A Semiautomatic AC/DC Thermal Voltage Converter Calibration System

U.S. OEPARTMENT OF SOMMERCE

Naticnal מureau of Standard's
National Engineering Laboratory
Cenzer for Eisutronics and Electrical Engineering
E!ectrosvstens Uivision
Washingten. OC 20234

September 1982

Fina! Report

- $Q C=$ ored in part by	
$10 \cup$	Department of Defense
.$U 50$	ration Coordination Group
$32-2576$	
1902	
$C .2$	

NBSIR 82-2576

A SEMIAUTOMATIC AC/DC THERMAL VOLTAGE CONVERTER CALIBRATION SYSTEM

K. J. Lentner, S. G. Tremaine

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Eiectronics and Electrical Engineering Electrosystems Division Washington, DC 20234

September 1982
Final Report

Sponsored in part by: U.S. Department of Defense Calibration Coordination Group

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

The development of the system described in this report was partially funded by the U.S. Department of Defense Calibration Coordination Group (DoD/CCG). Members of the DC and LF Committee were from the Aerospace Guidance and Metrology Center, Newark Air Force Station, Newark, Dhio 43055; the U.S. Army Metrology and Calibration Center, Redstone Arsenal, Huntsville, Alabama 35809; and the Metrology Engineering Center, Bureau of Naval Weapons Representative, Pomona, California 91766.

The DoD/CCG project number assigned was CCG 79-123, and work was performed under NBS cost center 7220463.

In order to adequately describe the system discussed in this report, commercial equipment and instruments are identified by manufacturer's name and model number. In no case does such identification imply recommendation or endorsement by the National Bureau of Standards, nor does it imply that the material or equipment identified is necessarily the best available for the purpose.
Page
Foreword iii
LIST OF TABLES v
LIST OF FIGURES v
Abstract 1

1. INTRODUCTION 1
1.1 Objectives 1
1.2 Background 1
2. TECHNICAL APPROACH 2
2.1 Principle of Operation 2
2.2 Hardware Considerations 5
2.2.1 General 5
2.2.2 Measurement Procedures 6
2.3 Software Considerations 11
2.3.1 General 11
2.3.2 Operating Procedure for AC/DC Difference Tests 14
3. MEASUREMENT RESULTS AND UNCERTAINTIES 20
4. CONCLUSIONS AND RECOMMENDATIONS 23
5. ACKNOWLEDGEMENTS 23
6. REFERENCES 25
APPENDIX A. Hardware 26
APPENDIX B. ACDCHV Detailed Program Description and Program Listing 34

LIST OF TABLES

Page
Table 1. N-Test-F data 13
Table 2. ACCAL data 15
Table 3. Low voltage stability test data 16
Table 4. Stability test data summary 17
Table 5. AC/DC difference data 19
Table 6. Transport standard ac/dc differences (ppm) 21
Table 7. Range of ac/dc differences for transport standard (ppm) 22
Table 8. AC/DC difference for TVC "FA 50" (ppm) 24
Table 9. AC/DC difference for TVC "FC 100" (ppm) 24
LIST OF FIGURES
Figure 1. Overail view of system 3
Figure 2. System block diagram 4
Figure 3. Simplified schematic of thermal voltage converter (TVC) test circuit 7
Figure 4. Block diagram of system for calibrating an ac standard or voltmeter 9

K. J. Lentner and S. G. Tremaine

Abstract

A semiautomatic ac/dc difference calibration system is described. The system operates over a frequency range of 20 Hz to 100 kHz , covering the voltage range from 0.5 V to 1 kV . For all voltages at frequencies in the range from 20 Hz to 20 kHz , the total uncertainty is 50 parts per million (ppm), and 100 ppm for voltages at frequencies between 20 kHz and 100 kHz . In addition to ac/dc difference testing, the system can be readily adapted to calibrate precision ac digital voltmeters or ac calibrators. Results of extensive intercomparison testing of the new system against a manual test system are reported, using a multirange thermal transfer instrument as a transport standard. The results indicate that the $a c / d c$ differences measured are well within the combined total uncertainty limits of the two systems.

Key words: ac/dc difference; ac voltage measurement; automation; calibration; metrology; thermal voltage converter.

1. INTRODUCTION

1.1 Objectives

The Semiautomatic AC/DC Thermal Voltage Converter Calibration System, developed at the National Bureau of Standards and described in this report, was designed to use electronic technology to overcome the deficiencies of existing manual test methods. Specific objectives for the new system included: 1) use of commercially available, programmable instruments whenever possible; 2) elimination of the need for manual data entry into a computer for reduction; 3) elimination of the frequent data checks and cross-checks required in manual tests; 4) elimination of as much operator intervention as possible during the test procedure; 5) simplification of necessary remaining interaction by providing displayed operator instruction via computer control; 6) close control of the time interval between application of both ac and dc voltages to the test circuit in order to minimize drift effects; and 7) achievement of the same level of uncertainty as is presently possible with manual testing methods.

1.2 Background

Techniques for performing precision ac/dc difference testing, not only at the National Bureau of Standards (NBS), but also in other national and industrial or governmental metrology laboratories, generally make use of manual testing methods which utilize photocell preamplifiers and lightbeam galvanometers as voltage detectors in conjunction with manually
balanced voltage comparators [1,2]. 1 Careful attention to the elimination or reduction of systematic and random uncertainties in testing methods, range resistors, and thermoelements ($T E$'s) has resulted in sufficient confidence in test data to allow results to be reported with total uncertainties at the $10-100 \mathrm{ppm}$ level (or better, in some cases) over wide voltage and frequency ranges [3,4]. These manual test methods, however, are very time-consuming and subject to errors due to operator fatigue. To overcome these deficiencies, and to expedite test report generation, a semiautomatic ac/dc calibration system was developed.

Because of the low-level dc voltages that must be measured (about 10 nV), large temperature coefficients of TE's, ac or dc source instabilities, and dc reversal differences of TE's, stringent requirements are placed upon the measurement system. In addition, light beam galvanometers suffer the disadvantage of not being easily adaptable to automation. However, with the advent of digital electronics, digital nanovoltmeters are available with sensitivity, resolution, and accuracy sufficient to meet the requirements of precision automatic ac/dc difference testing. Programmable ac and dc voltage calibrators are also available which lend themselves to adaption for automatic testing. Advances in analog/digital interfaces have greatly improved the ease with which computers can be used to control these instruments. The semiautomatic system which evolved is shown in figure 1, and is described in detail in this report. The system operates over a frequency range of 20 Hz to 100 kHz , covering the voltage range from 0.5 V to 1 kV . For all voltages at frequencies in the range from 20 Hz to 20 kHz , the total uncertainty is 50 ppm , and 100 ppm for all voltages at frequencies between 20 kHz and 100 kHz . In addition to ac/dc difference testing, the system can be readily adapted to calibrating precision ac digital voltmeters or ac calibrators. Extensive testing of the new system using a multirange thermal transfer instrument as a transport standard indicates that the test results are well within the reported uncertainty limits. In addition, data obtained with the system indicate that total random uncertainties (3σ limits) of about 3 ppm can be obtained for some ac/dc difference tests.

2. TECHNICAL APPROACH

2.1 Principle of Operation

A block diagram of the semiautomatic system is shown in figure 2. In principle, the system is similar to the manual system presently used at NBS for routine calibration work, except that overall system control and data acquisition and processing are provided by a 16 -bit minicomputer. Programmable ac and dc standards supply the voltages to the thermal converters (consisting of the TE and various range resistors). Such voltage standards are often referred to as ac or dc calibrators. The output voltages of the two converters (as well as the difference between the two voltages) are measured in a semiautomatic mode by means of a

[^0]

Figure 2. System block diagram
manually operated TE comparator and a digital voltmeter which is automatically controlled via the computer. The computer, its peripheral equipment, and the Modular Interactive Data Acquisition System (MIDAS) [5] are interconnected utilizing the standard RS-232C interface. The programmable instruments and the high voltage and low-thermal-noise switches are controlled by the computer via the MIDAS digital interface.

In operation, the ac or dc voltages are applied simultaneously to the standard $T E$ and the unit under test (UUT). The difference in the output voltages is primarily balanced out by the TE comparator. The small residual differences in the TE output voltages are automatically measured with the digital voltmeter as the inputs are switched between the ac and dc voltages. Typically, the voltage differences are manually balanced to less than 100 nV . The residual voltages are then measured with a resolution of 10 nV , requiring a voltmeter with only moderate accuracy but with low noise. In addition, the voltmeter is used to measure the nominal output voltages of both converters.

2.2 Hardware Considerations

2.2.1 General

As mentioned previously, the components of the semiautomatic system (except for the computer, its peripheral equipment, and interfaces) are similar to manual systems used at NBS. The principle differences for the new system are the use of a sensitive digital voltmeter and programmable dc and ac voltage standards. A listing of the hardware contained in the system is provided in appendix A.

Overall system control is provided by means of a 16 -bit minicomputer which has 64 kbytes of core memory and a dual floppy-disk unit for program and data storage. The system console (CRT), the teletypewriter (TTY), and MIDAS are connected to the computer by means of interfaces which conform to the EIA RS-232-C standard [6]. MIDAS hardware is based on the CAMAC standard [7] and consists of several functional modules which are inserted into slots in an equipment rack. A power supply and MIDAS controller module also are required to make the MIDAS system operational. Communication between the controller module and individual MIDAS modules is in accordance with the ASCII standard code for information intercinange [8].

The dc and ac voltage standards must have wide voltage and frequency ranges to meet the requirements of calibration work for which the system is intended. In addition, the standards must be stable and have sufficient resolution to permit precision measurements to be made. The dc voltage standard has ranges of $10 \mathrm{~V}, 100 \mathrm{~V}$, and 1 kV with resolutions of $1 \mu \mathrm{~V}$, $10 \mu \mathrm{~V}$, and $100 \mu \mathrm{~V}$ per step, respectively, with ten steps per range. The specified accuracy is about 30 ppm of range for all three ranges, with output stability of about 15 ppm of programmed output per month. The ac voltage standard has seven decade ranges covering the voltages from 1 mV to 1 kV (full-scale ranges) with a resolution of 10 ppm of range per step, with ten steps per range. The frequency ranges consist
of eleven fixed frequencies per range, covering the range 10 Hz to 110 kHz , with frequency range multipliers of $\times 10 \mathrm{~Hz}$ and $\times 100 \mathrm{~Hz}, \mathrm{Xl} \mathrm{kHz}$ and $X 10 \mathrm{kHz}$. The accuracy of the ac standard's voltage output varies with frequency, from about 0.02% to 0.05% of voltage setting. The voltage stability is specified as 0.01% of setting for six months.

The digital voltmeter has eignt ranges from $\pm 10 \mu \mathrm{y}$ to $\pm 100 \mathrm{~V}$. On the most sensitive $10 \mu V$ range, it has a resolution of 10 nV , with an input impedance of about 10 M . The zero stability is specified as less than 100 nV per hour. In the frequency range dc to about 10 Hz , the voltmeter has less than 50 nV of rms noise, referred to the input, with the input shorted.

It should be noted that two digital panel meters used to monitor the outputs of the voltage standards, as well as a frequency counter used to monitor the ac frequency, are not included in figure 2 (for simplicity), but they are visible in figure 1. The large instrument on the left of the test console table (fig. l) is an ac calibrator under test.

A critical problem in making nanovolt measurements is that of obtaining switches which have low-thermal-noise, and can be controlled automatically. Ideally, TE output voltages of about 10 mV should be measured to within $1 \mathrm{ppm}(10 \mathrm{nV})$. Mercury-wetted contact, self-latching, solid-state and reed relays were found to be unsuitable since these types have thermal noise on the order of $1 \mu \mathrm{~V}$. The problem was solved by modifying manually operated low-thermal-noise switches. Solenoids with $24-V$ operating coils were mechanically linked to such switches. The operating coils are energized by programmable MIDAS relays which connect the $24-y$ supply to the coils.

The switches which apply the ac or dc voltages to the test circuit are electro-mechanical relays capable of switching up to 5 kV . The $24-\mathrm{V}$ operating coils of these relays also are controlled by MIDAS relays.

2.2.2 Measurement Procedures

The various measurement steps will now be explained in some detail for the determination of $a c / d c$ difference, and for determination of the corrections to the nominal output voltages of an ac voltage standard.

