
NBS

JBUCATIONS

A11100 cnS31D

NBSIR 81-2423
1(191

AlllOt 407305

Compiler-Based Programming
Support Capabilities

U S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Center for Programming Science and Technology

Systems and Software Technology Division

Washington, DC 20234

January 1 982

Final Report

Contract NB79SBCA0131

100

. U56

81-2423

1932

c, 2
Intermetrics, Inc.

4733 Bethesda Avenue
Bethesda, MD

NBSIR 81-2423

COMPILER-BASED PROGRAMMING
SUPPORT CAPABILITIES

Gary Bray

Roger Lipsett

William Bail

Victor Berman

*ATH>JVAL Bt/JtEAUw RASDaXOi
llbmamt

JAN 2 5 1982

Dot clcc -

QCfoo

. B'/-

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Center for Programming Science and Technology

Systems and Software Technology Division

Washington, DC 20234

January 1 982

Final Report

Contract NB79SBCA0131

Prepared for

Intermetrics, Inc.

4733 Bethesda Avenue
Bethesda, MD

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler. Director

•

VfjS/t..

FOREWORD

The report that follows is the result of a contract effort
initiated by the National Bureau of Standards'* Institute for
Computer Sciences and Technology (NBS/ICST) . This report was
developed in connection with responsibilities under the Brooks
Act (PL 89-306) which aims to aid Government agencies to improve
cost effectiveness in the selection, acquisition, and utilization
of automatic data processing resources. Efforts to satisfy these
responsibilities include research in computer science and
technology, and the development of Federal government-wide
standards for data processing equipment, practices, and software.
The software standards efforts comprise six families of
standards, one of which deals with software quality control.
Although it is recognized that software tools can aid in software
quality control, NBS/ICST concluded that there did not exist a
clear body of techniques for making effective use of tools. The
present and related efforts are intended to fill this gap.

The purpose of this report is to record the results of an
effort to determine a set of features offered by program analysis
and testing tools that could be feasibly implemented in a

compiler. Currently, program analysis and testing tools offer
features that require syntactical analysis of a program in a
manner similar to compilers. Much of the information that is
generated during compilation could be used to aid program
development in other ways. It is the goal of this effort to
identify a set of software tool features and develop a

methodology for combining these into a compiler.

Although the major goals of this effort are reflected in

this report, a problem does remain. The report does not
adequately cover what the cost impact of each of the features
would be and what cost inter-relationships exist among features.
For example, if one were to provide data flow analysis as a

feature in a compiler, then this would make additional features
such as program restructuring, program structure checking,
complexity measurement, and certain types of program optimization
much less costly to implement. In addition to the cost of
implementation, there is a similar cost in compiler efficiency.
For example, complexity measurement is much less costly in terms
of compiler efficiency than data flow analysis. Because of
limited funds for this purpose, these issues were not persued.

Raymond C. Houghton, Jr.
Systems and Software Technology Division

ABSTRACT

An effort to determine a set of features offered by program
analysis and testing tools that could be feasibly implemented in
a compiler is reported. Currently, program analysis and testing
tools offer features that require syntactical analysis of a

program in a manner similar to compilers. Much of the
information that is generated during compilation could be used to
aid program development in other ways. It was the goal of this
effort to identify a set of software tool features and develop a

methodology for combining these into a compiler.

Key Words: Compilers; Dynamic Analysis; Programming Aids;
Software Development; Software Engineering; Software Tools;
Static Analysis

The material contained herein is the viewpoint of the authors.
Publication of this report does not necessarily constitute
endorsement by the National Bureau of Standards. The material
has been published in an effort to disseminate information and to
promote the state-of-the-art of software development technology.

TABLE OF CONTENTS

1.0 INTRODUCTION 4

2.0 COMPILATION ISSUES 8

2.1 COMPILATION OVERVIEW 8

2.2 AN EXPANDED VIEW OF COMPILER CAPABILITIES ... 12
3.0 COMPILER CAPABILITIES 15
3.1 TWO CLASSES OF CAPABILITIES 15
3.2 CAPABILITIES OVERLAPPING COMPILER PHASES 16
3.2.1 Cross Referencing 16
3.2.2 Auditing 17
3.2.3 Profiling 17
3.2.4 Complexity Measurement .. 17
3.2.5 Library Management 18
4.0 COMPILE-TIME CAPABILITIES 19
4.1 TEXTUAL 19
4.1.1 Macro Processing 19
4.1.2 Library Management 20
4.2 LEXICAL 21
4.2.1 Lexical Cross Referencing 22
4.2.2 Report Generation 22
4.2.3 Lexical Profiling 22
4.2.4 Lexical Auditing 23
4.2.5 Lexical Complexity Measurement 23
4.3 SYNTACTIC 24
4.3.1 Program Formatting 24
4.3.2 Program Constructing 24
4.3.3 Error Correction 26
4.3.4 Syntactic Profiling 27
4.3.5 Syntactic Auditing 27
4.3.6 Syntactic Complexity Measurement 27
4.4 LANGUAGE-SEMANTIC 28
4.4.1 Semantic Cross Referencing 28
4.4.2 Semantic Profiling 29
4.4.3 Semantic Complexity Measurement 29
4.4.4 Flowchart Generation 29
4.4.5 Interface Analysis 29
4.4.6 Semantic Auditing 31
4.4.7 Range Checking 33
4.4.8 Reference Analysis 34
4.4.9 Program Restructuring 35
4.4.10 Program Structure Checking 36

4.4.11 Type Analysis 36

4.5 PROBLEM-SEMANTIC 37
4.5.1 Units Analysis 38
4.5.2 Assertion Checking 39
4.5.3 Symbolic Execution 39
4.5.4 Test Data Generation 40
4.5.5 Correctness Proving 41
5.0 RUN-TIME CAPABILITIES 43
5.1 CONTROL 43

5.1.1 Symbolic Dynamic Debugging 43
5.2 DATA 44
5.2.1 Symbolic Dynamic Debugging 44
5.2.2 Range Checking 45
5.2.3 Assertion Checking 45
5.2.4 Pointer Checking 45
5.2.5 File Checking 46
5.3 STRUCTURAL TESTING AND PERFORMANCE 47
5.3.1 Statement, Branch, And Path Testing 47
5.3.2 Performance 47
6.0 A HIERARCHY OF TOOL CAPABILITIES 43
6.1 Primary Capabilities 49
6.2 Secondary Capabilities 50
6.3 Tertiary Capabilities 52
7.0 LANGUAGES 54
7.1 FORTRAN 54
7.2 Pascal 57
7.3 COBOL 59
7.4 BASIC 61

PAGE 4

1.0 INTRODUCTION

Software has become the most expensive component of computer
systems. Every phase of the software life cycle is error-prone,
and the investment of time and resources in software projects
consistently has exceeded even pessimistic projections. When
delivered, software systems frequently are unreliable long after
installation and are difficult to use throughout their lifetime.
These facts should not be interpreted as a condemnation of
software developers; instead, they should be interpreted as a

condemnation of the development environments and tools (or lack
thereof) that allow, even encourage, the production of expensive,
poor quality software.

High level language translators are major contributors in
the effort to reduce the costs of software and to improve its
quality and reliability. They relieve the programmer of many
detailed, low level, and machine dependent considerations, making
programming easier and programs more transportable. It is a well
known result of empirical software studies that the number of
debugged lines of code that an experienced programmer can produce
per unit time is comparatively constant, regardless of whether
the programming language used is an assembly or a high level one.
Since the amount of work performed by a given number of high
level language statements is several times larger than that
performed by the same number of assembly language statements,
high level languages are obviously more efficient in terms of
labor time and, as a result, cost.

Different compilers for languages provide various degrees of
assistance and support for their users. All presumably perform
the essential function of translating the source program in a

high level language into an equivalent target program in a low
level language. Compilers with additional capabilities, however,
can make programs easier to develop and debug. For example, a

compiler that summarizes program characteristics or performs
consistency checking can save considerable programming and
debugging time.

In searching for ways of further improving software quality
and lowering costs, researchers in academia, government, and
industry have directed increased attention to the design and use
of compiler-based tools to assist programmers in the generation
of correct, reasonably efficient programs. As a result of this
effort, the crucial role of programming languages and their
compilers in the development of higher quality software is

receiving wider recognition.

's part of a broad effort to improve cost effectiveness in
the selection, acquisition, and use of computer resources, both
in the government and in the private sector, the Institute for
Computer Sciences and Technology of the National Bureau of

PAGE 5

Standards is investigating the feasibility and utility of
incorporating programming support features into production
compilers. This investigation is directed towards establishing
standards for compilers used by agencies of the Federal
Government and concerned private organizations. This report,
intended to guide the development of compiler standards, analyzes
the programming support capabilities that have been or may be
included into compiler systems.

Most of the capabilities discussed are based upon the source
program text or some representation derived from it. However,
some capabilities cannot be exercised until the translated source
program is executed with input data. Capabilities are associated
with the typical phases, described in Section 2, occurring within
modern compilers. This organization is intended to (1) place
them in the context of the normal compiler activities, (2)

suggest likely approaches to their implementation, and (3)

facilitate understanding of their effects. This classification
is not meant to be a hard and fast partitioning, but merely a
useful mechanism within which capabilities can be structured and
described

.

The approach to programming reliability adopted in the past
has often been to offset deficiencies in the programming language
and implementation by developing separate, ad hoc tools, which
perform checking or summarizing activities independently of the
compiler. This approach has several undesirable consequences,
both upon programmers and upon the performance of the computer
system.

First, the program must be submitted to these tools for
analysis either before or after compilation, introducing further
development steps into the programming effort. The difficulty of
managing the software development process unfortunately increases
as the number of tools and steps involved increases. A support
capability is more convenient, and therefore more likely to be
used, if it is an option of compilation rather than a separate
development step.

If support capabilities are contained within the compiler,
any organization acquiring the compiler also acquires the support
capabilities, promoting the transfer of technology among
organizations. In this manner, programming tools become more
widely available while reducing costs, since the expense of the
support capabilities can be distributed among all the users of
the compiler.

Another advantage of including support capabilities in a

compiler is that since the compiler must perform a more in-depth
analysis of the source program than a separate tool does, it has
more information available for analysis and consideration. Also,
the compiler has knowledge of the target language code that it
generates, so that any insertions into the generated code

PAGE 6

required by support capabilities can be advantageously placed.
Having a larger information base upon which to draw, the compiler
has the opportunity to provide support more effectively and
efficiently.

Moreover, the initial processing that these separate tools
must perform often duplicates exactly the processing that the
compiler must perform on the program at some point, introducing
wasteful, redundant processing. If the capabilities are
distributed among separate (and often incompatible or redundant)
tools, significant efficiency is sacrificed, because the tools
must be more general than if they were integrated into a single
software unit. Considerable duplication of effort results when
the program must be processed by the compiler and one or more
tools that augment the compiler.

For example, one of the requirements of almost all tools is
the reading and writing of the source program, a function that
the compiler must also perform. Since input and output place
considerable resource demands on present computer systems, the
duplicated input and output processing results in inefficient
usage of the computer system and, consequently, impairs program
development. Another common activity that is frequently
duplicated by tools and compilers is the recognition of
identifiers, keywords, and operators in the source program. When
a number of separate tools, all developed to provide specialized
capabilities, must be used, the problems become more acute.

If the compiler performs the desired checking and support
activities, the additional overhead, both human and machine,
resulting from the use of separate tools can be eliminated. More
recent languages (such as Pascal, Euclid, and Ada) have been
designed so that their compilers are required to perform many of
the support capabilities that previously have been performed by
separate tools. The drawback of this approach is the additional
complexity introduced into the compiler. The expense of the
additional compiler complexity may be expected to be less than
the costs of using and maintaining a host of separate tools,
depending, of course, on the selection of a compatible, cohesive
set of support capabilities to be included in the compiler.
(Section 3 presents some guidelines for selecting such a set by
means of a classification scheme.) Added compiler complexity is

certainly less expensive in the long term than developing
unreliable, error-prone software.

Chapter 1 presented background information on this report
and provided reasons for including programming support
capabilities in high level “language compilers. Chapter 2

presents an overview of the organization of typical modern
compilers and discusses the expanded viewpoint adopted in this
report regarding compiler capabilities. Chapter 3 discusses the
two classes of compiler-based capabilities: compile-time and
run-time. Also, it presents an initial discussion of compiler

PAGE 7

capabilities that do not conveniently fall within one of the
compiler phases outlined in Chapter 2. Chapter 4 discusses
compile-time capabilities, organized according to the compiler
boundaries outlined in Chapter 2. Chapter 5 discusses run-time
capabilities, organized according to three categories: (1)

capabilities dealing with control characteristics of the
executing program, (2) those dealing with data aspects, and (3)

those dealing with performance aspects. Chapter 6 ranks
capabilities into one of three classes: (1) primary, (2)

secondary, and (3) tertiary, according to their relative costs
and benefits. Chapter 7 discusses some language characteristics
and deficiencies of FORTRAN, Pascal, COBOL, and BASIC and
suggests compiler capabilities that could be deployed to improve
programming productivity in these languages.

FAGS 8

2.0 COMPILATION ISSUES

The discussion of the compiler-based capabilities presumes a

degree of familiarity with the organization and structure of
typical compilers. This section presents an overview of the
compilation process to establish the required terminology and
points of reference for later discussion*

Also presented in this section is an expanded view of the
role of a compiler in program development. This discussion
provides a rationale for the inclusion of some capabilities into
a compiler system that are usually thought to be beyond the realm
of compiler implementations.

2.1 COMPILATION OVERVIEW

The control and data abstractions provided by high level
languages are closer approximations than those of the low level
machine to the way that people think about computations. Since
few hardware machines can execute high level language programs
directly , a translator is necessary to transform the source
program into a language that a processor can execute.
Translators may be broadly divided into two classes; compilers
and interpreters. Compilers accept the source language program
as input and produce an equivalent target language program as
output. The target language program must then be executed in a
separate operation. Interpreters also accept the source language
program as input, but instead of producing an equivalent target
language program as output, they execute each high level language
statement as the statements are encountered. No equivalent
target language program is produced. Although interpreters have
important areas of application, compilers are more common and
usually more efficient. This paper emphasizes the support
capabilities that can be provided by compilers, although many of
the capabilities are applicable to interpreters as well.

