r e 1 a t i onsh i p- type is

intended to represent that a person or
organizational component is associated with
the running of a module."

INVERSE-NAME = MODULE-RUN-BY-USER

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

STATUS-RELATED = NO

First member: USER

Second member: MODULE

38. RELATIONSHIP-TYPE NAME = SYSTEM-TO-SYSTEM

PURPOSE = "The SYSTEM-TO-SYSTEM relationship-type is

intended to be used to represent a concep-

4 33

39 .

40 .

tual "flow” from one system to another.

Instances of this relationship-type identify

the "current" and "next" entities represen-

ting this "flow".

INVERSE-NAME = SYSTEM-FROM-SYSTEM

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

STATUS-RELATED = NO

First member: SYSTEM

Second member: SYSTEM

RELATIONSHIP-TYPE NAME = PROGRAM-TO-PROGRAM

PURPOSE = "The PROGRAM-TO-PROGRAM relationship-type is

intended to be used to represent a concep-
tual "flow" from one program to another.
Instances of this relationship-type identify
the "current" and "next" entities represen-
ting this "flow".

INVERSE-NAME = PROGRAM-FROM-PROGRAM

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

STATUS-RELATED = NO

First member: PROGRAM

Second member: PROGRAM

RELATIONSHIP-TYPE NAME = MODULE-TO-MODULE

PURPOSE = "The MODULE-TO-MODULE r e 1 a t i onsh i p-type is
intended to be used to represent a concep-

4 34

tual "flow” from one module to another.
Instances of this relationship-type identify
the "current" and "next" entities represen-
ting this "flow".

INVERSE-NAME = MODULE-FROM-MODULE

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

STATUS-RELATED = NO

First member: MODULE

Second member: MODULE

41. RELATIONSHIP-TYPE NAME = ELEMENT-DERIVED-FROM-ELEMENT

PURPOSE = "The ELEMENT-DERIVED-FROM-ELEMENT relation-
ship-type is intended to be used to describe
associations between elements wherein the

target element is the result of a calcula-
tion involving the source element."

INVERSE-NAME = ELEMENT-PRODUCES-ELEMENT

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

STATUS-RELATED = NO

First member: ELEMENT

Second member: ELEMENT

42. RELATIONSHIP-TYPE NAME = FILE-DERIVED-FROM-FILE

PURPOSE = "The FILE-DERIVED-FROM-FILE relationship-
type is intended to be used to describe
associations between files wherein the tar-

4 35

calculationsget file is the result of

involving the source file."

INVERSE-NAME = FILE-PRODUCES-FILE

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

STATUS-RELATED = NO

First member: FILE

Second member: FILE

43. RELATIONSHIP-TYPE NAME = DOCUMENT-DERIVED—FROM—
DOCUMENT

PURPOSE = "The DOCUMENT-DERIVED-FROM-DOCUMENT rela-
tionship-type is intended to be used to

describe associations between documents
wherein the target document is the result of

a calculation involving the source docu-
ment .

"

INVERSE-NAME = DOCUMENT-PRODUCES-DOCUMENT

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

STATUS-RELATED = NO

First member: DOCUMENT

Second member: DOCUMENT

44. RELATIONSHIP-TYPE NAME = FILE-DERIVED-FROM-DOCUMENT

PURPOSE = "The FILE-DERIVED-FROM-DOCUMENT relation-
ship-type is intended to be used to describe
associations between a file and a document

4 36

wherein the target file is the result of a

calculation involving the source document."

INVERSE-NAME = DOCUMENT-PRODUCES-FILE

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

STATUS-RELATED = NO

First member: FILE

Second member: DOCUMENT

45. RELATIONSHIP-TYPE NAME = DOCUMENT-DERIVED-FROM-FILE

PURPOSE = "The DOCUMENT-DERIVED- FROM- FI LE relation-
ship-type is intended to be used to describe
associations between a document and a file
wherein the target document is the result of

a calculation involving the source file.”

INVERSE-NAME = FI LE-PRODUCES-DOCUMENT

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

STATUS-RELATED = NO

First member: DOCUMENT

Second member: FILE

46. RELATIONSHIP-TYPE NAME = RECORD-DERIVED-FROM-DOCUMENT

PURPOSE = "The RECORD-DERIVED-FROM-DOCUMENT relation-
ship-type is intended to be used to describe
associations between a record and a document
wherein the target record is the result of a

calculation involving the source document.”

4 37

INVERSE-NAME = DOCUMENT-PRODUCES-RECORD

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

STATUS-RELATED = NO

First member: RECORD

Second member: DOCUMENT

47. RELATIONSHIP-TYPE NAME = DOCUMENT-DERIVED-FROM-RECORD

PURPOSE = "The DOCUMENT-DERIVED-FROM-RECORD relation-

ship-type is intended to be used to describe

associations between a document and a record

wherein the target document is the result of

a calculation involving the source record.”

INVERSE-NAME = RECORD-PRODUCES-DOCUMENT

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

STATUS-RELATED = NO

First member: DOCUMENT

Second member: RECORD

48. RELATIONSHIP-TYPE NAME = STANDARD-FOR

PURPOSE = "The STANDARD-FOR r e 1 a t i onsh i p-type is
intended to be used to represent conceptual
associations between entities of entity-type
ELEMENT. There are no system-imposed
restrictions on its use, however it is pri-
marily intended to support data element
standardization efforts."

4-38

INVERSE-NAME STANDARD-OF

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

STATUS-RELATED = NO

First member: ELEMENT

Second member: ELEMENT

49. RELATIONSHIP-TYPE NAME = HAS-SORT-KEY

PURPOSE = "The HAS-SORT-KEY r e 1 a t i onsh i p- t ype , with
source entity-type FILE, and target entity-
type ELEMENT, is used to designate an ele-
ment which is used as the sort-key, or as a

part of the sort-key of a file.”

INVERSE-NAME = IS-SORT-KEY

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

STATUS-RELATED = NO

First member: FILE

Second member: ELEMENT

50. RELATIONSHIP-TYPE NAME = HAS-ACCESS-KEY

PURPOSE = "The HAS-ACCESS-KEY relationship-type, with
source entity-type FILE, and target entity-
type ELEMENT, is used to designate an
element which is used as the access-key, or

as a part of the access-key of a file.”

INVERSE-NAME = IS ACCESS-KEY

4 39

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

STATUS-RELATED = NO

First member: FILE

Second member: ELEMENT

In addition to the preceding, the system-standard schema also
contains the relationship-types which are used in connection with
the local security mechanism, which is discussed in Chapter 8.

The first member of each one of these relationship-types is the

entity-type ACCESS-CONTROLLER, with the other member being
another entity-type (with exception of DICTIONARY-USER).

These relationship-types are:

ACCESS-CONTROLLER-FOR-SYSTEM
ACCESS-CONTROLLER-FOR-PROGRAM
ACCESS-CONTROLLER-FOR-MODULE
ACCESS-CONTROLLER-FOR-FILE
ACCESS-CONTROLLER-FOR-RECORD
ACCESS-CONTROLLER-FOR-DOCUMENT
ACCESS-CONTROLLER-FOR-ELEMENT
ACCESS-CONTROLLER-FOR-USER

For each one of these relationship-types:

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

STATUS-RELATED = NO

4-40 (Rev. of 7-82 doc.)

4 . 3 RELATIONSHIP-CLASS-TYPES

The system-standard schema contains the following relationship-
class-types with their applicable meta-attributes:

1. RELATIONSHIP-CLASS-TYPE NAME = CONTAINS

PURPOSE = "The CONTAINS r e 1 a t i onsh i p-c 1 a ss- type is

intended to be used to describe instances of

an entity being composed conceptually of

other entities. The relationship-class can

only be used between entities whose
attribute of ENTITY-CLASS is the same."

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

INVERSE-NAME = CONTAINED-IN

which is composed of the following relationship-types:

FILE-CONTAINS-FILE
FILE-CONTAINS-RECORD
FILE-CONTAINS-ELEMENT
RECORD-CONTAINS-RECORD
RECORD-CONTA INS-ELEMENT
ELEMENT-CONTAINS-ELEMENT
DOCUMENT-CONTAINS-DOCUMENT
DOCUMENT-CONTAINS-RECORD
DOCUMENT-CONTAINS-ELEMENT
SYSTEM-CONTAINS-SYSTEM
SYSTEM-CONTAINS-PROGRAM

SYSTEM-CONTAINS-MODULE
PROGRAM-CONTAINS-PROGRAM
PROGRAM-CONTAINS-MODULE
MODULE-CONTAINS-MODULE

4-41 (Rev. of 7-82 doc.)

2 . RELATIONSHIP-CLASS-TYPE NAME = PROCESSES

PURPOSE = "The PROCESSES r e 1 a t i onsh i p-c 1 a s s- type is

intended to be used to represent a concep-

tual association between entities of type

with entity-class PROCESS and entities of

type with entity-type DATA. The associa-
tions illustrate a PROCESS entity processing

a DATA entity."

INVERSE-NAME = PROCESSED-BY

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

which is composed of the following relationship-types:

SYSTEM-PROCESSES-ELEMENT
PROGRAM-PROCESSES-ELEMENT
MODULE-PROCESSES-ELEMENT
SYSTEM-PROCESSES-RECORD
PROGRAM-PROCESSES-RECORD
MODULE-PROCESSES-RECORD
SYSTEM-PROCESSES-FILE
PROGRAM-PROCESSES-FILE
MODULE-PROCESSES-FILE
SYSTEM-PROCESSES-DOCUMENT
PROGRAM-PROCESSES-DOCUMENT
MODULE-PROCESSES-DOCUMENT

3. RELATIONSHIP-CLASS-TYPE NAME = RESPONSIBLE-FOR

PURPOSE = "The RESPONSIBLE-FOR relationship-class-type
is intended to be used to represent a

conceptual association between entities
representing organizational components and
other entities to denote organizational
responsibility.

"

INVERSE-NAME = RESPONSIBILITY-OF

4 42 (Rev. of 7-82 doc.)

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

which is composed of the following relationship-types:

USER-RESPONSIBLE-FOR-SYSTEM
USER-RESPONSIBLE-FOR-PROGRAM
USER-RESPONSIBLE-FOR-MODULE
USER-RESPONSIBLE-FOR-FILE
USER-RESPONSIBLE-FOR-DOCUMENT
USER-RESPONSIBLE-FOR-RECORD
USER-RESPONSIBLE-FOR-ELEMENT

4. RELATIONSHIP-CLASS-TYPE NAME = RUNS

PURPOSE = "The RUNS r e 1 a t i onsh i p-c 1 a s s- type is in-
tended to be used to represent a conceptual
association between the USER entity-type and

entity-types of the entity-class PROCESS.
The relationship illustrates that a person
or organizational component runs a certain
process .

"

INVERSE-NAME = RUN-BY

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

which is composed of the following relationship-types:

USER-RUNS-SYSTEM
USER-RUNS-PROGRAM
USER-RUNS-MODULE

4 42A (Rev. of 7-82 doc.)

p

p

p

p

p

p

R

I

1

I

I

I

1

II

II

II

II

II

5. RELATIONSHIP-CLASS-TYPE NAME TO

PURPOSE = "The TO relationship-class-type is intended
to be used to represent a conceptual "flow"
association between entity-types of entity-
class PROCESS. Instances of this relation-
ship-class-type identify the "current" and
"next" process entities.

INVERSE-NAME = FROM

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

which is composed of the following relationship-types:

SYSTEM-TO-SYSTEM
PROGRAM-TO-PROGRAM
MODULE-TO-MODULE

6. RELATIONSHIP-CLASS-TYPE NAME = DERIVED-FROM

PURPOSE = "The DERIVED-FROM relationship-class-type is

intended to be used to describe associations
between entities where the target entity is

the result of a calculation involving the

source entity."

INVERSE-NAME = PRODUCES

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

which is composed of the following relationship-types:

ELEMENT-DERIVED-FROM-ELEMENT
FILE-DERIVED-FROM-FILE
DOCUMENT-DERIVED-FROM-DOCUMENT
FILE-DERIVED-FROM-DOCUMENT

4-43

DOCUMENT-DERIVED-FROM-FILE
RECORD-DERIVED-FROM-DOCUMENT
DOCUMENT-DERIVED-FROM-RECORD

4.4 ATTRIBUTE-TYPES

The following attribute-types, with their associated meta-
attributes, exist in the system-standard schema:

1. ATTRIBUTE-TYPE NAME = DATE-CREATED

PURPOSE = "The DATE-CREATED attribute-type is used for

audit purposes. The attributes are
generated by the system, are not modifiable
by a user and consist of the time and date
an instance of a schema descriptor was
created in the dictionary."

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = YES

SYSTEM-LOCK = ON

2. ATTRIBUTE-TYPE NAME = CREATED-BY

PURPOSE = "The CREATED-BY a t t r i but e-type is used for
audit purposes. The attributes are
generated by the system, are not modifiable
by a user, and consist of the identification
of the person responsible for the creation
of an instance of a schema descriptor."

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = YES

SYSTEM-LOCK = ON

4 44

3. ATTRIBUTE-TYPE NAME LAST—MODIFICATION—DATE

PURPOSE = "The LAST-MODIFICATION-DATE attribute-type
is used for audit purposes. The attributes
are generated by the system, are not
modifiable by a user, and consist of the

time and date of the last modification of an

instance of a schema descriptor."

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = YES

SYSTEM-LOCK = ON

4. ATTRIBUTE-TYPE NAME = LAST-MODIFIED-BY

PURPOSE = "The LAST-MODIFI ED-BY attribute-type is used
for audit purposes. The attributes are
generated by the system, are not modifiable
by the user, and consist of the
identification of the person responsible for

the most recent modification of the instance
of a schema descriptor."

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = YES

SYSTEM-LOCK = ON

5. ATTRIBUTE-TYPE NAME = NUMBER—OF—MODIFICATIONS

PURPOSE = "The NUMBER-OF-MODI FI CATIONS attribute-type
is used for audit purposes. The attributes
are generated by the system, are not
modifiable by a user, and consist of the

number of modifications of the instance of a

schema descriptor."
4

BASIC/EXTENDED = BASIC

4 45

SYSTEM-GENERATED = YES

SYSTEM-LOCK = ON

6. ATTRIBUTE-TYPE NAME = DESCRIPTION

PURPOSE = "The DESCRIPTION attribute-type is intended

to be used to describe or define an instance

of a schema descriptor."

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

PICTURE = TEXT

7. ATTRIBUTE-TYPE NAME = COMMENTS

PURPOSE = "The COMMENTS attribute-type is intended to

be used to document clarifying information
about an instance of a schema descriptor."

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

PICTURE = TEXT

8. ATTRIBUTE-TYPE NAME = CLASSIFICATION

PURPOSE = "The CLASSIFICATION attribute-type provides
to an installation the capability to specify
the use of a classification scheme for enti-
ties in the dictionary. The installation
can assure that the classification scheme is

controlled (i.e. only pre-defined classifi-
cations are used) by specifying an attri-
bute-type-val idat ion-da ta meta-entity for
this attribute-type."

4-46

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

9. ATTRIBUTE-TYPE NAME = ALTERNATE-NAME

PURPOSE = "The ALTERNATE-NAME attribute-type is

intended to be used to record in the dic-
tionary names, other than the primary name,

by which an entity is known. This
attribute-type can exist outside the context
of the attribute-group-type IDENTIFICATION-
NAMES."

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

10. ATTRIBUTE-TYPE NAME = ALTERNATE-NAME-CONTEXT

PURPOSE = "The ALTERNATE-NAME-CONTEXT attribute-type
is intended to be used to document in the
dictionary the context or environment in

which an alternate name for an entity
exists. Typical attributes for this
attribute-type will be names of programming
languages .

"

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

11. ATTRIBUTE-TYPE NAME = STATUS

PURPOSE =. "The STATUS attribute-type exists to

indicate that an entity is either in

an "uncontrolled" or "controlled" status.
These attributes are not modifiable by a

user in the same manner as other attributes.

4 47

but special commands subject to system inte-

grity rules are required to effect a

change .

"

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = YES

SYSTEM-LOCK = ON

12. ATTRIBUTE-TYPE NAME = STAGE

PURPOSE = "The STAGE attribute-type exists to indicate

the subdivision of the system life cycle in

which an entity is considered to be.

Attributes for this attribute-type are the
names assigned in the STAGE-NAME control
elements. No system features are in control
to regulate the change from one STAGE to

another STAGE."

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

13. ATTRIBUTE-TYPE NAME = SECURITY

PURPOSE = "The SECURITY attribute-type exists to docu-
ment the security requirements of entity
instances in the "real world". This
attribute-type is not intended to "control"
usage of these real world instances; it is
only used for documentation."

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = NO

SYSTEM-LOCK = OFF

EXAMPLES: CLASSIFIED, SECRET, TOP SECRET,
UNCLASSIFIED, SPECIAL

4 48

14. ATTRIBUTE-TYPE NAME SHORT-NAME

PURPOSE = "The SHORT-NAME a 1 1 r i bu te- type , which is

associated with the entity-type ELEMENT, can

be used in some commands to refer to an

entity in place of the primary name of the
entity.

"

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = NO

SYSTEM-LOCK = ON

15. ATTRIBUTE-TYPE NAME = ACCESS-METHOD

PURPOSE = "The ACCESS-METHOD attribute-type is inten-
ded to be used to document the method used
by a "real world" program or module to
access the data in a "real world" file.

Although two programs may use different
access methods on the same file, it is not
expected that the same program will use two
different access methods on the same file.
Therefore, this a t t r i bu t e- t y pe will be

single-valued .

"

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = NO

SYSTEM-LOCK = OFF

EXAMPLES: SEQUENTIAL , RANDOM , ISAM , POINTER

16. ATTRIBUTE-TYPE NAME = FREQUENCY

PURPOSE = "The frequency attribute-type is intended to

be used to document how often a process
occurs. When used as an attribute-type for

SYSTEM and PROGRAM, it illustrates the expec-

ted frequency of occurrence. When used in

4-49

the SYSTEM-CONTAINS-PROGRAM , SYSTEM-
CONTAINS-S YSTE M , and PROGRAM-CONTAINS-
PROGRAM it illustrates the frequency of

occurrence within another process."

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = NO

SYSTEM-LOCK = OFF

EXAMPLES: WEEKLY, DAILY, YEARLY

17. ATTRIBUTE-TYPE NAME = LOCATION

PURPOSE = "The LOCATION attribute-type exists to docu-

ment the place(s) within an organization
(enterprise) where an entity can be found.
The attributes associated with this
attribute-type are intended to be human
readable/ interpre table."

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = NO

SYSTEM-LOCK = OFF

EXAMPLES: Room 27 Bldg 200; Site A;

1111 Enterprise Ave, North City

18. ATTRIBUTE-TYPE NAME = DURATION-VALUE

PURPOSE = "The DURATION-VALUE attribute-type is inten-
ded to be used to document a magnitude of
time. It has no meaning without the context
provided by the DURATION-TYPE. Attributes
of this type are intended to be numeric."

BASIC/EXTENDED = BASIC

4 50

SYSTEM-GENERATED = NO

SYSTEM-LOCK = OFF

19. ATTRIBUTE-TYPE NAME = DURATION-TYPE

PURPOSE = "The DURATION-TYPE attribute-type is inten-

ded to be used in conjunction with the
DURATION-VALUE attribute-type to illustrate
the units associated with the numeric value
of DURATION-VALUE."

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = NO

SYSTEM-LOCK = OFF

EXAMPLES: Days, Seconds

20. ATTRIBUTE-TYPE NAME = NUMBER-OF-RECORDS

PURPOSE = "The NUMBER-OF-RECORDS attribute-type is

intended to be used to document the number
of logical records expected to exist in the

"real world" file instance."

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = NO

SYSTEM-LOCK = OFF

21. ATTRIBUTE-TYPE NAME = NUMBER—OF—LINES—OF—CODE

PURPOSE = "The NUMBER-OF-LINES-OF-CODE attribute-type
is intended to be used to document, based on

a user's definition, the number of lines of

code, of instructions, of statements , etc.

associated with a real world program or

module .

"

4 51

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = NO

SYSTEM-LOCK = OFF

22. ATTRIBUTE-TYPE NAME = USAGE-FORMAT

PURPOSE = "The USAGE-FORMAT attribute-type is intended

to be used in the creation of data struc-
tures for programming languages by providing

the format to be associated with the entity

instance or the substitute format as deter-

mined by the relationship."

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = NO

SYSTEM-LOCK = ON

EXAMPLES:

In the COBOL sense,

o for a FILE entity, the USAGE-FORMAT would
contain the FD clause;

o for a Record entity, the USAGE-FORMAT would
contain the default 01 level clause;

o for an ELEMENT entity, the USAGE-FORMAT
would contain the default PICTURE clause;

o for a FILE-CONTAINS-RECORD relationship, the
USAGE-FORMAT contains the substitute 01
level clause for the RECORD entity;

o for a RECORD-CONTAINS-ELEMENT relationship,
the USAGE-FORMAT contains the substitute
PICTURE clause for the ELEMENT entity.

4 52

23. ATTRIBUTE-TYPE NAME LANGUAGE

PURPOSE = "The LANGUAGE attribute-type is used to

identify the programming language associated
with the entity in the case of PROGRAM and
MODULE, and with the USAGE-FORMAT in the
case of FILE, RECORD, ELEMENT, FILE-
CON T A I N S -R EC ORD and RECORD-CONTAINS-
ELEMENT."

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = NO

SYSTEM-LOCK = ON

EXAMPLES: COBOL, FORTRAN, PL/I

24. ATTRIBUTE-TYPE NAME = REPRESENTATION-NUMBER

PURPOSE = "The REPRESENTATION-NUMBER attribute-type is

used to identify the particular
representation to be used in the creation of

a programming language data structure."

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = NO

SYSTEM-LOCK = ON

25. ATTRIBUTE-TYPE NAME = LENGTH

PURPOSE = "The LENGTH attribute-type is intended to be

used to document the default/normal/standard
length in characters for an element
instance. The USAGE-FORMAT could imply a

different length."

BASIC/EXTENDED = BASIC

4 53

SYSTEM-GENERATED = NO

SYSTEM-LOCK = ON

26. ATTRIBUTE-TYPE NAME = DATA-CLASS

PURPOSE = "The DATA-CLASS attribute-type is intended

to be used to document the general default

character of an ELEMENT instance. The

USAGE-FORMAT could imply a different data

class .

"

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = NO

SYSTEM-LOCK = OFF

EXAMPLES: NUMERIC, ALPHA,
ANY-PRINTABLE-CHARACTER

27. ATTRIBUTE-TYPE NAME = CODE-LIST-LOCATION

PURPOSE = "The CODE-LIST-LOCATION attribute-type is

intended to be used to record in the dic-
tionary the location(s) at which a list of

codes is located. This location is intended
to be a location outside the dictionary and
cannot be referenced directly by the dic-
tionary system."

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = NO

SYSTEM-LOCK = OFF

28. ATTRIBUTE-TYPE NAME = ALLOWABLE-VALUE

PURPOSE = "The ALLOWABLE-VALUE a 1 1 r i bute-type is in-
tended to be used to record in the diction-

4-54

ary the allowable value(s) that can be taken
on by a real world element.”

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = NO

SYSTEM-LOCK = OFF

29. ATTRIBUTE-TYPE NAME = LOW-OF-RANGE

PURPOSE = "The LOW-OF-RANGE attribute-type is intended
to be used to record in the dictionary the

low value of a range of values that can be

taken on by a real world element."

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = NO

SYSTEM-LOCK = OFF

30. ATTRIBUTE-TYPE NAME = HIGH-OF-RANGE

PURPOSE = "The HIGH-OF-RANGE attribute type is in-
tended to be used to record in the diction-
ary the high value of a range of values that

can be taken on by a real world element."

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = NO

SYSTEM-LOCK = OFF

31. ATTRIBUTE-TYPE NAME = SYSTEM-CATEGORY

PURPOSE = "The SYSTEM-CATEGORY a t t r i bute-type is in-
tended to be used to allow an installation
to set up in the dictionary a classification
scheme for systems."

4-55

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = NO

SYSTEM-LOCK = OFF

32. ATTRIBUTE-TYPE NAME = DOCUMENT-CATEGORY

PURPOSE = "The DOCUMENT-CATEGORY a tt r i bute-type is

intended to be used to allow an installation

to set up in the dictionary a classification
scheme for documents."

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = NO

SYSTEM-LOCK = OFF

33. ATTRIBUTE-TYPE NAME = RECORD-CATEGORY

PURPOSE = "The RECORD-CATEGORY attribute-type is in-
tended to be used to allow an installation
to set up in the dictionary a classification
scheme for records."

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = NO

SYSTEM-LOCK = OFF

34. ATTRIBUTE-TYPE NAME = USAGE-INDICATOR

PURPOSE = "The USAGE-INDICATOR attribute-type is
intended to be used to indicate the purpose
of the relationship between two entities.
Although it can be used to identify user-
defined usages, particular values associated
with the attribute-type will trigger special

4-56

actions in the creation of data structures.

The "reserved" attributes are GROUP,
REDEFINES and CONDITION.

In the RECORD-CONTAINS-RECORD instances, if

REDEFINES is the USAGE-INDICATOR instance,
then the target record is the source of the

redefinition and its associated usage
formats from either RECORD-CONTAINS-ELEMENT
instances or ELEMENT instances are used to

create the redefinition in the COBOL data
structure using "66" level elements.

In the ELEMENT-CONTAINS-ELEMENT instances,

o if GROUP is used, a group structure is

created and the target elements contained
(related to) the same source element
becomes the elements of the group.

o if CONDITION is used, the IDENTIFICATION-
VALUE attribute-group-type of the target

element will be used to provide an
alternate-name and associated value to

create an "88" clause for the source
element .

"

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = NO

SYSTEM-LOCK = ON

35. ATTRIBUTE-TYPE NAME = REL-POSITION

PURPOSE = "The REL-POSITION attribute-type is intended
to be used to identify the relative position
of an element from the beginning of a real
world record. An attribute of this type
would typically be the count of the number
of characters which precede it in the record
plus 1. This a tt r i but e- type is associated
with the relationship-type that specifies

4-57 (Rev. of 7-82 doc.)

the elements that are contained in a

record .

"

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = NO

SYSTEM-LOCK = ON

EXAMPLES: REL-POSITION = 1 will typically denote

that the left-most character of the

related element starts in position 1

of the record.

REL-POSITION = 28 will typically
denote that the left-most character of

the related element starts in position
28 of the record.

Additional a 1 1 r i b a t e - t y p e s exist for the
secur i ty/access control facility for the dictionary
and dictionary schema. These will be specified in

Chapter 8, where a discussion of this facility will be

given

.

4 . 5 ATTRIBUTE-GROUP-TYPES

The following attribute-group-types, with their associated meta-
attributes, exist in the system-standard schema:

1. ATTRIBUTE-GROUP-TYPE NAME = IDENTIFICATION-NAMES

PURPOSE = "The IDENTIFICATION-NAMES attribute-group-
type is intended to be used to record alter-
nate names for entities along with the con-
text or environment in which these names are
used. This context is visualized to be the
name of a programming language, though its

4 58 (Rev. of 7-82 doc.)

use is not limited to that purpose."

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

This attribute-group-type is composed of the following
attribute-types (in the order shown):

ALTERNATE-NAME
ALTERNATE-NAME-CONTEXT

2. ATTRIBUTE-GROUP-TYPE NAME = DURATION

PURPOSE = "The DURATION a 1 1 r i bu t e-g r oup- type is com-
posed of DURATION-VALUE and DURATION-TYPE
attribute-types. This group-type is inten-
ded to be used to document how long a

process takes from initiation to completion."

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

This attribute-group-type is composed of the following
attribute-types (in the order shown):

DURATION-VALUE
DURATION-TYPE

EXAMPLES: Examples are in terms of its included
attribute-types

.

(5, Days) ; (8, Seconds)

3. ATTRIBUTE-GROUP-TYPE NAME = REPRESENTATION

PURPOSE = "The REPRESENTATION attribute-group-type is

intended to be used in the creation of data
structures for programming languages. It is

composed of three attribute-types; these are

4 59

USAGE-FORMAT, LANGUAGE, and REPRESENTATION-

NUMBER.

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

This attribute-group-type is composed of the following

attribute-types (in the order shown):

USAGE-FORMAT
LANGUAGE
REPRESENTATION-NUMBER

EXAMPLES:

FILE:

USAGE-FORMAT = FD PAY-IN LABELS OMITTED

LANGUAGE = COBOL
REPRESENTATION-NUMBER = 1

ELEMENT:

USAGE-FORMAT = PICTURE X(5)

LANGUAGE = COBOL
REPRESENTATION-NUMBER = 3

RECORD-TO-ELEMENT

:

USAGE-FORMAT = PIC 99999, VALUE IS 500

LANGUAGE = COBOL
REPRESENTATION-NUMBER = 1

4. ATTRIBUTE-GROUP-TYPE NAME = USAGE-NAMES

PURPOSE - "This attribute-group-type is composed of
attribute-types with name alternate-name-1
and alternate-name-2. The meaning of these
is as follows:

Let R-T denote one of the relationship-types
in the preceding list, and let T-l and T-2

4-60

denote the entity-types involved in the
relationship. The attribute-types alter-
nate-name-1 and alternate-name-2, in this
case, correspond to alternate names of enti-
ties of entity-types T-l and T-2, respec-
tively.

Let entity-A and entity-B denote entities of

entity-types T-l and T-2, respectively, and

suppose that the relationship of type R-T
which has entity-A and entity-B as members,
has an attribute-group of type USAGE-NAMES
composed of the attributes name-A and name-
B. The meaning that is attached to this
attribute-group is as follows:

In the relationship where entity-A contains
entity-B, when entity-A has the alternate
name name-A, then entity-B has the alternate
name name-B."

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

Further discussion of this a tt r i bute-g r o up- type and
the rules associated with it are found in Section
6.1.5.

5. ATTRIBUTE-GROUP-TYPE = ALLOWABLE-RANGE

PURPOSE = "The ALLOWABLE-RANGE attribute-group-type is

intended to be used to record in the
dictionary the allowable range(s) of values
that can be taken on by a real world
element

.

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

4 - 6;

l

This attribute-group-type is composed of the following

attribute-types (in the order shown):

LOW-OF-RANGE
HIGH-OF-RANGE

4 . 6 ATTRIBUTE-TYPE-VALIDATION-PROCEDURE

The system-standard schema contains the following two ATTRIBUTE-

TYPE-VALIDATION-PROCEDURE meta-entities

:

1 . ATTRIBUTE-TYPE-VALIDATION-PROCEDURE
NAME = VALUE-VALIDATION

PURPOSE = "The VALUE-VALIDATION attribute-type-vali-
dat ion-procedure is used whenever it is

desired to restrict the attributes of a

given attribute-type to a predefined set.

The use of this procedure for an attribute-
type requires:

a) The existence of an attribute-type-
validation-data descriptor in the
schema (with VALUE/RANGE = VALUE) con-
taining the predefined set.

b) The existence of meta-relationships in

the schema that associate both this
procedure and the validation-data ele-
ment described in a) to the attribute-
type for which the validation is to
occur .

"

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

4-62

1 . ATTRIBUTE-TYPE-VALIDATION-PROCEDURE
NAME = RANGE-VALIDATION

PURPOSE = "The RANGE-VALIDATION attribute-type-vali-
dation-procedure is used whenever it is

desired to restrict the attributes of a

given attribute-type to a predefined set of

ranges. The use of this procedure for an

attribute-type requires:

a) The existence of an attribute-type-
validation-data descriptor in the
schema (with VALUE/RANGE = RANGE) con-

taining the predefined set of ranges.

b) The existence of meta-relationships in

the schema that associate both this
procedure and the validation-data ele-

ment described in a) to the attribute-
type for which the validation is to

occur .

"

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

4 - 62A (Rev. of 7-82 doc.)

4 . 7 ATTRIBUTE—TYPE—VALIDATION—DATA

The system-standard schema contains the following single
ATTRIBUTE-TYPE-VALIDATION-DATA meta-entity

:

ATTRIBUTE-TYPE-VALIDATION-DATA
NAME = STAGE-ATTRIBUTES

PURPOSE = "The S TAG E -ATTR I B U T E S a t t r i bu te- type-
validation-data meta-entity contains the
names of the stages which are in use. These
names are created by creation of STAGE-NAME
schema descriptors and are not directly
modifiable by a dictionary user. At
installation time of the DDS , no values will
exist in this meta-entity."

VALUE/RANGE = VALUE

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

It is expected that other attribute-type-validation-data elements
will be created by an installation to meet their particular
requirements for control of attributes. In particular, the use

of the classification schemes will be controlled in this manner.

4.8 STATUS-NAME

The system-standard schema contains the following three STATUS-
NAME meta-entities:

1. STATUS-NAME NAME = CONTROLLED

PURPOSE = "The status-name with name CONTROLLED is

used in connection with the structural in-
tegrity controls provided by the system for

entities which are used in an operational
environment .

"

4-63

BASIC/EXTENDED = BASIC

STATUS-LOCK = ON

CONTROLLED/UNCONTROLLED = CONTROLLED

2. STATUS-NAME NAME = UNCONTROLLED

PURPOSE = "The status-name with name UNCONTROLLED is

used for entities that are added to the

dictionary .

"

BASIC/EXTENDED = BASIC

STATUS-LOCK = ON

CONTROLLED/UNCONTROLLED = UNCONTROLLED

DEFAULT-STATUS = YES

3. STATUS-NAME NAME = SECURITY-STATUS

PURPOSE = "The status-name with name SECURITY-STATUS
is used for entities of type DICTIONARY-USER
and ACCESS-CONTROLLER which are used in the

secur i ty/access control facility for the
dictionary and dictionary schema."

BASIC/EXTENDED = BASIC

STATUS-LOCK = ON

CONTROLLED/UNCONTROLLED = UNCONTROLLED

4 64

4.9 STAGE-NAME

The system-standard schema does not contain any meta-entities of

type STAGE-NAME.

4.10 ATTRIBUTE-TYPES AND ATTRIBUTE-GROUP-TYPES ASSOCIATED
WITH ENTITY-TYPES

In this section the attribute-types and attribute-group-types
that are associated with each entity-type will be given. This
information is also shown in a graphic form in an Entity-type -

Attribute-type matrix in Table 4-2. The notation used in this
matrix is the following:

S - denotes that only a single attribute can exist for any

entity of that type.

P - denotes that multiple attributes can exist for any
entity of that type.

4-65

ENTITY-TYPE - ATTRIBUTE-TYPE MATRIX

SYS PRO MOD FIL DOC REC ELE USR

DATE-CREATED

CREATED-BY

LAST-MODIFICATION-DATE

LAST-MODI F I ED-BY

NUMBER-OF-MODI FICAT IONS

DESCRIPTION

COMMENTS

CLASSIFICATION

IDENTIFICATION-NAMES

ALTERNATE-NAME
ALTERNATE-NAME-CONTEXT

STATUS

STAGE

SECURITY

SHORT-NAME

ACCESS-METHOD

FREQUENCY

S S

S S

S S

S S

S S

S S

S S

P P

P P

S S

S S

S S

S S

S S

s s

s s

s s

s s

s s

p p

p p

s s

s s

s s

• •-

. s

s s

s s

s s

s s

s s

s s

s s

p p

p p

s s

s s

s s

s s

s s

s s

s s

s s

s s

s s

p p

p p

s s

s s

s s

s

Table 4-2 (Part 1)

4-66 (Rev of 7-82 doc.)

LOCATION

DURATION

DURATION-VALUE
DURATION-TYPE

NUMBER-OF-RECORDS

NUMBER-OF-LINES-OF-CODE

REPRESENTATION

USAGE-FORMAT
LANGUAGE
REPRESENTATION-NUMBER

LENGTH

DATA-CLASS

CODE-LIST-LOCATION

ALLOWABLE-VALUE

ALLOWABLE-RANGE

LOW-OF-RANGE
HIGH-OF-RANGE

SYSTEM-CATEGORY

DOCUMENT-CATEGORY

RECORD-CATEGORY

SYS PRO MOD FIL DOC REC ELE USR

P P P

SSS.. G ..

s

s s

p . p p

s s

s

s

p

p

p

s

s

s

Table 4-2 (Part 2)

4-67

The following attribute-types and attribute-group-types pertain

to entities of type SYSTEM. (The value of the meta-attribute-

type SINGULAR/PLURAL, which indicates the number of occurrences

permitted for each entity, is given in brackets. This meta-

attribute— type is associated with the meta— relat ionshi p— type

whose members are the given entity— type and a t t r i but e— type or

attribute-group-type .

)

ATTRIBUTE-TYPES:

DATE-CREATED [SINGULAR]

CREATED-BY [SINGULAR]

LAST-MODIFICATION-DATE [SINGULAR]

LAST-MODI FI ED-BY [SINGULAR]

NUMBER-OF-MODI FICATIONS [SINGULAR]

DESCRIPTION [SINGULAR]

COMMENTS [SINGULAR]

CLASSIFICATION [PLURAL]

STATUS [SINGULAR]

STAGE [SINGULAR]

SECURITY [SINGULAR]

FREQUENCY [SINGULAR]

LOCATION [PLURAL]

SYSTEM-CATEGORY [SINGULAR]

ATTRIBUTE-GROUP-TYPES

:

IDENTIFICATION-NAMES [PLURAL]

DURATION [SINGULAR]

The following attribute-types and attribute-group-types pertain

to entities of type PROGRAM. (The value of the meta-attribute-
type SINGULAR/PLURAL, which indicates the number of occurrences
permitted for each entity, is given in brackets. This meta-
attribute-type is associated with the meta-relationship-type
whose members are the given entity-type and attribute-type or

attribute-group-type .

)

4-68

ATTRIBUTE-TYPES:

DATE-CREATED [SINGULAR]
CREATED-BY [SINGULAR]

LAST-MODIFICATION-DATE [SINGULAR]
LAST-MODI FI ED-BY [SINGULAR]

NUMBER-OF-MODI FICATIONS [SINGULAR]
DESCRIPTION [SINGULAR]

COMMENTS [SINGULAR]

CLASSIFICATION [PLURAL]

STATUS [SINGULAR]

STAGE [SINGULAR]

SECURITY [SINGULAR]

FREQUENCY [SINGULAR]

LOCATION [PLURAL]

NUMBER-OF-LINES-OF-CODE [SINGULAR]

LANGUAGE [SINGULAR]

ATTRIBUTE-GROUP-TYPES

:

IDENTIFICATION-NAMES [PLURAL]

DURATION [SINGULAR]

The following attribute-types and attribute-group-types pertain
to entities of type MODULE. (The value of the meta-attribute-
type SINGULAR/PLURAL, which indicates the number of occurrences
permitted for each entity, is given in brackets. This meta-
attribute-type is associated with the meta-relationship-type
whose members are the given entity-type and a t t r i bute- type or

attr ibute-group-type .

)

ATTRIBUTE-TYPES:

DATE-CREATED [SINGULAR]

CREATED-BY [SINGULAR]

LAST-MODIFICATION-DATE [SINGULAR]

LAST-MODI FI ED-BY [SINGULAR]

NUMBER-OF-MODI FI CATIONS [SINGULAR]

DESCRIPTION [SINGULAR]

COMMENTS [SINGULAR]

CLASSIFICATION [PLURAL]

STATUS [SINGULAR]

4-69

STAGE

SECURITY
LOCATION
NUMBER-OF-LINES-OF-CODE
LANGUAGE

[SINGULAR]

[SINGULAR]

[PLURAL]

[SINGULAR]

[SINGULAR]

ATTRIBUTE-GROUP-TYPES

:

IDENTIFICATION-NAMES [PLURAL]

DURATION [SINGULAR]

The following attribute-types and attribute-group-types pertain

to entities of type FILE. (The value of the meta-attribute-type
SINGULAR/PLURAL, which indicates the number of occurrences
permitted for each entity, is given in brackets. This meta-
attribute-type is associated with the meta-relationship-type
whose members are the given entity-type and attribute-type or

attribute-group-type .

)

ATTRIBUTE-TYPES:

DATE-CREATED [SINGULAR]
CREATED-BY [SINGULAR]

LAST-MODIFICATION-DATE [SINGULAR]
LAST-MODIFI ED-BY [SINGULAR]
NUMBER-OF-MODI FI CATIONS [SINGULAR]

DESCRIPTION [SINGULAR]
COMMENTS [SINGULAR]
CLASSIFICATION [PLURAL]
STATUS [SINGULAR]
STAGE [SINGULAR]
SECURITY [SINGULAR]
ACCESS-METHOD [SINGULAR]
NUMBER-OF-RECORDS [SINGULAR]

ATTRIBUTE-GROUP-TYPES

:

IDENTIFICATION-NAMES [PLURAL]
REPRESENTATION [PLURAL]

4-70

The following attribute-types and attribute-group-types pertain
to entities of type DOCUMENT. (The value of the meta-attr ibute-
type SINGULAR/PLURAL, which indicates the number of occurrences
permitted for each entity, is given in brackets. This meta-
attribute-type is associated with the meta-relationship-type
whose members are the given entity-type and a t t r i bu te-ty pe or
attr ibute-g roup-type .

)

ATTRIBUTE-TYPES:

DATE-CREATED [SINGULAR]

CREATED-BY [SINGULAR]

LAST-MODIFICATION-DATE [SINGULAR]

LAST-MODI FI ED-BY [SINGULAR]

NUMBER-OF-MODI FI CATIONS [SINGULAR]

DESCRIPTION [SINGULAR]

COMMENTS [SINGULAR]

CLASSIFICATION [PLURAL]

STATUS [SINGULAR]

STAGE [SINGULAR]

SECURITY [SINGULAR]

DOCUMENT-CATEGORY [SINGULAR]

ATTRIBUTE-GROUP-TYPES

:

IDENTIFICATION-NAMES [PLURAL]

The following attribute-types and attribute-group-types pertain
to entities of type RECORD. (The value of the meta-attribute-
type SINGULAR/PLURAL, which indicates the number of occurrences
permitted for each entity, is given in brackets. This meta-
attribute-type is associated with the meta-relationship-type
whose members are the given entity-type and attribute-type or

attr ibute-g roup-type .