A portion of the circuit for ac/dc difference testing, including the components of the TE comparator, is shown in figure 3. The thermal voltage converter (TVC) No. 2 can be either the standard or test converter. The only requirement is that E_{2} must be greater that E_{1} and, for purposes of this discussion, it is assumed that the test TVC is in the No. 2 position. With rated dc voltage apolied, and with the potentiometer (P) turned off, the emf outputs (E_{2} of the test unit, E_{1} of the standard) are measured by the digital voltmeter (DVM) with switch K2 closed. Another switch in the TE comparator (not shown in fig. 3) permits
$+D C-D C$

TVC No. 1

manual selection of either the E_{2} or E_{1} voltages. With the voltmeter reading E_{2}, the potentiometer is adjusted until the voltmeter indicates about 500 nV . Switch K2 is opened, K1 is closed, and the Kelvin-Varley divider is adjusted until the voltmeter indicates about 100 nV . The test then proceeds automatically, and $a c, d c+, d c-$, and ac voltages are applied (in the order listed) to the test circuit [2]. The difference voltages between the outputs of the test and standard thermal voltage converters are measured for all four input voltages.

The ac/dc difference, in ppm, for the unit under test, as derived in [2], is

$$
\delta_{t}=\delta_{s}+\frac{E_{d}-E_{a}}{n_{s} E_{s}},
$$

where os is the correction to the standard, E_{d} is the average emf of the standard $T E$ with two directions of dc voltage applied, E_{a} is the emf of the standard $T E$ with ac voltage applied, n_{s} is a dimensionless factor ($\leq .2$) of the standard, and E_{S} is the output emf of the standard $T E$ at rated $d \bar{c}$ voltage input. If $E_{d}-E_{a}$ is measured in nanovolts, and E_{s} in millivolts, the expression for ot is conveniently given in ppm, provided that δs is in ppm.

If the standard $T E$ has a higher output emf than the test $T E$, the previous expression is modified to become

$$
\delta_{t}=\delta_{s}+\frac{E_{d}-E_{a}}{n_{s} E_{t}},
$$

where all terms and units are as previously defined, and E_{t} is the output emf of the test $T E$ at rated dc voltage input.

A block diagram of the system when used for calibrating an ac standara or voltmeter is shown in figure 4. As shown in this figure, the system's ac standard is connected for testing. However, the UUT, indicated as "AC STD," could as well be an external ac standard or a precision voltmeter. K1 and K2 are the dct and dc-high voltage switching relays, $K 3$ is the ac high voltage relay, and $K 4$ is a low-thermal-noise switch. Using this test circuit, the corrections to the nominal output voltage (at a given dial setting) of an ac standard can be determined

by using the system's programmable dc voltage standard (set to the same nominal value as the ac standard) and a thermal voltage converter, both having known corrections. For this case, only the Lindeck potentiometer (P) of the TE comparator is used. The correction to the UUT, in ppm, is

$$
C_{t}=\delta_{s}+\frac{E_{a}-E_{d}}{n E}+C_{d c}
$$

where δs is the $a c / d c$ difference correction (in ppm) of the TVC at the test frequency, E_{a} is the reading of the voltmeter (DVM) with ac voltage applied (i.e., the difference between the TE's output emf and the fixed voltage of the Lindeck potentiometer), E_{d} is the average of the DVM readings with direct voltage of both polarities applied, n is a dimensionless factor equal to 2 if the $T E$ has a square-law response, E is the TE's output emf at the applied test voltage, and $C_{d c}$ is the correction (in ppm) to the dc voltage standard's nominal output. As for $a c / d c$ difference tests, the equation is conveniently given in ppm if $E_{a}-E_{d}$ is in nanovolts and E is in millivolts, with δ_{s} and $C_{d c}$ also in ppm.

The denominator of the correction equation contains the dimensionless characteristic "n." Most TE's do not have an ideal square-law response, hence, the value of n must be determined. Since n generally ranges in value from 1.6 to 2 , neglecting to measure a TE's actual value of n^{-}can lead to significant errors in the correction to the UUT. For example, in the worst case, if n is assumed to be 2, but actually is 1.6 , then the error amounts to $(2-1.6) /(2)=0.2$, or 20 percent of the correction.

The procedure for measuring n (to a first order of approximation) is based on the fact that a TE's output voltage (E) can be expressed as

$$
E=k I^{n},
$$

where I is the current through the TE's heater element.
Therefore,
and

$$
\begin{aligned}
d E & =k n I^{n-1} d I, \\
d E / E & =\left(k n I^{n-1} d I\right) /\left(k I^{n}\right) . \\
d E / E & =n(d I / I),
\end{aligned}
$$

Hence,
and, assuming constant heater resistance and a stable voltage source,

$$
d E / E \simeq n(d V / V)
$$

where V is the dc voltage applied across the series combination of a range resistor and a TE.

Two techniques can be used to measure the characteristic n. One involves making small, accurately known changes in the voltage (ΔV). The second involves making changes in the TE's heater current (I) with the applied voltage held constant. In the second method, which is used for the MIDAS-based system, small changes in the heater current through the TE under test are obtained when a 400Ω resistor, in series with a $40 \mathrm{k} \Omega$ range resistor, is shorted by closing a MIDAS relay.

2.3 Software Considerations

2.3.1 General

In order to reduce the effort involved in making routine tests, the software for the system was designed to provide as much interaction between the system console and the operator as possible. This interaction is used to reduce the possibility of damage to either the standard or UUT when either software or hardware failures occur. Also, by progressing logically through the initialization portions of the test routines, the operator, when necessary, can take whatever corrective actions might be required. A significant advantage of the resulting software design is that sufficient warm-up time is automatically provided between application of the various test voltages so that the effects of errors due to the warm-up drifts of the standard and test units are reduced. In addition, the computer closely controls the time intervals between voltmeter readings; hence, the effects of linear drift are minimized.

The programs, which are written in BASIC, provide the means for automatically setting the ac or dc voltages and ac frequency, operating the voltage relays and low-thermal-noise switches, triggering the voltmeter to obtain voltage readings, and storing these readings in the computer memory. Six programs constitute the major testing software package. Program ACDCLV is used for making ac/dc difference tests at voltages from 0.5 to 95 V , and ACDCHV is used for similar tests at voltages greater than 105 V up to 1 kV .

Since the major application of the work described in this report is ac/dc difference testing, a typical sequence of operations for this type of testing is described below where the ACOCHV program is discussed. The other five programs will only be mentioned briefiy; however, detailed information is available upon request.

ACDCHV is a program which provides partial automatic control of $\mathrm{ac} / \mathrm{dc}$ difference testing at voltages greater than 105 V . Since the MIDAS interface does not have isolated analog and digital grounds, it was necessary to develop a separate software package for high-voltage testing. At high voltages, it was found that operating either the ac or dc voltage relays introduced transient voltage surges into the MIDAS digital circuitry. The MIDAS controller interpreted these surges as voltage level changes identical to programmed commands. The result was that incorrect relays might be opened or closed, the voltmeter might be falsely triggered to obtain a reading, or any other of a series of unwanted events might occur. Hence, the ACDCHV program was developed to ensure that no high-voltage standards are turned on whenever a voltage relay is operated. To avoid unnecessary operation of the high-voltage relays, program ACDCLV should be used for tests below 100 V .

Basically, ACDCHV contains three general sections. At the beginning, test documentation (e.g., date, test number, observer, and instrument) is requested. String and array variables are dimensioned, and various simple variables are initialized. A heading for the test documentation is created by the operator. The midsection includes a network of subroutines that interact with the operator. Displayed instructions prompt the operator to define test parameters for setting ac and dc voltages, to switch the TE comparator from E-high to E-low, and to initially balance the Kelvin-Varley divider and rebalance it when necessary. Repeatedly accessed subroutines close and open the appropriate relays, set the input voltages, determine the TE emf output voltages, trigger the voltmeter to read the TE difference voltages, and calculate the ac/dc difference of the UUT ior four determinations at each test point. Finally, statistical calculations are performed and the results are printed on the TTY. Options are then provided for the operator to choose whether to stop, repeat a test with or without averaging, or change parameters and run another test.

Program NTSTF is used to determine a TE's dimensionless factor, n [1,2]. The variation of n as a function of a TE's heater current can be expressed as $n \simeq g(E)$, and this function is assumed to vary linearly. The program automatically fits a least-squares line to the data. The computational techniques used are fully discussed on pages 5-10 of [10]. Typical test results are illustrated in table 1.

Table 1. N-Test-F data

DATE THUR. 29 MARCH 79						OBSERVER. . .KJL		
TEST NO.		EST INST NO. . .FA						
VOLTS	E					AVE.N	NE	500/N
100	2.70	(1.992	1.991	1.990	1.990)	1.991	5.37	251.2
100	2.70	(1.988	1.988	1.989	1.991)	1.990	5.37	251.3
120	3.88	61.973	1.973	1.974	1.975)	1.974	7.66	253.3
120	3.88	(1.973	1.974	1.975	1.975)	1.974	7.66	253.3
140	5.24	(1.954	1.955	1.956	1.956)	1.955	10.25	255.7
140	5.24	(1.954	1.955	1.957	1.956)	1.955	10.25	255.7
160	6.79	(1.922	1.923	1.925	1.923)	1.923	13.06	260.0
160	6.79	(1.922	1.923	1.924	1.923)	1.923	13.06	260.0
180	8.50	(1.881	1.881	1.883	1.882)	1.882	16.00	265.7
180	8.50	(1.878	1.881	1.883	1.882)	1.881	15.99	265.8
200	10.34	(1.833	1.833	1.835	1.833)	1.833	18.96	272.7
200	10.34	(1.826	1.832	1.834	1.834)	1.833	18.95	272.8

THE CURVE FITTING PROCESS USES A LEAST-SQUARES FIT FOR A POLYNOMIAL OF DEGREE ONE. THE N (LOWER CASE)
TE CHARACTERISTIC (Y-AXIS) VERSUS TE EMF (X-AXIS) IS ASSUMED TO BE A LINEAR FUNCTION OF THE FORM $Y=B+M X$ OR, IN THIS CASE:

$$
\begin{aligned}
\text { NI } & =M-N E \\
\text { WHERE } & =\text { TE CHARACTERISTIC } \\
M & =Z E R O ~ X ~ I N T E R C E P T ~ \\
N & =\text { NEGATIVE OF CURVE SLOPE } \\
E & =T E \text { OUTPUT EMF }
\end{aligned}
$$

$$
M=.2 .05518
$$

$$
N=\text {. } 206568 \mathrm{E}-1
$$

ACCAL is a program used to calibrate an ac voltage standard, a precision ac digital voltmeter, or the ac standard of the system in terms of a thermal voltage converter and the system's calibrated dc standard, as discussed in the previous section. Results for the calibration of an voltage standard are illustrated in table 2. The last column, "T CORR PPM," shows the correction to the calibrator's nominal output voltage.

Stability of the system's dc and ac standards can be checked by using programs called STABLV and STABHV. These progams are used for voltage ranges similar to those for ACDCLV and ACDCHV. Occasionally, test results appear to be erratic. These stability tests are useful in determining if the supplies are functioning properly. Stability of the sources is measured by using a programmable $6-1 / 2$ digit multimeter whose function, ranges, and reading rates are remotely controlled. Initial stability test parameters for voltage, frequency, time between readings, and total number of readings are defined by the operator. The program then exercises automatic control over the ac and dc standards, the voltage relays, and the voltmeter. At completion, stability data including the values of minimum, maximum, range, average, standard deviation of the mean, and three times the standard deviation of the mean (calculated 30 limits) for both ac and dc voltage readings are printed on the TTY. Table 3 shows the results of a test at 95 V , 50 kHz , with the voltmeter programmed to use a $10-$ second integration time. The total time for the test illustrated was about 12 minutes, which is about the time it takes to do a test run (i.e., four determinations) for $a c / d c$ difference tests at one frequency and voltage.

The advantages of the stability tests are illustrated in table 4. The difference in the ranges of the ac voltage for tests at 95 V and 200 V indicates that the ac high-voltage amplifier had become unstable. The instability was verified by a 12 -minute test in which the ac voltage range was about 1150 ppm at 20 V as opposed to about 347 ppm at 95 V .

In addition to the test capabilities discussed above, the methodology and computer programs were developed for testing one model of a precision multirange automatic thermal transfer instrument as a voltmeter. Detailed information is available and can be supplied upon request.

