
ROBOTICS SUPPORT PROJECT

FOR THE AIR FORCE

ICAM PROGRAM

National Bureau of Standards
National Engineering Laboratory, CME

Industrial Systems Division
Programmable Automation
Washington, DC 20234

FINAL REPORT
August 1981

For Early Domestic Dissemination

Because of its significant early commercial potential, this in-
formation, which has been developed under a U.S. Government pro-
gram, is being disseminated within the United States in advance
of general publication. This information may be duplicated and
used by the recipient with the expressed limitations that it not
be published nor released to foreign parties without appropriate
licenses. Release of this information to other domestic parties
by the recipient shall be made subject to these limitations.
This legend shall be marked on any reproduction of this data in
whole or part. These limitations shall be considered void two
years after the release date on the data.

Manufacturing Technology Division
Air Force Materials Laboratory

Air Force Systems Command
Wr ight-Patterson Air Force Base, Ohio 45433

NOTICE

When Government drawings, specifications, or other data are used
for any purpose other than in connection with a definitely relat-
ed Government procurement operation, the United States Government
thereby incurs no responsibility nor any obligation whatsoever;
and the fact that the government may have formulated, furnished,
or in any way supplied the said drawings, specifications, or oth-
er data, is not to be regarded by implication or otherwise as in
any manner licensing the holder or any other person or corpora-
tion, or conveying any rights or permission to manufacture, use
or sell any patented invention that may in any way be related
thereto.

Copies of this report should not be returned unless return is re-
quired by security considerations, contractual obligations, or
notice on a specific document.

MIPR SY1455-78-00003

ROBOTICS SUPPORT PROJECT
FOR THE AIR FORCE ICAM PROGRAM

FINAL REPORT

ZTfiTIOirAl SUTfEAQ
OV ST/JJb'UtDS

Licpjuir

JUN
^

nrr- ^ 1

James S. Albus
Anthony J. Barbera
M. L. Fitzgerald

Robert Haar
Roger D. Kilmer
Marilyn Nashman
Louis Palombo

Thomas Wheatley

National Bureau of Standards
National Engineering Laboratory, CME

Industrial Systems Division
Programmable Automation
Washington, DC 20234

Prepared for
Manufacturing Technology Division

Air Force Material Laboratory
Air Force Systems Command

Wr ight-Patterson Air Force Base, Ohio 45433

TABLE OF CONTENTS

Page

EXECUTIVE SUMMARY 1

GUIDELINES FOR SELECTION OF ROBOTIC SYSTEMS (4.1) 7

REVIEW OF ROBOTICS GUIDE (4.1.1) 8

PRACTICES FOR DEVELOPING ROBOT SOFTWARE (4.1.3) 9

INTERFACE STANDARDIZATION (4.1.4) 10

MANAGEMENT SUMMARY OF LEVELS OF CONTROL (4.1.4) 11

GLOSSARY OF TERMS FOR PROCUREMENT (4.1.5) 12

EXPECTED FUTURE DEVELOPMENTS (4.1.6) 13

RECOMMENDED IMPLEMENTATION CONCEPTS (4.1.7) 30

PROVIDE TECHNICAL SUPPORT TO CONTRACTORS (4.2) 44

TECHNICAL CONSULTING (4.2..1) 45

FIELD TRIPS (4.2.2) 46

IMPROVED ROBOT SYSTEM PERFORMANCE AND SAFETY (4.3) 47

NBS ROBOT CONTROL SYSTEM DEVELOPMENT (4.3.1) 48
INTRODUCTION 49
DESIGN REQUIREMENTS 51
SYSTEM PARTITIONING 56
IMPLEMENTATION 82
SUMMARY 110

IMAGING SENSOR DEVELOPMENT (4.3.2) 112
VISION SYSTEM OVERVIEW 113
ir4AGE PROCESSING SOFTWARE 115
CAMERA INTERFACE DESIGN 131

INHERENTLY SAFE SYSTEMS (4.3.3) 136

iii

LIST OF FIGURES

Section 4.1.5

1. Three Aspects of a Sensory-Control System 32
2. NBS Microcomputer Network 37
3. Hierarchical Architecture for Factory Control 39

Section 4.3.1

111.1 The Modules of the Control System 56
111. 2 Off-line Programming Module 57
111. 3 Function of Task Description Segment 57
III. 4 Format of an Entry in the Program Table 58
III. 5 Valid Entries in the Program Table 58

III. 6 Function of the Data Description Segment 61
III. 7 Methods of Entering Data into Location Tables 62
III. 8 Format of an Entry in the Location Table 63

111. 9 Format of an Entry in the Object Description Table 64
111. 10 Partitioning of the Robot Control System 64
111. 11 Information Flow for a Level in the Control Hierarchy 66
111. 12 Two Parallel Hierarchies - Control and Sensory Processing 69
111. 13 Sensor Data Input to Different Levels of the Hierarchy 70
111. 14 Interactions between Sensory and Control Hierarchies 71
111. 15 Programming Interfaces 71
111. 16 The Four Level Hierarchy for Real-Time Control Module 73
111. 17 Primitive - Trajectory Interface 80
111. 18 Trajectory - Coordinated Joint Motion Interface 81
111. 19 Coordinated Joint Motion - Servo Interface 81

IV. 1 Layout of 16-bit Microprocessor Board and Bus Interface 87
IV. 2 Dual-Port RAM 87
IV. 3 Priority Circuit Diagram 89
IV. 4 Block vs. Single Data Transfer 91
IV. 5 Common Memory Layout 92
IV. 6 Protocol Logic 95
IV. 7 On-board RAM Layout 97
IV. 8 Data Transfers among 3 Processors 97
IV. 9 Status Checking Algorithm 99
IV. 10 Interaction in a 2 Processor System 99
IV. 11 Buffer Allocation Table Format 102
IV. 12 Protocol Flags 103
IV. 13 Data Collection Interface Hardware 104
IV. 14 DTP-DIB Interface 104
IV. 15 DTP-DIB Protocol 106
IV. 16 Data Transfer Timing 106
IV. 17 DIB-Device Interface 107
IV. 18 Example of Asynchronous Transfer 108

IV

Section 4.3.2

1. Camera and Flash Mounted on Robot 113
2. Structured Light 114
3. NBS Vision Interface 114
4-7. Object Rotations 117
8. Height Computation 121
'9. Calculation of Object Distance 122
10. Defining Plane of Light 122
11. Transition Value Data 123
*12. Plane of Light Picture 129
13 - 22 Circuit Diagrams - Vision Hardware 133

Section 4.3.3

1. Shapes used to Model Robot 138
2. Side View of Stanford Arm 139
3. Top View of Stanford Arm 139
4. Stanford Arm with all Joints at Zero Position 140
5. Stanford Arm identifing Wrist, Finger and Tool Point 140
6. Vectors to Define Arm Configuration 141
7. Ray Tracing Technique 141
8. Graphic Simulation of Stanford Arm 142
9. Stanford Arm in NBS Laboratory 152
10. Floor Plan of NBS Laboratory 152
11. Safety Mat Surrounding Robot 155
12. View of Electrostatic Transducer 158
13. Instrumentation for Acoustic Characteristic Measurement 158
14. Time History Envelop for Single Ultrasonic Pulse 159
15. Directional Characteristics of Radiated Sound Waves 160
16. Narrow Band Spectral Analysis of Single Pulse 161
17. Analysis of Individual Components of Pulse 161
18. Output Signals from UCB 163
19. Setup for Investigation of Target Surfaces 165
20 . Manikin 167
21. Robot with Five Electrostatic Transducers 169
22. Areas of Detection Coverage 170

V

U1

U)

to

I—

<

List of Tables

Section 4.3.3

Spatial Coordinates of Stanford Arm 139
Comparison of Intrusion Alarm Systems 151
Instrumentation Settings for Acoustic Measurements 159
Effect of Targer-Sensor Distance on Echo 156
Comparison of Target Echo Strengths for Plywood 166

6. Comparison of Target Echo Strengths for Manikin 167

VI

INTRODUCTION

The National Bureau of Standards Programmable Automation

Group was chosen by the Air Force ICAM office to perform a

wide variety of tasks in support of the project entitled

"Robotic Systems for Aerospace Batch Manufacturing." The

scope of work was a 26 month effort involving approximately

two man years per year of in-house work at NBS. Work was

begun in October 1978 and was completed in December 1980.

Three major tasks were addressed:

1. To develop a guidleine for the selection and pro-

curement of robots, robot computer languages and

robot control systems for aerospace batch manufac-

turing .

2. To provide technical support to the Air Force and to

Air Force contractors on the implementation of robot

systems

.

3. To directly support computer control, programming,

and sensor technology to substantially improve robot

system performance and safety.

These three major tasks were further broken down into thir-

teen subtasks, three of which were to result in documents

published separately from the normal quarterly reports and

this final report.

Vll

The thirteen subtasks cover a wide variety of topics from

the compilation of a Glossary of Robotic Terms, to the

development of Recommended Practices for Robot Control

Software, to research on Robot Imaging Sensors. The entire

list of subtasks and a short description of what was accom-

plished under each is contained in the Executive Summary.

The main body of this report consists principally of a dis-

cussion of Expected Future Developments (Task 4.1.6), a

Recommended Aerospace Robot System Implementation Concept

(Task 4.1.7), and a description of NBS work in Hierarchical

Control (Task 4.3.1), Imaging Sensor Development (Task

4.3.2)

, and Inherently Safe Systems (Task 4.3.3). NBS

recommendations on Practices for Developing Robot Control

Software (Task 4.1.2), Recommended Standard Interfaces (Task

4.1.3)

, and a Glossary of Terms for Robotics (Task 4.1.5)

are being published as separate documents and are included

with this final report as addenda.

Vlll

EXECUTIVE SUMMARY

The NBS effort on MIPR SY14757-78-00003 , "Robotics Support

Project for the Air Force ICAM Program", is described in

this final report. Our work on all the major task areas is

summarized by subtask in what follows.

TASK 4.1 DEVELOP GUIDELINES FOR SELECTION AND PROCUREMENT OF

ROBOTIC SYSTEMS FOR BATCH MANUFACTURING

Task 4.1.1 Review of the "Robotics Guide"

The draft copy of the "Robotics Application Guide" (RAG) was

received and an extensive review conducted. The review in-

cluded a global analysis, suggestions for reordering of to-

pics, and a detailed commentary on sections that could bene-

fit from additional work. This review was given to General

Dynamics and a finalized RAG was generated.

Task 4.1.2 Recommended Practices for Developing Robot Con-

trol Software

The specifications, design and implementation of the system

control software of the Task B contractor were reviewed. In

addition, based upon the concept of software as the control

and integrating mechanism of future robot control systems, a

philosophy was developed to guide the creation of software

for Aerospace Batch Manufacturing robot control. A set of

- 1 -

recommended robot software development procedures is being

published as a separate report as specified by the above

referenced contract. That document is attached as an adden-

dum to this final report.

Task 4.1.3. Recommended Standard Interfaces

A workshop on potential robot interface standards was held

at the National Bureau of Standards June 4 through June 6 ,

1980. One hardware and five software interfaces were identi-

fied as candidates for standardization. Proceedings of this

workshop were published as a separate report and are at-

tached as an addendum to this report.

Task 4.1.4 Management Summary of Levels of Control

NBS reviewed the hierarchical control system proposed during

Task B of the referenced contract. An overview was prepared

concerning the essential role of computer software and sen-

sor technology in making effective use of industrial robots

in Aerospace Batch Manufacturing. Potential system imple-

mentation problems were discussed and implemetation pro-

cedures recommended.

Task 4.1.5 Glossary of Terms for Robotics

A glossary of robotic terms has been prepared and is being

published as a separate report as specified. That document

is attached as an addendum to this report.

- 2 -

Task 4.1.6 Expected Future Developments

Based upon the analysis of the efforts conducted under the

above referenced contract, industry trends in robot hardware

and software development have been identified and extrapo-

lated to assess their impact in the Aerospace Industry. A

number of potential future Aerospace applications were

analyzed, and the enabling technologies needed to make

robots practical for these applications were identified. An

attempt was made to estimate the dollar and manpower costs

and time needed to develop these enabling technologies.

Task 4.1.7 Recommended Aerospace Robot System Implementation

Concept

A scenario for the best use of robot systems in the next few

years is hypothesized in this section of the report. The

suggested scenario draws upon the efforts conducted in the

referenced contract, as well as on other programs at NBS and

trends in control software and sensor systems and potential

future developments in the robotics industry. Recommenda-

tions are made for a system design that will not become ob-

solete with the expected developments in the industry. A

design is described which integrates sensory- interactive

robots into a modular hierarchical control system for a to-

tally automated factory of the future.

- 3 -

TASK 4.2 PROVIDE TECHNICAL SUPPORT TO THE AIR FORCE AND TO

AIR FORCE CONTRACTORS

Task 4.2.1 Technical Consulting

In addition to reviewing contractor reports referenced in

4.1, NBS was available for consulting with contractors on

proposed plans and specifications related to robotic tech-

nology.

Task 4.2.2 Field Trips

Several field trips were made to contractor facilities and

plants for review and consulting.

Task 4.2.3 NBS Reports

NBS supplied copies of related reports and papers to in-

terested users and suppliers as related to Air Force needs.

TASK 4.3 IMPROVE ROBOT SYSTEM PERFORMANCE AND SAFETY

Task 4.3.1 Robot Control System

NBS work on hierarchical control systems is reported under

this section of this final report. A technical description

of the NBS microcomputer system architecture is provided as

well as a discussion of the specific hardware and bus prior-

ity circuitry used to implement the present version of this

system.

- 4 -

Task 4.3.2 Imaging Sensor Development

Work performed under this task investigated techniques for

making effective use of imaging sensors and for incorporat-

ing interpretation of image processing into robot control

systems on a real-time basis. The vision hardware and at-

tributed lighting techniques used to acquire images are

described. Software for determining binary image orienta-

tion and analyzing the 3-dimensional shape of binary images

is presented. Circuit diagrams for the NBS vision system

camera interface electronics are also included.

Task 4.3.3 Inherently Safe Systems

An ultrasonic ranging sensor and data processing system was

developed and tested. Experiments were performed using this

sensor system as a safety device. Whenever an intruder or

unexpected obstacle is detected in the working envelope of

the robot, a warning flag to the control system causes the

robot to stop and wait for the intruder to leave before con-

tinuing the task. Additional types of safety sensors are

also analyzed for possible future systems.

- 5 -

;i 'i'-p' %Xi.nAI!^
.

'’.'
I

' \ ',,v - '

,

•

'
‘

'

'

‘ '• *'*

f . '.'ns ?
•

'no, >^3

sT.i ' V^' .'•-

e:^ w%' ' bocu I'Oi^-t:’

'^lall'

.rJ:V .^#u obj \ .a if\i‘:'^i\^, i j • iO ? ^ '. i V

.tM^lPnJi ^ilM‘ If '•'-'

. .^.,v.
-

,: ';r \ ,* '
. •

^

'

_

'

.- i
:

.T-SW. fO?'::b.; ' S3;Aipm. r^jS^i^ y} -i.
’*

.‘^r^
'

:
.; AS .f«v$'j;$/,3V!^^)r.-- <5

•“.,f;/'.-"A ^-:?0AA'4 £- V. S .li 'i;'/,t ' ^1-0 - ^ i V'’
'^'''

'
^' ->,;* .i'C'- 'C-’i

i.eva
'.: V': /„

.

#'•''
G.'Yr!”i‘'. ifri’A -

1
'

,

1')^’
'"

'‘ •4" -•'S^''^;
•-

FINAL REPORT

NBS ROBOTICS SUPPORT PROJECT

FOR THE

AIR FORCE ICAM PROJECT

- 6 -

SH^^ mi

'^AD. T.M^)^ hlA.

GUIDELINES FOR SELECTION AND PROCUREMENT

OF ROBOT SYSTEMS FOR BATCH MANUFACTURING 4.1

- 7 -

Task 4.1.1 Review of the "Robotics Guide

The draft copy of the "Robotics Application Guide" (RAG) was

received and an extensive review conducted. The review in-

cluded a global analysis, suggestions for reordering of to-

pics, and a detailed coimiientary on sections that could bene-

fit from additional work. This review was given to General

Dynamics and a finalized RAG was generated.

Work performed on this section of the contract was reported

in its entirety in the Combined First and Second Reports

covering the period from October 1, 1978 to April 1,1979.

That report will not be duplicated in this final report.

Task 4.1.2 Recommended Practices for Developing Robot Con-

trol Software

The specifications, design and implementation of the system

control software of the Task B contractor was reviewed. In

addition, based upon the concept of software as the control

and integrating mechanism of future robot control systems, a

philosophy was developed to guide the creation of software

for Aerospace Batch Manufacturing robot control.

This task specified that a separate document titled "Recom-

mended Procedures for the Design and Implementation of

Real-time Control Software" be published under separate cov-

er. That document is attached as an addendum to this final

report.

- 9 -

Task 4.1.3. Recommended Standard Interfaces

A workshop on potential robot interface standards was held

at the National Bureau on Standards June 4 through June 6,

1980. One hardware and five software interfaces were identi-

fied as candidates for standardization. Proceedings of this

workshop were published as a separate report. That document

is attached as an addendum to this final report.

- 10 -

Task 4.1.4 Management Summary of Levels of Control

NBS reviewed the hierarchical control system proposed during

Task B of the referenced contract. An overview was prepared

concerning the essential role of computer software and sen-

sor technology in making effective use of industrial robots

in Aerospace Batch Manufacturing. Potential system imple-

mentation problems were discussed, and implemetation pro-

cedures recommended.

The Combined First and Second Interim Report presented is-

sues in robot control systems, functional requirements, and

an overview of a hierarchical structured control system.

That report will not be duplicated here.

- 11 -

Task 4.1.5 Glossary of Terms for Robotics

A glossary of robotic terms has been prepared and

published as a separate report as specified. That

is attached as an addendum to this final report.

is being

document

- 12 -

Task 4.1.6 Expected Future Developments

Abstract

Based upon the analysis of the efforts conducted under the

contract referenced above, industry trends in robot hardware

and software development have been identified and extrapo-

lated to assess their impact in the Aerospace Industry. A

number of potential future Aerospace applications are

analyzed

,

and the enabling technologies needed to make

robots practical for these applications are identified. An

attempt is made to estimate the costs and time needed to

develop these enabling technologies.

- 13 -

EXPECTED FUTURE DEVELOPMENTS

The results of the Air Force ICAM project "Robotic Systems

for Aerospace Batch Manufacturing" make it clear that much

remains to be done before robots can have a significant im-

pact on productivity in aerospace production. Each of the

three contractors selected by the Air Force for Tasks, A, B,

and C performed a series of experiments using robots in a

variety of applications. In every case, the results were

interesting and suggestive of many potential applications.

The drilling and routing experiments at General Dynamics

provided valuable insights into how robots might be used on

the shop floor to automate these routine yet costly tasks.

The McDonnell-Douglas riveting demonstration was an impres-

sive accomplishment which integrated elements of off-line

programming, visual processing, and hierarchical control.

The experimental and theoretical studies performed by

Lockheed Georgia suggest a number of task areas which may

benefit from robotics technology.

However, all these contract tasks were more enlightening

from the standpoint of how much remains to be done than from

what was actually accomplished. The General Dynamics dril-

ling and routing tasks were chosen because they were con-

sidered to be doable with presently available robot techno-

logies. Yet the final demonstration clearly showed that

more sensory information and more sophisticated control

- 14 -

capabilities will be required before robots can do even

these simple tasks reliably without constant human supervi-

sion. The McDonnell-Douglas riveting demonstration showed

that despite a great amount of capital equipment supporting

the robot, even the simplest riveting tasks were painfully

slow and far from being ready for the small batch production

shop. None of the experiments indicated that robots are

ready to leave the laboratory in large numbers to begin work

on the factory floor — at least not in the next few years.

Robots are still too cumbersome, expensive, slow, stupid,

and insensitive to what is happening in their environment to

compete seriously with human labor in most aerospace appli-

cations, particularly in assembly. Furthermore, the range

of tasks that were represented by the ICAM demonstrations

make up only a tiny subset of the total number of jobs in

airframe assembly.

These results make it clear that, at best, it will be

several more years before robots can produce significant

cost savings in a substantial fraction of aerospace manufac-

turing applications. In short, the robot revolution is not

yet ready to sweep the aerospace industry into a new era.

Technical Problem Areas

The ICAM robotics systems effort has demonstrated that there

are a number of difficult technical problems that still need

- 15 -

to be solved.

First of all, robot positioning accuracy needs to be im-

proved. Although the repeatability of most robots is on the

order of 0.050 inch over its working volume, the absolute

positioning accuracy may be off as much as 0.250 inch, or

even 0.500 inch in some regions of the reach envelope.

Thus, it is not possible to program a robot to go to an ar-

bitrary mathematically defined point in a coordinate space

and have any assurance that the robot will come within a

half of an inch. This difficulty creates major problems for

off-line programming, particularly where the same program is

to be used on several different robots. Presumably, this

accuracy problem could be solved through closer manufactur-

ing tolerances, although not without cost. Alternatively,

calibration procedures might allow each robot to offset its

off-line program points to compensate for its mechanical

inaccuracies. However, no efficient methods of robot cali-

bration have yet been developed, and robot control software

is not presently designed to use calibration tables for im-

proving absolute positioning accuracy. Until this absolute

positioning accuracy problem is solved, robot assembly in

the small batch environment will be uneconomical. Teaching

a robot every point in the trajectory of a complex assembly

task is a time-consuming job which may take many times

longer than would be required to perform the same task by

- 16 -

hand. Thus, using a robot for small lot batch assembly can-

not be economical until software can be efficiently produced

by off-line programming.

Second, dynamic performance must be improved. Present

robots are too slow and clumsy to compete effectively with

human labor in assembly. Two possible exceptions to this

are in arc welding, where speed is not a factor, and spot

welding, where the task corresponds to a simple string of

points in space — a procedure which the robot is particu-

larly adept at executing. However, if robots are to perform

other types of assembly tasks, they must be able to execute

much more complex routines with much greater grace, dexteri-

ty, and speed than they are now capable of. Servo systems

must be designed to take into consideration the changing

inertial configuration of the robot under different loads

and different positions of the robot arm. Servos need to be

alternately stiff and compliant along different axes in

space (which do not generally coincide with joint coordi-

nates) . This requires much more sophisticated cross-coupled

servo computations than are presently employed.

Third, sensors of many different types must be developed.

Robots must become able to see, feel, and sense the position

of objects in a number of different ways. Processing of

visual data must become faster and be able to detect 3-di-

mensional shapes and relationships. Robot grippers must be-

- 17 -

come able to feel the presence of objects and sense the

forces developed on those objects. Proximity sensors are

needed on robot fingertips to enable the robot to measure

the final few millimeters before contacting objects. Longer

range proximity sensors are needed on the robot arm to avoid

colliding with unexpected obstacles. Force and touch sen-

sors are needed to detect and measure contact forces. A

variety of acoustic, electromagnetic, optical, x-ray, and

particle detectors are needed to sense the presence of vari-

ous materials such as metals, ferromagnetics, plastics,

fluids, and limp goods, and to detect various types of flaws

in parts and assemblies. Both the sensing devices and the

software for analyzing sensory data represent research and

development problems of enormous magnitude.

Fourth, control systems are needed which can take advantage

of sophisticated sensory data from a large number of dif-

ferent types of sensors simultaneously. Present control

systems are severely limited in their ability to modify a

robot's behavior in response to sensed conditions. Robot

control systems need to be able to accept feedback data at a

variety of levels of abstraction and have control loops with

a variety of loop delays and predictive intervals. (See for

example Section 4.3.1 of this report). Sensory data used in

tight servo loops for high speed or high precision motions

must be processed and introduced into the control system

with delays of no more than a few milliseconds. Sensory

- 18 -

data used for detecting the position and orientation of ob-

jects to be approached must be available within hundreds of

milliseconds. Sensory data needed for recognizing the iden-

tity of objects or the relationship between groups of ob-

jects can take seconds. Control systems that are properly

organized in a hierarchical fashion so that they can accom-

modate a variety of sensory delays of this type are not

available on any commercial robot.

Fifth, robot control systems need to have much more sophis-

ticated internal models of the environment in which they

work. Robot control systems should have data bases similar

to those generated by Computer-Aided-Design (CAD) systems,

and used for computer graphics displays. These can describe

the three dimensional relationships of both the workplace

and the workpieces. Such data bases are needed to generate

expectations as to what parts should look like to the vision

system, or what they should feel like to the touch sensors,

or where hidden or occluded features are located. Eventual-

ly, such internal models might be used in the automatic gen-

eration of robot software - for example, by describing how a

finished assembly should look, or even how each stage of an

assembly or construction task should appear in sequence.

Sixth, techniques for developing robot software must be

vastly improved. Programming-by-teaching is impractical for

small lot production, especially for complex tasks where

- 19 -

sensory interaction is involved. Shop floor personnel un-

skilled in computers must be able to instruct robots in what

to do and what to look for in making sensory decisions.