A compiler must have a number of basic capabilities to
translate source language programs correctly. Broadly, these
capabilities are lexical / syntactic , and semantic analysis, and
code generation. Each of these capabilities is the basis of a

distinguishable phase of modern compilers. Another capability,
run-time support, is necessary to execute compiled programs
correctly. The run-time support routines are closely
interdependent with the compiler, although strictly speaking,
they are not part of the compilation process. These activities
are mentioned only briefly below to present common terminology
and to provide context for the main subject at hand,
compiler-based support tools.

PAGE 9

II II

SOURCE ---->" LEXICAL "

—

->" PARSER — >" SEMANTIC
PROGRAM " ANALYZER " II II II ANALYZER

II II II II II

II •1 II II II II II II II II

* SYMBOL *

* TABLE *

INTERMEDIATE
LANGUAGE

II II II II II II II II II II II II II

" CODE "

" OPTIMIZER "

ii ii

ii ii ii ii ii ii ii ii ii ii ii ii ii

ii ii ii ii ii ii ii ii ii ii ii ii ii ii

" CODE "

" GENERATOR "

ii ii

ii ii it ii ii ii ii ii ii ii ii ii ii ii

kJc'k-k'k'k'k'k'k

* FLOW *

* GRAPH *

Y
TARGET
LANGUAGE

Figure 1. Organization of a typical compiler

Figure 1 presents a diagram of the organization of a typical
compiler. Quotes (") enclose compiler phases and asterisks (*)

enclose compiler data structures. The dashed lines in the Figure
represent the pathways by which the source language program is
transformed into the target language program, via the activity of
compiler phases. The dotted lines indicate flow of information
between phases of the compiler and principal compiler data
structures

.

A source program is a character string. A compiler must be
able to recognize the primitive language units, or tokens , formed
oy this character string. A token is the basic element of a
program, such as a numeric constant, an identifier, a literal
character string, a reserved word, an operator, or a punctuation
mark. The lexical analyzer partitions the source character

PAGE 10

string into language tokens, passing them sequentially to another
compiler phase. Locating and diagnosing any lexical errors is
inherent in lexical analysis. The program segment that performs
lexical analysis is usually called the scanner .

The acceptable forms for object declarations and executable
statements of a language are given by its syntax rules, usually
specified by a context free grammar. A context free grammar is a

formal set of rules that precisely specify the acceptable syntax
for programs and, as a result, simplify compiler construction.
Syntax analysis, or parsing, is the verification that the token
sequence received from the scanner is consistent with these
rules. Because parsing is the controlling phase of most
compilers, syntax errors can pose difficulties during
compilation. Often they result in the activation of seme
recovery procedure within the compiler so that the remainder of
the source program can be processed. It is important that the
translator be able to identify and accurately diagnose as many
errors as possible during a single compilation to conserve user
and machine time.

Syntax analysis typically directs another important activity
of compilation: semantic analysis. The semantic analyzer
verifies that the source program is correctly formed according to
context sensitive, semantic rules of the language. Such rules
govern, for example, the allowable uses of data objects and
operators, the visibility or scope of identifiers, and permitted
patterns of control flow. Any violations should be clearly
diagnosed. The output of this phase of the compiler is commonly
an intermediate language , which is a representation of the'

program that is closer to the target language (i.e., it is more
primitive) than is the source program, but does not specify the
detailed machine operations of the target language.

The scanner, parser, and semantic analyzer are target
machine independent, i.e., they are concerned only with the

correctness of the source program according to the language
rules. Conceptually, these phases depend upon the
characteristics of the source and intermediate languages, not
upon the characteristics of the target language, although some
implementations introduce target machine dependencies, in an
attempt to improve the generated code. Frequently, one or more
optional optimization phases follow semantic analysis, with the
goal of improving the storage utilization and execution speed of
the generated output from previous passes. Optimization phases
can usually be divided into those that are target machine
independent and those that are target machine dependent. The
final phase of compilation is target language code generation .

After code generation, the compiler is no longer directly
involved in the development process; its influence is now
embedded within the translated program. The final optimization
phases and code generation are concerned with the details of the
representation of the program and data in the target language.

PAGE li

Conceptually, these latter phases are source language
independent, concerned only with the characteristics of the
intermediate and target languages.

Several internal compiler data structures play central roles
during compilation. The symbo l table is the data structure that
holds all information about the”attributes of identifiers in the
source program. An entry is made in the symbol table for each
variable, type, procedure or function identifier encountered in
the program during scanning and parsing. The symbol table entry
for an identifier includes the name and a type description,
containing information such as value constraints, bounds (if the
identifier is an array), fields (if a record), and number and
types of parameters (if a procedure or function). Routines in
the various phases of the compiler consult the appropriate symbol
table entry when they need to acquire information about an
identifier

.

If certain kinds of target language code optimizations are
performed, the compiler often builds during compilation an
abstract representation of the control flow of the source
program. This abstract representation is called a control flow
graph . A graph is a data structure consisting, in graph
terminology, of nodes (or records) connected by arcs (or links)
between the nodes. A node represents a statement or a block of
statements. An arc connects two nodes and represents an
execution pathway between the nodes. The arcs of the graph are
directed , i.e., pathways are traversable in one direction only
(corresponding to the fact that execution proceeds in one
direction only). The compiler may, however, maintain backward
links between nodes for convenient insertion and deletion of
nodes

.

The control flow graph encodes information about statements
such as the number and locations of the predecessors and
successors of each statement. Also, any information known about
the values that program variables will have at a given point when
the program executes can be attached to appropriate nodes of the
graph. The analysis during compilation of values that variables
will assume at given points when the program is executed is
sometimes called data, flow analysis . Both the symbol table and
the control flow graph can be used by the compiler to provide
programming support functions, as discussed in section 3.

The run-time support environment is closely related to the
compiler. Run-time support consists of those activities that
have been deferred, for reasons of feasibility or convenience,
until the compiled program is executed. The run-time support
needed varies with the language definition, but typically
includes at a minimum procedures for input and output, and
mathematical computations, such as trigonometric and exponential
functions. Block structured languages and those with dynamically
allocatable variables commonly require additional run-time

PAGE 12

support. The compiler and its run-time support are closely
interrelated, as the preparations for invocation of run-time
functions must be done by the compiler. The distinction between
compile-time and run-time activities becomes unclear when
considering interpreters, which have the capability to execute
the source program rather than generating an equivalent target
language program.

A compiler is more helpful if it detects errors at
compile- time , when the source program is translated, rather than
delaying error discovery until run-time , when the translated
program is executed. Compile-time error detection saves wasted
development steps on programs containing errors, conserving both
user and machine time. Also, in many situations, a compiler can
provide informative error diagnostics that would be more
difficult to provide at run-time. If run-time error detection is
unavoidable, an informative diagnostic should be issued by the
run-time language environment, instead of relying on the system
or hardware environment to handle the error.

2.2 AN EXPANDED VIEW OF COMPILER CAPABILITIES

Many suitable support capabilities discussed in following
sections of this paper have traditionally been neglected in
compiler implementations. One reason for the lack of support
capabilities in most compilers is the influence of past hardware
restrictions. Because of high hardware costs, compilers were
designed to use the least possible amount of memory and CPU time.
Hardware is now cheap enough and fast enough to support more
comprehensive compiler capabilities.

Another factor influencing the lack of adequate programming
support in many compilers is the youth of the computing
discipline itself. Only recently have advances in programming
methodology led to a clearer understanding of the kinds of
capabilities that promote development of reliable, correct
software. The techniques of current programming methodologies,
usually collected under the term structured programming, are
successful means of controlling the complexity of software and of
promoting its reliability and maintainability. They include (1)

top-down design, the development of programs by proceeding from
the higher, more general levels of abstraction to the lower, more
detailed levels, (2) information hiding, the shielding of data
from routines that have no need to access it, and (3) data
abstraction, the definition of data in terms of operations upon
it, rather than in terms of representations of it.

The success in deploying these methods depends to a large
extent upon adequate checking, enforcement, and support from the
programming language and the surrounding programming environment.

PAGE 13

Recent languages, such as Pascal and its descendants, provide
language constructs supporting these methods. Moreover, these
languages have been designed so that the programmer can make more
information available to the compiler about the program and the
problem it is intended to solve. Using this information provided
by the programmer, the compiler can check the program for
consistency and correctness.

But more comprehensive capabilities are needed to meet the
demands of production programming environments. The capabilities
offered by most current compilers have a lifetime of a single
compilation. That is, the capabilities are stand-alone,
depending upon no information other than that gathered during the
present compilation. Little information (other than the target
language program and the listing file) is maintained about a

program after the compiler executes. The restriction to local,
temporary information limits the kinds of capabilities that a

compiler can provide.

For example, the ability to separately compile a program
unit requires that the interfaces to other routines be checked
for consistency of the number, types and modes of shared
variables. This information is not available if the compiler
relies solely on information gathered during the present
compilation. Compilers that do provide separate compilation
usually rely on the facilities of the underlying operating system
environment, which are rarely simple or adequate. The central
problem with relying on facilities provided by the system
environment is that this environment is usually ill-suited for
the compiler's purposes or needs.

The point of view taken in this paper is that the
translation of high level language programs is but one capability
of a broader language environment. The language environment is
an integrated set of development tools that promote the
construction of well-structured, reliable software in a

particular programming language. Compilation is the central
capability of such a language system; other capabilities of the
language environment make the tasks of designing, coding,
debugging, and maintenance easier. Thus, it is appropriate to
consider the capabilities of the language environment to be
compiler-based, although some of the capabilities are not
completely embedded in the compiler, but depend upon or are part
of the compiler's environment.

A compiler developed with programming support as a guiding
goal cannot be separated from its surrounding language
environment, which is designed specifically to interface simply
with the compiler and to provide the kinds of functions necessary
for the enhanced support capabilities of the compiler. The
surrounding environment must be built upon the (often inadequate)
facilities provided by the underlying system, but above this
system interface the environment provides a set of functions

PAGE 14

tailored to the requirements of the compiler's support
capabilities. In addition to enabling capabilities that are not
possible otherwise, including extensive support capabilities in
the compiler reduces redundant processing and eliminates the need
for a host of separate tools. This somewhat expanded usage of
the term compiler includes some capabilities that are usually
considered not to be compiler issues.

Some examples of capabilities usually not associated with a

compiler are program construction, library management and
symbolic debugging (see section 3 for a fuller discussion of each
of these capabilities) . A program constructor is an editor for a
specific language, which allows construction only of
syntactically correct programs. Library management is the
maintenance of the information associated with a project in an
integrated, automated manner. Symbolic debugging is the
capability to interactively debug a running program in terms of
source program constructs, such as symbolic names for variables
and line numbers for control structures, rather than in terms of
the machine language. These functions usually are not considered
to be within the sphere of activity of the compiler and typically
have been approximated in the past by some combination of manual
procedures and ad hoc tools, or have been completely unavailable.
According to the discussion of compiler systems given above,
these capabilities are legitimate compiler concerns.

D ace 15

3.0 COMPILER CAPABILITIES

This section discusses the two major classes of
capabilities, compile-time and run-time. Following the
discussion of the two classes is an overview of capabilities that
overlap the normal compiler phases. Several capabilities may be
placed in more than one phase of the compiler, depending on the
specific information that the capability is to provide. Often,
for example, more than one phase makes contributions to summary
information or measurements. The capabilities that are not
necessarily local to a particular phase include cross
referencing, auditing, profiling, complexity measurement, and
library management. The general features of these capabilities
will be discussed below in this section; the specific
contributions made to these capabilities by the various compiler
phases will be noted under the appropriate sections on the
compiler phases.

3.1 TWO CLASSES OF CAPABILITIES

There are two major categories of capabilities:
compile-time and run-time. These are discussed in Chapters 4 and
5 respectively. Compile-time capabilities are input data
independent, i.e., they are based on an analysis of the source
program text alone, without consideration of the actual input
data that the program will process. At compile-time the input
data is not available, which is both a limitation and strength of
compile-time capabilities. The limitation is that the behavior
of the program when run with particular input data on an actual
machine, in general, cannot be determined. The strength is that
information determinable from a compile-time analysis of the
program is true regardless of the input data the program may be
given to process on a particular execution. Thus, compile-time
analysis is perforce incomplete, but the information that it does
provide is invariant, holding for all executions of the program.

Run-time capabilities are input data dependent, i.e., they
involve analysis of the program as it is running with a

particular set of input data on an actual machine. Run-time
analysis provides information about the characteristics of a

program given a particular set of input data. This information,
in general, will not be true of the program when executed with a
different set of input data.

The use of the term run-time capability may seem somewhat
unusual when applied to a compiler, as compilers are often
regarded as having no direct role during execution. However, the
compiler is involved in preparing information for use by run-time
routines. Many support capabilities may be considered extensions

PAGE 16

or enhancements of the run-time environment. Just as the
compiler must provide for invocation of run-time functions such
as dynamic storage allocation, it can also provide for enhanced
diagnostic and measurement functions. For example, in a compiler
system that provides a symbolic dynamic debugger, one of the
activities the compiler must perform is the preparation of symbol
table entries in a format shared between the compiler and the
run-time debugging environment. Although the compiler Itself is
not part of the run-time environment, symbolic dynamic debugging
is not possible without the preparations made earlier by the
compiler

.

3.2 CAPABILITIES OVERLAPPING COMPILER PHASES

Information from several phases of the compiler is sometimes
involved in providing a capability. Therefore, the capability
cannot be implemented within a single phase of the compiler and
must be spread among phases. A similar difficulty in localizing
a capability to a single compiler phase results when a single
capability name is applied to quite varied compiler activities.
The compiler activities are similar in an abstract sense, but the
detailed processing differs, depending on the focus of the
capability. For example, the activities involved in developing a

program profile vary with the kind of information that is to be
included (possibly involving more than one compiler phase) . The
common features of some phase-overlapping capabilities, such as
cross referencing, auditing, profiling, complexity measurement,
and library management, are discussed in this section. The
specific contributions of the particular compiler phases to these
capabilities will be discussed under the appropriate subsection
in the discussion of compile-time capabilities in section 4.