2.3.2 Operating Procedure for AC/DC Difference Tests

For the reader not interested in the operational details of this program (contained in appendix B), the following overview is provided. The specific operating procedures include the following steps and instructions:

1) Input via the system console, the test number, voltage, frequency, observer's name, and code for the standard thermal converter.
2) Visualiy check to see that both software and hardware are operating correctly by checking the system's digital panel meters and frequency meter for correct readings of the outputs from the ac and de standards. If the outputs are incorrect, repeat step 1.

Table 2. ACCAL data
DATE. OBSERVER.
TEST NO
INST.

KHZ	$\begin{aligned} & \text { CORR } \\ & \text { PPM } \end{aligned}$	V	TEST RANGE		STANDARD		$\begin{aligned} & E \\ & M V \end{aligned}$	NE		T CORR PPM
		100.0		0.0	FB	100.0	10.4	18.6		
0.8	0		(7	8	7	10)			-8	-8
0.8	0		(7	6	7	3)			-7	-7
0.8	0		(7	8	8	3)			-7	-7
0.8	0		(5	1	4	3)			-6	-6
2.4	0		$(29$	32	33	33)			32	32
2.4	0		$(30$	35	34	35)			33	33
2.4	0		(32	35	25	38)			33	33
2.4	0		(31	31	32	35)			33	33
4.8	0		$(278$	282	281	284)			281	281
4.8	0		(278	284	284	283)			282	282
4.8	0		$(278$	284	284	285)			282	282
4.8	0		(281	283	285	283)			283	283
0.4	0		111	13	10	9)			11	11
0.4	0		(3)	8	9	8)			8	8
0.4	0		(5	8	9	9)			8	8
0.4	0		(5	9	11	8)			8	8

Table 3. Low voltage stability test data

3) Manually set the TE comparator to its "high TE" voltage input position, and switch the voltmeter to its $10-\mathrm{mV}$ range. The program automatically closes the dc voltage relay and a-low-thermal-noise switch (K2) turns on the dc standard and triggers the voltmeter to obtain the TE voltage output reading.
4) Switch the TE comparator to its "low TE" voltage input position. The program then triggers the voltmeter to read the voltage. The values of the high- (from the previous step) and low-voltage readings are compared. If the latter is actually larger in magnitude than the former, the operator is instructed to interchange the two TE inputs after the dc voltage has been turned off. The program automatically stores the correct value of E-low, since that value is used in the equation to determine the ac/dc difference of the test unit (see section 2.2).
5) Switch the TE comparator to the "high TE" voltage input position. This step in the procedure is done only if the test unit actually has a greater emf output than the standard. If not, the comparator switch remains in the "low TE" voltage input position. In either event, the operator is then instructed to turn on the Lindeck potentiometer, change the voltmeter to its $10 \mu \mathrm{~V}$ range, and manually adjust the potentiometer until the voltmeter indicates about 500 nV .
6) Switch $K 2$ is opened, and a second low-thermal noise-switch (K1) is closed. The operator now manually adjusts the Kelvin-Varley divider until the voltmeter indicates a voltage within the range $\pm 100 \mathrm{nv}$.
7) Switch K 1 is opened, K2 closed, the ac voltage relay is closed, the ac standard turned on, and its voltage is automatically incremented or decremented until the output voltage of the UUT's TE is $\leq 1 \mu V$ of its value with dc voltage applied, as in step 6.
8) At this point, the manual initialization process is complete, switch K2 is opened, K1 is closed, and the test proceeds automatically under program control. A sequence of voltage readings is obtained by the voltmeter when $\mathrm{ac}, \mathrm{dc}+$, $\mathrm{dc}-$, and ac voltages are applied to the standard thermal voltage converter and UUT. These four voltage readings are each obtained from the average of ten readings of the voltmeter. The standard deviation of the ten readings is computed, and if this value is < 200 nV , the program continues. If the standard deviation is $\geq 200 \mathrm{nV}$, due to drifts in either the standard converter or the UUT, or the ac or dc standards, or any of these effects combined, the series of ten readings is repeated. After five attempts, if the voltmeter readings have not stabilized, the test is aborted.
9) The sequence of readings with ac, dc+, dc-, and ac voltages applied constitutes one determination of the ac/dc correction to the UUT. The process is continued for four determinations; the average value of four determinations is computed and printed. The operator then may elect to repeat the test, change voltage range or frequency, or stop the test. A sample of data printed on the teletypewriter is illustrated in table 5. Although only low-voltge test results are shown, the data format is identical for high-voltage tests.

Table 5. AC/DC difference data
DATE.. . . . 10/18/78
OBSERVER .
TEST NO... . .
INST. FA50

APP		STANDARD	ES	ET	NSEL	
V	RANGE	TE	RANGE	MV	MV	N*MV
30.0	50.0	FD	100.0	4.5	3.3	6.40

kHz	COR	AC/DC DIFFERENCE		STD DEV	AVE T	
	PPM					
50.0	-2	$(273$	279	280	$277)$	3.2

30.0
50.0
FD 100.04.
3.2
6.38

kHz	COR
	PPM

20.00	0
20.00	0
20.00	0

$\begin{array}{lllllll}50.0 & 50.0 & \text { FD } & 100.0 & 11.2 & 8.4 & 14.92\end{array}$

$\begin{array}{ll}\mathrm{kHz} & \text { COR } \\ & \text { PPM }\end{array}$

AC/DC DIFFERENCE
$50.00 \quad-2$
50.00 -
-2
-2
50.00
-2
50.0
50.0
$\left(\begin{array}{lll}278 & 280 & 279\end{array}\right.$

COR
PPM
AC/DC DIFFERENCE
$\left\{\begin{array}{rrrr}100 & 121 & 105 & 100 \\ 102 & 107 & 110 & 117 \\ 97 & 101 & 106 & 105\end{array}\right)$

STD	AVE T
DEV	COR PPM
9.7	106.4
7.6	107.6
7.0	105.7

kHz	COR
	PPM

AC/DC DIFFERENCE
STD
DEV COR PPM
$1.1 \quad 277.1$
$1.0 \quad 277.7$
$2.7 \quad 279.4$
20.00
20.00
50.0
$50.0 \mathrm{FD} 100.0 \quad 11.2$
$8.4 \quad 14.92$
AC/DC DIFFERENCE
$\left\{\begin{array}{lll}51 & 52 & 51 \\ 35 & 34 & 29 \\ 43 & 43 & 41 \\ 39 & 43 & 44\end{array}\right.$
52)
$33)$
$41)$
$43)$

DEV	COR PPM
0.5	51.5
10.1	42.2
8.1	42.1
7.0	42.1

50.0
50.0 AC/DC DIFFERENCE
$\begin{array}{ll}5.00 & 0 \\ 5.00 & 0\end{array}$
$\left(\begin{array}{lll}19 & 21 & 19 \\ 20 & 19 & 20\end{array}\right.$

STD	AVE T
DEV	COR PPM
1.5	19.4
1.1	19.3

NUMBER OF READINGS=H=. 64
NUMBER OF INDEP. TESTS=L=.
DEGREES OF FREEDOM=01=. 58
POOLED ESTIMATE OF TEST STD.DEV. OF MEAN $=$ S2
=S.D.T. (SEE S.P. 300,V.1, P. 316-40)..... =1.02083

3. MEASUREMENT RESULTS AND UNCERTAINTIES

There are many factors which contribute to the uncertainty of ac/dc difference measurements of the type described in this report. Similar manual systems have been in operation for many years at NBS and their uncertainties have been documented [1-3]. DC reversal difference of a TE, self-heating and ambient temperature effects, drift effects due to non-equal time intervals during the voltage measurements, unbalanced lead impedances, and induced voltages from electromagnetic fields are some of the more common factors. The process of determining an estimated total uncertainty for a system is based upon experience with the system, careful measurements of standards with accurately known corrections, or intercomparison tests of two independent test methods [3]. The latter procedure, involving comparison of a well-characterized manual system with the new one, was followed, since the uncertainty sources are believed to be similar in both systems.

The system performance was verified by an extensive testing procedure which involved the use of a multi-range thermal voltage converter instrument as a transport standard. The transport standard was first tested for ac/dc differences at various combinations of applied voltages and frequencies using the MIDAS-based system. It was then tested, at similar voltages and frequencies with the same standard thermal voltage converters, using the manual testing technique which has been used for many years at NBS. A third test was performed, again using the MIDAS system. Finally, the MIDAS system was disassembled, physically relocated, reassembled, and tested for proper operation. Then the transport standard was tested a fourth time, again using the MIDAS system. It should be noted that not all voltage range-frequency combinations were tested for all four tests. However, in those cases where fewer than four tests were performed, the results indicated sufficiently small differences between at least two independent test methods to establish that further testing was not warranted. The results of these independent intercomparison tests are listed in table 6 , and the range of ac/dc differences is listed in table 7. In evaluating these results, it must be remembered that, for calibrating multirange instruments like the transport standard, the manual test system has uncertainties of the same magnitude as the semiautomatic system. Hence, combined total uncertainties of the order of 100 and 200 ppm are possible depending upon the test frequency.

In table 7, the column listing "Voltage Range" refers to the input voltage range of the transport standard, the "Test Voltage" is the actual test voltage applied, and the different columns for frequency are the actual test frequencies used. The numbers listed under the frequency columns are the maximum differences (in ppm) of the calibrated ac/dc difference corrections for the transport standard as determined for at least two, and up to a maximum of four, of the test conditions described above. That is, the numbers reported are the range (magnitude of the maximum minus the minimum) of the ac/dc difference corrections measured for each test voltage and frequency. The total elapsed time between the first and final tests of the transport standard was about eight weeks.

Table 7. Range of $\mathrm{ac} / \mathrm{dc}$ differences for transport standard (ppm)

Voltage	Test voltage	Test Frequency (kHz)		
range	(volts	20	50	$\underline{100}$
0.25-0.5	0.5	18	19	23
0.5-1	1	9	2	4
1-2	2	1	6	9
2-4	3	2	0	0
4-8	8	0	1	3
8-16	16	8	15	3
16-32	30	8	10	9
32-64	50	3	3	10
64-125	98	2	5	12
125-250	200	4	2	14
250-500	500	4	50	39
500-1000	500	22	54	147
500-1000	1000	17	70	--

The test results show that at 20 kHz the average value of the range of ac/dc differences for all voltages is only 8 ppm . At 50 kHz the average value of the range is 19 ppm , and at 100 kHz , where skin effects and stray capacitance effects predominate, the largest range (at 500 V) was 147 ppm . However, this large range is within the expected combined total uncertainty of 200 ppm for the two systems. Even with this one range greater than 100 ppm , the average value of the range at 100 kHz is still only 23 ppm . No intercomparison results were obtained at 1000 V , 100 kHz , since the high-voltage-amplifiers in both systems could not supply sufficient power at that voltage-frequency combination.

Additional intercomparison tests were made using a single-range, coaxial type thermal voltage converter with large, but accurately known, ac/dc differences. The summary of the test results is shown in table 8. From the data, it is obvious that the two systems agreed well within the estimated total uncertainty limits. In fact, the data clearly show that the MIDAS-based system performed much better than had been anticipated when the project was undertaken.

As a final check of the system's performance, intercomparison tests were made using a single-range, coaxial type converter, which is used as a working standard for ac/dc testing at NBS. The results of these tests are summarized in table 9. Again, the results indicate excellent agreement between the two systems.

4. CONCLUSIONS AND RECOMMENDATIONS

The results of the work reported indicate that it is possible to measure ac/dc differences semiautomatically with uncertainties about the same as those obtained with manual testing techniques. The major advantage of the system appears to be the elimination of most of the tedium involved in manual testing, in which deflections of light beam galvanometers must be observed and recorded.

For future work, it appears that further improvements in system operation can be obtained by development of self-balancing TE comparators. Additionally, by taking advantage of improvements in digital voltmeter sensitivity, stability, linearity, and resolution, desktop computers, and system components whose operation is compatible with new digital/analog interfaces, it may be possible to develop improved ac/dc difference testing techniques.

5. ACKNOWLEDGEMENTS

The authors are indebted to C. B. Childers who made many of the tests, assembled the equipment, and helped the programmers test the software. E. S. Williams designed and built the low-thermal-noise and high-voltage switching modules, and provided some of the initial software which eventually became part of the total programming package. R. E. Kleimann, S. C. Bailey, and W. C. Caterisano each contributed portions to some of the computer programs. Thanks are also due B. A. Bell who provided helpful comments, encouragement, and support.