Eventually, it will be necessary to have a whole range of

programming languages and debugging tools at each level of

the sensory-control hierarchy. The development of compilers

and interpreters and other software development tools, as

well as techniques for making use of knowledge of the en-

vironment derived from a number of different sensors and CAD

data bases are research topics that will require hundreds of

person-years of highly skilled software talent.

Seventh, interfaces need to be defined in some standardized

way, so that large numbers of robots, machine tools, sen-

sors, and control computers can be connected together in in-

tegrated systems. (See for example Section 4.1.3 of this

report)

.

For the most part, these are profound problems which will

require much more research and development. It may be pos-

sible to improve the mechanical accuracy of robots, and to

improve servo performance with little more than careful en-

gineering. But much more fundamental research and develop-

ment will be required before the sensor, control, internal

modeling, software generation, and systems interface prob-

lems are solved. Much remains to be done in sensor technol-

ogy to improve the performance, reliability, and cost effec-

- 20 -

tiveness of all types of sensory transducers. Even more

remains to be done in improving the speed and sophistication

of sensory processing algorithms and special purpose

hardware for recognizing features and analyzing patterns

both in space and time. The computing power that is re-

quired for high speed processing of visual and acoustic pat-

terns may even require new types of computer architecture.

Sensory-interactive control systems that can respond to

various kinds of sensory data at many different levels of

abstraction are still very much in the research phase.

Current commercial robot control systems do not even allow

six-axis incremental movements in response to sensory data.

None have convenient interfaces by which sensory data of

many different kinds can be introduced into the servo loops

on a millisecond time scale for true real-time sensory in-

teraction. None of the commercial robot control systems

have anything approximating CAD data bases or computer

graphics models of the environment and workpieces. Finally,

current programming techniques are time consuming and not

capable of dealing with internal knowledge or sophisticated

sensory interactions.

These are very complex problems that will require many

person-years of research effort. It is thus not suprising

that the robotic systems work carried out under the first

phase of the Air Force ICAM project demonstrated the inade-

- 21 -

quacy of present robot technology significantly to affect

productivity in aerospace manufacturing.

What Lies in the Future?

All of the problems listed above are capable of being

solved. It is only a matter of time and expenditure of

resources before sensors and control systems are developed

that can produce dexterous, graceful, skilled behavior in

robots. Eventually, robots will be able to store and recall

knowledge about the world that will enable them to behave

intelligently and even to show a measure of insight regard-

ing the spatial and temporal relationships inherent in the

workplace. High order languages and sophisticated control

systems will eventually make it possible to instruct robots

using much the same vocabulary and syntax that one might use

in talking to a skilled worker.

There is no question that, given enough time and resources,

robotics will eventually become a significant factor in in-

creasing productivity in aerospace production. The question

is: How much time and how many resources will be required

before such increases occur?

The NBS ICAM robotics research team thinks that more than a

few tens of millions, and probably less than a few hundreds

of millions of dollars will be required to make robots capa-

ble of dramatically improving aircraft manufacturing. More

- 22 -

than a few hundred and probably less than a few thousand

person-years of high level scientific and engineering talent

will be needed before robot software of sufficient complexi-

ty can be generated economically for small lot batch produc-

tion. In other words, a research and development effort of

at least one, and perhaps two, orders of magnitude greater

than the initial Air Force ICAM Robotics project will be re-

quired to produce a significant impact on productivity in

the aerospace industry.

Recommendations for Future Programs

If this analysis of the magnitude of the problem is correct,

the question then arises as to what the Air Force can (or

should) do in supporting future robotics research. The fol-

lowing suggestions are offered:

First, a long term research and development program should

be formulated that would foster centers of scientific and

engineering competence in the basic sciences of artificial

intelligence and robotics.

Second, short term application areas should be chosen that

are suitable to present and near-term robot technology. In

particular, assembly was and probably still is the wrong

area on which to concentrate. Although it is a glamorous

goal, robot assembly is very difficult. Results in assembly

will come slowly — too slowly to satisfy funding managers

- 23 -

who require short term results. A viable robotics R&D pro-

gram should therefore at least include, if not concentrate

on, tasks where robots are relatively good already, and

where solid evolutionary progress can be demonstrated at

regular intervals.

In particular, robotics research for aerospace manufacturing

should focus on N/C machine tool loading and unloading, spot

welding, arc welding, spray painting, sanding, and placement

of fixtures for drilling, counter sinking, riveting,

deriveting, screwing, and inspecting wing skins and fuselage

panels. These are areas where current robot technology can

be applied in the near term and economic payoff can be

achieved in the short run. Longer term research in off-line

programming, sensory interactive control systems, and use of

CAD data models can initially be focused on these more sim-

ple tasks before being applied to the more difficult prob-

lems of assembly.

Third, adequate funding should be provided on a long-term

basis. A goal of $20 to $50 million per year is realistic

in terms of the dimensions of the technical problems to be

solved, and is quite small compared to the potential pay-

back to be gained from enhanced productivity just in the

manufacture of products for the Air Force. Such a funding

level represents only the cost of one or two airplanes per

year. Of course, it is not necessary that the Air Force

- 24 -

provide this entire amount. Other funding sources are

available, and efforts should be made to coordinate funding

for research and development. Much of the basic control

theory, sensors, data processing, programming languages, and

knowledge storage and recall technologies are generic and

useful in all types of robotics. Thus, coordination in

funding of research between the Air Force, DARPA, ONR, NBS

,

NASA, and NSF, plus a number of private corporations, is a

practical option.

One typically invests in a new technology with the expecta-

tion of something between ten and fifty percent annual re-

turn on investment. If one believes that robot technology

has the potential significantly (e.g. by greater than 10%)

to affect productivity in aerospace manufacturing, then the

proper level of investment would be at least an order of

magnitude greater than it has been.

Even a few million per year invested in robotics research

and development would begin to bring rapid progress in robot

accuracy and dynamic performance. One or two million could

easily produce calibration techniques and error correcting

control systems with sufficient accuracy to permit off-line

programming. Several million more could produce advanced

servo systems that could execute swift and dexterous move-

ments that approach or even exceed the capabilities of the

human hand and arm. A few million more would produce ultra

- 25 -

high level programming languages and man-machine interface

techniques that would make robot programming economically

practical for small lot production.

Ten to $20 million per year would support sufficient

research into vision and tactile sensing to make robots able

to see and feel well enough to perform a wide variety of

tasks. Programmers would develop software that gives robots

significant intellectual capacities for planning and

scheduling and imparts a high level of manufacturing exper-

tise and craftsman-like skills. Significant research into

light weight structures and exotic types of actuators would

produce robot tip velocities of hundreds of inches per

second and accelerations of several "g's". Over a decade,

this level of funding would produce sensors and sensory pro-

cessing systems that would give robots perceptual capabili-

ties approaching that of human assembly workers in the lim-

ited domain of many aerospace jobs. Sensory interactive

control systems using tens, or even hundreds, of microcom-

puters could be built. These would be capable of producing

entire manufacturing cells with skills, coordination, and

intellectual capabilities almost like those of a person.

Robots, machine tools, materials transport systems, and in-

spection machines could be operated unsupervised and unas-

sisted for long periods of time (i.e., hours, days, even

weeks) . Internal data models could be developed to the de-

gree necessary so that robots could be instructed to perform

- 26 -

tasks, and to shift from one task to another, with little

more effort than currently required for dealing with skilled

human workers. Robot mobility systems could be developed

that would permit robots to move freely about an entire

plant and to work in teams of two and three when required by

specific tasks.

In short, several tens of millions per year spent on robot

RStD could revolutionize aerospace manufacturing within a de-

cade. In two decades the results would spill over into all

of industrial manufacturing.

The spin-off for the civilian economy would be rapid and

dramatic. In the long run, the development of the technolo-

gy needed to make robots effective in the batch production

environment of aerospace manufacturing would directly affect

productivity in the robot industry itself. Eventually, the

use of robots to automate the manufacture of robots would

become practical. The results of this might enable the

robot industry to duplicate the cost/performance record of

the computer industry. Once that happens, the productive

capabilities of constant-cost robots might escalate by 20%

each year.

By the year 2000 totally automated factories could produce

annual savings of billions of dollars annually in the

aerospace industries alone. The benefits to the civilian

economy could exceed this by an order of magnitude.

- 27 -

If this analysis is even close to the mark, a much higher

rate of investment in robotics by the Air Force would appear

to be easily justified. The results are certain to be large

and positive. All the technological problems are reasonably

well understood. No further fundamental scientific break-

throughs are needed. Each of the technical problems men-

tioned above is slowly yielding to solution in the few

research laboratories in this country that have more than a

"critical mass" level of effort.

Unfortunately, there is not a widespread appreciation of the

nature of the problems that remain, and especially not of

the potential benefits that will result from the solution of

these problems. Highly skilled, dexterous, inexpensive

robots with sufficient intelligence to perform many indus-

trial tasks will completely change the economic structure,

not only for aerospace manufacturing, but for the entire in-

dustrial system.

Unfortunately, domestic political considerations preclude

the civilian branch of government from taking a lead role in

investing in robot technology on a large scale. Robots are

widely perceived by average citizens as a threat to jobs and

the potential harbinger of unemployment. It is not clear to

the people on the street how robots would benefit them per-

sonally, or why the government should subsidize robot

development. Many persons are fearful of robots as competi-

- 28 -

tors in the job market. Thus, there is not, and most likely

will not be, a ground swell of demand for government in-

volvement in the development ,of robots for the civilian

economy. In fact, most popular opinion is negative, or at

best neutral, assuming that such development is the proper

domain of the private sector.

Massive investments in robot technology may also be slow in

coming from private industry. This technology is still con-

sidered futuristic, and therefore risky, by most industrial

managers. The amount of research that still needs doing

looks awesome to the average executive, even for the cor-

porate giants. More important, the returns on investments

in robotics technology cannot be exclusively guaranteed to

the corporations that make the investments. Much of robot

technology is generic. Many of the important developments

cannot be protected by patents. There are thus few incen-

tives for private industry to invest any more than is neces-

sary simply to remain abreast of the competition. The con-

clusion is that unless the military takes the lead in fund-

ing large investments in robot technology, it probably will

not occur in America for a number of years.

- 29 -

Task 4.1.7 Recommended Aerospace Robot System Implementation

Concept

Abstract

A scenario for the best use of robot systems in the next few

years is hypothesized in this section of the report. The

suggested scenario draws upon the efforts conducted in the

referenced contract, as well as on other programs at NBS

,

trends in control software and sensor systems, and potential

future developments in the robotics industry. Recommenda-

tions are made for a system design that will not become ob-

solete with the expected developments in the industry. This

design integrates sensory- interactive robots into a modular

hierarchical control system for a totally automated factory

of the future.

- 30 -

RECOMMENDED AEROSPACE ROBOT SYSTEM IMPLEMENTATION CONCEPT

Based on the efforts conducted under the present contract,

recent trends in control software and sensor systems, and

expected future developments in the robotics industry, NBS

makes the following technical recommendations for robot sys-

tems that should not become obsolete with the expected

developments in the industry.

It is clear that future robots will be much more sophisti-

cated in the use of both sensory data and prior knowledge of

the work environment. Furthermore, most of them will be in-

tegrated into a much larger control system which will direct

many other types of machine tools, material transport sys-

tems, and inspection, testing, and inventory control systems

throughout the entire plant. Eventually, robots will become

integral components in the totally automated factory.

The problem of producing control software for totally au-

tomatic factories incorporating hundreds of robots and other

types of machines is overwhelmingly complex unless some

methodology is developed which can partition the overall

problem into manageable subproblems. Of course, large sys-

tems such as factories (and even more complex systems such

as armies, governments, businesses, and biological organ-

isms) can often be controlled quite effectively. The com-

mand and control structure for successful organizations of

- 31 -

great complexity is usually hierarchical. Goals or tasks

selected at the highest level are decomposed into sequences

of subtasks which are passed to one or more operational un-

its at the next lower level in the hierarchy. Each of these

lower level units decomposes its input command in the con-

text of feedback information obtained from other units at

the same or lower levels, or from the external environment,

and issues sequences of sub-subtasks to a set of subordi-

nates at the next lower level. This same procedure is re-

peated at each successive hierarchical level until at the

bottom of the hierarchy a set of sequences of primitive ac-

tions drive individual actuators such as motors, servo

valves, hydraulic pistons, or individual muscles. This

basic scheme can be seen in the organizational hierarchy on

the left of Figure 1.

A single chain of command through the organizational hierar-

chy on the left is shown as the computational hierarchy in

the center of Figure 1. This computational hierarchy con-

sists of three parallel hierarchies: a task decomposition

hierarchy, a sensory processing hierarchy, and a world model

hierarchy. The sensory processing hierarchy consists of a

series of computational units, each of which extracts the

particular features and information patterns needed by the

task decomposition unit at that level. Feedback from the

sensory processing hierarchy enters each level of the task

decomposition hierarchy. This feedback information comes

- 32 -

ORGANIZATIONAL

COMPUTATIONAL

BEHAVIORAL

HIERARCHY

HIERARCHY

HIERARCHY

o X n 1 ^ .Tn
^ 1

- ~r
I

tu
a

Q -J

IUJ

s s o*oo

o
> z
535

1

-Ij !

IT y
0 V) lUzo 1 6

- 6 ^ 0
1

FIGURE

1.

Three

aspects

of

a

sensory-control

system.

computes an output with a very short time delay.

If the output of each unit in the task decomposition hierar-

chy is described as a vector, and plotted versus time in a

vector space, a behavioral hierarchy such as is shown on the

right side of Figure 1 results. In this illustration a high

level goal, or task, (BUILD SUBASSEMBLY ABCD) is input to

the highest level in a robot control hierarchy. The H5 task

decomposition unit breaks this task down into a series of

subtasks, of which (ASSEMBLE AB) is the first. This "com-

plex” subtask command is then sent to the H4 task decomposi-

tion unit. H4 decomposes this "complex" subtask into a se-

quence of "simple" subtasks (FETCH A), (FETCH B) , (MATE B to

A) , FASTEN B to A) . The H3 unit, subsequently decomposes

each of the "simple" subtasks into a string of "elemental

moves" of the form (REACH TO A) , (GRASP) , (MOVE to X)

,

(REALEASE) , etc. The H2 decomposition unit then computes a

string of trajectory segments in a coordinate system fixed

in the work space, or in the robot hand, or in the work

piece itself. These trajectory segments may include ac-

celeration, velocity, and deceleration profiles for the

robot motion. In Hi, each of these trajectory segments is

transformed into joint angle movements, and the joint actua-

tors are servoed to execute the commanded motions.

At each level, the G units select the appropriate feedback

information needed by the H modules in the task decomposi-

- 34 -

from the same or lower levels of the hierarchy or from the

external environment. It is used by the modules in the task

decomposition hierarchy to sequence their outputs and to

modify their decomposition function so as to accomplish the

higher level goal in spite of perturbations and unexpected

events in the environment.

The world model hierarchy consists of a set of knowledge

bases that generate expectations against which the sensory

processing modules can compare the observed sensory data

stream. Expectations are based on stored information which

is accessed by the task being executed at any particular

time. The sensory processing units can use this information

to select the particular processing algorithms that are ap-

propriate to the expected sensory data and can inform the

task decomposition units of whatever differences, or errors,

exist between the observed and expected data. The task

decomposition unit can then respond, either by altering the

action so as to bring the observed sensory data into

correspondence with the expectation, or by altering the in-

put to the world model so as to bring the expectation into

correspondence with the observation.

Each computational unit in the task decomposition, sensory

processing, and world modeling hierarchies can be represent-

ed as a finite-state machine. At each time increment, each

unit reads its input and based on its present internal state

- 33 -

tion hierarchy. The M units generate predictions, or ex-

pected values, of the sensory data based on the stored

knowledge about the environment in the context of the task

being executed. A more complete description of the

mathematics which describe this type of hierarchical struc-

ture is contained in the document "Theory and Practice of

Hierarchical Control" included with this report.

Microcomputer Network Implementation

As a part of the ICAM contract, NBS has implemented the

cross-coupled task decomposition, sensory processing, world

modeling computational hierarchy of Figure 1, in a network

of microcomputers shown in Figure 2.

Time is sliced into 28 millisecond increments. At the be-

ginning of each increment each logical module reads its set

of input values from the appropriate locations in common

memory. It then computes its set of output values, which it

writes back into the common memory before the 28 millisecond

interval ends. If a logical module takes longer than the 28

milliseconds to compute an output, an on-board protocol pro-

cedure causes the processor to get back in synchronization

with the reset pulse before writing out the results to com-

mon memory. The process then repeats.

Each logical module is thus a state machine whose output

- 35 -

depends only on its present inputs and its present internal

state. None of the logical modules admit any interrupts ex-

cept for the reset-sync pulse that signals the beginning and

end of the 28 millisecond computation intervals. This sim-

ple modular structure enormously simplifies the writing and

debugging of software.

The NBS Vision System

The sensory side of the NBS hierarchical control system con-

tains a vision system which uses active illumination to ob-

tain depth information. A plane of light is generated by a

photoflash tube and a cylindrical lens. This plane is pro-

jected into the field of view of a solid state 128x128 auto-

mation camera so that the distance to an illuminated surface

can be directly computed by simple trigonometry. This cam-

era and flash unit are fixed to the wrist of the robot mani-

pulator .

The control hierarchy activates the vision system at specif-

ic points in the execution of a particular task. The con-

trol hierarchy also tells the vision software what type of

object to expect and approximately how far away the object

is expected to be. The vision software uses this informa-

tion to select appropriate values for flash intensity and

threshold and appropriate software algorithms for processing

the visual data.

- 36 -

The vision processing modules either confirm the existence

of the expected object and tell the control system where to

move to approach it, or report that the expectation was in-

correct.

At present, the NBS vision system interfaces with the con-

trol system primarily at the primitive action level for com-

puting range and position of grip points and at the elemen-

tal move level for computing part orientation and approach

paths. However, we are now in the process of adding new

capabilities for part recognition at the simple task level.

Common Memory Data Transfer

All communications of data from one module to another in the

NBS hierarchical control system take place via a common

memory "mail drop" system as shown in Figure 2. This system

has a disadvantage in that it requires two data transfers to

get information from one module to another. However, we be-

lieve this disadvantage is far overshadowed by the following

advantages

:

1. There are no communication protocols between com-

puting modules, because modules do not talk directly to

each other. Only one processor is allowed to write

into any single location in common memory. In each 28

millisecond time slice, all modules read from common

- 37 -

'1 -
,

. , 'X'^'Hf 'V;'^%^ ^.f;-i:i^

•‘rl,i rk.i'V ro©i^s,\:fe aa» 9fi^ ,-itfcf$a».iq- -JA

-
.00 i. .*».y^;j"x2ii*i«3f- ^ri.a./.'j'fii- vj iq Xp-r4

.

^ ’^:0. apJiJ / 9iQq tn^

•:• » ^-IQ \o\ I bv^I Bvom Xb'J

f •'^' --• sfv,j<apai[q-
. xO wOi'f © 15^ i?w '* sif-j'&q

-'
•;. i :i .

*
.

• . ; •¥. ^•''' \'jt-~> i i li.ti ;(A -A • .'^' fe'"'
’*'

•’:.•
=• rtiXt:J la^t^Q4i :f‘isq .10^ pslfr*' IX i'd'jsqso"

r' ' ‘'''V

'

i-

4 '..V*'’':

' £Ji&a

."i d' J V n 5r^' iS *'• VU->5
.

'^' '
• •

;.i' •• i.40

3ii ».,te .y-v w

^^,1 a ow:^ jt. itpMi nl s Btn
...

ia^if.:Jt>i:fg, 9|js. •.SRX4'%C‘.fli '.t^^vo fn^icj'3: nai X-siri^pSiii rffej?

I

r.

“V t‘. :Vf .4
•

L/JW ;.vr-A ?> ;. ','tta '
i,. ,f

x-i?

E

•;l.
;

.

^

-i:

’i4,'^'l' >v

a 'iiv iaik.
*»''

s

CO
Z)
CD

Q-

to

z LU
Q- 0 U
ZL H-

< <
>— u u. fi

CD z
ID

CO t—
Z

0 —
u

uu

z
0 <

UJ

—^
< X

> tl CSi IjT)

z <
i

j
< ^ 1
U o«5 1

o
CQ

o
c^

n
I

i CL- ,

cu

<
t 1

B
>— ^

1
— c^^ QC
cn ^ cu

0 f—
,

—

z

<
Q

Q
<

^ia::

u
H-
CO
>-

o

2:

<
a.

X

CO

CO
Qi

o
CO

CO

u
CO

FIGURE

2.

The

NBS

microcomputer

network

architecture

for

implementing

hierarcliical

robot

control

system.

memory before any are allowed to write their outputs

back in.

2. The addition of each new state variable requires

only a definition of where it is to be located in com-

mon memory so that the module which generates it knows

where to write it, and the modules which read it know

where to look. Thus, new microcomputers can easily be

added, logical modules can be shifted from one micro-

computer to another, and new functions such as safety

watchdogs and even new sensors can be included with

limited effect on the rest of the system. As long as

the system bus has surplus capacity, the physical

structure of the system can be altered with few changes

required in the software resident in the logical

modules

.

3. The common memory always contains a readily acces-

sible map of the current state of the system. This map

makes it easy for a system monitor to trace the history

of any or all of the state variables, to set break

points, and to reason backwards to the source of pro-

gram errors or faulty logic. Such traceability is ex-

tremely important in a sophisticated, real-time,

sensory-interactive system in which many processes are

going on in parallel at many different hierarchical

- 38 -

.
.

.
•?

.

'

KCfhi^ SK' !•. ffo'iflv ^Sf'Xiith^'S! VL^;i '^P' "atf'SifjWV

?d ./iiaw . kfg; 'V?^# .>^.op4 ' tw' ss.iariW.

--i^'-.r'y|;i:fj Al#d "^iSPluBajii
'

f^s^'.lp0j:

f3/j0 :c^ lalaq-fifb.d

••'i ;.v^ bsjbwXdiiii , -foru

c,v
,

gi'dcti.
,

;.ft'A
;

ba,#,i/ft’i;;jE:

: ai,^iav:d§y^ad,^ ^.g/i
,

.si-r:

j:.0;>ibOl si’ d4i0£v red's ivd:;;
•

'^/ir

'

_
. ''s.sXc^bpsii

V, i,w,'>e.lri
:.^<,<>,‘i y.aAa

^^C’T^:,u :2 5t. o-i ,ci©jr'disi3^.v t>P£^Jr^- io j.-j <il0 =ir

©d^s,)ofe " c:S ^£-:j.fV^l">Crd od , eddiOd

:ui a;;cais my^p'

levels

Factory Control Hierarchy

As a result of successful experience with the microcomputer

network described above, NBS has extended the hierarchical

control concept beyond a single robot into an integrated

factory. Figure 3 illustrates the computing architecture

for an Automated Manufacturing Research Facility (AMRF)

which is presently being designed and built at NBS. This

AMRF will contain four N/C machining centers: a large and a

small turning center, a horizontal and a vertical milling

machine. It will also contain a coordinate measuring

machine, a robot cart system for transportation of parts and

tooling, and an automatic storage system for entering raw

stock and tools and for storing finished parts.

The computing architecture shown in Figure 3 is intended as

a generic system that can be applied to a wide variety of

automatic manufacturing facilities and can be extended to

much larger applications. The basic structure is hierarchi-

cal, with the computational load distributed evenly over

computational units at the various different levels of the

hierarchy. At the lowest level in this hierarchy are the

individual robots, N/C machining centers, smart sensors,

robot carts, conveyors, and automatic storage systems, each

of which may have its own internal hierarchical control

- 39 -

'

' • : '7.^"

: m^;. tm ^mi ,bVOc(&^

'

t!;

4VM,'V '

. i'.4i' ^Xl0d;.t:arf% vI^nt<C>':Xq, '3-'i

1 i '^iFt- .uiST--' e
,

pnX/^iiiCi

., '.

''
•

"
'

^

,' '; ''X
'

.. ?;,' 5 ;. 1 t;. i Xl-£^ x 1 '. // X'l .

.p-nx I7;^' x??i'
'; .^Ei>

-

''G-: I/'- : 6i :
•- s ^ /f <^:f; t^f7 a %'^rj I ^

,

.s:i%^q
'

o/si. '
X>iV-

,

";l ' «••'. .£ jl.jb' n-Mcn. ir I drifii ^i-0» ^;S5‘- 5^*^'?

-?'u.v .;

t:^;fC;
'' M's ,,iE::>' ,

9d:i Xc//b;9V^l iMQkSMMr.:o^

f*rti ibiml j«:^wCfX stlj jA

i\^ -\MpsSm

•m

iv.:'

Kn6,,,^jE

I?’ -.'i^

FIGURE

3.

A

hierarchical

architecture

for

a

factory

control

system

3
'

^

rcii

p„

r<r

^ox

u

T.T.^r.&xA

r,.