)

ATTRIBUTE-TYPES:

DATE-CREATED [SINGULAR]

CREATED-BY [SINGULAR]

LAST-MODIFICATION-DATE [SINGULAR]

LAST-MODI FI ED-BY [SINGULAR]

4 71

NUMBER-OF-MODI FICAT IONS

DESCRIPTION
COMMENTS
CLASSIFICATION
STATUS

STAGE
SECURITY
RECORD-CATEGORY

[SINGULAR]

[SINGULAR]

[SINGULAR]

[PLURAL]

[SINGULAR]

[SINGULAR]

[SINGULAR]

[SINGULAR]

ATTRIBUTE-GROUP-TYPES

:

IDENTIFICATION-NAMES [PLURAL]

REPRESENTATION [PLURAL]

The following attribute-types and attribute-group-types pertain
to entities of type ELEMENT. (The value of the meta-attribute-
type SINGULAR/PLURAL, which indicates the number of occurrences
permitted for each entity, is given in brackets. This meta-
attribute-type is associated with the meta-relationship-type
whose members are the given entity-type and attribute-type or

attribute-group-type.)

ATTRIBUTE-TYPES:

DATE-CREATED [SINGULAR]

CREATED-BY [SINGULAR]
LAST-MODIFICATION-DATE [SINGULAR]

LAST-MODI FI ED-BY [SINGULAR]
NUMBER-OF-MODI FI CATIONS [SINGULAR]
DESCRIPTION [SINGULAR]
COMMENTS [SINGULAR]
CLASSIFICATION [PLURAL]
STATUS [SINGULAR]
STAGE [SINGULAR]
SECURITY [SINGULAR]
LENGTH [SINGULAR]
DATA-CLASS [SINGULAR]
CODE-LIST-LOCATION [PLURAL]
ALLOWABLE-VALUE [PLURAL]
SHORT-NAME [SINGULAR]

4-72 (Rev. o

ATTRIBUTE-GROUP-TYPES

:

IDENTIFICATION-NAMES [PLURAL]

REPRESENTATION [PLURAL]

ALLOWABLE-RANGE [PLURAL]

The following attribute-types and attribute-group-types pertain
to entities of type USER. (The value of the meta-attribute-type
SINGULAR/PLURAL, which indicates the number of occurrences
permitted for each entity, is given in brackets. This meta-
attribute-type is associated with the meta-relationship-type
whose members are the given entity-type and attribute-type or

attribute-group-type .

)

ATTRIBUTE-TYPES:

DATE-CREATED [SINGULAR]

CREATED-BY [SINGULAR]

LAST-MODIFICATION-DATE [SINGULAR]

LAST-MODI FI ED-BY [SINGULAR]

NUMBER-OF-MODI FI CATIONS [SINGULAR]

DESCRIPTION [SINGULAR]

COMMENTS [SINGULAR]

CLASSIFICATION [PLURAL]

STATUS [SINGULAR]

STAGE [SINGULAR]

SECURITY [SINGULAR]

ATTRIBUTE-GROUP-TYPES

:

IDENTIFICATION-NAMES [PLURAL]

Attribute-types that pertain to the entity-types

DICTIONARY-USER, and

ACCESS-CONTROLLER

will be specified in Chapter 8, where a discussion of the

secur i ty/access control facility for both the dictionary and
dictionary schema will be given.

4 73

4.11 ATTRIBUTE-TYPES AND ATTRIBUTE-GROUP-TYPES ASSOCIATED
WITH RELATIONSHIP-TYPES

In this section the a t t r i bute-types and a ttr i bu te-group-types
that are associated with relationship-types will be specified.

1.

The attribute-type USAGE-INDICATOR is associated with
the following relationship-types:

RECORD-CONTAINS-RECORD
RECORD-CONTAINS-ELEMENT
ELEMENT-CONTAINS-ELEMENT

Only a single attribute is allowed for any such
relationship.

2.

The attribute-type REL-POSITION is associated with the
relationship-type

RECORD-CONTAINS-ELEMENT

Only a single attribute is allowed for any such
relationship.

3.

The attribute-group-type REPRESENTATION is associated
with the following relationship-types:

FILE-CONTAINS-RECORD
RECORD-CONTAINS-ELEMENT

Multiple attribute-groups are allowed.

4 74

4. The attribute-group-type IDENTIFICATION-NAMES is asso-
ciated with all relationship-types of the relation-
ship-class-type

CONTAINS

Multiple attribute-groups are allowed.

5. The attribute-group-type USAGE-NAMES, rules for which
are given in Section 6.1.5, is associated with all

relationship-types of the relationship-class-type

CONTAINS

Multiple attribute-groups are allowed.

CHAPTER 5. COMMANDS FOR INTERACTION WITH THE DICTIONARY SCHEMA

The commands available for interaction with the dictionary schema
fall into two broad categories:

- commands that cause modifications to the schema
(Section 5.1), and

- commands that report on the contents of the
schema (Section 5.2).

It is assumed in this chapter that an error in any part of a

command will cause the entire command not to be executed. Hence,

only the actions resulting from a complete execution of a command
are specified.

Execution of all commands is subject to the security facility
defined in Chapter 8.

5.1 SCHEMA MAINTENANCE COMMANDS

All commands are executable in one of two modes:

- UPDATE: In this mode the command, if error-free, will
cause an update to the schema to take place.

CHECK: In this mode the command will only be checked
for errors and no update to the schema will take
place

.

5-1

As discussed in Chapter 2, the default mode is CHECK; the mode is

changed by the specification

SCHEMA-MODE = UPDATE

preceding a command, and will remain such for

session or run unit unless again changed by the

SCHEMA-MODE = CHECK

In the specification of each command the following syntactic

convention is used:

1. The name of the command

2. The identification of the meta-ent i ty (s) or meta-
relationship (s) on which the specified action(s) are

to take place.

3. A set (possibly null) of clauses, each one identifying

one or more meta-attributes involved in the specified
action(s). The order in which these clauses are

stated is immaterial. These clauses will be referred
to as meta-attribute clauses .

4. A set (possibly null) of parametric clauses , each one
of which states an optional feature of the action(s)
to be taken. The order in which these clauses are
stated is immaterial.

5. *null represents an implementor defined symbol for a

null value.

The commands that follow are given in alphabetic order by command
name

.

the duration of a

specification

5 2

5.1.1 ABOLISH—META—ENTITY COMMAND

PURPOSE:

FORMAT:

RULES:

1 .

2 .

3.

4.

To delete a meta-entity and its associated meta-
attributes in the schema.

ABO L I SH-META-ENTITY
meta-entity-name

meta-entity-name must exist in the schema as the name
of a meta-entity.

The meta-attribute-type SYSTEM-LOCK of the meta-entity
named must have the value OFF.

The meta-attribute-type INSTALLATION-LOCK of the meta-
entity named must have the value OFF.

The meta-entity named must not be a member of a meta-
relationship other than:

- a meta-relationship whose other member is one of

the following meta-entities whose type is

attribute-type

:

DATE-CREATED
CREATED-BY
LAST-MODIFICATION-DATE
LAST-MODI F I ED-BY
NUMBER-OF-MODIFICATIONS
DESCRIPTION
COMMENTS
CLASSIFICATION
IDENTIFICATION-NAMES

- a meta-relationship whose other member is the meta-
entity ACCESS-CONTROLLER whose type is entity-type.

5 3 (Rev. of 7-82 doc.)

5. The dictionary must not contain an instance of the

meta-entity named.

ACTIONS PERFORMED:

1. The meta-entity named is deleted, along with its

associated meta-attributes.

2. The existing meta-relationships whose other member is

an a ttr ibute—type or entity—type, as stated in Rule 4,

are deleted.

3. The command is recorded in the log/audit file.

4. Notification of the completion of the execution of the

command is given to the user.

ERROR CONDITIONS:

1. meta-entity does not exist in the schema as the name
of an entity.

2. The meta-attribute-type SYSTEM-LOCK has the value ON.

3. The meta-attribute-type INSTALLATION-LOCK has the

value ON.

4. There exists in the schema a meta-relationship, other
than those of Rule 4, of which the named meta-entity
is a member.

5. There exists an instance of the named meta-entity in

the dictionary.

6. A parametric clause is specified.

5 4 (Rev. of 7-82 doc.)

EXAMPLE

ABOLISH
LOCATION

Assuming that there exists an entity-type with entity-
type-name LOCATION in the schema, this command will
delete this entity-type from the schema. No instances
of this entity-type can exist in the dictionary in

order for this command to execute.

5 4A (Rev. of 7-82 doc.)

5-1-2 ABOLISH—META—ENTITY—WITH—LOCK COMMAND

PURPOSE: To delete a meta-entity for which the meta-attribute-
type INSTALLATION-LOCK has the value ON.

The description of

ABOLISH-META-ENTITY
this command is identical to

command except that Rule 3 and

tion 3 do not apply.

that of the
Error Condi-

5.1.3 ABOLISH—META—RELATIONSHIP COMMAND

PURPOSE: To delete an existing meta-relationship and its
associated meta-attributes from the schema.

FORMAT: ABOLISH-META-RELATIONSHIP
meta-entity-name-1 TO meta-entity-name-2

RULES:

1. The meta-entities with names meta-entity-name-1 and

meta-entity-name-2 must exist in the schema.

2. The schema must contain a meta-relationship between
the given meta-entities.

3. For meta-relationships that affect the dictionary,
such a meta-relationship may not be deleted if this
deletion affects the information contents of the dic-
tionary.

4. A meta-relationship involving a meta-entity of type
attribute-type-validation-data and an attribute-type
may not be deleted if there exists in the schema a

meta-relationship between this attribute-type and a

5 5

meta-entity of type a t t r i bute-type-val idation-proce-

dure

.

ACTIONS PERFORMED:

1. The specified meta-relationship and its associated

meta-attributes are deleted from the schema.

2. The command is recorded in the log/audit file.

3. Notification of the completion of the execution of the

command is given to the user.

ERROR CONDITIONS:

1. There does not exist a meta-entity with name meta-
entity-name-1 in the schema.

2. There does not exist a meta-entity with name meta-
entity-name-2 in the schema.

3. The specified meta-relationship does not exist in the

schema

.

4. The deletion of the meta-relationship affects the

information contents of the dictionary.

5. The meta-relationship to be deleted has as a member a

meta-entity of type attribute-type-validation-data and

the attribute-type which is the other member is also
the member of a meta-relationship whose other member
is a meta-entity of type attribute-type-validation-
procedure .

6. A meta-attribute clause is specified.

7. A parametric clause is specified.

5 6

EXAMPLES

1. ABOLISH-META-RELATIONSHIP
FILE TO FILE-DATE

This command deletes the meta-relationship (as well as

any existing meta-attributes of this meta-relation-
ship) with members FILE and FILE-DATE. Assuming that

FILE-DATE is an attribute-type, this command is valid

only if there does not exist in the dictionary an

instance of a FILE which has an attribute of type
FILE-DATE.

2. ABOLISH-META-RELATIONSHIP
FILE-TYPE TO FILE-TYPE-VALUES

It is assumed here that FILE-TYPE is an attribute-type
and that FILE-TYPE-VALUES is a meta-entity of type
attribute-type-validation-data with VALUE/RANGE =

VALUE. In order for such validation to have taken
place it was necessary that there also existed in the

schema a meta-relationship with members FILE-TYPE and

the a 1 1 r i b u t e - 1 y pe - va 1 i d a t i o n-p r o c ed u r e VALUE-
VALIDATION. The command given here will only be

allowed to execute after that meta-relationship has
been deleted, i.e., the attribute-type FILE-TYPE was
no longer connected to an attribute-type-validation-
procedure meta-entity.

5.1.4 ALTER-META-ENTITY COMMAND

PURPOSE: To modify one or more meta-attributes of a meta-
entity.

FORMAT: ALTER-META-ENTITY
meta-entity-name
clause-1 [, clause-2] ...

5 7

RULES:

1 . meta-entity-name must exist in the schema as the name

of a meta-entity.

2.

The meta-attribute clauses are of the form

meta-attribute-type FROM value-1 TO value-2

to indicate the modification that is to take place. A

meta-attribute is deleted by specifying

FROM value-1 TO *null

and a meta-attribute is added by specifying

FROM *null TO value-2

Whenever value-1 is not null, this value must exist in

the schema.

3. Meta-entities which are not instances of the following
meta-entity-types

ENTITY-TYPE
RELATIONSHIP-TYPE
ATTRIBUTE-TYPE
RELATIONSHIP-CLASS-TYPE
ATTRIBUTE-GROUP-TYPE
ATTRIBUTE-TYPE-VALIDATION-DATA
STATUS-NAME
STAGE-NAME

cannot be specified in this command.

4. If the meta-entity represents an attribute-type or
attribute-group-type, the meta-attribute-type SYSTEM-
LOCK must have the value OFF if an existing meta-
attribute is to be modified or deleted.

5. If the meta-entity represents an attribute-type or
attribute-group-type, the meta-attribute-type
INSTALLATION-LOCK must have the value OFF if an

5-8

existing meta-attribute is to be modified or deleted.

6. The following meta-attribute-types must not appear in

a meta-attribute clause:

DATE-CREATED- IN-SCHEMA
CREATED-IN-SCHEMA-BY
DATE-LAST-MODI F IED-IN-SCHEMA
LAST-MODIFIED-IN-SCHEMA-BY
NUMBER-OF-TIMES-MODI FI ED- IN-SCHEMA
BASIC/EXTENDED
SYSTEM/LOCK
INSTALLATION-LOCK
SYSTEM-GENERATED
STATUS-RELATED

7. Changes to meta-attributes in the list which follows
must conform with the dictionary (i.e., cannot create

a condition in the schema which contradicts the

dictionary)

.

SINGULAR/PLURAL
MAXIMUM-NUMBER-OF-OCCURRENCES
MINIMUM-NAME-LENGTH
MAXIMUM-NAME-LENGTH
PICTURE
SEQUENCED
MINIMUM-LENGTH
MAXIMUM-LENGTH
VALUE-RANGE

CONNECTABILITY

ACTIONS PERFORMED:

1. The schema is modified according to the meta-
attribute-clauses specified.

2. For the given meta-entity:

(a) The current date and time is assigned to DATE-
LAST-MODI FIED- IN-SCHEMA.

(b) the identification of the person submitting

5-9

the command is assigned to LAST-MODI FI ED- IN

-

SCHEMA-BY, and

(c) the value of NUMBER-OF-T IMES-MODIFIED-IN-

SCHEMA is incremented by 1.

3. The command is recorded in the log/audit file.

4. Notification of the execution of the command is given

to the user.

ERROR CONDITIONS:

1. The meta-entity specified does not exist in the

schema

.

2. A me ta -a t t r i but e specified to be altered does not

exist in the schema.

3. The meta-entity specified is an instance of a meta-
entity-type to which the command does not apply (i.e.,

STATUS-NAME or ATTRIBUTE-TYPE-VALIDATION-PROCEDURE).

4. A meta-attribute clause is given which is not in the
required format.

5. The meta-entity given represents an attribute-type or

attribute-group-type and SYSTEM-LOCK has the value ON.

6. The meta-entity given represents an attribute-type or

attribute-group-type and INSTALLATION-LOCK has the
value ON.

7. A meta-attribute clause contains a meta-attribute-type
for which the command does not apply.

8. A meta-attribute clause contains a meta-attribute
which does not conform with the dictionary.

9. A parametric clause is specified.

5-10

EXAMPLES

1. ALTER-META-ENTITY-TYPE
ELEMENT
MINIMUM-NAME-LENGTH FROM 6 TO 4

MAXIMUM-NAME-LENGTH FROM 12 TO 24

This command relaxes previously specified lengths of

primary names of elements.

2. ALTER-META-ENTITY-TYPE
MEDIUM
ALTERNATE-ENTITY-TYPE-NAME FROM *null TO MEDIA

This command allows the entity-type named MEDIUM to be

addressed also by the name MEDIA.

3. ALTER-META-ENTITY-TYPE
MULT I PLEXOR-USES -CIRCUIT
INVERSE NAME FROM CIRCUIT-USED-BY-MULTIPLEXOR

TO CIRCUIT-ASSIGNED-TO-MULTIPLEXOR

This command changes the inverse name of the
relationship- type MULTI PLEXOR-USES-CIRCUIT

.

4.

ALTER-META-ENTITY-TYPE
FILE-ACCESS-METHODS
DATA-VALUE FROM NEW-METHOD TO *null

DATA-VALUE FROM *null TO NEW-METHOD-1
DATA-VALUE FROM *null TO NEW-METHOD-2

This command modifies the values of the meta-entity
FILE-ACCESS-METHODS which is an instance of the meta-
entity-type ATTRIBUTE-TYPE-VALIDATION-DATA, and which
has as meta-attributes the valid values that can be

used for the attribute-type ACCESS-METHOD for entities
of the type FILE. The result of the command is to

delete the value NEW-METHOD, and to add the values
NEW-METHOD-1 and NEW-METHOD-2.

5 11

5.1.5 ALTER-META—ENTITY-WITH—LOCK COMMAND

PURPOSE:

(a) To alter a meta-entity for which the meta-attribute-

type INSTALLATION-LOCK has the value ON, and

(b) for a specified meta — entity, to alter the value

assigned to the meta—attribute— type INSTALLATION—LOCK.

The specification of this command is identical to that of the

ALTER-META-ENTITY-TYPE command with the following changes:

(a) Rule 5. does not apply.

(b) INSTALLATION-LOCK is deleted from the list in Rule 6.

(c) Error Condition 5. does not apply.

5.1.6 ALTER—META—RELATIONSHIP COMMAND

PURPOSE: To modify m e t a - a t t r i b u t e s of an existing meta-
relationship.

FORMAT: ALTER META-RELATIONSHIP
meta-entity-name-1 TO meta-entity-name-2
clause-1 [, clause-2] ...

RULES:

1. The specified meta-relationship must exist in the
schema

.

2. The meta-attribute clauses are of the form

meta-attribute-type FROM value-1 TO value-2

5 12

to indicate the modification that is to take place. A

meta-attribute is deleted by specifying

FROM value-1 TO *null

and a meta-attribute is added by specifying

FROM *null TO value-2

Whenever value-1 is not null, this value must exist in

the schema.

ACTIONS PERFORMED:

1. The specified meta-attributes are modified.

2. The command is recorded in the log/audit file.

3. Notification of the completion of the execution of

the command is given to the user.

ERROR CONDITIONS:

1. There does not exist a meta-entity with name meta-
entity-name-1 in the schema.

2. There does not exist a meta-entity with name meta-
entity-name-2 in the schema.

3. The specified meta-relationship does not exist in the

schema

.

EXAMPLE

ALTER-META-RELATIONSHIP
PROGRAM TO PROGRAMMER-NAME
SINGULAR/PLURAL FROM SINGULAR TO PLURAL

It is assumed here that PROGRAMMER-NAME is the name of

an att r i bute-type and this command specifies that
multiple instances of this attr ibute-type are to be

5-13

allowed for any one instance of a PROGRAM entity.

5.1.7 CHANGE-META-NAME COMMAND

PURPOSE: To change the name of an existing meta-entity.

FORMAT: CHANGE-META-NAME
meta-entity-name-1 TO meta-entity-name-2

RULES:

1. meta-entity-name-1 is the name of a meta-entity in the

schema

.

2. There does not exist in the schema a meta-entity with
name meta-entity-name-2.

ACTIONS PERFORMED:

1. A meta-entity with name meta-entity-name-2 is created
in the schema. This meta-entity has the same meta-
attributes and participates in the same meta-relation-
ships as the meta-entity with name meta-entity-name-1.

2. The meta-entity with name meta-entity-name-1 is

deleted from the schema.

3. The command is recorded in the log/audit file.

4. Notification of the completion of the execution of the

command is given to the user.

EXAMPLE

CHANGE-META-NAME
SYSTEM-ELEMENT TO SYSTEM-COMPONENT

5 14

Assuming that SYSTEM-ELEMENT is the name of an entity-

type, this command changes the name of this entity-
type to SYSTEM-COMPONENT.

5.1.8 CREATE-META-ENTITY COMMAND

PURPOSE: To create a meta-entity and a set of associated meta-
attributes in the schema.

FORMAT: CREATE-META-ENTITY
meta-enti ty-type meta-entity-name
[clause-1] [, clause-2]

RULES:

1. meta-entity-type must be one of the following:

ENTITY-TYPE
RELATIONSHIP-TYPE
RELATIONSHIP-CLASS-TYPE
ATTRIBUTE-TYPE
ATTRIBUTE-GROUP-TYPE
ATTRIBUTE-TYPE-VALIDATION-DATA
STATUS-NAME
STAGE-NAME

2. meta-entity-name must not exist in the schema as the

name of a meta-entity.

3. clause-1, ...are meta-attribute clauses and are of

the form:

meta-attribute-type = meta-attribute

4.

The following meta-attribute-types may not appear in a

meta-attribute clause:

DATE-CREATED-IN-SCHEMA

5-15

CREATED-IN-SCHEMA-BY
DATE-LAST-MODI FIED-IN-SCHEMA

LAST-MODI FI ED- IN-SCHEMA-BY
NUMBER-OF-TIMES-MODIFIED-IN-SCHEMA

BASIC/EXTENDED
SYSTEM-LOCK
STATUS-LOCK

5.

If meta-entity-type is ENTITY-TYPE, the following
meta-a ttr ibute-types may appear in a meta-attribute
clause

:

INSTALLATION-LOCK
PURPOSE
MINIMUM-NAME-LENGTH
MAXIMUM-NAME-LENGTH
PICTURE
SYSTEM-GENERATED
CONNECTABLE
ALTERNATE-ENTITY-TYPE-NAME
ENTITY-CLASS

6. If meta-entity-type is RELATIONSHIP-TYPE the following
meta-attribute-types may appear in a meta-attribute
clause

:

INSTALLATION-LOCK
PURPOSE
INVERSE-NAME
SEQUENCED
SEQUENCE-PARAMETER

7. If meta-entity-type is RELATIONSHIP-TYPE the following
meta-attribute-type cannot appear in a meta-attribute
clause

:

STATUS-RELATED

8.

If meta-entity-type is RELATIONSHIP-CLASS-TYPE the
following meta-attribute-types may appear in a meta-
attribute clause:

INSTALLATION-LOCK
PURPOSE

5-16

9.

If meta-entity-type is ATTRIBUTE-TYPE the following
me ta-a tt r i bute-types may appear in a meta-attribute
clause

:

INSTALLATION-LOCK
PURPOSE
MINIMUM-LENGTH
MAXIMUM-LENGTH
PICTURE
SYSTEM-GENERATED
ALTERNATE-ATTRIBUTE-TYPE-NAME

10. If meta-entity-type is ATTRIBUTE-GROUP-TYPE the
following meta-attribute-types may appear in a meta-
attribute clause:

INSTALLATION-LOCK
PURPOSE

11. If meta-entity-type is ATTRIBUTE-TYPE-VALIDATION-DATA
the following me ta-a tt r i bute- type must appear in a

meta-attribute clause:

VALUE/RANGE

12. If meta-entity-type is ATTRIBUTE-TYPE-VALIDATION-DATA
the following meta-attribute-types may appear in a

meta-attribute clause:

PURPOSE
DATA-VALUE
DATA-RANGE

where either a meta-attribute clause for DATA-VALUE or

DATA-RANGE may appear, but not both.

13. If meta-entity-type is STATUS-NAME the following meta-
attribute-types may appear in a meta-attribute clause:

PURPOSE
DEFAULT-STATUS

5 17 (Rev. of 7-82 doc.)

14. If meta-entity-type is STAGE-NAME the following meta-

attribute-type may appear in a meta-attribute clause:

PURPOSE

15. No parametric clauses exist for this command.

ACTIONS PERFORMED:

1. The meta-entity is created in the schema.

2. The following meta-attributes for this meta-entity are

created in the schema:

DATE-CREATED-IN-SCHEMA = (time and date of

creation)

CREATED-IN-SCHEMA-BY = (identification of

person issuing

command)

DATE-LAST-MODI FIED- IN-SCHEMA = *null

LAST-MODI F I ED-IN-SCHEMA-BY = *null

NUMBER-OF-TIMES-MODIFIED-IN-SCHEMA =0

BASIC/EXTENDED = EXTENDED
SYSTEM-LOCK = OFF

STATUS-LOCK = NO

CONTROLLED/UNCONTROLLED = UNCONTROLLED

3. The meta-attributes specified in the meta-attribute
clauses are created in the schema.

4. Meta-relationships are created between the given meta-
entity and the following meta-entities representing
attribute-types

:

DATE-CREATED
CREATED-BY
LAST-MODIFICATION-DATE
LAST-MODI F IED-BY
NUMBER-OF-MODIFICATIONS
DESCRIPTION
COMMENTS

5-18

5. If the given meta-entity represents an entity-type,
additional meta-relationships are created between the

given meta-entity and the following meta-entities
representing an a t t r i bu te-type and attribute-group-
type, respectively:

CLASSIFICATION
IDENTIFICATION-NAMES

6. If the given meta-entity represents an entity-type, a

relationship-type, whose first member is the entity-
type ACCESS-CONTROLLER and whose second member is the

entity-type being created, will be established. The
name of this relationship-type is ACCESS-CONTROLLER-
FOR-<meta-enti ty-name>

.

7. If the given meta-entity represents a STAGE-NAME, the

meta-entity-name specified also becomes an attribute
of attribute-type STAGE.

8. The command is recorded in the log/audit file.

9. Notification of the completion of the execution of the

command is given to the user.

ERROR CONDITIONS:

1. meta-entity-type is not as per Rule 1.

2. meta-entity-name exists in the schema as the name of a

meta-entity.

3. A meta-attribute-clause is specified that contains one

of the following meta-attribute-types:

DATE-CREATED- IN-SCHEMA
CREATED- IN-SCHEMA-BY
DATE-LAST-MODIFIED-IN-SCHEMA
LAST-MODI FI ED- IN-SCHEMA-BY
NUMBER-OF-TIMES-MODIFIED-IN-SCHEMA
BASIC/EXTENDED
SYSTEM-LOCK

5-19 (Rev. of 7-82 doc.)

STATUS-LOCK
CONTROLLED/UNCONTROLLED

4. A meta-attribute clause exists which does not apply to

the meta-entity-type specified.

5. The meta-entity-type RELATIONSHIP-TYPE is specified
and a meta-attribute clause involving the meta-
attribute-type STATUS-RELATED exists.

6. The meta-entity-type ATTRIBUTE-TYPE-VALIDATION-DATA is

specified and no meta-attribute clause for the meta-
attribute-type VALUE/RANGE is given.

7. The meta-entity-type ATTRIBUTE-TYPE-VALIDATION-DATA is

specified and there exist meta-attribute clauses for

both the meta-attribute-types DATA-VALUE and DATA-
RANGE.

8. A parametric clause is specified.

EXAMPLES

1. CREATE-META-ENTITY
ATTRIBUTE-TYPE TRANSACTION-TYPE
PURPOSE = "TO DENOTE THE TYPE OF A TRANSACTION.",
MINIMUM-LENGTH = 2,

MAXIMUM-LENGTH = 3

This command creates an attribute-type named
TRANSACTION-TYPE in the schema, and specifies that
attributes of this type shall be at least 2 characters
in length, but shall not exceed 3 characters in
length

.

2. CREATE-META-ENTITY
ATTRIBUTE-TYPE-VALIDATION-DATA REPORT-TYPE-VALUES
VALUE/RANGE = VALUE,
DATA-VALUE = 01 "EXTERNAL",
DATA-VALUE =02 "INTERNAL"

5 20 (Rev. of 7-82 doc.)

This command creates an attribute-type-validation-data
meta-entity named REPORT-TYPE-VALUES in the schema,
specifies that this meta-entity will be used for

validation of data values (as opposed to ranges) and

further specifies that there are to exist two valid
values, namely 01 and 02, with transliterated values
EXTERNAL and INTERNAL, respectively.

5 20A (Rev. of 7-82 doc.)

5.1.9 CREATE—META—RELATIONSHIP COMMAND

PURPOSE:

FORMAT:

RULES:

1

2

3

4

5

6

To create meta-relationships and associated meta-
attributes in the schema.

CREATE-META-RELATIONSHIP
meta-entity-name-1 AND meta-entity-name-2
[clause-1] [, clause-2] ...

meta-entity-1 and meta-entity-2 must exist in the

schema as names of meta-entities.

The meta-relationship to be created does not already
exist in the schema.

The meta-relationship defined by meta-entity-name-1
and meta-entity-name-2 must be an instance of a meta-
relationship-type listed in Section 3.1.2 of this
specification.

clause-1 ... is of the form

meta-attribute-type-1 = meta-attribute-1

meta-attribute-types given must apply to the meta-
relationship being created, as specified in Section
3.1.4.

If one of the me t a - en t i t i e s specified is the
attribute-type-validation-procedure VALUE -VALIDATION

,

the other meta-entity must be of type attribute-type.
In that case it is required that there exist a meta-
relationship with this attribute-type as one member
and an attribute-type-validation-data with VALUE/RANGE
= VALUE as the other member.

If one of the meta-entities specified is the
att

r

i but e-type-validation-procedure RANGE-VALIDATION,
the other meta-entity must be of type attribute-type.

5 21

In that case it is required that there exist a meta-
relationship with this attribute-type as one member
and an attribute-type-validation-data with VALUE/RANGE
= RANGE as the other member.

8. If the meta-relationship is of the type

M-R-T (RELATIONSHIP-TYPE, ENTITY-TYPE)

a meta-attribute for the meta-attribute-type POSITION

must be specified. The value assigned cannot already
exist in the schema for the named relationship-type.

9. If the meta-relationship is of the type

M-R-T (ATTRIBUTE-GROUP-TYPE , ATTRIBUTE-TYPE)

a meta-attribute for the me ta-a t t r i bu te- type GROUP-
POSITION must be specified.

ACTIONS PERFORMED:

1. The meta-relationship and associated meta-attributes
are created in the schema.

2. The command is recorded in the log/audit file.

3. Notification of the completion of the execution of the
command is given to the user.

ERROR CONDITIONS:

1. A meta-entity with name meta-entity-name-1 does not
exist in the schema.

2. A meta-entity with name meta-entity-name-2 does not
exist in the schema.

3. The meta-relationship specified is not an instance of
a meta-relationship-type which exists in the schema
model

.

5 22 (Rev. of 7-82 doc.)

4. A meta-attribute clause is not in the required form.

5. A meta-attribute-type is specified which does not
apply to the given meta-relationship-type.

6. An erroneous specification of the meta-attribute for

SINGULAR/PLURAL is given.

7. The required attribute-type-validation-data meta-
entity does not exist in the schema (Rules 7. and 8.).

8. A parametric clause is specified.

EXAMPLES

1. CREATE-META-RELATIONSHIP
FILE AND OBSOLESCENCE-DATE
SINGULAR/PLURAL = SINGULAR

This command specifies that entities of type FILE have

attributes of type OBSOLESCENCE-DATE, and furthermore
that any such entity can have at most one such attri-
bute .

2. CREATE-META-RELATIONSHIP
LOCATION-HAS-DOCUMENTATION AND LOCATION
POSITION = FIRST

CREATE-META-RELATIONSHIP
LOCATION-HAS-DOCUMENTATION AND DOCUMENTATION
POSITION = SECOND

These two commands specified that the meta-entity
LOCATION-HAS-DOCUMENTATION of type relationship-type
has the entity-type LOCATION as the first member, and

the entity-type DOCUMENTATION as the second member.

5 23

5.1.10 REPLACE-META-RELATIONSHIP COMMAND

PURPOSE:

FORMAT:

RULES:

1 .

2 .

3 .

4.

5.

To replace one meta-relationship by another. This

command, which is a combination of ABOLISH-META-
RELATIONSHIP and CREATE-META-RELATIONS HIP commands, is

required to replace one attribute-type-validation-data
by another. Carrying out this procedure in two sepa-

rate steps would violate the rule that there cannot
exist in the schema a meta-entity of type attribute-
type which was a member of a meta-relationship whose
other member was an attribute-type-validation-proce-
dure meta-entity without also being a member of a

meta-relationship whose other member is an attribute-
type-validation-data meta-enti ty.

REPLACE-META-RELATIONSHIP
meta-entity-name-1 FROM meta-entity-name-2
TO meta-entity-name-3
[NO-META-ATTRIBUTES

]

meta-entity-name-1, meta-entity-name-2, and meta-
entity-name-3, are names of meta-entities in the
schema

.

There exists a meta-relationship in the schema with
members meta-entity-name-1 and meta-entity-name-2.

There does not exist a meta-relationship in the schema
with members meta-entity-name-1 and meta-enti ty-name-
3.

The meta-relationship-type of meta-entity-name-2 and
meta-entity-name-3 must be the same.

Since this command specifies the deletion of the meta-
relationship with members meta-entity-name-1 and meta-
entity-name-2, this meta-relationship may not be
deleted if the deletion affects the information
contents of the dictionary.

5-24

6. If the meta-ent i ty- type of meta-entity-name-2 and
meta-entity-name-3 is attr ibute- type-va 1 i da t i on-da ta

(and consequently the meta-entity-type of meta-entity-
name-1 is attribute-type) the command cannot violate
the integrity of existing instances of this attribute-
type.

7. If meta-entity-name-2 is an attribute-type-validation-
data meta-entity with DATA/VALUES = DATA, then meta-
entity-name-2 (which must have the same type) must
have the same meta-attribute.

8. If meta-entity-name-2 is an attribute-type-validation-
data meta-entity with DATA/VALUES = RANGE then meta-
entity-name-2 (which must have the same type) must
have the same meta-attribute.

ACTIONS PERFORMED:

1. The meta-relationship with members meta-entity-name-1
and meta-entity-name-3 is created and the meta-rela-
tionship with members meta-entity-name-1 and meta-
entity-name-2 is deleted.

2. If [NO-META-ATTRIBUTES] is not specified, the new
meta-relationship will have the same meta-attributes
as the one being replaced.

3. The command is recorded in the log/audit file.

4. Notification of the completion of the execution of the

command is given to the user.

ERROR CONDITIONS:

1. There does not exist a meta-entity with name meta-
entity-name-1 in the schema.

2. There does not exist a meta-entity with name meta-
entity-name-2 in the schema.

5 25

3. There does not exist a meta—entity with name meta —

entity-name-3 in the schema.

4. There does not exist in the schema a meta— relationship

with members meta—entity—name— 1 and meta—entity—name—

2 .

5. There does exist in the schema a meta— relationship

with members meta-entity-name-1 and meta-ent i ty-name-

3.

6. The me ta-en t i ty-type of meta-entity-name-2 and the

me ta-ent i ty-type of meta-entity-name-3 are not the

same

.

7. Attribute-type-validation-data for an attribute-type

is being specified which does not agree with attri-
butes of that attribute-type existing in the
dictionary.

8. A meta-attribute clause is specified.

9. A parametric clause is specified.

EXAMPLE

1. REPLACE-META-RELATIONSHIP
TRANSACTION-CODE FROM TRANSACTION-CODE-VALUES
TO NEW-TRANSACT ION-CODE-VALUES

This command is intended to replace the attribute-
type-validation-data meta-entity TRANSACTION-CODE-
VALUES by the meta-entity NEW-TRANSACT I ON-CODE-VALUES
in the meta-relationship whose other member is the
attribute-type TRANSACTION-CODE. The command will not

be allowed to execute whenever there exists in the
dictionary an attribute of TRANSACTION-CODE which
exists in TRANSACTION-CODE-VALUES but does not exist
in NEW-TRANSACTION-CODE-VALUES

.

5-26 (Rev. of 7-82 doc.)

5.2 SCHEMA REPORTING COMMANDS

The following commands are available for reporting on the
contents of the schema. The order of presentation of the
commands is alphabetic by command name.

5.2.1 IS—META—RELATED COMMAND

PURPOSE: To inform a user whether or not two meta-entities are

"directly related" or "indirectly related".

FORMAT: IS-META-RELATED
meta-entity-name-1 AND meta-entity-name-2

RULES:

1. meta-entity-name-1 and meta-entity-name-2 must be the

names of two distinct meta-entities in the schema.

ACTIONS PERFORMED:

1. If the two meta-entities specified are "directly
related", the message

"YES, DIRECTLY"

is returned to the user.

2. If the two meta-entities specified are "indirectly
related", the message

"YES, INDIRECTLY"

is returned to the user.

5 27

3. If the two meta-entities specified are not related,

the message

"NEITHER DIRECTLY NOR INDIRECTLY"

is returned to the user.

ERROR CONDITIONS:

1. meta-entity-name-1 and meta-entity-name-2 are not the

names of two distinct meta-entities in the schema.

2. An invalid meta-attribute clause is specified.

3. An invalid parametric clause is specified.

EXAMPLES

1. IS-META-RELATED
ACCESS-METHOD AND ACCESS-METHOD-VALUES

The response would be to show that the attribute-type
ACCESS-METHOD and the attribute-type-validation-data
meta-entity ACCESS-METHOD-VALUES are directly related.

5,2,2 META-CATALOG COMMAND

PURPOSE: To produce a report on the contents of the entire
schema

.

FORMAT: META-CATALOG
[Destination]

where the Destination clause is one of the following:

a) device-name

b) name of desired location of output

5 28

RULES:

1. The default for the Destination clause is an implemen
tor option.

ACTIONS PERFORMED:

1. A report is produced, the contents of which is the

entire schema. The format of the report is similar to

the format of the META-LIST command.

2. If a Destination clause is given, the report will
either be output on the device specified or "placed"
in the named location.

ERROR CONDITIONS:

1. An meta-attribute clause is specified.

2. A parametric clause is specified.

5.2.3 META-LIST COMMAND

PURPOSE: To produce a report on the schema descriptors
associated with a set of meta-entities.

FORMAT: META-LIST
Report Set

[Destination]

where Report Set is one of the following:

a) meta-entity-type-name

b) meta-entity-name-1 [,meta-enti ty-name-2] ...

5 29 (Rev. of 7-82 doc.)

where the Destination clause is one of the following:

a) device-name

b) name of desired location of output

RULES:

1. meta-entity-type-name must be one of the names given

in 3.1.1.

2. meta-entity-name-1 ... must be the name(s) of a meta-

entity in the schema.

3. The default for the Destination clause is an implemen-

tor option.

ACTIONS PERFORMED:

1. A report is produced, in which, for every meta-entity
in the report set, the following is shown:

a) The name of the meta-entity and its type,

b) the meta-attributes of the meta-entity, and

c) each meta-relationship in which the meta-
entity is a member together with its meta-
attributes and the name of the other meta-
entity which is a member of that meta-
relationship.

2. If a Destination clause is given, the report will
either be output on the device specified or "placed"
in the named location.

ERROR CONDITIONS:

1. meta-enti ty-type-name is not a valid name.

5 30

2 . A name is specified which is not the name of a meta-
entity in the schema.

3. A meta-attribute clause is specified.

4. A parametric clause is specified.

EXAMPLES

1. META-LIST
ACCESS-METHOD-VALUES

This command will produce a report showing all the

valid attributes of the attribute-type ACCESS-METHOD
which exist as meta-attributes of the attribute-type-
validation-data meta-entity ACCESS-METHOD-VALUES. If

there exist both codes and transliterated values, both

will be shown, as for example the following:

ATTRIBUTE-TYPE-VALIDATION-DATA
ACCESS-METHOD-VALUES
01 "RANDOM"

02 "SEQUENTIAL"

03 "METHOD-A"

Additionally, the report will show that there exists a

meta-relation with members: the attribute-type ACCESS-
METHOD and the meta-entity being reported on.

2. META-LIST
FILE

This command produces a report on the entity-type
FILE, its meta-attributes and the meta-relationships
in which it is a member.

5 31 (Rev. of 7-82 doc.)

5.2.4 META-TRACE COMMAND

PURPOSE: To produce a report, for a specified meta-entity, on

all meta-entities which are:

a) "directly related", i.e., are members of a

meta-relationship where the specified meta-
entity is the other member, or

b) "indirectly related", i.e., where there exists
a sequence of meta-relationships, MRl,...,MRn,

such that the specified meta-entity is a

member of MR1 , and for each k, there is a

meta-entity which is a member of MRk and
MR (k+1)

.

FORMAT : META-TRACE
meta-entity-name
[Destination]

where the Destination clause is one of the following:

a) device-name

b) name of desired location of output

RULES:

1. meta-entity-name must be the name of a meta-entity in
the schema.

2. The default for the Destination clause is an implemen-
tor option.

ACTIONS PERFORMED:

1. A report is produced on a set of meta — enti ties which
can be described as the combined output of multiple appli-
cations of the META-LIST command.

5 32 (Rev. of 7-82 doc.)

a) The report for the specified meta-entity.

b) The report for each previously unreported
meta-entity

.

c) Step b) is repeated as long as previously
unreported meta-relationships exist.

The order in which the meta-entities are listed is to

follow each sequence of meta-relationships to its end.

2. If a Destination clause is given, the report will
either be output on the device specified or "placed"
in the named location.

ERROR CONDITIONS:

1. meta-entity-name is not the name of a meta-entity in

the schema

.

2. A meta-attribute clause is specified.

3. A parametric clause is specified.

5-33 (Rev. of 7-82 doc.)

5 - 34

CHAPTER 6. COMMANDS FOR INTERACTION WITH THE DICTIONARY

This chapter contains the specification of the commands that are

available for interaction with the dictionary. The chapter is

organized into five major sections:

1. General rules that apply to these commands.

2. Qualification commands, which can be used to build
lists of entities that can be used by reporting,
query, and some maintenance commands.

3. The commands required to create entities, relation-
ships, and attributes in the dictionary, and to main-
tain them.

4. The commands that are available for producing reports

from the dictionary.

5. Query commands that are available for interrogation of

the dictionary.

All commands specified in this chapter are subject to the

security provisions specified in Chapter 8, and the rules for

defaults specified in Chapter 2 are in effect.

6.1 GENERAL RULES

This section contains general rules that are used throughout this

chapter

.

6-1

6 . 1.1 ENTITY-NAME RULES

The dictionary schema contains optional clauses that allow

installation standards to be enforced on the primary names that

are assigned to entities of a given entity-type.

For each entity-type:

1. The meta-attribute clause

MINIMUM-NAME-LENGTH = integer-1

specifies that the primary name of an entity of this

entity-type must have at least integer-1 characters.

2. The meta-attribute clause

MAXIMUM-NAME-LENGTH = integer-2

specifies that the primary name of an entity of this
entity-type can have at most integer-2 characters.