3.2.1 Cross Referencing

A cross reference is a list or summary of information about
program elements, usually identifiers. A cross reference often
summarizes information from lexical, syntactic, and semantic
phases, organizing it according to source program features, such
as routine name and source line number. The information deemed
useful can be expected to vary somewhat with the characteristics
of the source language. The cross reference should permit easy
location of items of interest, helping indicate points in a

program likely to be affected by proposed changes. The
capability should support on-line retrieval of the cross
reference information, possibly maintained by a library manager
(see Sections 3.2.5 and 4.1.2).

PAGE 17

3.2.2

Auditing

Program auditing is a general term for the examining of the
source program for violations of standards, either language
standards established by a standardizing agency or programming
standards promoted by an organization. Language standards
enhance the transportability of source programs by reducing the
probability of incompabilities and unexpected errors when
programs are moved from one installation to another. Programming
standards are intended to promote the use of reliable, clear
programming practices. Certain programming practices and
constructs allowed by languages have been observed to account for
a disproportionate number of errors. Further, the definition of
some language constructs may be sketchy or incomplete, making the
behavior of a program using them implementation dependent and
thus not transportable. To avoid these problems, some
organizations impose software standards, which prescribe the
kinds of language and programming structures that may be used.
These standards may pertain to lexical, syntactic, or semantic
conventions. A compiler can monitor the source program for
compliance to these standards, identifying and diagnosing any
violations. Even in the absence of explicit standards, the
translator may examine the source program for constructs which
are suspicious, potentially dangerous or not transportable.

3.2.3

Profiling

Profiling is the collection of summary information, or the
computation of statistics, about source program characteristics.
A number of lexical, syntactic, and semantic features are readily
summarized by a compiler. Profiles can be inspected manually or
automatically for interesting or unexpected properties. Also,
they can be used in empirical studies of language or software
character ist ics

.

3.2.4

Complexity Measurement

Insofar as the application permits, complexity should be

minimized in software systems. Complex programs or subprograms
are more difficult to develop, test, and maintain; they are more
likely to contain errors and more likely to conceal errors than
simpler programs. A compiler can help identify complex
subprograms by computing a metric which indicates relative
complexity. The computed value may be used to assess software
quality or to suggest program sections that should be redesigned
or tested most extensively. Complexity metrics may include
information from several program characteristics, based upon
information gathered during more than one compiler phase.

PAGE 18

3.2.5 Library Management

Library management is a term used to denote a wide
collection of capabilities, spanning the typical phases of
compilation. Some of these capabilities are textual, i.e., they
simply manipulate collections of characters, without regard for
any meanings the text might have when interpreted by other
capabilities of the library management facility. Examples of
textual capabilities that could be included in a library
management facility are file comparisons, general text editing,
and string searching. Other capabilities of the library facility
are concerned with translation of library modules and the
management of information related to translation. These
capabilities are concerned with information that is meaningful in
a particular language and directly support particular phases of
the translator. Such capabilities include the expansion of
shared modules in those routines that access the shared data,
provision of global (inter-module) external cross references, and
the maintenance of interface information so that programs may be
compiled as multiple compilation units.

PAGE 19

4.0

COMPILE-TIME CAPABILITIES

A compile-time capability is applicable to a program source
in the absence of input specification. Such capabilities have
often been called static or input data independent, although the
distinction between static and dynamic, input data independent
and input data dependent functions can be unclear, as in the case
of interpreters or symbolic executors.

This chapter discusses the tool capabilities that would fit
most naturally into the common compiler phases. To conveniently
accomodate some of the support functions, two compiler "phases"
are added to those mentioned in Chapter 2. A textual and a

problem-semantic phase are added to the lexical, syntactic, and
semantic (here distinguished as language-semantic) phases. The
new phases are added to emphasize the nature of the capabilities
included within them, although they probably will not be as
distinct within the compiler as are the lexical, syntactic, and
semantic phases. A textual capability such as macro processing
may be a subphase of lexical analysis, whereas one such as
library management may more accurately be considered as part of
the compiler's global environment. Problem-semantic capabilities
are probably most conveniently implemented as subfunctions of
semantic analysis.

In the discussion, the phases are ordered in the sequence of
increasing information and knowledge of the compiler about the
meaning of the source program. Capabilities are described within
this sequence both to take advantage of the existing framework
and terminology in describing their effects and to emphasize
where in the compiler structure the tools may be implemented.

4 .

1

TEXTUAL

A textual capability views the program source strictly as a

sequence of characters or text, not as a program. Such
capabilities include file comparisons, text editing, and string
searching. Note that capabilities concerned with
language-oriented strings belong elsewhere in this
classification

.

4.1.1

Macro Processing

Macros consist of an identifier, called the macro name, and
a character string, called the macro definition. The occurrence
of the macro name in the source text is macro invocation and
results in macro expansion, the replacement of the name by its

PAGE 20

definition. The definition becomes part of the source text, as
if it had been entered originally instead of the name. Macros
may be considered a short-hand or symbolic notation for a
character string.

Macros can simplify and automate many of the tedious and
error-prone activities of program development. Frequently, a
part of the program text will be repeated in many places
throughout the program. Using a macro processing capability, a
name may be assigned to this text string and the name used
wherever the text is desired. Macro calls ensure that the same
text is substituted in all cases, eliminating possibilities of
typing mistakes and other inconsistencies. They can be used to
define symbolic constants, improve readability and make
modifications easier.

A macro expansion capability provided by a compiler can be
specialized or general. A specialized capability, which is
simpler to implement, can perform only simple text substitution.
Such a capability is useful to define symbolic constants in
languages that do not provide for them or to define abbreviations
for lengthy, often-used program text (e.g., FORTRAN common block
specifications) . A general, and more difficult to implement,
macro capability provides more powerful facilities for text
manipulation, including optional parameters, multiple levels of
expansion, special counter and string variables for use in macro
definitions, and operators for the special variables.

4.1.2 Library Management

Large software projects present major information management
difficulties. Generally, several programmers cooperate on the
development of large systems, requiring both the sharing of
interface data and the hiding of implementation details. Current
programming methodologies promote the development of many small
routines in implementing large systems, requiring capabilities
for separate compilation and system generation. Families of
related system versions often tend to develop, requiring that
distinct versions be kept separate while minimizing the amount of
redundant information retained.

These requirements are usually met by conventions that are
largely or completely manual. Many of these capabilities can be
automated, however, as part of a language-based library
management system. Translation is one capability of such a high
level language system, which also provides integrated facilities
for separate compilation with interface checking, system
generation, documentation maintenance and generation, access
control, and minimal encodings of different system versions.
Data objects that are part of a development project are
maintained on a data base managed by the library facility. Such

PAGE 21

objects may include source programs, target language programs,
symbol tables, linkage information, documentation information,
and system generation information. An integrated language system
can simplify considerably programming and project management.

Library management is an important example of the expanded
view, discussed in section 2.2, of the role of compiler systems
in program development. The inclusion of a library management
system into a compiler system is an attempt to automate some of
the broader, more global activities involved in programming which
have in the past been performed by manual practices or ad hoc
tools

.

The success in managing a large software project in the
absence of integrated, automated systems usually depends upon
management skills and the capabilities that happen to be provided
by the system environment. A compiler system that incorporates
library management facilities provides important features of its
own environment, with minimal reliance on the capabilities of the
underlying system. The components of the compiler system (one of
which is the compiler itself) share uniform and simple
representations of data objects (including source programs,
intermediate language programs, and symbol tables) and observe
standard, high level methods of accessing data objects. Closer
control can be established over access to data objects, without
being restricted to the methods provided by the host system.

Since the tendency is to view the library management
facility as containing the compiler rather than the compiler
containing the library management facility, it may seem more
appropriate to consider compilation a library management-based
capability. This view, however, does not emphasize that the
library management capability is organized for the needs of the
compiler. Library management fits as a compiler-based capability
under the expanded view of compiler systems presented in Section
2 . 2 .

Obviously, a library management facility supports many
capabilities that are not textual, as discussed in Section 3.2.
It has been included as a textual capability because the
predominate flavor of its activities is textual.

4.2 LEXICAL

A lexical capability is based upon tokens, the primitive
characters and character strings that are meaningful in a

language. Thus, the data generated by a lexical capability are
about identifiers, keywords, constants, operators and
punctuation. Lexical capabilities are usually embedded in the
scanner of the compiler.

PAGE 22

4.2.1

Lexical Cross Referencing

A cross reference is a listing of occurrences of program
elements, usually identifiers, organized in terms of some other
feature of the program, such as the line numbers or modules in
which those elements appear. The information contributed to a
cross reference by the lexical analysis phase includes the names
of all identifiers, constants, and operators encountered in the
program, as well as the source program line numbers in which
lexical items appear. Typically, the lexical analysis phase
either enters this information into appropriate symbol,, constant,
and operator tables or passes the information to the parser for
the parser to enter the information. In either case, it is a
simple matter for the compiler to reproduce this information in a

cross reference listing.

A cross reference should permit easy location of all lines,
modules, or data areas in which an item of interest appears.
This information may be used, for example, to trace identifier
activity manually or to locate points in a program likely to be
affected by proposed changes.

4.2.2

Report Generation

Generation and maintenance of documentation is a major
aspect of software development. A translator can assist by
providing the capability to extract comments selectively from
source code. The extracted internal comments may then be used as
the basis for external documentation or, if sufficiently
complete, may be used without elaboration or modification. Such
a capability can eliminate redundant effort and help maintain
consistency between internal and external documentation.

A documentation extraction capability is simple to implement
in a compiler, provided that documentation to be extracted is
distinguishable from strictly internal comments, for example, by
preceding comments intended for external documentation with a

keyword. The scanner, upon recognizing the external
documentation keyword in a comment, writes the remainder of the
comment to a documentation file.

4.2.3

Lexical Profiling

A profile is a collection of summaries or statistics about
source program characteristics. A number of lexical
characteristics are readily summarized by a compiler. For
example, the distribution of lexical items may be produced,
giving a listing and count of each operator, operand, keyword, or
other element in the program. A lexical profile can be used as a

PAGE 23

rough indication of the structure of a program, or it may be used
in studies of software characteristics. A profile is easily
implemented in a compiler by introducing counter variables or
arrays for the characteristics to be profiled.

4.2.4 Lexical Auditing

Lexical auditing is a general term for the monitoring of a

source program to detect lexical tokens that are, for some
reason, unsafe or unwise. Some lexical elements, though not
improperly formed according to lexical rules, can hinder
transportability. For example, allowable numeric constants on
one machine may exceed the precision of another machine. Other
correct, though inadvisable, lexical constructs can impair
readability. Examples of unwise lexical elements are FORTRAN
identifiers and keywords that contain embedded insignificant
blanks, making statements more difficult to read and understand.
Also, some implementations of languages relax certain lexical
restrictions, allowing, for example, increased identifier lengths
and inclusion of special separator characters in identifiers. A

compiler performing lexical auditing can detect standards
violations and suspicious lexical constructs.

Other standards may govern documentation conventions within
an organization. Documentation standards dictate the amount and
placement of comment statements in the source program. For
example, it may be required that procedure headings be followed
by a comment preamble, explaining the actions of the procedure.
The lexical phase, armed with information from the parser
indicating that a procedure has been entered, can check for
compliance with this standard.

Lexical auditing is, in general, simple for the compiler to
perform. It usually involves restricting somewhat the class of
lexical tokens that the scanner recognizes as acceptable, and
thus introduces no new major data structures or operations.

4.2.5 Lexical Complexity Measurement

A simple complexity measure may be derived from lexical
information alone. Some function of lexical characteristics may
be developed, empirically or theoretically, for a given language
to indicate the lexical complexity of a program in that language
(Halstead, 1977)

.

The scanner maintains a set of variables
representing the lexical characteristics of interest, such as the
number of operators, operands, and other tokens in the program.
When lexical analysis is complete, the compiler computes the
lexical complexity by inserting these variables into a predefined
complexity function for the language. Although simple to

PAGE 24

compute, the lexical complexity measure may not closely
correspond to intuitive notions of program complexity and, in
such cases, it may be desirable to combine lexical information
with syntactic and semantic characteristics to form a set of
complexity measures.

4.3 SYNTACTIC

A SYNTACTIC capability is concerned with all characteristics
of the program that are associated with parsing. This area has
been very well studied over the years and therefore has many
tools to support it.

4.3.1 Program Formatting

One of the clearest ways to convey a program's structure is
by means of statement indentation. If a program is properly
indented, a reader can grasp at a glance the statements which are
subordinate to and controlled by other statements. Conversely,
inappropriate indentation can mislead a reader, suggesting
nonexistent relations among statements.

Proper statement indentation, called program formatting or
pretty-printing, can be done by the language translator. As
compilation progresses, the compiler computes and maintains
information about the proper layout of the source text,
formatting the listing accordingly. In addition to formatting
the listing, the compiler may have the capability to rewrite the
source file appropriately indented. Program formatting is
applicable particularly to block structured languages, but is

useful in any language if programming or structuring conventions
have been established.

4.3.2 Program Constructing

The translator organization described in Section 2.1 may be

termed an analytic approach. The input representation of the
source program is a character string that must be analyzed for
lexical and syntactic correctness. Typically, an editor that
operates on character strings is used to create the program. The
editor is unaware of the intended use of the character string as
a source program and, thus, makes no distinction between legal
and illegal character strings in a given language. A significant
portion of the translators efforts, therefore, must be devoted
to verifying the correctness of these strings.

PAGE 25

It is not obvious that character strings are the best
program representation to be shared between the creation and
translation phases of program development. An alternative
approach is to employ an editor which is designed specifically
for program development in a particular language and produces as
output not a character string that needs to be analyzed, but an
intermediate language suitable for immediate translation. Such
an editor, called a syntax-directed editor, or program
constructor (Huet, et. al., 1977, Teitelbaum, 1979, Habermann,
1980) , operates upon syntactic constructs rather than upon lines
and characters. Language keywords and syntactic forms are not
typed by the user; instead, they are inserted by the program
constructor in response to user commands. A command is provided
for each syntactic construct in the language. Typing a

constructor command places a template for the corresponding
syntactic primitive at the current editing position, which may
then be expanded and elaborated by the user.