Table 8. AC/DC difference for TVC "FA 50" (ppm)

1 Applied voltage	Frequency kHz	3 Manual	4 MIDAS	$3-4$ Difference
50	5	24	22	2
50	10	52	50	2
50	20	116	113	3
50	50	308	305	3

Table 9. AC/DC difference for TVC "FC 100" (ppm)

1 Applied voltage	System Frequency kHz	3 Manual	4 MIDAS	$3-4$ Difference
	20	3	5	-2
100	50	3	4	-1
100	100	13	18	-5

6. REFERENCES

[1] F. L. Hermach, E. W. Williams, Thermal Converters for AudioFrequency Voltage Measurement of High Accuracy, IEEE Trans. Instrum. Meas., Vol. IM-15, pp. 260-268, Dec. 1966.
[2] E. S. Williams, Thermal Voltage Converters and Comparator for Very Accurate AC Voltage Measurements, J. Res. Nat. Bur. Stand. (U.S.). 75C: 145-154, Dec. 1971.
[3] F. L. Hermach, AC-DC Comparators for Audio-Frequency Current and Voltage Measurements of High Accuracy, IEEE Trans. Instrum. Meas., Vol. IM-25, pp. 489-494, Dec. 1976.
[4] R. S. Turgel, A Comparator for Thermal AC-DC Transfer Standards, ISA Trans., Vol. 6, No. 4, pp. 286-292, 1967.
[5] C. H. Popenoe, M. S. Campbell, MIDAS modular interactive data acquisition system - description and specifications, Nat. Bur. Stand. (U.S.), Tech. Note 790, Aug. 1973.
[6] Interface Between Data Terminal Equipment and Data Communication Equipment Employing Serial Binary Data Interchange, EIA RS-232-C. Electronic Ind. Assoc., 2001 Eye St., N.W., Washington, D.C. 20006 Aug. 1969.
[7] IEEE Standard Modular Instrumentation and Digital Interface System (CAMAC) - Computer Automated Measurement and Control, IEEE Stand. 583 - 1975, IEEE, 345 E. 47 Street, New York, NY 10017.
[8] American National Standard Code for Information Interchange, ANSI X3.4 - 1977, Amer. Nat. Stand. Inst., Inc., 1430 Broadway, New York, NY 10018.
[9] Ku, H. H., ed. Statistical Concepts and Procedures, Nat. Bur. Stand. (U.S.), Spec. Pub. 300; 1, Feb. 1969, 436 p.
[10] Natrella, M. G., Experimental Statistics, Nat. Bur. Stand. (U.S.), Handb. 91, Aug. 1963.

APPENDIX A
Hardware
Equipment lists, parts lists, and wiring diagrams of the equipment used in the NBS Semiautomatic AC/DC Thermal Voltage Converter Calibration System are contained in this appendix.

The use of trade names or company products does not constitute endorsement or recommendation by the National Bureau of Standards, and does not imply that the products named are necessarily the best available for the purpose.

1. List of Equipment.
2. Data Precision Model 5740 Frequency Meter.
3. Fluke Model $3330 B$ Programmable DC Voltage Standard.
4. Hewlett-Packard Model 745A AC Voltage Standard, option H18.
5. Hewlett-Packard 746A High Voltage Amplifier.
6. Leeds \& Northrup Model 9829 Digital Linear Amplifier.
7. Guildine Model 9577 Digital Voltmeter with BCD interface.
8. Data Precision Model 175 Digital Multimeter (2 ea).
9. Parts list for High Voltage Switching Module.
10. D1-D4: IN5620 diodes.
11. Tl: Rectifier transformer. Universal Rectifier Corp., model RT201.
12. K1-K4: Relays. Magnecraft Electric Co., model W158HVXI, SPDT, DB-DM, 24 VDC. Rated 200 mA coil, 5 kV dc, 120Ω coil.
13. S1, S2: CTS Rotary switch, series 212, \#T205.
14. Pl: Cable connector. Gen-Rad, type GR874-CA.
15. JI: Panel connector. Gen-Rad, type GR874-PBA.

[^1]7. Pilot light. Industrial Devices, 215 OAl .
8. J2-J4. BNC male panel mount connectors isolated from panel.
9. All resistors $1 / 4 \mathrm{~W}$.
3. Parts list for Low-Thermal-Noise Switching Module.

1. Kl-K5: Solenoids. Guardian Electric Co., pull type $\frac{4}{\pi} 240 C$. Coil voltage 24 V dc. 114Ω coil resistance.
2. Jl: Panel jack. Amphenol \#3102A receptacle, \#10S-02P insert.
3. Pl: Cable plug. Amphenol \#3106B connector, \#10S-02P insert. \#AN3057 cable clamp.
4. J2-J9: BNC male panel mount connectors isolated from panel.
5. P2: Cable plug. Amphenol \#3106B plug, \#14S-05 insert, \#AN3057-6 cable clamp.
6. Sl: C.T.S. rotary switch, series $212, \frac{\sharp T}{\pi} 205$.
7. All L.E.D.'s red, $5 \mathrm{~V}, 16 \mathrm{~mA}$.
8. Parts list for TE Comparator.

Jl \& J2: Panel jack. Amphenol \#3102A receptacle, \#10S-02P insert.
33: Panel jack. Amphenol \#3102A receptacle, \#14S-05P insert.
J4: Panel jack. Amphenol \#3102A receptacle, \#10SL-03P insert.
Battery: Mallory Duracell RM42R 1.35 V.
Meter: $0-1 \mathrm{~mA}, \mathrm{DC}$.
R1, R2: 10Ω Gen-Rad \#602-302.
R3: Beckman Helipot $\frac{3}{\pi}$ SA 4391, 10 turn, $100 \Omega, \pm 3 \%$. (Lindeck potentiometer fine adjust).

R4: $750 \Omega, 10 \%, 1 / 2 \mathrm{~W}$, carbon.
R5: Beckman Helipot $\frac{\ddot{\pi}}{\bar{\pi}}$ SA4912, io turn, $100 \Omega,=3 \%$.
R5, R7: $100 \Omega, \pm 10 \%, 1 / 2 \mathrm{~W}$ carbon.
R8, R9: $53 \mathrm{~K} \Omega, \pm 10 \%, 1 / 4 \mathrm{~N}$, carbon.
R10, R11: $1 \Omega, \pm 1 / 2 \%, 1 \mathrm{~W}$, precision pie wound.

R12: Precision pie wound, $1 k \Omega, \pm 1 / 2 \%, 1$ W.
R13: Precision pie wound, $0.05 \Omega, \pm 1 / 2_{n}^{\alpha}, 1 \mathrm{~W}$.
R14: Beckman Helipot \#SA5427, 10 turn, 100Ω, $\pm 3 \%$. (Kelvin-Varley divider fine adjustment).

R15: Gen-Rad \#602-303, 100Ω.
S1: Leeds 3 Northrup 12 position, 2 pole rotary selector switch \#031262. (Function switch).

S2: Leeds \& Northrup 12 position, 3 pole rotary selector switch :031263. (Kelvin-Varley divider coarse adjust).

S3: Leeds 2 Northrup 12 position, 6 pole rotary selector switch 芉031266. (E-high or E-low selector switch).

S4: SPST bat handle toggle switch.
S5, S6: Set and read detector sensitivity switches. Leeds \& Northrup SPST \#031187.

S7, S8: Set and read switches. Leeds \& Northrup Guarded Low Thermal Key switch DPST \#031189.

S9: C.T.S. 7 position 2 pole rotary switch, series 212 , \#T205. (Lindeck potentiometer coarse adjust).
High Voltage Switching Module Wire Diagram

Low-Thermal-Noise Switching Module Wire Diagram From the TE Comparator

Cable Between the Low-Thermal-Noise Switching Module and the TE Comparator

Midas Equipment List

Slot \#	11		17	18	19	20	21	22	23	24
Midas Add.	K		H	G	F	E	D	C	B	A
Midas Power Supply	Relay	Vacant	$\begin{gathered} \mathrm{BCD} \\ 1 / \mathrm{O} \end{gathered}$	$\begin{aligned} & \text { BCD } \\ & \text { I/O } \end{aligned}$	BCD Multiplexer	Relay	$\begin{aligned} & \text { BCD } \\ & \text { Reg. } \end{aligned}$	$\begin{aligned} & \text { BCD } \\ & \text { Reg. } \end{aligned}$	$\underset{/ / O}{\mathrm{BCD}}$	System Controller
Model M70-200A	M70-040		M70-190	M70.190	M70.030	M70.040	M70-140	M70.140	M70-190	M70-010B

> Slot \#
> 10 Midas Power Supply
> 11 Relay, Low-Thermal-Noise Switch, $\mathrm{V}=1, \mathrm{EL}=2$, $\mathrm{EH}=3$ Set $=4$, Read $=5$, NTSTF $=6$ From Top Down 17 BCD I/O, Guildline

> 18 BCD I/O, Dana
> 19 BCD Multiplexer
> 20 Relay, High Voltage Switch, $D C R=1, A C=2, D C=3$ From Top Down 21 BCD Reg., Fluke DC Voltage 22 BCD Reg., H.P. AC Voltage
> $\begin{array}{ll}23 & \text { BCD IIO, DVM } \\ 24 & \text { System Controller }\end{array}$

APPENDIX B

ACDCHV Detailed Program Description and Program Listing

For ease of understanding the following detailed narrative program description, the reader may find it useful to refer to the list of program variables on page 40 , and the program listing on page 44 . Although not included in this report, a detailed program flow chart is available upon request.

The program begins by describing the software and appropriate reentry points, as well as system limitations which would result in over-voltages. Lines 20-108 are print statements which display the descriptive information and warnings on the CRT. Statement 109, in which the program shunts around a variable index (lines 110-1020) and a data header (lines 1030-1170), is inserted when debugging, and deleted for formal testing when a heading is desired on the printed data sheet. In statements 1180-1280, string and array variables are dimensioned, and simple variables are initialized. The statements in lines $1290-1310$ generate, through a read command and a series of data statements (lines $1320-1400$), a library containing corrections to those $T E$ standards that might be used during an ac/dc difference test.

The constants stored in data lines 1320-1390 are those which are used to calculate the value of the standard TE's dimensionless characteristic "n." Since n varies with applied voltage, its value can be related to the TE's measured emf output, E (in $m V$). The value of n is assumed to vary linearly with E. Thus, for example, for the standard "Fl" in line 1320 , n is calculated as

$$
n=1.98-0.039 E
$$

String variables used for instructions to MIDAS are then dimensioned and defined (lines 1400-1420). Since instructions from, and data sent to, MIDAS are done in real time, delay statements are used to handle timing intervals between reception of programmed instructions and acquisition of data. An upper limit for these delay statements is defined in statement 1430 concluding the system's software initialization.

A series of linked subroutines comprise the body of the program which actually begins at line 1440. A print command causes the CRT to beep, prompting the operator to enter, via the CRT keyboard, a test voltage, test range, and standard $T E$ range after a request for such test requirements has been displayed (line 1450). A conditional statement in line 1470 tests the status of flag S. S is set to 1 after an initial test so that for any succeeding tests, the program jumps to subroutines which turn off both dc and ac voltages, restoring each set of test parameters when required (lines 5970-6050 for dc , and 6060-6160 for ac). During a first run, however, S equals zero so the program falls through, first to set the dc voltage, then to set the ac.

Both voltage-setting routines follow similar general formats. Statements in lines $3430-3990$ set the ac voltage, while statements 4640-5190 set the dc. Before requesting voltage, range, and frequency (ac only) parameters, instructions for coding these parameters are displayed on the CRT. Any variables which may yet be necessary are then established. These include temporary variables (such as F18, R18, and V28 in ac, and R2 and V18 in dc), all of which are used to store parameters when turning supplies on and off during high voltage tests. Any flags for branching around certain instructions when testing at high voltages are also included here; for example, D in the ac routine (lines 3620-3650). Because the initial instructions to MIDAS differ, depending on a preselected range, conditional statements determine program flow to one of several sets of separate commands. Each of these command sets issues an initial instruction to MIDAS for a particular range before going back to the voltage set subroutine for more generalized instructions which send, through MIDAS, previously defined parameters. After MIDAS has sent the commands to those instruments being programmed, the operator is prompted, via the CRT, to check if each device has actually responded correctly. Should the operator indicate that a response is incorrect, the program recycles the subroutine to receive new instructions. If operator response indicates that the instruments have responded correctly, control is returned to statement 1520 of the main program.