3. The meta-attribute clause

PICTURE = form-1 [, form-2] ...

where form-i is a string of characters A, N, and X

(and possibly other implementor-defined characters)
that indicate whether the character of a primary name
in a given position must be

alphabetic (A)

numeric (N)

alphanumeric (X)

Multiple forms may be specified, in which case a name
specified must be in one of the forms.

For example, the clause

PICTURE = AANNNX

would specify that XY1234 and AB987X are valid primary

6 2

names for entities of the given entity-type, but that
XYZ142 and A1247Q are not valid names.

The specifications
It may be expected
length and picture
such specifications
self-contradictory,
specified that

given in various clauses must be consistent,
that an installation would not use both the
clauses for any one entity-type. Two sets of

would be redundant, and could conceivably be

as would be the case if, for example, it were

MINIMUM-NAME-LENGTH = 3

MAXIMUM-NAME-LENGTH = 3

as well as

PICTURE = AAAA

This specification would cause every name to be rejected as it is

impossible for a name to be exactly 3 characters long and to have
the specified picture.

Primary names of entities specified in the ADD-ENTITY, ADD-
RELATIONSHIP, COPY, DECLARE, and RENAME commands are subject to

rules expressed with these clauses.

6.1.2 USE—AS—IDENTIFIER ATTRIBUTE-TYPE RULES

The system-standard schema contains the attribute-type SHORT-NAME
for entities of type ELEMENT. The meta-relationship that exists

in the system-standard schema with members ELEMENT and SHORT-NAME
has the value YES for the meta-attribute-type USE-AS-IDENTIFIER,
denoting that the system will insure that attributes of type
SHORT-NAME will be unique in the dictionary. This means that for

an entity of type ELEMENT, not only is the primary name of the
entity unique in the dictionary, but also the attribute SHORT-
NAME, should such attribute have been assigned.

In the following maintenance commands:

DELETE-ENTITY
DELETE-RELATIONSHIP

6 3

MODIFY-ENTITY
MODIFY-RELATIONSHIP
CHANGE-STATUS
RENUMBER

the general rule exists that the value of the a tt r i bute-type
SHORT-NAME can be used in place of the primary name of an entity

of type ELEMENT. The same rules for version numbers apply to

this value as to the primary name of an entity. Whenever this
value is used, it is to be prefixed with the character $, this
character being an implementor defined symbol.

For sake of simplicity, this value of the attribute-type SHORT-
NAME of an element will be referred to as the short-name of the
element

.

For example, if there is an element with primary name NUMBER-OF-
DEPENDENTS and short-name NO-DEP, a command to modify this entity
instead of being

MODIFY-ENTITY
NUMBER-OF-DEPENDENTS

followed by the clauses specifying the modifications, could be
stated as

MODIFY-ENTITY
$N0—DEP

followed by these same clauses.

Short-names can be used in REPORT and QUERY commands through the
use of the QUALIFY command. For example,

QUALIFY SHORT-NAME = NO-DEP
SHORT-NAME = NO-DEP-M
SHORT-NAME = NO-DEP-F

builds a qualification list whose members are the elements with
short-name NO-DEP, NO-DEP-M, NO-DEP-F. A detailed description of
this command is given in Section 6.2.

The facilities discussed here can be extended using the
extensibility facilities that have been specified in Chapter 3.

6-4

Two primary options exist:

1. A meta-relationship can be specified, one member of
which is an entity-type (e.g., SYSTEM), with the other
member being the attribute-type SHORT-NAME, and the

value of the meta-attribute-type USE -AS-IDENTIFIER of

this meta-relationship can be specified as YES. This
will cause the use of short-names to be extented to

entities of this entity-type in the identical manner
as it exists for the entity-type ELEMENT.

2. An attribute-type, for example STANDARD-IDENTIFIER,
can be defined in the schema, and meta-relationships
can be set up as in 1. above. This would allow the
values of STANDARD-IDENTIFIER to be used in the same
manner as the short-name. Any such attribute-type
will be referred to as an use-as-identi f ier attribute-
type.

6.1.3 ATTRIBUTE RULES

The dictionary schema contains:

1. Optional clauses that allow an installation to specify
the minimum number of characters that an attribute of

a given attribute-type must have.

2. Optional clauses that allow an installation to specify
the maximum number of characters that an attribute of

a given attribute-type can have.

3. Optional clauses that allow an installation to specify
the PICTURE of attributes of a given attribute-type.

4. Optional clauses that allow an installation to control
the number of times that attributes of a given
a t t r i bu te- type can be assigned to an entity or
relationship of a specified type.

5. Optional clauses that allow an installation to control
the number of times that attribute-groups of a given

6 5

a t t r i bu t e— g r o up— type can be assigned to an entity or

relationship of a specified type.

6. Facilities that allow attributes of a given attribute-

type to be restricted to a set of pre-defined values.

7. Facilities that allow attributes of a given attribute-

type to be restricted to a set of pre—defined ranges

of values.

Specifically, these features may be invoked through the follow-

ing :

1. The meta-attribute clause

MINIMUM-LENGTH = integer-1

specifies that an attribute of a given attribute-type

must contain at least integer-1 characters.

2. The meta-attribute clause

MAXIMUM-LENGTH = integer-2

specifies that an attribute of a given attribute-type

can contain at most integer-2 characters.

3. The meta-attribute clause

PICTURE = { TEXT | form-1 [, f orm-2]

where form-i is as in 6.1.1 (entity-name rules), and
allows the specification of the kinds of characters
that make up an attribute of a given a tt r i bute- type

.

Rules for TEXT attributes are given in 6.1.4. When-
ever TEXT is not specified, multiple forms may be

given, in which case an attribute specified must be in

one of the forms.

4. The meta-relationships that assign an attribute-type
to an entity-type or a relationship-type have meta-
attribute-types SINGULAR/PLURAL and MAXIMUM-NUMBER-OF-
OCCURRENCES that can be used to control the number of

occurrences of an attribute of a given attribute-type

6-6

for an entity of a given entity-type or a relationship
of a given relationship.

For example, let TYPE-A denote an entity-type, and let

NAME-X be an attribute-type that is assigned to TYPE-A

in the schema, and assume that for the meta-relation-
ship that expresses this assignment the clause

SINGULAR/PLURAL = SINGULAR

has been given. This means that for every instance of

TYPE-A there can be at most one attribute of NAME-X.
If instead the clauses

SINGULAR/PLURAL = PLURAL
MAXIMUM-NUMBER-OF-OCCURRENCES = 5

had been given, this would denote that 5 such
attributes were permissible. This facility works in

an identical manner with relationships.

It should be noted that the number of occurrences
for an attribute being specified is specific to an

entity-type or relationship-type. For example,
suppose that the attribute-type used above is not only
asssigned to the entity-type TYPE-A, but also to the

entity-type TYPE-Q. It would then be possible to

specify a maximum of 5 occurrences for TYPE-A and a

maximum of only 3 occurrences for TYPE-Q, or any
combination of the meta-attributes in the clauses.

5. Clauses identical to the ones discussed above exist to

control the number of occurrences of attribute-groups
in entities and relationships of a given type.

6. The schema contains an attribute-type-validation-
procedure called DATA-VALUES, as well as facilities
for establishing schema descriptors for attribute-
type-validation-data. Whenever both the DATA-VALUES
procedure and such a descriptor are assigned to an

attribute-type, all attributes of this type are

required to be present in the attr ibute-type-val ida-
tion-data. The maximum number of such values that can

be stored in the schema for any one a t t r i bute- type-

6-7

validation-data meta-entity is implementor defined.

7. Similar facilities to the one above exist to restrict

attributes of a given attribute-type to be in one of a

set of pre-defined ranges. In this case there is an

attribute-type-validation-procedure called RANGE, and

the corresponding attribute-type-validation-data des-

criptor contains the ranges within which attributes
must fall.

Attribute-clauses and attribute-group clauses in the ADD-ENTITY,
ADD-RELATIONSHIP, DECLARE, MODIFY-ENTITY , and MODIFY-RELATIONSHIP
commands are subject to the rules given.

6.1.4 TEXT ATTRIBUTE-TYPES

It can be specified that the meta-attribute-type PICTURE of an

attribute-type has the value TEXT. These attributes are created
and maintained in a manner different from other attributes.

Each attribute of such an attribute-type consists of a set of

lines, each line having a line number. The set of lines is

ordered in an ascending order by line number. The number of

characters in a line is implementor-defined, as well as the
maximum number of lines that can exist in a single attribute.

An attribute of this kind is specified in an ADD-ENTITY or ADD-
RELATIONSHIP command by a clause in the following form:

attribute-type-name
[START = integer-1] [INCREMENT = integer-2]

<text-string of line>

[<text-string of line>]

Each line entered is assigned a system-generated line number
according to the following rules:

1. If the optional START subclause, where integer-1 must

6-8

be a positive integer, is given, the first line is

assigned the line number integer-1. The default case

results in the assignment of an implementor-specified
positive integer.

2.

If the optional INCREMENT subclause, where integer-2

must be a positive integer, is given, successive line

numbers are formed by incrementing the previous line

number by integer-2. In the default case, line num-
bers are incremented by an implementor-specified posi-

tive integer.

An attribute of this kind can be changed by a MODIFY-ENTITY or

MODIFY-RELATIONSHIP command with a clause in the following form:

attribute-type-name
[DELETE integer-1 [THROUGH integer-2]] ...

[integer-3 <text-str ing>] ...

The following RULES apply:

1. Specification of the optional subclause DELETE inte-

ger-1 without the THROUGH subclause will cause the
line with line number integer-1 to be deleted.

2. If both integer-1 and integer-2 are specified, then
integer-2 must be greater than integer-1.

3. Specification of this subclause with the THROUGH sub-

clause will cause deletion of all existing lines with
line numbers in the range integer-1 to integer-2,
including the lines with line numbers integer-1 and
integer-2, if they exist.

4. The optional subclause integer-3 <text-str ing> has two
possible effects:

a) If there exists a line with line number
integer-3, the text string specified will
replace the text string in existence on that
line.

b) If there does not exist a line with line
number integer-3, the line specified is inser-

6-9

ted in the numerical sequence of the existing

lines

.

5. At least one subclause must be specified in a clause,

and any desired number of each form may be given. All

DELETE subclauses must precede the other subclauses.

Existing line numbers may by changed by the RENUMBER command.

6.1.5 RULES FOR USAGE—NAMES ATTRIBUTE-GROUPS

As discussed in Chapter 4, the relationship-class-type CONTAINS
in the system-standard schema is composed of the following rela-

tion-ship-types :

FILE-CONTAINS-FILE
F I LE-CONTAINS-RECORD
FILE-CONTAINS-ELEMENT
RECORD-CONTAINS-ELEMENT
RECORD-CONTAINS-RECORD
ELEMENT-CONTAINS-ELEMENT
DOCUMENT-CONTAINS-DOCUMENT
DOCUMENT-CONTAINS-RECORD
DOCUMENT-CONTAINS-ELEMENT
SYSTEM-CONTAINS-SYSTEM
SYSTEM-CONTAINS-PROGRAM
SYSTEM-CONTAINS-MODULE
PROGRAM-CONTAINS-PROGRAM
PROGRAM-CONTAINS-MODULE
MODULE-CONTAINS-MODULE

Each one of these relationship-types is associated with the
attribute-group-type USAGE-NAMES, which is composed of attribute-
types with name alternate-name-1 and alternate-name-2. Special
rules exist for this attribute-group-type, as follows:

Let R-T denote one of the relationship-types in the preceding
list, and let T-l and T-2 denote the entity-types involved in the
relationship. The attribute-types alternate-name-1 and alter-
nate-name-2, in this case, correspond to alternate names of enti-
ties of entity-types T-l and T-2, respectively.

6 10 (Rev. of 7-82 doc.)

Let entity-A and entity-B denote entities of entity-types T-l and

T-2, respectively, and suppose that the relationship of type R-T

has entity-A and entity-B as members. Further assume that this

relationship has an instance of the attribute-group-type USAGE-
NAMES which is composed of the values name-A and name-B. The
meaning that is attached to this attribute-group is as follows:

In the relationship where entity-A contains entity-B, when
entity-A has the alternate name name-A, then entity-B has

the alternate name name-B.

In the context discussed here, a primary name of an entity can be

used in place of an alternate name of that entity in this
attribute-group. Another way of stating this is that the primary
name of an entity automatically qualifies as an alternate name.

The attribute-group- type USAGE-NAMES is used only for the
relationship-class-type CONTAINS in the system-standard schema;

however, extensibility facilities can be used to extend its usage
to other relationship-types.

The preceding can be illustrated by the following example .

Suppose that there is an instance of the RECORD entity-type
called PAYROLL-RECORD which CONTAINS an ELEMENT called PAY-
NUMBER. In the data processing environment, however, the

PAYROLL-RECORD is known as PAY-REC and PAY-NUMBER is known as

PAY-NO. In this case the relationship PAYROLL-RECORD CONTAINS
PAY-NUMBER has the attribute-group (PAY-REC , PAY-NO) , denoting
that when PAYROLL-RECORD is known as PAY-REC, PAY-NUMBER is known
as PAY-NO. Multiple instances of this attribute-group may exist

for the same relationship. Suppose that in another file the

RECORD PAYROLL-RECORD is used with the name R1234, and the

ELEMENT PAY-NUMBER is used with the name EL456P; this can be

expressed by the attribute-group (R1234 ,EL456P) in the relation-
ship between the RECORD and ELEMENT instances.

Equally, in another file PAYROLL-RECORD may be used with name P-R

and PAY-NUMBER may be known by its primary name. Then the

attribute-group of type USAGE-NAMES would be (P-R, PAY-NUMBER)

,

where it would not be necessary to declare PAY-NUMBER as being an

alternate name for itself.

6 11 (Rev. of 7-82 doc.)

The following rules apply to the attribute-group-type USAGE-
NAMES :

1. If the attribute-group (name-1 , name-2) is entered into

the dictionary for a CONTAINS relationship with mem-
bers entity-1 and entity-2, name-1 is also entered as

an attribute of type ALTERNATE-NAME of entity-1, and

name-2 is also entered as a like attribute of entity-

2 .

2. If the above attribute-group is deleted, each of the

above named attributes of type ALTERNATE-NAME is also

deleted, unless it is a member of another attribute-
group of type USAGE-NAMES of the same relationship.

3. If one of the names in the attribute-group is

modified, this name is also modified in the ALTERNATE-
NAME attribute of the entity used, unless the
unmodified name is also used in another attribute-
group of type USAGE-NAMES of the same relationship.
In this case, the new name is added to the list of

alternate names of the entity.

4. If a command to modify or delete an attribute of type

ALTERNATE-NAME of an entity is attempted and if the
attribute is used in an attribute-group of type USAGE-
NAMES for a relationship involving this entity, it
will be disallowed.

5. The primary name of an entity can be used in an
attribute-group of type USAGE-NAMES in place of an
alternate name of that entity.

6. A command to rename an entity whose primary name is

used in an attribute-group of type USAGE-NAMES for a

relationship involving this entity will be disallowed.

6 12 (Rev. of 7-82 doc.)

6.1.6 AUDIT-ATTRIBUTE—TYPES

The dictionary schema contains some attribute-types that pertain
to all entity-types and relationship-types in the schema, whether
they are part of the system-standard schema or they have been
created through the use of extensibility facilities. These
attribute-types will be referred to as the Audit Attribute-Types :

DATE-CREATED
CREATED-BY
LAST-MODIFICATION-DATE
LAST-MODI F I ED-BY
NUMBER-OF-MODIFICATIONS

These attribute-types should not be confused with the meta-
attribute-types DATE-CREATED-IN-SCHEMA, CREATED-IN-SCHEMA , etc.,

which are used to audit actions on the schema.

The audit-attribute-types in the list given above are used to

document audit-oriented data about update operations that take
* place on the dictionary data.

6.1.7 NULL ATTRIBUTES

Null values can be treated in the same manner as any other value
of an attribute-type. The system null is represented by *null in

this specification, to be replaced by an implementor defined
symbol. It can be used in a command, and thus the statement

ATTRIBUTE-TYPE-NAME = *null

will evaluate to true if the value of the a t t r i but e- type
ATTRIBUTE-TYPE-NAME is the system null. Thus any command that
has a qualification component that can be used to test an

attribute can substitute *null for that value. It should be

noted the *null does not have a type; a test for *null can be

made regardless of the defined type of the attribute (alphabetic,
numeric, text, etc.).

6 12A (Rev. of 7-82 doc.)

6.2 QUALIFICATION

Daring the manipulation of entities in a dictionary, it is often
necessary to identify which of the dictionary entities are to be

selected. This process of identification is termed qualifica-
tion , and the result of such an operation is a list of the
primary names (or other unique identification) of the relevant
entities; this list is termed a qual i f ication list .

Qualification may be achieved either explicitly, by issuing a

command that returns a qualification list, or implicitly, by

producing the list as a side effect of another command, or

incorporating it in the command. Thus the process of reporting

may either be of the form:

1. Qualify which entities are to be reported on, giving
the qualification list;

2. State the report to be produced, and produce it for

all entities on the list.

or else it may be in one part:

1. Make a reporting command that first generates the

qualification list internally and then produces the

report.

In both cases, the qualification list may be retained, and thus
further use may be made of this list in later reporting. Quali-
fication lists may also be used in some maintenance commands.

There are therefore several modes of operation, all of which are

equivalent, but which appear different to the user in their
achieving the required result:

1. Qualification followed by reporting;

2. Reporting including internal generation of a

qualification list but no external manifestation to

the user;

3. Reporting including generation of a qualification list

6 13

that may be further used by other commands, when
named

.

The material of this section may therefore be considered to be

used in one of three ways:

1. QUALIFY
[optional-qualification-list-name] [clauses]

REPORT-OR-QUERY-COMMAND-using-qualif icat ion-list

2. QUALIFY
SAVE name-of-procedure

RUN name-of-procedure
[optional-qualification-list-name]
Repo rt-or-Query-Command-using-qual if icat ion-1 ist

3

.

Report-or-Query-or-Maintenance-Command
[clauses-for-qual i fication] [AND]

[optional-qualification-list-name] [AND]

[RUN name-of-procedure]

The report commands may use either qualification clauses, a

procedure, a qualification list, or a combination of these
options

.

Normally, when the qualification list is available to the user,

i

t

may be changed by further commands. Thus the qualification
list A may be modified by a user to produce a new list by:

1. Using list A as an "input” to generate a new qualifi-
cation list B, which can be a subset of A, or else use
list A to produce a list of entirely new entities.

2. Generation of a new qualification list C that is then
used to produce another list D as the result of set
operations (union, disjoint union, difference, etc.)

i

between A and C.

E i the r of

equivalent
the above methods will be considered functionally
from the standpoint of the core standard.

6 14 (Rev. of 7-82 doc.)

However, the discussion in this section assumes that a qualifica-
tion list is available to the user either by name, or by use of a

procedure that generates it, or by indirect reference to the
latest version of the qualification list. Thus the alternatives
assume seven basic types of commands to operate on or generate a

qualification list:

1. Generation of a qualification list (e.g., through use
of a QUALIFY command). This command may generate a

"current" qualification list, that can be the object
of any future command that does not name the required

qualification list (this list being referred to as the

current-list). If the user wishes, the QUALIFY com-
mand may include a name by which the list may later be

referenced; if a name is used, the current list will
not be changed by the command.

2. Manipulation of two qualification lists using set
operations (e.g., UNION, INTERSECTION, and SET-
DIFFERENCE). The current-list may participate as one

of the sets, and the result, if not named, will become
the current list.

3. Deletion of the qualification list (e.g., by using the

DISQUALIFY command).

4. Saving of the procedure(s) used to generate the quali-
fication list (e.g., by using the SAVE-LIST command).

5. Executing the procedure to produce a new version of

the qualification list (i.e., through the RUN command).

6. Deleting the procedure for generating a qualification
list (e.g., by the DROP-PROCEDURE command).

7. Listing all procedures that have been saved.

The QUALIFY command contains eight optional clauses. These may
be used in conjunction with, or as substitutes for, the qualifi-
cation list in a reporting or query command or some maintenance
commands; thus each of the eight clauses is discussed separately.

6-15 (Rev. of 7-82 doc.)

6.2,1 QUALIFY COMMAND

PURPOSE: The qualification of a set of entities depends on the

users' need for dictionary data. At its most gross,

qualification of the whole dictionary may be needed

(e.g., when the entire contents of the dictionary are

to be printed according to some format). In the

finest grain, only one entity is required. Thus the

qualification list may contain from zero to all the

primary names of entities in the dictionary.

There are several ways that the user may wish to

select and then restrict the qualification, and each
of these may be made by using one or more clauses of

the qualify command as follows:

1. Selection by entity-type-name (e.g., only FILE and

PROGRAM entity-types are to be returned), or by
entity-name stated explicitly, or by some
combination of each. This will be achieved in a

Primary-Name-Selection Clause .

2. Selection by using an alternate-name instead of the

primary-name. Because the user may not know that
the name is not a primary-name, one form of this
clause appears identical to the entity-selection-
clause. However, because the user may wish to

qualify entities by use of the alternate-name-
context, there is a special Alternate-Name-Selec-
tion Clause .

3. Restriction of an entity's selection based on some
characteristic of its primary name, such as its
length, whether its contains, starts or ends with a

specific string (character sequence), etc. This is

achieved in a Primary-Name-Restriction Clause .

4. Restriction based on entity names and relationship-
type and relationship-class-type. Here the entity
is rejected because it is not directly connected to
another through a named relationship-type, or else
because the entity is not indirectly connected to
the second entity through a composition of

6 16

FORMAT:

relationship-types, several applications of the
same relationship-type, or a relationship-class-
type. Such qualification entails a Relationship-
Restriction Clause .

5. Further restriction based on the person who created
or last changed the entity or the date on which the
entity was created or last changed, or else on the

number of changes that have been made. This is

achieved in an Audit-Attribute-Restriction Clause .

6. Restriction based on attribute-types. This is

provided in an Attribute-Restriction Clause .

7. Restriction of selection based on characteristics
(such as the presence of certain character strings)

in the attributes of a t t r i bu te- types composed of

TEXT. These are in the optional Tex t-S t r i ng-

Restr iction Clause .

8. Selection through the use of the keyword attribute-
type. This is achieved in the Classification-
Restriction Clause.

The qualification request thus consists of a

optional clauses which might typically be

according to the following format.

series of

provided

QUALIFY

[qualification-list-name]
{ALL

|

Primary-Name-Selection Clause

|

Alternate-Name-Selection Clause]

[Primary-Name-Restriction Clause]

[Relationship-Restriction Clause]

[Audi t-attr ibute-Res trie t ion Clause]

[Attribute-Restriction Clause]

[Text-String-Restriction Clause]

[Classification Clause]

6 17

RULES:

1. The qualification-list-name is optional. If it is not

given, the qualified list becomes the current-list.
If it is given, the qualification list is identified
by this name and there is no change to the current-
list. A current-list can be referenced implicitly
(though it has an internal name, it cannot be

externally referenced) — thus any command that needs

a qualification list but does not name one is assumed
to operate on the current-list.

2. The ALL option allows qualification of every
dictionary entity. Thus QUALIFY ALL would produce a

qualification list containing every entity existing in

the dictionary.

3. The number of entities in the qualification list is

returned to the user at the termination of the
command

.

4. The separate clauses above are considered to be

logically connected through AND.

5. All errors are discussed in the specifications of the

clauses. However any error will cause abortion of the

command, and the current qualification list will be

unchanged

.

EXAMPLES

1. QUALIFY ALL

This makes the current list a list of all the entities
in the dictionary.

2. QUALIFY ZIP ALL

This generates a new list of all the entities in the
dictionary and stores it as "ZIP".

6 18

6. 2. 1.1 ENTITY-SELECTION CLAUSE

PURPOSE: Entities are selected either by stating their primary
name, or by giving the overall entity-type of interest

plus naming any exclusions. Because extensibility may
have been used to add new en t i ty- type s , the command
allows these to be accessed. Because the addition of

a new relationship in the dictionary may cause an
implicit entity to be added, facilities are required
by means of which such implicit entities can be

selected or excluded.

FORMAT: [{ {EXPLICIT ! IMPLICIT} | BOTH}

]

[ENTITY-TYPE entity-type-name [EXCLUDE entity-name]...

[, entity-type-name [EXCLUDE entity-name] ...]]

[ENTITY entity-name [, ent i ty-name] ...]

RULES:

1. The keyword EXPLICIT is used to denote entities which
are not implicit. If the first subclause is omitted,
the default condition is EXPLICIT.

2. If only implicit entities are to be selected, then the

keyword IMPLICIT is used and the ENTITY-TYPE and
ENTITY clauses must not be included.

3. If the user wishes to have both, but to receive the
list in two parts — explicit followed by implicit —
then the keyword BOTH is used. The ENTITY-TYPE and

ENTITY clauses are then only meaningful to the
explicit entities in the dictionary.

4. entity-type-name must be the name of an entity-type in

the schema.

5. All entity-names in the EXCLUDE part must be of the
same type as the entity-type-name. The effect of the

ENTITY-TYPE clause is thus to qualify all of the

6-19 (Rev. of 7-82 doc.)

entities that have a given entity type-name, but to

EXCLUDE those specifically stated; if any entity-name

stated in the qualification statement does not exist

(e.g., if the clause is part of a saved procedure that

referred to a since-deleted entity) its effect is

ignored but a warning message is given (i.e., it does
not cause an error, but it will generate a message to

the user).

ACTIONS PERFORMED:

1. If only EXPLICIT, IMPLICIT, or BOTH is given, then the

selection is based on that criteria only. The use of

IMPLICIT means that no other subclause is meaningful.

2. BOTH is equivalent to ALL f (in the description of the
QUALIFY command) except that the use of all may
produce a merged list (depending on the implementation
method of the vendor)

.

3. The use of ENTITY-TYPE is to qualify all entities of
that named type. Then entities may be excluded from
this list.

ERROR CONDITIONS:

1. The IMPLICIT keyword has been given with another
subclause

.

2. entity-type-name is not the primary name of an entity-
type in the schema.

3. entity-name is not of the type entity-type-name.

6-20 (Rev. of 7-82 doc.)

EXAMPLES

1. QUALIFY IMPLICIT

This makes the current-list a list of all implicitly
defined entities.

2. QUALIFY ENTITY-TYPE FILE

This gives a list of all primary names of entities of

type file in the current-list.

3. QUALIFY ENTITY-TYPE FILE EXCLUDE PERSONNEL-FILE

This gives the same list as in Example 2. above,
except that PERSONNEL-FILE will not be included.

4. QUALIFY ENTITY PERSONNEL-FILE, STUDENT RECORD

This will produce a current-list of the two entities
named

.

6. 2. 1.2 ALTERNATE-NAME-SELECTION CLAUSE

PURPOSE: IDENTIFICATION-NAMES is an a 1 1 r i bu t e-g r o up- type that
consists of the attribute-type ALTERNATE-NAME and
ALTERNATE-NAME-CONTEXT. This clause selects one or

more dictionary primary names that correspond to an

ALTERNATE-NAME.

FORMAT: [[[ENTITY alternate-name] [ALTERNATE-NAME -CONTEXT =

alternate-name-context]

[FOR ENTITY-TYPE entity-type-name ONLY]] ...

RULES:

1. This format: with no context or entity-type subclauses
is indistinguishable from the entity-selection-clause.

6-21

It provides all entity-names that correspond to a

given alternate-name.

2. The alternate-name context subclause allows restric-

tion based on a specific context (e.g., ALTERNATE-
NAME-CONTEXT = COBOL). If only this is specified, all

alternate-names with this context are converted to

their primary name (e.g., primary names of all enti-
ties that have COBOL names).

3. The entity-type subclause restricts to a particular
type (e.g., for FILE only); the use of this with a

context subclause allows further restriction (e.g.,

ALTERNATE-NAME-CONTEXT = FORTRAN FOR ENTITY-TYPE
ELEMENT ONLY gives a qualification list of entities
that are elements and have a FORTRAN name)

.

4. The FOR subclause cannot be the only subclause; i.e.,

it must restrict either an entity or alternate-name
context subclause.

5. If the given alternate-name or alternate-name-context
is not found in the dictionary, the system returns a

null list as the contribution of this subclause.

6. The FOR subclause is not allowed without either ENTITY
or ALTERNATE-NAME-CONTEXT subclause (or both)

.

7. The entity-type-name must be a name of an entity-type
in the schema.

ACTIONS PERFORMED:

1. The list of entities that are qualified are selected
based on the alternate-name (s) given. The list will
contain only primary names of these entities.

2. The context will be used to select the list of enti-
ties or else to restrict those alternate-names (e.g.,

if two different contexts use the same name, only one
would be selected).

3. The use of the FOR ENTITY-TYPE subclause will also

6 22

further restrict the selection

ERROR CONDITIONS:

1. The alternate-name-context and entity alternate-name
subclauses are not given though a FOR clause is

specified

.

2. There is no entity that qualifies with the type named
in the FOR subclause.

EXAMPLES

1. QUALIFY ENTITY PERSONNEL-FILE ENTITY ZAP-FILE

Assuming here that PERSONNEL-FILE is a primary name
and that ZAP-FILE is an alternate-name of MACHINE-
FILE, then the current-list becomes (PERSONNEL-FILE,

MACHINE-FILE)

.

2. QUALIFY ALTERNATE-NAME-CONTEXT = COBOL

The current-list becomes a list of the primary names
of all entities that have a COBOL context.

3. QUALIFY ZIPS ENTITY ZIP

Assuming that the COBOL name of the entity with
primary name PATH is ZIP, and that the FORTRAN name of

the entity with primary name PAGE is also ZIP, then
the result is a qualification list with name ZIPS with
members PATH and PAGE.

4. QUALIFY ZIPS ENTITY ZIP ALTERNATE-NAME -CONTEXT = COBOL

The result is as in 3. above, but the list only con-
tains PATH.

5. QUALIFY ZIPS ENTITY ZIP FOR ENTITY-TYPE LOCATION ONLY

Assuming that LOCATION is an entity-type, and that
PATH is an entity of that type, whereas PAGE is not.

6 23

then ZIPS contains only PATH.

6 . 2 . 1.3

PURPOSE:

FORMAT:

PRIMARY-NAME-RESTRICTION CLAUSE

To restrict the selection of qualified entities to

those with certain characteristics in their primary
names, a clause is provided which allows the selection

of entities whose primary names contain certain charac-

ter strings (such as "DATE") or start/end with cer-
tain strings (such as "FIRST-"/"-NUMBER" respective-
ly), or combinations of these. It also allows selec-
tion of a set that starts with one character string
and ends with another (such as all entity-names from
PERSON- to PERSONNEL-). The length requirements may
also be specified.

The character is used as a "don't care" character
(i.e., a character that always matches any other
character)

.

[STARTS AS "string (with * as don't care characters)"]
[ENDS AS "string (with * as don't care characters)"]
[CONTAINS "string (with embedded *) "]

[BETWEEN "string" AND "string"]

[LENGTH OP integer]

where OP is one of the following:

= (equal to)

> (greater than)

< (less than)

->= (not equal to)

-i> (not greater than, i.e. less than
or equal to)

-i< (not less than, i.e. greater than
or equal to)

6 24

RULES:

1. The string must not contain characters that are not
allowed in the naming of entities.

2. The use of BETWEEN implies that there is an order and

that the first string precedes the second in that
order

.

ACTIONS PERFORMED:

1. The primary names of entities that were selected by
previous clauses are examined on the basis of whether
they start with, end with, or contain a given string,

or are within a certain group of characters.
Alternately, their lengths are examined to see if they

qualify.

2. The restricted set of entities is then processed by

the next clause if one exists; otherwise it is output.

ERROR CONDITIONS:

1. The string given is invalid, in that it contains
characters not allowed in a name (e.g., a carriage
return)

.

2. The two strings in the BETWEEN subclause are not in

the correct order.

3. The length is not specified as an integer.

EXAMPLES

1. QUALIFY ALL STARTS AS "PERSON"

The current-list will contain all entities whose
primary name start with PERSON.

2. QUALIFY ZIP ENTITY-TYPE FILE CONTAINS "F*R"

6 25

4

6 . 2 . 1.4

PURPOSE:

FORMAT:

This command creates a qualification list containing

all files whose primary name contain the character F

followed by some other character and then followed by

the character R. For example, the list might contain
FORWARD-FILE, F I LE -FAR-PLACES , FIRST-FIELD-FILE,
INFERRED-FILE, UNFORMATTED-FILE.

. QUALIFY ZIP ENTITY-TYPE FILE CONTAINS "F*R"

BETWEEN "FIL" AND "FIR"

In the above example, the list would contain FILE-FAR-
PLACES, FIRST-FIELD-FILE.

. QUALIFY ZIP ENTITY-TYPE FILE CONTAINS " F*R"

LENGTH > 14

Again referring to the previous example, the list
would contain FI LE-FAR-PLAC E S , F I RST-F I E LD- F I L E ,

UNFORMATTED-FILE

.

RELATIONSHIP-RESTRICTION CLAUSE

It may be necessary to restrict the selection of any
entity based on the rela t ionshi p (s) or attributes of

relationship (s) in which it participates. Since a

relationship has an inverse name, the user will need
to select that relationship-type-name or relationship-
class-type-name which uses the entity-type-name as the

start of the relationship or relationship class.

[WHERE ENTITY IS START OF

{ relationship-type-name ! relationship-class-type-
name | relationship-type-chain-name | ALL RELATIONSHIPS

}

ENDING WITH {primary-name | alternate-name

|

entity-type-name} [AND RELATIONSHIP (s) {HAS | HAVE

}

condi tional-attribute-subclause [, conditional-
attribute-subclause] . . .]]

6 26

where conditional-attribute-subclause is made up of an

attribute-restriction-clause

:

[NOT] conditional-subclause [{AND | OR } [NOT]

]

where conditional-subclause is:

attribute-type-name { (OP}value-l IBETWEEN value-2
AND value-3}

where OP is one of the following:

= (equal to)

> (greater than)

< (less than)

-i= (not equal to)

-»> (not greater than, i.e. less than

or equal to)

-i< (not less than, i.e. greater than

or equal to)

RULES:

1. Any relationship-type-name or relationship-class-type-
name or relationship-type-chain-name must refer to an

entity-name that has been previously selected and
retained by the previous clauses of the qualification

1 statement.

2. A relationship-type-chain is a sequence

relationship-type-1, ... , relationship-type-n

where consecutive relationships in the sequence have a

common entity-type, and where loops are not permitted.
All entities that are members of a relationship whose
relationship-type is a component of a chain will be

reported on, and all attributes and attribute-groups
of the r e 1 a t i o n s h i

p - t y p e s will be shown.
relationship-type-1 must have as a member an entity-
type which pertains to the entities being reported on.

3. Any primary-name or alternate-name given must refer to

6-27

an entity-type that may be connected to one or more of

the entity-name (as selected by previous clauses) in

the named relationship(s) or chains of relationships.

The same is true for any entity-type-name given in

this subclause.

4. If a conditional-attribute-subclause is used, any
named attribute-types and their corresponding values

must be meaningful with respect to one of the
relationships (i.e., they must refer to attributes of

one of the possible relationships)

.

5. The conditional-attribute-subclause may have several
conditional subclauses linked by the logical operators
NOT, AND, and OR. The precedence of the unary
operator NOT is highest. Then the precedence of the
binary operators is that AND is higher than OR.

Parentheses may be included to change the precedence.

6. value-1 of a BETWEEN option must be less than value-2.
The use of attribute-types that are alphabetic rather
than numeric is possible. Then the order is implied
as Roman alphabetic order. Mixed character (numeric

and alphabetic) values are not allowed.

7. AND, OR, and NOT have their normal mathematical
meaning

.

ACTIONS PERFORMED:

1. The set of entities that have been selected and
retained so far are in turn assumed to be the first
entity of the various named relationships, etc. The
second entity of the relationship is then matched with
the ENDING WITH entities. If the relationship exists,
the originally selected entity is retained, otherwise
it is rejected.

2. If all relationships are tested and the second entity
could not be matched, an error condition is given.

3. If a RELATIONSHIP (s) HAS or HAVE subclause is used,
the attributes of all relationships with matching

6 28

entities are tested to see whether they have the
necessary values, or come within the range, or are
larger, or higher in the alphabet, etc. Only those
first entities that comply with this condition are

retained

.

4.

If there is no way that a condition can be satisfied
(e.g., this attribute-type does not exist for any of

the relationships that are available) then an error
condition occurs.

ERROR CONDITIONS:

1. The "start” entity-types or entities (that have been
selected due to previous qualification clauses) are
not meaningful to at least one of the possible
relationships; the entity is removed from the
qualification list and the user informed of a probable
error condition.

2. The entity-types or entities in the ending clause are

not meaningful to one of the possible named
relationships; the qualification aborts with an error

message to the user.

3. An attribute-type is not meaningful to at least one of

the possible named relationships; the qualification
aborts with an error message to the user.

4. The named attribute-type does not exist in the schema.

5. The values in a BETWEEN subclause are not in order.

6. The values given do not comply with the representation
(PICTURE) of the a t t r i b u t e - t y pe (e.g., they are
numeric while it is defined as alphabetic)

.

6-29 (Rev. of 7-82 doc.)

EXAMPLES

1. QUALIFY ALL WHERE ENTITY IS START OF PROCESSED-BY
ENDING WITH PERSON-PROCEDURE

This gives a current qualification list of each
entity that is processed by the entity PERSON-PRO-
CEDURE. The relationship-class-type PROCESSED-BY
exists between data and process entities. Thus the

only results (in the current list) will be data
entities that are processed by the particular pro-
cedure PERSON-PROCEDURE.

2. QUALIFY ENTITY-TYPE FILE CONTAINS "F*R" WHERE ENTITY

IS START OF HAS-SORT-KEY ENDING WITH SOCIAL-SECURITY-
NUMBER

This produces a current list that is the result of

the second example in 6. 2.1.3, except that only
those that have the identifier (key) of social
security number (as a whole or part key) will be

retained (i.e., the previous list has been further
restricted)

.

3. QUALIFY ENTITY-TYPE FILE WHERE ENTITY IS START OF HAS-
SORT-KEY ENDING WITH S OC I A L - S E C U R I T Y-N U M B E R AND
RELATIONSHIP HAS ALTERNATE-NAME-CONTEXT = "COBOL"

This qualifies files with a sort key of social
security number and that have a designated
relationship context of COBOL (i.e., it can be used
in a COBOL context)

.

6. 2. 1.5 AUDIT-ATTRIBUTE-RESTRICTION CLAUSE

PURPOSE: The system standard schema contains a number of attri-
bute-types that are maintained by the system. Among
these are the date and person who created the entity,
the date at which it was last modified and the name of
the modifier, and the total number of modifications.
The selection of entities will be based on attributes

6 30 (Rev. of 7-82 doc.)

of these types.

FORMAT: [CREATED [{BETWEEN date AND datelON date

|

BEFORE datelAFTER date}] [BY person-name]]

[LAST-CHANGED [{BETWEEN date AND datelON datel

BEFORE datelAFTER date}] [BY person-name]]

[TOTAL-CHANGES OP integer]

where OP is one of the following:

= (equal to)

> (greater than)

< (less than)
-

1= (not equal to)

-i> (not greater than, i.e. less than

or equal to)

-i< (not less than, i.e. greater than

or equal to)

RULES:

1. The time, or person, or number-of -changes, or any or

all of these may be used to qualify an entity.

2. If the BETWEEN subclause is used, the first date must
be earlier than the second.

3. Any or all of the above subclauses may be given. They

are ANDed together.

ACTIONS PERFORMED:

1. The previously selected entities (from other clauses)

are examined to see whether they comply with the

condition or conditions. The restricted list (i.e.,

those that comply with the "audit" restrictions) is

then passed on to the next clause or for output.

6 31

ERROR CONDITIONS:

1. Dates in the BETWEEN subclause are incompatible.

2. The given person-name does not exist in the dictionary.

3. An integer is not specified in the TOTAL-CHANGES
clause

.

EXAMPLES

1. QUALIFY ALL CREATED ON 24/MAY/1982

This command produces a current-list of all entities
that were created on that date.

2. QUALIFY ENTITY-TYPE FILE CREATED BY JOHNSON

This command produces a current-list of all files that

Johnson created.

3. QUALIFY ENTITY-TYPE FILE CREATED BY JOHNSON LAST-
CHANGED AFTER 24/MAY/198

2

4. QUALIFY ENTITY-TYPE FILE CONTAINS "F*R"

TOTAL-CHANGES > 5

This command produces a current-list of files with the

string F don't care R (as in 6. 2. 1.3) but only if

changed more than 5 times.

6. 2. 1.6 ATTRIBUTE-RESTRICTION CLAUSE

PURPOSE: Attributes may be used to further restrict the selec-
tion of an entity. Also, because there may be several
attribute-types of interest, this clause uses Boolean
expressions joined by conjunction (AND) and disjunc-
tion (OR), as well as negation (NOT).

6 32 (Rev. of 7-82 doc.)

FORMAT: [[NOT] conditional-subclause [{AND | OR} [NOT]

conditional-subclause] ...]

where conditional-subclause is:

attribute-type-name { {OP} value-1 | BETWEEN value-2
AND value-3}

where OP is one of the following:

= (equal to)

> (greater than)

< (less than)

-i= (not equal to)

-i> (not greater than, i.e. less than

or equal to)

->< (not less than, i.e. greater than

or equal to)

RULES:

1. If the attr i bute- type does not exist in the
dictionary, no entity will be qualified.

2. The attribute-restriction-clause may have several
conditional subclauses linked by the logical operators
NOT, AND, and OR. The precedence of the unary
operator NOT is highest. Then the precedence of the
binary operators is that AND is higher than OR.

Parentheses may be included to change the precedence.

3. value-1 of a BETWEEN option must be less than value-2.

The use of attribute-types that have alphabetic rather

than numeric values is possible. Then the order is

implied as Roman alphabetic order. Mixed character
(numeric and alphabetic) values are not allowed.

4. AND, OR, and NOT have their normal mathematical
meaning

.

6-33

ACTIONS PERFORMED:1.

The set of previously selected entities are now
further restricted by checking the values of their
attributes. Only those entities that match the

criterion of their attributes are retained.

ERROR CONDITIONS:

1. The attribute-type does not exist in the dictionary.

2. The values in the BETWEEN subclause are not in order.

3. The values do not have the same type (e.g., numeric or

alphabetic) as the attribute type.