To illustrate, instead of typing the characters for an
IF-THEN-ELSE statement, a user types a constructor command, for
example .IE, which places the tokens comprising the statement,
appropriately formatted, at the current editing position. That
is, the .IE command displays the text

if <condition> then
<st=»tement>

~lse
<statement>

at the current editing position, if syntactically correct at this
point. Nonterminals , the symbols enclosed in < . . . > above, for
the conditional expression and statement that constitute the IF
statement are displayed, pending specification by the user. A
nonterminal is a symbol that is not part of a legal program, but
rather represents or stands for a class of language constructs,
which may be substituted in the place of the nonterminal.
Eventually, all nonterminals must be replaced by identifiers and
operators before the program is submitted to a translator.

A number of advantages result from use of a program
constructor. Most important, the constructor is responsible for
insertion of syntactic items, not the programmer. Thus, it is
unnecessary to parse programs, and problems of misspelled or
mismatched keywords and incorrect punctuation are eliminated. It
is impossible to make syntax errors.

Moreover, the constructor may be expected to operate upon
some intermediate representation of the program, such as an
abstract syntax tree, instead of character strings. Using an
intermediate form, the editor is not burdened with unnecessary
string manipulation. This intermediate representation can be
used directly as input to a translator to produce target language
instructions. Thus, the translator can be much simpler than

PAGE 26

typical compilers (at the expense, of course, of the more
sophisticated editor) , as its input is an intermediate form that
need not be parsed. A separate pretty printer is not needed, as
the constructor can produce indented, structured text
representations of the program.

4.3.3 Error Correction

When using many compilers, fatal compilation errors often
result from trivial syntactic errors in the source program. It
is not uncommon for a compiler to issue a fatal diagnostic such
as "semi-colon expected" as a result of a minor oversight by the
programmer. It is not unreasonable to ask that the compiler
assume the expected semi-colon, if one is necessary at a point
during compilation.

Rather than simply issuing a diagnostic when errors are
encountered during compilation, it is possible for the compiler
to attempt a correction. The correction is a guess, possibly
based upon some heuristic or cost function, about what the
programmer intended. The correction usually involves ^.inserting
and deleting lexical tokens until a syntact ically-cor rect program
results. In addition to generating target language according to
the attempted corrections, the compiler writes a new, modified
version of the source program, containing the annotated
corrections

.

For example, in a language that separates or terminates
statements with semi-colons, errors of omission or commission
involving semi-colons have a high probability. An appropriate
heuristic or cost function for such a language makes insertion
and deletion of semi-colons high-probability corrections. Most
correction schemes attempt to retain as much of the original
source text as possible, so the compiler usually emphasizes
generating tokens to insert into the program.

Clearly, some errors will be too severe for the corrected
program to be useful, but if the correction scheme is well suited
to the language, many errors can be accurately corrected. Some
ad hoc and formal (Fischer, et. al., 1977) correction
techniques, most based upon parsing, have been developed that
result in appropriate corrections for many kinds of errors.
Error correction performed by the compiler is not a substitute
for clear and careful programming, but it can reduce the number
of compilations needed during software production and debugging.

PAGE 27

4.3.4

Syntactic Profiling

A syntactic profile of the source program may be produced by
the compiler. Such a profile may include a count of each kind of
statement, the nesting level of compound statements, and the
depth of loop nestings. This information is easily gathered by
the compiler during parsing by maintaining counters of statement
types and nesting levels. Such a profile can be useful to convey
rough estimates of program complexity and performance, and may be
useful in empirical studies of the characteristics of programs in
an organization.4.3.5

Syntactic Auditing

Syntactic auditing by a compiler can detect syntactic
constructs that violate software standards that have been
established by an organization. Standards may govern syntactic
characteristics such as (1) the nesting depth of loop statements,
important in time-critical applications in which deeply nested
statements can cost considerable execution time, (2) the number
of source module statements, important to the efficiency of a
virtual memory paging system and to software simplicity and
maintainability, and (3) the permitted types of control flow
statements, also important to simplicity and maintainability.
For example, a software project may restrict the nesting of loops
to three levels to prevent excessive execution time being spent
in highly nested code. Also, time-critical applications may
restrict the size of target language modules to some small number
of virtual memory pages to reduce paging overhead. To enhance
under standability , an organization may restrict or forbid the use
of GOTO statements or alternate returns from subprograms. As
with lexical auditing, checking these program characteristics in
a compiler is inexpensive, usually involving restricting the
class of syntactic constructions that are acceptable. Counter
variables and modified syntax rules suffice to implement most
syntactic auditing capabilities.

4.3.6

Syntactic Complexity Measurement

Syntactic information may be used in deriving complexity
metrics. The kinds of syntactic information that can be used as
variables in a complexity measure include the number of syntactic
constructs, the types of syntactic constructs, the nesting depth
of statements, the number of predicates, and the number of
operands in expressions. Some function of these factors can be
derived for a given language to characterize the syntactic
complexity of a program.

One possible measure to characterize control flow complexity

PAGE 28

is based upon the cyclomatic number of a graph (McCabe, 1976).
The cyclomatic measure is a simple function involving the number
of nodes and arcs in the program control flow graph and
correlates closely with intuitive understandings of control flow
complexity. Although it is necessary actually to construct
during semantic analysis the control flow graph for programs
using unrestricted transfers of control (see Section 4.4.3), the
cyclomatic complexity measure for a structured program, i.e., a

program using only single-entry, single-exit control structures,
such as WHILE, REPEAT, and IF-THEN-ELSE statements, is computable
from syntax information alone. It is simply the number of
conditions, or primitive predicates, in the program plus one.
The compiler can maintain a count of conditions during parsing,
and if the program uses only structured statements, the compiler
easily can compute the cyclomatic complexity measure. If the
program is not well-structured, syntactic information alone is
insufficient to compute the cyclomatic number, and the control
flow graph must be constructed (see Section 4.4.3 on semantic
complexity measurement below)

.

4 . 4 LANGUAGE-SEMANTIC

A LANGUAGE-SEMANTIC capability is concerned with how the
language constructs are mapped into their meanings. The domain
of these tools covers the context-sensitive characteristics of
the language. Capabilities falling into this category analyze a

program with regard only to language semantics, without
consideration for the problem the program is intended to solve.

4.4.1 Semantic Cross Referencing

The semantic phase of compilation can add helpful
information to a cross reference listing. This phase can list
important attributes of identifiers, such as their types, storage
allocation, bounds, initial values, and value constraints. Other
important information that can be produced in a cross reference
with contributions from the semantic phase includes a list of
statements that reference a variable, a list of statements that
modify a variable, and a list of variables that are external to a

module

.

A compiler can provide summary information about procedure
and function calls. A helpful representation of program
structure is a procedure call hierarchy. The procedure calling
pattern may be represented as a tree, a node representing a

procedure, and its children representing the procedures it calls.
A compiler can produce some printable representation of the tree
of procedure calls in a program as part of a cross reference

PAGE 29

capability.

A cross referencing capability in a compiler is simple and
inexpensive to implement. Since the compiler necessarily has all
the information about identifiers available in the symbol table,
the only additional effort required to provide a cross reference
listing is formatting and printing this information.
4.4.2

Semantic Profiling

A program profile can be more revealing if it contains
information about the semantic characteristics of the source
program. The semantic phase of a compiler can contribute such
information as the number of intrinsic and user-defined types in
the source program, the number of each parameter passing mode
used in the program, and the number of type coercions performed.
As with lexical and syntactic profiling, a semantic profile is
easily implemented by counter variables within the compiler.

4.4.3

Semantic Complexity Measurement

Complexity measures can be derived during semantic analysis
that are more sophisticated than those based solely on lexical
and syntactic information. The cyclomatic number of a graph (see
Section 4.3.6) is a useful measure of program complexity.
Although syntactic information is sufficient to compute the
cyclomatic number for a structured program, a program using
unstructured control flow requires information from the semantic
phase of compilation. To compute the cyclomatic number of an
unstructured program, the compiler can construct a control flow
graph, the nodes of which represent statements and the edges (or
arcs) of which represent transfers of control. The complexity of
the program can be estimated from properties of the control flow
graph, such as the number of nodes and edges, possibly
supplemented by information about lexical and syntactic
properties

.

4.4.4

Flowchart Generation

A flowchart is a diagrammatic representation of an

algorithm. It can be a useful tool in understanding the
structure and control flow of a program, particularly in
languages lacking structured control statements.

In the course of translation, a compiler can automatically
produce a flowchart for the source program. In addition to
helping a programmer better understand an algorithm, it can be

PAGE 30

used as part of system documentation and as an aid in
maintenance

.

4.4.5 Interface Analysis

Any variable that is not declared, implicitly or explicitly,
to be local to a routine is by definition shared by that routine
with its environment. A shared variable is made accessible to a
routine by including the variable in the parameter list of the
call to the routine or by declaring it in a global or shared data
area visible to the routine.

Interface errors are among the most common in programming,
particularly in larger systems on which several programmers
cooperate and exchange data. Inconsistencies in the number,
types, modes, ordering, and storage allocation of shared
variables can be very costly and should be detected at an early
stage of development, preferably compile-time. Separate
compilation is the ability to compile a program as a number of
related compilation units, rather than as a single monolithic
unit, with interface checking. Multiple compilations without
interface checking is called independent compilation.

Languages that are strongly typed and emphasize compile-time
checking require the compiler to check interface specifications.
Compilers for languages that are not strongly typed can,
nevertheless, check interface consistency. For such languages,
summaries of interface anomalies can be generated, or if
programming standards concerning interface consistency have been
established, standards violations or error conditions can be
reported.

If the language design requires that routines constituting a

program be compiled as a single unit, interface checking is as

simple as ordinary type checking. All necessary information
about data objects, including those shared between routines, is

specified in the compilation unit.

If procedures may be separately compiled, maintaining
interface integrity is more difficult. The compiler must
maintain information about interfaces between compilations and be
able to access this information when a separate routine is to be
compiled. Typically, the information is stored on a data base of
the host system and made available to the translator at the start
of compilation of a related unit.

PAGE 31

4.4.6 Semantic Auditing

The discovery of many poor programming practices, which
often are violations of software standards imposed by
organizations, can occur during the semantic analysis of the
source program. This section mentions several examples of useful
semantic auditing capabilities.

Implicit variable declarations and implicit typing rules in

a language often cause errors. If the explicit declaration of a
variable is omitted, the variable may be given a type other than
the one the programmer intended, resulting in inaccuracies when
arithmetic and comparisons are performed with the variable. Such
problems can be avoided by requiring the mild inconvenience of
explicit declarations of all variables. When using languages
that allow implicit variable declarations, organizations often
adopt the convention that all variables must be explicitly
declared. Semantic auditing can ensure that this convention is
obeyed. The compiler can simply check that program variables
used in executable statements already have declaration entries in
the symbol table, complete with type information.

In some languages, the use of a literal constant as an
actual parameter, i.e., as a parameter in a call to a subroutine,
is an unsafe practice, depending on the mechanism for parameter
transmission adopted by the compiler. If the mechanism is always
to pass the address of parameters to subroutines, commonly the
case in FORTRAN, then passing a literal constant to a subroutine
can change the value of the literal constant. This difficulty
occurs if the subroutine assigns a new value to the formal
parameter, the variable listed in the subprogram heading,
corresponding to the literal constant actual parameter. Although
some compilers may handle this problem in a manner that avoids
changing the value of the constant, the program is not
transportable to other compilers, because many handle the
situation erroneously.

To illustrate, consider the following FORTRAN subprogram and
example call:

subroutine increm(num)
integer num
num = num + 1

return
end

integer four
call increm(2)
four =2+2
print *, four

When run with many FORTRAN implementations, this fragment would
print the number 6, because the subroutine would have changed the

PAGE 32

value of the literal constant 2. Although the error is obvious
in this contrived example, the same situation is seldom so
obvious in actual programs.

A simple capability to help avoid this problem is for the
compiler to check subroutine calls for the use of literal
constants as parameters and warn of possible errors, regardless
of whether, in fact, an assignment is made to the corresponding
formal parameter. Having been warned by the compiler that a
literal constant is passed to a subroutine, the programmer can
check the subroutine to ensure that no assignment is made to the
corresponding formal parameter (which can easily be determined if
the compiler summarizes in a cross reference listing the
statements that assign to a variable) . A preferable solution to
this problem is an auditing capability that warns of errors only
in the case that the subroutine actually performs an assignment
to the corresponding formal parameter, eliminating the
requirement that the programmer perform the check manually. This
solution is more difficult, requiring interface analysis (see
section 4.4.3) to determine the actual parameters that can be
changed by a subprogram. Part of the information about the
interface to a routine is the parameters that can be given new
values by the routine. If a constant is passed in the position
of a value-receiving parameter, the compiler diagnoses the
subroutine call as unsafe. If the parameter cannot receive a new
value from the subroutine, the compiler issues no warning.

Sometimes syntactically permissible constructs have
incomplete semantic definitions. Examples are FORTRAN 66 DO
statements and computed GOTO statements. The actions of these
statements for several frequently occurring situations is
undefined, possibly making programs using them implementation
dependent. Since they are major control constructs in FORTRAN,
these statements can hardly be prohibited by software
standards, so syntactic auditing is inappropriate. A compiler
can generate code to perform a run-time range check of the value
(see section 4.4.5), but this solution does nothing to enhance
the transportability of programs.

A more transportable approach to incompletely-defined
statements is to adopt a standard requiring an explicit check in
the source code that values are appropriate before executing a

particular construct. For example, a check that the index value
is within the defined range for a computed GOTO in FORTRAN may be
necessary to avoid implementation dependencies. A compiler can
ensure that such a check is performed for constructs having
incomplete definitions. To provide this capability without
arbitrary restrictions on the placement of the checks, data flow
analysis may be required to ensure, for example, that the value
of a GOTO index has been checked on all execution paths leading
to the GOTO.