After both dc (1500) and ac (1510) voltages have been set, instructions are displayed telling the operator to select the E-high comparator input, turn off the Lindeck potentiometer and the ground switch of the comparator and set the voltmeter to its 10 mV range. A variable for the test number is incremented, while both "dc" and a low-thermal-noise (K2) relay are closed. The operation of the high voltage relays, as well as those solenoids contained in the low-thermal -noise switch module, is accomplished by instructions contained in repeatedly-accessed subroutines in lines 5690-5900. Next, the dc power supply is turned on to the previously programmed voltage value (1610). Before the voltmeter is read (1640), the program executes a time delay (1620-1630) to permit the TE to reach thermal equilibrium. Statements 1641-1651 ask which standard TE is being used and check through a data library for its correction. This correction is used in each of two formulas, only one of which is accessed, contingent upon whether the standard or the UUT is connected to the E-high or E-low input of the comparator (1750-1770).

When $E_{s}>E_{t}$ the program variable K is computed as

$$
k=E_{t} n_{s}=E_{t}\left(M_{s}-N_{s} E_{s}\right),
$$

and, when $E_{t}>E_{S}$, K is computed as

$$
K=E_{S} n_{S}=E_{S}\left(M_{S}-N_{S} E_{S}\right),
$$

where the subscripts t or s refer to the UUT or the standard $T E$, respectively, and M and N are constants as defined in the program
variable list on page 40. These equations have been derived in [2]. The emf of the TE connected to the E-high input is read first by the voltmeter, and its value displayed on the CRT. Should E-low have a greater emf output than the TE connected to the comparator's E-high input, the operator is instructed to switch comparator connections, the test is aborted (1655-1718), and the initialization process begun again. If the standard and test TE's are properly connected to the comparator, K is computed and printed on the data sheet along with voltage, test range, standard TE range, and emf outputs for both the standard and the UUT.

If the UUT's emf actually is E-high, the operator is prompted to select the E-high input of the TE comparator (if E-test < E-high, the input selector switch remains at the E-low position). The potentiometer is turned on, the $10 \mu \mathrm{~V}$ range of the voltmeter selected, and the potentiometer adjusted until the voltmeter indicates within $\pm 500 \mathrm{nV}$. Instructions and prompts in the statements in lines 1830-1950 cue the operator to execute these manual operations. Then relay K 2 opens and relay Kl closes (lines 1970-1990). The operator is then instructed to adjust the Kelvin-Varley voltage divider ($\pm 100 \mathrm{nV}$), after which dc voltage parameters are stored, and the dc standard turned off. Both "dc" and K1 relays open now, while relay $K 2$ closes. Column headings for the data sheet are printed, and variables for statistical calculation are initialized.

Appropriate frequency corrections are computed for the standard TE. Statements 2220-2230 prompt the operator to define the test frequency, and statements 2240-2320 use this frequency value to determine the correction and truncate the computed correction to a whole number. Now the "dc" relay closes, and the dc power supply is turned on to the previously selected test voltage, at which point the K2 relay closes. The operator is then directed to readjust the potentiometer, after which the dc voltage and range values are stored, the power supply turned off, and the "dc" relay opened. Then the "ac" relay closes and the ac power supply is turned on, first at 105 volts and finally to the proper high voltage. A time delay in lines 2480-2490 allows the ac supply to settle and the TE to reach thermal equilibrium before transferring control to an ac voltage check subroutine (4000-4630) that adjusts the ac voltage so that the output of the test $T E$ is within 1000 nanovolts of its output with dc voltage applied. The subroutine branches, depending upon whether the ac voltage is too high or too low. The ac voltage is adjusted to provide nominally equal UUT output only with direct dc voltage applied, and not when reversed $d c$ is applied. Furthermore, this ac voltage adjustment is made only once at the beginning of the measurement sequence to obtain four determinations of ac/dc difference. Hence, it is possible, for UUT's with large dc reversal differences, for second-order errors to become significant. However, the multirange instrument and single range thermal converters tested with this system did not possess large dc reversal differences.

The system was intended to calibrate high-quality thermal converters. Hence, additional balancing steps to eliminate uncertainties due to large dc reversal difference (i.e., difference between the de direct and
reverse voltages required for the same TE emf output of the UUT) were not needed. For the worst case, using 2.0 and 1.6 as the two extremes of the characteristic n which may occur for the standard and UUT TE's, it can be shown [4] that systematic uncertainties of less than one-fourth the UUT's dc reversal difference will occur. Minor software changes can eliminate this systematic error if large reversal voltages are anticipated. The changes would amount to adjusting the ac voltage for a TE output equal to that when de reversed voltage is applied to the test circuit. The only penalty for such a change in the operating procedure would be an increase in testing time of perhaps one or two minutes (for four determinations of ac/dc difference).

There is also the possibility of a systematic uncertainty if the ac or dc voltage standards drift during a sequence of four determinations. However, for the same extremes of n, the uncertainty is only 10 ppin if either source drifts by as much as 100 ppm . The STABLV and STABHY programs readily provide information about the stabilities of the sources.

Once the ac voltage has been adjusted for about equal TE output as when dc is applied, relay K2 opens and relay K1 closes (2510-2540). Cautions are displayed on the CRT to allow the voltmeter to stop drifting before rebalancing the divider, should that be necessary. Statements in lines 2600-2610 generate a time delay before the program jumps to test the 10 voltmeter readings $(5500-5650)$ to determine if the standard deviation of an observation of 10 readings is $<200 \mathrm{nV}$. The test routine allows for up to five reading sequences to be obtained before the test is aborted and a suitable warning displayed on the CRT.

AC/DC difference is reported on the basis of the average of four determinations. Each determination is calculated from the voltage measurements with $\mathrm{ac}, \mathrm{dc}+$, $\mathrm{dc}-$, and ac voltages applied simultaneously in this sequence to the standard and test TE's. The last ac reading of one determination becomes the first ac reading of the next determination. Each reading is taken by closing the appropriate relays, bringing up the power supplies to previously programmed values, displaying the reading in nanovolts, then storing the voltage parameters, powering down, and opening the relays. This measurement process is accomplished by means of statements in lines 2650-3050 and concludes the midsection of the program.

The final section of the program computes statistical parameters, formats the final output, generates a copy of the test data, and provides measurement options to the operator. Statements 3060-3130 calculate the mean of the four determinations and the standard deviation of an observation in ppm, while statements $3140-3150$ format the printed data, and the statement in line 3160 causes the data to be printed. Should the operator wish to run another test, variables used to determine a pooled standard deviation are then incremented in lines 3170-3230. Finally, options are displayed (3240-3250) asking whether to repeat a test with or witiout averaging, to change parameters, or to terminate. Since ac was the last measurement to be taken, its voitage is turned off, althougn the ac
parameters are automatically stored for potential reruns (3275). Statements 3280-3350 transfer program control to the operator-selected option. If the operator has chosen to repeat a test without averaging, lines 3380-3410 delete the pooled standard deviation data.

The standard deviation of an observation printed on the data sheet is calculated for the four determinations of ac/dc difference at a fixed voltage and frequency from the following:
$(\text { Standard deviation })^{2}=($ Variance $)$, and the

$$
\text { Variance }=\frac{\sum_{i=1}^{n_{k}}\left(x_{i}-\bar{x}\right)^{2}}{n_{k}-1} \text {, }
$$

$$
\sum^{n_{k}} x_{i}
$$

where, $\bar{x}=\frac{i=1}{n_{k}}$, and \dot{n}_{k} is the number of determinations at a fixed
voltage and frequency; i.e., the number of readings in test $k=n_{k}$.
The final statistics which are printed on the data sheet are calculated using the variables

$$
\begin{aligned}
H & =\text { total number of readings, } \\
L= & \text { Number of independent tests, } \\
D 1= & \text { Degrees of freedom }=H-L, \\
S 2= & \text { Pooled estimate of the test standard deviation of } \\
& \text { the mean } \equiv \text { standard deviation of the test }(S D T) .
\end{aligned}
$$

An estimate of the total random uncertainty is calculated as three times the SDT and this product is therefore an estimate of the average 3o value for the test, and is calculated as

$$
3 \sigma=3\left\{\frac{\sum_{k=1}^{t}\left[\sum_{i=1}^{n_{k}}\left(x_{i}-\bar{x}\right)^{2}\right]}{(n-t)(n / t)}\right\}^{1 / 2},
$$

where, the degrees of freedom $=n-t$,
total number of readings $=n=$

$$
\sum_{k=1}^{t} n_{k}
$$

number of independent tests $=t$.
These concepts are discussed fully in [9], pp. 316, ff.

```
Note: \emptyset = zero and not letter "oh"
Variable
    Name
Definition
A
Voltage applied to test and standard TE.
```

$A D$
A2
\square

A4

A5

A6

B

BD
B1

B\$
C

C7

C\$
CD\$

D

D\$

```
Array used to store the four determinations of ac/dc difference.
Variable in the subroutine used to increase or decrease the ac voltage when driving the UUT's output to within 1000 nV of its value with dc voltage applied.
Variable which is input by the operator after verifying the dc voltage ( 0 or 1).
Variable which is input by the operator after verifying the ac voltage and frequency (o or 1).
Variable which is input by the operator after determining whether or not to change the frequency after the ac voltage is set.
Voltage range of test \(T E\).
```

Average of all determinations at one voltage and frequency.
Average of the four latest determinations of the test. 81 is used in the computation of the standard deviation of the test.

Array used to store the data related to a particular $T E$.
Frequency correction to standard TE which is calculated by using test frequency (P).

Variable used to increment or decrement the ac voltage to drive the UUT's output to within 1000 nV of its value with direct dc applied.

String containing name of standard TE.
Variable used in input string to dc source to set range, polarity, remote trip, and voltage trip range.

Flag to initially turn on ac supply at 105 V , and then return and set the correct voltage and range.

Variable used for degrees of freedom in statistical calculations. $\mathrm{DI}=\mathrm{H}-\mathrm{L}$.

String used to input date.

Variable \qquad	Definition
E	E-high voltage reading, in mV.
E9	E-low voltage reading, in mV.
E1-E4	DLA voltage difference readings with $a c,+d c,-d c$, and $a c$ voltages applied to the standard and UUT TE's.
FD\$	Used to input frequency to the ac source.
F1\$	Storage variable for the ac source frequency used in the ac voltage setting routine.
G	Dummy variable.
H	Total number of determinations of $\mathrm{ac} / \mathrm{dc}$ difference per test run.
I	Variable defining a for/next loop in which the standard TE code file is established.
$1 \varnothing$	Variable used to designate the first element in array A (the test voltage) when defining the variables M and N. Also used to define $E 1=$ near - null voltage reading with ac applied, $E 2=$ reading with $+C c, E 3=$ reading with -dc , $E 4=$ reading with ac.
I\$	String used to input the test instrument manufacturer, name, and model number.
18	Variable used to define the for/next time interval loop.
19	Variable used to define the for/next "wait" timing loop; e.g., to allow the dc or ac supplies to settle, or to allow time for a $T E$ to reach thermal equilibrium.
J	Flag for abort and total reset.
J1	Variable used to define for/next loop in which X6 is computed. Jl is used in the pooled estimate of the test standard deviation of the mean.
K	Result of the standard TE's emf multiplied by the TE characteristic n_{s} when $E_{s}<E_{t}$, or the test $T E^{\prime}$ s emf times n_{s} when $E_{s}>E_{t}$.
KO	Variable used to define a for/next loop in which the ten DLA near-null voltage readings are obtained, and then calculate the standard deviation of the ten readings.

Variable

L

M

M0

R1

R2\$

RDS
$R \$$
R1\$

S
S1

S2

V\$

V

Number of independent tests for a complete test run; i.e., for all voltages and frequencies.

One of two constants used in the calculation of n_{s}. The other constant is N .

Variable used to implement MIDAS calls. MO is the computer's PASLA channel number in decimal.

Variable used to set the range of the dc supply.
Variable used to store the range of the dc supply before turning it off.

Variable used to select the range for the ac supply. Character string reference used for relay operation. Variable used to store the range of the ac supply before turning it off.

Flag for initial dc and ac voltage ranges.
Standard deviation of an observation for four or more determinations of ac/dc difference at one voltage and frequency.

Pooled estimate of the test standard deviation of the mean.
Decision point variable.
Time delay variable.
Output format string.
MIDAS input string.
String used to set voltages on both ac and dc supplies.
Variable used to store the dc voltage value in the dc voltage setting routine.