EXAMPLES

1. QUALIFY ENTITY-TYPE FILE STATUS = CONTROLLED

This produces a current-list of files that are in

controlled status.

2. QUALIFY ZIP ENTITY-TYPE MANAGEMENT
STATUS = CONTROLLED AND STAGE = ULTIMATE
OR POLICY-CONDITION = PRESIDENT-SCAN

This produces the list, in ZIP, of entities of type
MANAGEMENT that are either in the ultimate stage and
in a controlled status, or else have a policy
condition of "president-scan". Note that since the
precedence of AND is higher than OR, this is the same
as

:

QUALIFY ZIP ENTITY-TYPE MANAGEMENT
POLICY-CONDITION = PRESIDENT-SCAN OR

STAGE = ULTIMATE AND STATUS = CONTROLLED

6 34

6. 2. 1.7 TEXT-STRING-RESTRICTION CLAUSE

PURPOSE

FORMAT

:

RULES:

ACTIONS

This clause allows restriction of previously qualified
entities based on some characteristic in their
DESCRIPTION or COMMENTS attribute-type or some other

attribute of an a ttr ibute-type with meta-attribute
PICTURE = TEXT.

[subclause [{AND | OR} subclause] ...]

where subclause is:

attribute-type-name [NOT] condition [{ AND | OR}

[NOT] condition] ...

and condition is one of the following:

STARTS AS "string (with * as don't-care)"
ENDS WITH "string (with * as don't-care)"
CONTAINS "string (with embedded *)

"

. attribute-type-name must be the name of an attribute-
type for which PICTURE = TEXT.

. AND has a higher precedence than OR.

. The use of NOT clauses can cause long searches; thus
the user should be warned about the potential high
cost of its use.

PERFORMED:

. The previously selected list of entities is examined
and any that do not satisfy the condition are
discarded

.

6-35 (Rev. of 7-82 doc.)

ERROR CONDITIONS:

1. The string contains invalid characters for names.

EXAMPLES

1. QUALIFY ALL DESCRIPTION CONTAINS "PAYROLL”

AND COMMENT STARTS AS "FIRST ,

"

This command takes all entities that have the word
"payroll" in their description and have a comment
that has "first" followed by a comma at the start,

and puts them in the current-list.

2. QUALIFY ZIP ENTITY-TYPE FILE CREATED BY JOHNSON
DESCRIPTION CONTAINS "PAYROLL"

This command generates a list named ZIP with
entities of type file created by Johnson and
containing "payroll" in their description.

6 . 2 . 1 .

8

CLASSIFICATION-RESTRICTION-CLAUSE

PURPOSE: This clause allows further restriction of entities
based on classification keywords which are the attri-
butes of the attribute-type CLASSIFICATION. All enti-
ties have such attributes.

FORMAT: CLASSIFICATION-KEYWORD = [NOT] keyword [{AND | OR}

[NOT] keyword] . .

.

RULES:

1. AND has a higher precedence than OR.

2. The use of NOT clauses can cause long searches; thus
the user should be warned on the potential high cost
of its use.

6 36 (Rev. of 7-82 doc.)

ACTIONS PERFORMED:

1. The previously selected entities are examined to

determine whether they comply with the required clas-
sification. If they do not, they are rejected, other-
wise they are ready for output.

ERROR CONDITIONS:

1. None.

EXAMPLES

1. QUALIFY ENTITY-TYPE FILE

CLASSIFICATION-KEYWORD = PAY AND NOT PERSONNEL

This produces a current-list of

keyword of PAY but do not also
files that have a

have a keyword of

PERSONNEL.

2. QUALIFY ENTITY-TYPE FILE
CREATED BY JOHNSON
DESCRIPTION CONTAINS ''PAYS'

1

CLASSIFICATION-KEYWORD = LIBRARY

This provides the current-list of files created by

Johnson with a description that contains the string
"pay" and has been classified with a keyword
" library"

.

6 37 (Rev of 7-82 doc.)

6,2.2 UNION , INTERSECTION , SET-DIFFERENCE COMMANDS

PURPOSE:

FORMAT:

RULES:

1 .

The normal set operators: union, intersection, and

set difference can be applied to two qualification
lists to produce a new qualification list. Since one

can either name a list, or generate it, or use a

c u r r en t- 1 i s t , there are several forms of these
commands

.

{UNION | INTERSECTION | SET-DIFFERENCE

}

([{ qualification-list-name |
qual i fication-

command I RUN-command }]

,

{ [qualification-list-name] Iquali f ication-
command | RUN-command}

,

[qualification-list-name]

)

Each command has three parameters. The first must
either be :

o the name of a qualification list that already
exists

;

o or a qualification statement that can be

evaluated to obtain a qualification list; or

o a RUN command (as discussed in 6.2.5) applied
to a saved qualification procedure — which
also evaluates to a qualification list.

In the latter two cases, the result is returned _to the

command and the current-list is not modified. If the

parameter is missing, the current-list is used as the
missing parameter.

The second parameter may be missing, in which case,

6-38

3

the current-list is used as the missing parameter.
Thus the second parameter is the same as the first.

. In case of any error condition, the user is informed
and the command aborted.

ACTIONS PERFORMED:

1. The set operation specified is performed on the first

two parameters. The resulting qualification list is

then given the name in the third parameter without
altering the current-list, or if the third parameter
is missing, the resulting list becomes the current-
list.

2. A count of entity-names in the resulting qualification
list is provided.

ERROR CONDITIONS:

1. The RUN-command does not refer to a saved process.

2. The qualification-list-name in arguments 1 or 2 is not

known to the system.

EXAMPLES

1. UNION RUN ZIP-PROC,

This command runs the procedure ZIP-PROC, then
unions the result with the current-list and puts
the result as the current-list.

2. INTERSECTION, NAME-1,

This command uses the stored list (NAME-1) and

intersects it with the current-list, giving a new
current-list as the result.

6-39

3. SET-DIFFERENCE RUN ZIP-PROC, NAME-1, NAME-1

This command takes NAME-1 from the results of

running the ZIP-PROC and puts the new results in

NAME-1.

6,2.3 DISQUALIFY—LIST COMMAND

PURPOSE: The deletion of any current-list occurs at the end of

a user session. Any current-list is replaced after a

new current-list has been generated. The lists that
have been generated and named during a session will be

retained until the end of the session, but any one may
be deleted- by use of this command.

FORMAT: DISQUALIFY-LIST qualification-list-name

RULES:

1. If the qualification-list-name is not known to the
system, the user is informed and the command aborted.

Otherwise the list is deleted, with all references to

it.

ACTIONS PERFORMED:

1. The named qualification list is deleted from the
system.

ERROR CONDITIONS:

1. The named list does not exist.

6-40

EXAMPLES1.

DISQUALIFY-LIST LIST-NAME

The qualification list LIST-NAME is deleted.

6.2.4 SAVE-LIST COMMAND

PURPOSE: In order to allow qualifications that are made during
one session to be available in the next, a procedure
for generating it must be saved. Because dictionary
changes may occur between sessions, it is unsafe to

save the list of entities; thus this command saves the

process of generating the list. However, since the
list of interest may have been the result of several
qualification commands, the stored procedure is not
necessarily a simple (single) command.

FORMAT: SAVE-LIST {qual i f i cation-1 ist-name | CURRENT-LIST

}

AS procedure-name
[SAVE-TEXT (text)

]

RULES:

1. The object process to be saved may either be one that

generated the named list or the current-list.

2. The process is stored (and subsequently retrieved)
under the procedure-name; procedure-name cannot be

the name of an existing procedure.

3. The user may supply some special text or commands that
may be printed out later.

4. Any saved text may be retrieved by:

GIVE-SAVED-TEXT procedure-name

5. The system determines what string of commands are

6-41

necessary to generate the procedure; the method is

implementation-dependent

.

ACTIONS PERFORMED:

1. The user issues the command naming a stored list or

the current-list.

2. The system then determines how this list was generated
(possibly from the audit trail or by having previously
stored a procedure in the system every time a list is

generated or changed)

.

3. The procedure is stored under the given name at some
location that is implementation dependent.

ERROR CONDITIONS:

1. qua 1 i f i c a t i o n- 1 i s t-na m e is not the name of a

qualification list.

2. There exists a procedure with the specified name.

EXAMPLES

1. SAVE-LIST CURRENT-LIST AS ZIP-PROC
SAVE-TEXT (THIS IS ALL FILES)

This command saves the procedure needed to generate
the current-list, and the text portion of the
procedure

.

2. SAVE-LIST CITY AS CITY-PROC

Here the procedure to generate list CITY is saved.

6-42 (Rev. of 7-82 doc.)

6.2.5 RUN COMMAND

PURPOSE: Once a pr

list has
command

.

procedure
generated

ocedure for gen
been saved, it

This must be g

was stored and,

list.

eration of a qualification
may be executed by a RUN
iven the name by which the
optionally the name of the

FORMAT

:

RUN procedure-name [GIVING qualification-list-name]

RULES:

1. The command gives a response of the number of entries
in the qualified list of entity names.

2. When free standing, this command generates either a

list named as stated in the GIVING option or else
produces a new current-list.

3. When embedded in a qualification list manipulation
command (UNION, INTERSECTION, OR SET DIFFERENCE; see

6.2.2) or in query and reporting, the current-list is

never changed during the execution of the RUN command
(i.e. the result, if unna med takes part in the set
operation but is not recorded elsewhere).

4. If the procedure-name does not exist, the user is

informed and the command aborts.

ACTIONS PERFORMED:

1. The procedure is run to give either a new
qualification list or the named list.

ERROR CONDITIONS:

1. procedure-name does not exist.

6-43 (Rev. of 7-82 doc.)

EXAMPLES

1. GIVE-SAVED-TEXT ZIP-PROC
RUN ZIP-PROC GIVING ZIP

This command
check that it

generates the

uses the saved text
is the required proc
new ZIP list using ZIP

(see

edure
-PROC.

6.2.4) to

and then

2. RUN ZIP-PROC

Here the current-list is the result of running the

procedure

.

6.2.6 DROP-PROCEDURE COMMAND

PURPOSE: To delete a previously saved procedure that could be

used for generating a qualification list.

FORMAT: DROP-PROCEDURE procedure-name

RULES:

1. The named procedure is deleted from the system.

2. If the name is not known to the system, the user is

informed and the command aborted.

ACTIONS PERFORMED:

1. The procedure named is no longer available to the
user

.

ERROR CONDITIONS:

1. The procedure-name is not known in the dictionary.

6-44

EXAMPLES
1.

DROP-PROCEDURE ZIP-PROC

The procedure ZIP-PROC is deleted from the system.

6.2.7 LIST-QUALIFICATIONS COMMAND

PURPOSE: To give a list of all stored qualification procedures.

FORMAT: LIST-QUALIFICATIONS
[TEXT ALSO]

[PROCEDURE ALSO]

RULES:

1. A count is appended to the output list.

2. Optionally any text can also be printed.

ACTIONS PERFORMED:

1. A list of all stored qualifications is output.

2. Any text is given with the name, if requested.

3. The original stored material is then optionally given.

4. The count is then given.

ERROR CONDITIONS:

1. None.

6 45

6.3 MAINTENANCE COMMANDS

The following maintenance commands will be specified:

ADD-ENTITY
ADD-RELATIONSHIP
CHANGE-STATUS
COPY
DECLARE
DELETE-ENTITY
DELETE-RELATIONSHIP
MODIFY-ENTITY
MODIFY-RELATIONSHIP
RENAME
RENUMBER

The order used is alphabetic by command name.

6.3.1 ADD-ENTITY COMMAND

PURPOSE: To add an entity in the dictionary.

FORMAT: ADD-ENTITY
entity-type-name [entity-name]

[clause-1 [, clause-2] ...]

[security clause]

where security clause is

[NEW-CONTROLLERl EXISTING-CONTROLLER}
controller-name

RULES:

1. entity-type-name must be the name of an entity-type in

the dictionary schema.

6-46 (Rev. of 7-82 doc.)

2. Whether or not entity-name is specified depends on

whether or not the entity-type specified has system-
generated primary names.

(a) For an entity-type which does not have system-
generated names, entity-name mast be
specified

.

(b) For an entity-type which does have system-
generated names, entity-name m ust not be

specified

.

3. entity-name cannot be the primary name of an entity
in the dictionary.

4. entity-name is subject to the entity-name rules
described in 6.1.1.

5. clause-1 ... are attribute or attribute-group clauses.

6. An attribute clause is of the form

attribute-type-name = attribute-1 [, attribute-2] ...

7. If an attribute-type has PICTURE = TEXT, the form of

the clause is as discussed in 6.1.3.

8. For an attribute-group-type with name attribute-group-
type-name which is composed of the a t t r i bute-types
with name attribute-type-name-1, ..., attr ibute-type-
name-N an attribute-group clause is of the form

attribute-group-type-name =

(attribute-1-1, ..., attribute-N-1)

[, (attr ibute-1-2 , ..., a ttr ibute-N-2)] ...

where attr ibute-1- j is an attribute of attr ibute-type-
name— 1 , ...

9. Every attribute clause must correspond to an
attribute-type that pertains to the entity-type with
name en t i ty-type-name (i.e. there exists a meta-

6 47 (Rev. of 7-82 doc.)

relationship in the dictionary schema with the given

entity-type and the attribute-type being used as

members)

.

10. Every attribute-group clause must correspond to an

attribute-group-type that pertains to the entity-type

with name entity-type-name (i.e. there exists a meta-
relationship in the dictionary schema with the given

entity-type and the attribute-group-type being used as

members)

.

11. If an attribute-type belongs to an attribute-group-
type, attributes of that type can only be specified in

the context of the attribute-group. Hence, if there
is an attribute-group-type that pertains to the given
entity-type, none of the attribute-types that make up

the attribute-group-type can appear in an attribute
clause

.

12. Every attribute in an attribute clause or an attri-
bute-group clause is subject to the attribute rules
described in 6.1.3.

13. Attribute clauses for a t t r i bu t e- types which are
system-generated cannot be specified.

14. If EXISTING-CONTROLLER is specified in the security-
clause, controller-name must be the primary name of an

existing entity of type ACCESS-CONTROLLER.

15. If NEW-CONTROLLER is specified in the security-clause,
controller-name cannot exist in the dictionary as the

primary name of an entity.

ACTIONS PERFORMED:

1. The entity with name entity-name is added to the
dictionary.

2. Attributes and attribute-groups specified in attribute
clauses and attribute-group clauses are assigned to

this entity.

6-48

3. Values are inserted by the system for the audit
attribute-types

.

4. If NEW-CONTROLLER is specified in the security-clause,
an entity of entity-type ACCESS-CONTROLLER with
primary name con t r o 1 1 e r -na m e is created in the
dictionary.

5. If a security-clause has been specified, the entity
being added is protected by the ACCESS-CONTROLLER that

has been specified.

6. The command is recorded in the log/audit file.

7. Notification of the completion of the execution of the

command is given to the user.

ERROR CONDITIONS:

1. entity-type-name is not the name of an entity-type in

the dictionary schema.

2. The entity-type specified does not have system-gener-
ated primary names and no entity-name is specified.

3. The entity-type specified has system-generated primary
names and an entity-name is specified.

4. There exists an entity in the dictionary with primary
name entity-name.

5. entity-name violates a rule about primary names of

entities of the specified entity-type.

6. An attribute clause is specified where the attribute-
type does not pertain to the specified entity-type.

7. An attribute-group clause is specified where the

attribute-group-type does not pertain to the specified
entity-type

.

8. An attribute clause is specified which is not in the
prescribed form.

6-49

9.

An attribute-group clause is specified which is not in

the prescribed form.

10. An attribute-type is specified in an attribute clause

which is part of an a 1 1 r i bu te-g r oup- type for the

specified entity-type.

11. An attribute is specified which violates the attribute

rules described in 6.1.3.

12. An attribute clause is specified for an attribute-type
whose values are system-generated.

13. EXISTING-CONTROLLER has been specified in a security-
clause and controller-name is not the primary name of

an existing entity of type ACCESS-CONTROLLER.

14. NEW-CONTROLLER has been specified in a security-clause
and controller-name is the primary name of an entity
in the dictionary.

15. More than one security-clause has been specified.

EXAMPLE

1. ADD-ENTITY
PROGRAM PAYROLL-PROGRAM
DESCRIPTION = "THIS PROGRAM IS USED TO PREPARE THE

WEEKLY PAYROLL."
FREQUENCY = WEEKLY
NUMBER OF LINES OF CODE = 3000
LANGUAGE = COBOL
EXISTING-CONTROLLER = AC4097

2. ADD-ENTITY
DOCUMENT FORM-A243
STATUS = PROPOSED
ORIGINATOR = DEPT-B54
DOCUMENT-TYPE = FORM

6 50 (Rev. of 7-82 doc.)

6.3.2 ADD-RELATIONSHIP COMMAND

PURPOSE:

FORMAT:

To create relationships in the dictionary. One of the

two entities which are members of the relationship
created must exist in the dictionary, and the command
will create the other entity if not existent prior to

the command. There exist two forms of the command,
one using the name of a relationship-type in the

command, and the other one using the name of a rela-
tionship-class-type. The essential difference between
these two forms of the command is that whenever a

relationship-type is specified the entity-types of the

two entities participating in the relationship are
uniquely determined, whereas when the name of a rela-

tionship-class-type is used, in certain cases there is

an ambiguity in the entity-type of one of the enti-
ties. In the case where the entity-type of the non-
existent entity is either specified or can be deter-
mined, this entity is created as if an ADD-ENTITY
command had been given. In the case where the entity-
type of this entity is not specified or cannot be

determined this entity is created in the dictionary as

an implicit entity. Once an implicit entity has been

created, the only maintenance commands that can
address it are the DECLARE command, which is used to

specify the entity-type, and the DELETE-ENTITY and
DELETE-RELATIONSHIP commands, which can delete an

implicit entity.

Form 1 - using relationship-type

ADD-RELATIONSHIP
relationship-type-name
entity-name-1, entity-name-2
[SEQUENCE PARAMETER = parameter]
[clause-1 [, clause-2] ...]

Form 2 - using relationship-class-type

ADD-RELATIONSHIP
VIA RELATIONSHIP-CLASS
relationship-class-type-name

6 51

[entity-type-name-1] entity-name-1

,

[ent i ty-type-name-2] entity-name-

2

[SEQUENCE PARAMETER = parameter]

[clause-1 [, clause-2] ...]

RULES:

1. There must exist an entity in the dictionary with
primary name either entity-name-1 or entity-name-2.
This entity will be referred to here as the "existing

entity". If there exist two entities in the dictiona-
ry with primary name entity-name-1 and entity-name-2,
respectively, each one of these entities will be re-
ferred to as an "existing entity".

2. An "existing entity" must not be an implicit entity.

3. In Form 2 of the command, if the optional entity-type-
name is specified for an "existing entity", it must be

the name of the entity type of that entity.

4. In Form 2 of the command, if entity-name-1 is not the

name of an "existing entity" (and hence, because of

Rule 1, entity-name-2 is the name of an "existing
entity"), if entity-type-name-1 is specified, this
entity-type must be consistent with the possible
entity-types that can be members of the specified
relationship-class-type

.

5. In Form 2 of the command, if entity-name-2 is not the

name of an "existing entity" (and hence, because of
Rule 1, entity-name-1 is the name of an "existing
entity"), if ent i ty- type-name-2 is specified, this
entity-type must be consistent with the possible
entity-types that can be members of the specified
relationship-class-type.

6. In Form 2 of the command, if

a) the entity with primary name entity-name-1 is

not an "existing entity", and that entity-
type-name-1 is not specified, and

6 52

b) that furthermore, for the given relationship-
class-type the entity-type of the entity with
primary name entity-name-1 is not uniquely
determined

,

it then follows that the entity-type of the entity
with primary name entity-name-1 cannot be deduced by

the system and that this entity must be added into the
dictionary as an implicit entity.

7. In Form 2 of the command, if

a) the entity with primary name entity-name-2 is

not an "existing entity", and that entity-
type-name-2 is not specified, and

b) that furthermore, for the given relationship-
class-type the entity-type of the entity with
primary name entity-name-2 is not uniquely
determined

,

it then follows that the entity-type of the entity
with primary name entity-name-2 cannot be deduced by

the system and that this entity must be added into the

dictionary as an implicit entity.

8. In Form 2 of the command, if either the entity with
primary name entity-name-1 or entity-name-2 is to be

added as an implicit entity, the command must not
contain any of the clauses clause-1,

9. The relationship being added cannot already exist in

the dictionary.

10. If a SEQUENCE PARAMETER clause is specified, it must
apply to the relationship-type an instance of which is

being added.

11. clause-1 ... are attribute or attribute-group clauses.

12. An attribute clause is of the form

attribute-type-name = attribute-1 [, attr ibute-2] ...

6-53

13. If an attribute-type has PICTURE = TEXT, the form of

the clause is as discussed in 6.1.4.

14. For an attribute-group-type with name attr ibute-group-

type-name which is composed of the attribute-types
with name attribute-type-name-1, ..., attr ibute-type-

name-N an attribute-group clause must be of the form

attribute-group-type-name =

(attribute-1-1, ..., att r ibute-n-1

)

[, (attribute-1-2, ..., attr ibute-n-2)] ...

where a tt r i bute-1- j (j = l, ... ,m) is an attribute of

attribute-type-name-1

.

15. Every attribute clause must correspond to an

attribute-type that pertains to the relationship-type
with name relationship-type-name (i.e. there exists a

meta-relationship in the dictionary schema with the

given relationship-type and the attribute-type being
used as members).

16. Every attribute-group clause must correspond to an

a 1 1 r i b u t e - g r o u p - t y p e that pertains to the
re 1 a t i onsh i p- type with name relationship-type-name
(i.e. there exists a meta-relationship in the diction-
ary schema with the given relationship-type and the
attribute-group-type being used as members).

17. A value of an attribute-type that is a member of an
attribute-group-type that pertains to the given rela-

tionship-type can only be specified in the context of

an attribute-group-type clause.

18. Every attribute in an attribute clause or an
attribute-group clause is subject to the attribute
rules described in 6.1.3.

17. Attribute clauses for a t t r i b u t e - type

s

which are
system-generated cannot be specified.

18. Rules for specification of attribute-groups of attri-
bute-group-type USAGE-NAMES are as given in 6.1.5.

6 54 (Rev. of 7-82 doc.)

19. Names used for relationship-types and relationship-
class-types can either be forward names (i.e. the
primary names) or inverse names.

ACTIONS PERFORMED:

1. If entity-name-1 or entity-name-2 is the primary name
of an entity which does not exist in the dictionary,
and if the entity-type of this entity either is given

or can be determined uniquely, this entity is entered
into the dictionary as an instance of this entity-
type.

2. In the above case or in the case where both entities
exist in the dictionary, a relationship of the speci-
ified relationship-type is established whose members
are the entities with primary name entity-name-1 and

entity-name-2. The specified attributes and
attribute-groups are assigned to this relationship.

3.

4.

If the entity with primary name entity-name-1 exists
in the dictionary, and if

a) the entity with primary name entity-name-2
does not exist in the dictionary, and

b) the entity-type of this entity is not
specified or cannot be determined uniquely,

the entity with primary name entity-name-2 is entered
into the dictionary and it is noted that a

relationship of undetermined relationship-type exists
between the entities with primary names entity-name-1
and entity-name-2.

If the entity with primary name entity-name-2 exists
in the dictionary, and if

a) the entity with pr i m ary name entity--name-1
does not exi st in the dictionary. and

b) the entity -type o f this en t i ty is not
specified or cannot be determined uniquely.

6-55

the entity with primary name entity-name-1 is entered

into the dictionary and it is noted that a

relationship of undetermined relationship-type exists

between the entities with primary names entity-name-1
and entity-name-2.

5. Proper values are inserted into the audit attributes
of the relationship, and if an entity is added, of

that entity.

6. The command is recorded in the log/audit file.

7. Notification of the completion of the execution of the

command is given to the user.

ERROR CONDITIONS:

1. Neither of the entities with names entity-name-1 or

entity-name-2 exists in the dictionary.

2. One of the entities specified is an implicit entity.

3. An invalid entity-type is specified for an "existing
entity"

.

4. An implicit entity is to be created in the dictionary
and an attribute-clause or attribute-group-clause has

been specified.

5. A required SEQUENCE PARAMETER clause has been omitted.

6. The relationship to be added already exists in the
dictionary

.

7. An attribute-clause or attr ibute-group-clause is

specified that does not pertain to the relationship
being created.

8. An attribute-type appears in an attribute-clause that
should be specified in an attribute-group-clause.

9. An attribute is specified which is not valid for the

6 56 (Rev. of 7-82 doc.)

specified attribute-type.

10. An attribute is specified which is not valid for the
specified attribute-group in which it appears.

11. An entity is to be added which does not conform to the
entity-name rules.

EXAMPLES

Let A-SYSTEM be the name of an entity of entity-type
SYSTEM in the dictionary. The command

ADD-RELATIONSHIP
SYSTEM-CONTAINS-PROGRAM
A-SYSTEM , XY123

will add the entity XY123 in the dictionary as an

entity of type PROGRAM and create a relationship of

type SYSTEM-CONTAINS-PROGRAM with members A-SYSTEM and

XY123.

The command

ADD-RELATIONSHIP
VIA RELATIONSHIP-CLASS
CONTAINS
A-SYSTEM, PROGRAM XY123

will have the same results as the preceding command.

The command

ADD-RELATIONSHIP
VIA RELATIONSHIP-CLASS
CONTAINS
A-SYSTEM, XY123

will have different results from the preceding ones.

This difference comes from the fact that the entity-
type of XY123 has not been specified and cannot be

deduced as there exist three relationship-types in the

CONTAINS relationship-class-type, i.e.

6-57

SYSTEM-CONTAINS-SYSTEM
SYSTEM-CONTAI NS-PROGRAM
SYSTEM-CONTAINS-MODULE

that potentially apply to the entities specified, and

consequently XY123 can either be a SYSTEM, PROGRAM or

MODULE.

The execution of this command will add XY123 as an

implicit entity which has a relationship of
undetermined type with A-SYSTEM. A subsequent DECLARE

command must then specify one of the entity-types
SYSTEM, PROGRAM, MODULE, which then also results in

the specification of the relationship-type an instance

of which has members A-SYSTEM and XY123.

6.3.3 CHANGE—STATUS COMMAND

PURPOSE: To change the status of an entity or set of entities .

FORMAT: CHANGE-STATUS list-clause FROM status-1 TO status-2
[CHANGING VERSION [WITH DELETE]] [WITH DEPENDENCIES]

where the list-clause is one of the following:

entity-name-1 [, enti ty-name-2] ...

CURRENT-LIST
qualification-list-name
RUN procedure-name [GIVING qualification-list-name]
QUALIFY [qualification-list-name] qualification-clauses

RULES:

1. There are two types of status, CONTROLLED and UNCON-
TROLLED. There is only one CONTROLLED status, while
the dictionary administrator may specify as many uncon-
trolled statuses as required by the installation.
Status-1 and Status-2 must be one of these installa-

6 58

tion-defined statuses, or CONTROLLED.

2. The list-clause is used to provide a list of entities
that are to have their status changed either by:

o direct naming;

o using the current entity names in the
qualification-list;

o using a set of entity names generated and stored
previously in the session;

o using a stored procedure to generate the list;

o using a qualification statement.

3. Whenever an entity-name is specified in the list
clause, this name must either be the primary name of

an existing entity or a short-name or value of an

attribute of an attribute type designated as USE-AS-
IDENTITIFIER for the entity-type of the entity whose
status is to be changed (both prefixed by the
implementor defined character $).

4. If status-2 is the CONTROLLED status, any status-
related entities must also be in CONTROLLED status

p rior to the "promotion" of that entity to its
CONTROLLED status. Thus if A contains B and C, then A

cannot be moved to CONTROLLED status unless B and C

are already in CONTROLLED status. If the WITH DEPEN-
DENCIES clause is included, then if the list-clause
consists of B , A , C , then the set may all be promoted,
but if this clause is not given, an error will occur,
since A cannot be promoted until both B and C are in

CONTROLLED status.

5. If the status of the specified entity is changed _to

CONTROLLED (i.e., status-2 is CONTROLLED) the same
version may optionally be retained, or incremented (by

using the CHANGING VERSION clause.)

6. If the status is changed _f££m CONTROLLED (i.e.,

status-1 is CONTROLLED) then the version is

6 59

incremented whether the clause "CHANGING VERSION" is

included or not.

7. Changing status from one uncontrolled status to

another may optionally specify version change or not.

ACTIONS PERFORMED:

1. The status is changed from status-1 to status-2 for
all entities identified by the list-clause.

2. Version number is increased if the change is from the

CONTROLLED to any UNCONTROLLED status.

3. Version number is increased if the optional CHANGING
VERSION clause is USED.

4. I f the WITH DELETE clause i s spec i f i ed

,

the old

version will be deleted from the dictionary

.

5. If a status-related entity is in an UNCONTROLLED
status any entity associated with it which is higher
in the status hierarchy cannot be changed to the
CONTROLLED status.

6. If the WITH DEPENDENCIES clause is used, the status of

the entire set of entities is changed at the "same
time", thus status-related dependencies of a hierar-
chical or circular variety can be resolved without
resorting to any particular ordering of the entities.

ERROR CONDITIONS:

1. Status-1 or status-2 is not a known STATUS-NAME.

2. An entity named in the list-clause is not in the
dictionary.

3. There is no current-list when the CURRENT-LIST option
is specified.

4. The named qualification-list has not been stored

6-60 (Rev. of 7-82 doc.)

daring the session

5. The procedure-name for the RUN option does not exist
in the dictionary.

6. One or more of the qualification-clauses are invalid.

EXAMPLES

1. Suppose that A CONTAINS B, C, and D, that A is in

version 2, B in 2, C in 3, D in 1, and B is in

CONTROLLED status, while A, C and D are not.

CHANGE-STATUS A FROM UNC-1 TO CONTROLLED

is invalid because C and D are not yet controlled.

CHANGE-STATUS A, C, D FROM UNC-1 TO CONTROLLED

is invalid. C's and D's status will be changed, but
A's status was not previously changed, nor was the

WITH DEPENDENCIES clause given.

At this point: B, C, D are in CONTROLLED status,
but A is not.

No version change has been made.

2. At this point A can be changed to CONTROLLED status.
If we wish, the version may be incremented as follows:

CHANGE-STATUS A FROM UNC-1 TO CONTROLLED
CHANGING VERSION

It is assumed that UNC-1 is a local UNCONTROLLED
option. The version of A is now 3.

3. In the above example, the old version of A (version
number 2) is retained. It may be deleted after the
update by:

CHANGE-STATUS A FROM UNC-1 TO CONTROLLED
CHANGING VERSION WITH DELETE

6-61 (Rev. of 7-82 doc.)

4 . Now a modification is to be made to C, so it is to

become UNCONTROLLED in its new version. Then the new

A will become UNCONTROLLED in its new version.

CHANGE-STATUS A, C FROM CONTROLLED TO UNC-5

[CHANGING VERSION]

At this time, UNC-5 is another local UNCONTROLLED
option, and whether the "changing” clause is given or

not, the new versions will be made as follows:

new A version = 4

new C version = 4

5. Now we change A and C together to CONTROLLED status
(presumably after other modifications) without
changing their version by the command:

CHANGE-STATUS A,C FROM UNC-5 TO CONTROLLED
WITH DEPENDENCIES

6.3.4 COPY COMMAND

PURPOSE: To add an entity to the dictionary to which:

(a) all the attributes of an existing entity are
assigned, and optionally,

(b) all the relationships, along with their
attributes, of this existing entity are
created

.

This command is of convenience whenever a new entity
is to be created that only differs in minor respects
from an existing entity. The procedure that can then
be followed is to edit the entity created with the
COPY command, rather than to have to enter all
attributes, and optionally all relationships, of the
new entity.

6 - 62

FORMAT: Form 1 - Entity-type does not have system-generated
primary names.

COPY
entity-name-1 TO entity-name-2
[WITH RELATIONSHIPS]

Form 2 - Entity-type has system-generated primary
names

.

COPY
entity-name-1
[WITH RELATIONSHIPS]

RULES:

1. In both Form 1 and Form 2, entity-name-1 must be the
primary name or short-name or value of an attribute
of an attribute type designated as USE-AS-IDENTITIFIER
for the entity-type of the entity to be copied (both

prefixed by the implementor defined character $).

2. Form 1 is used whenever the entity-type of entity-
name-1 does not have system-generated primary names.

entity-name-2 must not exist as the primary name of an

entity.

3. In Form 1, entity-name-2 must be a valid primary name
for the entity-type of which the entity with primary
name entity-name-1 is an instance.

4. Form 2 is used whenever the entity-type of entity-
name-1 has system-generated primary names.

5. In both Form 1 and Form 2, if the optional clause WITH
RELATIONSHIPS is specified, the entity that is added
will have the same relationships, and their associated
attributes, as the entity with primary name entity-
name-1 .

6. The entity with primary name entity-name-1 must not be

an implicit entity.

6 63

ACTIONS PERFORMED:

1. For Form 1, an entity with primary name entity-name-2
is added to the dictionary. This entity has the same

attributes, and optionally, the same relationships and

their attributes, as the entity with primary name
entity-name-1. Both entities have the same entity-
type.

2. For Form 2, an entity of the same entity-type as the
entity with primary name entity-name-1 is added to the

dictionary. The primary name of this entity has the
same attributes, and optionally, the same
relationships and their attributes, as the entity with
primary name entity-name-1.

3. The command is recorded in the log/audit file.

4. Notification of the completion of the execution of the

command is given to the user.

5. For the command in Form 2 the user is given the
primary name of the entity that has been added to the

dictionary.

ERROR CONDITIONS:

1. entity-name-1 is not the primary name or short-name
or value of an attribute of an attribute type desig-
nated as USE-AS-IDENTITIFIER for the entity-type of
the entity to be copied (both prefixed by the imple-
mentor defined character $).

2. entity-name-2 is specified in the case where the
entity-type of the entity with primary name entity-
name-1 has system-generated primary names.

3. entity-name-2 is the primary name of an entity in the
dictionary.

4. entity-name-2 is not a valid primary name for the
entity-type of which the entity with primary name

6 64

entity-name-1 is an instance

5. The entity with primary name entity-name-1 is an

implicit entity.

EXAMPLES

1. The command

COPY ZIP-CODE TO NEW-ZIP-CODE

,

where ZIP-CODE is an ELEMENT in the dictionary, adds
an entity with primary name NEW-ZIP-CODE to the
dictionary. This entity has the same attributes as

the entity with primary name ZIP-CODE. The command
would not be allowed to execute unless in the
installation standard the primary name of an ELEMENT
were allowed to be 12 characters in length.

2. The command

COPY AX00127 WITH RELATIONSHIPS

adds an entity, whose primary name is generated by the

system, to the dictionary. This entity will have the

same attributes and relationships as the entity with
primary name AX00127. The system generates a message
informing the user that the entity added has the

primary name AX00435, for example.

6.3.5 DECLARE COMMAND

PURPOSE: To declare the entity-type of an implicit entity.

FORMAT: DECLARE
entity-name IS entity-type-name
[clause-1 [, clause-2] ...

]

6-65 (Rev. of 7-82 doc.)

NOTE:

RULES:

ACTIONS

In the discussion of this command it is assumed that

the implicit entity was created through an ADD-RELA-

TIONSHIP command using the VIA-RELATIONSHIP-CLASS
option. Let ent i ty-name-A denote the entity in the

dictionary which was the other member of the relation-

ship, and let enti ty-type-A denote the entity-type of

entity-A. Let class-name denote the name of the rela-

tionship-class-type that was used in this command, and

let R-name-1, ... , R-name-n denote the relationship-
types that make up the relationship-group-name. For

each one of these relationship-types there exists a

unique entity-type which the other member of the rela-

tionship can have. Let type-1, ... , type-n denote
these entity-types.

L. entity-name must be the primary name of an implicit
entity.

I . entity-type-name must be one of: type-1, ... , type-
n

.

3. entity-type-name must not be the name of an entity-
type that is designated in the schema as having
system-generated primary names.

1. entity-name must satisfy the rules for entity-names of

the specified entity-type given in 6.1.1.

3. clause-1 ... are any of the attribute or attribute-
group clauses of the ADD-ENTITY command.

5. The attributes and attribute-groups specified must
satisfy the attribute rules given in 6.1.3.

PERFORMED:

. The implicit entity with primary name entity-name
becomes an instance of the entity-type declared. Let

6 66 (Rev. of 7-82 doc.)

type-j in the previous list denote this entity-type.

2. An instance of the relationship-type R-name-j with
members ent i ty-name-A and entity-name is created in

the dictionary.

3. Attributes and attribute-groups as specified in

clause-1 ... are assigned to the entity with primary
name entity-name.

4. The command is recorded in the log/audit file.

5. Notification of the execution of the command is given
to the user.

ERROR CONDITIONS:

1. entity-name is not the primary name of an implicit
entity.

2. entity-type-name is not one of the names in the list:

type-1, ... , type-n.

3. The entity-type specified is designated as having
system-generated primary names.

4. entity-name is not a legal name for the entity-type
being specified.

5. An attribute or attribute-group class is specified
which does not apply to entities which are instances
of the entity-type type-j.

6. entity-name is not a valid primary name for an entity •

of the entity-type specified.

7. An attribute or attribute-group is specified which
violates the attribute rules of 6.1.3.

EXAMPLE

Suppose there exists in the dictionary schema a

6 67

relationship-class-type with name CONSISTS-OF which is

composed of the following relationship-types:

BOOK-CONS ISTS-OF-CHAPTERS
BOOK-CONSISTS-OF-SECTIONS
BOOK-CONSISTS-OF-PAGES

These relationship-types are between the following
entity-types, respectively:

BOOK and CHAPTER
BOOK and SECTION
BOOK and PAGE

Suppose that there exists in the dictionary an entity

of type BOOK with primary name FINAL-REPORT, and that

the command

CREATE RELATIONSHIP
VIA RELATIONSHIP-CLASS CONSISTS-OF
BOOK, OUTLINE

has been given and that OUTLINE is not an entity in

the dictionary. Execution of the command will have
created an implicit entity with name OUTLINE, which
can be an instance of the entity-types CHAPTER,
SECTION, or PAGE.

Consider now the command

DECLARE
OUTLINE IS SECTION

The effect of this command is to make OUTLINE an

instance of the entity-type SECTION, and to create
an instance of the relationship-type BOOK-CONSISTS-OF-
SECTIONS with members FINAL-REPORT and OUTLINE.

6-68

6.3.6 DELETE-ENTITY COMMAND

PURPOSE:

FORMAT

:

RULES:

1 .

2 .

3.

4.

5.

6 .

To delete either a single version, or all versions of

an entity in the dictionary*

DELETE-ENTITY
list-name

where list-name is one of the following:

entity-name-1 [ALL VERSIONS] [,enti ty-name-2
[ALL VERSIONS]] ...

CURRENT-LIST
qualification-list-name
RUN procedure-name [GIVING qualification-list-name]
QUALIFY [qualification-list-name] qualification-clauses*

entity-name-1, ... must be the primary name of an

entity in the dictionary. For any such entity which
is not an implicit entity, the short-name or value of

an attribute of an attribute type designated as USE-
AS-IDENTITIFIER for the entity-type of the entity to

be deleted may be used (both prefixed by the implemen-
tor defined character $).

entity-name-1, ... may be the primary name of an

implicit entity.

If entity-name-1, ... is the primary name of an impli-

cit entity, ALL VERSIONS cannot be specified.

If ALL VERSIONS is not specified, the latest version
of the named entity will be deleted.

If ALL VERSIONS is specified, all versions of the
named entity will be deleted.

No version that is specified to be deleted can be a

6-69 (Rev. of 7-82 doc.)

member of a relationship, with exception of a relation-

ship the other member of which is an entity of type

ACCESS CONTROLLER. In the case of an implicit entity,

due to the method by which this entity was added, it
is not considered to be a member of a relationship.

7. The list-clause is used to provide a list of entities

that are to be deleted either by:

o direct naming;

o using the entity names in the current qualifica-

tion-list;

o using a set of entity names generated and stored

previously in the session;

o using a stored procedure to generate the list;

o using a qualification command.

ACTIONS PERFORMED:

1. The version or versions specified are deleted from the

dictionary.

2. For any entity which is specified to be deleted, if a

relationship exists whose other member is an entity of

type ACCESS CONTROLLER, this relationship is also
deleted. If this ACCESS CONTROLLER entity then is not

a member of any other relationship, it is also
deleted. Further actions performed upon deletion of

this ACCESS CONTROLLER entity are specified in Chapter
8 .

3. The command is recorded in the log/audit file.

4. Notification of the completion of the execution of the

command is given to the user.

ERROR CONDITIONS:

6-70 (Rev. of 7-82 doc.)

1. entity-name-1, ... is not the primary name of an

entity in the dictionary.

2. entity-name-1, ... is the primary name of an implicit
entity and ALL VERSIONS is specified.

3. A version of an entity has been specified to be

deleted and this version is a member of a relation-
ship.

4. There is no current-list when the CURRENT-LIST option
is specified.

5. The named qualification-list has not been stored
during the session.

6. The procedure-name for the RUN option does not exist
in the dictionary.

7. One or more of the qualification-clauses are invalid.

EXAMPLES

1. DELETE-ENTITY
$APD—

X

2. DELETE-ENTITY
RUN OBSOLETE-SYSTEM-PROCEDURE

6.3.7 DELETE-RELATIONSHIP COMMAND

PURPOSE: To delete one or more relationships in a dictionary.

FORMAT: DELETE-RELATIONSHIP
{ relationship-class-type-name I re la t ionship-type-name

}

list-clause
[attribute-clause]

where the list-clause is:

6-71 (Rev. of 7-82 doc.)

FROM entity-name-1 [ALL VERSIONS] TO

any one of the following:

entity-name-2 [ALL VERSIONS] [, enti ty-name-3

[ALL VERSIONS]] ...

CURRENT-LIST
qualification-list-name
RUN procedure-name [GIVING qualification-list-name]

QUALIFY [qualification-list-name] qualification-clauses.

where the attribute-clause is:

EITHER

attribute-type-name = attr ibute~l [, attribute-2] ..

.

attribute-group-type-name =

(attribute-1-1, . . . , attr ibute-n-1

)

[, (attribute-1-2, . . . , attr ibute-n-2)] . .