If transportability is of sufficient priority, another

PAGE 33

implementation possibility is to modify slightly the syntax
rules, or context-free grammar, of the language that the compiler
accepts. The grammar rules are changed so that an ill-defined
statement must be preceded by a check for appropriate values.
For example, the CASE statement in Pascal is undefined if the
value of the selector variable is not one of the selector values
enumerated in the CASE statement. The grammar recognized by the
compiler may be changed so that CASE statements must be preceded
by an IF statement. A semantic check ensures that the condition
tested in the IF guards against the selector variable not having
a legal value.

4.4.7 Range Checking

Some languages, such as Pascal and Ada, allow range
constraints to be specified on variables. Constraints are upper
and lower bounds on variable values. They may be considered
global assertions about the value of variables. To illustrate,
the declaration

index : 0 . . 5

;

defines INDEX to be a variable, such that 0 <= INDEX <= 5.

In making such a declaration, the programmer states that only
these values are meaningful for INDEX, and any attempt to give it
a value outside of this range is meaningless and, therefore, is
an exception condition. The compiler must verify that the values
for INDEX never fall outside its acceptable range. To do so
usually requires target language code to check the value
in statements assigning to INDEX. Range constraints improve
readability, promote security, and reduce debugging effort. They
may also affect the efficiency of the generated code or the size
of the data area.

Regardless of whether the language provides a range
constraint capability, some language constructs implicitly define
range constraints on values. For example, a static array
declaration defines the allowable values that may be used as
indices. Similarly, case statements and indexed jump statements
implicitly specify the meaningful values of the index expression.
The compiler should provide for verification that acceptable
values are used in these constructs.

Range checking is particularly appropriate when performed on
array subscripts, as errant array indices are a common problem.
A range checking compiler can possibly detect some out of bounds
array references at compile-time. In other cases, it must
produce target language statements to perform the check at
run-time. If an unacceptable value is encountered, a diagnostic
may be issued, an exception raised, or the program aborted.
Regardless of when it is done, the compiler should provide for

PAGE 34

detection of array indices that are out of bounds, rather than
having the program behavd mysteriously or develop other errors as
a side effect. These comments are equally applicable to case
statements and indexed jumps.

If the language permits value constraints on variables, the
compiler must check all uses of the variable for acceptable
values. If a language does not permit range constraint
specification, a compiler can, nonetheless, perform some
checking. In particular, checking of array subscripts and of
index variables in indexed jumps should be compiler options. To
provide a more general range checking capability in languages
that do not otherwise provide for them, range constraints can be
specified in comments or compiler pragmas. A pragma is an
instruction to the compiler that controls subsequent compilation.
A pragma specifying a range constraint instructs the compiler to
check that values assigned to the variable are within the
specified range.

Range checking is inexpensive compared with its benefits.
Often the compiler will in all cases generate target language
code to perform a check for an acceptable value. If the compiler
performs data flow analysis, it may be able in some cases to
verify that range constraints are satisfied by compile-time
analysis. In such cases, no checking code need be generated.

For example, consider the following declarations and
statements

:

intvar : integer;

smallvar : 0 . . 5

;

intvar:= 5;

smallvar := intvar;

A compiler that performs data flow analysis is able to

determine that the assignment of intvar to smallvar is always
permissible, since at the point of the assignment the range
constraints of smallvar will always be satisfied.

4.4.8 Reference Analysis

Common errors in referring to variables are the use in an

expression of a variable that has not been given a value along
some execution path and the assignment of a value to a variable
that subsequently is unused along all execution paths. The
former anomaly is likely either to result in an exception
condition at run-time, or worse, to produce erroneous results if
the path is executed. The latter is wasted computation and may

PAGE 35

indicate a more serious error, such as the omission of one or
more statements that use the variable. Using a control flow
graph, reference anomalies of these two types can be detected at
compile-time (Osterweil and Fosdick, 1976) ; such detection is
called reference analysis.

In addition to revealing omissions of variable
initializations and uses, reference analysis can detect another
type of error. If the language allows implicit variable
declarations, reference analysis will diagnose a misspelled
identifier to be either an uninitialized variable, when found in

an expression, or an unused variable, when the target of an
assignment statement.

To detect reference anomalies, the compiler performs data
flow analysis using the control flow graph constructed from the
source program. Information about whether a statement assigns a
value to a variable, uses the value of a variable, or does both
is associated with the statement nodes. Using this information
attached to the control flow graph, a compiler can detect
reference anomalies at compile-time, eliminating many occasions
of run-time debugging and abort diagnosis and possibly preventing
critical errors after system installation.

4.4.9 Program Restructuring

Program restructuring is an active form of program auditing.
Whereas auditing is the detection of standards violations or
undesirable practices, restructuring is the modification of the
source program to eliminate deviant code. A compiler which
performs program restructuring detects constructs which violate
software structuring standards and replaces them by equivalent,
approved ones. For example, a program using unstructured control
flow may be altered to use only well-structured, single-entry,
single-exit control statements. The compiler generates a new
source file containing the restructured program, as well as
generating the target language program.

A restructuring capability is primarily useful in upgrading
older, unstructured programs that, for some reason, are
infeasible to rewrite, but that, nevertheless, must be
maintained. An organization having this need would find a
restructuring compiler helpful. For example, an organization
with a large investment in FORTRAN 66 programs may find them more
maintainable if they are compiled using a FORTRAN 77 compiler
that performs restructuring on FORTRAN 66 programs. Such a
compiler would, for example, replace logical IF statements and
interleaved GOTOs with equivalent IF-THEN-ELSE statements.
Restructuring should not, in general, be used as a substitute for
careful, well-structured programming.

PAGE 36

Program restructuring requires that the compiler construct a

control flow graph of the source program. The compiler searches
the control flow graph for control flow patterns that correspond
to those resulting from structured control statements. Upon
finding a match, the unstructured source program statements
responsible for the matched control pattern are replaced by the
equivalent structured control statement. A restructuring
compiler probably will be unable to replace all unstructured
statements, as some patterns of unstructured control flow are
irreducible to structured ones without the introduction of new
variables.

4.4.10 Program Structure Checking

Flaws in program structure are usually undetected by
ordinary syntactic and semantic analysis. Structural errors
include redundant statements, unreachable statements, statements
without successors, and unreferenced labels. Although flaws of
this nature do not violate syntactic or semantic rules, they do
not add information to the program and may indicate more serious
logical errors. Identifying them at compile-time can avoid later
debugging costs.

A compiler can discover structural flaws by constructing a

control flow graph. Nodes of the graph represent statements (or
sequences of statements) and the edges between nodes represent
the flow of control. Traversing this data structure can reveal
structural anomalies in the source program. (The control flow
graph may prove useful to other compiler capabilities; for
example, see the section on complexity measurement.)

4.4.11 Type Analysis

Variable declarations associate a data type with an
identifier. A data type expresses properties about objects of
the type and governs the operations which may be meaningfully
performed on them. Types are useful both to the language user,
to define the abstract properties of variables, and to the
translator, to make internal decisions concerning storage
allocation and selection of target language instructions.
Consistent use of variables according to their types enhances the
simplicity, clarity, and maintainability of programs.

Type analysis is a mandatory activity in translators for
some languages. Variables in strongly typed languages have a
single type. Each type in the language has a set of operations
permissible for that type (e.g., arithmetic for integers,
concatenation for strings, and logical operations for booleans)

.

Variables of one type cannot be used in operations which require

PAGE 37

or involve objects of different types. Such languages require
that the compiler check the consistency and compatibility of
operations on data objects, permitting no automatic type
conversions, known as type coercions.

For example, if CH is a character variable, it is not
permitted to use CH in a multiplication operation. The compiler
does not automatically convert (coerce) the value of CH into an
integer value. Any conversions between types is done explicitly
by use of predefined type conversion functions. Explicit
function calls ensure that the programmer intends a type
conversion and considers it meaningful in this context. For
example, if a programmer indeed needs to use the value of CH in a
multiplication, it is necessary that the variable be explicitly
converted by prefixing it with a type conversion function, as in
INTEGER (CH) . It is widely accepted that this design approach
promotes reliability, security, clarity and readability. Errors
may be found at compile-time that might otherwise require
extensive dynamic debugging or remain undetected long after
system installation.

If a language does not strongly type data objects, the
compiler should issue warnings or diagnostics when a variable is
used inconsistently or an automatic type conversion is performed.
Type analysis is particularly useful in languages which allow
implicit variable declarations and automatic type coercions. For
example, omitting a declaration of a variable in FORTRAN can,
through implicit declarations and conversions, result in a
program which compiles without errors, but which produces
unexpected results. Type analysis of such a program would warn
the user of type conversions, alerting the programmer to an
erroneous implicit type declaration. For example, if the
declaration of a variable intended to be real is omitted, and if
the variable is implicitly typed integer, the subsequent
assignment of a real value to the integer variable will be noted
as a type violation, avoiding the possible loss of precision.

4 . 5 PROBLEM-SEMANTIC

A PROBLEM-SEMANTIC capability is concerned with how the
problem statement is mapped into the program, and thus deals with
verifying that the program computes the desired function. The
problem statement can be formal, or exist only in the mind of the
programmer. Such tools have as their domain not only the
context-sensitive characteristics of the program, but also the
problem statement.

The ordering of the problem-semantic capabilities below is
intended to provide a rough ranking of the capabilities according
to the difficulty and complexity of their implementations.

PAGE 38

Capabilities that are easier to implement are presented before
those that are more difficult to implement.

4.5.1 Units Analysis

Related to the topic of type analysis is units analysis.
Variables may be given a unit attribute as well as a type. The
unit attribute specifies that a variable is always associated
with and measured in the given unit. Since most languages
currently provide no notation for them, units specifications may
be included in comments or pragmas.

A compiler can check units consistency using algebraic laws
of composition and cancellation. If the unit of a variable is
incompatible with that of an expression being assigned to the
variable, a units error has occurred, indicating an incorrectly
formed expression, an erroneous formula, or missing terms. Units
analysis is most beneficial in scientific applications.

For example, using a compiler that performs units analysis,
a programmer may declare a variable to have the attribute of
being measured in cubic meters. A statement that assigns a value
to the variable is checked by the compiler to confirm that the
value also has the attribute of being measured in cubic meters.
To illustrate, in the following declarations:

length, width, depth: real meter;
volume: real meter * meter * meter;

the variables length, width, and depth are declared to be of real
type, measured in meter units, and the variable volume is
declared to be also of real type, but measured in cubic meter
units. Using this information, a compiler can determine that the
first assignment below is correct and the second incorrect:

volume := length * width * depth;
volume := length * depth;

Note that ordinary type analysis would be unable to detect the
incorrect assignment to volume.

Units analysis depends on the ability of the compiler to
perform limited algebraic manipulations on symbolic expressions.
The units of the terms of an expression are composed or
cancelled, as appropriate, yielding a unit attribute for the
final value. If the unit attribute of the expression is not the
same as the unit attribute of the target variable of the
assignment, the compiler flags the statement as containing a unit
error

.

PAGE 39

4.5.2 Assertion Checking

Assertions are statements about variables or relationships
among variables, usually expressed in terms of boolean
conditions. They specify the variable values or conditions that
the program expects and can meaningfully process at that point.
In addition to improving documentation and readability,
assertions can improve the reliability and security of programs
when checked automatically.

Assertions may be global or local in scope and generally can
be placed anywhere in the program that an executable statement
can appear. Global assertions specify conditions which are
expected to prevail from the point at which they are encountered
until execution of the source program §nds. Local assertion
statements are expected to be true only where they are
encountered during execution.

Compilers can provide for checking assertion statements
either at compile-time if possible or at run-time if necessary.
Using data flow analysis, a translator may be able to verify an
assertion statement at compile-time. For example, assuming a
compiler that checks the condition following an ASSERT keyword,
the following assertion need not be checked at run-time, if the
compiler performs data flow analysis:

saveindex := 0;

index := 1;
while index <= 10 loop

if info [index] = desiredvalue then
saveindex:= index;

else
index := index + 1;

end if;
end loop;
ASSERT saveindex < 11;

Data flow analysis enables the compiler to propagate the value
and constraints of the variable index, so that the value of
saveindex is known to satisfy the assertion condition at
compile-time

.

If the compiler is unable to determine the truth of an
assertion at compile-time, it can add target language statements
to check these assertions at run-time. Section 5.2.3 discusses
the run-time aspects of assertion checking.

4.5.3 Symbolic Execution

Rather than verifying correct program behavior through
testing with a small set of test input values, programs may be
verified for classes of input using symbolic execution (Boyer,

PAGE 40

et. al., 1975, King, 1975, King, 1976, Clarke, 1976, Howden,
1977) . Symbolic execution is the use of symbols to represent a
fixed data value. The input variables to a program or procedure
are given symbolic values. These symbolic values are manipulated
as a result of program assignment statements and control flow,
using algebraic and boolean principles to simplify expressions as
symbolic execution proceeds. When symbolic execution terminates,
the symbolic expressions for the output variables may be examined
to verify that they are the correct function of the input
symbols

.

Because variables are represented symbolically rather than
by specific data values, it is usually impossible to determine
which branch of a decision statement will be taken during
symbolic execution. Therefore, some method of path selection
must be provided to specify the execution paths that are of
interest. Selection may be provided by assumptions about ranges
of data values or through explicit specification of branches to
take. To provide path control, the symbolic execution system may
have an interactive command language.

A symbolic execution capability would substantially
complicate a compiler, if current techniques for symbolic
expression manipulation are used. Presently, most symbolic
execution systems only approximate the functions, generality, and
efficiency that would make them practical development tools.

4.5.4 Test Data Generation

The primary practical method of ensuring program correctness
is testing. Testing is the execution of the program with data
for which the correct results are known or are easily determined.
The observed results are compared with the expected results, and
if they are consistent, the program is confirmed to be correct
for that data. Since the number of possible test cases is

usually very large or infinite, exhaustive testing is infeasible,
making test data selection a crucial aspect of software testing.