-fti

:

•»>.

system. These individual machines are organized into work

stations under the control of a work station control unit.

Several work station control units are organized under, and

receive input commands from, a cell control unit. Several

cell control units may be organized under and receive input

commands from a shop control unit, etc. This hierarchical

structure can be extended to as many levels with as many

modules per level as are necessary, depending on the com-

plexity of the factory.

On the right side of Figure 3 is shown a data base which

contains the part programs for the machine tools, the part

handling programs for the robots, the materials require-

ments, dimensions, and tolerances derived from the part

design data base, and the algorithms and process plans re-

quired for routing, scheduling, tooling, and fixturing.

This data is generated by a Computer-Aided-Design (CAD) sys-

tem and a Computer-Aided-Process-Planning (CAPP) system.

This data base is hierarchically structured so that the in-

formation required at the different hierarchical levels is

readily available when needed.

On the left is a second data base which contains the current

status of the factory. Each part in process in the factory

has a file in this data base which contains information

about the position and orientation of that part, its stage

of completion, the batch of parts that it is with, and qual-

- 40 -

^p^'\ ,

,:

. :th^m ..

- f'0'
' '^^'' Sd'.|ySf>;'

'

Jis-f .fill#''' :

,

,.
'

._

';;
’ '

'

‘
_.:; '

.,

','

.
,v'

‘;''

' ,
.;v.

' *

.'

,

' nqlb.v' b^,f'i a>' mpii^ zb sll:^ rr^P'it ?^ii^ rO

p ;i ’ £»^^, '''<$»,77 qn7aS r.v^:;; .

.
^p7bdpq ^dt iq7' iib7£j7'

a 'J'bi,|/' 'rt:;. .7^ ' 77712 qq;V;,?^qs4;ib7 , qnt7'S7b«"'il&',

’“=&' l b^^i^ooi^y bbbW'. 7>:7' v^-5?.«?Ci ^ .s7s7
'

<
'. l:.-'i

j’»3'
i.,, q77 > F''’ i Sfbl>Bd^ 5^ t p.a -^' :V.J .iql. ^:.'> & •:. ip p

• >:V.": f"iX'’b V'y b>^'7^«v',r®n7b ^7^67 ,q'7r7l'

. <?i'?,-1 ^\ ',i ; '7:? ^ *i'E 7A.™a i,ru-:;rr^b'3 3 ,",, fcn’s . msb

n{':l jT^iz b?.i '<7 ,o's;>b

^1 ;7 7ip ,. 7-3-iiuPS^ !iq^ :;)i5m.:ip7

' .:f7p''";eai(S7Pbp\:7 Jp '

,

,

'

Y7.o:?;7i»l'' p77 Ip I' va'SJ s7Mq’i;q;-'vg7 7 -#«!' ‘

,

'

5?j77 dip :

'

' ')
'

''"y;
.'

''"

'I'' . '4; . '. .'

,'

'

'

^' ‘ d'Pibby^ ,

;'.
,

•'

, f’’’ '

''/>^7'/’'''
^ ^''''vir^'ll'

ity control. This data base is also hierarchically struc-

tured. At the lowest level, the position of each part is

referenced to a particular tray or table top. At the next

higher level, the work station, the position of each part

refers to which tray the part is in. At the cell level, po-

sition refers to which work station the part is in. The

feedback processors on the left scan each level of the data

base and extract the information of interest to the next

higher level. A management information system makes it pos-

sible to query this data base at any level and determine the

status of any part or job in the shop. It can also set or

alter priorities on various jobs.

As in the microcomputer network robot control system, all

information is passed from one computational unit to another

via the factory status data base. Each computing unit is a

finite state machine. At each time increment, it reads its

input command and its feedback, computes an output which it

writes in the data base, and then waits for the next time

increment. Of course, in the factory control system, the

time increments need not be on 28 millisecond intervals.

Several seconds are adequate at the work station, and a

minute or more may be adequate for updates at the cell con-

trol level.

One advantage of using data bases for communication between

modules is that communication interfaces can be standardized

- 41 -

while allowing any type of computing hardware and any

variety of programming langugage to be used in the different

computational modules. As long as the computational unit

can read from and write to the data base, there is no other

restriction on its characteristics. Thus, the system is

completely modular. Different types of software and dif-

ferent kinds of hardware can be readily interchanged. A new

robot or machine tool, or even a new work station or cell,

can be added or deleted with a minimum of impact on the rest

of the system.

A second advantage is that the status data base always con-

tains a complete state description of the entire factory at

all times. Activities of various modules and of the plant

variables themselves can be traced and analyzed for debug-

ging or optimization. In the event of a system crash, the

factory operation can easily be restarted, because the com-

plete factory state description is available in non-volatile

storage.

This type of architecture is sufficiently modular so that

the complexity of any computing unit can be kept within rea-

sonable bounds regardless of the complexity of the overall

system. If the complexity of any module grows beyond a

specified limit, the task of that module can be split into

two modules at the same level, or that level can be split

into two levels. This type of partitioning of the control

- 42 -

problem strongly parallels the division of labor in a facto-

ry operated by human beings. Thus, it should be possible to

have hybrid factories which sometimes operate completely au-

tomatically, sometimes are partially under manual control,

and sometimes are completely manual.

Much of the development of the algorithms and heuristics

which reside in the individual modules of Figure 3 can be

accomplished via the techniques of "expert systems." This

methodology has proven very successful in a number of areas

that are are comparable in complexity to manufacturing

(e.g., medical diagnosis, organic chemical mass spec-

trometry, and analysis of acoustic signitures from geologi-

cal seismology.)

While still preliminary, the modularity and extensibility of

the NBS approach to the integration of robot systems into

the automatic factory appears to offer great promise for

practical implementation of the automatic factory. We be-

lieve that this approach will lead to designs that will not

become obsolete with the expected development in the

aerospace industry in the foreseeable future.

- 43 -

PROVIDE TECHNICAL SUPPORT TO CONTRACTORS 4.2

Task 4.2.1 Technical Consulting

In addition to reviewing contractor reports referenced in

4.1, NBS was available for consulting with contractors on

proposed plans and specifications related to robotic tech-

nology.

- 45 -

Task 4.2.2 Field Trips

Two field trips were made to contractor facilities and

plants for review and consulting.

On February 21, 1979 Dr. James Albus and Dr. Roger Nagel

visited the Lockheed-Georgia Company.

On April 25-26, 1979 Dr. James Albus, Dr. Anthony Barbera,

Dr. Roger Nagel, and Dr. Gordon VanderBrug visited the

McDonnel Douglas Aircraft Company in St. Louis.

- 46 -

IMPROVE ROBOT SYSTEM PERFORMANCE AND SAFETY 4.3

- 47 -

Task 4.3.1 Robot Control System Development

Abstract

NBS work on hierarchical control systems is reported in

this document. This report contains a technical description

of the NBS microcomputer system architecture as well as a

discussion of the specific hardware and bus priority circui-

try used to implement the present version of this system.

- 48 -

NBS ROBOT CONTROL SYSTEM DEVELOPMENT

I . INTRODUCTION

For robots to operate easily and effectively in the partial-

ly unconstrained environments of manufacturing facilities,

they must be equipped with control systems that have meas-

urement and sensory capabilities as well as a straightfor-

ward user interface. This document describes an architec-

ture for such a real-time sensory interactive control sys-

tem, its user interface modules, and its implementation on a

system of microprocessors.

Industrial robots are presently controlled in a manner simi-

lar to numerically controlled (NC) machine tools. Each axis

or degree of freedom is programmed to move in a coordinated

fashion by a set of prestored numbers representing position-

al values sent to servoed actuators. This type of control

severely limits the potential use of those machines to a

constrained work environment. Since the robot will perform a

task by moving to the same locations in space each time, the

positions and orientations of the workpieces must always be

maintained precisely. Only if the environment is so con-

strained, can the robot satisfactorily perform its tasks

moving through the recorded set of sequential points in

space. Program points are generated by leading the robot

through the task and recording the joint position values at

- 49 -

each location. This teach method is a tedious and time-

consuming operation which hampers applications in small lot

batch productions.

The capabilities of industrial robots can be greatly in-

creased by the addition of a sensory-interactive computer

control system. This type of system provides real-time

coordinate transformation and sensory data processing capa-

bilities to react effectively to an unstructured environ-

ment. An off-line programming ability in a higher level

English-like language enables simplification of the previ-

ously tedious task description process.

Until recently the amount of computer processing required to

provide these capabilities was not economically practical

for most industrial applications. However, the advent of

powerful microcomputers designed from large scale integrated

(LSI) circuits has provided enormous increases in computa-

tional capabilities at a very low cost. Prior to this ma-

jor technological advancement, the hardware for a sophisti-

cated robot control system would have consisted of a large,

high speed processor using complex software such as real-

time multi-tasking operating systems. This software was re-

quired to simulate the parallel processing of sensory data

and control algorithms. Now, these processes can be carried

out in parallel by a system of microcomputers.

There are several steps involved in setting up the overall

- 50 -

IIstructure or architecture of the system. Section

describes the design requirements that the control system

satisfies. The system is partitioned into a number of sim-

ple, well-defined modules that will meet these requirements.

Section III describes the two modules that make up the NBS

robot control system. These modules enable separation of

the different functions into logically related groups and

describe the communication interfaces between them. Each of

these groups can be further structured by partitioning into

simpler and smaller functional blocks until it is easy to

write the algorithms for each one. Section IV presents the

implementation of the system, including the hardware and in-

terfaces to external devices.

II. DESIGN REQUIREMENTS

This section will list the design requirements for develop-

ing a robot control system.

II. 1 Sensory Interactive in Real-Time

First and foremost, the control system should provide

sensory-interactive, goal-directed behavior that permits

the performing mechanism to adapt to perturbations in the

environment. To accomplish this, the system has to measure

the state of the environment with sensors, process this sen-

sory data to identify misalignments and error conditions are

identified, and use this information to modify the task

-51-

execution in an appropriate manner. This interaction has to

be accomplished in real-time so that changes in inputs, ei-

ther from sensors or from user intervention, will be

responded to immediately by the control system, allowing

timely modification of the behavior.

II. 2 English-like Command Language

The second requirement is to provide a method of programming

the robot task through a simple, English-like command

language. The programmer should be able to input a pro-

cedural description of the task in much the same way he

would instruct a human worker. The language should be suf-

ficiently robot-independent to permit use with any robot

capable of accomplishing the task. Further, the entry of

the task description should be as interactive as possible to

allow debugging and modification while testing on the

robot. These abilities will allow for fast and easy pro-

gramming and make it reasonable to use the robot for small

batch operations where changes and new programs are fre-

quently required. An off-line programming capability will

allow for the development of robot tasks without tying up

the robot hardware systems in addition to aiding in the in-

tegration of the robot into a total computer-aided manufac-

turing (CAM) system.

- 52 -

II. 3 Task and Data Independence

The third requirement of a control system is that the values

that specify the location points and object descriptions

that are used by the robot should be separate from the pro-

gram and supplied to it only at execution time. A task

description, since it is a specification of a procedure,

should not change from workstation to workstation, unless

the configuration of the workstation or robot is different.

Therefore, in the programming of the control system, the

sensory and error recovery algorithms should be in a form

that is independent of the robot, workstation, and computer

hardware. The advantage of this approach is the transfera-

bility of a large part of the control structure to each

workstation. This "portability” minimizes duplication in

creating a control structure for each robot and permits the

control system programmer to expend greater effort on im-

proving a generalized control structure instead of regen-

erating identical control algorithms for each new robot.

The separation of task description and data can be accom-

plished by the symbolic naming of locations and objects

which will be assigned numerical values from a corresponding

data base before or at execution time. The symbolic naming

does much to ease the task programmer's job. Providing

named variables like VISE, DRILL or HOLE not only makes the

task description more comprehensible, but relieves the task

- 53 -

programmer of the burden of supplying numerical values when

he should be specifying only a procedure. In a number of

applications, there already exists a precise description of

the location points that could be used by a robot program.

For example, the same N/C part program that was used to cut

the die for stamping out a car fender could also provide the

relative location points to allow a robot to spot weld

points along the flange of the fender or to spray paint the

fender. Presently, this data has to be duplicated for the

robot programs.

The control structure should also allow the task programmer

to enter a coordinate system description of points or use

the teach method if desired. However, once these points are

in the data base of a robot, they should be maintained in a

general format that may be used by any other robot. That

is, these values should be stored as some relative coordi-

nate reference frame values, not as the joint values of a

particular robot. Thus, if one robot is replaced by another

at a work station, the same data base of points should be

usable and are, therefore, independent of the particular

robot.

II. 4 Extensibility

Due to the desired general nature of industrial robots, all

of the possible control algorithms, input commands, sensors,

error conditions, etc., cannot be foreseen. Therefore, the

- 54 -

system, to be effective, must easily permit additions or

deletions of functions, as well as changes to be made in ex-

isting functions. Modular design of the control structure

should greatly enhance the ease and speed with which the

systems programmer can incorporate changes while keeping the

high degree of reliability that is an absolute requirement

of the system.

II. 5 Reliability

Implicit in the discussion of an effective system has been

the notion of reliability. Reliability of capital intensive

equipment such as industrial robots is essential to their

productivity since their payback is dependent on full use.

An unreliable control structure, even with a well-defined

user interface and with behavior that is responsive to the

environment, is useless in the manufacturing world. The

overall design or architecture is important in developing a

reliable control system.

A control system architecture should provide the control

system programmer with a framework necessary to implement

the above features in the simplest manner possible and in a

way that allows the system to be easily extended. The sys-

tem architecture should also provide the underlying organi-

zation to allow the control system programmer to view the

overall structure and interactions of the entire control

system in order to keep it understandable and

- 55 -

comprehensible. This helps to prevent the unnecessary intro-

duction of complexities and unknown states into the system.

For example, if the visual processing of camera data were

intricately interwoven with control algorithms, and a new

sensor were to be incorporated, a large number of patches to

the control structure would be required. This, of course,

could result in an unreliable system. Thus, the goal of re-

liability is fundamentally impacted by the architecture of

the control system.

III. SYSTEM PARTITIONING

The NBS robot control system has been functionally parti-

tioned into two modules as shown in Figure III.l. The off-

line programming module provides the user interface to the

control system. User inputs for task description and data

specification are translated into tables that will be used

by the real-time control module during execution. The

real-time control module provides the actual control for the

robot. User commands, worksite specifications, and sensory

data are processed within this module to drive the robot to

perform the desired tasks.

III.l Off-line Programming

Through an off-line programming editor, the user describes

the tasks to be done by the robot as well as the worksite

environment. A procedural description of the task to be

- 56 -

done is entered and converted into a table format by a task

description segment. The data description segment is made up

of two sections. The various locations within the worksite

such as pallets and pieces of equipment are defined using

the location section. The objects that will be manipulated

during the task are described by the object description sec-

tion. Figure III. 2 shows the structure of the off-line pro-

gramming module. All high level user interaction with the

control system occurs through the task description segment

and the data description segment.

III. 1.1 The Task-Description Segment

The task description segment supplies an off-line program-

ming capability. The user enters a procedural description of

the task using English-like commands. These commands can be

motion statements such as GOTO or operations such as GRASP

or INSERT, and can include symbolically named data such as

VISE or PALLET. The program generated will be independent

of the particular robot that will execute it (provided that

the robot has sufficient capabilities such as weight capaci-

ty, degrees of freedom, size, etc., to perform the task.)

This module can work interactively with the system in on-

line and off-line modes. The task description module allows

interactive debugging so that a program can be changed and

immediately executed. Alternatively, the robot may be halted

at some point, the program modified, and then robot execu-

- 57 -

OFF-LINE PROGRAMMING MODULE

TASK DESCRIPTION DATA DESCRIPTION
SEGMENT SEGMENT

TRANSLATES USER'S
ENGLISH-LIKE

TASK DESCRIPTION
TO TABLE FORM

ASSOCIATES
SYMBOLLIC NAMES
WITH WORKSITE
LOCATIONS AND

OBJECTS

FUNCTIONS OF THE OFF-LINE PROGRAMMING MODULE

FIGURE III.

2

TASK

WRITTEN

IN

ENGLISH-LIKE

PROGRAM

TABLE

COMMANDS

,

o o o
O CN o
o o ro

o o
iH O CVJ .

O O .H .

2
OM
Eh
a, Eh
M 2
QS W
U S
W U
w w
Q cn

u:
cn
<c
Eh

ro

FIGURE

III

tion resumed from that or any other point in the program.

A high level user task is entered into the task description

module through the off-line programming editor. This editor

takes an input stream of English like commands and converts

them to a program table. Execution of this table of commands

will be done line by line through an interpreter within the

real-time control module. Figure III. 3 shows the function-

ing of the task description segment. In addition, the user

has the ability to display the program table, edit it, and

then immediately execute it through the real-time control

module.

Entries into the table at the primitive-move level presently

running in the hierarchy consist of motion commands (GOTO)

,

logical location names (PALLET), object description

(CYLINDER) , function commands (GRASP) , sensor control rela-

tive to this level in the hierarchy (FLASH-CAMERA) , and oth-

er control information. The resulting program table entry

for a given command has the format as shown in Figure III. 4.

Figure III. 5 is a table of the currently implemented program

table values and the meaning of each.

1

Location Motion Delta Gripper Camera Offset
Table
Pointer

1

Command Move Control Control Value

FORMAT FOR AN ENTRY IN THE PROGRAM TABLE

FIGURE III.

4

- 58 -

MOTION COMMANDS
|

0 NULL
1

No Operation
|

1 GOTO

j

Move to the Location and
stop there

2 GO-THRU Move through point at maximum
velocity and do not decelerate

3 P-GOTO Move to a location within
a pallet and stop there. Will
automatically index to next element

h P-GO-THRU Move through next pallet element

I

^
1

P-GOBACK Move to previous location within
the pallet without incrementing element

6 DELTA-MOVE Move relatively from the current
position according to the next
parameter type and offset amount

7 CAMERA-MOVE Use relative offset information
from camera to determine next goal,
(pantograph present orientation)

8 CAMERA-ORIENT Same as 7 except uses the
orientation from the camera to rotate
match the orientation of the object

j

DELTA-MOVES (used when motion command = 6)

1° NULL
11

No operation

1
1

GO-UP
11

Move up from current position

2
11

GO-DOWN
1

Move down from current position

3 FORWARD Move forward from current position
along the hand-wrist axis

4
!

1

BACKWARD
1

Move backward
|

1

CAMERA CONTROL
|

h NULL No operation

1 FAR-FLASH Long range picture-returns relative
position and orientation of object

2 NEAR-FLASH Close range picture-returns more precise
position and object identification

3 ACQUIRE-FLASH Move to a closer position based on
camera data from previous flash and take
NEAR-FLASH picture

[” GRIPPER COMMANDS
|

1

°
11I

NULL
11

1
1 !I

GRASP
1

!l1

RELEASE

LEGAL VALUES FOR ENTRIES IN A PROGRAM TABLE

FIGURE III.

5

The following example shows how a program table will be

built for a specific application. The workspace contains 3

predefined locations within the location table.

LOCATION NAME LOCATION POINTER

HOME 1

PICTURE- 1 2

PALLET 3

where HOME is the start location for the robot; PICTURE-1 is

the initial viewing location to begin searching for a part.

PALLET is the ordered location where the robot should place

the part after acquisition.

A sample task will be: send the robot to the start loca-

tion, open the grippers so it can view the worksite, then

send it to a location where it will scan for a part using a

camera. If a part is within range, the robot will move

closer based on the received vision data, after which it

will take another picture of the part to determine its exact

location. Upon successfully finding the part, the robot

will acquire the part, raise it above the worksite 10 mm,

and move it to the location where it will be placed. The

user commands entered into the task description module to

define this task will be:

- 59 -

GOTO HOME, RELEASE

GOTO PICTURE-1, FAR-FLASH

ACQUIRE- FLASH

CAMERA-MOVE, GRASP

GO-UP 10

P-GOTO PALLET, RELEASE

The editor will produce the following program table from

this task description.

LOCATION MOTION DELTA

POINTER COMMAND MOVE

1 1 0

2 1 0

0 0 0

0 7 0

GRIPPER CAMERA OFFSET-VAL

2 0 0

0 1 0

0 3 0

10 0

0 6 1 0 0 10

3 3 0 2 0 0

0 0 0 0 0 0

III. 1.2 The Data Description Segment

The use of symbolic names in the robot task program defers

until execution time the need to supply actual values for

location points or object descriptions. This keeps the task

- 60 -

description program independent of the robot work site. At

execution time the control system module uses these symbolic

location and object names as pointers into the data descrip-

tion tables. These tables will contain the data that speci-

fies the actual locations and object description data

relevant to the particular sensors for this worksite. The

location table contains the Cartesian coordinate values that

will specify the relative positions and orientations re-

quired of the robot for all of the location points in the

worksite. This Cartesian description becomes the format for

supplying location points to the control system module.

Values from other data bases can be converted into this

table form. In the object description table, all the

characteristics of a given object, necessary for the partic-

ular sensors to perform object identification, such as size,

grasp point or current location, are maintained and updated

as the object is manipulated during a task. Figure III.

6

shows the functions of the data description segment. Note

that these data bases may also be obtained from other

sources such as CAD data files. Separating the task

description from the data specification may make the control

algorithms directly transferable to many different worksta-

tions and applications merely by a change in the data base

description of the worksite.

Through the data description editor, the user may define the

different location points in the system as well as specify

- 61 -

TABLE

VISE

DRILL

HOLE

THROUGH THE DATA DESCRIPTION SEGMENT SYMBOLIC NAMES
FOR WORKSITE LOCATIONS AND OBJECTS ARE ASSOCIATED
WITH THE ABSOLUTE DESCRIPTIONS THAT ARE KEPT IN

LOCATION TABLES AND OJBECT DESCRIPTION TABLES

DATA DESCRIPTION SEGMENT

FIGURE III.

6

the object characteristics that the sensor processing will

need to identify that object. The data description module

allows the programmer to enter the values through a terminal

and assign a name to them. In addition, the location points

can be generated in the traditional way by driving the robot

to the location and recording the joint values, transforming

them into the correct set of Cartesian values, and storing

these in the table.

III. 1.2.1. The Location Table

By interacting with the data description editor, a user may

enter location point data by several methods: teach, direct

coordinate entry, coordinate offset and array specification

as shown in Figure III. 7. For the teach method, the user

moves the robot to the desired location through a joystick

or through some sort of joint actuator control and then

records the point into the location point table with a sim-

ple command. For direct coordinate entry, the Cartesian

coordinates are entered by the user for that location.

Coordinate offsets may be used to define the orientation of

the robot relative to its current location. For example, if

the robot hand must be perpendicular to the work surface to

acquire a certain object, the offsets required to move the

hand from the current position to the desired position are

entered as coordinate offsets in the location table. Then,

when an object is found, the system will use this offset

- 62 -

LOCATION

POINT

DATA

MA^

BE

ENTERED

BY

A

USER

AT

A

value to orient the hand for the acquisition.

In addition to the coordinates of the location, the location

table carries other pertinent data. A flag marks the point

as a pallet or a single location. For pallet points, there

will be a pointer to a routine that will calculate the vari-

ous elements of that pallet from the current index. There

is also a pointer to a routine that will generate any asso-

ciated approach path to this location. For example, if the

robot must be 15 cm above the work surface and in a certain

orientation in order to reach location 4, the system will

access the approach path routine when the user requests GOTO

4 and generate the proper trajectory along the approach path

to reach that location. The location table entry may also

contain flags that will indicate if an object has been

placed at that location. Figure III. 8 shows the format of a

location table entry and describes the entries.

III. 1.2. 2. The Object Description Table

The data description editor also allows the user to specify

information about objects. The characteristics of the ob-

ject that are stored in the table are those required by the

various sensors to identify or acquire that object. For ex-

ample, a vision system would need the dimensions of the ob-

ject to determine if something in its field of vision could

be identified as an object. A touch sensor module may re-

- 63 -

LOCATION TABLE ENTRY

BYTE OFFSET ENTRY

0-11 Name of Location (up to 12 characters)

12-29
Nine 16-bit values representing the
Cartesian coordinates of the point, wrist x-y-z
hand x-y-z, finger x-y-z

30 Object Flag 0 = object not there
1 = object there

32 Pointer to name of object
at this location

34 Pallet Flag 0 = single location
1 = pallet location

36 16-bit pointer to routine that will
generate offsets to the pallet elements

38 16-bit index indicating which pallet
element is being used

40 16-bit pointer to routine to generate
approach path to this location

42 16-bit pointer to routine to generate
departure path from this location

FIGURE III.

8

quire the maximum force that can be applied to the object,

while an infrared proximity sensor module may need informa-

tion regarding the reflectivity of the surface of the ob-

ject. In addition, the object description table carries in-

formation such as the tool length offset for the object if

the object will be used as a tool, and a pointer to the lo-

cation table entry of the present and last positions of the

object. If the object is one of an array of objects, the ob-

ject description entry is generic and carries the value of

the number of the element in the array associated with the

current object. Other information that defines an object

may be contained in routines that would generate pickup pro-

cedures or would define a grasp point. Figure III. 9 shows

the current format for object table entries.