.

with attr ibute- j-1 (j=l,...m) the jth attribute of

attr ibute-type-name-

1

RULES:

1. A relationship that is to be deleted is identified by

its type-name or class-type-name, as well as the name
of the two entities that it joins. If the names of

the two entities are not enough for unique qualifica-
tion (e.g., if there are two relationships of the same
type joining these two entities (having a USAGE-NAMES
attribute-group-type), and these relationships have
different USAGE-NAMES attributes) the potential
ambiguity may be resolved by adding an attribute-
clause. In either case, all qualifying relations
will be deleted.

2. Any entity-name specified must be either the primary

6-72

name of an entity or the short-name or the value of

an attribute of an attribute type designated as USE-
AS-IDENTITIFIER for the entity-type of the entity to

be modified (both prefixed by the implementor defined
character $).

3. The attribute-clause is used to identify the relation-
ships if there are potential ambiguities.

4. Because there may be several relationships that exist
because the entities have different versions, it is

possible to specify that the entity named entity-name-
2 or entity-name-3 is to be considered for the
currently latest version, for all versions, or for a

given version number. If no version clause is given,

only the latest entity-name is used to qualify the
relationship to be deleted; if ALL VERSIONS is speci-
fied for an entity, all specified relationships of all

versions of the entity will be deleted.

5. If no relationship exists for the command, the user is

informed by an error message.

6. The TO part of the list-clause may either be:

o given directly: entity-name-2, entity-name-3,
etc .

;

o current-list

o a qualification list stored previously in the
session;

o a previously stored procedure (RUN procedure-
name) ;

o a qualification command (QUALIFY ...).

7. If the GIVING clause is used in the RUN option, or if

the qua 1 i f i c a t i o n- 1 i s t-na m e is specified in the
QUALIFY option, then the resulting list is stored as

the named qua 1 i f i c a t i o n- 1 i s t and the current
qualification list is not changed.

6 73

8. The list-clause must have or produce relevant entity

names for the named relationship-type or relationship-

class-type, otherwise an error message will be gene-

rated for each invalid entity-type.

ACTIONS PERFORMED:

1. The selected relationship or set of relationships are

deleted from the dictionary.

2. entity-name-1 entity-name-2, entity-name-3, etc. will

be unchanged unless they are implicit (i.e., their
type is unknown), in which case they are also deleted
from the dictionary.

3. If any implicit entity is deleted, this fact is

reported to the user.

4. If no relationship exists, the user is notified.

5. The command is recorded in the log/audit file.

6. Notification of the completion of the execution of the

command is given to the user.

ERROR CONDITIONS:

1. The relationship-class-type-name or relationship-type-
name is not valid for the dictionary.

2. The entity-names do not exist in the dictionary.

3. The entity-types of the names are not valid for the
named relationship-type or relationship-class-type.

4. The r e 1 a t i o n s h i p (s) do(es) not exist in the
dictionary.

5. The version number, if given, is invalid for the
target entity (entity-name-2, entity-name-3, etc.).

6. The attribute-clause contains a t t r i bu te- type s or

6 74 (Rev. of 7-82 doc.)

attribute-group-types invalid for the relationship.

7. There is no current-list when the CURRENT-LIST option
is specified.

8. The named qualification-list has not been stored
during the session.

9. The procedure-name for the RUN option does not exist
in the dictionary.

10.

One or more of the qualification-clauses are invalid.

EXAMPLES

1. Consider Example 1. of the ADD-RELATIONSHIP command of

Section 6.3.2. The command

DELETE-RELATIONSHIP
SYSTEM-CONTAINS- PROGRAM
FROM A-SYSTEM TO XY123

reverses this addition.

2. Considering Examples 2. and 3. of that command, the
command

DELETE-RELATIONSHIP
CONTAINS
FROM A-SYSTEM TO XY123

also reverses the previous command. However, if XY123
is implicit (i.e., it was not known to be of program
type), then this implicit entity XY123 will also be

deleted

.

3.

To delete all CONTAINS relationships which exist
betwen A-SYSTEM and the latest version of XY123 with a

relationship attribute-type PATH# = 2156, the command
would be:

DELETE-RELATIONSHIP

6-75 (Rev. of 7-82 doc.)

CONTAINS
A-SYSTEM, XY123

PATH# = 2156

4. If the current-list contains XY123, then the same
result as example 1. results from:

DELETE-RELATIONSHIP
SYSTEM-CONTAINS-PROGRAM
FROM A-SYSTEM TO CURRENT-LIST

5. If all relationships of type SYSTEM-CONTAINS-PROGRAM
are to be deleted for all programs within the A-
SYSTEM, and the set of these program names has
previously been saved as the qualification list named
PROG-IN-SYS-A, then the relationships are deleted by:

DELETE-RELATIONSHIP
SYSTEM-CONTAINS-PROGRAM
FROM A-SYSTEM TO PROG-IN-SYS-A

The qualification command would have been:

QUALIFY
SOURCE IS A-SYSTEM
FOR SYSTEM-CONTAINS-PROGRAM
GIVING TARGET

6. If the procedure that produced the above list (PROG-
IN-SYS-A) was stored as PROG-SYS-A-PROC and we wish to

only delete relationships that have a relationship
attribute PATH# = 2156, the command could be:

DELETE-RELATIONSHIP
CONTAINS
FROM A-SYSTEM TO RUN PROG-SYS-A-PROC
PATH# = 2156

In this command, the current qualification list is

replaced (because no GIVING clause was included in the
RUN portion of the statement)

.

6-76

6.3.8 MODIFY-ENTITY COMMAND

PURPOSE: To modify attributes and/or attribute-groups of an

entity existing in the dictionary.

FORMAT: MODIFY-ENTITY
entity-name [NEW-VERSION [version-number]]
clause-1 [, clause-2] ...

RULES:

1. entity-name must be the primary name or short-name or

value of an attribute of an attribute type designated
as USE-AS-IDENTIFIER for the entity-type of the

entity to be modified (both prefixed by the implemen-
tor defined character $) of an entity in the
dictionary. This entity cannot be an implicit entity.

2. clause-1 ... are attribute clauses or attribute-group
clauses

.

3. If the optional clause NEW-VERSION is specified with-
out version-number the next highest version number
will be assigned to the entity specified and all
attributes, attribute-groups, and relationships, with
their associated attributes, will be COPYd to the

entity with the new version number from the entity
with the highest existing version number. The incre-
ment used to create the new version number from the
old version number is an installation-defined number.

4. If the optional clause NEW-VERSION is specified with
version-number, the number thus specified is used for

the new version, all attributes, attribute-groups, and

relationships, with their associated attributes, will
be COPYd to the entity with the new version number
from the entity with the highest existing version
number. This number must be greater than the largest
version number for this entity.

5. At least one attribute-clause or attribute-group

6-77

clause must be specified.

6. With exception of an attribute clause for an

attribute-type whose PICTURE = TEXT, an attribute
clause is of the form

attribute-type-name FROM value-1 TO value-2

to indicate the modification to take place. An
attribute is deleted by specifing

FROM value-1 TO *null

and an attribute is added by specifying

FROM *null TO value-2

Whenever value-1 is not null this value must exist in

the dictionary for the specified entity.

7. The form of an attribute clause for an attribute-type
whose PICTURE = TEXT is given in 6.1.4.

8. An attribute-group clause is of the form

attr ibute-g roup-type-name FROM {values-1} TO
{ values-2}

where {values-i} is of the form

(value-i-1, ... value-i-n)

each one of the values corresponding to an attribute-
type that makes up the attribute-group-type.

An attribute-group is deleted by specifying

FROM {values-1} TO *null

and an attribute-group is added by specifying

FROM *null TO {values-2}

whenever the set {values-1} is not null this set must

78

exist in the dictionary for the specified entity.9.

An attribute-type whose values are system-generated
cannot appear in an attribute clause.

10. Every attribute in an attribute clause or attribute-
group clause is subject to the attribute rules stated

in 6.1.3.

11. The security protection of an entity cannot be

modified with this command.

ACTIONS PERFORMED:

1. If the optional clause NEW-VERSION is specified, the

existing attributes, attribute-groups, and relation-
ships along with their attributes, are COPYd to an

entity with a new version number and all subsequent
modifications are made to this entity. If, in addi-
tion, a version-number has been specified, this number
is assigned to the new version.

2. The modifications specified in attribute clauses
and/or attribute-group clauses are made.

3. The audit attributes are updated. If a NEW-VERSION is

specified the audit attributes will be updated as if

the entity being modified were a new entity in the
dictionary.

4. The command is recorded in the log/audit file.

5. Notification of the completion of the execution of the

command is given to the user.

ERROR CONDITIONS:

1. entity-name is not the primary name of an entity in

the dictionary.

2. entity-name is the primary name of an implicit entity.

6-79

3. version-number is not higher than the highest existing

version number for the entity specified.

4. No attribute clause or attribute-group clause is

specified.

5. An attribute clause is specified which is not in the

proper form.

6. An attribute-group clause is specified which is not in

the proper form.

7. An attribute-type whose values are system-generated
appears in an attribute clause.

8. An attribute is specified which violates the attribute
rules stated in 6.1.3.

9. An attempt has been made to modify the security
provisions of the entity.

EXAMPLES

1. MODIFY-ENTITY
$PAY—NO
CLASSIFICATION FROM *null TO FINANCIAL

Here PAY-NO is the short-name of the entity PAYROLL-
NUMBER.

2. MODIFY-ENTITY
XY-126
DURATION
DURATION-VALUE FROM 1 TO 20

DURATION-TYPE FROM HOUR TO MINUTES

6-80

6.3.9 MODIFY—RELATIONSHIP COMMAND

PURPOSE:

FORMAT:

To modify the attributes and/or attribute-groups of a

relationship

.

MODIFY-RELATIONSHIP
{ relationship-type-name I re la tionship-c lass- type-name

}

enti ty-name-1 [ALL VERSIONS],
enti ty-name-2 [ALL VERSIONS]

[SEQUENCE-PARAMETER = parameter]

clause-1 [, clause-2] ...

where clause-1, clause-2, ... are the clauses that
specify the modifications that are to take place.

For modifications to an attribute (with exception of

an attribute-type whose PICTURE = TEXT) they are of

the form

attribute-type-name FROM value-1 TO value-2

to indicate the modification to take place. An
attribute is deleted by specifying

FROM value-1 TO *null

and an attribute is added by specifying

FROM *null TO value-2

Whenever value-1 is not null this value must exist in

the dictionary for the specified entity.

The form of an attribute clause for an attribute-type
whose PICTURE = TEXT is given in 6.1.4.

For modifications to an attribute-group the clauses
are of the form

attribute-group-type-name FROM {values-1}
TO {values-2}

6-81 (Rev. of 7-82 doc.)

where {values-i} is of the form

(value-i-1, ... value-i-n)

each one of the values corresponding to an attribute-

type that makes up the attribute-group-type.

An attribute-group is deleted by specifying

FROM {values-1} TO *null

and an attribute-group is added by specifying

FROM *null TO {values-2}

whenever the set {values-1} is not null this set must
exist in the dictionary for the specified entity.

RULES;

1. The schema must contain the relationship-type of

relationship-class-type specified

.

2. Entities with name entity-name-1 and entity-name-2
must exist in the dictionary.

3. The entity-type of enti ty-name~l and the entity-type
of entity-name-2 must be members of the relationship-
type specified or a member of one of the relationship-
types composing the relationship-class-type specified.

4. The relationship which is to be modified must exist in

the dictionary.

5. The SEQUENCE-PARAMETER clause must apply to the
relationship-type specified.

6. The attribute-types and/or attribute-group-types spec-
ified in clause-1, clause-2, ... must apply to the
relationship-type an instance or instances of which
is/are to be modified.

6-82

7. Each attribute and/or attribute-group which is speci-
fied in any of the clauses clause-1, clause-2, ... to

be modified or deleted, must exist in the dictionary.

8. An attribute-type whose values are system-generated
cannot appear in an attribute clause.

ACTIONS PERFORMED:

1. The particular relationship or set of relationships
existing with members entity-name-1 and entity-name-2
are modified by their attributes being changed from
the original set to the new set. Any unspecified
attributes are unchanged.

2. If ALL VERSIONS is specified for an entity in the
relationship, the relationships containing all ver-
sions (except for a version where the entity is in the

CONTROLLED status) of that entity will be modified.

3. The command is recorded in the log/audit file.

4. Notification of the completion of the execution of the

command is given to the user.

ERROR CONDITIONS:

1. The relationship-class-type-name or relationship-type-
name is not valid for the dictionary.

2. An entity-name is specified which does not exist in

the dictionary.

3. The entity-type of an entity-name specified is not
valid for the named relationship or relationship-
class .

4. The relationship specified does not exist in the

dictionary.

5. The SEQUENCE-PARAMETER clause does not apply to the
relationship to be modified.

6-83

6 . A clause is specified which contains an attribute-type

or attribute-group-type invalid for the relationship.

EXAMPLE

1. MODIFY-RELATIONSHIP
RECORD-CONTAINS-ELEMENT
PAYROLL-RECORD, EMPLOYEE-ID
VERIFICATION-DATE FROM 820115 TO 820601

This command will change the value of the attribute-
type VERIFICATION-DATE (which is associated with the

relationship-type RECORD-CONTAINS-ELEMENT) from 820115

to 820601 in the relationship whose members are

the latest versions of the entities PAYROLL-RECORD and

EMPLOYEE-ID.

2. MODIFY-RELATIONSHIP
LOCATION-HAS-DOCUMENTATION-OF-SYSTEM
AF123, PAYROLL-SYSTEM [ALL VERSIONS]
MEDIUM FROM HARD-COPY TO *null

This command deletes the attribute HARD-COPY of the
attribute-type MEDIUM from the relationships of type

LOCATION-HAS-DOCUMENTATION-OF-SYSTEM -whose members are

the location AF123 and the system PAYROLL-SYSTEM,
except for the version of that system which is in the

CONTROLLED status. This command would signify that
all hard-copy documentation of the payroll system,
except for an "operational" version had been removed
from the location AF123.

6.3.10 RENAME COMMAND

PURPOSE: To change the primary name of an entity. This
command applies only to an entity which is not an
instance of an entity-type which has system-generated

6 84

primary names.

FORMAT: RENAME
entity-name-1 AS entity-name-2

RULES:

1. entity-name-1 must be the primary name of an entity in

the dictionary.

2. The entity-type of entity-name-1 does not have system-
generated primary names.

3. There does not exist an entity with primary name
entity-name-2 in the dictionary.

4. entity-name-2 must be a valid primary name for an

entity of the entity-type of entity-name-1.

ACTIONS PERFORMED:

1. entity-name-1 is replaced by entity-name-2 in the

entire dictionary. In particular, if entity-name-1

(a) has multiple versions, and/or

(b) exists in more than one status,

the replacement extends to all such versions and/or
statuses

.

2. The audit attributes existing for entity-name-1 are

updated and assigned to entity-name-2.

3. The entity with primary name entity-name-1 ceases to

exist in the dictionary.

4. The command is recorded in the log/audit file.

5. Notification of the execution of the command is given
to the user.

6-85

ERROR CONDITIONS:

1. enti ty-name-1 is not a primary name of an entity.

2. entity-name-1 is an instance of an entity-type which

has system-generated primary names.

3. entity-name-2 is the name of an entity existing in the

dictionary.

4. entity-name-2 is not a valid name for an entity of the

entity-type of which entity-name-1 is an instance.

EXAMPLE

Suppose PAYROLL-FILE is an instance of the entity-type
FILE in the dictionary and that it is desired to

change its name to CURRENT-PAYROLL. The required
command is:

RENAME PAYROLL-FILE AS CURRENT-PAYROLL

Possible error conditions encountered might be:

(a) There currently exists an entity in the
dictionary (not necessarily a file) which has

the primary name CURRENT-PAYROLL.

(b) There exists an installation standard that the

primary name of an entity of type FILE must be

at least 4 characters in length, but cannot
exceed 14 characters. This condition would
exist in the schema, where for the entity-type
FILE the following m e t a - a t t r i b u t e - t y pe
specif iciations have been made:

MINIMUM-NAME-LENGTH = 4

MAXIMUM-NAME-LENGTH =14

The primary name CURRENT-PAYROLL has a length

6-86 (Rev. of 7-82 doc.)

of 15 characters and hence does not represent
a valid primary-name for a FILE. The RENAME
command would then not be allowed to execute.

6.3.11 RENUMBER COMMAND

PURPOSE: To renumber the line numbers for attribute-types for

which the value TEXT has been specified for the meta-
attribute-type PICTURE.

FORMAT: RENUMBER
list-clause
{ATTRIBUTE-TYPE = attribute-type-name
FROM integer-1, integer-2
TO integer-3 [WITH-INCREMENT integer-4]}...

where list-clause is one of the following:

entity-name-1 [ALL VERSIONS] [, enti ty-name-2
[ALL VERSIONS]] ...

CURRENT-LIST
qualification-list-name
RUN procedure-name [GIVING qualification-list-name]
QUALIFY [qualification-list-name] qualification-clauses.

RULES:

1. entity-name-1 ... must be the primary name of an

entity or short-name or value of an attribute of an

attribute type designated as USE-AS-IDENTITIFIER for

the entity-type of the entity whose line numbers are

to be modified (both prefixed by the implementor
defined character $).

2. attribute-type-name must be the name of an attribute-
type for which PICTURE = TEXT has been specified.

3. An attribute-type specified in the command must be

6-87 (Rev. of 7-82 doc.)

associated with the entity-type of the entities
specified in the list-clause.

4. The list-clause is used to provide a list of entities

that are to have their lines renumbered either by:

o direct naming;

o using the current entity names in the
qualification-list;

o using a set of entity names generated and stored

previously in the session;

o using a stored procedure to generate the list;

o using a qualification statement.

5. integer-1, ... , integer-4 must be positive integers
with integer-1 being not greater than integer-2.

6. The default value for integer-4 is 1.

ACTIONS PERFORMED:

1. For every entity specified, the line numbers of the
attributes of a designated attribute-type are changed
in the following manner:

- line (integer-1)

becomes line (integer-3)

line (integer-1) +1

becomes line (integer-3) + (integer-4

)

- line (integer-1) =2

becomes line (integer-3) +2x (integer-4

)

6-88

- line (integer-2)

becomes line (integer-3)+

((integer-2)- (integer-1))

x

(integer-4)

2. Any line existing in the range from (integer-3) to

(integer-3)+((integer-2)-(integer-l)) x (integer-4

)

which in not in the range from (integer-1) to

(integer-2) will be deleted and the line number and

contents of that line will be returned to the user.

3. The command is recorded in the log/audit file.

4. Notification of the completion of execution of the

command is given to the user.

ERROR CONDITIONS:

1. There is no current-list when the CURRENT-LIST option
is specified.

2. The named qualification-list has not been stored
during the session.

3. The procedure-name for the RUN option does not exist
in the dictionary.

4. One or more of the qualification-clauses are invalid.

5. An attribute-type is specified for which PICTURE =

TEXT has not been specified.

6. One of integer-1, ... , integer-4 has been specified
as not being a positive integer.

7. integer-2 has been specified a being less than
integer-1

.

6-89

EXAMPLE

RENUMBER
ELEMENT-LIST
ATTRIBUTE-TYPE = DESCRIPTION
FROM 1,1000 TO 10 WITH INCREMENT 5

Here it is assumed that ELEMENT-LIST is a qualifica-
tion list containing the primary name of all entities

of type ELEMENT in the dictionary. The command will
renumber the line numbers of the attributes of type
description in the following manner:

line 1 becomes line 10

line 2 becomes line 15

line 3 becomes line 20

line 1000 becomes line 5005

Any existing line in the range from 1001 to 5005 is

deleted from the dictionary, and its contents and line
number is returned to the user.

6 . 4 REPORT COMMANDS

This section contains the specification of the commands that are

available for producing reports from the dictionary. The

following commands (listed in alphabetic order by command name)

are being specified:

CATALOG
IMPACT-OF-CHANGE
IMPLICIT-ENTITIES
LIST
ORPHANED-ENTITIES
PRODUCE-SYNTAX
VERSION-REPORT

6.4.1 CATALOG COMMAND

PURPOSE: To produce a report on selected entities that shows
their attributes and attribute-groups, as well as

specified relationships together with their attributes

and attribute-groups. An option exists to show only
specified attribute-type values in order to provide
the user with a degree of customization.

FORMAT: CATALOG
Report-Set
Relationship-Set
attribute-type-specification-clause
Report-sequence
[REPORT-TITLE [EVERY-PAGE] = "string"]

[Destination]

where Report-Set is one or more of the following:

ALL
entity-type-name-1 [, entity-type-name-2] . .

.

entity-name-1 [,enti ty-name-2] . .

.

CURRENT-LIST
qual i f i cat ion-1 ist-name

6 91 (Rev. of 7-82 doc.)

RUN procedure-name [GIVING qualification-list-name]

QUALIFY [qualification-list-name] qualification-

clauses

where Relationship-Set is one of the following:

ALL-RELATIONSHIPS
The name(s) of one or more relationship-type (s)

The name(s) of one or more relationship-class-
type (s)

The name(s) of one or more relationship-type-
chain (s)

where attribute-type-specification-clause is

[attribute-type-name-1 [, attribute-type-name-2] . ..]

[attr ibute-group-type-name-1 [a ttr ibute-group-type-
name-2] ...] | ALL-ATTRIBUTES

where, if the relationship-type-chain option is not
used, the Report-Sequence clause is one of the
following

:

a) SEQUENCE: REPORT-SET ENTITY-NAME

REPORT-SET ENTITY-TYPE-NAME
RELATIONSHIP-TYPE-NAME
RELATED ENTITY-NAME

b) SEQUENCE: REPORT-SET ENTITY-TYPE-NAME
REPORT-SET ENTITY-NAME
RELATIONSHIP-TYPE-NAME
RELATED ENTITY-NAME

where, if the relationship-type-chain option is used,

the Report-Sequence clause is one of the following:

a) SEQUENCE: REPORT-SET ENTITY-NAME

b) SEQUENCE: REPORT-SET
REPORT-SET

ENTITY-TYPE-NAME
ENTITY-NAME

and where the Destination clause is one of the

6-92

following

:

a) device-name

b) name of desired location of output

RULES:

1. The Report-Set clause selects the specific qualifica-
tion list that is to be used as the target set for the

report. At least one of the alternatives must be

given. If more than one is given, the resulting list
will be their union.

2. The current-list will only be changed if the RUN
option is used with the GIVING clause, or if the
QUALIFY option is used with the qualification-list-
name option included.

3. The use of ALL provided a catalog of all entities
existing in the dictionary.

4. If ALL-RELATIONSHIPS is specified in the Relationship-
Set, all relationships in which an entity of above is

a member will also be reported on. For each such
relationship, the attributes and attribute-groups of

the relationship, as well as the name and entity-type
of the other member of the relationship will be

reported. Implicit entities will also be reported with

the relationship-class-type that was specified in

their creation.

5. The name of a relationship-type in the Relationship-
Set must be such that it applies to at least one
entity-type of the entities that are being reported
on

.

6. The name of a relationship-class-type in the Relation-
ship-Set must be such that it applies to at least one

entity-type of the entities that are being reported
on.

6 93

7. A relationship-type-chain is a sequence

relationship-type-1, ... , relationship-type-n

where consecutive relationships in the sequence have a

common entity-type, and where loops are not permitted.

All entities that are members of a relationship whose

relationship-type is a component of a chain will be

reported on, and all attributes and attribute-groups
of the relationship-types will be shown.
relationship-type-1 must have as a member an entity-
type which pertains to the entities being reported on.

8. Entities that are members of relationships of the
relationship-types that are components of a relation-
ship-type-chain will be reported in the order of the

chain.

9. Every en t i ty-type-name must exist in the dictionary
schema.

10. Unless a specific version-number is specified for a

Report-Set entity, the entity with the highest version
number will be reported on. Related entities reported
on will be those with the highest version number
occurring in the relationship.

11. The optional REPORT-TITLE clause specifies the title
that is to be shown on the report. If the EVERY-PAGE
subclause is given, this title will appear on every
page of the report. The maximum length of the string
that can be specified is implementor-defined.

12. The default for the Destination clause is an implemen-
tor option.

ACTIONS PERFORMED:

1. For every entity to be reported on, the following will
be produced:

a) The primary name of the entity and its entity-
type.

6-94

2 .

b) The attributes and attribute-groups correspon-
ding to the a t t r i bute-types and attribute-
group-types that have been specified.

For every Related entity that is being reported, the
primary name of the entity and its entity-type will be

shown.

3. If an entity-name is specified which does not exist in

the dictionary, the execution of the command will not

abort, but a warning message will be issued.

4. If a destination clause is given, the report will
either be output on 'the device specified or "placed"
in the named location.

ERROR CONDITIONS:

1. An entity-type-name which does not exist in the schema
is specified.

2. An entity-name which does not exist in the dictionary
is specified.

3. There does not exist a current-list, i.e. the user has

not issued a QUALIFY command in the current session.

4. A qualification-list-name which does not exist is

specified.

5. The specified procedure-name is not known to the
system.

6. The qualification-clauses refer to a non-existent
entity-type-name and/or entity-name.

7. The relationship-type-chain option has not been used

and a relationship-type has been specified that does
not pertain to the entities being reported on.

8. The relationship-type-chain option is being used and a

chain has been specified which does not meet the

6-95

conditions of Rule 7.

9. An invalid attribute-type-name and/or attribute-group-
type name is specified.

10. The location specified in the Destination clause is

not a valid location.

EXAMPLES

1 . CATALOG
FILE, RECORD, ELEMENT

CONTAINS
SEQUENCE: REPORT-SET ENTITY-TYPE-NAME

REPORT-SET ENTITY-NAME
RELATIONSHIP-TYPE-NAME
RELATED ENTITY-NAME

This command produces the following report:

a. the word FILE

b. the primary name of entities of type FILE, in

alphabetic order, with their attributes.

c. for each such entity, the relationship-type-
name of the relationship-class-type (in this
case FI LE-CONTAINS-RECORD) , followed by its

attributes and/or attribute groups, and then
by the primary names of all entities of type

-If

RECORD that participate in a relationship' with
the entity of type FILE.

d. the word RECORD

e. the primary name of entities of type RECORD,
in alphabetic order, with their attributes.

f. the word RECORD-CONTAINS-ELEMENT followed by

the attributes and/or attribute groups of the

relationship, and then the primary names of
all entities of type ELEMENT that participate
in a relationship with an entity of type

6-96

RECORD appearing in e. above
2.

CATALOG
ALL
SEQUENCE: ENTITY-NAME

This command produces a report showing all entities in

the dictionary. The entities will be ordered
alphabetically by primary name, and all their
attributes and attribute-groups will be given. Only
the latest version will be shown unless the user has
indicated that entities in the CONTROLLED status are
to be reported on.

3. CATALOG

FILE-A, FILE-B
SEQUENCE: ENTITY-NAME

This command produces a report giving FILE-A and
FILE-B, with all their attributes and attribute-
groups .

4. CATALOG
CURRENT-LIST
SEQUENCE: ENTITY-TYPE-NAME, ENTITY-NAME

PRESIDENTS-PRINTER

This command produces a report of all entities in the

current qualification list with all their attributes
and attribute groups. The output order is all enti-
ties of a given type printed in sequence (i.e., the

major key is ent i ty- type-name , and the minor key is

entity-name). The report is sent to the "President's

Printer"

.

5.

CATALOG
QUALIFY ELEMENT LANGUAGE = COBOL
SEQUENCE: ENTITY-NAME

This command produces a report of all elements that

6-97

have a COBOL name, gives all their attributes and

attribute-groups, with the order being alphabetical by

primary name of the entities.

6 . CATALOG
RUN PROCEDURE-QL-1
LENGTH, DESCRIPTION
SEQUENCE: ENTITY-NAME

It is assumed that there exists a stored procedure
with name PROCEDURE-QL-1 that generates entities of

type RECORD; the command will execute this procedure
and will produce a report of all these entities
showing their type (i.e. RECORD) along with their
LENGTH attribute and DESCRIPTION. The order will be

alphabetic by primary name of the entities.

7. CATALOG
ZIPLIST
DESCRIPTION, CLASSIFICATION
SEQUENCE: ENTITY-NAME

This report contains the entities with their primary
name and entity-type which are contained in the
qualification list ZIPLIST. Also shown are the
attributes of type DESCRIPTION and CLASSIFICATION of

these entities. The order is alphabetic by primary
name of the entities.

6.4.2 IMPACT-OF-CHANGE COMMAND

PURPOSE: To provide a capability to identify all entities in

the dictionary which might be impacted in some manner
by a change to designated entities. The resulting
report is similar to the LIST command report, except
that the contents of this report are further
restricted by the semantics of the command to include
only potentially impacted entities.

6-98

FORMAT: IMPACT-OF-CHANGE

[Report-Set]

[Relationship-Set]

Report-Sequence
[REPORT-TITLE [EVERY-PAGE]

[Destination]

= "string"]

where Report-Set is one of the following:

ALL
entity-type-name-1 [, entity-type-name-2] . .

.

entity-name-1 [, entity-name-2] . .

.

CURRENT-LIST
qual i f i cat ion-1 is t-name
RUN procedure-name [GIVING qualification-list-name]
QUALIFY [qualification-list-name] qualification-

clauses

where Relationship-Set is one of the following:

ALL-RELATIONSHIPS
ALL-RELATIONSHIP-CHAINS
The name(s) of one or more relationship-type (s)

The name(s) of one or more relationship-class-
type (s)

The name(s) of one or more rela t i onsh i p-type-
chain (s

)

Whenever the "one or more rel a t i onsh i p- type-cha i
n"

option is not used, the Report-Sequence clause will be

one of the following:

a) SEQUENCE: REPORT-SET PRIMARY-NAME
REPORT-SET ENTITY-TYPE-NAME
RELATIONSHIP-TYPE-NAME
RELATED PRIMARY-NAME
RELATIONSHIP-CLASS-TYPE-NAME
RELATED IMPLICIT-ENTITY-NAME

b) SEQUENCE: REPORT-SET ENTITY-TYPE-NAME
REPORT-SET PRIMARY-NAME
RELATIONSHIP-TYPE-NAME

99

RELATED PRIMARY-NAME
RELATIONSHIP-CLASS-TYPE-NAME
RELATED IMPLICIT-ENTITY-NAME

where the expressions serve to distinguish between
entities that exist in the (optionally qualified)
Report-Set and those that are members of the relation-
ships being reported on.

When the r ela t i onshi p- type-cha i n option is used the

Report-Sequence clause is one of the following:

a) SEQUENCE: REPORT-SET ENTITY-NAME

b) SEQUENCE: REPORT-SET
REPORT-SET

ENTITY-TYPE-NAME
ENTITY-NAME

Entities that are members of relationships of the

relationship-types that are components of a relation-
ship- type-cha i n will be reported in the order of the
chain.

and where the Destination clause is one of the
following

:

a) device-name

b) name of desired location of output

RULES:

1. The Report-Set clause selects the specific qualifica-
tion list that is to be used as the target set for the

report. At least one of the alternatives must be

given. If more than one is given, the resulting list
will be their union.

2. The current-list will only be changed if the RUN
option is used with the GIVING clause, or if the
QUALIFY option is used with the qualification-list-
name option included.

3. The use of ALL provided a catalog of all entities

6 100

existing in the dictionary.

4. If ALL-RELATIONSHIPS is specified in the Relationship-
Set, all relationships in which the entity (to be

reported on) is a member will also be reported on.

For each such relationship, the name, usage-name and
the entity-type of the member of the relationsship
will be reported. Implicit entities and the
r e 1 a t i o n sh i p- c 1 a s s - 1 y pe that was used in their
creation will also be reported.

5. If ALL-RELATIONSHIP-CHAINS is specified in the
Relationship-Set, all chains are "traced" to identify
all entities which are either directly related
(because a relationship exists in the dictionary) or

derivable by tracing the relationships, without
looping, to identify all entities which are related by

implication to the source entity. The resulting
entities and relationships will be reported on per the

ALL relationship described above.

A relationship-type-chain is a sequence

relationship-type-1, ... , relationship-type-n

where consecutive relationships in the sequence have a

common entity-type, and where loops are not permitted.
All entities that are members of a relationship whose
relationship-type is a component of a chain will be

reported on, and all attributes and attribute-groups
of the r e 1 a t i o n s h i

p - t y p e s will be shown.
relationship-type-1 must have as a member an entity-
type which pertains to the entities being reported on.

6. If a relationship-type or relationship-class-type name
is specified in the Relationship-Set, the relation-
ships and entities are restricted to the types speci-
fied. The report elements are the same as those
mentioned above.

7. The name of a relationship-type in the Relationship-
Set must be such that it applies to at least one
entity-type of the entities that are being reported
on

.

6 101

8. The name of a relationship-class-type in the

Relationship-Set must be such that it applies to at

least one entity-type of the entities that are being
reported on.

9. Unless a specific version-number is specified for a

Report-Set entity, impact-of-change will be determined
for the entity with the highest version-number.

10. All versions of related entities will be reported on.

The sequence of reporting will be in descending
version-number sequence within relationship-type-name.

11. The optional REPORT-TITLE clause specifies the title

that is to be shown on the report. If the EVERY-PAGE
subclause is given, this title will appear on every
page of the report. The maximum length of the string
that can be specified is implementor-defined.

12. The default for the Destination clause is an implemen-
tor option.

ACTIONS PERFORMED:

1.

For every "impacted" entity, the following is

produced

:

a) The primary-name of the entity and the entity's
type.

b) The names of all relationship-types or relation-
ship-class-types it is involved in with respect to

the source entity and as qualified by the
relationship-set.

2. If an entity-name is specified which does not exist in

the dictionary, the execution of the command will not

abort, but a warning message will be issued.

3. If a Destination clause is given, the report will
either be output on the device specified or "placed"
in the named location.

6 - 102

ERROR CONDITIONS:

1. An entity-type-name is specified which does not exist
in the schema.

2. An entity-name which does not exist in the dictionary
is specified.

3. There is no current-list, i.e. the user has not issued

a QUALIFY command in the current session.

4. A qualification-list-name which does not exist is

specified.

5. The specified procedure-name is not known to the

system.

6. The qualification-clauses refer to a non-existent
entity-type-name and/or entity-name.

7. The relationship-type-chain option has not been used

and a relationship-type has been specified that does
not pertain to the entities being reported on.

8. The relationship-type-chain option is being used and a

chain has been specified which does not meet the

conditions of Rule 5.

9.

The location specified in the Destination clause is

not a valid location.

EXAMPLES

1. IMPACT-OF-CHANGE
RUN FILE-PROC
ALL-RELATIONSHIPS
SEQUENCE: REPORT-SET PRIMARY NAME

REPORT-SET ENTITY-TYPE-NAME
RELATIONSHIP-TYPE-NAME
RELATED PRIMARY-NAME
RELATIONSHIP-CLASS-TYPE-NAME

6 103

RELATED IMPLICIT-ENTITY-NAME
PRESIDENTS-PRINTER

The primary names of entities that qualify by running

the procedure are examined to determine which entities

they are related to (through any possible
relationship). The output is then sequenced as

follows

:

a) The primary names of the original entities
that qualified;

b) Their entity-types;

c) The primary names of the entities to which
they are related;

d) The name of the relationship-class-type that

links them;

e) The names of any implicit entities.

2. IMPACT-OF-CHANGE
QUALIFY ENTITY-TYPE ELEMENT CONTAINS
SEQUENCE: REPORT-SET ENTITY-TYPE-NAME

REPORT-SET PRIMARY-NAME
RELATIONSHIP-TYPE-NAME
RELATED PRIMARY-NAME
RELATIONSHIP-CLASS-TYPE-NAME
RELATED IMPLICIT-ENTITY-NAME

Here a list of all primary names of elements is first
produced and then the relationship class CONTAINS is

used to determine all other entities (of several
types, such as FILE and RECORD) that are related to

the elements by this relationship class. A report is

then generated with a slightly different sequence to

the ones in the first example.

3. IMPACT-OF-CHANGE
QUALIFY ENTITY ZIP FOR ENTITY-TYPE ELEMENT ONLY
FI LE-CONTAINS-ELEMENT

6 104

6 . 4.3

PURPOSE

FORMAT:

RULES:

REPORT-DERIVED-FROM-FILE
FILE-PROCESSED-BY-SYSTEM
SEQUENCE: REPORT-SET-ENTITY-NAME
PRESIDENTS-PRINTER

All elements which have an alternate name of ZIP are
selected. For each of these elements which is part of

a FILE-CONTAINS-ELEMENT relationship, the files
are "selected". For each of these files which is in

either a REPORT-DERI VED-FROM-FILE or FILE-PROCESSED-
BY-SYSTEM relationship, the corresponding REPORT
and/or system entity is "selected". The resulting
report presents the selected elements in alphabetical
sequence. For each one of these elements, the selected

relationships and their types/attributes are
presented. The results are sent to the president's
printer

.

IMPLICIT-ENTITIES COMMAND

To generate a report on the implicit entities in the
dictionary along with the entities that were used in

their creation.

IMPLICIT-ENTITIES
[REPORT-TITLE [EVERY-PAGE] = "string"]

[Destination]

where the Destination clause is one of the following:

a) device-name

b) name of desired location of output

. The optional REPORT-TITLE clause specifies the title

that is to be shown on the report. If the EVERY-PAGE
subclause is given, this title will appear on every

6 - 105

page of the report. The maximum length of the string

that can be specified is implementor-defined.

2. The default for the Destination clause is an implemen-

tor option.

ACTIONS PERFORMED:

1. A report is generated in alphabetic sequence that
shows for each implicit entity in the dictionary

a) the name of the implicit entity, and its audit
attributes

,

b) the name of the relationship-class-type that
was used in its creation,

c) the name of the entity that was used in its

creation, along with all of its attributes and

attribute-groups.

2. If a Destination clause is given, the report will
either be output on the device specified or "placed"
in the named location.

ERROR CONDITIONS:

1. The location specified in the Destination clause is

not a valid location.

EXAMPLE

IMPLICIT-ENTITIES
PRESIDENTS PRINTER

6 - 106

6.4.4 LIST COMMAND

PURPOSE

FORMAT:

RULES:

ACTIONS

To produce a report which contains the primary names
of entities of designated entity-types.

LIST

{ALL | enti ty-type-name-1 [, enti ty- type-name- 2]

... }

[REPORT-TITLE [EVERY-PAGE] = "string"]

[Destination]

where the Destination clause is one of the following:

a) device-name

b) name of desired location of output

. Every entity-type-name specified must be the name of

an entity-type in the schema.

. The optional REPORT-TITLE clause specifies the title

that is to be shown on the report. If the EVERY-PAGE
subclause is given, this title will appear on every
page of the report. The maximum length of the string

that can be specified is implementor-defined.

. The default for the Destination clause is an implemen-
tor option.

PERFORMED:

. If ALL is specified, the report will include all

entity-types

.

. For each entity-type specified, the report will list
(all versions) of all entities of that entity-type,
showing (in alphabetic sequence by en t i ty-type-name
and entity-name)

6 107

a) the primary name of the entity and its entity-
type,

b) the attributes of attribute-type STAGE and
STATUS,

c) the audit attributes.

3. If a Destination clause is given, the report will
either be output on the device specified or "placed"
in the named location.

ERROR CONDITIONS:

1. An invalid entity-type-name has been specified.

2. The location specified in the Destination clause is

not a valid location.

6.4.4A ORPHANED-ENTITIES COMMAND

PURPOSE: To generate a report on the orphaned entities in the
dictionary, i.e., entities that are not members of any
relationship

.

FORMAT: ORPHANED-ENTITIES
[REPORT-TITLE [EVERY-PAGE] = "string"]
[Destination]

where the Destination clause is one of the following:

a) device-name

b) name of desired location of output

5 - 108 (Rev. of 7-82 doc.)

RULES:

1. The optional REPORT-TITLE clause specifies the title

that is to be shown on the report. If the EVERY-PAGE
subclause is given, this title will appear on every
page of the report. The maximum length of the string
that can be specified is implementor-defined.

2. The default for the Destination clause is an implemen-
tor option.

ACTIONS PERFORMED:

1. A list of all orphaned entities is generated in alpha-
betic sequence by entity-type and within entity-type
by primary name in alphabetic sequence.

2. For each entity listed, all attributes and attribute-
groups of the entity will be presented in a manner
similar to the CATALOG command.

3. If a Destination clause is given, the report will
either be output on the device specified or "placed"
in the named location.

ERROR CONDITIONS:

1. The location specified in the Destination clause is

not a valid location.

EXAMPLE

ORPHANED-ENTITIES
REPORT-TITLE EVERY PAGE =

JANUARY 1, 1983"

DICT-ADM-PRINTER

"ORPHANED ENTITIES REPORT -

6 108A (Rev. of 7-82 doc.)

6 . 4 . 4B PRODUCE-SYNTAX COMMAND

PURPOSE:

FORMAT:

RULES:

1 .

To generate a report, for a selected set of entities,
of all attributes, attribute-groups, and relationships
of these entities in a format of ADD-ENTITY and ADD-
RELATIONSHIP commands.

PRODUCE-SYNTAX
Report Set

[Destination]

where Report-Set is one or more of the following:

ALL

entity-type-name-1 [, enti ty-type-name-2] . .

.

entity-name-1 [, entity-name-2] . .

.

CURRENT-LIST
qualification-list-name
RUN procedure-name [GIVING qualification-list-name]
QUALIFY [qualification-list-name] qualification-

clauses

and where the Destination clause is one of the
following

:

a) device-name

b) name of desired location of output

The Report-Set clause selects the specific qualifica-
tion list that is to be used as the target set for the

report. At least one of the alternatives must be
given. If more than one is given, the resulting list
will be their union.

The current-list will only be changed if the RUN
option is used with the GIVING clause, or if the
QUALIFY option is used with the qualification-list-

6 - 108B (Rev. of 7-82 doc.)

name option included.

3. The use of ALL provided a catalog of all entities
existing in the dictionary.

4. Every entity-type-name must exist in the dictionary
schema

.

5. Unless a specific version-number is specified for a

Report-Set entity, the entity with the highest version
number will be reported on. Related entities reported
on will be those with the highest version number
occurring in the relationship.