Variable used to store the ac voltage value in the ac voltage setting routine.

Numeric value of $V \$$. V is the value of the voltage reading.

Variable Name	Definition
W	Divisor used in the calculation of the mean of four or more determinations at one voltage and frequency.
X, X7, X2	All used in the standard deviation of the test (SDT). calculation.
$\times 5, \times 6, \times 7$	Used in calculating the pooled estimate of the standard deviation of the mean.
Y	Intermediate variable used in calculating Yl.
Y1	Standard deviation of ten voltmeter readings.
z	Counter in the five standard deviation abort subroutine.

241	REM	NOTE: TO CHANGE NULL RANGE - LINE 4080
242	REM	TO CHANGE INCREMENT - LINES 4150 \& 4400 FOR L.V.
243	REM	FOR H.V. INCREMENT - LINES 4170 \& 4420
250	REM	4640-5190: DC VOLTAGE SET ROUTINE
255	REM	4760-4770: INITIAL STORAGE OF DC PARAMETERS
260	REM	5200-5390: STATIS. PRINT ROUTINE FOR POOLED S.D.
270	REM	5400-5490: DLA READ ROUTINE
280	REM	5500-5680: STD. DEV. TEST (OF DLA READINGS)
290	REM	5690-5790: E-MOD. RELAY SET ROUTINE (HI. V. SW.)
300	REM	5800-5900: K-MOD: RELAY SET ROUT INE (LO* THER.*SW.)
310	REM	5910-6640: RESET; TURN-OFF \& TURN-ON SUSROUTINE
312	REM	5950-6050: TURN-OFF FLUKE \& REDEFINE DC PARAM.
314	REM	6060-6160: TURN-OFF HI.V.AMP. \& REDEFINE AC FARAM.
316	REM	6170-6330: TURN-ON FLUKE \& RESTORE DC PARAM.
318	REM	6340-6630: TURN-ON HI.V.AMP. \& RESTORE DC PARAM.
320	REM	RUN 3360: TO CHANGE RANGE
330	REM	1510: TO CHANGE FREQUENCY
340	REM	2330: TO REPEAT TEST
350	REM	3290: TO RESET RELAYS ONLY
360	REM	3380: TO TO REPEAT W/O AVE.
370	REM	5200: TO GET POOLED S.D. STATIS. PRINTOUT
380	REM	5910: TO ABORT \& RESET ALL RELAYS
390	REM	A=VOLTAGE APPLIED TO STANDARD TE.
400	REM	AOEARRAY USED TO STORE THE 4 DETERMINATIONS.
410	REM	A2=INCREMENTED IN AC VOLTAGE CHECK ROUTINE
420	REM	$B=$ RANGE OF TEST TE
430	REM	BO=AVE. OF ALL RDGS. OF A PARTICULAR TEST.
440	REM	Sl =AUE: OF ONLY 4 LATEST READINGS.
450	REM	ES=ARRAY USED TO STORE EACH TE'S CONSTANTS.
460	REM	C=STD. TE FREQ. CORR. DETERMINED FROM INPUT FREQ=P
470	REM	C7=VOLTAGE INCREMENT IN AC BALANCE ROUT.
480	REM	CS=STRING CONTAINING I.D. OF STD. TE
490	REM	COS=USED IN INPUT STRING TO DC SOURCE
500	REM	D=COUNTER FOR INITIAL INPUT (105 V) FOR HI.V.AMP. (AC)
510	REM	DI = DEGREES OF FREEDOM= H-L
520	REM	DS $=$ STRING USED TO INPUT DATE
530	REM	E=E-HIGH MILLIVOLT READING (EH)
540	REM	E9=E-LOW MILLIVOLT READING (EL)
550	REM	E1 TO E4=ALTERNATING AC-DC-DCR-AC NULL READINGS
560	REM	FOS=USED TO INPUT FREQ. TO AC SOURCE
570	REM	G=DUMMY VARIABLE
580	REM	H=TOTAL NO. OF DETERMINATIONS PER RUN
590	REM	IS=STRING USED TO INPUT TEST INSTRUMENT MFG. \& MODEL NO:
600	REM	J=COUNTER FOR ABORT \& TOTAL RESET
610	REM	K=PRODUCT RESULT OF STD. EMF*STD.
612	REM	TE CHARACTERISTIC (N, LOWER CASES
614	REM	WHEN ESくET
616	REM	OR TEST EMF*STD TE CHARACTERISTIC
618	REM	(N, LOWER CASE) WHEN ES>ET
620	REM	L=TOTAL NO. OF TESTS PER RUN
630	REM	M=CONSTANT USED TO DETERMINE STD. TE
631	REM	CHARACTERISTIC N-SUBSCRIPT S (N, LOWER CASE)
640	REM	MO IN MIDAS CALL IS THE PASLA CHANNEL NO. IN DEC.
650	REM	MI=MAX. LENGTH OR TERMINATING CHAR.
651	REM	OF MIDAS INPUT STRING
660	REM	M2=STATUS VARIABLE SET AFTER
661	REM	EACH MIDAS CALL

 NS'=STRING USED TO INPUT OPERATOR'S NAME
 690 REM OS=INPUT STRING SPECIFYING PHYSICAL ADDRESS
 700 REM O2S=STRING USED TO INPUT TEST NO.
 710 REM P=FREQUENCY INPUT (KHZ)
 720 REM R=RANGE OF STD. TE
 730 REM RO=VARIABLE SELECTS RELAY OPERATION
 740 REM HV RELAYS. E-MODULE. RO=1..CLOSE DCR RELAY
 750 REM RO=2..CLOSE AC RELAY
 760 REM RO=3\becauseCLOSE DC RELAY
 770 REM RO=1I\thereforeOPEN DCR RELAY
 780 REM RO=120OOPEN AC RELAY
 790 REM RO=13:OOPEN DC RELAY
 800 REM K-MODULE. RO=3, CLOSE EH. RO=2, CLOSE EL RELAY.
 810 REM RO=4..CLOSE SET RELAY
 820 REM RO=5`OCLOSE READ RELAY
 830 REM RO=13; OPEN EH. RO=12, OPEN EL RELAY.
 840 REM RO=14..OPEN SET RELAY
 850 REM RO=15*OPEN READ RELAY
 860 REM RO=0.\becauseOPEN ALL RELAYS
 870 REM ROS=RANGE SELECT FOR AC SOURCE
 880 REM RS=CHARACTER STRING REFERENCE USED FOR RELAY OPERATION
 890 REM S=COUNTER FOR RANGE
 900 REM SI=STD. DEV. OF AN OBS. FOR
 4 OR MORE DETERMINATIONS
 S2=POOLED EST. OF TEST S.D. OF MEAN
 T=DECISION POINT VARIABLE
 TO=TIME DELAY LOOP VARIABLE
 TS=OUTPUT FORMAT
 VS=STRING OUTPUT FROM MIDAS
 VOS=STRING INPUT TO SET VOLTAGE
 ON BOTH AC & DC SOURCES
 V=NUMERIC valuE of US
 W=DIVISOR IN AUE. CALC.
 X,X1,X2,X5,X6,X7:ALL USED IN S.D.T.
 Y=USED IN Y1 CALC.
 YI=STD. DEV. OF ID DLA READINGS
 Z=COUNTER OF YI 'S Z=5=ABORT
 1030 DIM O2S(6),IS(20),DS(15),NS(25)
 1040 3"INPUT CURRENT DATE,YOUR NAME,TEST NO. ,AND TEST INST:"
 1050 ;"
 1060 INPUT DS,NS,O2S,IS
 1070 ; ON (6)"DATE..........",DS
 1080 ; ON (6)
 1090; ON (6)=OBSERVER...
 1100;ON (6)
    ```

```

 1120 ; ON (6)
    ```

```

 1140 ; ON (6)
 1150 ; ON (6)
 1160; DN (6)" APP TEST STANDARD ES ET X*
 1170 ; ON (6)" V RANGE TE RANGE MU MN*
 1180 DIM FOS(2),F1S(2),ROS(1),R1S(1),VOS(7),V1S(7),V2S(7)
 1190 DIM COS(3),CS(2),TS(72),35(7,8),A(8,2)
    ```
```

1200 5=0
1210 J=0
1220 D=0
1230 MO=38
1240 2=0
1250 H=0
1260 L=0
1270 X7=0
1280 y=0
1290 FOR I=1 TO 8
1300 READ BS(1),A(1,1),A(1,2)
1310 NEXT I
1320 DATA F1",1.98,.39E-1
1330 DATA FF2-.2:03,028E-1
1340 DATA *FG^,2:04,:31E-1
1350 DATA * FC*, 1:9,.32E-1
1360 DATA - FH*,2:02;.32E-1
1370 DATA "FA",2:03,:42E-1
1380 DATA -FB*,1:94,:14E-1
1390 DATA FD",2:03,:42E-1
1400 DIM US(12),OS(29),RS(16)
1410 US="
1420 RS="7?6>5=4<3;2:1908*
1430 T0=1800
1440 30
1450 ;`INPUT TEST VOLTAGE,TEST RANGE,STD. RANGE* 1460 INPUT A,B,R 1470 IF S=0 GOTO 1500 1480 GOSUB 5970 1490 GOSUB 6060 1500 GOSUB 4640 1510 GOSUB 3420 1520 %" 1530 %*SET COMP. TO E-HIGH, POT 'R OFF,DLA }10\mathrm{ MU,GND OFF`
1540 ;"TO CONTINUE, RETURN*
1550 INPUT G
1560 L=L+1
1570 R0=3
1580 GOSUB 5690
1590 RO=4
1600 GOSUB 5800
1610 GOSUB 6170
1620 FOR 19=1 TO 1600
1630 NEXT I9
1640 GOSUB 5400
1641 ;"INPUT THE CODE FOR STANDARD 'TE' (IN QUOTES)`
1642 ;" -
1643 INPUT CS
1644 FOR [=1 TO 8
1645 IF 3S(I)<>CS THEN 1648
1646 10=I
1647 I=100
1648 NEXT !
1649 IF I> =100 THEN 1653
1650 ;"STANDARD NOT FOUND; TRY AGAIN"
1651 ;-*

```

1652 GOTO 1641
\(1653 M=A(10,1)\)
\(1654 \mathrm{~N}=\mathrm{A}(10,2)\)
\(1655 \mathrm{E}=\mathrm{V}=1000\)
1660 ;"E-HIGH -*, E, "MILLIVOLTS"
1670 ; \({ }^{\circ}\) CHANGE \({ }^{\circ}\) BB' TO E-LOY, THEN RETURN -
1680 INPUT G
1690 GOSUB 5400
1700 E9=V*1000
1710 ;"E-LOW =", E9, "MILLIVOLTS"
1712 IF E>E9 THEN 1720
\(17143^{\circ}\) "
1716 ;"E-LOW IS GREATER THAN E-HIGH, SWITCH CONNECTIONS*
1718 GOTO 5910

1730 ; ON (6)
1740 ;
1750 ;"IF" \(3 C S \xi^{\circ}\) IS E-HIGH, INPUT •1••IFNOT, INPUT •O••*
1760 INPUT G
1770 IF \(G=0\) GOTO 1810
1780 K=E9*(M-E*N)
1790 ; ON (6) USING TS,A,B,CS,R,E,E9,K
1800 GOTO 1940
\(1810 \mathrm{~K}=\mathrm{E} 9 *(\mathrm{M}-E 9 * N)\)
1820 ; ON (6) USING TS,A,B,CS,R,E9,E,K
1830 ;"
1840 ;"SET COMPARATOR TO E-HIGH. RETURN*
1850 INPUT G
1940 ;"POT \({ }^{\circ} R\) ON - SET DLA 10 MICRO-VOLTS - SET NULL,RETURN*
1950
1960 INPUT G
\(1970 \mathrm{RO}=14\)
1980 GOSUB 5800
1990 RO=5
2000 GOSUB 5800
2010 ;"BALANCE DIVIDER, THEN RETURN"
2020 ;" -
2030 INPUT G
2035 GOSUB 5970
\(2040 \mathrm{RO}=15\)
2050 GOSU3 5800
2060 RO=13
2070 GOSUB 5690
\(2080 \mathrm{RD}=4\)
2090 GOSUB 5800
2110 : ON (6)

2150 ; ON ( 6 )"DEV COR PPM"
2160 ; ON (6)
\(2170 \mathrm{X}=0\)
\(2180 \times 1=0\)
\(2190 \times 2=0\)
\(2200 \quad C=0\)
\(2210 \quad \psi=0\)