In addition to allowing the user to enter information about

location points or objects, the data description editor

displays the data and permits the user to modify any entries

as required.

III. 2 THE HIERARCHICAL REAL-TIME CONTROL MODULE

Actual execution of the robot task defined by the user is

done within the real-time control module as shown in Figure

III. 10. This module receives the input commands through the

program table and accesses the Cartesian descriptions from

the location table and object descriptions from the object

- 64 -

OBJECT DESCRIPTION TABLE ENTRY

BYTE OFFSET ENTRY

0-11 Object name

12 16-bit length (or relevant dimensions)

14 16-bit height

16 16-bit width

18 Tool length offset

20 16-bit pointer to pick-up procedure

22 16-bit pointer to location table entry
of where object is

24 Index of element number if in pallet

[

26 16-bit pointer to destination of object

1

28 Index of element in destination pallet

1

30 Number of objects transferred of this type

FIGURE III.

9

OVERALL SYSTEM PARTinONBD INTO FUNCTIONALLY SEPARATE

GROUPS. THE PROGRAM ^mJI£ TO CONTROL SYSTEM INTERFACE

IS IN THE FORM OF A TABLE OF TASK DESCRIPTION CCM^IANDS

THAT FORM THE INPUT TO THE HIGHEST LEVEL OF THE REAL

TIME CONTROL SYSTEM. THE LOCATION AND OBJECT DATA

ARE PASSED IN THE FCRM OF TABLE ENTRIES SPECTFUD IN

A STANDARDIZED FORMAT.

FIGURE III. 10

description table. A hierarchy has been used as the funda-

mental architecture of this executing control system. Com-

mands input at the highest level are decomposed into se-

quences of subtasks which are passed as commands to the next

lower level in the hierarchy. This same procedure is re-

peated at each level until, at the bottom of the hierarchy,

a set of outputs is generated to actuators, interlocks and

signal lines to cause the necessary external response. The

complexity at any level in the hierarchy is held within

manageable limits, regardless of the complexity of the en-

tire structure.

All levels of the hierarchical control system execute in

real-time. This means that any input at any instant in time

will cause an output in a sufficiently short time so that

the stability of the system can be maintained. At each time

interval, a level samples its inputs and provides a set of

outputs computed from those inputs. Therefore, if sensory

data indicates that a modification in a robot trajectory is

required, the new output position will reflect that modifi-

cation within the next time interval rather than finishing

the current trajectory. The operation at each level of the

control system architecture can readily be visualized by

considering each level of the hierarchy as a simple finite

state machine. For each level at each instant in time there

exists a finite set of values for input variables to be

tested and a predetermined output state to be generated upon

- 65 -

the occurance of any particular input state. At each level

inputs consist of commands from the next higher level, pro-

cessed sensory feedback data from the environment, and

status flags indicating the state of processing of the next

lower level. Outputs from each level consist of commands to

the next lower level, predictions or processing commands to

the sensory-processing hierarchy and status flag feedback to

the next upper level. Figure III. 11 is a diagram indicating

the flow of the inputs and outputs for a level in the

hierarchy.

Since a robot operates under conditions that are susceptible

to perturbation, the sensors must measure the environment

often and the control system must process that data in order

to output the correct set of actions to compensate for the

conditions observed. This decision branching must occur of-

ten in order for the system to operate in real-time. At

each instant or clock-tick, every level in the control sys-

tem independently uses its own set of inputs (commands and

feedback data) to generate the correct set of outputs (com-

mands to a lower level, predictions to the sensory process-

ing algorithms, and status flags.)

This organization permits each level of the hierarchy to be

independent of the execution times of other levels. As long

as the time increment between each sampling of the input

states is short enough to avoid instability, then the levels

- 66 -

INPUT OOmND

\
SENSCR INPUT

PRiDEFINED

HJNCnON

OUTPUT OCM4AND

mi SENSOR DATA

PREPRDCESSED SENSOR DATA

DATA PROCESSED

IN RELATIONSHIP TO THE

INPUT OCMIAND (FPCM

LOWER LEVELS)

>-

B

Each level in the hierarchy has information flowing into and out of it.

The output is a function of the inputs (A).

Each level's sensory input is composed of three types (B). There is raw

sensor data such as the voltage levels from proximity sensors indicating

relative reflected intensity.

There is preprocessed sensor data such as mi^t come from a vision system

where sophisticated data manipulation and pattern recognition is performed

by sooie sensor unit and its output is a sensor input to the control system.

The other feedback is information from the lower levels of the

hierarchy t±iat is a reporting of their effectiveness in completing their

input task. This takes the form of an interpretation of their sensor data

in li^t of the input comaiand. These are additional outputs from each level

not as ccnmands to the next lower level, but as^ inputs to the hi^er levels.

As with the other outputs they are also predetermined functions.

FIGURE m.ll

of the hierarchy can interact very simply by passing vari-

ables through a common interface. If a level changes its

command to the level below, it is not critical whether the

lower level picks up that change instantaneously or merely

the next time it samples its input. Since every level sam-

ples its input at each time tick, there will never be more

than one tick delay before the information is passed.

This real-time implementation design of a hierarchy of lev-

els acting as simple finite state machines provides a number

of advantages:

1. The highest level in the hierarchy always has con-

trol. A change in its input at any time can redirect

the control system. Since each level is programmed to

finish computations within a short interval in order to

read its inputs at the next interval, a new command

will be recognized within a short period. This real-

time implementation always allows a high level reaction

to any situation that might arise without the complexi-

ty of multilevel interrupts.

2. Since the outputs are updated at each interval on

the basis of the condition of the set of the inputs,

the system is sensory interactive in real time.

3. In this type of real-time hierarchical control sys-

tem, the types of decisions each level has to make at

- 67 -

any instant are relatively simple. Each level merely

has to provide outputs that continue to move toward the

goal state. At any instant, the system does not have

to plan out the entire course of action, only the

correct action for the next instant.

4. Timing and interfacing constraints between levels

are greatly simplified. The only timing requirement on

the system is that each level of the control hierarchy

sample its input parameters and generate outputs fast

enough to ensure effective responses to measured

events. Communication between levels is through com-

mon variables only. A level does not have to coordi-

nate itself with another level even if processing at

that level might take a substantial length of time,

such as that needed by a complex sensory processing

routine, like vision analysis.

The remainder of this section examines several aspects of

the real-time control module. Section III. 2.1 discusses the

coupling of the control hierarchy and the sensory processing

hierarchies. Section III. 2. 2 discusses how the hierarchical

decomposition allows the levels of the module to be easily

visualized as a finite state machine that can be programmed

by the system programmer in a straightforward manner. These

programming techniques will be discussed detail. Finally,

section III. 2. 3 describes the actual execution of the real-

- 68 -

time control module, addressing the functions performed at

each level and the interfaces between the levels.

III. 2.1 Sensory Processing and Control

The real-time control system module has been separated into

two parts: the control side and the sensory processing side.

Each of these has been structured as a hierarchy as shown in

Figure III. 12.

The control hierarchy generates the proper set of drive mo-

tions which are sent to the robot to perform the task. It

accomplishes this through a task decomposition. Each level

decomposes its input command into a string of simpler output

commands. In general, this decomposition is feedback depen-

dent. At each instant of time, the subcommand sent to the

next lower level is dependent upon the set of feedback data

available at that instant. The result is that the highest

level input command provides an overall goal for the system

that is reached through a lengthy sequence of detailed

subgoals. Each sublevel generates its outputs dependent

both on the command being processed and on the present state

of the environment as indicated by the sensory feedback da-

ta. Thus, the system is capable of altering its goals at

each level in real-time in order to respond to changes and

error states in the environment.

Sensory data is sampled at each instant in time to ensure

- 69 -

TO) PARALLEL HIERARCHIES: ONE,A SENSOCf PROCESSING

fflERARCHy THAT PERFORMS DA3A REDUCTION OF THE SENSORY

INFORMATION IN A FORM USABLE BY THE CONTROL ALGORITHMS;

TO), A CONTROL HIEEARCHY THAT PROVIDES A REAL-TIME

UPDATE OF ITS OUTPUTS BASED UPON THE FEEDBACK EEOl THE

SENSCRY PROCESSING HIERARCHY

FIGURE III. 12

that the system will be responsive to the environment in

real-time. The resulting values from the sensors are input

to the control system module at the level in the hierarchy

where their information will be acted upon. For example, the

simplest camera data provides the coordinates of the loca-

tion of an object in the worksite. More highly processed

camera data, such as object features, provides information

about the types of objects in the worksite. ACQUIRE object

is a command that may be generated by the primitive level if

the object is recognized as a cylinder. Therefore, the

highly processed feature data should be input to this level.

The control system generates new goals for the robot in

terms of the coordinates that define the locations of ob-

jects at a lower level in the hierarchy. Therefore, the

simple position data obtained from the camera about the

cylinder should be input to that level of the control

hierarchy where it will be used to generate a new goal point

for the robot as shown in Figure III. 13. The partitioning

of the real-time control module makes it easier to program

appropriate responses to sensor data because the data is in-

put at the level at which it should be acted upon. Thus,

the system will respond to its environment.

The sensory processing hierarchy also receives input at

various levels from the control hierarchy. This input de-

fines the types of sensory processing to be done and expect-

ed results. There is, therefore, a two-way exchange of

- 70 -

FIGUEiE

III.

13

information between these two hierarchies at all levels as

shown in Figure III. 14.

III. 2. 2 Programming the Real-Time Control Module

In order that the task described by the user may be execut-

ed, the real-time control module must have been programmed

to interpret and execute the commands sent in the program

table and to extract the location and object data associated

with them. Another off-line programming interface with the

system is required in order that a systems programmer may

specify commands that the task programmer will execute.

Figure III. 15 shows where in the system this programming in-

terface will occur.

Since each level in the hierarchy acts like a finite state

machine, programming the real-time control module is actual-

ly just specifying the production rules for a finite state

machine. The system programmer's interface, therefore, is a

means of entering the rules for each state within the

hierarchy.

Production rules are usually of the form

IF (condition 1) THEN DO A

ELSE

IF (condition 2) THEN DO B

ELSE . .

.

- 71 -

*

PROCESSED

VIEW

OF

THE

TYPES

OF

INIERACTTONS

BETWEEN

THE

SENSORY

AND

CONTROL

HIERARCHIES

AT

ONE

LEVEL

TASK PKX3{A^WEKS ENTER ROBOT TASK DESCRIPTIONS THROUGH

THE TASK DESCRIPTION AND DA3A DESCRIPTICN M3DULES.

SYSTEM PROGRAMMERS ENTER THE PROGRA^WING FOR THE REAL-TIME

CONTROL SYSTEM THROUGH THE STAIE DESCRIPTION >CDULE.

FIGURE III. 15

They usually involve some sort of language and thus may be

thought of as a program. Changing a condition, or adding a

new production, usually implies some sort of recompilation

of existing programs.

The system programmer interface may be greatly simplified by

using a table-driven method for generating the production

rules or functional outputs for a level. Instead of enter-

ing the productions or commands in the IF, THEN, ELSE for-

mat, the conditions to be tested become relative table en-

tries. The resulting outputs generated for a given set of

conditions are also entries in the table. For example, for a

system that must check conditions X, Y, and Z and react with

output commands A and B the following table would represent

a program.

X Y Z OUTPUT
1. <0 =1 <0 A
2. >0 =0 <10 B

The equivalent production rules would be

IF (X <0) AND (Y = 1) AND (Z <0) THEN OUTPUT = A

ELSE IF (X> 0) AND (Y = 0) AND (Z <10) THEN OUTPUT = B

At each level of the control system module, a monitor will

execute the entries in the table once per cycle, testing

each of the specified conditions line by line and generating

the corresponding outputs when all conditions are met on a

given line.

- 72 -

Programming a level is straightforward. An editor prompts

the system programmer with the identified variables to be

tested. The programmer enters the state for the variables

and then the values for the outputs when those conditions

are met. Adding new variables, either input or output, to

the system is done using the editor to add new columns to

the table. The programming or reprogramming of a level is

the process that builds the table and defines the order of

condition testing and the proper outputs to generate. Ad-

ding new input or output variables means simple table

modification. Since the system has been decomposed to

comprehensible modules through the hierarchy, the number of

inputs and outputs at each level is small. Therefore the

table size is also small and easy to specify.

Adding new sensors to the system is straightforward. The

sensor data provides a new condition to be tested and a new

output may be added to respond to this data.

III. 2. 3 Real-Time Control Module Execution

The current implementation of the real-time control module

has been decomposed into 4 levels as shown in Figure III. 16.

The first sub-section describes the function of each level

in the hierarchy and the second specifies the interfaces

between the levels.

- 73 -

FUHTnCN : Generate Trajectory goal points and execute primitives

Modify trajectory on basis of sensory feedback

INPUT: Primitive conmand - (e.g. ACX^JIRE)

Sensory Data (For ACQUIRE primitive, the feedback is

' voltage levels from Proximity sensors)

OUTPUT: Sequences of goal points to execute the primitive

TRAJECTCRY

FUNCnCN: Using the present position, velocity and acceleration

and the commanded goal point generate the next trajectory

position and orientation of the end effector.

INPUT : Conmanded acceleration and Tnaxinini velocity values, the

Cartesian description of goal point of end effector, the

Cartesian description of present position, velocity and

acceleration of end effector

CUTPUT: Cartesian description of next position and orientation of

end effector.

COORDINAIED

MDTICN

CALCUIATION

H3NCTT0N: Transform the Cartesian description of next position, orientation,

velocity and acceleration of the end effector into the

robot joint values; scale these to insure that all of the joints

move in a proportional coordinated fashion against the slowest.

INPUT: Commanded position,orientatiOTi, velocity and acceleration of

end effector. Actual joint values, velocities, accelerations.

CUTPUT: Scaled required joint positicn and velocity

SERVO

1
FUNCnCN: Control the position and velocity of individual actuator

INPUT: Commanded joint positions and velocities

CUTPUT: Proper drive signals to actuators

Hffi 4 lEVEL CONTROL HIERARCHY

FIGURE m.l6

III. 2. 3.1 Goal Decomposition

The Primitive Level (4)

The primitive level receives commands which are simple mo-

tion specifications and a pointer to the location descrip-

tion of the point associated with that motion. Using the

various sensor data inputs, this level constructs the goal

point required to execute the command.

The goal point is built by establishing a Cartesian

representation of a reference point and describing a set of

offsets that may be added to that point to produce the po-

sition and orientation that will be the goal point.

For example, a command to put an item in a particular pallet

location would build a goal point that would specify the

origin of the pallet plus the relative coordinate offsets

required to go from this point to the element within the

pallet to be filled. Imbedded in the location table descrip-

tion for a pallet would be the coordinates of the point

which is the origin of the pallet, the index value of the

position (which element in the pallet is being used at this

time) , and values that describe the relative offsets to be

used to calculate the coordinates of the indexed element.

When a pallet location is specified in a command, the prim-

itive level passes the coordinates of the origin of the pal-

let, and using the index value, builds an offset table that

- 74 -

gives the offsets to reach the required pallet element.

Sensors on the robot or joystick input may provide relative

offset values to describe movement. For these motions, the

present position of the robot is used as the reference posi-

tion and a new goal point position is calculated as the sum

of the reference position and the offset data values.

The Cartesian coordinates of a start location and the table

description of offsets in any of several reference frames

are used to generate the Cartesian coordinates of the goal

point. This is done by transforming the offset descrip-

tions from the given frames of reference into the equivalent

offset in a standard frame of reference (the robot workt-

able) and adding these offsets to the start location coordi-

nates. These final coordinates represent the intended goal

point. Thus the start location and sequences of offsets can

be used to describe any goal point in the robot workspace.

Entries in the offset table consist of an index to the coor-

dinate system in which the motion is described and the mag-

nitude and direction of motion in that system. The dif-

ferent coordinate systems are:

1 - the worksite (standard reference system)
2 - hand Cartesian
3 - hand spherical
4 - wrist spherical
5 - finger cylindrical

Worksite and hand Cartesian motions may be in x, y, or z

- 75 -

directions

.

. Hand or wrist spherical motions are rotations

about axes either parallel or perpendicular to their origin.

Finger cylindrical is the rotation of the hand about the

hand-wrist axis. Thus, offset table entries will have the

form:

1 x-dist y-dist z-dist

2 x-dist y-dist z-dist

3 degrees degrees
parallel perpendicular

4 degrees degrees
parallel perpendicular

5 degrees

For example, the start location may be the origin of a pal-

let. The offset table values to get to the nth element of

the pallet may describe the offset in terms of a rotation

with respect to the wrist origin. The offset is translated

into the equivalent worksite offset coordinate and is added

to the absolute worksite coordinates of the origin. This,

then, will be the position of the nth element of the pallet.

In addition to calculating the new goal point from the

offset table, this level controls when that goal point is

sent to the robot by interpreting the flags sent as status

from the next lower level and by determining if the current

goal point has been reached. Joystick inputs are sent out

immediately to alter the current motion of the arm. Most

- 76 -

control system inputs are held until the previous goal point

is reached, then the new goal point is sent.

In addition to the goal point, output data from this level

also includes trajectory generation flag information such as

velocity and acceleration specif iations , and gripper control

flags.

The Trajectory Level (3)

The next level in the hierarchy is trajectory generation.

Given the input parameters of a goal point, velocity and ac-

celeration information from the primitive level, and the

current position of the robot determined from servo input,

the trajectory level calculates an incremental move along a

straight line path between the current location and the

goal. The move calculated is that to be made by the end

point of the robot hand. In addition, this level calculates

the motion to be made by the robot wrist and fingers to

cause a smooth transition from the present orientation to

that of the goal point. Since all of the parameters are in-

put each cycle, the robot can be made responsive to dif-

ferent goal points immediately and can also have its motion

controlled within a trajectory by modifying the velocity and

acceleration factors from upper levels. The motion is also

controlled through a smoothing function, which according to

the size of a limit variable, controls the degree of sharp-

ness of trajectory change. The output from this level is a

- 77 -

Cartesian representation of the next position of the robot

along a path from the current position toward the input

goal position. Appendix A gives a detailed discussion of

the trajectory calculations and the pseudo-code representa-

tion of the currently running programs for this level.

The Coordinated Joint Motion Calculations (2)

This is the first level in the system that is robot depen-

dent. The Cartesian representation of the next position of

the robot generated by the trajectory level is taken and

transformed into the actual joint position representations

of that point.

Next, given this new joint position data and the joint posi-

tion data from the last cycle, the requested motion is test-

ed to make sure that joint velocities and accelerations do

not exceed a maximum amount while maintaining coordinated

movement. That is, each joint should be making an appropri-

ate delta move so that all appear to move toward the goal

smoothly, and no one joint has to 'catch-up' after the rest

have reached their final orientation at the goal point. All

joint motion will be scaled down to permit the slowest

responding joint to perform in a coordinated fashion with

the other joints.

The final calculated joint position is then interpolated

into 4 intermediate positions so that data may be output to

- 78 -

the joint servos at a frequency sufficient to maintain sta-

bility. Appendix B shows the pseudo-code representation of

the programming for the coordinated motion part of this lev-

el in the current implementation.

The I/O (Robot Interface or Servo) Level (1)

The lowest level in the hierarchy is the actual interface to

the servos. Inputs to this level are 4 sets of interpolated

joint position data which are output to the robot in 7.5

msec intervals. In addition this level reads in the current

position of the robot as well as switches and other sensory

data. These data are scaled as required and output for use

by the other levels of the hierarchy. It is important to

note that all the servo and sensory data is read in and out-

put to the system each time interval and all levels have ac-

cess to the sensory data that influences their processing.

If software servoing is to be done for the system, it will

be done at this level.

- 79 -

III. 2. 3. 2 Data Interfaces

This section describes the data that is passed between the

levels, that is, the interfaces.

Task Description to Primitive

Inputs to a primitive level consist of a program table entry

which contains pointers to entries in the location and data

description tables. The formats for entries in these tables

have been shown in Figures III. 8 and III. 9. In addition

sensor information from the joystick, vision system, touch,

proximity and force sensors also is input to this level.

Status received from the trajectory level includes a flag

indicating that the goal point has been reached, gripper

status, switch values from the robot interface.

Primitive to Trajectory

The interface into the trajectory level contains the Carte-

sian coordinates in the worksite reference frame of the goal

point generated by the primitive level and the flag data for

trajectory control. In addition this level receives the

Cartesian representation and orientation of the current po-

sition of the robot end effector determined by coordinate

transformations of the current joint positions. The status

information passed back to the transform level consists of

flags indicating that the robot is either almost at the

goal, or at the goal. Figure III. 17 shows this data.

- 80 -

DATA INTERFACE BEEJEEN PRIMITIVE AND TRAJECICRY LEVELS

FIGURE III. 17

Trajectory to Coordinated Joint Motion Calculation

The input to this level is the Cartesian work site coordi-

nate representation of the goal to be output and flags indi-

cating the amount of scaling required. Figure III. 18 shows

this data interface.

Coordinated Joint to I/O

The interface between the coordinated joint level and the

servo is 4 interpolated sets of 7 joint position values.

Figure III. 19 shows the data layout.

- 81-

DATA INTERFACE BEIWEEN mJECTOEOT AND COORDINAIED JOINT MDTION GALCUIAnON LEVELS

FIGURE III. 18

COORDINATED JOINT MOTIONS

DATA INTERFACE BETWEEN COORDINATED JOINT MOTION CALCULATION
AND SERVO LEVELS

FIGURE III. 19

IV. IMPLEMENTATION

A robot control system has been described in terms of a

hierarchical architecture which can be viewed as a set of

finite state machines processing in parallel and communicat-

ing with each other through a well-defined interface of com-

mon variables. These discrete processing modules are made to

execute on separate processors coupled through a common

memory communication link. The availablity of 16-bit mi-

croprocessors along with a bus structure that allows a

number of these microprocessors to access common resources,

such as memory, has presented the option of a relatively

low-cost multi-processor system meeting the hardware re-

quirements of the control system architecture.

Implicit in the design of the real-time control system is

the concept of responsiveness to the environment. The con-

trol of the robot and its interaction with the enviroment

is critically sensitive to. A response must be supplied

quickly for a given input, especially for reactions to safe-

ty sensors.

There are two ways to react to these external events. In

one case, the occurrence of an event triggers an interrupt

into the system. The interrupt handling routine determines

the priority of the event and either records it with

relevant data or else branches to routines to process the

- 82 -

data and generate the response at that time. Control is

then returned to whatever program was executing at the time

of the event. Since the presence of data is totally

unpredictable, branching to an interrupt handler may occur

anywhere within the control system processing. It becomes

difficult to maintain sequencing of events within the system

especially as more and more sensors are added. In addition,

the more interrupt routines that execute, the higher the

probability that the state of the system will not be exactly

restored after the event is responded to. The system loses

its comprehensibility and may become unreliable.

The other method uses a polling technique that requires the

system to read the state of external devices at periodic in-

tervals. This data is then processed in some predetermined

manner. If an event has occurred since the last polling,

its changed data will be read in during the present poll.

The procesing algorithms will use this new data to calculate

a proper response. Unlike the interrupt method, this method

processes all data in a totally predictive manner and se-

quence. Therefore all possible states of the system are

known. The system responds to the data in an orderly

fashion, rather than having the response driven by the data.

The main requirement of this technique is that the system

must sample the data space sufficiently soon after the oc-

currence of an event and be able to finish calculations in

a short enough time interval to maintain system stability

- 83 -

and ensure an effective response.

The present system is implemented using a time interval of

28 milliseconds. Every 28 milliseconds all levels of the

control hierarchy will sample their input space and respond

to those inputs. Algorithms to process the data collected

during each time interval execute within that interval. If

the processing time for any module exceeds this limit, the

algorithms may be divided over several processors to get the

job done.

The system is implemented on several microprocessors con-

nected to a common bus. The structure of these processors

and the way they interface through the bus is described in

section IV. 1. A software protocol synchronizes the passing

of data between processors and regulates the processing done

within the system. This data transfer and process control

mechanism for the multiprocessor system is presented in sec-

tion IV. 2. Since the implementation results in a synchronous

processing system, a hardware data collection interface has

been designed which will buffer asynchronous data from

external devices in a separate memory area accessible to the

system. This interface will manage all data transfers

between these devices and then present the data to the con-

trol system in a synchronous manner. This interface is

described in section IV. 3.

- 84 -

IV. 1 THE HARDWARE IMPLEMENTATION

All of the microcomputer boards used in this implementation

are Intel iSBC * 86/12-A's utilizing the 8086 16-bit mi-

croprocessor chip. The Intel MULTIBUS * is used as the com-

mon bus structure. The primary features of this hardware

and their relationship to the control system and communica-

tions protocol software are described in the following sec-

tions .