6. The default for the Destination clause is an implemen-
tor option.

ACTIONS PERFORMED:

1. For each entity in the Report Set, the report will
list

:

the primary name of the entity and its entity-type

the attributes and attribute-groups of the entity
in the format of how they would appear in an ADD-
ENTITY command.

- for every relationship in which this entity is a

member, the name of a r e 1 a t i onsh i p- type of which
this relationship is an instance and the primary
name of the entity which is the other member of the

relationship.

- the attributes and a t t r i b u t e - g r o u p s of this
relationship in the format of how they would appear
in an ADD-RELATIONSHIP command.

2. The order of this report is the following:

- alphabetic by primary name of entity in the Report
Set

;

6 - 108C (Rev. of 7-82 doc.)

alphabetic by name of the relationship-type;

alphabetic by primary name of the entity which is

the other member of the relationship;

- attribute clauses are in alphabetic order of the

attribute-type name;

attribute-group clauses are in alphabetic order of

the attribute-group-type name.

3.

The default for the Destination clause is an implemen-
tor option.

ERROR CONDITIONS:

1 . An entity-type-name which does not exist in

is specified.
the schema

2. An entity-name which does not exist in the dictionary
is specified.

3. There does not exist a current-list, i.e. the user has

not issued a QUALIFY command in the current session.

4. A qualification-list-name which does not exist is

specified

.

5. The specified procedure-name is not known to the
system.

6. The qualification-clauses refer to a non-existent
entity-type-name and/or entity-name.

7. The location specified in the Destination clause is

not a valid location.

. of 7-82 doc.)6 108D (Rev

6.4.5 VERS ION-REPORT COMMAND

PURPOSE:

FORMAT

:

To generate a report on all versions of selected
entities

.

VERSION-REPORT
Report-Set
Report-sequence
[REPORT-TITLE [EVERY-PAGE] = "string"]

[Destination]

where Report-Set is one of the following:

ALL
entity-type-name-1 [, entity-type-name-2] . .

.

entity-name-1 [, entity-name-2] . .

.

CURRENT-LIST
qualification-list-name
RUN procedure-name [GIVING qualification-list-name]

6 - 108E (Rev. of 7-82 doc.)

QUALIFY [qualification-list-name] qualification-
clauses

where the Destination clause is one of the following:

a) device-name

b) name of desired location of output

RULES:

1. The Report-Set clause selects the specific qualifica-
tion list that is to be used as the target set for the

report. At least one of the alternatives must be

given. If more than one is given, the resulting list
will be their union.

2. The current-list will only be changed if the RUN
option is used with the GIVING clause, or if the

QUALIFY option is used with the qualification-list-
name option included.

3. The use of ALL provided a catalog of all entities
existing in the dictionary.

4. The optional REPORT-TITLE clause specifies the title

that is to be shown on the report. If the EVERY-PAGE
subclause is given, this title will appear on every
page of the report. The maximum length of the string

that can be specified is implementor-defined.

5. The default for the Destination clause is an implemen-
tor option.

ACTIONS PERFORMED:

1. For each Report-Set entity version the following will
be reported:

a) All attributes and attribute-groups of the

version

b) All relationships in which the version parti-

6 109

cipates, along with the attributes and attri-

bute-groups of the relationship and the

primary name of the other member of the rela-

tionship (if more than one version of that
entity exists in such relationships, only the

one with the highest version number will
appear)

.

c) The names of the implicit entities that were
created using the Report-Set entity as the

other member in the ADD-RELATIONSHIP command.

2 . If an entity-name is specified which does not

the dictionary, the execution of the command
abort, but a warning message will be issued.

exist in

will not

3.

If a Destination clause is given, the report will
either be output on the device specified or "placed"
in the named location.

ERROR CONDITIONS:

1. An entity-type-name is specified which does not exist

in the schema.

2. A qualification-list-name is specified which does not
exist.

3. There does not exist a current-list, i.e. the user has

not issued a QUALIFY command in the current session.

4. An invalid qualifying clause has been specified.

5. The location specified in the Destination clause is

not a valid location.

6 - 110

6.5 QUERY COMMANDS

While the reporting capabilities can be used to generate a short
report, which may be returned on-line to the user terminal, the

use of a report capability is generally less user friendly than
using a query facility. This section discusses formats of simple
queries that can be used to generate simple outputs. In general
they use the qualification clauses of section 6.2.1 as basic
building blocks, but the query uses special keywords to simplify
the user's task.

In generating a set of useful commands for on-line queries, it

was assumed that the full set of qualification clauses should be

available for the general query statement, but that these could

be replaced by a qualification list. The command structure is in

two parts: The first part deals with a generalized query command
and operations on that command; and the second part is composed
of a set of specialized queries.

Every query command will first return a count of qualified
entities to the user; at this point the user has the option of

directing further output from the query to an alternate location
with a Destination clause.

6.5.1 GENERAL QUERY COMMAND

PURPOSE: A general query command has almost
general reporting command except
the output is not specified by the

is not expected to be large (tho

restriction), and hence headers a

not required.

the same power as a

that the format of

user and the output
ugh this is not a

nd page counts are

6 111 (Rev. of 7-82 doc.)

FORMAT: QUERY [query-name]

{qualification-list-name | CURRENT-LIST |WORK

procedure-name IQUALIFY qualify-clause}

[GIVING {ALTERNATE-NAME [AND CONTEXT] | START ENTITY 1

attribute-type [,attr i bute-type]...}...] I ALL
ATTRIBUTE-TYPES

RULES:

1. The Query may optionally be named. If a name is

given, it may be reused through a SAVE-QUERY command
(as discussed later).

2. The qualification list may be selected through provi-
ding the name of an available list (i.e., one that was

previously constructed), or by requesting the current-
list, or by generating it (RUN) through a previously
stored procedure (procedure-name), or by providing a

QUALIFY statement.

3. The current-list will not be changed as the result of

applying the Query command.

4. Output, with no GIVING subclause, is the list of

entity names that were in the qualification list.

5. The use of the alternate name provides 'pairs' of the

entity-name (primary) and any alternate name(s). If

the context clause is added, the alternate name
context is also included.

6. If the RUN or QUALIFY options are used, then the

alternate name context, if used, in the alternate-
name-selection-clause (see 6. 2. 1.2) will select rele-
vant contexts (e.g., if this clause is for COBOL, then

any PL/I contexts will be ignored).

7. The use of the START ENTITY clause will mean special
print out of the entities that were selected using a

relationship-restriction-clause. The special print-
out will show which starting entity-name is related to

6 112

which other entity name and its relationship-type.

8. Any specified a ttr i bute-types will be output along
with the entity-type for which they are relevant ;

irrelevant attribute-types will be ignored, but if no

entity-type is appropriate to the a tt r i bute-types
specified, a warning message is sent to the user.

9. The use of the creation and update subclause will
cause all such relevent data to be output with each
entity

.

ERROR CONDITIONS:

1. Any error in a RUN or QUALIFY command will cause an

abort of the command. If the qualification-list-name
is not known to the system, the command aborts. In

each case, the reason for aborting is made known to

the user.

2. An attribute-type exists which does not pertain to an

entity of the qualification-list.

6.5.2 SAVE-QUERY COMMAND

PURPOSE: To save a query previously named and used in the

session

.

FORMAT: SAVE-QUERY query-name
[SAVE-TEXT (text)]

RULES:

1. The query-name must be a previously named query,
generated during the session.

2. Optional text may be added to produce a non-executed
comment, available to the user for explanation.

6 113

3. Any saved text may be renewed by GIVE-SAVED-TEXT.

ACTIONS PERFORMED:

1. The query that was previously named is stored (in some

implementor defined location) with any optional text.

ERROR CONDITIONS:

1. The query-name is unknown to the system. The command
aborts and the user is informed.

6.5.3 RUN-QUERY COMMAND

PURPOSE: To execute a previously saved query.

FORMAT: RUN-QUERY query-name

RULES:

1. The query-name must refer to a previously stored
command. If the system does not have any knowledge of

the named query, the command aborts with a comment to

the user.

2. The "text", if any exists, is ignored in the execution
of the query. (See 6.5.2)

ERROR CONDITIONS:

1. The query-name does not refer to a previously stored
query.

6 114

6.5.4 DELETE-QUERY COMMAND

PURPOSE: To delete a previously stored query.

FORMAT: DELETE-QUERY query-name

RULES:

1. The query name must refer to a previously stored
command. The system will comment if it cannot find
the referenced query and the command will abort.

2. The user will be provided positive response upon execution
of the query.

ERROR CONDITIONS:

1. The query-name does not refer to a previously stored
query.

6.5.5 LIST-QUERIES COMMAND

PURPOSE: To give a list of all stored queries.

FORMAT: LIST-QUERIES

[TEXT ALSO]

[PROCEDURE ALSO]

RULES:

1. A count is appended to the output list.

2. Optionally any text can also be printed.

6 115

ACTIONS PERFORMED:

1. A list of all stored queries is output.

2. Any text is given with the name, if requested.

3. The original stored material is then optionally given.

ERRORS:

1. None.

6.5.6 SPECIAL QUERY COMMANDS

There are several special queries that can be called for easier
user selection. They are each separately discussed in this
section

.

6. 5.6.1 IMPLICIT—ENTITY-QUERY

PURPOSE: To output a list of entities that were defined via a

r ela t i onsh i p-c 1 a s s - 1 y pe and have not since been
DECLAREd by the user.

FORMAT: QUERY [qualification-list-name] IMPLICIT

RULES:

1. The qualification-list-name will be the means of later
referring to this list. If it is absent, the result
will be in the current-list. The current-list is

unchanged if a qualification-list-name is given or if

the command is aborted.

2. A count of qualified entities is output prior to the

6 116

implicit list.

3. The user will have the option to prevent output from
being returned to the terminal.

ERROR CONDITIONS:

1. None.

6. 5.6.

2

ENTITY—AND—ATTRIBUTE QUERY

PURPOSE: To output a list of primary-names and optionally, to

include the attributes of specified attribute-types
and/or the attribute-groups of specified attribute-
group-types .

FORMAT: QUERY [qualification-list-name]

[[ENTITY-TYPE entity-type-name-1 [, entity-type-
name-2] . . .

]

[ATTRIBUTE-TYPE attribute-type-name-1 [,attribute-
type-name-2] . . .

]

[ATTRIBUTE-GROUP-TYPE att r i bute-g roup- type-name-

1

[, a ttribute-group-type-name-2] ...]...]

[[ENTITY entity-name-1 [, entity-name-2]...

]

[ATTRIBUTE-TYPE attribute-type-name-1 [, attribute-
type-name-2] . . .]

[ATTRIBUTE-GROUP-TYPE att r i bute-group-type-name-

1

[, attribute-group-type-name-2] ...]...]

RULES:

1. The qualification-list-name will be the means of later

referring to this list. If it is absent, the result
will be in the current-list. The current-list is

unchanged if there is a name or if the command is

aborted

.

6 117

2. The a ttr i bute-type-na me (s) and/or attribute-group-
type-name (s) , if included, must be valid for the

corresponding entity-type-name, or the user receives

an error message and the query is aborted.

3. At least one ENTITY-TYPE or ENTITY subclause must be

given.

4. A count of qualified entities is returned to the user

before results are output. The user will have the
option to prevent output from coming back to the
terminal

.

ERROR CONDITIONS:

1. An attribute-type-name or attribute-group-type-name is

not applicable to the entity-type-name or the entity-
name, respectively.

2. There is no ENTITY-TYPE or ENTITY subclause.

6, 5. 6.

4

ALTERNATE-NAME-AND-CONTEXT QUERY

PURPOSE: To select all relevant entities in a given context or

to produce name-context pairs for a given primary
name

.

FORMAT: QUERY [qualification-list-name]

{ ENTITY entity-name-1 [, entity-name-2] ... I ENTITY-
TYPE entity-type-name}

{CONTEXT = alternate-name-context |NAME AND CONTEXT}

RULES:

1. The qualification-list-name will be the means of later

6 118

2

referring to this list. If it

will be in the current-list,
unchanged if there is a name
aborted

.

is absent, the result
The current-list is

or if the command is

. The entity list may contain a

joined with commas. Only one

per query.

number of entity-names
entity-type is allowed

3. Either the context may be specified, or the set of

alternate name/context pairs will be supplied for all

qualifying entities.

4. A count
results

prevent

of qualified entities is r

are output. The user will

output from being returned

eturned before the

have the option to

to the terminal.

ERROR CONDITIONS:

1. An invalid entity-type-name is specified.

6. 5. 6.

4

CONTAINS—STRING QUERY

PURPOSE: To return the names of entities that contain a given
string in their primary name, alternate-name, descrip-
tion, or comments.

FORMAT: QUERY [qualification-list-name]

STRING "string (with * for don't-care)"

IN { PRIMARY-NAME | ALTERNATE-NAME

|

DESCRIPTION ICOMMENTS | ALL

}

RULES:

1. The qualification-list-name will be the means of later
referring to this list. If it is absent, the result

6 119

will be a new current-list. The current-list is

unchanged if there is a name or if the command is

aborted

.

2. The string may contain * to show places that any
character may exist and the string will match (e.g.,

"B*G" matches BUG, BIG, DEBUG, CRIBBAGE, etc.).

3. The output consists of the primary-names of entities

that qualify and the relevant values of alternate-name
and context, description, or comments attribute-type.

4. A count
results

prevent

of qualified entities is returned before the

are output. The user will have the option to

output from being returned to the terminal.

ERROR CONDITIONS:

1. None.

6, 5. 6.

5

RELATIONSHIP QUERY

PURPOSE: To allow queries based on a given relationship for a

certain entity or for a given entity-type.

FORMAT: QUERY [qualification-list-name]

RELATIONSHIP FOR {STARTING ENTITY entity-name
IENTITY-TYPE entity-type-name}

IS { relationship-class-type-name Irelationship-
type-name}

RULES:

1. The qualification-list-name will be the means of later
referring to this list. If it is absent, the result
will be a new current-list. The current-list is

6 120

unchanged if there is a name or if the command is

aborted

.

2. For the entity-type-name option, only a relationship-
type-name must be given, and it must be relevant to

the entity-type specified.

3. The starting entity-name option requires a relation-
ship-class-type-name; or a relevant relationship-type
name

.

4. A count of qualified entities is returned before the

results are output. The user will have the option to

prevent output from being returned to the terminal.

ERROR CONDITIONS:

1. The entity-name or entity-type-name must be meaningful
to the r e 1 a t i o n s h i

p - c 1 a s s - t y p e - n a m

e

or the
relationsh ip-type-name

.

6, 5. 6,6 AUDIT QUERY

PURPOSE: To list all primary-names of entities with a certain
audit condi tion (s)

.

FORMAT: QUERY [qualification-list-name]

ENTITIES {CREATED BEFORE date | CREATED SINCE date I

CREATED BY person-name | LAST-CHANGED BEFORE date!

LAST-CHANGED SINCE da te | LAST-CHANGED BY person-
name } . • .

RULES:

1. The qualification-list-name will be the means of later
referring to this list. If it is absent, the result
will be in the current-list. The current-list is

6 121

unchanged if there is a name or if the command is

aborted.

2 . The dates must be valid or the person-names must be

valid. The use of more than one subclause allows
further restriction (by ANDing the results)

.

3. A count of entities that qualify is returned to the

user. The user will have the option to prevent output

from being returned to the terminal.

ERROR CONDITIONS:

1.

A person-name is specified which is not valid.

6. 5. 6.

7

CLASSIFICATION QUERY

PURPOSE: To list all primary-names of entities with certain
CLASSIFICATION keywords.

FORMAT: QUERY [qualification-list-name]

CLASSIFICATION [ENTITY-TYPE entity-type-name]

KEYWORD = keyword-1 [(AND | OR} keyword-2]

RULES:

1. entity-type-name must be the name of an existing
entity-type

.

2. The number of entities that qualify are returned to

the user prior to the entity-names being listed.

3. A count of qualified entities is returned before the
results are output. The user will have the option to

prevent output from being returned to the terminal.

6 - 122

ERROR CONDITIONS:

1. entity-type-name is not the name of

entity-type.
an existing

6 123

CHAPTER 7. DDS SOFTWARE INTERFACES

This chapter is composed of three major sections.

o Section 7.1 specifies the facilities that are
available to produce from the dictionary programming
language representations of the data used within a

COBOL program.

o Section 7.2 specifies the commands that are available
for the EXPORT/IMPORT facility of the DDS , through the

use of which it is possible to transfer a selected
portion of the contents of one dictionary of a

standard DDS to another dictionary of a standard DDS.

o Section 7.3 specifies a facility whereby the DDS may
be called from a program.

7.1 GENERATE-STRUCTURE—FOR-COBOL COMMAND

PURPOSE: To produce a programming language representation of

the data used within a COBOL program. The DATA
DIVISION, including the File and Working-Storage
Sections, can be produced using this command. All ANS

COBOL rules must apply.

1 1

FORMAT : GENERATE-STRUCTURE-FOR-COBOL
entity-name {FILE-SECTION I

Working-Storage-

Section-Clause}

[Using-Clause]

[Uniqueness-Clause]
[Prefix-Suffix-Clause]
[Destination]

where entity-name is the primary name of a FILE or

RECORD entity

where Working-S to rage-Sec tion-clause is

WORKING-STORAGE-SECTION

{ DATA | CONDITION | REDEFINES}

where Using-Clause is

USING { { USAGE-NAME | PRIMARY-NAME | ALTERNATE-NAME

}

AND [ENTITY-CHARACTERISTICS

|

RELATIONSHIP-CHARACTERISTICS}

}

where Uniqueness-Clause is

UNIQUENESS { REQUIRED | NOT REQUIRED}

where prefix-suffix clause is

[PREFIX text-string | SUFFIX text-string}

and where DESTINATION Clause is one of the following:

a) device name

b) name of desired location of output. The new
default is implementor defined.

7 2

RULES:

1. If FILE-SECTION is specified a COBOL file description
is produced for the specified file entity. The file
description will be created using:

a) For the COBOL FD clauses, the USAGE-FORMAT
attribute in the REPRESENTATION Attribute-Group of

the file is used.

b) For the COBOL record description (s) , the FILE-
C ONTA I N S -R E C ORD relationship-type is used to
determine the records associated with the file.

The COBOL record description (01 level) clauses for

each relationship are obtained from the text of

either the relationship's or the "contained"
record's REPRESENTATION A 1 1 r i b u t e -G r o u p as

determined by the USING-clause. If a record entity
is specified, the latter case occurs.

c) To determine the data in the record description,
the RECORD-CONTAINS-ELEMENT relationship is used.

(1) The characteristics of the COBOL elementary
items are determined from either the
relationship's or the contained element's
REPRESENTATION Attribute-Group as determined
by the USING-clause.

(2) To determine those elements which define a

group within the record description, the

contained elements are examined to determine
if any is a source entity in an ELEMENT-
CONTAINS-ELEMENT relationship. For each
entity that satisfies this condition, if the

USAGE-INDICATOR attribute in that relationship
is GROUP, then a group structure is generated
with the containing elements (which may be

groups)

.

(3) To determine the relative position of the
element in the record, the attribute REL-
POSITION is used. If a gap is left between
elements, a FILLER element with appropriate

7 3

picture length is placed in the generated
record description.

(4) A special case may occur where a user may want
to use already documented RECORD entities to

"create" the definition of another record.

This can be accomplished by using the RECORD-

CONTAINS-RECORD relationship. If this

happens, the contained records are treated as

groups and thus have a level in the record
description which is greater than the source
record of the relationship.

d. The record description name used for each file,

record, group or element identified above is

determined by the USING-clause

.

2. If WORKING-STORAGE-SECTION and DATA are specified:

a. For each RECORD entity designated or each one con-

tained in the designated file, a 01-level descrip-
tion and associated elements/group are generated as

in la - Id above.

b. For each ELEMENT entity involved in a FILE-
CONTA INS- ELEMENT relationship with the specified
file, a 77-level elementary item is produced.

c. The name and characteristics used in each case are

determined by the USING-clause.

3. If WORKING-STORAGE-SECTION and CONDITION are speci-
fied:

a. For each RECORD entity specified or for each one
contained in the designated file, a 01-level
description is produced as in la above. For all
ELEMENT entities related to a selected RECORD
entity by a RE CORD-CONTAINS-ELEMENT relationship,
an 88-level elementary item is generated, if the
USAGE-INDICATOR in the relationship is CONDITION.

a. The name and characteristic used in each case is

determined by the USING-clause.

7-4

L

4. If WORKING-STORAGE-SECTION and REDEFINES are speci-
fied:

a. For each RECORD entity designated or each one con-
tained in the designated file, if the RECORD entity
is a source entity for a RE CORD-CON TAINS- RE CORD
relationship and the U S AG E- I N D I C ATO R in the
relationship is REDEFINES, the contained records
are assumed to be redefinitions of the source
entity

.

b. Similarly, if in an ELEMENT-CONTAINS-ELEMENT rela-

tionship, the USAGE-INDICATOR is REDEFINES, the

contained element(s) is assumed to be a redefini-
tion of the source element.

c. The rules mentioned above apply to the generation
of the appropriate record, group and element
descriptions

.

5. The default for the Using-Clause is ALTERNATE-NAME AND
RELATIONSHIP-CHARACTERISTICS

.

6. If UNIQUENESS is REQUIRED, the alternate name of the

record associated with COBOL is appended to the name
of each elementary item or group in the specified
record description of the file section. UNIQUENESS
applies only to the file section.

7. The default for the Uniqueness-Clause is REQUIRED.

8 . If FILE-SECTION is specified, entity-name must be the

primary name of an entity of type FILE.

9. If WORKING-STORAGE-SECTION is specified, entity-name
must be the primary name of an entity of either type

RECORD or ELEMENT.

10. The length of the name selected by the USING-clause or

its default cannot exceed the allowed length of an ANS

COBOL data-name. The selected name will be truncated
from the right to make it the maximum length allowed,
if it is greater.

7 5

11 . If the Prefix-Suffix-Clause is used, the text-string
is appended to the beginning or end of the data-name
in the structure generated. Rule 10 applies here.

12. The default for the Destination clause is an implemen-

tor option.

ACTIONS PERFORMED:

1. For the designated FILE entity, a COBOL FD with
associated record, group and element descriptions is

generated, if the FILE-SECTION clause is used.

2. If the WORKING-STORAGE-SECTION clause is used, all

record, group and element descriptions are generated

to meet specified criteria.

3. If PRIMARY-NAME is designated, but the primary name is

the name of an entity whose type is not allowed for

the conditions specified, the command will abort, and

a warning message will be issued.

4. If a Destination clause is given, the report will
either be output on the device specified or "placed''

in the named location.

5. A notification of completion of execution will be

provided to the user.

6. If an invalid USING or UNIQUENESS clause is specified,
the clause is ignored and defaults are assumed.

ERROR CONDITIONS:

1. An entity of the wrong type is specified for
generation

.

2. An entity of the wrong type is specified for the
clause used in the command.

3. An invalid FILE-SECTION clause is specified.

7 6

4. An invalid WORK I NG -S TO RAG E - S E CT I ON clause is

specified.

5. The attributes which should correspond to the
designated clauses, do not.

6. A REL-POSITION attribute causes an overlap of ele-
ments. A warning message is given, but the command
does not abort.

EXAMPLES

1. GENERATE-STRUCTURE-FOR-COBOL
PAYROLL
FILE-SECTION
USING ALTERNATE-NAME AND ENTITY-CHARACTERISTICS

Assuming that PAYROLL is an entity of entity-type
file, a COBOL FD is generated Any information which
appears in the USAGE-FORMAT of PAYROLL is made part of

the PAYROLL FD paragraph f o 1 low ing ANSI COBOL rules.

For records involved in a FI LE-CONTAIN S-RECORD
relationship with PAYROLL, a sequence of 01 level
paragraphs is created. For each element involved in a

RECORD-CONTAINS-ELEMENT relationship with the records

mentioned above, an elementary item or group
definition is created. The information to be

associated with each of these records, groups or

elements is determined by the USAGE-FORMAT attribute
of each. Assume that the following description is

generated

.

FD PAYROLL BLOCK CONTAINS 10 RECORDS
LABEL RECORD IS STANDARD

01 PAYREC.

DATE •

03 DAY PIC 99 .

03 MONTH PIC A (9) .

03 YEAR PICTURE 9(4)

7 7

(a) The "BLOCK CONTAINS 10 RECORDS" clause must be

in the USAGE-FORMAT of the PAYROLL file

entity

.

(b) The LABEL RECORD IS STANDARD is not required

to be in the USAGE-FORMAT, because it is the

COBOL default.

(c) Nothing appeared in the USAGE-FORMAT of the

PAYREC record entity.

(D) The PIC 99, PIC A(9), and PICTURE 9(4) all

came from the USAGE-FORMATS of the DAY, MONTH,

YEAR elements.

(e) For each of the names PAYROLL, PAYREC, DATE,

DAY, MONTH and YEAR the alternate name
associated with COBOL was used.

2. GENERATE-STRUCTURE-FOR-COBOL
PAYREC
WORKING-STORAGE-SECTION REDEFINES
USING ALTERNATE-NAME AND ENTITY-CHARACTERISTICS

As for example 1., an 01 level description of PAYREC
is generated. The difference in this case is that
either a RECORD-CONTA INS-RECORD relationship exists
and contains a USAGE-INDICATOR with value REDEFINES,
or the REDEFINES exists in a RECORD-CONTAINS-ELEMENT
or ELEMENT-CONTAINS-ELEMENT relationship.

Assume that the following description is generated:

01 PAYREC

02 DATE

03 DAY

03 MONTH
03 YEAR

PIC 99.

PIC A (9

)

PICTURE 9(4)

02 DATE-COMPOSITE REDEFINES DATE PIC X(15)

7-8 (Rev. of 7-82 doc.)

01 PAY-KEY REDEFINES PAYREC.

02 KEY PIC X (6)

.

02 FILLER PIC X(9)

.

In this case, there was both an ELEM ENT-CON TA INS-
ELEMENT and RECORD-CONTAINS-RECORD relationship with
USAGE-INDICATOR equal to REDEFINES. In these cases,
DATE was related to DATE-COMPOSITE and PAYREC was
related to PAY-KEY. In both cases the reserved word
REDEFINES and the name of the entity being redefined
were automatically placed in the structure, based on

the relationships.

7.2 THE EXPORT/IMPORT FACILITY

This section specifies the commands that are available in the DDS

core standard that permit a selected part of one dictionary to be

transferred to another dictionary, where it is naturally assumed
that both dictionaries are part of a standard DDS. It is however
not assumed that both dictionaries are managed by the same imple-
mentation of the core standard Dictionary Processing System.
Through the use of this facility it is then possible to transfer,

for example, a portion (or all) of a dictionary named DICTIONARY-

1 (which is a part of implementation-A of the standard DDS) to a

dictionary named DICTIONARY-2 (which belongs to implementation-B
of the standard DDS).

7.2.1 INTEGRITY CONSIDERATIONS

In order for this facility to be practical and reliable a number
of different factors must be considered:

o Since both implementations of the core standard of the

DDS have extensibility facilities, it is possible that
the two schemas involved may have been customized

7-9

differently. This not only means that DICTIONARY-1

may contain entities, relationships, attributes, etc.,

such that the type of these does not exist in the

schema of DICTIQNARY-2, but also that the integrity

constraints specified in the two schemas may be

different. Examples of such possible discrepancies
are

:

The name of elements in DICTIONARY-1 can be 24

characters long, but are limited to 18 characters
in DICTIONARY-2.

The list of legal attributes for an attribute-type

may be different in the two dictionaries.

The number of allowable attributes for entities of

a given type may be different.

o A resolution must exist as to how to deal with enti-
ties which are being transferred, where entities by

that name already exist in the target dictionary. In

this respect consideration must also be given to ver-

sion numbers of entities in DICTIONARY-1 and the

manner in which they are to be dealt with in

DICTIONARY-2.

o Similar problems are possible in the differences in

STATUS-NAME meta-entities, and a reconciliation with
existing entities is required.

The facility specified here is designed to assure that exercise
of the EXPORT/IMPORT commands will preserve the integrity of the

target dictionary. This will be achieved, along with other
precautionary restrictions, by requiring that these commands will
only be permitted between dictionaries whose "essential schemas"
are identical. In the following sections there will be given the

definition of this concept, along with the specification of

commands required for its operation on schemas.

7-10 (Rev. of 7-82 doc.)

7.2,2 SCHEMA EQUIVALENCE AND THE ESSENTIAL SCHEMA

Given a schema of a dictionary the essential schema of this
dictionary is defined to be composed of the following:

1. The set of names of all the meta-entities in the
schema

.

2. The set of meta-relationships in the schema.

3. The meta-attributes of the following types:

For an entity-type meta-entity:

MINIMUM-NAME-LENGTH

MAXIMUM-NAME-LENGTH

PICTURE

SYSTEM-GENERATED

For a relationship-type meta-entity:

SEQUENCED

SEQUENCE-PARAMETER

For a relationship-class-type meta-entity:

none

For an attribute-type meta-entity:

MINIMUM-LENGTH
f

MAXIMUM-LENGTH

7 11

For an attribute-group-type meta-entity:

none

For an attribute—type—validation—procedure meta-

entity:

none

For an attribute-type-validation-data meta-entity:

VALUE/RANGE

DATA-VALUE

DATA/RANGE

For a status-name meta-entity:

none

For a stage—name meta-entity:

none

For a meta-relationship of type M-R-T (relationship-
type, entity-type)

:

POSITION

For a meta-relationship of type M-R-T (relationship-
type , attribute-type):

SINGULAR/PLURAL

MAXIMUM-NUMBER-OF-OCCURRENCES

For a meta-relationship of type M-R-T(relationship-
class-type, relationship-type)

:

none

7 12

For a meta-relationship of type M—R—T (attribute-
group—type , attribute-type):

GROUP-POSITION

For a meta-relationship of type M-R-T (ent i ty-type

,

attribute-group-type)

:

SINGULAR/PLURAL

MAXIMUM-NUMBER-OF-OCCURRENCES

For a meta-relationship of type M-R-T (relationship-
type, attribute-group-type):

SINGULAR/PLURAL

MAXIMUM-NUMBER-OF-OCCURRENCES

For a meta-relationship of type M-R-T(attribute-
type , attribute-type-validation-procedure)

:

none

For a meta-relationship of type M-R-T (attribute-
type, attribute-type-validation-data)

:

none

Based on this definition of essential schema, two schemas are

said to be essentially equivalent if their essential schemas are

identical

.

7. 2. 2.1 EXTRACT-ESSENTIAL-SCHEMA COMMAND

PURPOSE: To generate the essential schema of a dictionary in

machine-readable form.

7 13

FORMAT:

RULES:

ACTIONS

EXTRACT-ESSENTIAL-SCHEMA
dictionary-name
location-clause

where location-clause is the name of a file or an

implementor defined type of location.

. dictionary-name must be the name of an existing

dictionary

.

. location-clause must specify a valid location.

. Additional clauses may be required by an implementor.

PERFORMED:

. The essential schema of the named dictionary is

written to the location specified in the location-
clause in the SCHEMA-EXPORT-FORMAT.

. The SCHEMA-EXPORT-FORMAT consists of:

a) The name of the dictionary.

b) The names of the meta-entities in the essential
schema along with their type, sequenced by meta-
entity-type-name and meta-entity-name, each meta-
entity being followed by its meta-attributes
sequenced by meta-attribute-type-name and meta-
attribute .

c) The meta-relationships in the essential schema
along with their type, sequenced by meta-entity-
type-name and the name of the first meta-entity in

the meta-relationship, each meta-relationship being
followed by the meta-attributes of the meta-rela-
tionship sequenced by meta-attribute-type-name and

meta-attr ibute

.

7-14

3 The user is informed of the completion of the
execution of the command.

ERROR CONDITIONS:

1. dictionary-name is not the name of an exisiting
dictionary

.

2. The location specified in the location-clause is not a

valid location in the system.

7 . 2 . 2 .

2

COMPARE-ESSENTIAL-SCHEMAS COMMAND

PURPOSE: To compare two essential schemas
EXPORT-FORMAT and to inform the
are identical or what differences

existing in SCHEMA-
user if either they
exist between them.

FORMAT : COMPARE-ESSENTIAL-SCHEMAS
dictionary-name-1 AT location-1 AND dictionary-name-2

AT location-2

RULES:

1. The essential schema of the dictionary with name
dictionary-name-1 must exist in SCHEMA-EXPORT-FORMAT
at location-1.

2. The essential schema of the dictionary with name
dictionary-name-2 must exist in SCHEMA-EXPORT-FORMAT
at location-2.

ACTIONS PERFORMED:

1. The two essential schemas are

a) If they are identical, the

fact

.

compared, and:

user is informed of this

7 15

b) If they are not identical, the user is informed of

the differences that exist between them, e.g., a

type exists in schema-1 but not in schema-2.

ERROR CONDITIONS:

1. location-1 does not
dictionary-name-1 in

2. location-2 does not
dictionary-name-2 in

contain the essential schema of

SCHEMA-EXPORT-FORMAT

.

contain the essential schema of

SCHEMA-EXPORT-FORMAT

.

are not3. dictionary-name-1 and/or dictionary-name-2
valid names for dictionaries.

7.2.3 EXPORT/IMPORT PROCEDURE

Suppose there exists a dictionary with name SOURCE-DICTIONARY,
and that it is desired to extract a subset of SOURCE-DICTIONARY
and to merge this subset into another existing dictionary named
TARGET-DICTIONARY. This subset is defined by means of the quali-
fication commands specified in Section 6.2 and the same type of

specification of relationship-types which is used in the CATALOG
command of Section 6.4.1.

The procedure to be followed consists of . the following steps:

1. An EXTRACT-SUBSET command is issued to operate on

SOURCE-DICTIONARY. This command:

a) Extracts the desired subset from SOURCE-
DICTIONARY in DICTIONARY-EXPORT-FORMAT,
and

b) Invokes the EXTRACT-ESSENTIAL-SCHEMA

7 16 (Rev. of 7-82 doc.)

2 .

3 .

4.

5.

6 .

command to operate on SOURCE-DICTIONARY,
and

c) Places the results in a designated
location

.

A dictionary with name TEMPORARY-DICTIONARY is

created with the command CREATE-D I CT I ONARY

.

The results of Step 1. are placed in TEMPORARY-
DICTIONARY with the command LOAD-DICTIONARY.

The contents of TEMPORARY-DICTIONARY is operated on

using the maintenance commands of Section 6.3 to

achieve the following:

a) The dictionary contains no more than one

version of any entity.

b) All entities are in a single status.

The schema of TEMPORARY-DICTIONARY is operated on

using the schema maintenance commands of Section
5.1 in order to make it equivalent to the schema of

TARGET-DICTIONARY. Deletion of unwanted descrip-
tors may require compensating changes to the
contents of TEMPORARY-DICTIONARY. The EXTRACT-
ESSENTIAL-SCHEMA command can be used on TEMPORARY-
DICTIONARY and TARGET-DICTIONARY, and the results

evaluated with the C 0 M P ARE - E S S ENT I AL- SCH E M AS
command to ensure that the required equivalence has

been achieved.

Once the required equivalence has been
Step 1. is repeated, this time operating
RARY-DICTIONARY

.

achieved,
on TEMPO-

7 . At this point the desired objective can be achieved
by the command IMPORT-SUBSET issued to operate on

TARGET-DICTIONARY and specifying the location
designated for the output of Step 6. Options will

have to be specified on the actions to be taken on

the status-name in the schema of TARGET-DICTIONARY
to be used, as well as the version numbers of

7 17

entities to be assigned for entities that are being

imported where entities with the same primary names

already exist in TARGET-DICTIONARY.

Special consideration must be given to entity-types for which it

has been specified that primary names are to be system-generated.

If such entities are included in the dictionary descriptors which

are the subject of the EXPORT/IMPORT process no assurance exists

that these primary names are synchronized in the two dictionaries

being dealt with. Moreover, if such is the case, neither DDS can

have knowledge of what is required to establish such a

reconciliation. If a reconciliation is required, it will have to

be handled as a human process, and the changes required should be

made on the descriptors when they are in the DICTIONARY-EXPORT-

FORMAT at the completion of either Step 1. or Step 6. above.
Tools required to make such changes are an implementor option.
The same consideration applies to attribute-types whose values
have been specified as being system-generated.

In the discussion of this section it has been assumed that both
SOURCE-DICTIONARY and TARGET-DICTIONARY reside on the same
computer system. Should this not be the case, the output of Step
1. will have to be transported from the computer system on which
SOURCE-DICTIONARY resides to the computer system on which TARGET-
DICTIONARY resides. Tools required to achieve this are outside
the scope of this specification.

7,2.4 EXPORT/IMPORT COMMANDS

In this section the commands required by the preceding procedure
will be specified. The following general observations should be

noted

:

o All commands, with the exception of the CREATE-DICTIONAR^
command, operate on a single dictionary, and thus are
issued as operating on that dictionary. This means
that the required authority for the command can be
stored as a part of that dictionary. Details on this
point will be given in Chapter 8.

7 18

o

7 . 2 . 4.1

PURPOSE:

FORMAT

:

The CREATE-DI CT I ONARY command is issued at the DDS

level, and may in fact have to be issued before there
is a single dictionary in existence. Authority to

issue this command will have to be established as a

part of the log-on process.

EXTRACT-SUBSET COMMAND

a) To extract a specified subset from an existing
dictionary and make it available in a standard
format for further processing.

b) To invoke at the same time the EXTRACT-ESSENTIAL-
SCHEMA command.

EXTRACT-SUBSET
DICTIONARY dictionary-name
TO extract-name
Extract-Set
Relationship-Set
attribute-type-specification-clause
location-clause

where Extract-Set is one or more of the following:

ALL
entity-type-name-1 [, enti ty-type-name-2] . .

.

entity-name-1 [, enti ty-name-2] . .

.

qualification-list-name
RUN procedure-name [GIVING qualification-list-name]
QUALIFY [qualification-list-name] qualification-

clauses

where Relationship-Set is one of the following:

ALL-RELATIONSHIPS
The name(s) of one or more relationship-type (s)

The name(s) of one or more relationship-class-
type (s)

7 19

The name(s) of one or more r e 1 a t i onsh i p- type-

chain (s)

where attribute-type-specification-clause is

[attribute-type-name-1 [, attribute-type-name-2] . ..]

[attribute-group-type-name-1 [attribute-group-type-

name-2] ...] | ALL-ATTRIBUTES

RULES

:

1. dictionary-name must be the name of a dictionary.

2. The Extract-Set clause selects the specific qualifica-

tion list that is to be used as the target set for the

command. At least one of the alternatives must be

given. If more than one is given, the resulting list

will be their union.

.3. The use of ALL provides a subset consisting of all

entities in -the dictionary.

4. If ALL-RELATIONSHIPS is specified in the Relationship-
Set, all relationships in which an entity of above is

a member will also be extracted on. For each such
relationship, the attributes and attribute-groups of

the relationship, as well as the name and entity-type
of the other member of the relationship will be

extracted. Implicit entities will also be extracted
with the relationship-class-type that was specified in

their creation.

5. The name of a relationship-type in the Relationship-
Set must be such that it applies to at least one
entity-type of the entities that are being reported
on

.

6. The name of a relationship-class-type in the Relation-
ship-Set must be such that it applies to at least one

entity-type of the entities that are being extracted.

7 20

7. A relationship-type-chain is a sequence

relationship-type-1, ... , relationship-type-n

where consecutive relationships in the sequence have a

common entity-type, and where loops are not permitted.
All entities that are members of a relationship whose
relationship-type is a component of a chain will be

extracted along with all attributes and attribute-
groups of the relationship-types, relationship-type-1
must have as a member an entity-type which pertains to

the entities being extracted.

8. Every entity-type-name, relationship-type-name, rela-
t ionshi p-c 1 ass-type-name , a tt r i bute- type-name , and
attribute-group-type-name specified must exist in the

schema of the named dictionary.

9. Unless a specific version-number is specified for an

Extract-Set entity, the entity with the highest ver-
sion number will be extracted. Related entities
extracted will be those with the highest version num-
ber occurring in the relationship.

10. The location-clause must specify a valid location.

11. The DICTIONARY-EXPORT-FORMAT consists of the
following

:

a) The names of the entities along with their type,
sequenced by entity-type and primary name of the

entity, each entity being followed by:

the attributes of the entity and their types,

sequenced by attribute-type-name and attribute

the attribute-groups of the entity and their
types, sequenced by attribute-group-type-name
and attribute-group.

Implicit entities will be denoted by the literal
"IMPLICIT" in place of the entity-type.

b) The relationships along with their type, sequenced

7 21

by relationship—type—name and the name of the first

entity in the relationship, each relationship being

followed by:

the attributes of the relationship and their

types, sequenced by attribute-type-name and

attribute

the attribute-groups of the relationship and

their types, sequenced by attribute-group-
type-name and attribute-group.

For implicit entities, the relationship-class-type-
name will be used in place of the relationship-
type-name

.

ACTIONS PERFORMED:

1. The essential schema of the named dictionary is placed

at the designated location in SCHEMA-EXPORT-FORMAT.

2. The specified subset of the named dictionary is placed

at the designated location in DICTIONARY-EXPORT-
FORMAT.

3. The user is informed of the completion of execution of

the command.

ERROR CONDITIONS:
i

1. dictionary-name is not the name of a dictionary.

2. An entity-type-name which does not exist in the schema
is specified.

3. An entity-name which does not exist in the dictionary
is specified.

4. A qualification-list-name which does not exist is

specified

.

5. The specified procedure-name is not known to the

7 22

system

.

6. The qualification-clauses refer to a non-existent
entity-type-name and/or entity-name.

7. The relationship-type-chain option has not been used

and a relationship-type has been specified that does
not pertain to the entities being reported on.

8. The relationship-type-chain option is being used and a

chain has been specified which does not meet the
conditions of Rule 7.

9. An invalid attribute-type-name and/or attribute-group-
type name is specified.

10.

The location specified in the Destination clause is

not a valid location.

7. 2. 4.

2

CREATE-DICTIONARY COMMAND

PURPOSE: To create
schema of

either the

essential

a dictionary with a specified name
this dictionary can be specified as

standard schema, an existing schema,
schema of an existing schema.

. The

being
or the

FORMAT: CREATE-DICTIONARY
DICTIONARY-NAME IS dictionary-name-1
[SCHEMA IS dictionary-name-2 [ESSENTIAL] SCHEMA]

RULES:

1. dictionary-name-1 must not be the name of an existing
dictionary

.