Several criteria for an effective set of test cases have
been proposed. One criterion, called statement testing, is that
all statements in the program are to be executed at least once.
Executing every statement does not necessarily involve traversing
all possible execution paths, which are determined by the
branching points in the program. Branching points are determined
by the control flow logic of the program and may be either
explicit, in the case of unstructured GOTO statements, or
implicit, in the case of structured control statements. Errors
may be present on some execution paths that are not traversed,
even though all statements on the path are executed as part of
other paths.

PAGE 41

Therefore, a more stringent criterion, called branch
testing, is that all branch paths in the program are to be
traversed at least once. More thorough yet is the criterion,
called path testing, that all combinations of branch paths in the
program are to be traversed at least once. Because the first
requirement often is insufficiently revealing and the third often
presents prohibitive combinatorial obstacles, much effort has
been directed towards satisfying the second criterion, executing
every branch path (see Section 5.3.1).

A particular path is executed if the input data satisfies a

system of predicates formed from the conditional branch
predicates present in the path. A compiler can build a data
structure representing the execution paths of the source program,
and using this structure, perform symbolic execution to derive a
system of predicates that determines the test data that will
cause a given path to be traversed. The predicates are called
path constraints. Specific test data can be generated by solving
the path constraint predicates. The process of deriving the path
constraints and solving the predicates is called automatic test
data generation (Miller and Melton, 1975)

.

User interaction may be required during compilation to
select program paths to be considered, or an indication of
desired paths may be included in comments or compiler pragmas. A
more automatic system may attempt to derive a set of test data
that is complete, according to some criteria.

Test data generation systems of the type discussed above are
the topic of current research and are not widely used in
practice. Test data generators of a different kind have been
used with COBOL programs. These generate test data from file
specifications, not from the internal logic of the program.
Since a COBOL compiler has access to the file specification in a

COBOL program, it could provide automatic test data generation.

4.5.5 Correctness Proving

Ideally, given exact program requirements and a formal
definition of language semantics, the correctness of a source
program should be demonstrable in a rigorous, mathematical
fashion from an automated analysis of the source text. A
correctness proving system verifies that the program produces the
desired output over all input values; testing with actual data
is unnecessary.

Experimental programs that perform formal verification have
been constructed, based upon principles of theorem proving
(Deutsch, 1973, Elspas, et. al., 1973, Good, et. al., 1975).
Typically, program verifiers require that the program be
augmented with user-written assertions, formally specifying the

PAGE 42

intended preconditions and effects of program routines. The
verifier attempts to construct a formal proof that whenever the
input assertions are satisfied at the start of a routine, the
output assertions will be satisfied after the routine finishes
(Floyd, 1967) . An attempt may also be made to prove that a
routine will terminate, based, for example, upon convergence
proofs of arithmetic computations. Often supplemental
information must be provided by the user through inclusion of
intermediate assertions.

Current program verifiers suffer several difficulties.
First, verifiers are large and complicated, demanding
considerable processor time and storage resources. Second,
constructing input, output, and intermediate assertions is a
tedious, error-prone task for a programmer, similar to writing
the program a second time. Compounding this problem is the
frequent difficulty in formulating input and output assertions
that adequately characterize the intended effect of a module.
Further, if a program cannot be verified, the verifier provides
no information about selecting the source of the inadequacy,
which may be the program, the assertions, or the verifier itself.
For these reasons formal verification remains largely
experimental, not likely to be included in present compiler
systems

.

PAGE 43

5.0

RUN-TIME CAPABILITIES

A run-time capability requires the specification of the
program input in order to be used. Interactive debuggers
generally fall into this category. In general, there are three
classes of run-time capabilities: those that deal with program
control characteristics, those that deal with program data
characteristics, and those that deal with program quality or
performance characteristics. It is often difficult to separate
certain types of run-time capabilities from some compile-time
ones. Program instrumentation is such a case. The process of
generating an instrumented program, whether it be a modified
source or an enhanced object module, is certainly compile-time.
However, there are some similar tools which provide the same
capabilities, yet are interpretive in implementation. These are
strictly run-time.

5 .

1

CONTROL

Capabilities that analyze dynamic control characteristics of
programs are concerned with the flow of control within the
program between statements. The ability to insert breakpoints is
such a feature.

5.1.1

Symbolic Dynamic Debugging

Dynamic debugging is one of the most time consuming
activities involved in programming. A symbolic, high level
debugging capability provided by a compiler is a major factor in
reducing this time and effort.

In order to work at a consistent level of abstraction, a

programmer should be able to debug a program dynamically using
the same concepts used to write it. That is, when debugging a

program, the programmer should be able to access data objects by
name and manage control flow in terms of the source program
statements. In particular, debugging should not involve target
machine addresses, instructions and numeric codes. These are not
the elements used to develop the program and it should not be
necessary to learn such details to debug it. Machine level
debugging reintroduces the low level concepts the source language
was presumably designed to avoid.

Interpreted languages are generally more successful with
providing high level debugging than compilers. But high level
debugging need not be sacrificed when a language is compiled. A
translator can produce information which, in conjunction with a

PAGE 44

run-time debugging environment, allows accessing data objects by
name and performing control flow management by means of source
program features, such as statement number and routine name. The
basis of this information shared between the compiler and the
run-time debugging environment is the symbol table built by the
compiler

.

The run-time debugging environment minimally should provide
capabilities for examining and modifying variables, setting and
removing breakpoints, tracing, and single statement execution. A
sophisticated dynamic debugger might allow dynamic program
correction. With such a system, execution may be suspended to
edit the source for a routine, the modified procedure
retranslated and linked with the suspended program (as long as
its externally visible characteristics have not changed) , and
execution of the suspended program, now containing the modified
routine, resumed.

A symbolic dynamic debugger is a major implementation
expense in a compiler system. A further complication in the
provision of a dynamic debugger is that many machines do not
provide suitable primitive hardware operations to support
requirements such as the setting of breakpoints in machine code.
Often, hardware limitations must be overcome by devising awkward
approximations to the needed functions. However, the reductions
in the time and expense of software testing and debugging are
well worth the significant effort involved in providing a

symbolic dynamic debugger.

5 . 2 DATA

Capabilities that analyze dynamic data value characteristics
of programs are concerned with the storing and retrieval of
values into and from program variables and constants. The
ability to inspect variables during execution is such a feature.

5.2.1 Symbolic Dynamic Debugging

As previously stated, symbolic dynamic debugging is an
important capability of any compiler system. One of the
capabilities provided by a symbolic debugger is the inspection of
variable values at run-time. The value should be accessible by
means of the name used in the high level language, rather than by
some other method.

PAGE 45

5.2.2

Range Checking

As mentioned previously, range checking of variable values
in many cases must be deferred until the program is run. A
range-checking compiler often must produce target language
statements which perform the check dynamically.5.2.3

Assertion Checking

Checking of user-embedded assertions often must be deferred
until run-time. As is the case with range checking, assertion
checking often requires that the compiler produce target language
statements that perform the check when the program is run with
data

.

For example, assuming a compiler that checks a boolean
condition following the keyword ASSERT, the following assertion
cannot be verified at compile-time, requiring code to be
generated to check the assertion:

read (index)

;

ASSERT index > 0;

When an assertion condition is evaluated and found false at
run-time, the run-time environment can issue a diagnostic, raise
an exception condition, or abort execution of the program,
depending on user options, language capabilities, and the system
environment.

5.2.4

Pointer Checking

Run-time pointer checking is applicable to programming
languages that provide facilities for explicit creation and
deletion of variables while the program is executing. A variable
allocated during execution is called a dynamic variable. Dynamic
variables are usually accessed by means of other variables,
called pointers , which contain the location of the dynamic
object

.

The programmer allocates space for a dynamic object by
calling a standard language routine to allocate space from a
pool, called the heap, set aside for dynamic objects. The
allocation routine returns a pointer value, which is the location
of the space allocated for the dynamic object. Similarly, the
space occupied by a dynamic object can be returned to the pool by
calling a deallocation routine, which accepts a pointer variable
as a parameter and deallocates the space at that location. Since
assignments to pointer variables are usually allowed, a dynamic

PAGE 46

object can be accessible through more than one pointer variable.
An object accessible through more than one pointer variable has
aliases .

Pointer checking is necessary because of the problems
created by aliases, specifically the dangling pointer problem. A
dynamic object can be deleted by passing one of its pointers to
the deallocation routine, even though other, ostensibly valid
pointers continue to point to the same (now deallocated) object.
These pointers are said to be "dangling", i.e., they no longer
refer to a valid data object, a fact which cannot be readily
determined. Subsequent references to the deallocated object
through these pointers are not likely to obtain the correct
values, since the space formerly occupied by the object may have
been allocated to another object.

The compiler and its run-time routines can provide checking
to ensure that this situation does not occur. A simple method is
to maintain a count of the number of pointer variables that refer
to an object. A call to the allocation routine sets the
reference count for the allocated object to one. Upon assignment
to a pointer variable, the reference count of the object accessed
by the left hand pointer is reduced by one, and the reference
count of the object accessed by the right hand pointer is
increased by one. An attempt to deallocate a dynamic object has
no effect until the count of pointer variables referring to the
object is one. Also, the reference count may be useful if the
heap space is depleted because the programmer has neglected to
deallocate unneeded heap objects. If heap space is exhausted,
the run-time environment can examine the reference counts of heap
objects, returning to the available pool the space occupied by
objects having reference counts of zero.

5.2.5 File Checking

Usually, appropriate data files are a prerequisite to
correct program execution. If the data formats of the external
file and the internal file specification do not agree, the
program is unlikely to perform the expected function.

A compiler can provide some security against this kind of
error by checking that external files are consistent with their
internal specification. This check is most appropriately
performed when the file is opened at run-time. If the data
formats do not agree, the run-time environment raises an
exception, aborts the program, or prints a diagnostic, depending
on the environment.

The compiler can provide this capability by deriving during
compilation an encoding of the data format, possibly based upon
names or sizes of types in the source program. This encoding is

PAGE 47

stored with the file when the file is written. When later opened
for processing, the encoding of the data format in the program
opening the file and the encoding stored with the external file
are checked for consistency at run-time.

5.3 STRUCTURAL TESTING AND PERFORMANCE

Many of the above tool capabilities are concerned with
refining the program into a form which implements or computes
exactly the function that the problem statement requires.
However, many tools implement capabilities which are concerned
with how well the function is implemented. Such features include
dynamic statement counts, and CPU timers.

5.3.1 Statement, Branch, And Path Testing

Common goals of software testing are the execution of every
statement, branch, or path in the program at least once. To
accomplish these goals, some method must be available for
monitoring execution at run-time. Usually, counters in each
program block are sufficient to indicate the statements executed
during a test run. A program block is a section with the
property that if one statement in the section is executed, all
statements in the section necessarily are executed. Statements
added to collect execution profiles are called software probes.

A compiler can instrument target language programs with
instructions to perform execution counting. Instrumenting a
program means to insert target language statements, not
explicitly coded by the programmer, which will perform the
desired activity when the program is run. Enabling the
instrumenting option causes a compiler with this capability to
implicitly declare an array that will hold the counter values,
one for each program block, during execution. The compiler may
produce target language statements to increment the counter
corresponding to a program section or it may produce calls to a
run-time routine to do the incrementing. The run-time
environment or a special postprocessor may be used to format and
report the information in the counter array after the program
finishes

.

5.3.2 Performance

In addition to helping satisfy testing criteria, the data
gathered from the instrumented source code can be used to suggest
sections where code improvements will be most fruitful. The

PAGE 48

execution data can show the paths of a program that are most
frequently traversed in typical situations. If efficiency is an
important consideration, these sections should be the first focus
of improvement efforts.

PAGE 49

6.0 A HIERARCHY OF TOOL CAPABILITIES

The capabilities that have been discussed vary greatly in

the amount of information and assistance they provide, in the
amount of machine resources they require, and in the degree of
invested effort needed to implement them. Capabilities may be
grouped according to qualitative considerations of their
respective costs and benefits. Three classes of capabilities are
distinguished: (1) primary capabilities, which are central to
program development support, (2) secondary capabilities, which
are useful, but possibly too complex or specialized to be needed
in all circumstances or for all languages, and (3) tertiary
capabilities, which are helpful, but introduce major
implementation difficulties or execution inefficiencies.
Capabilities are classified according to informal criteria based
upon practice and experience, rather than upon some formal
criteria, because of the difficulties in assigning quantifiable
figures of merit.

6.1 Primary Capabilities

Some compiler-based capabilities are useful enough and
needed often enough to be considered necessary tools for program
development. For this reason they are regarded as primary
capabilities. In general, they add little complexity to the
compiler when compared with their benefits. The following
capabilities are placed in this class: library management, cross
referencing, program auditing, type analysis, range checking,
pointer checking, file checking, dynamic debugging, and interface
analysis

.

Library management should be considered a primary capability
for two major reasons: first, it provides the ability to
organize a large software system in a manner understandable to
both humans and the compiler. The utility of being able to
determine, for example, the modules of a system that reference
particular blocks of common data is extremely valuable. Second,
a compiler system incorporating library management has available
a data base which makes implementation of other primary
capabilities, notably global cross referencing, type analysis for
procedures, and interface analysis, much easier.

Cross referencing is placed in this class because of its
great utility in analyzing the effects of changes to a portion of
a program on other portions of the system. In particular, global
cross-references, which document the entities shared among more
than one module, can significantly reduce the amount of work the
programmer needs to do to determine the scope of effect of a
change to a data structure. Global cross-references are made

PAGE 50

much easier by the existence of a library structure that may be
referenced by the compiler , or by any other compiler structure
which allows interface analysis and general inter-module
analysis. Cross-references are also an invaluable capability if
present in a compiler for a language which allows implicit
declaration, to find occurrences of misspelled variable names.