IV. 1.1. The 16-bit Microprocessor Board

The 16-bit processor used in this implementation has

hardware multiply and divide instructions, as well as in-

structions for string operations, and an extended range of

addressing modes. It is capable of directly addressing 1

megabyte of memory (20 bits of address) . It has a cycle time

of 200 nsec., with a typical memory read or write cycle tak-

ing 1.8 psec.

*
iSBC and MULTIBUS are trademarks of the Intel Corporation.

This equipment is identifed by brand name in order to ade-

quately describe the functions performed. In no case does

such identification imply recommendation or endorsement by

the National Bureau of Standards, nor does it imply that

these products are necessarily the best available for the

purpose

.

- 85 -

Each 16-bit microcomputer board has a a RS232 compatible

serial I/O port, three programmable timers, circuitry for up

to eight levels of vectored priority interrupts, and 24 pro-

grammable I/O lines. The 24 lines of I/O are configured as

16 lines of data, and eight lines for handshaking signals

and miscellaneous I/O. An add-on board has been built to ex-

pand the I/O capabilities of this microcomputer board to 48

lines. This extra board allows separate 16-bit data input

and 16-bit data output from one board. These lines are used

for communications with external devices such as sensors,

the robot, and vision systems, either separately or through

the hardware data collection interface.

The serial I/O port is used to provide a separate interface

to each computer board. Through this interface, object code

can be downloaded from other computer systems or a terminal

can be connected to make use of onboard monitor programs for

debugging. The baud rate for this port originates from one

of the programmable timers. A software wait instruction is

available which suspends computation until an external sig-

nal is applied to one of the computer input lines. This

suspension is used to provide a mechanism for system syn-

chronization which will be described in section IV. 2.

A 16-bit data bus enables the CPU to access any other board

in the system as if it were an extension of its own memory

space. When an off-board data transfer is required, the CPU

- 86 -

requests use of the bus and is put into a wait state until

the bus is available. Once the bus is acquired, the CPU

resumes execution and performs the data transfer. I/O ad-

dressing is similiar, with the on-board addresses fixed and

all others generating a bus request. As with memory, the CPU

enters a wait state until the I/O device responds. A time-

out feature can be implemented to avoid the situation of

locking the CPU in an infinite wait for a nonexistent or

failed device. After a specified time, an interrupt is sent

from a hardware timing circuit to the CPU, which clears the

wait state and starts execution of appropriate action.

Figure IV. 1 shows the logical layout of a microprocessor

board and the interconnection of several boards through the

system bus.

This single board computer has 8K bytes of fixed address

erasable programmable read-only memory (EPROM) and 32K bytes

of dual-port dynamic random access memory (RAM) . Both RAM

and ROM are word and byte addressable.

IV. 1.2. Dual-Port RAM

The dual-port RAM in Figure IV. 2 is accessible to the CPU of

the board on which it is resident and, through jumpers, may

be made accessible to external processors on the common bus.

The addressing is fixed with respect to the CPU and is

selectable to the other processors on the bus in 8K segments

anywhere in the 1 megabyte range. When access to an RAM is

- 87 -

BUS CX3NNBCTI0N SERIAL PCKT

TIMER

8 K EPRCM

CPU

16-Brr PARALLEL

PORT

.lAyOUT OF A 16-BIT MICROPROCESSOR BOARD SHCWIIG RAM _
AND EPRCM MEM3RY SPACE, PARALLEL At® SERIAL I/O PORTS.

SEVERAL 16-Brr MICROPROCESSOR BOARDS CONNECTED TO A COM13N BUS STRUCTURE

FIGURE IV. 1

COMMON

BUS

Dual-port control

logic. Enables tri-

state buffers, and

controls timing of

accesses

.

IV.

2

DUAL-PORT RAM

granted to the external processor, the CPU continues execu-

tion from ROM or EPROM while the external CPU is reading or

writing to the RAM. If the external processor is not in the

middle of a transfer, the host CPU has immediate access when

required. Otherwise, it is placed in a wait state. The same

holds true for the external processor.

The turn around time for memory access on the 16-bit micro-

computer board is 5 jusec. during block transfers. The total

time that the dual-port RAM is actually being accessed dur-

ing this transfer operation is about 1 psec. The remaining 4

psec are required for internal operations of the processor

that are necessary for the execution of the transfer in-

struction. During this part (4psec) of the transfer, the

dual-port RAM can be accessed by an off-board processor. As

a result, the worst case transfer time for an external pro-

cessor during a block transfer is about 6 psec. between each

memory accesss. This corresponds to the case of having to

wait the full time for the host CPU to complete its transfer

before being granted the use of the RAM. This worst case

response is an increase of 20% more time spent on the common

bus. The host CPU will also experience some delay while

waiting for the external processor to finish with a

transfer

.

The main disadvantages of the dual-port RAM are the possi-

bility of the wait states slowing down the computations of

- 88 -

the host CPU and increasing the time spent by the external

processor on the common bus. Another disadvantage is the

possibility that an external processor will write into an

incorrect segment of memory thereby destroying programs or

data. This may be partially eliminated by segmenting the

memory into private and externally accessible sections.

IV. 1.3. Parallel Bus Request Mechanism

In any multi-processor system, the method of accessing and

sharing the common resources is of utmost importance. In ad-

dition to the actual procedure of acquiring the bus, there

must be an order in which the processors are allowed ac-

cess. Bus contention in this implementation is resolved us-

ing a priority scheme with parallel bus requests.

The parallel request mechanism is similar to a first-in,

first-out (FIFO) buffer with some minor modifications. Each

processor synchronizes its bus request to a common bus

clock, and presents the request to an external priority bus

resolution circuit. Such a circuit is shown in Figure IV. 3.

Thus, all bus requests are received in parallel. Whichever

processor requests the use of the common resource first will

receive it first. If two (or more) processors are requesting

the resource at the same time, the highest priority proces-

sor will receive the resource first. The priority of a pro-

cessor is determined by its slot position in the backplane,

with the top slot having the highest priority. Processors

- 89 -

8-3 LINE
PRIORITY ENCODER

3-8 DECODER

BUS BUS
REQUESTS GRANTS

IV. 3 PRIORITY CIRCUIT

can be "bumped off" the bus by a higher priority request or

retain the resource for their entire transfer period. This

is a function of design philosophy and will be discussed

later

.

A priority encoder receives the synchronized requests and

encodes the address of the highest request. This address is

then decoded and passed back to the processors, thereby

granting the processor with the highest priority the bus.

This scheme allows up to 16 bus requests on a common bus

with all processors being looked at in parallel.

IV. 1.4. Data Transfer

Transfers over a common bus can involve either a single byte

(or word) or a block. During single-byte transfers, the pro-

cessor allows a higher priority processor to gain access to

the bus after completing one transfer on the bus. If there

are no higher priority requests, the processor then

transfers another byte of data. When the amount of data to

be traded is small, this method works well.

For block transfers of data, a processor acquires the bus

and asserts a lock mechanism that allows it to continue

holding the bus until it finishes all of its interactions

with the common resource. It then removes its lock and

frees the bus to other requests. In a structured system,

this locking mechanism helps to ensure the integrity of all

- 90 -

of the data transferred to or from that processor. The ma-

jor disadvantage is the problem of a processor locking the

bus and, because of some error condition, not releasing the

bus again, thereby stopping all interprocessor communica-

tion, This disadvantage, however, may be eliminated by ad-

ding a hardware time-out mechanism that will free the bus if

any processor holds it more than 6 msec. The timer will en-

sure that all other communication may continue even if an

error occurs on one board. Figure IV. 4 shows the bus ac-

tivity for block transfers versus single transfers.

IV. 2 THE COMMUNICATION PROTOCOL

Given the hierarchical architecture of the real-time control

system and the hardware system described above, a software

protocol was developed to regulate information transfer

among the processors. This protocol was designed using the

following guidelines;

1. All data transfers and interprocessor communication

will occur through an interface of common variables in

common memory buffer areas.

2. Only one process may update a given variable,

although any number may read that variable.

3. No processor may interrupt the execution of another.

- 91 -

BUS EXCHANGE TINE

PROCESSOR
A

PROCESSOR
B

PROCESSOR
C

BUS BUSY

DATA TRANSFERS

A1 A2 A3 Bi B2 Cl C2

n
B A B A C BUS

BUSY

DATA
TRANSFERS

A1 B1 A2 B2 A3 Cl C2

IV.

4

BLOCK VS. SINGLE BUS TRANSFERS

4. The fundamental logical structure for each

processor's function will resenble a simple finite

state machine: input, compute, output.

5. Processors will compute only when they receive new

input data.

6. The system deals with all input data in a synchro-

nous fashion, bringing in data at periodic intervals

from a memory area that has buffered the asynchronous

incoming data.

The implementation of the protocol is based upon the ability

to provide a simple common memory accessible to all the pro-

cessors in the system. This common memory and a synchroni-

zation mechanism to govern the communications protocol to

this common memory comprise the framework for the control

of the whole multiprocessor system.

IV. 2.1. The Common Memory

The dual-port RAM allows one or more external processors to

access memory space located on any given processor board.

Allowing some segments of each processor's memory space to

be accessed by other processors creates a common memory.

Figure IV. 5 shows the memory layout of several processors in

the system. On each board, part of the memory is available

only to the processor on that board; the rest may be ac-

cessed by the other processors in the system. Therefore, a

-92 -

EPROM

EPROM

cn «•

M Di
o

H cn
u cn •

< w s
CU O W
cn O Eh

OS a
s cu >H

< a
a; Q

OS a
w < a
a: o Eh
Eh DQ
2 2
O M

w w a
u ffi a
< Eh o
cij a
cn O a

Eh a
s u

>H o
cc os
2 cu

Q O
2 a
<C w a
J <

W CQ
U M o
< CO Eh
cu CO
cn a a
u a

S o a
o c M
cc; a
Oj «. a
w >H a

os u
CO o u
< 2 <
X a
2 ft.

Q >H

Oh a a
< Eh o
O <c 2
oa > aM 2
X a
o o^ 2
CO o
CO o
W Eh §
U 2 o
o M u
X
Oh Q Q
O a 2
OS Eh <
u 2
M a
2 2
O

a: a
u a
c
w

lD

FIGURE

IV

processor has access to its private memory, its own common

memory area and the common memory areas of the other proces-

sor boards in the system.

All interprocessor communication is done by passing data

through the common memory. Common memory buffers define the

interfaces between the processors. Each processor is as-

signed specific buffers in common memory for its input and

output data. If new processors are added to the system,

they too are assigned buffers. Any processors that will use

their data are programmed to address those data buffers.

Any task execution status information for a processor that

may be required by another processor is written as data to a

buffer assigned as an interface between those processors.

Likewise, processing results to be used by another processor

are transferred through the buffers in common memory. Since

this common memory is the communication link, the rigid tim-

ing constraints of both processors exchanging data in a

"handshake" procedure are not required. One processor can

deposit its data in the common memory area totally indepen-

dent of when the other processor will read it.

Data intended for use by another processor is put into a

buffer in the common memory area that resides on the proces-

sor that generated that data. When the external processor

is ready for new data, it requests the system bus, moves a

copy of the data to its own private memory and processes it.

- 93 -

(It should be noted that the transfer of data from the on-

board private RAM to the onboard allocated common memory

area of a processor does not require a bus access. Only when

the data is transferred between different processor boards

is there any bus activity.)

The common memory construct provides the framework for all

intercomputer communication in the real-time control system

when used with the protocol described below.

IV. 2. 2. Intercomputer Communication Protocol

All communication among the processors occurs within the

common memory buffers. Each computer is assigned one or

more buffers in the common memory for its output data. Any

number of processors may read a buffer, but to ensure that

no two processes will overwrite the same data, only one pro-

cess may write to a specific buffer. Output buffers are on-

board for the processors that generate the data but require

a bus access when read by other processors.

The software that monitors the buffers in the system and

controls all data transfers is referred to as the protocol.

This protocol is responsible for checking the status of in-

put data buffers to see if the data has been updated, read-

ing in the new data, initiating execution of the processes

resident on that processor, sending output results from

private memory to common memory at termination of computa-

- 94 -

tions, and updating the status for those buffers on each

processor that will use the data. A copy of the protocol is

resident on each processor board. Figure IV. 6 shows the

program logic for the protocol.

During protocol initialization, at system startup or by

operator request, the processes to be executed on each com-

puter are loaded into RAM along with a buffer allocation

table that specifies where input buffers will be found and

where output data buffers are to be written. This buffer

allocation table is defined by the system programmer. The

programs and this table identify the onboard processing

that will be monitored by the protocol for each processor.

Section IV. 2. 3 will further explain the buffer allocation

table.

This protocol for accessing data in common memory buffers

and executing processes executes optimally once each time

interval. An external bus signal indicates the start of a

time interval to each of the protocols in the system. Dur-

ing each interval, the protocols in the system check their

common memory status buffer to see if the input data have

been updated since last computations. If all data is ready,

each protocol will transfer input data from common memory

buffers to private memory buffers. Once all required data

has been input, computations are executed. The results of

those computations are written to onboard common memory, and

- 95 -

IF ALL DATA HAS BEEN UPDATED THEN

TRANSFER INPUT DATA TO PRIVATE RAM

EXECUTE PROCESSES

TRANSFER RESULTS TO COMMON MEMORY BUFFERS

UPDATE STATUS ON OTHER PROCESSORS

ENDIF

A PROTOCOL PROGRAM ON EACH PROCESSOR MONITORS DATA TRANSFERS
BETWEEN THE COMMON MEMORY BUFFERS IN THE SYSTEM AND EXECUTION

OF PROCESSES.

PROTOCOL LOGIC

FIGURE IV.

6

status is updated on other processors. The protocols then

execute a wait instruction which suspends processing until

the start of the next time interval. Whether that signal

comes immediately, or whether some additional time elapses

is transparent to each protocol. Time intervals are initiat-

ed by the signal and are independent of any external inter-

vention. In this manner, computations are only done on com-

plete and current data buffers and the logic on each proces-

sor is restricted to the sequence of: check status , input

,

process, output results.

On each processor as described above, there is private

memory space where the programs and data reside. There is

also common memory space that contains two types of data

buffers. One set of common memory buffers is the buffers

used to store output results and other data that will be

used by the other external processors. When the computations

are finished on input data, the protocol transfers the

results from the private memory buffers to the common memory

buffers where they will be read by the processors that use

that data. The other set of buffers within the common

memory space contain status flags for the common memory

buffers on other processors where this protocol will get its

input data. The status flag identifies when the associated

data buffer was last updated. When a protocol is ready to

restart computations, it refers to the status buffer in its

common memory area to see if the status has changed since

- 96 -

the last time the status was accessed. If the status indi-

cates that the data buffers have not been updated since the

last time this protocol initiated computations, it will not

read its data or start computations. Thus, processing is

only done on new input data.

After a protocol has transferred the computation results to

its common memory buffers, it updates the status word asso-

ciated with each output buffer on each processor that will

use that data. In this manner, those processors will be in-

formed that they have new data available and may proceed

with their computations. Figure IV. 7 shows the layout of

the buffers on a processor board.

As an example, consider a three processor system. Protocol

PI reads buffers 2A and 3B. PI generates the buffers lA,

IB and 1C. Protocol P2 reads buffers lA and IB and gen-

erates buffer 2A. Protocol P3 reads buffers 1C and 2A and

generates buffers 3A and 3B. Figure IV. 8a is a table show-

ing the buffers and the associated protocols.

In the onboard common memory area for Pi, there will be

three data buffers lA, IB and 1C and an additional buffer

that will contain the status words for the input buffers,

2Astat and 3Bstat. Likewise P2 has the data buffer 2A in

its onboard common memory and the buffer containing lAstat

and IBstat. P3 has output buffers 3A and 3B and the status

words ICstat and 2Astat. See figure IV. 8b.

- 97 -

RESULTS MDVED FRCM

PRIVATE RAM TD CCMON
RAM TO BE AlXESSED BY

PROCESSORS WH) WILL

USE THEM

STATUS OF INPUTS TO

BE READ BY IHLS

PROCESSCR. WRITUN
INTO BY PROTOCOL OF

PROCESSCR WHO GENESAIES

THE DATA-

CCmON MEMORY. ACCESSIBLE

TO THIS PROCESSOR AND OTHER

PROCESSORS THROUOI THE BUS.

CUPBOARD RM lAYOUT

FIGURE IV. 7

PROCESSOR INPUT BUFFERS OUTPUT BUFFERS

lA
PI 2A IB

3B 1C

lA
P2 IB 2A

1C 3A
P3 2A 3B

INPUT AND OUTPUT BUFFER ASSIGNMENTS FOR A 3 PROCESSOR SYSTEM

FIGURE IV. 8a

PI P2 P3

CCMdN RAM CCmON RAM CCMCN RAM

2ASTAT LA IB lASIAT 2A ICSIAT

3BSTAT IBSTAT 2ASTAT

1C

OMCN MEMEY BUFFER AREAS CN EACH OF

THE THREE PROCESSORS. EACH CONTAINS

BUFFERS FCR CUTPUTS AND A STATUS WORD

ASSOCTAIED WTIH EACH BUFFER THAT IS

USED AS INPUT FOR THAT PROCESSOR.

NOTE: BUFFER 2A IS READ BY PI AND P3.

THEREFORE, THERE IS A 2ASTAT ON BOTH

PROCESSORS.

FIGURE TV.8b

After Pi updates its three onboard output buffers in its

common memory area, it also updates the status words associ-

ated with each of its output buffers in the memory areas of

all the processors that will use those buffers as input.

That is, Pi will update lAstat and iBstat in P2 ' s common

area, and IBstat and ICstat in P3 ' s common area. Similarly,

P2 will move its results to its output buffer and update

2Astat on PI and P3, and processor P3 will generate its out-

puts and update 3Bstat on PI. Figure IV. 8c shows the common

buffers for the protocols Pi, P2 and P3 at cycle 3. Figure

IV. 8d shows the contents of the protocols' common buffer

areas and status words after new outputs have been generated

during cycle 4.

Presently, the status value associated with a current buffer

is the cycle count of the system. A tally of the number of

elapsed time intervals is maintained and is written to a

common memory buffer along with other system execution

parameters (see section IV. 2. 3). Each protocol reads in the

count immediately at the start of a time interval and then

writes it in each status word associated with that output

buffer on external processors. The status of a buffer is

compared with the last status for that buffer. If the

values are different, indicating new data, the new status is

also checked with the current cycle count to see if the data

is recent or if some error has occurred. If the status of

the buffer is the same as the last status, it is compared

- 98 -

PI P2 P3

ccmxjRAM (XJtfmmi ocmDNRM

2ASTAT '

3
!

1

lA IB lASIAT 3 2A ICSIAT

i

^
1

3BSIAT 3 IBSTAT 3 2ASTAT 3

1C

AT TIME INTERVAL 3, THE STAIUS FCR BUFFERS UPDATED IS 3.

THIS INDICATES THAT ALL BUFFERS ARE CURRENT.

FIGURE IV. 8c

PI P2 P3

0>MDN RAM

2ASIAT

3BSTAT

CCMCN RAM (XM4DN RAM

lASIAT 4 2A ICSTAT 4 3A 3B

IBSIAT 4 2ASTAT 4

AT TIME INTERVAL 4, IHE STATUS PCR BUFFERS UPDATED IS 4.

THIS STATOS IS DIFFERENT THAN IHE LAST INTERVAL, THEREFORE

ALL DATA IS NEW, AND CCMPUTATIONS WILL PROCEED.

nCURE IV. 8d

with the cycle count to see how many cycles have elapsed

since the buffer was updated. If a predetermined minimum of

elapsed cycles is exceeded, the processor or process that

supplies this data is probably malfunctioning, and the

operator will be informed of this occurrence. Figure IV.

9

shows the status-checking algorithm.

If computations are not completed within a time interval,

execution continues until the computation is completed.

When task execution is finished, the protocol will then

transfer its results to the onboard common memory buffers,

update the status words associated with output buffers, and

wait until the next interval to restart processing again.

Any computations on another processor dependent on this data

will be suspended by that protocol if the status has not

been updated since the last computations. Processing will

resume when this new data is supplied. Each processor in

the system is designed to function when there is new data to

be processed, not according to some time constraint. The

time interval merely synchronizes the data transfer process

and fosters data integrity by regulating read access to

common memory through the bus.

Figure IV. 10a shows the timing cycle and data accesses for a

system of two processors, one with an execution cycle time

greater than the timing interval of 28 milliseconds. Pro-

cessing on PI takes 40 msec to execute, and on P2 10 msec.

- 99 -

IF STATUS NOT EQUAL TO LAST STATUS THEN

IF
I

STATUS - CURRENT COUNT
j

<,=

READ DATA

ELSE

POSSIBLE BAD DATA

END IF

MAXIMUM THEN

ELSE

IF
I

CURRENT COUNT - STATUS
|

> MAXIMUM THEN

POSSIBLE PROCESSOR MALFUNCTION

ENDIF

ENDIF

LAST STATUS = STATUS

ALGORITHM FOR CHECKING STATUS OF AN INPUT BUFFER

FIGURE IV.

9

PI reads buffer 2A and generates buffer IB as shown in Fig-

ure IV. 10b. Processor P2 reads buffer IB and generates

buffer 2A. The status words associated with all input

buffers will be 0. At system startup, the cycle count of the

system will be 1. Both protocols read in the cycle count

and check the status of the input buffers to be read. Each

finds new data and starts its computations. The protocol on

P2 will write out the data and will be ready to restart at

the second signal. The status of output buffer 2A will be

1. PI has not finished processing and therefore continues

execution into the second interval as shown in Figure

IV. 10c. At the start of the second interval, the cycle

count is 2. The protocol on P2 reads the new cycle count

and checks the status for its input data. Since the status

is the same as it was last cycle, P2 does no inputs, no

computation, and writes out no data. PI finishes processing

during the second cycle. Pi then transfers its results to

the onboard common memory buffer and updates the status for

this buffer on processor P2. This new status is 1. (Since

PI was computing when the trigger for the second cycle was

generated, it did not read in the current cycle count which

is 2. It uses the cycle count that is available as shown in

Figure IV.lOd. PI now waits until pulse to get back into

the computation cycle. At the third interval, P2 reads a

different status than the last cycle, finds that the data is

current, reads the data in and processes it. PI also reads

- 100 -

PROCESSOR INPUT BUFFER
1

OUTPUT BUFFER
1

EXECUTION TIME

PI 2A IB 40 MSEC

P2 IB 2A 10 MSEC

PI P2

2 PROCESSOR SYSTEM AT TIME = 0. STATUS BUFFERS CONTAIN 0

CYCLE = 0.

FIGURE IV. 10b

PI P2

2ASTAT 1 IB IBSTAT 0 2A

AT THE END OF TIME INTERVAL 1, P2 HAS UPDATED BUFFER 2A AND 2ASTAT.

PI SmL PRIXESSING. CYCIE = 1.

FIGURE IV. 10c

PI P2

2ASTAT 1 IB

1

2A

AT THE END OF TIME INTERVAL 2 ,
PI HAS UPDATED BUFFER IB AND IBSIAT.

P2 DID ND PROCESSIIC THIS TIME INIERVAL. CTCIE = 2.

FIGURE IV.lOd

PI
P2

IBSTAT 1 2A

1

AT THE END OF TIME INTERVAL 3, P2 READ NEW DATA AND UPDATED 2A AND 2ASTAT AGAIN.

PI STARTED SECOND PROCESSING. CYCIE = 3.

FIGURE IV.lOe

in newly updated data and so execution continues as before

as shown in Figure IV.lOe.

Issuing the status word of the buffer at the end of the

transfer of the output data to common memory will eliminate

the necessity of reading the buffer before all of its data

is updated. If a buffer is only partially updated at the

time of the pulse, the protocol that reads that data will

not find an updated status word. A new status word implies

that the whole buffer has been updated, thus ensuring that

partially updated data will never be processed.

IV. 2. 3. External Communications

Most of the processors execute the algorithms that comprise

the robot control system. One processor, in addition, pro-

vides a user interface for system control purposes and sup-

plies the synchronization pulse mentioned above. This sec-

tion will describe the functions of this processor.

The communication processor maintains a clock for determin-

ing the timing interval of the system. Presently, the clock

on this processor is set for an interval of 28 milliseconds.

The clock interrupts the processor at the end of each

period. The interrupt handler routine resets the timer for

another interval and then sends an external signal to each

of the other processors in the system. This external signal

-101-

is tied to a pin in each processor. When a protocol is fin-

ished with all its functions, it executes a software wait

instruction. This suspends all processing on that processor

until the signal from the communication processor is detect-

ed. This is the signal that will start the next execution

interval.

In addition to synchronizing the system, the communication

processor provides an interface that enables the user to de-

fine the parameters of execution. At system startup, this

processor places in common memory the buffer allocation

tables that specify the source, destination and number of

bytes for each common memory transfer. They indicate for

each protocol which buffers are to be accessed for input

data and which will be written with the computation results.