2. The default to the optional SCHEMA IS clause is the

system-standard schema.

7 23

3. dictionary-name-2 must be the name of an existing
dictionary

.

4. Additional clauses may be required by the implementor.

ACTIONS PERFORMED:

1. The named dictionary is created. If no SCHEMA IS

clause has been specified, this dictionary will have
the system-standard schema.

2. If a SCHEMA IS clause has been specified, the
dictionary will have the schema (or optionally the
essential schema) of the dictionary dictionary-name-2.

3. The dictionary created will be "empty", i.e., this
term denoting a dictionary that does not have any
user-supplied dictionary descriptors. An "empty"
dictionary contains a single entity of type
DICTIONARY-USER, with an implementor defined
dictionary user name. This dictionary user is

assigned the full set of permissions to the entire
functionality of the DDS. The name of this dictionary
user can subsequently be changed through the use of

the RENAME command of Section 6.3.10.

4. The audit-meta-attributes in the schema will show the

date of creation and identification of the person
issuing the command.

5. The action will be recorded in the log/audit file of

the dictionary dictionary-name-1.

6. The user is informed of the completion of the
execution of the command.

ERRORS:

1. There exists a dictionary with name dictionary-name-1.

2. There does not exist a dictionary with name diction-
ary-name-2 .

7-24

k.

7. 2. 4.

3

LOAD-DICTIONARY COMMAND

PURPOSE: a) To provide an existing essential schema in SCHEMA-
EXPORT-FORMAT to an existing "empty" dictionary.

b) To load an existing dictionary subset in DICTION-
ARY-EXPORT-FORMAT into an "empty" dictionary.

FORMAT: LOAD-DICTIONARY
DICTIONARY dictionary-name
WITH extract-name
AT location-name

RULES

:

1. dictionary-name must be the name of an "empty" dic-
tionary with system-standard-schema.

2. extract-name must specify the result of an EXTRACT-
SUBSET command.

3. extract-name must reside at the location specified by

location-name

.

4. Additional clauses may be required by an implementor.

ACTIONS PERFORMED:

1. The named dictionary is assigned the essential schema
contained in extract-name.

2. The dictionary-descriptors in extract-name are loaded
into the named dictionary.

3. The audit-meta-attribute-types of the schema are up-
dated .

7 25

4. The aud i t-a tt r i bute-types of the dictionary are up-
dated .

5. The command is recorded in the log/audit file.

6. The user is informed of the completion of the
execution of the command.

ERRORS

:

1. dictionary-name is not the name of an "empty"
dictionary with system-standard schema.

2. extract-name does not reside at the specified loca-
tion.

7 . 2 . 4 .

4

IMPORT-SUBSET COMMAND

PURPOSE: To merge descriptors previously extracted from a

dictionary into another dictionary.

FORMAT: IMPORT-SUBSET
INTO DICTIONARY dictionary-name
FROM extract-name AT LOCATION location-name
TARGET-STATUS IS status-name
VERSION-OPTION IS {NEW | LATEST}

IMPLICIT-ENTITY-OPTION IS {REPLACE | IGNORE

}

RULES

:

1. dictionary-name must be the name of an existing dic-
tionary .

2. extract-name must be the result of an EXTRACT-SUBSET
command residing at location-name.

3. The essential schema which is part of extract-name

7 26

must be identical to the essential schema of the
dictionary with name dictionary-name.

4. The dictionary descriptors in extract-name cannot

specify entities of type DICTIONARY-USER or ACCESS-
CONTROLLER.

5. status-name must be the name of a status-name in the
schema of dictionary-name.

6. status-name cannot be SECURITY-STATUS, as discussed in

Chapter 8.

7. status-name cannot be the CONTROLLED status.

8. If the VERSION-OPTION specified is NEW, then, in the
case where there exists an entity in the designated
status in dictionary-name which has the same primary
name as an entity in extract-name, an entity with the

next highest version number will be added.

9. If the VERSION-OPTION specified is LATEST, then, in

the case where there exists an entity in the desig-
nated status in dictionary-name which has the same
primary name as an entity in extract-name, the entity
in extract-name will replace the existing entity with
the highest version number.

10. If the IMPLICIT-ENTITY-OPTION specified is NEW, then,

in the case where there exist implicit entities with
the same primary name in extract-name and dictionary-
name, the implicit entity in dictionary-name will be

deleted and replaced by the implicit entity in

extract-name

.

11. If the IMPLICIT-ENTITY-OPTION specified is IGNORE,
then, in the case where there exist implicit entities
with the same primary name in extract-name and
dictionary-name, the implicit entity in extract-name
will be ignored.

12. Additional clauses may be required by an implementor.

7 27

ACTIONS PERFORMED:

1. The dictionary descriptors in extract-name are merged
into the designated status in dictionary-name in

accordance with the designated VERSION-OPTION and
IMPLICIT-ENTITY-OPTION options.

2. The audit-attribute-types in the dictionary are up-
dated .

3. The command is recorded in the log/audit file.

4. The user is informed of the completion of the
execution of the command.

ERROR CONDITIONS:

1. There does not exist a dictionary with name diction-
ary-name .

2. extract-name does not exist at the specified location.

3. There exists a dictionary descriptor in extract-name
which specifies an entity of type DICTIONARY-USER or

ACCESS-CONTROLLER.

4. The essential schema of dictionary-name and the
essential schema in extract-name are not identical.

5. status-name is not the name of a status-name in the

schema

.

6. SECURITY-STATUS has been specified in the TARGET-
STATUS clause.

7. The meta-attribute of type CONTROLLED/UNCONTROLLED of

status-name is CONTROLLED.

8. A required clause has been omitted.

7 28 (Rev. of 7-82 doc.)

7.3 DDS PROGRAM INTERFACE - THE CALL DDS COMMAND

PURPOSE: To provide access to the DDS from a program written in

a standard language which has a CALL facility.

FORMAT: CALL DDS
{ log-on

}

command-1 [, command-2] ...

RULES

:

1. The log-on must specify the name of the dictionary or

dictionaries that will be accessed by the command or

commands

.

2. The command(s) command-1 ... must be identical to the

manner in which they are submitted to the DDS by a

user of the DDS.

3. Only the following command names may appear in a

command

:

EXTRACT-ESSENTIAL-SCHEMA
COMPARE-ESSENTIAL-SCHEMAS
EXTRACT-SUBSET
LOAD-DICTIONARY
IMPORT-SUBSET

4. Additional clauses may be required by an implementor.

ACTIONS PERFORMED:

1. The commands are executed in the sequence in which
they are given.

2. Acknowledgement of the completion of execution of the

commands specified is given to the program that issued

7 29

the CALL DDS command.

3. If an error is detected in the execution of one of the

specified commands, execution of that command is abor-
ted, and control is returned to the program that
issued the CALL DDS command, along with the appro-
priate error message.

4. Each command is recorded in the appropriate log/audit
file.

5. Upon completion of the execution of all of the given
commands, control is returned to the program that
issued the CALL DDS command.

ERROR CONDITIONS:

1. The error conditions for each one of the individual
commands apply.

7 30

CHAPTER 8. DICTIONARY ADMINISTRATOR COMMANDS AND TOOLS

This chapter contains the specification of the security facility
of the core standard DDS and the description of tools for the
Dictionary Administrator that are to be made available by an

implementor of the core standard DDS.

8.1 THE DDS SECURITY FACILITY

The DDS security facility consists of three levels of access
control

:

o The first level controls the access to the DDS itself
and a specified dictionary. This level of control is

provided by the implementor of the DDS in a manner
which is an option of the implementor. It is assumed
that the identity of a dictionary user who has been
validated at this level will be passed to the DDS in

the form of a dictionary-user-name.

o The second level of control, which will be called the

global level, occurs through dictionary entities of

type DICTIONARY-USER and their attributes. These
entities specify the permissions that have been
granted to a dictionary user in terms of the commands
that are allowed to execute against specific entity-
types in designated statuses. Attributes can also be

specified to indicate that stated rela tionship-types
are not included in the view which a user has of the

dictionary. Other attributes of these entities are
also used to specify privileges of a dictionary user
with respect to the schema of the dictionary.

o The third level of control, which will be called the
local level, occurs through dictionary entities of

type ACCESS-CONTROLLER and their attributes. Any

8 1 (Rev. of 7-82 doc.)

dictionary entity can be protected at this local level
by establishing a relationship in the dictionary be-
tween it and such an entity of type ACCESS-CONTROLLER.
As part of the creation of an entity of this type in

the dictionary, the DDS also creates an attribute of

type READ-LOCK and an attribute of type WRITE-LOCK.
Attributes of type READ-KEY and WRITE-KEY can be

assigned to designated dictionary users and in a sub-
sequent section of this chapter there will be speci-
fied what keys are required for the execution of

specific commands on an entity which has local protec-
tion. Global protection has precedence over local
protection in the sense that local protection will not
be checked unless the dictionary user has global per-

mission for the command on the entity-type and status
of the entity in question.

8.1.1 DICTIONARY-USER ENTITY-TYPE

Entities of type DICTIONARY-USER serve
tion of global permissions for users of

definition of this entity-type given in

to provide the specifica-
a dictionary system. The
Chapter 4. is:

ENTITY-TYPE NAME = DICTIONARY-USER

PURPOSE = "To describe individuals who are users of
the data dictionary system and to re cord
the i r access pr ivi le ges to the die:tionary.

En t ities of this typ<e are used exc 1 us i ve 1 y
in the management of the security f ac i 1 i ty

o f the dictionary system, and are not
a va ilable through it.s generally a vail able
facilities .

"

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

DATE-CREATED- IN-SCHEMA
will have an implementor-defined value showing that

this descriptor is part of the system-standard

8-2

L

schema

.

CREATED-IN-SCHEMA-BY
will have an implementor-defined value showing that

this descriptor is part of the system-standard
schema

.

DATE-LAST-MODI F I ED-IN-SCHEMA
will have a null value.

LAST-MODI FI ED- IN-SCHEMA-BY
will have a null value.

NUMBER-OF-TIMES-MODI FI ED-IN-SCHEMA = "0"

CONNECTABLE = NO

ENTITY-CLASS = SECURITY

The following attribute-group-type is associated with this en-

tity-type :

ATTRIBUTE-GROUP-TYPE NAME = DICTIONARY-PERMISSIONS

PURPOSE = "To specify the access permissions to the
dictionary that have been granted to a dic-

tionary user."

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

which is composed of the following attribute-types (in the order
in which they are in the attribute-group-type)

:

1. ATTRIBUTE-TYPE NAME = STATUS

(as previously defined)

8 3

2. ATTRIBUTE-TYPE NAME ENTITY-TYPE-NAME

PURPOSE = "To specify the entity-type name or group of

entity-type names for which permissions are

being declared. Legal attributes of this
type are:

the name of an entity-type in the

dictionary schema

ALL

where ALL denotes all entity-types in the
schema .

"

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

3. ATTRIBUTE-TYPE NAME = ADD-PERMISSION

PURPOSE = "The ADD-PERMISSION attribute-type, if given
the value YES, permits the designated dic-
tionary user the use of the following
commands

:

ADD-ENTITY
ADD-RELATIONSHIP
COPY
DECLARE
RENAME
All Qualification Commands of Section 6.2

All Report Commands of Section 6.4

All Query Commands of Section 6.5

The default value is NO."

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

8-4

k.

4. ATTRIBUTE-TYPE NAME DELETE-PERMISSION

PURPOSE = "The DELETE-PERMISSION a t t r i bute- ty pe , if

given the value YES, permits the designated
dictionary user the use of the following
commands

:

DELETE-ENTITY
DELETE-RELATIONSHIP
All Qualification Commands of Section 6.2

All Report Commands of Section 6.4

All Query Commands of Section 6.5

The default value is NO."

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

5. ATTRIBUTE-TYPE NAME = MODIFY-PERMISSION

PURPOSE = "The MODIFY-PERMISSION a t t r i but e- type , if

given the value YES, permits the designated
dictionary user the use of the following
commands

:

MODIFY-ENTITY
MODIFY-RELATIONSHI

P

RENUMBER
All Qualification Commands of Section 6.2

All Report Commands of Section 6.4

All Query Commands of Section 6.5

The default value is NO."

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

8 5

6. ATTRIBUTE-TYPE NAME READ-PERMISS ION

PURPOSE = "The READ-PERMISSION a t t r i bu t e- type , if

given the value YES, permits the designated
dictionary user the use of the following
commands

:

All Qualification Commands of Section 6.2

All Report Commands of Section 6.4

All Query Commands of Section 6.5

The default value is NO."

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

7. ATTRIBUTE-TYPE NAME = STATUS-PERMISSION

PURPOSE = "The STATUS-PERMISSION attribute-type, if

given the value YES, permits the designated
dictionary user the use of the following
commands

:

CHANGE-STATUS
All Qualification Commands of Section 6.2

All Report Commands of Section 6.4

All Query Commands of Section 6.5

The default value is NO."

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

8. ATTRIBUTE-TYPE NAME = LOAD-PERMISSION

PURPOSE = "The LOAD-PERMISSION a t t r i bu t e- t ype , if

given the value YES, permits the designated
dictionary user the use of the LOAD-
DICTIONARY command. The default value is

NO."

8 6

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

9. ATTRIBUTE-TYPE NAME = IMPORT-PERMISSION

PURPOSE = "The IMPORT-PERMISSION a tt r i bate- type , if

given the value YES, permits the designated
dictionary user the use of the IMPORT-SUBSET
command. The default value is NO."

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

10. ATTRIBUTE-TYPE NAME = PROTECT-PERMISSION

PURPOSE = "The PROTECT-PERMISSION a t t r i bu t e- t ype , if

given the value YES, permits the designated
dictionary user the use of the following
commands, described in Section 8.2:

ADD-SECURITY
DELETE-SECURITY
MODIFY-SECURITY
ASSIGN-KEY
DELETE-KEY

The default value is NO."

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

11. ATTRIBUTE-TYPE NAME = ADMINISTRATOR-PERMISSION

PURPOSE = "The ADMINISTRATOR-PERMISSION attribute-
type, if given the value YES, permits the

designated dictionary user the use of all

the commands of the DDS . It is the permis-
sion required to add, modify, or delete

8 7 (Rev. of 7-82 doc.)

Theentities of type D I CT I ONARY- U S E R

.

default value is NO."

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

This entity-type is also associated with the following attribute
types

:

1. ATTRIBUTE-TYPE NAME = SCHEMA-PERMISSION-1

PURPOSE - "The SCHEMA-PERMISSION-1 attribute-type,
when assigned the value YES, will assign to

this dictionary user permission to execute
all the commands available for interaction
with the dictionary schema specified in

Chapter 6, as well as the EXTRACT-ESSENTIAL-
SCHEMA and COMPARE-ESSENTIAL-SCHEMAS com-
mands of Chapter 7. The default value is

NO.”

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

2. ATTRIBUTE-TYPE NAME = SCHEMA-PERMISSION-2

PURPOSE - "The SCHEMA-PERM I SS I ON-2 a 1 1 r i bu t e- 1 ype

,

when assigned the value YES, will assign to

this dictionary user permission to execute
all the commands, except the ABOLISH-META-
ENTITY-WITH-LOCK and ALTER-META-ENTITY-WITH-
LOCK commands, which are available for
interaction with the dictionary schema
specified in Chapter 6, as well as the
EXTRACT-ESSENTIAL-SCHEMA and COMPARE-ESSEN-
TIAL-SCHEMAS commands of Chapter 7. The
default value is NO."

8 8 (Rev. of 7-82 doc.)

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

3. ATTRIBUTE-TYPE NAME = SCHEMA-PERMISSION- 3

PURPOSE - "The SCHEMA-PERMISSION-3 a t t r i bu te- ty pe

,

when assigned the value YES , will assign to

this dictionary user permission to execute
all reporting commands for interaction with
the dictionary schema specified in Section
5.2, as well as the EXTRACT-ESSENTIAL-SCHEMA
and COMPARE-ESSENTIAL-SCHEMAS commands of

Chapter 7. The default value is NO."

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

4. ATTRIBUTE-TYPE NAME = SCHEMA-PERMISSION-

4

PURPOSE = "The SCHEMA-PERMISSION-4 a t t r i bu t e - t y pe

,

when assigned the value YES, will assign to

this dictionary user permission to execute
the commands

ALTER-META-ENTITY
META-LIST

on meta-entities of type ATTRIBUTE-TYPE-
VALIDATION-DATA."

BASIC/EXTENDED = BASIC

SYSTEM/LOCK = ON

5. ATTRIBUTE-TYPE NAME = SCHEMA-PERMISSION-5

PURPOSE = "The SCHEMA-PERMISSION-5 a t t r i bute- type

,

when assigned the value YES, will assign to

this dictionary user permission to execute

8-9 (Rev. of 7-82 doc.)

the command META-LIST on meta-entities of

type ATTRIBUTE-TYPE-VALIDATION-DATA."

BASIC/EXTENDED = BASIC

SYSTEM/LOCK = ON

6. ATTRIBUTE-TYPE NAME = WRITE-KEY

PURPOSE = "The WRITE-KEY attribute-type serves to

assign permission to this dictionary user to

execute commands on an entity in the
dictionary which has local protection with a

matching WRITE-LOCK attribute."

BASIC/EXTENDED = BASIC

SYSTEM/LOCK = ON

7. ATTRIBUTE-TYPE NAME = READ-KEY

PURPOSE = "The READ-KEY attribute-type serves to

assign permission to this dictionary user to

execute commands that read an entity in the

dictionary which has local protection with a

matching READ-LOCK attribute."

BASIC/EXTENDED = BASIC

SYSTEM/LOCK = ON

8. ATTRIBUTE-TYPE NAME = EXCLUDE—RELATIONSHIPS

PURPOSE = "The EXCLUDE-RELAT IONSHI PS a ttr i bute- type
serves to state the names of relationship-
types in the schema, the presence of which
are hidden from this user. An attribute of

this type must be the name of a relation-
ship-type .

"

BASIC/EXTENDED = BASIC

8 10 (Rev. of 7-82 doc.)

SYSTEM-LOCK = ON

9. ATTRIBUTE-TYPE NAME = DEFAULT-STATUS-NAME

PURPOSE = "The DEFAULT-STATUS-NAME attribute-type
serves to specify the name of the status
that exists as the default for a user of the

dictionary system."

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = ON

8.1.2 RULES FOR THE ENTITY-TYPE DICTIONARY-USER

The following rules apply to the DICTIONARY-PERMISSIONS
attribute-group-type and the other attribute-types associated
with the DICTIONARY-USER entity-type:

1. In the DICTIONARY-PERMISSIONS a t t r i bute- type , the

meaning of the attribute-types is as follows:

(a) The value of the attribute-type STATUS declares

the status for which permissions are being
assigned. The value * AL L designates that
permissions are being established for all
statuses

.

(b) The name of an entity-type specified declares
that permissions are being established for

enitites of that type in the status named.

2. For any command which involves more than one entity,
such as ADD-RELATIONSHIP, execution of the command
requires appropriate permissions for all entities
involved

.

3. The CHANGE-STATUS command requires STATUS-PERMISSION

8 11 (Rev. of 7-82 doc.)

in both of the statuses named in the command.

4. ADD-PERMISSION, DELETE-PERMISSION, or MODIFY-PERMIS-
SION cannot be established for the status whose name
is CONTROLLED.

5. The status declared for PROTECT-PERMISSION is the

status in which the entities reside for which local
security is being established, deleted, or modified.

6. Invocation of the security clause in the ADD-ENTITY
command requires PROTECT-PERMISSION for the entity-
type in the status which is addressed in the command.

7. Adding, deleting, or modifying entities of type
DICTIONARY-USER requires ADMINISTRATOR-PERMISSION in

the status named SECURITY-STATUS.

8. Inclusion of the entity-type ACCESS-CONTROLLER in an

attribute-group of type DICTIONARY-PERMISSIONS has no

meaning and will be ignored. No commands exist that
require direct access permission to such entities, as

the entity-type declared for PROTECT-PERMISSION is the

entity-type of the entities that are being controlled.

9. Multiple attribute-groups of type DICTIONARY-PERMIS-
SIONS are allowed.

10. If the name of a relationship-type is specified in an

attribute of type EXCLUDE-RELATIONSHIPS, this rela-
tionship-type cannot be referenced by the user in any

command

.

11. Entities of type DICTIONARY-USER cannot be members of

any relationship.

8-12 (Rev. of 7-82 doc.)

k

8.1.3 ACCESS-CONTROLLER ENTITY-TYPE

Entities of type ACCESS—CONTROLLER serve to provide the specifi-
cation of local permissions for users of a dictionary system.
The definition of this entity-type given in Chapter 4. is:

ENTITY-TYPE NAME = ACCESS-CONTROLLER

PURPOSE = "To specify access restrictions to an entity
or set of entities in the dictionary.

, Entities of this type are used exclusively
in the security facility of the dictionary
system.

"

BASIC/EXTENDED = BASIC

SYSTEM-LOCK = OFF

DATE-CREATED- IN-SCHEMA
will have an implementor-defined value showing that
this descriptor is part of the system-standard
schema

.

CREATED- IN-SCHEMA-BY
will have an implementor-defined value showing that

this descriptor is part of the system-standard
schema

.

DATE-LAST-MODI FI ED-IN-SCHEMA
will have a null value.

8 12A (Rev. of 7-82 doc.)

LAST-MODI FI ED-IN-SCHEMA-BY
will have a null value.

NUMBER-OF-TIMES-MODI FI ED- IN-SCHEMA = "0"

ENTITY-TYPE = SECURITY

The following attribute-types are associated with this entity-
type:

1. ATTRIBUTE-TYPE NAME = WRITE-LOCK

PURPOSE = "The WRITE-LOCK attribute-type serves to

provide protection against unauthorized com-
mands that attempt to write on a protected
entity. Commands that write on such a pro-
tected entity require a matching WRITE-KEY
in the DICTIONARY-USER entity."

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = YES

SYSTEM-LOCK = ON

2. ATTRIBUTE-TYPE NAME = READ-LOCK

PURPOSE = "The READ-LOCK attribute-type serves to

provide protection against unauthorized com-
mands that attempt to read a protected
entity. Commands that read such a protected
entity require either a matching READ-KEY or

WRITE-KEY in the DICTIONARY-USER entity."

BASIC/EXTENDED = BASIC

SYSTEM-GENERATED = YES

SYSTEM-LOCK = ON

8 13

8.1.4 RULES FOR THE ENTITY-TYPE ACCESS-CONTROLLER

The following rules apply to the entity-type ACCESS-CONTROLLER:

1. The entity-type ACCESS-CONTROLLER is a member of rela-

tionship-types, each entity-type in the schema (with

exception of the entity-type DICTIONARY-USER) being
the other member of one of these relationship-types.
Whenever the CREATE-META-ENTITY command is invoked and

the meta-entity-type ENTITY-TYPE is specified, execu-

tion of this command will also create a relationship-
type whose members are the entity-type being created

and the entity-type ACCESS-CONTROLLER.

2. Whenever a relationship between an entity of type
ACCESS-CONTROLLER and a version of an entity in the

dictionary is created, should this entity have other
versions, relationships with all other versions are
also created. This means that all versions of an

entity have the same local security protection.

8.1.5 EFFECTS OF THE DPS SECURITY FACILITY

The effects of the security facility will be discussed in terms

of the commands that are to be executed.

8. 1.5.1 QUALIFICATION COMMANDS

The execution of a qualification command will proceed as if the

dictionary user had permission to access the entire dictionary.
When the count of the entities selected is returned to the user,

this count is returned in terms of the number of such entities
that are accessible to the user, and the number of entities for

which the user does not have permission, either because of global

or local security restrictions.

In case a dictionary user requests a listing of a qualification

8 14

list, in this listing the primary name and all attributes of

every entity not accessible to that user will be replaced by a

series of asterisks or some other implementor defined set of

literals.

8. 1.5.

2

MAINTENANCE COMMANDS

The effect of the security facility on maintenance commands is as

follows

:

1. The ADD-ENTITY command requires ADD-PERMISSION in the

status where the entity is to be added and for the
entity-type of the new entity. Additionally, if the

new entity is to be protected with a security clause
in the command, PROTECT-PERMISSION is required.

2. The ADD-RELATIONSHIP command requires ADD-PERMISSION
for both of the entities which are members of the
relationship. If an implicit entity is being created,
ADD-PERMISSION is required for all the potential
entity-types that apply to the implicit entity. If

either of the entities has local protection, the

WRITE-KEY for that entity is required.

3. The CHANGE-STATUS command requires STATUS-PERMISSION
for both statuses specified in the command. If an

entity specified has local protection, the WRITE-KEY
is required.

4. The COPY command requires ADD-PERMISSION for the
status and entity-type specified. If the entity which
is the source has local protection, the READ-KEY is

required

.

5. The DECLARE command requires ADD-PERMISSION for the
status and entity-type specified.

6. The DELETE-ENTITY command requires DELETE-PERMISSION
for the status and entity-type specified. If the
entity has local protection, the WRITE-KEY is

requi red

.

8 15

7. The DELETE-RELATIONSHIP command requires DELETE-
PERMISSION for the status and entity-type of both
entities which are members of the relationship. If an

entity has local protection, the WRITE-KEY for that

entity is required.

8. The MODIFY-ENTITY command requires MODIFY-PERMISSION
for the status and entity-type of the entity. If the

entity has local protection, the WRITE-KEY for the

entity is required.

9. The MODIFY-RELATIONSHI P command requires MODIFY-
PERMISSION for the status and entity-type of both
entities which are members of the relationship. If an

entity has local protection, the WRITE-KEY for that

entity is required.

10. The RENAME command requires ADD-PERMISSION for the
status and entity-type of the entity specified. If

the entity has local protection, the WRITE-KEY is

required

.

11. The RENUMBER command requires MODIFY-PERMISSION for

the status and entity-type of an entity specified. If

local protection exists, the WRITE-KEY is required.

8 . 1 . 5 . 3 REPORT COMMANDS

In a manner analogous to qualification commands, if a dictionary
user requests a report in which entities would appear which are

not accessible to that user, in the report the primary name and

all attributes of every entity not accessible to that user will
be replaced by a series of asterisks or some other implementor
defined set of literals. Similarly, attributes of relationships
will be replaced by such literals whenever both members of the

relationship are not accessible to the user.

8 16

8. 1.5. 4 QUERY COMMANDS

The effect of the security facility on query commands is identi-

cal to what has been discussed for qualification and report
commands. Separate counts for entities which are accessible and

which are not accessible are returned to the user. In the output
of a query, the primary name and all attributes of every entity
not accessible to that user will be replaced by a series of

asterisks or some other implementor defined set of literals.
Similarly, attributes of relationships will be replaced by such

literals whenever both members of the relationship are not acces-
sible to the user.

8. 1.5.

5

DDS SOFTWARE INTERFACE COMMANDS

Execution of all the DDS software interface commands that inter-
act with a dictionary, i.e.

GENERATE-STRUCTURE-FOR-COBOL
EXTRACT-SUBSET
LOAD-DICTIONARY
IMPORT-SUBSET
CALL DDS

require access to all dictionary descriptors involved in the
command

.

The CREATE-DICTIONARY command requires ADMINISTRATOR-PERMISSION.

The EXTRACT-ESSENTIAL-SCHEMA and COMPARE-ESSENTIAL-SCHEMAS
commands require either SCHEMA-PERMISSION-1 or SCHEMA-PERMISSION-
2m

8 17

8.2 LOCAL SECURITY COMMANDS

In addition to the facility already specified as part of the ADD-
ENTITY command, whereby an entity may be assigned local security
at the time it is added to the dictionary, the following commands
are used to establish, modify, or delete local security:

ADD-SECURITY
DELETE-SECURITY
MODIFY-SECURITY
ASSIGN-KEY
DELETE-KEY

Execution of these commands is subject to the dictionary user
having been assigned PROTECT-PERMISSION for the status and
entity-type of every entity being specified in a command.

8.2.1 ADD-SECURITY COMMAND

PURPOSE: To assign local security to one or more existing
unprotected entities.

FORMAT: ADD-SECURITY
{EXISTING-CONTROLLER | NEW-CONTROLLER} controller-name
1 i st-name

where list-name is one of the following:

one or more names which are either the primary name
or SHORT-NAME of an entity

the name of a qualification list

a RUN command with the name of a procedure

8-18

RULES:

1. If EXISTING-CONTROLLER is specified, controller-name
must be the primary name of an entity of type ACCESS-
CONTROLLER.

2. If NEW-CONTROLLER is specified, controller-name cannot
be the primary name of an entity in the dictionary.

3. No entity in list-name can be the member of a

relationship-type whose other member is an entity of

type ACCESS-CONTROLLER.

ACTIONS PERFORMED:

1. If NEW-CONTROLLER is specified, an entity of type
ACCESS-CONTROLLER whose name is controller-name, is

added to the dictionary.

2.

a For every entity in list-name a relationship is

created, the other member of which is the specified
entity of type ACCESS-CONTROLLER.

ERRORS:

1. EXISTING-CONTROLLER is specified, and controller-name
is not the primary name of an entity of type ACCESS-
CONTROLLER.

2. NEW-CONTROLLER is specified, and controller-name is

the primary name of an entity in the dictionary.

3. A name is specified in list-name which is not the

primary name or SHORT-NAME of an entity in the dic-
tionary.

4 A non-existent qualification list is specified.

5. A non-existent procedure is specified.

6. An entity is specified in list-name for which local
protection already exists.

8 19

EXAMPLES:

1. ADD-SECURITY
EXISTING-CONTROLLER PAYROLL-CONTROLLER
NEW-SALARY, $NEW-DT

2. ADD-SECURITY
NEW-CONTROLLER FIN148
FINANCIAL-LIST

8.2.2 DELETE-SECURITY COMMAND

PURPOSE: To delete existing local protection for one or more
enti ties.

FORMAT: DELETE-SECURITY
1 i st-name

where list-name is one of the following:

one or more names which are either the primary name
or SHORT-NAME of an entity

the name of a qualification list

a RUN command with the name of a procedure

RULES:

1. Every entity specified in list-name must have local
protection

.

ACTIONS PERFORMED:

1. The local protection of every entity in list-name is

deleted

.

8-20

2 . If, at the completion of the deletion of local protec-

tion, there exists an entity of type ACCESS-CONTROLLER
which is not the member of any relationship, this
entity is also deleted.

ERRORS

:

1. A name is specified in list-name which is not the

primary name or SHORT-NAME of an entity in the dic-
tionary.

2 A non-existent qualification list is specified.

3. A non-existent procedure is specified.

4. An entity is specified in list-name for which no local

protection exists.

EXAMPLES:

1. DELETE-SECURITY
ELEMENT-A190

2. DELETE-SECURITY
RUN OBSOLETE-DATA-PROCEDURE

8.2.3 MODIFY-SECURITY COMMAND

PURPOSE: To remove local protection for one or more entit
from existing controller (s) and to assign them
another controller. READ-KEYs and WRITE-KEYs
optionally updated.

i es

to

are

FORMAT: MODIFY-SECURITY
1 i st-name

TO {EXI STING-CONTROLLER | NEW-CONTROLLER } controller-name
[NEW-KEYS]

8 21

where list-name is one of the following:

RULES:

ACTIONS

one or more names which are either the primary name

or SHORT-NAME of an entity

the name of a qualification list

a RUN command with the name of a procedure

. Every entity in list-name must have local protection.

. If EXISTING-CONTROLLER is specified, controller-name
must be the primary name of an entity of type ACCESS-
CONTROLLER.

. If NEW-CONTROLLER is specified, controller-name cannot

be the primary name of an entity in the dictionary.

PERFORMED:

. The existing local protection of every entity in list-

name is deleted.

. Local protection for every entity in list-name is

established with the entity whose primary name is

controller-name.

. If, at the completion of the deletion of local protec-
tion, there exists an entity of type ACCESS-CONTROLLER
which is not the member of any relationship, this
entity is also deleted.

. If NEW-KEYS is specified, READ
attributes for the new controller
DICTIONARY-USER entities which
entities in list-name prior to t

command

.

-KEY and WRITE- KEY
are assigned to all

had access to the

he e xecut i on o f the

8 22

ERRORS:

1. EXISTING-CONTROLLER is specified, and controller-name
is not the primary name of an entity of type ACCESS-
CONTROLLER.

2. NEW-CONTROLLER is specified, and co n t r o 1 1 e r -na m e is

the primary name of an entity in the dictionary.

3. A name is specified in list-name which is not the

primary name or SHORT-NAME of an entity in the dic-
tionary.

4 A non-existent qualification list is specified.

5. A non-existent procedure is specified.

6. An entity is specified in list-name for which local
protection does not exist.

EXAMPLES:

1. MODIFY-SECURITY
FINANCIAL-LIST
TO EXISTING-CONTROLLER
FINANCIAL-CONTROLLER

This command causes local protection of all entities
in FINANCIAL-LIST to be transferred to the entity of

type ACCESS-CONTROLLER named FINANCIAL-CONTROLLER.

NEW-KEYS has not been specified, and hence access
permissions to these entities is restricted to those

dictionary users for which keys to FINANCIAL-CONTROL-
LER have been previously assigned.

2. MODIFY-SECURITY
ELEMENT-A, ELEMENT-B
TO NEW-CONTROLLER
CONTROLLER-AC7656
NEW-KEYS

8-23

This command created a new entity of type ACCESS-
CONTROLLER named CONTROLLER-AC76 56 and assigns local

protection of ELEMENT-A and ELEMENT-B to it. Since

NEW-KEYS has been specified, all dictionary users who

previously had access to those entities continue to do

so

.

8.2.4 ASSIGN-KEY COMMAND

PURPOSE: To assign, or optionally reassign, read and write keys

to sets of dictionary users.

FORMAT

:

ASSIGN-KEYS
access-controller-list
WRITE-KEYS TO dictionary-user-list-1 [ONLY]

READ-KEYS TO dictionary-user-list-2 [ONLY]

where access-controller-list is one of the following:

one or more names which are the primary name
of an entity of type ACCESS-CONTROLLER

the name of a qualification list

a RUN command with the name of a procedure

and where dictionary-user-list-1 and dictionary-user-
list-2 are one of the following:

one or more names which are the primary name

of an entity of type DICTIONARY-USER

the name of a qualification list

a RUN command with the name of a procedure

8 24

RULES:

1. Every name in access-controller-list must be the

primary name of an entity of type ACCESS-CONTROLLER.

2. Every name in dictionary-user-list-1 and dictionary-
user-list-2 must be the primary name of an entity of

type DICTIONARY-USER.

ACTIONS PERFORMED:

1. If the ONLY clause is not specified for WRITE-KEYS,
then for every entity which has local protection
through an ACCESS-CONTROLLER in access-controller-
list, WRITE-KEY attributes are assigned to all enti-
ties of type DICTIONARY-USER in di ctionary-user-1 i st-

1. Other entities of this type which already have
such WRITE-KEY attributes continue to have access to

these entities.

2. If the ONLY clause is not specified for READ-KEYS,
then for every entity which has local protection
through an ACCESS-CONTROLLER in access-controller-
list, READ-KEY attributes are assigned to all entities
of type DICTIONARY-USER in d i c t i ona r y-us e r-1 i s t- 1

.

Other entities of this type which already have such
READ-KEY attributes continue to have access to these
entities

.

3. If the ONLY clause is specified for WRITE-KEYS, then
for every entity which has local protection through an

ACCESS-CONTROLLER in access-controller-list, WRITE-KEY
attributes are assigned to all entities of type DIC-
TIONARY-USER in dictionary-user-list-1. Other enti-

ties of this type which prior to the command had such

WRITE-KEY attributes, no longer have access to these
entities

.

4. If the ONLY clause is specified for READ-KEYS, then
for every entity which has local protection through an

ACCESS-CONTROLLER in access-controller-list, READ-KEY
attributes are assigned to all entities of type DIC-

8 25

TIONARY-USER in dictionary-user-list-1. Other enti-

ties of this type which prior to the command had such

READ-KEY attributes, no longer have access to these
entities

.

ERRORS:

1. A name is specified in access-controller-list which is

not the primary name of an entity of type ACCESS-
CONTROLLER in the dictionary.

2. A non-existent qualification list for access-control-
ler-list is specified.

3. A non-existent procedure for access-controller-list is

specified

.

4. A name is specified in dictionary-user-list-1 or dic-
tionary-user-list-2 which is not the primary name of

an entity of type DICTIONARY-USER in the dictionary.

5. A non-existent qualification list for dictionary-user-
list-1 or dictionary-user-list-2 is specified.

6. A non-existent procedure for dictionary-user-list-1 or

dictionary-user-list-2 is specified.

EXAMPLES:

1. ASSIGN-KEYS
CLASSIFIED-CONTROLLER
WRITE-KEYS TO USER-LIST-1 ONLY
READ-KEYS TO USER-LIST-2 ONLY

This command assigns WRITE-KEYS and READ-KEYS to dic-
tionary users in USER-LIST-1 and USER-LIST-2, respec-
tively, for all entities controlled by CLASSIFIED-
CONTROLLER. This assignment is exclusive in the sense

that any access permissions other users may have had

prior to the command have been deleted.

8-26
L

2. ASSIGN-KEYS
FINANCIAL-CONTROLLER
WRITE K. JONES

This command assigns a WRITE-KEY to the entities
controlled by FINANCIAL-CONTROLLER to K.JONES. Other

users who have access to these entities are not
affected

.

8.2.5 DELETE-KEY COMMAND

PURPOSE: To delete existing READ-KEYS and WRITE-KEYS from a

list of dictionary users.

FORMAT: DELETE-KEY
access-controller-list
dictionary-user-list

where access-controller-list is one of the following:

one or more names which are the primary name
of an entity of type ACCESS-CONTROLLER

the name of a qualification list

a RUN command with the name of a procedure

and where d i c t i o n a r y- u s e r - 1 i s

t

is one of the
following

:

one or more names which are the primary name
of an entity of type DICTIONARY-USER

the name of a qualification list

a RUN command with the name of a procedure

8 27

RULES:

1. Every name in access-controller-list must be the

primary name of an entity of type ACCESS-CONTROLLER.

2. Every name in dictionary-user-list must be the primary
name of an entity of type DICTIONARY-USER.

ACTIONS PERFORMED:

1. All READ-KEYS and WRITE-KEYS of the dictionary users
in dictionary-user-list to the access-controllers in

access-controller-list are deleted.

ERRORS:

1. A name is specified in access-controller-list which is

not the primary name of an entity of type ACCESS-
CONTROLLER in the dictionary.

2. A non-existent qualification list for access-control-
ler-list is specified.

3. A non-existent procedure for access-controller-list is

specified.

4. A name is specified in dictionary-user-list which is

not the primary name of an entity of type DICTIONARY-
USER in the dictionary.

5. A non-existent qualification list for dictionary-user-
list is specified.

6. A non-existent procedure for dictionary-user-list is

specified.

EXAMPLE

:

DELETE-KEY
ALL-CONTROLLERS- LI ST

TERMINATED-EMPLOYEES-LIST

8 28

8.3 DICTIONARY ADMINISTRATOR TOOLS

This section deals with those special tools needed by the

Dictionary Administrator staff in their duties in setting up and

controlling the dictionary. Because many of these tools require

system dependent actions to complete their functions, and because

the way in which these actions are initiated therefore is likely
to have system dependencies, the material here is not given as a

set of possible commands. Thus this section may be considered as

a set of statements of requirements for tools to aid in the

dictionary administration process.

The overall need for dictionary administration are:

1. To set up the dictionary databases so that different
classes of users may potentially see different
dictionaries — this is particularly important in

large organization applications and distributed
envi ronments

.

2. To ensure continuity of service over time. This
generally means that some copy of the dictionary
database must be taken and that a means is available
for starting the dictionary with this copy available.

3. To provide means for monitoring the performance of the

dictionary system, and to have the ability to correct
any possible reasons for deterioration of performance
(such as poor storage utilization).

8.3.1 TOOLS FOR DICTIONARY SET UP

There are two basic assumptions in this discussion:

1. The command structure for such operations as log-in or

sign-on will conform to any FIPS interface standard.

8 29

2 . The dictionary administrator will be able to create

more than one database, thereby producing multiple

"dictionaries" for user access. Thus the sign on of

the user must identify which dictionary is required by

naming it.

The tools for dictionary set-up must therefore have the following
characteristics

:

1. The dictionary administrator must be able to create a

new dictionary. This involves the ability to assign a

unique name to it. The CREATE-DICTIONARY command of

Section 7. 2. 4. 2 addresses this requirement.

2. The dictionary administrator must have the option of

either taking the system standard dictionary schema,

or copying a given (previously named and defined)
dictionary schema to be the new dictionary schema.

3. The dictionary database must either have space
preallocated to it and be able to have space added to

it (when running out), or else it must be able to get
space when needed. This mechanism is obviously
operating system and command language dependent;
however, the dictionary administrator must be able to

make any required actions to obtain space for each of

the databases.

8.3.2 TOOLS FOR DICTIONARY CONTINUITY

Because the dictionary database may be damaged due to physical
deterioration, user or software error, or other cause, there must
be some way to reconstruct the dictionary as of some previous
time. There is also the possibility of communications that
causes multiple copies of a dictionary (e.g. at different geo-
graphical locations) to be out of synchronization — possibly due

to loss of update messages. The tools for continuity must there-

fore provide services that allow the dictionary database at a

location to be reconstructed to its condition at some previous

8 30

time. This may be accomplished by any vendor implemented tech-

nique, but probably entails some technique such as:

1. Being able to initiate a request to make a copy of the

current dictionary database and loading this copy back

into the dictionary database after some disaster or
major error; or

2. Being able to request that a copy of a dictionary
database at one location is transferred to and loaded
at another location.

It may be assumed that some vendors may make use of their
operating system or database management system facilities to

"restart" the system after a hardware failure, to "recover" from

a failure automatically, or to "back-out" a bad transaction.
However, there is no requirement for such tools in this
specification.

8.3.3 TOOLS FOR PERFORMANCE IMPROVEMENT

The future system may be self organizing, in the sense that it

constantly monitors performance and makes any necessary
improvements that will improve the performance or detection of

deterioration, however, today's systems do not generally provide
such automatic facilities. Thus the system will generally be

provided with two types of tools:

Typical tools to be provided by the vendor might be expected to

include

:

performance assessment. These will generally be:

simple collection mechanisms that determine the time
of access for various dictionary maintenance and
reporting commands; mechanisms for assessing the

excess space utilization (e.g., in any overflowed

1. Tools to monitor performance.

2. Tools to improve performance.

1. Methods to collect that will aid in

8 31

records); and statistics packages to work on this data

to show average values and/or trends, etc.