Type analysis is often the single most valuable capability
available to the programmer. Many languages require type
analysis as part of any compiler for that language? others do
not. For example, a typical error in writing a FORTRAN program
is to forget to declare an integer variable having a mnemonic
name that unfortunately does not begin with one of the letters I

through N. This problem seems to be particularly troublesome in
the case of functions. The availability of compiler output which
informed the programmer of implicit type conversions at
compile-time would eliminate the debugging that is otherwise
necessary to remove errors of this type. This analysis must be
performed by the semantic phase of the compiler in any case in
order to generate correct code? there is no reason why the
information cannot be made available to the programme.^

Range, pointer, and file checking and interface analysis can
greatly reduce the amount of debugging effort necessary for a

given program. In particular, the dangling pointer problem and
interface inconsistencies may require an analysis at debugging
time of several modules, a nontrivial conceptual problem for a

programmer

.

The beneficial effects of a good dynamic debugger are so
numerous and important that they far outweigh the significant
implementation costs of such a debugger. The ability, for
example, to examine how a particular memory location changes
during the program run rather than only being able to examine its
final value in a program dump gives the user much more insight
into dynamic program behavior. This capability requires a

significant amount of work in a compiler implementation, since a

symbol table format useful to the debugger must be defined, the
linker and the debugger both must be designed to read it, and the
debugger itself must be written.

6.2 Secondary Capabilities

Some useful capabilities can complicate a compiler
significantly in regard either to implementation effort, to
efficiency of the generated target program, or to efficiency of
the translator. Other useful capabilities, though not overly
complicated, are specialized or infrequently needed.
Capabilities with one or more of these characteristics are
considered secondary. Secondary capabilities include: assertion

PAGE 51

checking, program formatting, program constructing, error
correction, macro processing, program structure checking, report
generation, flowchart generation, profiling, program
restructuring, complexity measurement, reference analysis, units
analysis, branch testing, and COBOL test data generation.

Assertion checking, program formatting, report generation,
flowchart generation, profiling, program restructuring,
complexity measurement, reference and units analysis, and branch
testing were placed in this class because they are specialized
tools that may be useful over a wide range of applications but do
not provide the same benefit to the user as those tools that were
placed in the primary class. None of them is particularly
difficult to implement; none of them impacts the generated code
efficiency to a significant extent, with the possible exception
of branch testing.

Program construction is classified as secondary because its
efficiency, flexibility, and ease of use are not fully
established, since few systems currently implement it. However,
the potential benefits, particularly the elimination of syntax
errors, are large, and the implementation difficulty is modest
compared with tertiary capabilities. For these reasons, it is
classified as secondary rather than tertiary.

Error correction is a capability which may often be useful;
however, it has two characteristics which cause it to be called a
secondary capability. The first is that it does not save
significant amounts of program development time. A compiler
which gives good diagnostics during syntax analysis can
accomplish the same thing, except that the user has to manually
insert the change to the source program. Second, the error
correction capabilities which currently exist, and probably all
those which will ever exist, do not and cannot hope to alter all
syntactically incorrect code to look like that which the
programmer intended, either because the syntax is extremely far
from that needed or because the programmer's intentions were
unclear even to himself. Thus, programmer intervention is
necessary to visually validate the changes in any case. Such a
tool, when implemented, is part of the syntax analysis phase, and
will affect the data structures used internally by that phase
both at compiler design time and at compiler runtime.

A macro capability is in this class because a general
implementation of such a capability may significantly impact the
compiler implementation. In addition, it may also affect the
efficiency of the generated code if the users of such a system
are insufficiently experienced to differentiate between instances
where macros are appropriate and instances where subroutines are
appropriate, perhaps leading to unnecessary code duplication.

The utility of structure checking depends largely on the
characteristics of the language being compiled. Structure

PAGE 52

checking can be invaluable in a language having primarily
unstructured control flow constructs. However , it is rarely
useful in languages having adequate structured control flow
statements. Because its utility varies widely, structure
checking is classified as secondary.

COBOL test data generation is useful for debugging COBOL
programs, especially considering that most COBOL programs perform
mainly file processing. This capability is classified as
secondary because it is not as difficult to implement as test
data generation that is based upon the internal logic of the
program.

6.3 Tertiary Capabilities

The distinguishing feature of tertiary capabilities is that
they are currently implemented only by research systems that are
complex and demand significant user interaction and machine
resources. The following capabilities are considered tertiary:
symbolic execution, test data generation, and correctness
proving

.

Although these capabilities may in the future provide the
most satisfactory solution to the problem of software
reliability, they cannot be readily incorporated into production
compilers at present. Implementing these capabilities alone,
separately from a compiler, requires a degree of effort that
matches or exceeds the effort necessary for implementing most
common compilers. ^

Since tertiary capabilities are likely not to be found in

present compiler systems, it may seem a violation of common usage
of the term "survey" to include tertiary capabilities in this
paper. They have been included as possible compiler-based
capabilities for two reasons: First, they operate upon the
source program text and are concerned with its correctness and
completeness in solving a given problem, thus overlapping the
domain and goals of compilers. Second, future technological
advances may be anticipated that will increase the feasibility of
incorporating these capabilities into compiler-based support
systems

.

All three of these capabilities are connected, in that they
all involve a statement-level walkthrough of the program, with
some degree of interpretation or symbolic execution being
performed. In the case of symbolic execution, the interpretation
uses symbols instead of values. In the case of test data
generation, the interpretation uses ranges of input data to
differentiate test data into classes. (As mentioned in Section
4.5.4, a different form of test data generation is used with

PAGE 53

COBOL programs. This capability is much simpler to implement
than generating test data from internal program logic and is
therefore classified as secondary.) Finally, correctness proving
uses formal assertions as the entities which are carried and
interpreted from statement to statement.

PAGE 54

7 . 0 LANGUAGES

The previous sections have focused on general tool
capabilities that a compiler can provide, without emphasis on
particular languages. Languages have different weaknesses and
insecurities, making the useful capabilities depend to a large
extent on the language. The following sections will examine
FORTRAN, Pascal, COBOL, and BASIC to illustrate the fitting of
general capabilities to counteract weaknesses of specific
languages

.

7 . 1 FORTRAN

As may be expected of one of the first high level languages,
FORTRAN has significant deficiencies. The most recent standard,
FORTRAN 77, clarified and improved many undesirable language
characteristics, but many shortcomings remain. Enhanced compiler
capabilities can make FORTRAN more tractable as a development
language. (Except where otherwise noted, the following
discussion assumes as its subject FORTRAN 77.)

One of the features of FORTRAN that causes and hides errors
is implicit variable declaration. For example, rather than
causing a compile-time error, a misspelled identifier has the
effect of declaring a new variable. Another, more striking,
example is the mistyping of the comma as a period in a DO
statement, as in the following:

do 10 x= 1. 100

which is a perfectly legal assignment statement. Implicit
variable declaration, interacting with the insignificance of
blanks in FORTRAN, results in an assignment of the value 1.100 to
the variable dolOx, instead of a loop. Assuming the convention
that variables should be explicitly declared, a compiler with
code auditing capabilities can detect misspelled identifiers,
diagnosing them as undeclared variables. Reference analysis
performed by the compiler will diagnose misspelled identifiers as
uninitialized or unused variables. A less helpful tool in this
situation is a lexical cross reference listing, which may be

inspected manually for identifiers differing only slightly,
suggesting a misspelling.

Another error-prone characteristic, related to implicit
declarations, is FORTRAN^s implicit typing rule, whereby the
first letter of an implicitly declared identifier determines its
type. If not explicitly declared, variables intended to be real
may be implicitly integer, and vice versa. Unintended type
assignments can result in loss of precision and unexpected

PAGE 55

program behavior when arithmetic and relational operations
involve mixed modes. Again, a compiler which checks for explicit
declarations of variables can help reduce this problem. Also,
type analysis performed by the compiler can alert the programmer
to ill-advised type coercions in mixed mode operations.
Including type information in cross references of variables is
helpful for manual detection of unanticipated implicit typing.

FORTRAN lacks many of the structured control statements that
are commonly useful in programming. A macro expansion capability
that permits the definition and use of structured control
statements can greatly simplify FORTRAN programming, obviating
use of labels and GOTO statements. Code restructuring is another
useful, although more difficult to implement, defense against
this inadequacy.

Compilation of FORTRAN subprograms is independent, i.e., no
checking of interface consistency between modules is performed.
Accordingly, interface errors are common. Most FORTRAN compilers
do not detect parameter type mismatches, incorrect number of
parameters, or COMMON variable misalignment or omission. These
errors should be detected by automated tools, rather than
requiring tedious manual inspections. The compiler can check
interfaces without introducing inordinate complexity by
maintaining interface information on the host file system.
Interface summaries produced by a compiler are much less helpful
and secure.

The problem of FORTRAN interfaces can be relieved to a large
extent by a source library management facility. The many
routines of a large program usually share data by means of
numerous COMMON blocks. The probability of error is very high if
the specification for a busy COMMON block changes. It is
exceedingly tedious to trace through all the routines which use
the COMMON block, changing the specification. A library
management capability can provide automatic updating of routines
which use a modified COMMON block. Library management can also
support the capability to perform interface analysis by
maintaining the information needed for interface checking in a

member of the library.

FORTRAN contains a number of features through which the
compiler implementation can influence program behavior. These
features should be avoided, and can be detected by a compiler
with the capability to do program auditing. Some practices
relying on implementation dependencies can be checked at
compile-time. An example is the passing of a literal constant as
a parameter to a subprogram. If an assignment is made to the
parameter by the subprogram, the value of the literal constant
may be changed, making incorrect subsequent computations
involving the constant. A code auditing compiler can warn of a
potential error when literal constants appear in parameter lists.
Depending on local variables to retain their values between

PAGE 56

successive calls of a subprogram is another example of unsafe
programming. This practice assumes a particular strategy for
variable allocation and should be avoided. A compiler with the
capability to do reference analysis can detect uses of local
variables which suggest that values from previous calls are being
assumed valid.

Other implementation dependent characteristics must be
checked at run-time. For example, before the most recent FORTRAN
standard, the action of a computed GOTO statement was left
undefined for the case that the integer expression was
nonpositive or was larger than any alternative. Similarly, if
the initial value of the index variable of a DO loop was less
than the exit value, assuming a positive step, or was greater
than the exit value, assuming a negative step, the behavior of
the DO loop was implementation dependent. A range checking
FORTRAN compiler can insert target language statements to verify
that the values at run-time are allowable. If the system
environment permits user exception handling, a graceful recovery
from an error may be accomplished. In a less favorable
environment, a diagnostic may be issued. In either case, rather
than relying on a specific implementation for correctness, the
program should be diagnosed as erroneous.

In addition to reducing implementation dependencies, range
checking can provide security in array references, a frequent
source of errors. If an array is declared in a program unit, its
bounds are available so that indices in array references can be
checked, either at compile-time or, if necessary, at run-time.
Arrays that are parameters to subprograms require more
sophistication from the compiler, since the dimensions of the
array parameter can vary from one subprogram call to the next.
The array bounds are not known when the subprogram is compiled.
The capability to check array indices in this case is simplified
if the compiler also performs interface analysis. The bounds of
the array passed as a parameter to the subprogram are part of the
interface information that must be maintained for modules calling
the subprogram. The compiler can use this information to perform
run-time checks of the array indices.

Because FORTRAN is not strongly typed, subtle errors can
result from implicit type coercions. Many compilers permit
indiscriminant mixes of operand types in arithmetic and
relational operations, the result possibly depending on target
language data representations adopted by the implementation.
Combining real operands with other types can result in loss of
precision. Type analysis performed by the compiler can warn of
errcr-prone type coercions and type inconsistencies, helping to
eliminate type errors.

PAGE 57

7.2 Pascal

Pascal is a milestone in programming language design.
Because of the language definition, capabilities that are
enhancements to compilers for other languages are required and
routine parts of Pascal compilers. Nevertheless, Pascal contains
characteristics that tend to be associated with errors, some of
which may be avoided given a suitably supportive compiler.

A major problem with using Pascal in large software systems
is that implementations often do not provide a facility to
separately compile procedures. A minor change anywhere in a

program forces the entire program to be recompiled, a significant
expense with large systems. Contrary to the design approach of
the language, many implementations allow independent compilation
of procedures, performing no checks of interface consistency.

Pascal is enhanced considerably as a systems implementation
language if procedures can be compiled separately, maintaining
interface security. As suggested previously, the compiler can
produce the information it needs to check interfaces and save it
on the host file system. When beginning compilation of a

separate procedure, the interface information is made available
to the compiler so that appropriate checks may be performed. If
separate compilation is integrated within a library management
facility, the management of interface information and compilation
status can be automated.

Semantic auditing of Pascal programs can detect a number of
common errors. A frequent error results from misuse of parameter
modes in procedures. If a variable in a procedure call is to be
changed by the procedure, the corresponding formal parameter in
the procedure heading must be preceded by the keyword VAR. A
common oversight is to omit the VAR preceding a variable
parameter, resulting in the failure to change the variable in the
calling environment. The change is made to the local parameter
of the procedure, but not to the actual variable in the calling
environment. Thus, a procedure that otherwise may be correct
does not update the value of one of its parameters, often an
elusive error. Assigning a value to a parameter not preceded by
VAR is either poor programming practice or an inadvertant
omission of the VAR. It is helpful if a compiler notes this
flaw. CASE statements may be audited to ensure that the selector
variable must have the value of one of the selector constants
(see Section 4.4.6).

Coding standards can restrict poor programming practices
allowed by Pascal. Pascal control structures are rich enough to
make the use of GOTO statements seldom, if ever, justifiable. In
particular, GOTO statements that jump out of procedures are
troublesome, both for the compiler and for readers of the
program. A compiler can enforce organizational programming

PAGE 58

standards forbidding such usage.

The benefits of strong typing can be compromised if the
compiler provides no checking of the types of external files (see
Section 5.2.5). Many Pascal compilers perform no checking of
types when a file is opened at run-time. GET operations from
files in such cases may retrieve data having a type that is
inconsistent with the file type as given in the source program.
A simple method of file checking is to derive an encoding, or
key, based upon the data type in the file. This key is checked
for consistency at run-time when a file is opened.