2220 2230 2240
2250 IF \(R<100\) THEN \(C=0\)
2260 IF \(R=100\) THEN \(C=-\left(P^{*} 2 / 1000\right)\)
2270 IF R=200 THEN \(C=-\left(P^{-} 2 / 1000\right)\)
2280 IF \(R=300\) THEN \(C=\left(P^{-} 2 / 1000\right)^{\circ} 1.5\)
2290 IF \(R=600\) THEN \(C=\left(P^{\circ} 2 / 1000\right)^{\circ} 1: 3\)
2300 IF \(R=1001\) THEN \(C=\left(P^{*} 2 / 100\right) * 2-P\)
2310 IF \(R=1002\) THEN \(C=P{ }^{-2 *} 12 E-1\)
\(2320 \mathrm{C}=\mathrm{INT}(\mathrm{C})\)
\(2330 \quad R 0=3\)
\(2340 \quad T=3\)
2350 GOSUB 5690
2360 GOSUB 6170
2370 ;
\(2380 \quad \mathrm{RO}=4\)
2390 GOSUB 5800
2400 ;" SET POT NULL. THEN RETURN*
2410 INPUT G
2420 GOSUB 5970
\(2430 \quad \mathrm{RO}=13\)
2440 GOSUB 5690
2445 GOSUB 6060
2450 R0=2
2460 GOSUB 5690
2470 GOSUB 6340
2480 FOR 19=1 TO 2000
2490 NEXT 19
2500 GOSUB 4000
\(2510 \quad R 0=14\)
2520 GOSUB 5800
2530 R0 \(=5\)
2540 GOSUB 5800
2550 IF W<>0 THEN 2600
2560 ;"WAIT FOR DLA TO STOP DRIFT.*
2570 ;"RESALANCE DIVIDER IF NECESSARY, THEN RETURN."
2580 ;
2590 INPUT G
2600 FOR \(19=1\) TO TO
2610 NEXT 19
2520 GOSUB 5500
2630 E1=U*.1E10
2640 :"E1 =", E1, "NANOVOLTS"
2650 FOR \(10=1\) TO 4
2660 GOSUB 6060
\(2670 \mathrm{RD}=12\)
2680 GOSUB 5690
2690 RO \(=3\)
2700 GOSUB 5690
2710 GOSUB 6170
2720 FOR I9=1 TO TO
2730 NEXT 19
2740 GOSUB 5500
2750 E2xV*.1E10
```

 2760 ;-E2
 =",E2,"NANOVOLTS"
 2770 GOSUB 5970
 2780 RO=13
 2790 GOSUB 5690
 2800 R0=1
 2810 GOSUB 5690
 2 8 2 0 ~ G O S U B ~ 6 1 7 0 ~
 2830 FOR 19=1 TO TO
 2840 NEXT 19
 2850 GOSUB 5500
 2860 E3=V*.1E10
 2870 ;"E3 =`,E3,"NANOVOLTS"
 2880 GOSUB 5970
 2890 R0=11
 2 9 0 0 ~ G O S U B ~ 5 6 9 0 ~
 2910 R0=2
 2920 GOSUB 5690
 2930 GOSUB 6340
 2940 RO=5
 2950 GOSUB 5300
 2960 FOR {9=1 TO TO
 2970 NEXT 19
 2980 GOSUB 5500
 2990 EA=V*.1E10
 3000 ;"EA ". =",E4,"NANOVOLTS"
 3010 AD(IO)=(-E1+E2+E3-E4)/(2*K)
 3020 IF IO=4 THEN 3050
 3030 E1=E4
 3040 ;"E! =*,El,*NANOVOLTS*
 3050 NEXT 10
3060 W=W+4
3070 X=X+AO(1)* 2+AD(2)* 2+AD(3)* 2+AO(4)* 2
3080 Xl=X1 +AO(1)+AO(2)+AO(3)+AO(4)
3090 Bl=AO(1)+AO(2)+AO(3)+AO(4)
3100 B1=81/4
3110 B0=X1/V
3115 PO=(X1/W)+(C)
3120 x2=30*x1
3130 S1=SQR((X-X2)/(W-1))

```

```

3150 TS (51.72)="
3160 ; ON (6) USING TS;P,C,AO(1);AO(2),AO(3),AO(4),S1,PO
3170 H=H+4
3180 X6=0
3190 FOR J1=1 TO 4
3200 X5=(A0(U1)-S1)*2
3210 X6=X6+X5
3220 NEXT J1
3230 X7=X7+X6
3240 ;"REPEAT,FREQUENCY,RANGE,STOP,REPEAT W/O AVE. ?"
3250 ; 1 2 3 4
3260 s" *
3270 INPUT T
3275 GOSUB 6060
3280 IF T=4 THEN 5200_

```
\begin{tabular}{|c|c|}
\hline 3290 & \(M 1=0\) \\
\hline 3300 & OS \(={ }^{*}<35>589: 3<=>\) ? K89: \(\ll=>?^{*}\) \\
\hline 3310 & CALL 1,MO,OS, VS,M1,M2 \\
\hline 3320 & IF \(T=1\) THEN 2330 \\
\hline 3330 & IF T=2 THEN 1510 \\
\hline 3340 & IF T=3 THEN 3360 \\
\hline 3350 & \(1 F T=5\) THEN 3380 \\
\hline 3360 & \(\mathrm{S}=1\) \\
\hline 3370 & GOTO 1450 \\
\hline 3380 & X7 7 X7-X6 \\
\hline 3390 & \(\mathrm{H}=\mathrm{H}-4\) \\
\hline 3400 & ; ON (6)*ABOVE DATA DELETED FROM TEST* \\
\hline 3410 & GOTO 2160 \\
\hline 3420 & GOSUB 6060 \\
\hline 3430 & ; \\
\hline 3440 & ;" AC VOLTAGE SET \\
\hline 3450 & ;*********IMPORTANT NOTE*********** \\
\hline 3460 & ;"WHEN SETTING AN AC VOLTAGE OF \(1,10,0 R 100\) VOLTS, YOU MUS5* \\
\hline 3470 & ;"CHOOSE THE MAX. OUTPUT OF THE CORRESPONDING RANGE, FO\% EXAMPLE* \\
\hline 3480 & ;"WHEN APPIYING 10 V YOU MUST PROGRAM 5-NINES (99999) ON ¢HE 10 V \\
\hline 3490 & ;"RANGE, AND NOT (REPEAT NOT) 10000 ON THE 100 V RANGE* \\
\hline 3500 & 3 ( 3 ( \({ }^{\text {a }}\) \\
\hline 3510 & 3 \\
\hline 3520 & ;"THE FREQUENCY IS CODED IN TWO DIGITS. THE FIRST DIGIT MUST BE® \\
\hline 3530 & ;"A NUMEER FROM 1 TO 11, MEANING THE HIGH ORDER DIGIT. THE" \\
\hline 3540 & ;"SECOND DIGIT ARE MULTIPLES OF 10, STARTING WITH O=XIO AND" \\
\hline 3550 &  \\
\hline 3560 & ; \({ }^{\text {a }}\) ( \({ }^{\text {a }}\) \\
\hline 3570 & \\
\hline 3580 & ;"INPUT FREQUENCY* \\
\hline 3590 & INPUT FOS \\
\hline 3600 & \(F 1 S=F 0 S\) \\
\hline 3610 & 3 \\
\hline 3620 & \(D=1\) \\
\hline 3630 & R0S = " 6 " \\
\hline 3640 & GOSUB 6420 \\
\hline 3650 & \(\mathrm{D}=0\) \\
\hline 3660 & ;"TO SET VOLTAGE AND RANGE, FIRST INPUT THE CORRECT RANGE* \\
\hline 3670 &  \\
\hline 3680 &  \\
\hline 3682 & \(3^{*}\) WHEN TEST LO \& HI AC MUST SET RANGE TO NEXT* \\
\hline 3684 & ;- HIGHEST RANGE LIMIT FROM TEST VOLTAGE* \\
\hline 3686 & ;" (EX. 1 - TEST \(\triangle \cup\) AC SET RANGE AT \(4=10 \mathrm{~V} 0 \mathrm{~S}^{\circ}\) \\
\hline 3688 & ;"EX. 2 - TEST 100 V AC SET RANGE AT 6=1000)." \\
\hline 3690 &  \\
\hline 3700 & ; \({ }^{\text {c }}\) \\
\hline 3710 & ;"INPUT RANGE,VOLTAGE* \\
\hline 3720 & INPUT ROS,VOS \\
\hline 3730 & R1S \(=\) R0S \\
\hline 3740 & \(V 2 S=\) VOS \\
\hline 3750 &  \\
\hline 3760 &  \\
\hline 3770 & CALL 1,MO,OS,VS,M1,M2 \\
\hline 3780 & \(M 1=1\) \\
\hline 3790 &  \\
\hline
\end{tabular}
```

3800 CALL 1,MO,OS,VS,M1,M2
3810 GOTO 3880
3820 OS=*<35>CP"+VOS (1,5) +ROS +FOS +" 20*
3830
3840 ;"CONNECT HIGH VOLTAGE AMP..THEN RETURN*
3850 ;" ."
3860 INPUT G
3870 GOTO 3770
3880 ;"CHECK AC.VOLTAGE AND FREQUENCY,IF CORRECT INPUT '1',"
3890 ;"THEN RETURN. IF INCORRECT,INPUT '2'.THEN RETURN."
3900 3
3910 INPUT A5
3920 IF A5=1 GOTO 3940
3930 GOTO 3420
3940 ;"IF FREQ. CHANGE INPUT 'I`,IF RANGE OR INITIAL RUN,RETURN"
3950 :" *
3960 INPUT AG
3970 IF AG=1 GOTO 2160
3980 IF ROS=*6" GOTO 6060
3990 RETURN
4000 ;"AC VOLTAGE CHECK"
4010 R0=2
4020 GOSUB 5690
4030 GOSUB 5400
4 0 4 0 ~ ; V
4050 A2=V
4060 A2=A2*.1E9
4070 V=V*.1E9
4080 IF ABS (A2)<100 THEN 4600
4090 IF US (1,1)="-" THEN 4350
4100 IF ROS="4" THEN 4140
4110 IF ROS=*5" THEN 4140
4120 1F ROS="6" THEN 4140)
4130 GOTO 4150
4140 IF VOS(1.1)=*** THEN 4170
4150 C7=3
4160 GOTO 4180
4170 C7=40
4180 A2=VAL(VOS)
4190 A2=A2-C7
4200 VOS=STRS (A2)
4210 M1=0
4220 IF ROS="6" GOTO 4290
4230 OS=*<35>CP"+VOS (1,5) +ROS +FOS +" 02*
4240 CALL 1,MO,OS,VS,M1,M2
4250 M1=1
4260 05="<35>F0"
4270 CALL 1,MO,OS,VS,M1,M2
4280 GOTO 4310
4290 OS="<35>CP"+VOS(1,5)+ROS +FOS+"20*
4300 GOTO 4270
4310 FOR I8=1 TO 1500
4320 NEXT I8
4330 GOSUB 5400
4340 GOTO 4040

```
```

4350 IF ROS="4" THEN 4390
4360 IF ROS=*5" THEN 4390
4370 IF ROS=* 6" THEN 4390
4380 GOTO 4400
4390 1F VOS(1,1)="9" THEN 4420
4400 C7=3
4410 GOTO 4430
4420 C7=40
4430 A2=VAL(VOS)
4440 A2=A2+C7
4450 VOS=STRS (A2)
4460 M1=0
4470 iF ROS=* 6" GOTO 4540
4480 OS="<35>CP"+VOS(1,5)+ROS +FOS +"02*
4490 CALL 1,MO,OS,VS,M1,M2
4500 Ml =1
4510 OS="<35>FO*
4520 CALL 1,MO,OS,VS,M1,M2
4530 GOTO 4560
4540 OS ="<35>CP"+VOS (1,5)+R0S +F05 +" 20"
4550 GOTO 4520
4560 FOR 18=1 TO 1500
4 5 7 0 ~ N E X T ~ 1 8 ~
4580 GOSUB 5400
4590 GOTO 4040
4600 R0=2
4610 U=V/.1E9
4 6 2 0 ~ G O S U B ~ 5 6 9 0 ~
4630 RETURN
4640 8" DC VOLTAGE SET
4650 VS=" *
4660;
4670 ;"TO SET THE VOLTAGE RANGE AND TRIP, INPUT FIRST THE CORRECT*
4 6 8 0 ~ ; " R A N G E ~ F O L L O W E D ~ B Y ~ A ~ C O M M A ~ A N D ~ T H E ~ D E S I R E D ~ V O L T A G E . ~ R A N G E S * ' *)
4690;"OF 10, 100, AND 1000 ARE ALLOWED. VOLTAGE MUST BE 7 DIGITS.*
4695 ;" UHEN TEST AT LO V (<<100 V DC) MUST SET RANGE AT 1000.*
4 7 0 0 ;
4 7 1 0
4720
;"INPUT RANGE,VOLTAGE*
8"
4730 M0=38
4740 M1=0
4 7 5 0 ~ I N P U T ~ R I , V O S ~
4760 R2=R1
4770 V1S=VOS
4 7 8 0 ~ I F ~ R I = 1 0 ~ G O T O ~ 4 9 9 0 ~
4790 IF RI=100 GOTO 5030
4800 IF RI=1000 GOTO 5070
4810 GOTO 4710
4820 OS =*<35>DP** +VOS+*;;"+COS
4830 CALL 1,MO,OS,US,M1,M2
4840 M1=1
4850 OS="<35>F0"
4860 CALL 1,MO,OS,VS,M1,M2
4870 V\$ (2,2)="
4880 3VS