In addition each table gives the address of the status areas

for any outputs. Figure IV. 11 shows the data structure

for the buffer allocation tables.

Other execution parameters include a set of flags to set the

mode of execution, including the current cycle count. The

protocol on each processor reads in these flags along with

the processor data after each synchronization pulse. Figure

IV. 12 gives a list of the current flags available, and the

function of each.

In addition to the flag data, the user may also modify the

size of the time interval. If monitoring system performance

- 102 -

DATA. STRUCTURE FOR THE BUFFER ALLOCAnON TABIES

FIGURE IV. 11

shows that too many processes are not completing computa-

tions within a interval, the user may enlarge the interval

rather than reallocate the algorithms to different proces-

sors.

FLAG/VALUE USE

read
verify
debug

reinit

restart

cycle count

set if that processor should read its data
set if input data should be verified
set if private variables should be output

along with computation results
reinitialize local variables and start at
beginning of program

reinitialize protocol and all programs and
start execution anew

current cycle number

Figure IV. 12

IV. 3 DATA COLLECTION

Currently, the system interfaces to two types of external

devices. First there are simple sensors, such as touch sen-

sors and the robot itself, that return data upon request.

The simple sensors are now interfaced to the system through

a dedicated microcomputer that polls each in turn, scales

that data if necessary, and passes it to the control system

through common memory buffers. Secondly, there are complex

sensing devices such as the vision system or other computer

systems. These may require data or make requests at any

time and may involve a handshake procedure to exchange data.

These complex devices are generally asynchronous in nature.

- 103 -

The vision system has its own dedicated computer on the com-

mon bus of the control system that is programmed to input

the vision data, process it, and pass it to the control

system with the synchronization supplied by the protocol. As

more processing for complex vision is required, additional

processors will create the need for a separate vision sys-

tem. This vision system will reside on a separate bus system

and will communicate with the control system over a high-

speed data link. In order to provide an interface into the

control system for this type of vision module and other com-

plex external devices, as well as the simple devices men-

tioned above, a specialized data collection interface is be-

ing implemented.

IV. 3.1. Data Collection Interface Design

Data collection is accomplished with a two component inter-

face. A single board microcomputer containing a data

transfer program (DTP) is coupled with a special external

device interface (DIB) board designed at NBS. (Figure

IV. 13) Using the protocol described above, data from the

control system that is intended for external devices is in-

put to the DTP. The DTP further processes this data if re-

quired and transfers it to the buffer area onboard the DIB

through the I/O port. (Figure IV. 14) Then the DTP transfers

from the DIB any data collected from the devices. This dev-

ice data is scaled by the DTP and finally tranferred to on-

- 104 -

control signals

^
logic

<

DTP DIB

DTP TO DIB INTERFACE

FIGURE IV. 14

board common memory buffers, ready for use by the control

system.

To the DTP, the DIB appears to be a buffer area. The DTP

supplies an address and then sequentially transfers data to

or from the DIB buffers. When the buffers are not being ac-

cessed by the DTP, circuitry on the DIB transfers data

between the DIB buffers and the external devices. For sim-

ple devices, a polling exchange suffices for the data

transfer. For asynchronous devices, more elaborate

handshaking is involved and double buffering is employed.

Thus, whenever the DIB buffers are not being accessed by the

DTP, they are being used to collect data from the devices.

IV. 3. 2. DTP to DIB Protocol'

The DTP is interfaced to the DIB through 3 8-bit parallel

ports. The first is for input data, the second for output

data, and the third for control communication signals.

Presently, several control flags are used. The Addr flag

specifies whether the output to the DIB is an address or da-

ta. The IBF (input buffer full) flag is set by the DIB when

it has completed its cycle of transfer ing data between the

buffers and the devices. The Transfer flag switches the DIB

from data collection mode when it is accessing the devices,

to transfer mode when the DTP is accessing the DIB buffers.

When the DTP is ready to access the DIB buffers, it polls

- 105 -

the IBF to make sure the DIB has completed all interactions

with the external devices. When the IBF is set, the DTP

sets the Transfer flag indicating that it will have control

over the DIB buffers. Since the DIB is just a slave device

to the DTP, all elements of the data transfer to and from

the DIB buffers is controlled by the DTP. The data transfer

is initiated when the DTP sets the Addr flag to identify

that the next data sent to the DIB will be an address. The

address of the start location in the DIB buffer space for

the next data transfer is then sent. This address may be

anywhere in the buffer area on an 8-byte boundary. The DTP

resets the Addr flag and then accesses the data sequentially

from that address until done. The DTP continues this se-

quence of sending an address and accessing the data from

sequential address locations until it has completed all

necessary data transfers between the DTP and the DIB buffer

space. It then resets the Transfer flag to free the DIB

buffers. After the DTP finishes the computations on the

data it collected from the DIB, it sends the data to the

control system and restarts the cycle.

Figure IV. 15 shows the logic flow of the DTP-DIB interac-

tions. Figure IV. 16 shows the timing and flag status as the

DTP transfers data to and from the DIB buffers.

IV. 3.3. DIB to Device Interfaces

When the DTP resets the Transfer flag indicating that it

- 106 -

IF IBF UP THEN

Set Transfer

Set Addr

Send Address

Reset Addr

Send data

Set Addr

Send Address

Reset Addr

Receive Data

Reset Transfer

ENDIF

DTP - DIB HANDSHAKE

FIGURE IV. 15

INPUT-BUFFER-FULL

(IBF)

READY C9 H
1 t-4

lU 03
cj >0 1 N< cn
Ll h- cn H-
CC LU >-i

LU 03 IT 03
Q

z Q
*-< <

S i LU

^ i— < cn

^ Q H _iQ < P-

lU Z .

Q X 0.

L- a a a
i-i cr < o z
q: u. lU h- >3 cr cn

IV.

16

TIMING

DIAGRAM

will no longer be accessing the DIB buffers, the circuitry

on the DIB begins communication with all the external dev-

ices. The DIB, under automatic operation, performs a global

update of all simple sensors connected to it. A simple sen-

sor, in this context, is a device or sensor which only re-

quires or provides data when accessed. Its data is available

within a short time period (100 psec. or less) , and is ac-

quired through a simple polling interface. The data is

transferred directly between the device and the DIB buffers.

Since the DIB polls each sensor or device in turn until

all are read in or written to, they can be classified as

synchronous in nature.

Complex sensors and external processors are asynchronous in

nature. The DIB does not know when the data will be avail-

able. One method being implemented at NBS to handle asyn-

chronous transfers is to use additional buffering. As shown

in Figure IV. 17, each external device (computer or complex

sensor) has some form of high-speed data buffer associated

with it for its input and output data. Additional circuitry

enables these high speed buffers to be constantly ready to

transfer data to or from the complex devices performing the

required handshaking. Data intended for these devices is

transferred from the DIB buffer area to the high speed

buffers. Data that will be transferred to the DTP is

transferred from the high speed buffers when the DIB is do-

ing data collection. In this manner, the DTP will be able

- 107 -

DIB PASSED SIMPLE DEVICE DATA DIRECTLY
INTO RAM SPACE. ASYNCHRONOUS DATA ARE
FIRST COLLECTED IN HIGH SPEED BUFFERS

AND THEN PASSED INTO RAM.

FIGURE IV. 17

to access complex device data in the same synchronous manner

as it does the simple data. All the uncertainity of the

data collection from these devices is removed through the

DIB buffering mechanism.

A typical transfer of a command from the DTP to the complex

sensor, with the sensor then returning data, is shown in

Figure IV. 18. There are two flags associated with this

transfer: the Command Ready flag (CR) and the Data Ready

flag (DR) . The DTP writes a command to the DIB at time Tl

and sets the CR flag. When the Transfer flag is reset at

time T2, the DIB reads the CR flag, and, if it is set,

transfers the CR flag and the command to the complex sensor

input buffer. The DIB then resets the CR flag internally.

At times T3 - TN-1, the complex sensor interprets the com-

mand and places the data into its output buffer. During

this time, the DIB polls the DR flag until it is set. At

time TN, the complex sensors finish, and set the DR flag.

The DIB then loads the output buffer in its own buffer area.

When the Transfer flag is set at time TN+1, the DTP reads

the set DR flag, and reads in the data. After all the data

is read, the DTP resets the DR flag to complete the transac-

tion.

As mentioned before, block sizes are variable for asynchro-

nous devices. This variablity is accomplished by having the

external device (or the complex sensor) write a status word

- 108 -

T1

DTP

CR DR

1 Q
XX X

DIB

CR DR

6?

COMPLEX
SENSOR

CR DR

I ^

T2 6?

xxxx XX

T3
6? <5 6? 6?

XX

TN-l 6? a 6? 5?

/y yyy

TN
Q Q (3 1

V yyy
Q I

yy

TN-hi s> 1 (3 1 © /

yyy M yvy

IV. le DIB COMMAND AND DATA TRANSFER

containing a byte count at the end of its transmission. This

status word also contains flags which signal a ready-for-

access to the DIB to transfer the data from the device to

the buffer (or vice versa) . Variable block size allows

shorter cycle times and increased flexibility.

- 109 -

V. SUMMARY

The control system implementation described above is a first

attempt to meet the requirements for a real-time sensory in-

teractive robot control system.

The system has the ability to sample external devices and

provide different levels of processing of this data to the

control system through the sensory-processing hierarchy.

The control hierarchy enables the system to respond to that

data in a timely manner, making it indeed sensory-

interactive in real-time.

A high level task programmer interface provided by the off-

line programming module enables the user to describe the

robot task as a sequence of English-like commands using sym-

bolic names for locations and objects in the worksite.

These commands greatly simplify the job of task description

and keep it in a form independent of robot and worksite.

Task and data description have been separated. The

English-like task description using symbolic names is in-

dependent of the data base values that are supplied when the

tasks are executed. At this time, the values are assigned

for the names specified in the program. In this manner lo-

cations and object descriptions are separate from task

descr iptions

.

At the system programming level, the system is extensible

- 110 -

through the state table programming technique used. New in-

put and output variables may be supplied to any level in the

control or sensory processing hierarchies by entering addi-

tional table entries that assign new output states for the

given inputs. In addition, the modularity of the system

makes it easy to determine at which level the system should

be extended.

This architecture should make for a reliable system. Since

it has been structured and modular, programmers at all lev-

els have simple interface requirements to meet in program-

ming the system. Ease in programming and ease of overall

system comprehension increase reliablity because it de-

creases the possiblity of programming error. In addition,

error conditions are easily recognized since the explicitly

specified interfaces help isolate a malfunctioning module.

In addition, the software procedures help provide a well-

defined control structure for the executing algorithms.

This control structure generates only in-line sequential

paths through the code, eliminating looping and multi-entry

paths that can be caused by interrupt handling mechanisms.

The resulting code is deterministic and comprehensible. The

state of the system is reflected in the code at any time,

and the programmer may easily view the state and generate

correct and reliable responses for it.

-Ill-

Task 4.3.2 Imaging Sensor Development

Abstract

Work performed under this task investigated techniques for

making effective use of imaging sensors and for incorporat-

ing interpretation of image processing into robot control

systems on a real-time basis. The vision hardware and at-

tributed lighting techniques used to acquire images are

described. Software for determining binary image orienta-

tion and analyzing the 3-dimensional shape of binary images

is presented. Circuit diagrams for the NBS vision system

camera interface electronics are also included.

- 112 -

IMAGING SENSOR DEVELOPMENT

Task 4.3.2 is to investigate techniques for making effective

use of imaging sensors and for incorporating interpretation

of image processing into control systems on a real-time

basis. The following sections discuss the software and

hardware aspects of this problem and the experimental

results obtained in this study. Section 4. 3. 2.1 is an over-

view of the vision hardware in use with the N.B.S. robots.

The software and algorithms developed to perform image pro-

cessing are discussed in 4. 3. 2. 2. The hardware interfaces

are described in section 4. 3. 2. 3.

Vision System Overview

The sensory side of the NBS hierarchical control system con-

tains a vision system which uses active illumination to ob-

tain depth information. The vision system uses a solid

state camera, computer-controlled light sources (flood flash

and plane of light) , and interface hardware accepting com-

mands from and communicating data to a microcomputer. The

camera and flash unit are fixed to the wrist of the robot

manipulator (Figure 1)

.

The plane of light is generated by a photoflash tube and a

cylindrical lens. This plane is projected into the field of

view of a solid state camera so that the distance to an il-

luminated surface can be directly computed by simple tri-

- 113 -

FIGURE 1

gonometry. Where the plane of light strikes a surface, a

line (straight or curved) appears in the camera image. The

distance to an illuminated point is directly related to the

vertical position of the reflected light in the camera

field. Figure 2 is a diagram of the geometry of this confi-

guration. This type of illumination is called structured

light.

The hardware interface between the camera and the microcom-

puter system not only provides the electrical interconnec-

tions, but also performs some pre-processing of the camera

data. Figure 3 is a block diagram of this interface.

First, the image is tested against a program selected thres-

hold value to produce a binary image. Then this binary im-

age data is compressed using the technique of run-length en-

coding. This compression technique takes advantage of the

property that the raster scan lines typically contain long

sequences or runs of constant value. Each such run is en-

coded by its length. This encoding process greatly reduces

the volume of data that must be communicated to the micro-

computer portion of the vision system.

The camera is mounted so that the raster scans lines run

vertically, from bottom to top. Thus the vertical position

of an illuminated spot in the camera image is its dot posi-

tion in the scan line. This is precisely the information

given in the run-length encoded data.

- 114 -

CAMERA

FIGURE

2.

The

plane

of

light

forms

a

line

segment

image

of

an

object

in

the

cam.era

field

of

view.

FIGURE 3. A block diagram of the NBS vision system interface hardware

The following notation will be used for referring to image

data scanned in the manner just described.

a) line i is a vertical column i spaces from the left,

and

b) pixel j of line i is a picture element j spaces from

the bottom of line i

The control hierarchy activates the vision system at specif-

ic points in a particular task execution. The control

hierarchy also tells the vision software what type of object

to expect and approximately how far away the object is ex-

pected to be. The vision software uses this information to

select appropriate values for flash intensity and threshold

and appropriate software algorithms for processing the visu-

al data.

The vision-processing modules either confirm the existence

of the expected object and tell the control system where to

move to approach it, or report that the expectation was in-

correct.

Image-Processing Software

Two major problems were addressed under this task. One is

computing the orientation of two dimensional images. The

second is computing the shape and orientation of a 3-dimen-

sional part by the combination of information from two im-

ages taken from two separate illumination systems.

- 115 -

Two-Dimensional Orientation

An orientation study was done to determine the usefulness of

the hole-blob program output (described in detail in the Oc-

tober 1979 Fourth Quarterly Report— "Robotics Support Pro-

ject for the Air Force ICAM Program") in computing the

orientation of an object. The study involved testing the

accuracy of three different methods described below to ex-

amine the relationship between the center of area and the

center of perimeter of a given object in different known po-

sitions. Knowledge of these centers enables one to deter-

mine the relative orientation of the object.

The center of area of an object is defined as

(xbar,ybar) where:

xbar=the sum of the x coordinates of every point in the

blob or hole divided by the total area of the

space.

ybar=the sum of the y coordinates divided by the total

area.

The center of perimeter of an object is defined as (xp,yp)

,

where

:

xp=the sum of the x coordinates of every perimeter

point divided by the perimeter of the object.

yp=the sum of the y coordinates of every perimeter

point divided by the perimeter of the object.

-116 -

In figures 4, 5, 6 and 1

,

the center of area of the hole and

blob are denoted as points A and C respectively. The

centers of perimeter of the hole and blob are labeled points

B and D.

Data for the study was collected by taking grey scale pic-

tures of the same object in four different

orientations— starting with a base position defined to be at

the zero degree rotation. The object was rotated 15 degrees

clockwise from the origin, and 30 degrees and 90 degrees

counter-clockwise from the origin (Figures 4 thru 7) . All

measurements were approximated with a simple protractor.

Three different methods were used to determine the relative

orientations of one object position to another. All methods

rely on the assumption that a vector can be drawn between

the points of interest (center of perimeter to center of

area in Method 1; center of area of blob to center of area

of hole in Method 2, and center of perimeter of blob to

center of perimeter of hole in Method 3) . Knowing the posi-

tion of the vector at an origin position, and measuring the

vector position after a rotation, one can subtract these

values to determine the degree of rotation of the vector.

The measured vector rotation corresponds to the actual ro-

tation of the object. These methods are effective only when

the two points being considered are not coincident. Method

1 cannot be used if the object has more than one axis of

- 117 -

Center

of

perimeter

(hole)

1''I
ClIKl!,

5

;

;

dcf;i'on3

c

30

degrees

;u
.::>.U

FTGIIRK.

7

•

symmetry because that would mean the two points were not

distinct.

Method 1: Center of Perimeter-Center of Area Blobs only

Given the coordinates of the center of perimeter

(xp,yp) and the center of area (xbar,ybar) of the same

blob, the direction thetal of the vector from the

center of perimeter to the center of area is defined

as

:

thetal=arctan ((yp-ybar) /xp-xbar)) for View 1

The direction theta2 is computed in the same way

theta2=arctan { (yp-ybar)/ (xp-xbar)) for View 2

The angle of orientation is then computed to be

thetal-theta2

.

Method 2: Center of Area Blobs-Holes

Given the center of area coordinates for the blob and

hole in one orientation, and the center of area coordi-

nates of the same blob and hole in another orientation,

the change of position can be computed as;

arctan (yl/xl) -arctan (y2/x2)

where yl,xl are the deltas in y and x values between

blobs and holes in View 1, and y2,x2 are the deltas

between blobs and holes in View 2.

- 118 -

E.g. yl=ylbar blob -ylbar hole ;

xl=xlbar blob -xlbar hole ;

y2=y2bar blob -y2bar hole ;

x2=x2bar blob -x2bar hole .

Method 3: Center of Perimeter Blobs-Holes

Same as Method 2 except that coordinates for the center

of perimeter are used in calculations.

Thus ylrxl are the deltas in the centers of perimeter

between blobs and holes in View 1, and y2,x2 are the

deltas in centers of perimeter between blobs and holes

in View 2.

Then the angle of orientation is defined as :

Theta=arctan (yl/xl)- arctan (y2/x2)

.

Below is a chart summarizing the results obtained from each

of the methods. Column 1 represents the true measurement

and columns 2-4 represent the results obtained by using

methods 1, 2 , and 3 respectively.

ANGLE CP-CA CA CP
345 346.47 344.43 344.20
30 30.43 27.04 26.97
90 91.93 90.56 91.15

105 105.46 106.23 106.94
45 43.97 42.71 42.77
60 61.50 63.52 64.18

- 119 -

Method 1 has an average error of 1.5 percent while Methods 2

and 3 both have average errors in the 4 percent range.

Based on these preliminary investigations, the best orienta-

tion information is based on the comparison of center of

area to center of perimeter of blobs.

Three Dimensional Shape and Orientation

As described in the Third Quarterly Interim Technical Report

(July 1979) , the camera being used with the robot has the

capability of taking thresholded video images and run-length

encoding the thresholded picture. See figures 11a and 11b

for examples of run-length coding. Two modes of flash in-

tensity can be used in taking pictures: line flash or flood

flash. The line flash is a plane of light which intersects

an object in a relatively narrow band. Thus it is necessary

in most cases to take more than one line flash image of an

object from varied positions, and to analyze each of these

flash lines, before determining the shape of the object be-

ing examined.

The flood flash mode has an effect similar to that of a com-

mercial camera flash attachment, i.e. it bathes the object

in light and thus makes it possible to "see" the entire

shape of the object in one view. As with the line flash,

run length coding is used to define the pixel numbers where

transitions from white- to-black and black-to-whi te occur.

- 120 -

Using the flood-flash capability however, the first transi-

tion defines the bottom of the object, and the second tran-

sition defines the top of the object for most interior

lines. As illustrated in Figure 8, the edge effects of a

computer image are very irregular and thus cannot reliably

be used in defining bottom and top.

Using a line flash to determine an object’s distance from

the camera (y distance) , followed by a flood flash of the

same object, one can determine the "computed" height and the

angle of tilt of that object. The angle of tilt is defined

as the measure of an object away from the vertical. Cali-

bration charts have been prepared which, in conjunction with

trigonometric properties of the camera system and its en-

vironment, allow line and pixel units (column and row in im-

age) to be associated with the x,y,z coordinates of a point

in space. The height of an object is computed by first

determining the coordinates (xl,y,zl) of the line at its

first transition, and then determining the coordinates of

the point (x2,y,z2) at the second transition. "Computed"

height is defined as the difference in z measurements,

z2-zl.

In Figure 8, computations for height were arbitrarily chosen

at line 61. Calibration charts based on the trigonometry of

the camera were computed such that for every picture point

- 121-

transition 2

pixel S2

transition 1

pixel 1+2

FIGURE 8

whose coordinates are (line, pixel) and which is a known dis-

tance y from the camera origin, values for x and z can be

computed as functions of the pixel position. In particular,

x= (y + kO) * fl(pixel) * (line - 64)/64

z= k2 - (y + kO)* f2(pixel)/k3

where all constants are fixed measured distances relevant to

the geometry of the camera on the robot wrist. Using the

calibration charts and the above formulas, the following in-

formation was obtained:

line pixel X y z

61 42 .45 16. -2.45

61 82 .42 16. 3.72

computed height of the object is 3.72 - (-2.45) or

6 . 17cm.

Knowing the true height of an object and its computed

height, the angle of tilt can be computed. Refer to Figure

9 for the following discussion. Physical distances have

been calibrated to every pixel value, and thus the value of

angle theta can be computed :

theta=arctan (calibrated distance /d)

Using the law of sines, the value of angle A can be evaluat-

ed :

- 122 -

camera

object

h^= computed height

h - true height

T = tilt angle

sin A = h .sin(0+rr/2)
c

T =TT - (A+€» + TT/2)

FIGURE 9

L.
1

FIGURE 10

computed height/sin A = true height/sin (theta+pi/2)

.

The angle of tilt is then defined as :

T= pi-(A+ theta +pi/2).

Corner Detector

The ability to determine the coordinates of the corners of a

square or rectanglar object is helpful in determining the

orientation of that object. Toward that end, a corner

detection algorithm has been written. The window containing

an object is defined as those lines in an image containing

continuous information about the object. The window is ter-

minated by a single row containing no information. (See

figure 10) The window of interest in Figure 10 would be de-

fined as li to 1 j

.

Knowledge of the coordinates of three corners of an object

is sufficient to define the plane in which that object lies;

therefore, this algorithm computes the line and pixel

numbers of corners 1, 2 and 3 only (Figure 10). Input in-

formation received from the camera is in run-length coded

form, i.e. transitions from white-to-black and black-to-

white are recorded by the pixel value at which the transi-

tion occurs. The first transition will be denoted by rl,

and the second transition will be denoted by chg2. Figure

11a is a computer printout of rl and chg2 vaues representing

- 123 -

FIGURE 11a

i RC

20 0
21 64 64
22 42 64
23 33 65
24 24 66
25 19 66
26 19 66
27 IS 66
28 18 66
29 IS 66
20 IS 66
31 IS 66
32 17 66
33 18 66
34 17 66
35 17 66
36 17 66
37 17 66
38 17 66
39 17 66
40 17 66
41 17 66
42 17 66

' 43 17 66
44 17 66
45 17 66
46

'
17 67

47 17 67
48 17 67

U/^c

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

FIGURE 11b

17 67
17 67
17 67
17 67
17 67
17 67
17 67
17 67
17 67
17 67
17 67
*17 67
17 67
17 67
16 67
17 67
17 67
17 67
17 67
17 67
17 66
36 65
0
0

L...1

a camera image of a rectangle. Figure 11b illustrates

graphically this representation: the lower points are rl

(first transition) and the upper points are chg2 (second

transition)

.

The algorithm defines the coordinates of corner 2 upper-

left corner as line=i, pixel position= chg2(i) which is the

pixel position of chg2 in line i such that

chg2 (i) -chg2 (i+1) <1

The use of a range of acceptable values in defining any

corner is necessitated by the fact that computerized images

have very irregular edges.

The coordinates of corner 1 (lower-left corner) are defined

as line =j, pixel position=r 1 (j) such that:

rl(j+l)-rl(j) <1

Lastly, the coordinates of corner 3 are defined as line= k,

pixel value =rl(k) such that:

rl(k+l)-rl(k) > 2

The corners detected by this algorithm in figure 9b are

represented by 1 , 2 , and 3.

- 124 -

Model-Based Vision

To deal with complicated machine parts in a real environ-

ment, the vision system must have models of the objects in-

volved. Three-dimensional models of the objects, in con-

junction with structured lighting, are used to determine the

positions and orientations of the objects in space. The

models enhance the robustness of the vision system by ena-

bling various kinds of noise to be ignored, and by supplying

information not visible to the camera.