A troublesome insecurity of Pascal is its definition of
discriminated unions, called variant records. A discriminated
union is a record which may contain different components,
depending on the value of the discriminant, or tag, variable
contained in the record. The tag determines the names, number,
and types of components that the record contains. Pascal
discriminated unions are insecure because the programmer is
responsible for setting the tag value before assigning values to
variant fields and for checking the tag before accessing variant
fields. If the programmer omits setting the tag variable or sets
it incorrectly, the value of the tag can become inconsistent with
the values contained in the variant fields, reintroducing the
insecurities eliminated by strong typing. Similarly, if the
programmer does not check the tag variable, the data values
contained in the record may be inconsistent with the variants
referenced, resulting in inappropriate operations.

Several capabilities are helpful in reducing or eliminating
errors involving discriminated unions. The most primitive
assistance is a cross reference of statements that change tag
variables and fields of variant records. More helpful is a

run-time check that the tag value is consistent with accesses to
variant fields. Of course, the most helpful capabilities detect
errors at compile-time. Semantic auditing can ensure that fields
are accessed only within program sections that have first checked
the tag value for consistency. Alternatively, the compiler can
verify that accesses to variant fields are consistent through
data flow considerations at compile-time. Since the validity of
variant references is sometimes indeterminant at compile-time, a
data flow capability should be augmented by run-time checking
where necessary. (Although their use is discouraged, free
unions, i.e., variant records containing no tag field, are
allowed in Pascal. A compiler can perform no consistency checks
on uses of variants of a free union.)

Many implementations of Pascal^s dynamic variables make the
programmer susceptible to the dangling pointer problem (see
Section 5.2.4). Storage for a dynamic variable in Pascal is

allocated by a call to the routine NEW, which takes a pointer
variable as a parameter and assigns to it the address of the
space allocated. When the space is no longer required, it may be

PAGE 59

returned to the pool of available space by a call to the function
DISPOSE, which takes a pointer variable as a parameter and
deallocates the space at that address. The dangling pointer
problem occurs when a pointer to a dynamic object is passed to
DISPOSE, even though other pointer variables continue to contain
the location of the deallocated object. Since the space occupied
by the deallocated object is in the available pool, it may be
allocated to another object, possibly of a completely different
type than the original object. References via the dangling
pointers can thus access values of an object of a completely
different type than those intended. A compiler performing
run-time pointer checking will ensure that an object is
deallocated only when it is no longer accessible through any
variable. The technique mentioned above of keeping reference
counts for dynamic objects is one method of eliminating dangling
pointer problems.

7 . 3 COBOL

COBOL is a language designed in the early 1960s for business
applications. It is the most widely used computer language, but
few of its design concepts have had significant influence on
later languages. Both of these facts may be partially attributed
to its orientation toward business data processing, a major area
of computer application but one in which the problems are of a
somewhat unique character: relatively simple algorithms coupled
with high volume input-output. Most other languages have been
designed to implement relatively complex algorithms with
input-output a secondary consideration. In addition to the goal
of handling large scale input-output, other important design
criteria for COBOL were source program transportability and
highly readable, self-documenting, English-like source text.

These design goals shaped both the strengths and weaknesses
of the language, although some of the weaknesses result from the
lack of experience with computer language design at the time when
COBOL was specified. The major strengths of the language are
transportability of source code, good file handling capability,
and capability for specification of complex, hierarchical data
structures useful for the type of file processing common in
business applications. The major weaknesses are inelegant
structured control constructs, difficulty in producing efficient
object code because of complicated and machine dependent data
representation, verbose, cumbersome syntax, and lack of good
partitioning mechanism for data or for code. The adverse effects
of these weaknesses can be reduced through the use of
compiler-based tools, procedures for controlling the production
of programs, and procedures for analyzing the code produced to
minimize inefficient or error-prone constructs.

PAGE 60

One of the keys to transportability of COBOL programs is the
character string representation of data. Data descriptions can
be almost entirely independent of particular hardware
characteristics, such as word length or number representation.
This default data representation is adopted unless the data item
is declared with the clause USAGE IS COMPUTATIONAL. While this
representation enhances program transportability, it makes the
problem of efficient code generation difficult. Also, it
encourages the use of implied mixed mode arithmetic on a complex
range of types, further degrading object code efficiency and
leading possibly to unexpected results. This problem can be
alleviated by a semantic cross referencer and a semantic auditor
to flag or prohibit implied mixed mode arithmetic where the
result will be of questionable reliability or where extremely
inefficient code will be generated.

Due to the static nature of COBOL storage allocation, all
data is essentially global. Modern programming methods have
emphasized the practice of localizing data definition and usage
to increase both reliability and under standability . Following
this practice is difficult in COBOL, but a detailed lexical cross
reference can compensate somewhat for this language deficiency by
providing easier access to all usages of data elements within a

program.

The COPY facility for including source text f rofq&iga library
into a program improves the ease of writing COBOL.** To use this
facility effectively, strict configuration control must be
exercised to prevent copying incorrect or inappropriate modules.
A library management facility integrated within a COBOL compiler
system could provide this and other configuration management
functions, without undue restrictions imposed by the host system.

The overly permissive semantic rules of COBOL have given
rise to a number of articles suggesting rules and restrictions
for writing structured COBOL programs (Van Gelder, 1977, McLure,
1975) . The use of lexical, syntactic, and semantic code auditors
would be useful for enforcing coding guidelines, and reducing
programmer susceptibility to common COBOL errors. Some of the
rules that have been suggested are:

1. Execution flow cannot cause control to fall or jump into a

SECTION.

2. All IF statements will be required to have an ELSE clause to
serve as a marker to indicate the boundary of the IF
statement, since COBOL syntax provides no block structure.

3. The maximum level of nesting for IF statments will be three.

4. Each SECTION will be followed immediately by its EXIT

PAGE 61

SECTION. The EXIT SECTION will be named EXIT-<name> where
<name> is the SECTION procedure name. The only statement
which may appear in the EXIT SECTION is the EXIT statement.

5. The values of any index-names or identifiers used as control
variables in the PERFORM statement should not be modified in
the SECTION being performed.

6. A GOTO statement can only be used to jump into another part
of the same SECTION in which it appears.

Because COBOL syntax is often verbose and repetitive, macro
processors have become useful and popular adjuncts to COBOL
compilers (Triance and Yow, 1980) . Some of these have been
incorporated into compilers, while others are used as
preprocessors. Macro processors not only help in abbreviating
repetitive syntax, they also can provide more natural structured
control constructs and other language features that may not be
available in particular versions of COBOL.

Many existing COBOL programs are the result of a large
investment in time and manpower. Often they perform essential
and uninterruptable processing for organizations. Unfortunately,
many of these programs are written without adherence to rules for
making them easy to understand and maintain. Maintenance of such
programs can be costly. The ability to restructure such programs
according to guidelines for maintainable software would be
valuable in reducing maintenance costs without requiring a major
reprogramming effort.

7.4 BASIC

Originally intended as a simple programming language for
computer novices, BASIC does not contain many of the features
which, although they lead to the creation of more reliable,
readable, and maintainable programs, also make the programming
language itself more difficult to assimilate. Thus, there is
room for many valuable capabilities in most BASIC systems.

Many BASIC systems are interpretive, influencing
significantly the capabilities that are useful or implementable

.

For example, structure analysis is more difficult in an
interpretive environment. Regarding other capabilities, an
interpreter has advantages over a compiler, for example in
providing symbolic dynamic debugging. An interpretive system has
available at "run-time" all of the structure of the original
program; thus, it can easily provide for user interaction at a

level close to that of the source. Also, an interpreter often

PAGE 62

can provide more extensive capabilities,, for example a feature
whereby the user may execute selected BASIC statements when the
program is stopped at a particular point, perhaps to print the
values of intermediate results or to change the value of a
var iable

.

Although modern implementations of BASIC often support an
extremely large, general-purpose language useful for both
scientific and business applications, it is important that these
implementations retain a language subset that is learned easily
by the novice user, the original intent of BASIC* Thus, tools
that increase the difficulty of learning the system probably
should be avoided. These might include, for example, library
management (although most systems do not allow separately
compiled modules in any case) , program constructing, and macro
systems. Nonetheless, several useful capabilities significantly
assist all programmers, including novices.

One of the most dangerous features of BASIC is the GOSUB
construct, which allows the programmer to declare a local
procedure and invoke it without passing arguments. The procedure
is not delineated by any syntax? therefore, it is possible to
drop from main-line code into a GOSUB procedure. Rarely is this
sequence intentional? a compiler -based system can perform flow
analysis to determine if this control sequence can occur, issuing
an appropriate warning in such cases.

Another unique characteristic of BASIC is that scalars and
arrays may have the same name, although the data objects are
unrelated. This feature, in conjunction with the fact that
vectors whose dimension is less than ten need not be declared,
can lead to errors if the user inadvertently adds or omits a

vector subscript. A cross-reference facility, and perhaps a
warning message when a scalar and an array have the same name,
can significantly reduce the debugging time required to detect
such errors.

Most BASIC systems, interpretive or not, do not check for or
detect interface errors. In fact, some systems allow the number
of parameters on the calling and receiving sides to disagree, an
obviously dangerous practice. Regardless of whether the
implementation approach is compilation or interpretation, the

system can easily check the number and types of parameters, at
call time for an interpretive system, and at compile time for a

compiler (assuming that independently compiled modules are not
supported)

.

PAGE 63

BIBLIOGRAPHY

Boyer, R. S., B. Elspas, and K. N. Levitt, "SELECT: A formal
system for testing and debugging programs by symbolic
executions," Proc. 1975 International Conf. on Reliable
Software, Apr. 1975.

Clarke, L. , "Generating test data and symbolically executing
programs written in ANSI FORTRAN," IEEE Trans. Software
Engineering, Sep. 1976, pp. 215-222.

Deutsch, L. P., "An interactive program verifier," PhD Thesis,
UC/Berkeley, California, 1973.

Elspas, B. , K. N. Levitt, and R. J. Waldinger, "An
interactive system for the verification of computer programs,"
SRI Project 1891, Stanford Research Institute, Menlo Park,
California, 1973.

Fischer, C. N. , D. R. Milton, and S. B. Quiring, "An
efficient insertion-only error-corrector for LL (k) parsers,"
Proc. 4th ACM Symposium on Principles of Programming Languages,
1977, pp. 97-103.

Floyd, R. W. , "Assigning meanings
Symposium Applied Mathematics, Vol.
Society, Providence, R. I., 1967, pp.

to programs," in Proc.
19, American Mathematical
19-32.

Good, D. I., R.L. London, and W. W. Bledsoe, "An interactive
program verification system," Proc. International Conf. on
Reliable Software, Apr. 1975.

Habermann, A. N. , "The Gandalf research project,"
Science Research Review, Carnegie-Mellon University,
28-35.

Computer
1980, pp.

Halstead, M. H. , Elements of software Science, New York:
Elsevier, 1977.

Howden, W. E. , "Symbolic testing and the DISSECT symbolic
evaluation system," IEEE Trans. Software Engineering, Vol.
SE-3 , No. 4, Jul. 1977, pp. 266-278.

Huet,G., G. Kahn, and P. Maurice, "Environnement de
programmat ion Pascal," Technical report, IRIA Rocquencour t , Nov.
1977.

PAGE 64

King, J., "A new approach to program testing," Proc. 1975 Int.
Conf. on Reliable Software, Apr. 1975.

King, J. , "Symbolic execution and program testing," CACM, Jul.
1976 o

McCabe, J. T. , "A Complexity measure," IEEE Trans. Software
Engineering, Vol SE-2, No. 4, Dec. 1976, pp. 308-320.

McClure, Carma L. , "Structured Programming in COBOL," SIGPLAN
Notices, April 1975. Vol. 10, No. 4, pp. 25-33.

Osterweil, L. J., and L. D. Fosdick, "DAVE - a validation
error detection and documentation system for FORTRAN programs,"
Software Practice and Experience, Vol. 6, 1976, pp. 473-486.

Teitelbaum, Ray T. , "The Cornell program synthesizer: A

microcomputer implementation of PL/CS," Technical report.
Department of Computer Science, Cornell University, 1979.

Triance, J.M. and Yow, J.F.S., "MCOBOL-A Prototype Macro
Facility for COBOL." CACM August, 1980, Vol. 1 23, No. 8,

pp. 432-439.

Van Gelder, Alan, "Structured Programming in COBOL: An Approach
for Application Programmers," CACM Jan. 1977, Vol 20, No. 1,

pp. 2-12

.

NBS-114A (rev. 2-80

U.S. DEPT. OF COMM. 1 .

BIBLIOGRAPHIC DATA
SHEET (See instructions)

PUBLICATION OR
REPORT NO.

81-2423

2. Performing Organ. Report NoJ 3.

4. TITLE AND SUBTITLE

Compiler-Based Programming Support Capabilities

Publication Date

5. AUTHOR(S)

Gary Bray, Roger Lipsett, William Bail, and Victor Berman

6. PERFORMING ORGANIZATION (If joint or other than N BS. see instructions) 7. Contract/Grant No.

national bureau of standards
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

Intermetrics, Inc.

4733 Bethesda Avenue
Bethesda, Maryland 20014

NB79SBCA01 31

0. Type of Report & Period Covered

Final Report

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State, ZIP)

National Bureau of Standards
Department of Commerce
Washington, D. C. 20234

10. SUPPLEMENTARY NOTES

| |

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bi bl iography or literature survey, mention it here)

An effort to determine a set of features offered by program analysis and testing tools
that could be feasibly implemented in a compiler is reported. Currently, program
analysis and testing tools offer features that require syntactical analysis of a

program in a manner similar to compilers. Much of the information that is generated
during compilation could be used to aid program development in other ways. It was the
goal of this effort to identify a set of software tool features and develop a

methodology for combining these into a compiler.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

Compilers; Dynamic Analysis; Programming Aids; Software Development; Software
Engineering; Software Tools; Static Analysis

13. AVAILABILITY 14. NO. OF
PRINTED PAGES

C'Xl Unlimited

[]

For Official Distribution. Do Not Release to NTIS 67 pages

j

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402. 15. Price

E^] Order From National Technical Information Service (NTIS), Springfield, VA. 22161 8.00

USCOMM-DC 6043-PB0

T:‘e-