2. Tools to aid in improving performance. These will
generally not need to be highly sophisticated; e.g.,

they may be means to make a logical dump and restore
of the database, or they may merely allow a dump
output and then read-in of the file to remove any
major problems due to excess overflow of records and

parts of records in the physical storage devices.

8 32

I

I

i

l

i

8-33

APPENDIX A

FEASIBILITY OF EXTENSIBILITY IMPLEMENTATION

In the discussion on the issue as to whether to include full
extensibility facilities in the proposed Federal Information
Processing Standard for a DDS , or only some subset, the critical
point centered on the required size of the host computer that
would be running the DDS. There was a general agreement that the
current state-of-the-art was to provide full facilities of this

kind, but that inclusion of these facilities should not restrict
the standard to be operable only on medium- to large-size
computer systems.

This appendix addresses the feasibility of implementing a full
extensibility facility on a small computer system. It must be

emphasized that the implementation scheme which will be discussed
is merely an example of an implementation, and that no claim,
implicit or explicit, is being made that this scheme is a good
scheme, or that it should be used in an actual implementation of

the standard.

There exist in today's market-place a number of small database
management systems that are available on mini and micro systems.
Such database management systems support hierarchic, or network,
or relational databases. Examples are:

o HDBS (Hierarchical) by Micro Data Base Systems, Inc.,

which runs on Z-80, Z-8000, or Z-8080/86 based hard-
ware under the CP/M operating system;

o SEED (Network) by International Data Base Systems,
Inc., which runs on DEC VAX-11, PDP-11, and Z-80
processors

;

o ORACLE (Relational) by RSI for DEC VAX-11 and PDP-11
systems

;

A - 1

o TOTAL (Two level network) by Cincora Systems, Inc.,

which is available on a variety of small systems.

o An impact can also be expected from promising new
integrated systems, such as Britton Lee's IDM 500

(Relational)

.

Because of the relative simplicity of the Relational Database
Management System (R-DBMS), it was chosen as a means of

demonstrating the desired feasibility. Many such systems already
contain a primitive dictionary system to store the R-DBMS schema;

e.g., in IBM's SQL/DS there are many system tables that can be

accessed by privileged users to provide the management and

security controls of the system and to define and modify the

schema

.

The proof of feasibility being offered here consists of the
following

:

We will assume that there exist certain generically
defined tables that make up the dictionary schema, and

that there exists a dictionary processing system that
operates on these tables.

We will then show the actions that must be performed on

these tables when the extensibility commands that

1. create a new entity-type,
2. create a new relationship-type,
3. create new a t t r i bu te- t ype s , that are associated

with an old or new entity-type, and
4. create a new attribute-type that is associated with

a relationship-type,

are executed.

Upon completion of these executions, it will then be seen

that the tables are generically identical to the ones
prior to the execution of the commands.

A 2

Dictionary Tables

The following three tables exist:

1. The M-ENTITY table

2. The M-ATTRIBUTE table

3. The M-RELATIONSHIP table

Rows in the M-ENTITY table correspond to meta-entities that exist

in the schema. The table has two columns - the first one is the

meta-entity-type of an row, and the second one is the name of the

meta-entity

.

In the following we will use as an example a dictionary schema
which is composed of the following:

The entity-types FILE and RECORD;

The relationship-type CONTAINS, whose first member is FILE

and whose second member is RECORD;

The attribute-types NUMBER-OF-RECORDS and ACCESS-METHOD,
which are associated with the entity-type FILE, and the

attribute-type RESPONSIBILITY, which is associated with
the entity-type RECORD.

The attribute-type DESCRIPTOR which is associated with the

relationship-type CONTAINS.

Figure A-l shows the M-ENTITY table for this schema. All figures

are found at the end of this appendix.

The M-ATTRIBUTE table shows the association of attribute-types
with entity-types and r e 1 a t i onsh i p- type s. In this table there
exists one row for each attribute-type in the schema. The table

has two columns, the first column shows the name of the meta-
entity with which the a t t r i bu t e-type in the second column is

associated. Figure A-2 shows the M-ATTRIBUTE table for the

example schema.

A 3

The M-RELATIONSHIP table shows the entity-types that participate

in each relationship-type. There exists one row for each rela-

tionship-type in the schema. The table has three columns; the

first column contains the name of the relationship-type, the

second column contains the name of the entity-type which is the

first member of the relationship, and the third column contains

the name of the entity-type which is the second member. Figure

A- 3 shows the M-RELATIONSHIP table for the example schema.

Effect of Extensibil i ty on Dictiona ry Tables

Suppose it is desired to extend the example schema by the

following actions:

1. The entity-type REPORT is to be created.

2. The relationship-type USES is to be created, the first

member of this relationship-type being REPORT, and the

second member being RECORD.

3. The attribute-type CENTRAL-ID is to be created, and
this attribute-type is to be associated with the

entity-type REPORT.

4. The attribute-type PROCESSING-OPTION is to be created,

and this attribute-type is to be associated with the

relationship-type USES.

5. The attribute-type REVIEW-DATE is to be created, and
this a 1 1 r i bu t e- 1 y pe is to be associated with the

entity-type RECORD, which existed in the original
example schema.

We will discuss the effect of each one of these actions on the

dictionary schema tables. Modifications of the tables will be

highlighted with bold lettering.

Execution of the first one of this actions adds a row in the

M-ENTITY table, as is shown in Figure A-4. No modification to

the other tables takes place.

A 4

Execution of the second action adds a row in the M-ENTITY table,

as shown in Figure A- 5, as well as a row in the M-RELATIONSHIP
table, as shown in Figure A-6

.

Execution of the third action adds a row in the M-ENTITY table,

as shown in Figure A-7, as well as a row in the M-ATTRIBUTE
table, as shown in Figure A-8.

Execution of the fourth action adds a row in the M-ENTITY table,

as shown in Figure A-9, as well as a row in the M-ATTRIBUTE
table, as shown in Figure A-10.

Finally, execution of the fifth and last action again adds a row

in the M-ENTITY table, as shown in Figure A-ll, and a row in the

M-ATTRIBUTE table, as shown in Figure A-12.

Conclusion

It can then be seen that the dictionary schema tables that have
been arrived at (i.e. the M-ENTITY table in Figure A-ll,- the

M-ATTRIBUTE table in Figure A-12, and the M-RELATIONSHIP table in

Figure A-6), are generically no different from the tables that
described the schema prior to the modifications. Thus any opera-
tion that could be performed by the dictionary processing system
on the old schema, or as a result of the old schema (e.g.,

populating the dictionary) is still valid on the new schema. We

can therefore conclude that the system can be made fully
extensible

.

A 5

META-ENTITY-TYPE |
META-ENTITY-NAME

ENTITY-TYPE FILE

RECORDENTITY-TYPE

RELATIONSHIP-TYPE CONTAINS

NUMBER-OF-RECORDSATTRIBUTE-TYPE

ATTRIBUTE-TYPE ACCESS-METHOD

RESPONSIBILITYATTRIBUTE-TYPE

ATTRIBUTE-TYPE DESCRIPTOR

Figure A-l - M-ENTITY table for example schema

I META-ENTITY-NAME | ATTRIBUTE-TYPE-NAME
|

1
FILE

|
NUMBER-OF-RECORDS

|

I
FILE

|
ACCESS-METHOD

|

|
RECORD

|
RESPONSIBILITY

I

|
CONTAINS

|
DESCRIPTOR

|

Figure A-2 - M-ATTRIBUTE table for example schema

| RELATIONSHIP-TYPE-NAME
||

FROM | TO 1

I
CONTAINS

]
FILE

|
RECORD

1

Figure A-3 - M-RELATIONSHIP table for example schema

A 6

META—ENTITY—TYPE | META-ENTITY-NAME
|

ENTITY-TYPE

ENTITY-TYPE

RELATIONSHIP-TYPE

ATTRIBUTE-TYPE

ATTRIBUTE-TYPE

ATTRIBUTE-TYPE

ATTRIBUTE-TYPE

FILE

RECORD

CONTAINS

NUMBER-OF-RECORDS

ACCESS-METHOD

RESPONSIBILITY

DESCRIPTOR

ENTITY-TYPE REPORT

Figure A- 4 - M-ENTITY table after Action 1

META-ENTITY-TYPE | META-ENTITY-NAME |

ENTITY-TYPE FILE

ENTITY-TYPE

RELATIONSHIP-TYPE

RECORD

CONTAINS

ATTRIBUTE-TYPE

ATTRIBUTE-TYPE

NUMBER-OF-RECORDS

ACCESS-METHOD

ATTRIBUTE-TYPE

ATTRIBUTE-TYPE

RESPONSIBILITY

DESCRIPTOR

ENTITY-TYPE
|
REPORT

RELATIONSHIP-TYPE I USES

Figure A- 5 - M-ENTITY table after Action 2

A 7

I
RELATIONSHIP—TYPE-NAME |

FROM |
TO

I
CONTAINS

|
FILE

|
RECORD

| USES I REPORT | RECORD

Figure A-6 - M-RELATIONSHIP table after Action 2

META-ENTITY-TYPE META-ENTITY-NAME |

ENTITY-TYPE

ENTITY-TYPE

RELATIONSHIP-TYPE

ATTRIBUTE-TYPE

ATTRIBUTE-TYPE

ATTRIBUTE-TYPE

ATTRIBUTE-TYPE

ENTITY-TYPE

RELATIONSHIP-TYPE

FILE

RECORD

CONTAINS

NUMBER-OF-RECORDS

ACCESS-METHOD

RESPONSIBILITY

DESCRIPTOR

REPORT

USES

ATTRIBUTE-TYPE CENTRAL-ID

Figure A-7 - M-ENTITY table after Action 3

A - 8

META-ENTITY-NAME | ATTRIBUTE-TYPE-NAME |

FILE
|
NUMBER-OF-RECORDS

FILE
|
ACCESS-METHOD

RECORD
|
RESPONSIBILITY

CONTAINS
|
DESCRIPTOR

REPORT |
CENTRAL-ID

Figure A-8 - M-ATTRIBUTE table after Action 3

META-ENTITY-TYPE | META-ENTITY-NAME

ENTITY-TYPE FILE

ENTITY-TYPE

RELATIONSHIP-TYPE

RECORD

CONTAINS

ATTRIBUTE-TYPE

ATTRIBUTE-TYPE

NUMBER-OF-RECORDS

ACCESS-METHOD

ATTRIBUTE-TYPE

ATTRIBUTE-TYPE

RESPONSIBILITY

DESCRIPTOR

ENTITY-TYPE

RELATIONSHIP-TYPE

REPORT

USES

ATTRIBUTE-TYPE

ATTRIBUTE-TYPE

CENTRAL-ID

PROCESSING-OPTION

Figure A-9 - M-ENTITY table after Action 4

A - 9

|
META-ENTITY-NAME |

ATTRIBUTE-TYPE-NAME |

I
FILE

|
NUMBER-OF-RECORDS

|

I
FILE

|
ACCESS-METHOD

|

|
RECORD

|
RESPONSIBILITY

|

|
CONTAINS

|
DESCRIPTOR

|

I
REPORT

|
CENTRAL-ID

|

| USES |
PROCESSING-OPTION |

Figure A-10 - M-ATTRIBUTE table after Action 4

META-ENTITY-TYPE META-ENTITY-NAME

ENTITY-TYPE FILE

ENTITY-TYPE

RELATIONSHIP-TYPE

RECORD

CONTAINS

ATTRIBUTE-TYPE

ATTRIBUTE-TYPE

NUMBER-OF-RECORDS

ACCESS-METHOD

ATTRIBUTE-TYPE

ATTRIBUTE-TYPE

RESPONSIBILITY

DESCRIPTOR

ENTITY-TYPE

RELATIONSHIP-TYPE

REPORT

USES

ATTRIBUTE-TYPE

ATTRIBUTE-TYPE

ATTRIBUTE-TYPE

CENTRAL-ID

PROCESSING-OPTION

REVIEW-DATE

Figure A-ll - M-ENTITY table after Action 5

A 10

I

I

I

|
META-ENTITY-NAME ATTRIBUTE-TYPE-NAME

|

FILE
1 NUMBER-OF-RSCORDS

|

FILE
I
ACCESS-METHOD

|

RECORD
|
RESPONSIBILITY

1

CONTAINS
I
DESCRIPTOR

|

REPORT
|
CENTRAL-ID

|

| RECORD REVIEW-DATE

Figure A-12 - M-ATTR I BUTE-TABLE after Action 5

A 11

I

APPENDIX B

EXAMPLES OF THE USE OF META-ATTRIBUTES

In this appendix we will discuss a series of examples that deal
with the Dictionary Schema and its structure. In order to better
illustrate some of the points discussed, we will use some of the

commands available in the core standard for interaction with the

Schema, these commands being specified in detail in Chapter 5.

As is true throughout this document, the examples presented
should not be considered to be part of the specification of the
core standard.

It is again emphasized that the syntax used here is merely illus-
trative and that no implication whatsoever is intended that it is

representative of the actual syntax to be used in the standard.

Suppose that there exists somewhere a dictionary which
contains (not exclusively) the following:

FILE-A
PAYROLL-FILE
TIMESHEET-FILE

Each one of these entities has an entity-type, and as

their names suggest, their entity-type has the name FILE.

If we examine the dictionary further, we would find that

there also exist entities with names

PAYROLL-RECORD
TIME-RECORD
A-RECORD
B-RECORD

which again, as their names suggest, are entities of the

entity-type with name RECORD. We furthermore may find

B 1

entities with names

EMPLOYEE-ID
SALARY
DEPARTMENT
REPORTING-PERIOD

NO-OF-HOURS
AB1897
AC7680

which are all entities of the entity-type with name

ELEMENT. If we examine the dictionary further we would
find that the file named PAYROLL-FILE CONTAINS the record

PAYROLL-RECORD , the file named TIMESHEET-FILE CONTAINS the

record TIME-RECORD , and the file named FILE-A CONTAINS the

records A-RECORD and B-RECORD.

Similarly, we would f-ind that the record PAYROLL-RECORD
CONTAINS (among others) the elements EMPLOYEE-ID, SALARY,

and DEPARTMENT, the record TIME-RECORD CONTAINS (among
others) the elements EMPLOYEE-ID, DEPARTMENT, and NO-OF-
HOURS, and that A-RECORD CONTAINS the element AB1897 and

that B-RECORD CONTAINS the element AC7680, among others.

We can draw some conclusions from the preceding. First of all,

were we to query the schema in the following manner:

What entity-types are contained in the schema?

the response would be:

FILE

RECORD
ELEMENT

as well as some others that we have not discussed. Similarly,
the query

What relationship-types are contained in the schema?

B 2

would create the following response:

FI LE-CONTAINS-RECORD
RECORD-CONTAINS-ELEMENT

and, again, some others that we have not discussed. Suppose that

we wished to examine one of these r e 1 a t i onsh i
p- 1 ype s closer.

Since a relationship-type denotes an ordered pair of entity-types
we would find that the relationship-type FI LE-CONTAINS-RECORD had

the entity-type FILE as the first member of the pair, and the

entity-type RECORD as the second member of the pair.

We would similarly find that the dictionary would contain
attributes of the entities, as well as the relationships, that
are contained in it. For example, the attribute-type ACCESS-
METHOD, which pertains to entities of entity-type FILE might have

the value RANDOM for the files PAYROLL-FILE and TIMESHEET-FILE,
and the value SEQUENTIAL for the other two files. Similarly, the

attribute-type LENGTH for entities of entity-type ELEMENT would
indicate the length of the instances of these entities, as they
exist in the domain of information resources. This is to say
that were we to examine any one of the instances of PAYROLL-
RECORD, we would find that every EM PLOY EE- ID would be an 8 -digit
number, which is consistent with the attribute of type LENGTH for

EMPLOYEE-ID being 8.

Similarly to the other queries that were directed to the schema,
we could also issue a query to find out what attribute-types were
in existence in the schema, and to which entity-types and/or
relationship-types they pertained. Among others, the response
would indicate that there was an attribute-type with name ACCESS-
METHOD that pertains to entities of type FILE, and an attribute-
type with name LENGTH that pertains to entities of type ELEMENT.

Suppose now that the installation to which the dictionary that we
have been using as an example has developed a new requirement
which they wish to support with the dictionary system. What has

transpired is that it has been recognized that good documentation
would substantially upgrade the entire data processing operation
(as undoubtedly it would), and to this effect a new section
called the "documentation center" has been created. This new
section has decided that it would like to have the dictionary
contain the actual location of the documentation for every file,

system, program, and module. We have already seen that the

B 3

schema contains an entity-type called FILE, and we will assume
that there also exist in the schema entity-types with names
SYSTEM, PROGRAM, and MODULE.

Various alternatives are discussed as to how this requirement can

be satisfied. On the very simplest end of the scale, a new
attribute-type with name DOCUMENTATION-LOCATION could be created,

and this attribute-type could be assigned to all entities of the

type FILE, SYSTEM, PROGRAM, and MODULE. This alternative would
seem to satisfy the basic requirement, but the documentation
center staff has more extensive ideas. The proposal that they
generate consists of the following:

1. Create a new entity-type called LOCATION in the dic-
tionary, such that the names of instances of entities
of this type will be the physical location of where
the documentation exists.

2. Create a set of relationship-types as follows:

LOCATION-HAS-DOCUMENTATION-OF-FI LE
(with members LOCATION and FILE)

LOCATION-HAS-DOCUMENTATION-OF-SYSTEM
(with members LOCATION and SYSTEM)

LOCATION-HAS-DOCUMENTATION-OF-PROGRAM
(with members LOCATION and PROGRAM)

LOCATION-HAS-DOCUMENTATION-OF-MODULE
(with members LOCATION and MODULE)

3. Create an attribute-type called MEDIUM, which is to

pertain to each one of these relationship-types, which
is to denote the physical medium in which the documen-
tation exists. It is further desired that the
dictionary restrict the attributes of this type to be

one of the following: HARD-COPY, MICROFICHE,
MICROFILM. Furthermore, the dictionary system should
enforce the rule that the documentation for any one
entity can only exist in one of these media.

4. Create a t t r i bu t e- t ypes with names SUPERVISOR and
EXTENSION, to be assigned to the entity-type LOCATION,
the values of which will denote the name of the person
responsible for that location and the telephone
extension on which that person can be reached.

B 4

We will not try to discuss whether this proposal really is a good
one or not, which in any case may depend a great deal on the

installation and how they go about doing their job, as well as

the people involved. Suffice it to say that we will assume that

this proposal was accepted.

At this point the schema must be modified to include these new
schema descriptors (schema descriptor being the generic name that

we use for any component of the schema, regardless whether it is

an entity-type, r e 1 a t i on sh i
p- 1 y pe , etc.). This can be achieved

through the use of the CREATE- META-ENTITY and CREATE- META-
RELATIONSHIP commands (Sections 5.1.8 and 5.1.9, respectively).
The CREATE-META-ENTITY command is used to set up the respective
descriptors and their characteristics in the schema, and the

CREATE-META-RELATIONSHIP command is then used to indicate the

members of relationship-types, and to assign a tt r i bute-types to

ent i ty-types and relationship- types. We will now examine these

actions in more detail.

The entity-type LOCATION can be created in the schema by the
command

CREATE-META-ENTITY ENTITY-TYPE LOCATION

Execution of the command will not only create this entity-type in

the schema, but the dictionary system will also create along with
the entity-type certain, what we call, meta-attributes. These
are similar to the audit-attributes that exist in the dictionary,
but are intended here to record the date on which the descriptor
in question was created, who created it, and will then track all

modifications made to the descriptor, such as the last date it

was modified, who made the last modification, and the total
number of times it was modified.

Along with the command any one of a number of optional clauses
can be specified, (corresponding to the descriptors given in

Section 3.1.3). Each one of these refers to what the specifica-
tion calls a "meta-attribute-type", this name having been chosen
since it behaves exactly like an a t t r i bute-type , but the values
being specified apply to all descriptors of the type being
created. Other commands exist that allow modification of these
values at a later time.

B 5

Before proceeding we will discuss these "meta-attribute-types"
further. In the case of attribute-types, such as ACCESS-METHOD
for the entity-type FILE, we assign an attribute to every entity.

For example, we have said that the attribute RANDOM applies to

the FILE entity PAYROLL-FILE, and this attribute and others
reside in the dictionary. On the other hand what we are talking

about here are meta-attributes, and we will see in the manner in

which they are used, that a single meta-attribute represents a

specification that applies to all entities of a type.

Among the more important of these meta-attribute-types that might
be specified in the example we are dealing with are:

o PURPOSE - This allows a string of text to be stored in

the schema, that would contain the purpose that the

entity-type is intended to serve. For instance, for
the entity-type LOCATION it might be something like
the following:

Instances of this entity-type consist of the physical
locations in the documentation center at which the

documentation for a file, system, program, or module
is stored.

o MINIMUM-NAME-LENGTH and MAXIMUM-NAME-LENGTH - The pur-
pose of these meta-attribute-types is to enforce con-
ventions that the installation wishes to adopt on the

length of names that entities of a given type may
have. In the case we are dealing with, let us assume
that the documentation center staff has developed a

coding scheme where every location name is composed of

a pair of letters (denoting the coordinates of the
room) and one to three numbers (denoting the shelf or

drawer at that location). Then every location name
must be at least three characters in length, but
cannot exceed 5. This would be expressed by the
clauses

:

MINIMUM-NAME-LENGTH = 3

MAXIMUM-NAME-LENGTH = 5

o PICTURE - This clause allows the alphabetic/numeric
pattern or patterns of entity-names to be specified.
In the example we are dealing with here, the following
clause would express the requirements stated above:

B 6

PICTURE = AAN, AANN , AANNN

indicating that the name of an entity of type LOCATION
must always begin with two alphabetic characters, to

be followed by either one, or two, or three numbers.

o SYSTEM-GENERATED - This meta-attribute-type, which is

not of interest in the example we are dealing with,
allows the specification that names of entities of

this type will not be supplied by the user, but rather

will be assigned by the system (according to a given
PICTURE clause, and always assuring that these names
are unique). This capability addresses the
requirement that in certain cases it may not be

meaningful to have users supply the primary names of

entities of a given type, but would prefer to have
these entities named with a s y s t e m - g e n e r a t e

d

" identifier" .

o ALTERNATE-ENTITY-TYPE-NAME - This clause addresses a

requirement, which in the example we are dealing with
might be that the name LOCATION that has been assigned
to the entity-type might not be sufficiently descrip-
tive for some users of the dictionary system, and
might at the same time be too long for the staff of

the documentation center. In this case the clause

ALTERNATE-ENTITY-TYPE-NAME =

DOCUMENTATION-LOCATION

would allow any user to refer to this entity-type by
the name DOCUMENTATION-LOCATION, and the additional
clause

ALTERNATE-ENTITY-TYPE-NAME = LOC

would then also provide a name requiring fewer key
strokes for the staff of the documentation center.

o ENTITY-CLASS - this meta-attribute-type is intended to

record whether the entity-type being created repre-
sents DATA, PROCESS, or EXTERNAL entities. An
additional value used is SECURITY, which however is

B 7

only used for entity-types that are involved with the

security facility of the DDS . This meta-attribute is

optional in the case we are dealing with.

This completes the specification of the entity-type LOCATION, and

we can then proceed to look at the specification of one of the

required relationship-types, for instance LOCATION-HAS-DOCUMENTA-
T I ON-OF-SYSTEM , which has the entity-type LOCATION as its first

member and the entity-type SYSTEM as its second member. The

command to create the r e 1 a t i o nsh i p- type is the same as we used

before, namely

CREATE-META-ENTITY RELATIONSHIP-TYPE
LOCATION-HAS-DOCUMENTATION-OF-SYSTEM

where we indicate that we are not creating an entity-type, but a

r e 1 a t i onsh i p- ty pe . Again there are optional meta-attribute
clauses that can be specified (corresponding to the list given
in Section 3.1.3) , but looking at the ones that we used for the

entity-type LOCATION we can immediately see that they really
would not apply to a relationship-type the same way in which they
fit an entity-type. For instance, a specification relating to

length of a name is meaningful to an entity, but not to a

relationship, and the same is true of the PICTURE clause.

What we have here is again an analogous situation to what we are

used to seeing in the dictionary, where ACCESS-METHOD is a

meaningful attribute-type for the entity-type FILE, but does not

have a great deal of meaning for the entity-types ELEMENT or

SYSTEM. In that same sense, then, certain meta-attribute-types
are meaningful in the case where an entity-type is being created,

and others are meaningful in the case of a relationship-type. As

we will see shortly, other meta-attribute-types make sense when
an attribute-type is being created in the schema.

This leads us to pursue this analogy further in the terminology
that is being used in the specification of the schema and its

structure

:

In the case of the dictionary, different attribute-types
are associated with each entity-type.

In the case of the schema, since different meta-attribute-
types are associated with an entity-type, with a relation-

B 8

ship-type, and with an attribute-type, we will call each

one of these a "meta-entity-type".

Two points need to be made for purposes of clarification. When
we say that different a t t r i bu t e- type s are associated with each
entity-type, we do not wish to preclude the possibility that some

a 1 1 r i bu t e-types may be meaningful in the case of more than one

entity-type - certainly the a t t r i b u t e- ty pe DESCRIPTION is

meaningful to all en t i t y- t y pe s . Similarly, we do not wish to

preclude that a certain meta-attribute-type may apply to more
than one meta-entity-type.

The second point that should be made merely in passing, is that
the two meta-entity-types, ENTITY-TYPE and RELATIONSHIP-TYPE,
which we have dealt with in the preceding are not the only ones

that exist in the structure of the system-standard schema, and
later in this example we will show both the requirement for and

the existence of others.

We now return to the question of what meta-attribute-types are
meaningful in the creation of a relationship-type. The more
important ones are the following:

o In the same manner as for the creation of an entity-
type in the schema, it is important to know when and
by whom a relationship-type has been created, as well

as similar data about its modifications.

o In many instances it is desirable to assign an INVERSE

NAME to a r e 1 a t i onsh i p- type . In the case we are

dealing with, the (forward) name is LOCATION-HAS-
DOCUMENTATION-OF-SYSTEM, and an instance of this
relationship-type might be declared as something like

AF123 HAS-DOCUMENTATION-OF SYSTEM-R5

.

In some cases it may however be desirable to make the

declaration backwards, so as to be able to state
something like

SYSTEM-R5 DOCUMENTATION- IS-LOCATED AT AF123

for which purpose an inverse name of the relationship-
type is required.

B - 9

o There exist cases of r e 1 a t i onsh i p- ty pe s where more

than one instance of this type can exist between the

same pair of entities. A simple example is a

relationship between an entity of type PROGRAMMER and

an entity of type PROGRAM which is intended to denote

that the programmer worked on a program during any one

day. Since it is possible that the same programmer
worked on a given program on more than a single day,

multiple relationships can exist. Whether or not such

circumstances are allowed for a given relationship-
type is something that must be specified in the

schema. If it is allowed, then some means must be

specified for telling these various instances apart,

which can be done through the proper meta-attribute-
type clauses.

We will now proceed to the definition of the required attribute-
types. The first one of these is the attribute-type called
MEDIUM, which is to apply to the r e 1 a t i onsh i p- types that have
been created. As was mentioned earlier, the procedure that is to

be followed is to first define the a 1 1 r i bu t e- ty pe , and then to

assign it to a r e 1 a t i onsh i
p- 1 ype . The present example illus-

trates why the a 1 1 r i bute- type is not being defined as part of the

relationship-type definition, as in that case it would have been

necessary to define it for every relationship-type to which it is

to be assigned.

The CREATE-META-ENTITY command used is the same one that we have

seen before, except that this time we specify the "meta-ent i ty-

type" attribute-type. Thus we have the command

CREATE-META-ENTITY ATTRIBUTE-TYPE MEDIUM

where this time the optional clauses (again from the list given

in Section 3.1.3) are very similar to those used in the creation
of an entity-type in that they allow specification of the
following

:

the minimum length of an attribute

the maximum length of an attribute

the PICTURE of an attribute

B 10

an alternate-attribute-type name

whether or not the dictionary system should generate
the attribute

The reason for this last clause is that it makes it possible to

define an attribute-type that can be used as an "identifier",
i.e. in the case where the a 1 1 r i bu te- type is assigned to an

entity-type, this attribute-type can be made to provide another
unique name for each entity in addition to the primary name of

the entity. This however is not the case here, and it would also

appear that none of the optional clauses are of interest in the

case of the attri bute-type MEDIUM.

Two other a t t r i b u t e- t ype s are required, namely SUPERVISOR and
EXTENSION, which are to be assigned to the entity-type LOCATION.
For the first one of these the command required is

CREATE-META-ENTITY ATTRIBUTE-TYPE SUPERVISOR

and in this case we do want to use some of the optional clauses.

o The minimum length of an attribute (which consists of

the name of the supervisor) is to be 5 characters.

o The maximum length of an attribute is to be 24

characters

.

For the attribute-type EXTENSION the required command is

CREATE-META-ENTITY ATTRIBUTE-TYPE EXTENSION

and we do want an optional clause that specifies that the PICTURE
of an attribute must be NNNN , i.e. that every extension is a 4-

digit number.

There is still more work to be done. Specifically

o The attribute-types SUPERVISOR and EXTENSION must be

assigned to the entity-type LOCATION.

o The attribute-type MEDIUM must be assigned to each one

of the relat ionshi p-types that have been created.

B 11

o The entity-types that are members of these relation-

ship-types must be specified, e.g. LOCATION and SYSTEM

are the members of LOCATION-HAS-DOCUMENTATION-OF
SYSTEM.

o We still have not done anything to assure that the

only attributes of MEDIUM can be HARD-COPY, MICRO-
FICHE, and MICROFILM.

We will now deal with each one of these in the order listed. As

was mentioned earlier, the CREATE-META-RELATIONSHI P command is

used to associate an attribute-type with an entity-type. Thus we

have

CREATE-META-RELATIONSHIP LOCATION AND SUPERVISOR

which is an instance of the meta-relationship-type M-R-T (ENTITY-

TYPE, ATTRIBUTE-TYPE) of Section 3.1.2, and which associates the

attribute-type SUPERVISOR with the entity-type LOCATION. Similar
to what we have seen in the CREATE-META-ENTITY command, there can

exist optional clauses as part of the command. Of particular
interest are the following:

o The ability to specify the number of attributes of the

stated type that can occur for any one entity. In the

case we are dealing with here, every location has a

single supervisor, and this can be expressed by the

clause

SINGULAR/PLURAL = SINGULAR

o Dealing for the moment with another example, such as

for an entity-type called PROGRAMMER and an attribute-
type called LANGUAGE-PROFICIENCY, it is generally
reasonable to assume that multiple attributes may
occur, as a programmer may be familiar with several
programming languages. In this case the corresponding
clause would be

SINGULAR/PLURAL = PLURAL

In the case we are dealing with here it may be desira-
ble to be able to specify some upper limit to the
number of programming languages that may be specified

B 12

for any one programmer as, for instance, it may be

very unlikely (and probably erroneous) to have a pro-

grammer shown who is proficient in 10 programming
languages. This limitation on the number of
attributes could then be expressed by the clause

MAXIMUM-NUMBER-OF-OCCURRENCES = 4

or whatever number is deemed to be a logical maximum.

In a similar manner we would assign the attribute-type EXTENSION
to the entity-type LOCATION by the command

CREATE-META-RELATIONSHIP LOCATION AND EXTENSION

and assuming that every supervisor had but a single telephone
extension we would specify the optional clause

SINGULAR/PLURAL = SINGULAR

We will now assign the a t t r i bu t e- type MEDIUM to one of the
relationship-types that we have created, say, LOCATI ON-HAS-
DOCUMENTATION-OF-SYSTEM . The required command is

CREATE-META-RELATIONSHIP
LOCATION-HAS-DOCUMENTATION-OF-SYSTEM AND MEDIUM

which is again an instance of the meta-relationship-type
M-R-T (RELATIONSHIP-TYPE, ATTRIBUTE-TYPE) given in Section 3.1.2.

We assume that the proper meta-attribute clause is

SINGULAR/PLURAL = SINGULAR

denoting that, if the documentation for a single system exists in

more than one medium, each such piece of the documentation will
be stored in a different location.

Before proceeding further, we will again digress slightly into
the terminology that is being used in the specification of the
core standard. This digression is not necessary from the point
of view of the example we are discussing here, but does provide
some help and explanation of the specification proper that is

being presented. We have already introduced the concept of meta-
entities, and that it was useful to consider also a "type" for

B 13

these, which we called a "meta-entity-type", and that entity-
type, relationship-type, and attribute-type were meta-entity-
types. In discussing the optional clauses for the CREATE-META-
ENTITY command, as well as in the above cases of the CREATE-META-
RELATIONSHIP command, we have seen that we are dealing with
something that can reasonably be called m e ta-a t t r i but e- type s.

The question that now arises is what meaning can be assigned in

this environment to, for instance, the command

CREATE-META-RELATIONSHI P LOCATION AND EXTENSION

and the meta-attribute clause that goes with it. We will look at

it from the following perspective:

Both LOCATION and EXTENSION are meta-entities, and what we

are doing is very similar to what we are used to doing in

the dictionary -- namely, establishing a relationship
between them. The only real difference is that we are

operating on a different level — in the dictionary we

establish relationships between entities, and here, where

we are working in the schema, we establish relationships
between meta-entities. It then seems reasonable that we

should call this a "meta-relationship", and indeed our
terminology is very appropriate as it turns out that our

meta-relationship has a meta-attribute, namely SINGULAR.

This logic can be carried one step further. In the same
manner as relationships have a type, so do meta-relation-
ships. In the case of relationships, the relationship-
type involves two entity-types, and we follow the analogy
by saying that a meta-relationship-type involves two meta-
entity-types. In the command

CREATE-META-RELATIONSHI P LOCATION AND EXTENSION

these me ta-ent i ty-types are entity-type and attribute-
type, and in the command

CREATE-META-RELATIONSHIP
LOCAT I ON-HAS-DOCUMENTATION-OF-SYSTEM AND MEDIUM

the meta-entity-types involved are relationship-type and

attr i bute-type

.

B 14

It then also makes sense why we find that different
meta-attribute clauses apply to where the CREATE-META-
RELATIONSHIP command is used, as, analogous to the

dictionary, different meta-relationship-types have
different meta-attribute-types.

The next item which must be dealt with is the association of

entity-types with the specified relationship-types. We should

first note that the relationship-types that we have specified, as

for instance, LOCATION-HAS-DOCUMENTATION-OF-SYSTEM , other than in

the name we have given it, does not specify which entity-types
are involved in the relationship-type. Every such relationship-

type involves two entity-types in an ordered pair, and it will be

necessary to specify which entity-type is the first member of the

pair, and which one is the second one. This specification is

then done through the following commands:

CREAT E-META-RE LATI ONSH I

P

LOCAT I ON-HAS-DOCUMENTATION-OF-SYSTEM AND LOCATION

with the additional clause

POSITION = FIRST

which denotes that the entity-type LOCATION is the first member
of the relationship-type, and the command

CREATE-META-RELATIONSHIP
LOCATION-HAS-DOCUMENTATION-OF-SYSTEM AND SYSTEM

with the clause

POSITION = SECOND

to denote that the entity-type SYSTEM is the second member of the

relationship-type

.

Equivalent commands are used to associate entity-types with the

other relationship-types that have been specified, and the only
task remaining is to include the proper provisions in the schema
whereby it can be assured that the attribute-type MEDIUM can only
have the attributes HARD-COPY, MICROFICHE, or MICROFILM.

B 15

There exist facilities in the core standard which we have not yet

discussed in this example that allow the above specification to

take place. We must first introduce the concept of what the DDS

Functional Specification refers to as " attribute-type-valida-
tion-data". This is a meta-entity-type that has not yet been

mentioned in this example, and its purpose is to serve as the

repository of lists of legal attributes. Suppose that in the

case of the attribute-type MEDIUM with which we are dealing, we

decide to refer to the repository (which eventually will contain

the values HARD-COPY, MICROFICHE, and MICROFILM) by the name

MEDIUM-VALUES. We would then issue the command

CREATE-META-ENTITY
ATTRIBUTE-TYPE-VALIDATION-DATA MEDI UM-VALUES

along with the following meta-attribute clauses:

VALUE/RANGE = VALUE
DATA-VALUE = HARD-COPY, MICROFICHE, MICROFILM

which have the following meaning:

o The first one of these clauses specifies that the

attribute-type-validation-data meta-entity contains
discrete values against which the checking is to

occur. The legal values are given in the second
clause. As a possible alternative, in the case where

it is desired that code values are to be used for data

entry to the dictionary, this second clause would have

been stated as

DATA-VALUE = 1 "HARD-COPY"

2 "MICROFICHE"
3 "MICROFILM"

Whenever the CODE-VALUES-DEFAULT described in Section

2.2.5 is set to LITERALS, the transliterated values
will appear in reports and in response to queries.

o If the first clause had been specified as

VALUE/RANGE = RANGE

it would mean that the checking is to take place

B 16

against one or more ranges that are being specified.
An example of such a case would be if it were desired

to restrict attributes to fall in the range from 2 to

9, or in the range from 12 to 27.

o The second clause would then specify the values that
are permissible. Should it have been desired to

specify the ranges mentioned above, then the required
clause would be

DATA-RANGE = (2,9) (12,27)

We also need to point out that both the values and ranges thus
specified can be altered. Suppose that at some future time a new
medium for documentation is introduced called LASER, then the

command

ALTER-META-ENTITY MEDIUM-VALUES
DATA-VALUE FROM *null TO LASER

or alternately as

ALTER-META-ENTITY MEDIUM-VALUES
DATA-VALUE FROM *null TO 4 "LASER"

would add LASER to the list of permissible values. (The symbol
*null denotes here an implementor-defined symbol for a null
value.) The command ALTER-META-ENTITY used here is specified in

Section 5.1.4.

The next step that must be taken is to associate this attribute-
type-val i da t ion-data meta-entity with the attribute-type MEDIUM.
This is accomplished by the command

CREATE-META-RELATION SHIP MEDIUM AND MEDI UM-VALUES

This command creates a meta-relationship which is an instance of

the meta-relationship-type M-R-T (ATTRIBUTE-TYPE, ATTRIBUTE-TYPE-
VALIDATION-DATA) of Section 3.1.2. Now one more step is required
to achieve the overall objective. At this point we have the
attribute-type MEDIUM associated with the attribute-type-valida-
tion-data MEDIUM-VALUES, but we still require the specification
of a procedure that will carry out the actual checking. We then
introduce another meta-entity-type called "attr ibute-type-val ida-

B 17

tion— procedure" to indicate the checking that is to take place.

The system-standard schema contains two such a t t r i bute— type-

validation—procedures, one with the name VALUES, and the other

one with the name RANGES. The core standard does not contain

facilities for defining any other ones.

As these names imply, the attribute-type-validation-procedure
called VALUES is used to check against lists of discrete values,

i.e. a tt r i bute— type—val i da t i on—da ta for which VALUE/RANGE = VALUE

has been specified, and the attribute-type-validation-procedure

called RANGES is used for checking against ranges of values.

The next command that must then be issued is

CREATE-META-RELATIONSHIP MEDIUM AND VALUES

and the structure that we have created contains

o the attribute-type MEDIUM which is associated with

MEDIUM-VALUES (which contains the permissible attri-

butes of MEDIUM)

o the attribute-type MEDIUM which is associated with the

attribute-type-validation-procedure VALUES (indicating

that the checking is to take place against discrete

values to be found in the associated a t t r i bute- type-
validation-data) .

Should it be desired by a user to find out what legal values

exist for a given a t t r i bu t e- type , this can be achieved through
the use of the META-LIST command of Section 5.2.3. For example,

the command

META-LIST MEDIUM-VALUES

would return the following:

1 "HARD-COPY"
2 "MICROFICHE"
3 "MICROFILM"
4 "LASER"

B 18

The preceding example does not cover all the meta-entity-types
that exist in the schema. Others exist that are related to:

o The statuses that exist in the dictionary and their
structure

.

o The stages that are defined for dictionary entities.

B 19

K EL S • 1 1 A t <Fit \ . i-pc i

U.S. DEPT. OF COMM. 1. PUBLICATION OR '
Performing Organ. Report No. 3. Publ ication Date

BIBLIOGRAPHIC DATA
REPORT NO.

SHEET (See instructions) NBSIR 82-2619 January 1983
4. TITLE AND SUBTITLE

Functional Specifications for a Federal Information Processing System Data
Dictionary System

5
- Editors

Patricia A. Konig, Alan Goldfine, Judith J. Newton

6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

NATIONAL BUREAU OF STANDARDS Alpha Omega Group, Inc.
DEPARTMENT OF COMMERCE pQ J)rawer
WASHINGTON, D.C. 20234 *

,Harvard, MA

7. Contract/Grant No.

NB81SBCA0735

>. Type of Report & Period Covered

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)

National Bureau of Standards
Division 642, Tech., A265
Washington, D. C. 20234

10.

SUPPLEMENTARY NOTES

I I
Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11.

ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here)

This interim report contains Functional Specifications for the basic' functions
that data dictionary software must perform to satisfy Federal agency requirements.
The functionality specified will be incorporated into a planned Federal Information
Processing Standard (FIPS) Data Dictionary System (DDS). The complete FIPS DDS
also will contain additional specifications for such things as the user interface.
Comments are being solicited from Federal agencies and suppliers of data dictionary
software to determine any modifications that should be made to the Functional
Specifications. Information about the effort to develop the planned FIPS DDS and a

Management Overview of the Functional Specifications appear in Part I of this
— document. The Functional Specifications are in Part II.

12.

KEY WORDS (Six to twelve entries ; alphabetical order; capitalize only proper names; and separate key words by semicolons)

Computer program; data dictionary system; data inventory; data management; data stan-
dards; database; database management system; documentation; Federal Inf ormatj.on Prq-
cessing Standards Publication; requirements; software.

13.

AVAILABILITY

1 XI Unlimited

I I
For Official Distribution. Do Not Release to NTIS

I
Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

1 X l
Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

410

15. Price

u» COMM-DC

‘

'

\

\

i

i