The automation control system is defined in a hierarchical

manner, and the vision system must supply feedback of an ap-

propriate kind to various levels in the hierarchy. This

hierarchical structure leads to the definition of models at

several levels, and it is intended that lower level models

be generated from higher level models using, for example,

projections of the three-dimensional model onto a two-

dimensional plane.

Object Models

As an initial step, three-dimensional models of objects are

constructed by hand, based on edge and corner information

(wire frame models) . Two automatic methods of constructing

models are possible. The first method takes the output of a

computer-aided design system and uses it to construct

- 125 -

three-dimensional models for use in the manipulation system.

The second method uses the vision system itself to construct

the models.

The object models are intended to be convenient descriptions

of the geometric, visual, and functional aspects of the

types of objects encountered in an industrial environment.

The functional information will be used in task planning and

high level control but is not particularly important for the

research described here. The geometric data is a representa-

tion of the three-dimensional shape of the object, while the

visual component contains essentially two-dimensional infor-

mation about the appearance of the object.

The three-dimensional geometry is assumed to have been ex-

tracted from a computer aided design (CAD) database having

content similar to the IGES preliminary standard (Nagel, et

al. 3). The object's shape is represented in a hierarchi-

cal, linked structure of graphic elements in three-

dimensional Euclidean space. Each element is constructed

around a template consisting of fields for the element's

name, a typecode, a body that defines the element, and a

list of attributes. The attribute list contains auxiliary

information about the object. Some of this - such as surface

texture, geometric data like area or length that are not in

the body field, and relationships with other objects - are

of use in the vision processing. Other attributes may be

- 126 -

functional information such as grasp points for use in task

planning

.

The form of the body field of a model depends on its

typecode. A composite object is defined by its component

elements, which may be joined together at virtual edges or

surfaces (i.e. edges or surfaces created for descriptive

convienence without having physical existence) . The com-

ponent set of a composite object may include elements that

are subtracted from the others to form holes. Non-composite

objects are defined in terms of elements of lower dimen-

sionality. For example, a polyhedron is defined by the col-

lection of its polygonal faces. The polygons are defined by

the line segments which are its edges, etc. The relation-

ships between elements can be given explicitly in the attri-

bute lists or can be derived from their common sub-elements.

At the most fundamental level, this decomposition stops with

point objects defined by their coordinates. No other ele-

ments have their own coordinates. This reduces the effort

involved in applying coordinate transforms to objects; only

the point coordinates need be changed because everything

else refers to them.

The visual modelling information can be thought of as pro-

viding predictions about the appearance of an object or cues

to the vision system as to what features should be looked

for in the matching process. This information can be

- 127 -

derived from the geometric shape data in the same way that a

graphics system generates display data, i.e. by projecting

onto an image plane and applying any of well known hidden

line elimination algortihms. From this two-dimensional da-

ta, corner and edge lists are obtained as the features to be

used in the shape matching step. To provide a starting

point for the matching process, some typical views are com-

puted and included in the object models. Other views from

specific viewpoints are produced only after an initial match

has hypothesized position and orientation.

The second way of constructing three-dimensional models is

to use the camera system itself. This process involves in-

tegrating several views of an object into a single model.

Also, unless structured light or shape from shading or tex-

ture is used, it is necessary to map from the two-

dimensional pictures to the three-dimensional object model.

Both the plane of light and the flood light can be used to

construct the models. Surface shading and texture are not

available because the images are thresholded.

While the plane of light can be used by itself to form

models of objects (Agin and Binford 1 , Nevatia and Binford

4 , Shneier 8 , Sugihara 9) , it has two disadvantages.

It is very slow because multiple pictures are needed to scan

the side of an object, and it is able to see only those

parts of the object that are actually illuminated by the

- 128-

plane of light. Similarly, while a flood light can be used

to construct a set of views of an object from all sides, it

is not easy to reconstruct the three-dimensional shape from

the set of views (Falk 2 , Roberts 5 , and Underwood and

Coates 10) . It seems, however, that a joint approach

could give the advantages of both techniques without their

disadvantages.

A set of floodlit pictures can be taken that encompasses all

sides of the object. Associated with each flood flash pic-

ture are one or more plane-of-light pictures (Figure 12)

.

The plane of light supplies depth and curvature information,

while the flood light supplies shape information. The depth

and shape information complement each other, in that depth

enables the various pictures to be fitted together more

easily, and gives information about the number of surfaces

visible in each picture, as well as their relative orienta-

tions. The shape information supplies details about the

outlines of surfaces and the presence of holes. Together,

they give all the information needed to construct useful

models of three-dimensional objects.

Initially, the models serve only to handle noise and missing

data in the images. It is intended that they will be extend-

ed to provide information about invisible surfaces, to aid

in quality control, and to supply non-visual information to

- 129-

FIGURE 12. a. The thresholded image of a cube as seen under
flood lighting.

b. The cube as seen using the plane of light.

c. The two images superimposed.

the control system, such as prespecified grasp points.

Matching a picture of an object with a model is a

relaxation-like process (6) that involves models of

several sorts. Initially, only two kinds of models are used,

structural, three-dimensional models, and two-dimensional

image-like models constructed by projection from the three-

dimensional models. To construct the two-dimensional models,

an initial match with a three-dimensional model must be

found, and the correct projection calculated.

The matching process starts when a picture is taken. A set

of features, including corners and edges and the distances

(in millimeters) between corners, is calculated for the

largest connected component in the picture.

The features are matched with the three-dimensional model or

set of models, using a relational-structure matching algo-

rithm (7) . The best match is tentatively chosen as identi-

fying the object. Since a hypothesized match includes the

position of the object, a two-dimensional image model can be

calculated from the structural model by geometric projec-

tion.

When the image model is overlayed on the original picture,

an error measure can be calculated. Before that is done,

however, the connected component analysis is performed

again, but this time accepting feedback from the image

- 130 -

model. Thus, when a new component is found, a check is made

to see whether or not it is part of the current object by

seeing if it is also overlayed by the image model. Small

dropouts can be ignored because the model fills in the gaps,

and objects whose projection consists of more than one com-

ponent can be correctly handled. The result of this process

is a reduction in the noise of the image, and a more in-

formed component analysis.

Features of the new component are again calculated and

matched with the three-dimensional model. If the match is

worse, the model can be rejected, while if it improves, the

process is repeated until an error condition is met or no

further improvement occurs. At this stage, the model can be

used to supply position and orientation information to the

manipulator, even in the presence of noise or when the ob-

ject is partially out of the field of view of the camera.

The models could also contain information about properties

of the surfaces of the object, as well as suggesting ways of

distinguishing between apparently similar objects. For exam-

ple, model predictions of highlights and shadows would be

useful in analyzing shiny objects using multiple point

sources

.

Camera Interface Design

In the Third Quarterly Interim Technical Report dated July

- 131 -

1979 a vision system camera interface design was described

with the following features:

1. The threshold of the video image may determined by

external hardware.

2. Run-length encoding of the thresholded picture.

3. Access to sufficient grey-scale information to op-

timize light intensity and thereshhold settings in

the creation of binary images.

4. Software control of structured lighting, threshold

settings, and camera parameters.

5. Software control of windowing of areas of in-

terest.

During the periods since then, the following work was accom-

plished :

1. The hardware interface electronics were completed

and sucessfully tested.

2. The vision interface hardware was interfaced with

a single board microcomputer which was itself in-

tegrated into the NBS microcomputer network archi-

tecture.

3. A series of tests were run including the NBS

demonstration of the robot using structured light

vision to find, pick up, and sort rectangular and

cylindrical objects from a random pile of such ob-

jects .

- 132 -

4. The same design was used to interface a new camera

with the system. The new camera has a resolution

of 244 by 244 pixels as compared to the 128x128

resolution of the camera used in the earlier sys-

tem. In addition, the new camera has a greater

tolerance of intensity overloads.

Figures 13 through 23 are circuit diagrams of the vision in-

terface hardware. Figure 13 is a block diagram of the vi-

sion interface hardware. Figure 14 is a circuit diagram of

the manual data input section and the control logic decoding

circuitry. Figure 15 is a diagram of the clock rate and

read mode circuitry. Figure 16 is a diagram of the flash

duration control circuitry. Figure 17 is a diagram of the

run length and run length buffer circuitry. Figure 18 is a

diagram of the threshold, digitized video buffer, and com-

puter handshaking control circuitry. Figure 19 is a diagram

of the iris adjust circuitry. Figure 20 is a diagram of the

flash trigger isolation circuitry.

- 133 -

u

fsCAU

mods:

FI

curl;

j6

9
a
P-i

jT/v

T

w;mcow

SuC//OH

>

V/S/OfA

naiT£«.

.

JRXS

AD3UST

d
A

t.

ti

SuPf-Lf

-I

,
o O

|U
CQ

o

>-

<

p'

r/

><

ai

•n,

vj

>-

’J

o

V
';]

H
2
H
2
0

>

-i

5
<
"j

<r-

H-
c

T

li

C

FIGURE

22

v4

./V'\A

U1

S

X-

^S3
Sg
^ p
O u;
ri (j->

— D
c- iZ.

W-

O
z:

^3

•n

! §
I

I

References

1. G. J. Agin and T. 0. Binford, ''Computer description of

curved objects." Proc. 3rd IJCAI, Stanford, 1973, pp.

629-640.

2. G. Falk, Interpretation of line data as a three-

dimensional scene. Artificial Intelligence , 3 2, 1972,

pp. 101-144.

3. R. N. Nagel, W. W. Braithwaite, and P. R. Kennicott,

Initial Graphics Exchange Specification IGES , Version

1.0, NBSIR 80-1978 (R) , National Bureau of Standards,

U.S. Department of Commerce, March 1980.

4. R. Nevatia and T. 0. Binford, Description and recogni-

tion of curved objects. Artificial Intelligence S 1,

1977, pp. 77-98.

5. L. G. Roberts, Machine perception of three-dimensional

solids. Optical and Electro-Optical Information

Processing (ed. Tippett et ^.), MIT Press, Cambridge,

Mass. 1965, ppl59-197.

6. A. R. Rosenfeld and A Kak, Digital Picture Processing ,

Academic Press, New York, 1976.

7. A. R. Rosenfeld, R. A. Hummel, and S. W. Zucker, "Scene

labelling by relaxation operations. " IEEE Trans SMC-6

,

1976, pp420-433.

- 134 -

8. M. Shneier, "A compact relational structure representa-

tion" Proc. Workshop on the Representation of Three-

Dimensional Objects, University of Pennsylvania, 1979.

9. K. Sugihara, "Dictionary-guided scene analysis based on

depth information." PIPS-R-No 13, Electrotechnical La-

boratory, Tokyo, 1977.

10. S. A. Underwood and C. L. Coates, "Visual learning and

recognition by computer". TR123, Information Systems

Research Laboratory, University of Texas, Austin, 1972.

- 135 -

Task 4.3.3 Inherently Safe Systems

Abstract

An ultrasonic ranging sensor and data processing system were

developed and tested. Experiments were performed using this

sensor system as a safety device. Whenever an intruder or

unexpected obstacle is detected in the working envelope of

the robot, a warning flag to the control system causes the

robot to stop and wait for the intruder to leave before con-

tinuing the task. Additional types of safety sensors are

also analyzed for possible future systems.

- 136 -

ROBOT SAFETY

As the use of robots in industrial applications becomes

more widespread, the safety of both personnel and other

machinery, including the robot, is an increasingly

important concern. Thus, the development of techniques for

ensuring safe operations is an important factor in

applications of industrial robots.

The NBS work on robot safety for the Air Force ICAM Program

has been in two areas: graphic simulation of robot motion

and development of sensors for preventing robot collisions

with personnel or other equipment. The following sections

give a brief overview of this work and the major

accomplishments

.

Graphic Simulation

Graphic simulation of robot motion permits the off-line

checking of the software without the danger of an accident

because of a programming error. As the tasks robots are

designed to perform become more complex and varied, the

percentage of off-line versus teach-mode programming is

likely to increase. As a consequence, the number of

possible accidents resulting from programming errors is

also likely to increase. The possibility of accidents will

add emphasis to the need for graphics simulation.

- 137 -

The graphics simulation of robot motion developed by NBS

involves three distinct steps. The first step is to create

a 3-dimensional model of the robot. This model is

constructed by representing the major components of the

robot by appropriate geometric solids such as spheres,

cylinders, and rectangular parallelepipeds (rectangular

solids) . Also included in this first step is^ the

specification of all possible joint movements. The second

step in the simulation is to configure the robot model in

a specific set of joint positions. The third step is to

generate a graphical image of the robot corresponding to

the joint positions specified in Step 2. This graphical

image is produced by ray-tracing techniques which are

described in more detail later in this section.

This simulation technique was applied to the Stanford Arm

robot used in the NBS robotics laboratory. As described

above, the first step is to create a physical model of the

robot. For the Stanford Arm, this is done by approximating

each component of the robot as either a cylinder or

rectangular solid. To describe mathematically these two

basic geometric shapes, the following quantities,

illustrated in Figure 4. 3. 3-1, are required:

Cylinder o vertex

o height vector

o scalar radius

- 138 -

RECTANGULAR SOLID

CYLINDER

Figure 4. 3.3-1. Basic geometric shapes used to model the
robot. The cylinder requires the
specification of a vertex, height vector, and
a scalar radius. The rectangular
parallelepiped (or rectangular solid) requires
a vertex and three vectors for the length,
width and height.

Rectangular Solids o vertex

o length, height and width

vectors

.

The model of the Stanford Arm, as seen from the side and

top, is shown in Figures 4. 3. 3-2 and -3, respectively.

This model consists of seven rectangular solids and five

cylinders. The location of each of these elements in space

is established by setting up a coordinate system relative

to some fixed point on the robot, in this case the center

of the bottom of the base (Element 1) . The fixed point is

given the (x, y, z) coordinates (0, 0, 0). Any other point

on the robot is represented as a set of coordinates,

measured in centimeters, from the (0, 0, 0) point. Table

4. 3. 3-1 lists the vertices, space vectors, and scalar

radii, when appropriate, for each of the 12 elements of the

model.

The other part of Step 1 is the specification of the

possible joint movements. Starting at the fixed point (the

center of the bottom of the base) and using the reference

coordinate system, a new coordinate system (CS) is defined

for each joint in the robot. Each new CS is defined by

locating it with respect to the CS defined for the previous

joint. In addition to the new CS, a motion description is

also specified for each joint. Both rotating and sliding

joints are defined, with their motion specified in terms of

- 139 -

Figure

4.

3.

3-2.

A

side

view

of

the

Stanford

Arm

robot

modeled

with

seven

rectangular

solids

(2,

4,

1,

9,

10,

11

and

12)

and

five

cylinders

(1,

3,

5,

6

and

8).

Table

top

Figure

4.

3.

3-3.

A

top

view

of

the

Stanford

Arm

robot

modeled

with

seven

rectangular

solids

(2,

4,

1,

9,

10,

11

and

12)

and

five

cylinders

(1,

3,

5,

6

and

8).

Elements

1

and

12

are

hidden

and

therefore

are

not

shown.

Table 4. 3. 3-1. Spatial coordinates for the twelve elements of the
Stanford Arm robot model.

ELEMENT
NUMBER

ELEMENT
TYPE

VERTEX VECTORS
FROM VERTEX

SCALAR
RADII

1 Cylinder 0.0 0.0 0.0 0.0 0.0 26.7 7.0

2 Rectangular 7.0 -10.2 29.1 -14.0 0.0 0.0
Solid 0.0 -20.3 0.0

0.0 0.0 14.0

3 Cylinder 0.0 -10.2 6.1 0.0 -1.3 0.0 14.0

4 Rectangular 20.0 -13.2 30.6 -106.7 0.0 0.0
Solid 0.0 -6.4 0.0

0.0 0.0 6.4

5 Cylinder 20.0 -16.4 33.8 1.6 0.0 0.0 3.2

6 Cylinder 24.4 -11.3 33.8 0.0 -10.2 0.0 3.2

7 Rectangular 28.9 -11.3 33.8 -4.4 0.0 0.0
Solid 0.0 -10.2 0.0

0.0 0.0 4.4

8 Cylinder 28.9 -16.4 33.8 2.5 0.0 0.0 1.9

9 Rectangular 37.7 -12.4 35.4 -6.3 0.0 0.0
Solid 0.0 -8.0 0.0

0.0 0.0 7.0

10 Rectangular 38.3 -12.4 41.8 -0.6 0.0 0.0
Solid 0.0 -3.2 0.0

0.0 0.0 -12.7

11 Rectangular 48.5 -11.3 28.0 -10.2 0.0 0.0
Solid 0.0 -5.4 0.0

0.0 0.0 2.2

12 Rectangular 48.5 -11.3 42.9 -10.2 0.0 0.0
Solid 0.0 -5.4 0.0

0.0 0.0 -2.2

the new CS. Thus, rotating joints always lie in a plane,

while sliding joints are specified by a vector, usually in

one of the three orthogonal directions of the new CS. When

the joints are specified, they are assumed to be modeled in

the zero position, shown in Figure 4. 3. 3-4. Therefore, a

scheme is also required to translate joint values into

rotation or translation of the model components.

The specification of the 3-dimensional model and joint

definitions completes the first step of the simulation, and

is performed only once per robot.

The next step is to simulate, using the robot model, the

motions that the real robot would execute if it were to

receive a specified set of joint values. This is done on

a joint-by- joint basis starting at the hand and working

back to the base. The task of updating the internal

representation of the model involves the use of data

extracted from the robot control system. These data

consist of the coordinates of three points in 3-dimensional

space and the absolute angle values of each joint at every

specific instant in time. As shown in Figure 4. 3. 3-5, the

three points used are at the interface between the boom and

the wrist (labeled wrist point), at the center of the end

of the fingertips (labeled tool point) , and at the end of

one fingertip (labeled finger point)

.

- 140 -

Figure

4.

3.

3-4.

Sketch

showing

the

Stanford

Arm

robot

with

all

joints

in

the

zero

position.

Element

4
is

at

its

maximum

extension.

Tool

point

Figure

4.

3.

3-5.

A

side

view

of

the

Stanford

Arm

robot

with

the

wrist,

finger

and

tool

points

labeled.

These three points were chosen because by knowing them and

the joint angles, one can determine any point on the robot.

Although the robot is modeled by a number of separate

geometric shapes, calculating their movements can be

simplified using the relationships between the individual

elements. In Figure 4. 3. 3-6, three vectors, originating at

the three points, can be used to define almost the entire

robot. Vector A defines the configuration of Elements 2,

3, 4 and 5, Vector B the Elements 6, 7, 8, 9, 10 and 11,

and Vector C the rotation of the fingertips.

Using this representation, the program updates the

3-dimensional model joint-by- joint until the zero position

has been appropriately changed for each joint. At that

point, the second step is complete.

Step 3 is to create a graphical representation of the robot

model as updated in Step 2. This graphical representation

consists of a sequence of dots which corresponds to the

visible outline of the robot. The graphical image is

generated by ray-tracing techniques, which assume that the

robot is being viewed through a fictitious camera. The

rays are traced from the camera through a 128 x 128 point

viewing plane and then into the space occupied by the robot

as specified by the model. This hypothetical arrangement

is shown in Figure 4. 3. 3-7.

- 141 -

Figure

4.

3.

3-6.

Illustration

of

the

three

vectors

used

to

define

the

configuration

of

the

Stanford

Arm

robot

model.

Prior to the simulation, the user chooses the camera

location by specifying the azimuth and elevation for the

viewing plane and selects a scale factor for the image size

of the robot. Following this, a ray is traced for each

point in the viewing plane (a total of 16,384) starting in

the lower right-hand corner. If the ray being traced

intersects the model of the robot, the element and surface

number of the first intersection is computed and stored.

By treating only the first intersection, the process omits

all hidden lines. For each pair of adjacent rays (both

horizontal and vertical) , a comparison is made. If both

rays intersect the same part of the model, no dot appears

on the viewing plane. However, if the rays intersect

different parts of the model, the upper or left ray

(depending upon whether the vertical or horizontal pair is

being compared) generates a dot on the viewing plane. This

technique results in images where only the edges of each

element, represented by a series of dots, are shown.

Repeating the process for all rays produces a rectangular

dot matrix which forms the image of the robot as seen from

the camera. The dot matrix is then sent to a graphic

device producing a picture of the robot corresponding to

the set of joint positions specified for the simulation.

Figure 4. 3. 3-8 shows the results of a simulation of the

Stanford Arm robot picking up a block on a table top. This

particular graphic image is for a viewing plane azimuth of

45 degrees and elevation of 45 degrees.

- 142 -

Figure 4. 3. 3-8. Example of the graphical simulation of the

Stanford Arm robot picking up a block on a

table top. The viewing plane is positioned
with an azimuth of 45 degrees and an elevation
of 45 degrees.

128

X

128

point

viewing

plane

cz

Figure

4.

3.

3-7.

Conceptual

view

of

the

ray

tracing

technique

One note of caution regarding this work is that it

represents an example of what can be done with simulation

and was limited to an open loop program with no sensory

feedback or error correction procedures. Further

development would be required to include the capability to

simulate sensor data and error conditions in the robot

model.

This graphics simulation technique has proven to be useful

for examining the software for gross programing errors.

However, one drawback is the time required to generate each

of these graphic images. Since this process takes on the

order of 15 minutes for each image, time constraints permit

only a limited number of joint positions to be checked.

Although this is adequate for the intended purpose, a

technique which would permit real-time, or at least

near-real-time, simulation of the robot motion would be

desirable. Such a technique would allow the graphic

display of the simulation to be more realistic because it

would run at or near the normal operating speed of the

robot, and would provide the simulation user with a much

faster, more efficient technique of examining the software

and any changes that might be required. NBS is in the

process of writing the specifications for the procurement

of a graphics system with the capability of supporting such

a simulation. This system will be used for several

- 143 -

in-house, robotics-related projects, including some

longer-term work on robot simulation.

Safety Sensor Systems

Graphic simulation is a viable technique for minimizing

potential accidents as long as the environment around the

robot does not change. However, in industrial applications

this is seldom the case. Since personnel or other

equipment might enter the robot workstation, interactive

techniques for preventing collisions with the robot are

necessary.

At present, the most commonly used technique for providing

safety near industrial robots is to erect permanent

barriers around the workstation, such as safety rails,

fences or safety chains, in order to restrict personnel

from entering these areas while the robot is operating.

Although easy to implement, this approach is inadequate

because no safety protection is provided for operators

training the robot in teach mode or for personnel who are

required to work nearby while the robot is operational.

Also, the flexibility of the manufacturing facility is

severely limited by erecting permanent barriers. One

approach to solving this problem is to provide sensor

systems which can detect intruders — personnel and other

objects — that enter the robot workstation, and signal the

- 144 -

robot control system so that an appropriate control action

is made.

A variety of safety strategies can be developed regarding

the type of intrusion and the desired response of the robot

control system. There are cases when other equipment and

personnel must be in the workstation while the robot is

operational, e.g., during a routine maintenance check or

during the operation of a robot in the teach mode. These

situations obviously are to be treated differently from

cases where someone who should not be there enters the

workstation or some piece of equipment or hardware is left

in the robot's working volume. To handle such a variety of

possibilities, several distinct categories of sensor

systems can be envisioned. For the NBS work on robot

safety, these sensor systems have been broken-down into

three levels based on the region of coverage and the

associated safety strategy.

Level I systems provide perimeter penetration detection

around the robot workstation. These systems provide an

indication of an intruder crossing the workstation

boundary, but they do not necessarily provide any

information regarding the location of the intruder within

the workstation. The simplest safety strategy would be to

halt all operations as soon as an intruder crosses the

- 145 -

boundary. Halting all operations, however, would severely

restrict the flexibility of the workstation in much the

same way a fence would. Another approach would be to use

the Level I system to alert personnel that they are

entering a robot workstation and that they should exercise

extreme caution, or to provide a preliminary signal to the

robot control system to activate or check the status of

other safety sensors.

Level II systems provide detection in the region between

the workstation perimeter and some point on or just inside

the working volume of the robot. The actual boundaries of

this region depend upon the workstation layout and the

safety strategy being employed for a particular robot

design and mode of operation. In some cases, it may be

permissible for personnel to be inside the workstation and

perhaps even inside a portion of the accessible working

volume of the robot while the robot is operating. In

others, it may be necessary to slow down or halt all robot

movements as soon as an intruder gets within a specified

distance of the robot.

These two possible strategies illustrate that there are a

variety of approaches that can be taken in designing the

Level II system, particularly in terms of the areas or

zones of detection and the resulting robot control action.

- 146 -

In the design of the safety sensor system, the general

approach for sensing intruders and the overall safety

strategy are obviously interrelated and are two of the key

design factors. Some of the general approaches for

handling intruder detection are:

0 Detection in a limited number of zones where the

probability of a collision occurring is the

highest,

0 Detection at any location within a specified area

around the robot (exact location of the intruder

may or may not be known)

,

0 Intruder tracking through the workstation.

Similarly, the safety strategies can be grouped as follows:

0 Complete shutdown of the robot as soon as an

intruder is detected (either an application of

the brakes, if so equipped, or a software stop),

0 Limitation of the speed of the robot when an

intruder is detected and activation of

appropriate warning alarms.