```
```

4890 1F UAL(VS)<>6 THEN 5110
4900 3"CHECK DC VOLTAGE, IF CORRECT INPUT'I', THEN RETURN."
4910 ;"IF INCORRECT, INPUT'2", THEN RETURN*
4 9 2 0 ~ 3 " ~ - ~
4 9 3 0 ~ I N P U T ~ A 4 ~
4940 IF A4=1 GOTO 4950
4945 IF A4=2 GOTO 5130
4950 GOTO 5970
4 9 6 0 ~ R E T U R N
4 9 7 0 ~ G O T O ~ 4 6 4 0 ~
4 9 8 0 ~ R E T U R N ~
4990 COS="840*
5000 OS="<35>DP00000003;"+COS
5010 CALL 1,MO,O5,VS,M1,M2
5020 GOTO 4820
5030 COS="942"
5040 OS="<35>DPOOO0000;3"+COS
5050 CALL 1,MO.O5,US,M1,M2
5060 GOTO 4820
5070 COS="=41"
5080 OS=*<35>DP0000000; 3"+COS
5090 CALL 1,MO,OS,VS,M1,M2
5100 GOTO 4820
5110 3"WARNING - SYSTEM TRIPPED, SUPPLY AUTOMATICALLY RESET*
5120 ;" TRY AGAIN."
5130 M1=0
5140 v0S="0000000*
5150 COS="000"
5160 OS="<35>DP"+VOS +"000+COS
5170 CALL 1,MO,OS,US,M1,M2
5180 GOTO 4640
5190 RETURN
5200 ;"DO YOU WANT STATISTICS PRINTOUT?*
5210 ;"IF YES,ENTER `!'AND RETURN`
5220 ;"IF NOT ,ENTER '2'AND RETURN*
5230 ;"
5 2 4 0 ~ I N P U T ~ T ~ T
5250 IF T=2 THEN 5910
5260 D1=H-L
5270 S2=SQR((X7/D1)/(H/L))
5280 ; ON (6)
5290; ON (6)"NUMBER OF READINGS=H=......", H
5300 ; ON (6)
5310; ON (6)"NUMBER OF INDEP. TESTS=L=..",L
5320; ON (6)
5330 ; ON (G)"DEGREES OF FREEDOM=DI=.....*,D1
5340 ; ON (6)
5350 % ON (6)"POOLED ESTIMATE OF TEST STD. DEV. OF MEAN=S2*
5360 ; ON (6)*=S.D.T.(SEE S.P. 300,V.1, P: 316-40)....E*,SN2
5370 ; ON (6)
5380; ON (6)*3*S.D.T.E.....**,3*S2
5390 GOTO 5910
5400 M1=12
5410 OS="<35>BTTU<172*

```
```

5420 CALL 1,MO,OS,US,M1,M2
5430 VS(LEN(VS)+1,LEN(US)+1)="*
5440 1F VS (2,2)=":" THEN 5480
5450 IF.VS(2,2)=":" THEN 5480
5460 V=VAL(VS)
5470 RETURN
5480 V=2000
5490 RETURN
5500 Y=0
5510 Y1=0
5520 FOR KO=1 TO 10
5530 GOSUB 5400
5540 Y=Y+V
5550 Y1=Y1 +V*U
5560 NEXT KO
5570 Y1=SQR((Y1-(Y*Y/10))/9)
5580 IF YI*./EIO<200 THEN 5660
5590 ;"STD.`DEV. =",Y1*.1E!0,"NANOVOLTS"
5600 Z=2+1
5610 1F Z=5 THEN 5630
5620 GOTO 5500
5630 ;"WARNING-JOB ABORTED, TESTS EQUAL FIVE, SYSTEM UNSTABLE*
5640 ;" "
5650 GOTO 5910
5660 U=Y/10
5670 Z=0
5680 RETURN
5690 RO=INT (RO)
5700 IF RO>=0 AND RO<19 THEN 5730
5710 ;"INUALID RELAY ADDRESS*
5720 RETURN
5730 M1=0
5740 Rl= INT (RO/10)
5750 R2=INT (RO-R1*10)
5760 IF RO<>0 THEN OS =* < 35>E* +RS(2*R2-1 +R1,2*R2-1 +R1)
5770 IF RO=0 THEN OS="<35>E89:;<<>?"
5780 CALL 1,MO,OS,VS,M1,M2
5790 RETURN
5800 RO= INT (RO)
5810 IF RO>=0 AND RO<19 THEN 5840
5820 ;"INVALID RELAY ADDRESS"
5830 RETURN
5840 M1 = 0
5850 R1=INT (R0/10)
5860 R2=INT (RO-R1*10)
5870 IF RO<>0 THEN OS=*<35> K* +RS(2*R2-1+RI,2*R2-1+R1)
5880 IF RO=0 THEN OS="<35>K89:;<\approx>?"
5890 CALL 1,MO,OS,VS,M1,M2
5900 RETURN
5910 RO=0
5940 J=1
5950 R0=0
5960 2=0
5970 M1=0

```
```

5980 VOS="0000000"
5990 COS="000*
6000 OS="<35>DP"+VOS+"000+COS
6010 CALL 1,MO,OS,VS,M1,M2
6020 IF J=1 GOTO 6080
6030 v0S=v1S
6040 R1=R2
6 0 5 0 ~ R E T U R N ~
6060 M1=0
6070 v0S=00000000"
6080 ROS=*O"
6090 FOS=`00* 6100 OS="<35>CP"+VOS(1,5)+ROS+FOS+"O0* 6110 CALL 1,MO,OS,VS,M1,M2 6114 GOSUB 5690 6120 1F J=1 GOTO 6640 6130 ROS=R1S 6140 VOS=V2S 6150 FOS=F1S 6160 RETURN 6170 MO=38 6180 Ml=0 6190 COS="=41" 6200 OS =*<35>DP0000000;3"+COS 6210 CALL 1,MO,OS,VS,M1,M2 6220. VOS=V1S 6230 R1=R2 6240 FOR 19=1 TO 100 6 2 5 0 ~ N E X T ~ 1 9 ~ 6260 OS="<35>DP*+VOS +";3"+COS 6270 CALL 1,MO,OS,VS,M1,M2 6280 Ml = ! 6290 OS="<35>FO" 6300 CALL 1,MO,OS,VS,M1,M2 6310 R2=R1 6320 V1S=VOS 6330 RETURN 6340 M1=0 6350 v0S="0000000* 6360 ROS=`0"
6370 FOS="00*
6380 OS="<35>CP"+VOS(1,5)+ROS +FOS+" O0*
6390 CALL 1,MO,OS,VS,M1,M2
6400 ROS=R1S
6410 FOS=F1S
6420 VOSx"10500*
6 4 3 0 ~ F O R ~ 1 9 = 1 ~ T O ~ 1 0 0 ~
6440 NEXT 19
6450 OS="<35>CP"+VOS(1,5)+ROS +FOS +" 20*
6460 CALL 1,MO,OS,VS,M1,M2
6470 M1=1
6480 OS="<35>FO"
6490 CALL 1,MO,OS,VS,M1,M2

```

6500 FOR 19=1 TO 150
6510 NEXT 19
\(6520 \mathrm{Ml}=0\)
6530 IF \(D=1\) GOTO 6630
6540 VOS = V2S
6550 OS = " \(<35>C P^{\circ}+\operatorname{VOS}(1,5)+R 0 S+F 0 S+{ }^{\circ} 20^{\text {" }}\)
6560 CALL \(1, M O, O S, V S, M 1, M 2\)
\(6570 \mathrm{Ml}=1\)
6580 OS = " < 35>F0"
6590 CALL \(1, M 0, O S, V S, M 1, M 2\)
6600 F1S \(=F 0 S\)
6610 R1S \(=\) ROS
6620 V2S=VOS
6630 RETURN
6640 GOSUB 5800
6650 END

NBS-114A (REV. 9-78)
\begin{tabular}{|c|c|c|c|}
\hline U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET & 1. PUBLICATION OR REPORT NO. NBSIR 82-2576 & 2.Gov't Accession No. & 3. Recipient's Accession No. \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
4. TITLE AND SUBTITLE \\
A SEMIAUTOMATIC AC/DC THERMAL VOLTAGE CONVERTER CALIBRATION SYSTEM
\end{tabular}}} & 5. Publication Date September 1982 \\
\hline & & & 6. Performing Organization Code \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
7. AUTHOR(S) \\
K. J. Leniner and S. G. Tremaine
\end{tabular}} & 8. Performing Organ. Report No. \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
9. PERFORMING ORGANIZATION NAME AND ADDRESS \\
NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, DC 20234
\end{tabular}}} & 10. Project/Task/Work Unit No. \\
\hline & & & 11. Contract/Grant No. \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
12. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP) \\
U.S. Department of Defense \\
Calibration Coordination Group
\end{tabular}}} & 13. Type of Report \& Period Covered Final \\
\hline & & & 14. Sponsoring Agency Code \\
\hline
\end{tabular}
15. SUPPLEMENTARY NOTES

Document describes a computer program; SF-185, FIPS Software Summary, is attached.
16. ABSTRACT (A 200-word or less factual summary of most significent information. If document includes a significant bibliography or literature survey, mention it here.)

A semiautomatic ac/dc difference calibration system is described. The system operates over a frequency range of 20 Hz to 100 kHz , covering the voltage range from 0.5 V to 1 kV . For all voltages at frequencies in the range from 20 Hz to 20 kHz , the total uncertainty is 50 parts per million (ppm), and 100 ppm for voltages at frequencies between 20 kHz and 100 kHz . In addition to ac/dc difference testing, the system can be readily adapted to calibrate precision ac digital voltmeters or ac calibrators. Results of extensive intercomparison testing of the new system against a manual test system are reported, using a multirange thermal transfer instrument as a transport standard. The results indicate that the ac/dc differences measured are well within the combined total uncertainty limits of the two systems.
17. KEY WORDS (six to tweive entries; alphabetical order; capitalize only the first tetter of the first key word unless a prope: name; separated by semicolons) ac/dc difference; ac voltage measurement; automation; caiibration; metrology; thermal voltage converter.
18. AVAILABILITY
\(\bar{X}\) Unlimited
\(\square\) For Official Distribution. Do Hot Release to NTIS
— Order From Sup. of Doc., U.S. Government Printing Office, Washington, DC 20402, SD Stock No. SNOO3-003-
\(X\) Order From National Technical Information Service (NTIS), Springfield, VA. 22161
\begin{tabular}{|l|c}
\begin{tabular}{l} 
19. SECURITY CLASS \\
(THIS REPORT) \\
UNCLASSIFIED
\end{tabular} & \begin{tabular}{c} 
21. NO. OF \\
PRINTED PAGES
\end{tabular} \\
\begin{tabular}{l} 
20. SECURITY CLASS \\
(THIS PAGE) \\
UNCLLASSIFIED
\end{tabular} & 62
\end{tabular}```


[^0]:    Numbers in brackets refer to the literature references listed at the end of this report.

[^1]:    lFor the frequency output connector of the ac calibrator, a triax BNC to regular BNC adaptor is required. The adaptor used was made by Trompeter Electronics, part number AD-PL76-E1-B1 20.