- 147 -

0 Instruction of the robot to perform other tasks

in another zone until the intruder leaves,

0 Instruction of the robot to take an alternate

path to avoid a collision — obstacle avoidance.

These alternate approaches illustrate that there are many

ways of designing the Level II safety system. Although the

type of transducer and sensing system can be generalized,

the final design of the safety system and robot control

scheme will have to be specialized for different

robot/workstation layouts and types of robot operations.

Level III systems provide detection within the robot

working volume. This type of system, sometimes referred to

as a "safety skin," is required for cases where personnel

must work close to the robot, such as during teach-mode

operations. In such cases, the robot must be operational

even though someone is within the working volume. The

Level III system must be capable of sensing and avoiding an

imminent collision between the robot and the operator in

the event of some unexpected movement. Because the

distance between the robot and the operator is much less in

this case, the response time of the Level III safety system

must be much shorter than for the Level I or II systems.

These smaller separation distances also impose a

- 148 -

requirement for finer distance resolving capabilities in

the Level III system.

The concept of three levels of sensor systems does not

require that the three systems operate exclusive of one

another. In fact, some overlap of the regions of detection

coverage is desirable, since this could be used to provide

additional checks of intruders. These additional checks

would help to limit the number of false detections.

However, for cases such as teach-mode operations where the

Level III system is the primary system, the Level II system

would have to be in a standby mode. These and other

constraints would be factored into the total safety sensor

system design, would be tailored to. the particular robot

application under consideration.

Types of Detection Sensors

There are a variety of sensing techniques currently used to

detect intruders. The majority of the applications of

these techniques have been used to provide security for

commercial businesses, military bases, and, more recently,

nuclear power generating stations. Security sensor systems

can be categorized in much the same way as the Level I, II,

and III breakdown of safety sensor systems described in the

previous section. Although not standardized, the three

general types of security intrusion detection systems are:

- 149 -

(1) point, spot, or object; (2) perimeter or penetration;

and (3) area, space, or volumetric. As the name implies,

point systems are used to detect the presence of an

intruder at only a single location. Perimeter systems are

used to detect penetration across a specified boundary by

an intruder. Area or space systems are used to detect

intruders anywhere within a selected region defined by the

field of operation of the particular sensor being employed.

The system can be designed so that the selected region

includes the entire volume of some enclosed space such as

a room.

There are some obvious differences between the design

criteria for security and safety sensor systems because the

intended functional operation of these systems is not the

same. In general, security systems are not required to

provide information about the instantaneous location of an

intruder, only that a particular point, boundary, or space

has been penetrated by an intruder. For efficient

operation of the robot, the safety sensor system must

provide additional information about the intruder's

location in order to develop a system which will minimize

the number of unnecessary shutdowns. Thus, not all

security sensor systems are applicable to the design of

robot safety systems.

- 150 -

As mentioned above, there are a variety of security

intrusion detection sensing techniques currently in use.

Table 4. 3. 3-2, reproduced from NBS Special Publication

480-14, Selection and Application Guide to Commercial

Intrusion Alarm Systems, provides a comparison of these

different techniques in terms of types of applications,

relative advantages and disadvantages, resistance to

defeat, and false alarm susceptibility. Considering the

design of a robot safety sensor system in terms of the

requirements of Level I, II, and III systems shows that

many of the sensors listed in this table are not

applicable. For example, switch type devices might be used

for Level I perimeter detection; but once triggered, they

would have to be reset to be functional again. Another

example pertains to the motion detection type devices.

Although these devices perform well for security purposes,

they could not be used in a robot workstation, because the

motion of the robot would trigger the sensor. Other

limitations of some of these sensors are: susceptibility

to environmental effects, such as temperature changes,

extraneous noise or vibration, and dust or smoke; and to

background signals from other sources. Thus, only a

limited number of commercially available security intrusion

sensors are applicable to robot safety system design. Of

the sensors listed in Table 4.3. 3-2, only the

pressure-sensitive mats and the photoelectric sensors were

- 151 -

Table 4. 3-3-2 Comparison of various types of security
intrusion detection sensors.

+

SENSOR

DRY CONTACT

MECHANICAL

SWITCHES

MAGNETIC

SWITCHES

MERCURY

SWITCHES

METALLIC FOIL WIRE SCREENS TRIP WIRES

PRESSURE MATS

PRESSURE RIBBONS

PRESSURE WAFERS

APPUCATIONS OOORS. WINDOWS
GATES. TAANSOMS
MATCHES. ETC..

USUALLY POR
PERIMETER
PROTECTION.

DOORS. WINDOWS.
GATES. TRANSOMS,
HATCHES. ETC..

USUALLY FOR
PERIMETER
PROTECTION.

SHOW WINDOWS.
OFFICE WINDOWS.
GLASS DOORS.
DRY WALL BOARD
ETC.. USUALLY FOR
PERIMETER PRO-

TECTION

ACCESS POINTS NOT
SUBJECT TO EVERY.
DAY USE. USUALLY
FOR PERIMETER
PROTECTION

ENTRY WAVS SUCH
AS TO CORRIDORS
OR IN DOORWAYS
FOR PERIMETER
PROTECTION

SMALL AREAS.
DOORWAYS OR
UNDER SPECIFIC

,

OBJECTS FOR

1

POINT PROTECTION

ADVANTAGES LOW COST. RELATIVELY
RESISTANT TO
ENVIRONMENTAL £F

FECTS. RELATIVELY
IMMUNE TO EFFECTS
OF WEAR. LOW COST

>SAME COMMENTS

AS FOR MAGNETIC

SWITCHES APPLY

APPLICATION 1$

EASILY REPAIRED.
VISIBILITY SERVES
AS DETERRENT

LOW DEGREE OF
MAINTENANCE
LOW VlSlBlLTIY

FOR ATTRACTIVE
appearance

LOW COST LOW COST
LOW DEGREE OF
MAINTENANCE
adaptable TO WIDE
VARIETY OF SMaPES
AND SIZES.

OISAOVANTAGES LOW reliability
LOW SENSITIVITY
iUBJECT TO ENVIRON.
MENTAL EFFECTS
HIGH INSTALLATION
COST

BECAUSE OF MOUNTING
POSITION MAY 8E
SUBJECT TO DAMAGE
IN SOME APPLICATIONS.
HIGH INSTALLATION
COST

USUALLY FOR ACCESS

POINTS THAT HAVE

COVERS THAT

OPEN WITH CHANGING

VERTICAL ANGLE.

THUS these SWITCHES

OPERATE WHEN TILTED

BEYOND A CERTAIN

vulnerable TO

THROUGH DAY TO
DAY USE

MUST BE REPLACED
AFTER PENETRATION
TO RESTORE
PROTECTION

MUST BE REMOVED TO
ALLOW normal
ACCESS then
REPLACED TO
RESTORE PROTECTION.

SUBJECT TO WEAR iF

IN PATH OF HEAVY

SUBJECT TO EFFECTS
Of HUMIDITY 4NO
STANDING WATER

RESISTANCE TO

DEFEAT

LOW BALANCED TYPE
MORE resistant
TO COMPROMISE
THAN SINGLE MAGNET
TYPES.

LOW MODERATE FOR CON-
CEALED TYPES

LOW IF DETECTED BY
INTRUDER

RELATIVELY HIGH
ONLY IF concealed
OR PRESENCE UN
KNOWN TO INTRUDER

FALSE ALARM

suscEPTiBiiirr

HIGH IF DOOR OR
WINDOW HAS LARGE
AMOUNT OF PLAY
LOW IF TIGHT

HIGH IF OOOR OR
WINDOW HAS large
AMOUNT OF PLAY
LOW If TIGHT

HIGH OUE TO
EFFECTS OF
ENVIRONMENT

LOW TO MODERATE. LOW IF BUILDING
IS SOLID

SUBJECT TO environ-
mental CONDITIONS.

Reprinted from NBS Special Publication 480-14, ’’Selection and
Application Guide to Commerical Intrusion Alarm Systems,”
published by the NBS Law Enforcement Standards Laboratory.

Table 4. 3 . 3-2 Continued

ACOUSTIC ULTRASONIC MICROWAVE INrRARED PHOTOELECTRIC PMOTOElECTmC CXPKCITPNCE yiBRRTION

SENSORS MOTION SENSORS MOTION SENSORS MOTION SENSORS (AaiVE) SENSORS (PASSIVE) SENSORS SENSORS SENSORS

A«8A PROTECTION
OF ENCLOSED
SPACES (ROOMS.
VAULTS. £TC.»

AREA PROTECTION
OF SIMALL EN-

CLOSED SPACES
(ROOMS, COR-
RIDORS, ETC.)

AREA PROTECTION
OF ENCLOSED
SPACES IROOMS.
CORRIDORS ETC »

CAN COVER LARGE
AREAS.

AREA PROTECTION
UF ENCLOSED
SPACES (ROOMS
CORRIDORS ETC)

CAN COVER LARGE
AREAS

ACROSS DOORWAYS
CORRIOORS.ETC
FOR PERtMerER
PROTECTION
MULTIPLE BEAM
SYSTEMS FOR
LIMITED AREA
PROTECTION

POINT PROTECTION
USING SENSORS
WITH HIGH
DIRECTION SEN-
SITIVITY

LIMITED AREA PRO
TECTIONOF SMALL
ROOMS OR PORTIONS
OF LARGER ONES

PRIMARILY POINT
PROTECTION FOR
SAFES filing

CABINETS
valuable OBJECTS
limited area
AND perimeter
PROTECTION

PRIMARILY POINT
PROTECTION FOR
JAULTS ShO’W

CASES £^C
LIMITED SPACE
PROTECTION WHEN
installed to
PROTECT WALLS OP
CEILINGS. ETC

SENSITIVE.

CAN USE EXIST-

ING INTERCOM
SYSTEMS.
NOT AFFECTED ev
AIR MOVEMENT.
EFFECTIVE AGAINST
•STAV-8EHINOS. •

usually not
DETECTABLE BY
INTRUDER.
EFFECTIVE
AGAINST "STAY
3EHINOS.
EASY PHYSICAL
INSTALLATION.

NOT detectable
BY INTRUDER.
EFFECTIVE
AGAINST "STAY-
8EHINOS."
NOT AFFECTED BY
AIR MOTION,
NOISE. LIGHT
OR SOUND.

relatively
IMMUNE TO
NOISE ANO
VIBRATION.

HIGH DEGREE OF
FLEXIBILITY IN

APPLICATION
INFRARED BEAM
DIFFICULT TO
DETECT
CAN COVER access
POINTS WHERE
PHYSICAL OB-

STRUCTION NOT
DESIRED OR CAN
NOT BE TOLERATED

RELATIVELY UN-
AFFECTED BY
ENVIRONMENTAL
factors (EXCEPT
ABRUPT CHANGE IN

LIGHT LEVELI
HIGH DEGREE OF
FLEXIBILITY IN

APPLICATION

HIGH DECREE OF
FLEXIBILITY IN

APPLICATION
PROTECTIVE FIELD
NOT DETECTABLE
BY intruder

REQUIRE LOW MAiR*-

tenance
HIGH OEGREE OF

WHEN PROPERLY
APPLIED

MUST BE USED IN

STABLE NOISE
ENVIRONMENT
WHERE BACKGROUND
LEVEL IS LOW

•SEVERELY AFFECTED
BY ENVIRONMENTAL
FACTORS. AIR

TURBULENCE ANO
MOTION RATTLING
DOORS. JANGLING
KEYS. BLOWING
DRAPERIES.
VIBRATIONS. LOUD
NOISES. ETC.

ESSENTIALLY LINE-

OF-SIGHT OPERATION.
LARGE OBJECTS COULD
SHIELD INTRUDER.
MAY NOT DETECT EX-

TREME RATES OF
MOVEMENT (VERY
SLOW OR VERY FAST).

COVERAGE DIFFICULT
TO CONFINE TO DE-

SIRED AREA.
CAN BE SETOFF BY
NEARBY fluores-
cent LIGHTS. LARGE
OBJECTS OUTSIDE
PROTECTED AREA.
RADIO TRANSMITTER
OPERATING NEAR
SENSOR FREQUENCY

SENSITIVE TO
CHANCES IN

THERMAL ENVIRON
MCNT (t. 4.. CHANGES
IN SUNLIGHT ANO
TEMPERATURE)

NARROW BEAM OF
PROTECTION.
LINE OF SIGHT
OPERATION
SMOKE OR OUST

OPERATION.
SUBJECT TO mis-

alignment
PROBLEMS.

NARROW SEAM OF
PROTECTION.
LINE-OF SIGHT OPERA
T1ON SMOKE OR OUST
CAN HAMPER OPERA

CAN BE APPLIED ONLY
TO OBJECTS NOT
ELECTRICALLY
GROUNOEO MAY
REQUIRE SPECIAL
CONSTRUCTION

DETECTS ONLY FORCE-
FUL ATTEMPTS at
ENTRY
cannot be USED IN

AREAS OF HIGH
VIBRATION (TRAFFIC.

CONSTRUCTION ETC..

HIGH IF PROPERLY
INSTALLED.

HIGH IF PROPERLY
INSTALLED.

HIGH IF PROPERLY
INSTALLED

LOW TO MODERATE.
WITH SYSTEMS
USING MODULATED
BEAMS HAVING
HIGHEST resistance

VERY HIGH VERY HIGH

CAN BE HIGH BUT
REDUCED USING
ADDITIONAL CAN-
CELLATION MICRO-

CAN BE HIGH UNLESS
ENVIRONMENTAL
FACTORS ARE CON-
SIDERED BEFORE
APPLICATION.

CAN BE HIGH unless
PROPERLY PLACED
ANO CAREFULLY
ADJUSTED

HIGH FOR RECEIVE

LOW FOR TRANSMIT
RECEIVE SENSORS.

CAN BE HIGH IF

certain ENVIRON-
MENT factors are
PRESENT (SMOKE.
OUST) OR POOR
PLANNING RESULTS
IN MISAPPLICATION.

IMPROPERLY
installed SO
THAT heat OR
LIGHT LEVELS ARE
NOT CONSTANT tF

COVERS FLOOR
RODENTS MAY SET
OFF ALARM.

LOW IF PMOPERLY
installed. ENVIRONMENTAL

FACTORS ARE NOT
'^AKEN INTO AC
:OUNT MAY 36
-RiGGERED BY

’HEMORS SONIC

considered suitable for use in developing a robot safety

sensor system. In addition to the sensors listed in this

table, various types of ultrasonic and infrared sensors

(other than motion detection devices) were also evaluated

for the safety system design.

Description of the Prototype Safety System

The prototype safety system was designed for the Stanford

Arm robot, set up in the NBS robotics laboratory as shown

in Figure 4. 3. 3-9. A general floor plan of the laboratory

in which the robot is located is shown in Figure 4.3.3-10.

In this figure, the dotted or shaded area corresponds to

the region that the robot can reach with the arm at maximum

extension. The cross-checked area represents the region

considered to be the robot workstation for this project.

The outside edge of this area defines the boundaries as far

as design of the safety sensor system is concerned. The

safety strategy employed in this initial system will permit

personnel to be in the cross-checked area, but not in the

shaded area (i.e., the working volume of the robot) while

the robot is operating. When an intruder enters the

cross-checked area, a warning alert (visual and/or audio)

is broadcast. When an intruder is detected entering the

working volume, the robot undergoes a software stop at its

current position. The robot remains in this position until

the intruder leaves the working volume. Once the intruder

- 152 -

Figure

4.3.3-10.

Floor

plan

of

the

laboratory

which

the

Stanford

Arm

robot

is

located.

e •

U >1
C u

o
TD 4->

u (T3

0 u
M-l 0
C 12
nj (T3

4J .H
cn

w
0) u
j=
jj jj

o
y-i

0 O
u

5
<u cn

03

> 2

0)

u
3
cn

I-Z4

has left this area, the robot resumes its programmed task

from the point at which it was stopped. For cases where

personnel must be within the working volume, a

hand-operated emergency stop switch is used to halt the

robot.

The prototype safety system consists of both a Level I and

a Level II sensor system. In addition, an emergency stop

capability exists for use in situations where personnel

conducting research must be within the working volume while

the robot is operating. In such cases, the safety sensor

systems are put on standby and a large, easily accessible,

hand-operated emergency stop switch is used to halt the

robot. Hitting the emergency stop button causes the

electromagnetic brakes on each joint electric motor to be

applied. Since this is not a software stop, the control

software must be reinitialized before the robot can

continue operation.

The Level I system is composed of a set of

pressure-sensitive, industrial-grade floor mats positioned

in the cross-checked area around the robot. When contact

is made with one of these mats (a foot pressure of 30

pounds or approximately 5 Ib/sq.in. is required to

activate the mat) , an electrical circuit is completed which

is used to turn on a warning light. Future plans include

- 153 -

the development of a system to broadcast warning

announcements to the intruder. These announcements will be

generated using an electronic speech synthesis system which

will give a great deal of flexibility in changing the

announcement for different operational conditions in the

workstation. Pressure sensitive mats are used because they

do not create any obstacles to isolate the workstation from

the surrounding areas. Other types of sensors, such as

beam-break photoelectric detectors, would have to be

mounted on a stand or pole so that they would be at a

reasonable height above the floor to detect an intruder.

These mounting stands would act as a hindrance to movement

around the perimeter of the workstation and might, in

themselves, pose a safety problem because of personnel

inadvertently bumping into them. Also, since these types

of sensors only detect the penetration of the workstation

perimeter, they would have to be used in at least pairs at

each boundary to be able to determine whether the intruder

is entering or leaving the workstation. This illustrates

another advantage of the mats in that the detection signal

will remain on as long as the intruder is standing on the

mats within the workstation.

In addition to the cross-checked area, another mat with a

circular perimeter is located on the floor inside the

working volume (i.e., the shaded area), except for the

- 154 -

space occupied by the table and equipment rack, as shown by

the rectangular outlines in Figure 4.3.3-10. The perimeter

of this mat corresponds to the perimeter of the region

reachable by the robot arm. When an intruder steps on this

mat, the resulting signal is used to stop the robot (a

software stop) , since the intruder is within the robot

working volume. In future applications, this inner mat

could be used for purposes other than merely shutting down

the robot, such as reducing the robot operating speed and

broadcasting an audio warning instructing the intruder to

leave the area or the robot will be shut down and further

alarms will be sounded. Figure 4.3.3-11 shows the Stanford

Arm robot mounted on a table, the circular mat in the area

inside the reach of the robot arm, and a portion of the set

of mats outside this inner circle in the region

corresponding to the cross-checked area. Notice that for

this outer area, there are a number of mats — 11 total.

For this initial safety system, these mats are all wired

together to give a single output signal. It is possible in

future applications to look at the output of each mat to

get an indication of an intruder's general location within

this area. This information could be checked against the

indications from other safety sensor systems to

substantiate the location of an intruder.

The Level II system used in this prototype design consists

of an array of five ultrasonic echo-ranging sensors. These

- 155 -

Figure 4.3.3-11. View of the Stanford Arm robot showing the
inner circular mat and a portion of the set of
mats covering the ’general workstation area.

sensors consist of an electrostatic transceiver (i.e.,

transmitter and receiver) and the support electronics for

determining the separation distance between the transceiver

and some target. The basic operation of the sensor

involves: (1) transmission of an ultrasonic pulse from the

electrostatic transducer; (2) reception of any reflected

signals using the transducer as the receiver; (3)

measurement of the time-of-flight of the ultrasonic pulse

from the transducer to a target and back to the transducer;

and (4) computation of the separation distance between the

transducer and the target, based on the time-of-f light

measurement. In this sensor, the time-of-f light is

obtained by simply starting an internal clock when the

ultrasonic pulse is transmitted and stopping it when an

echo is received. Before describing the operation and

characteristics of these sensors in detail, the following

paragraph briefly outlines how they are used in the Level

II safety system.

In the prototype safety system, the ultrasonic echo-ranging

sensors are used to determine whether an intruder gets

closer than some predetermined minimum distance from the

robot. If an intruder is within this distance, a signal is

sent to the robot controller to halt the robot. To

determine if there is an intruder present, a comparison is

made between the measured transducer-to-tar get separation

- 156 -

distance for each transducer (actually the time-of-f light

is used for comparison) and a previously determined value,

' which corresponds to a point outside the reach of the robot

arm. The reach of the robot arm when it is at full

extension plus some margin of safety, which will permit the

robot to be stopped before a collision can occur, determine

this preset minimum distance. Three points to note about

the application of the ultrasonic echo-ranging transducers

in this prototype system are: (1) any signal corresponding

to an echo from any permanent structure or an intruder

located outside the preset minimum distance is disregarded,

(2) the actual location of the intruder, i.e., the exact

distance from the robot, is not used, and (3) the coverage

areas can be easily selected or modified by simply changing

the preset minimum distance for each transducer.

The ultrasonic echo-ranging sensors are similar to those

used in a popular brand of automatic focusing camera. The

sensors used in this prototype system were obtained

commercially as part of an ultrasonic echo-ranging

designers kit. These kits contain two electrostatic

transducers, an ultrasonic circuit board (UCB) which

generates the ultrasonic pulse and processes the received

echo, and an experimental demonstration board which

contains the clock and other electronics necessary to

display the transducer-to-target separation distance in

- 157 -

feet (resolution of tenths of feet) . For applications

where the experimental demonstration board is not required,

it is possible to purchase the transducers and UCB's

separately at a considerable savings in cost.

The physical construction of the transducer is shown in

Figure 4.3.3-12. The two primary components of the

transducer are a special plastic foil, which has a

conductive gold coating on the front side, and an aluminum

backplate, which has a series of concentric grooves and is

placed against the plastic foil. These are mounted in a

housing which has a perforated front and are held in an

inner ring by a steel spring retainer. This retainer is

used to make electrical connection with the backplate and

to hold the foil under constant tension. The backplate and

foil represent an electrical capacitor that, when charged,

exerts an electrostatic force on the foil. Applying an AC

voltage of a given frequency forces the foil to move at the

same frequency and to radiate sound waves. The perforated

front cover of the housing mechanically protects the foil

and causes only a small loss of radiated signal strength.

In order to determine the acoustic characteristics of these

sensors, a series of measurements were made in the NBS

anechoic chamber. These measurements were made using the

experimental setup and equipment shown in Figure 4.3.3-13

- 158 -

INNER RING

a) CONSTRUCTION DETAILS

INNER

RING

RETAINER

300 VOLTS

b) CROSS-SECTIONAL VIEW

Figure 4.3.3-12. Construction details and cross-sectional view
of the electrostatic transducer. These
drawings were reproduced, with the permission
of Dr. C. Biber and the Audio Engineering
Society, from: Biber, C. , et al. , The
Polaroid Ultrasonic Ranging System, AES Paper
No. 1696 (A-8), Presented at the 67th
Convention of the Audio Engineering Society,
October 31 - November 3, 1980, New York, NY.

ANECHOIC

CHAMBER

i. 1.

OJ taC

D O
!- t-

O Q.

c
O 1.

O 1)

C £

<U T3 ^
= :- th
e CO t.

O TJ CO

O C CO

0) CO CO

i. 4J 0)

CO o
>>

C 4J c;- c
CO (J Cu O
i. 3 e (u

-O t-i D J-

3 CO

m -uj

o •

.-'3 0;

CO -c COcoo
O C Q

CO o
j3 c: 0-

<D

q; -o
CO CO

o;

JC o

C CO

o -^ >
O -r-l CO

C
O CO 'jj

CU CO

5- O CD

o T3 x;

CO. c
o o
C jJ

c c c. cu

C (30 o
o ^ c
V Cl

s: o s:
0-0 0
c c

c o;

o
.C jC
CL (0

O
c

CQr-CXlr-r-
O — O CM
<C O CO (O'.

33- O CM CM (>0

O MO
CM ('O

CM ^

>1 > >, >, >,

3^: it:

^ ^ 0(3 ^ ^3 C2 cQ ca cn oa cQ

Figure

4.3.3-13.

Instrumentation

setup

for

the

acoustic

characterization

measurements

of

the

electrostatic

transducer

(see

Table

4.

3.

3-3

for

instrumentation

settings).

with the instrumentation settings listed in Table 4. 3. 3-3.

The following measurements were conducted for each of the

transducers used in the prototype safety system:

1) Sound level time history

2) Sound level at 1.0 meter

3) Directivity of the radiated sound waves

4) Narrow-band spectra.

Representative samples of these data are now presented and

discussed.

The sensor is designed to radiate an ultrasonic pulse or

chirp consisting of 56 cycles at four discrete frequencies:

8 cycles at 60 kHz, 8 cycles at 57 kHz, 16 cycles at 53

kHz, and 24 cycles at a nominal frequency of 50 kHz. This

combination of frequency components gives a pulse duration

of approximately 1.2 milliseconds. A typical sound level

time history of a single ultrasonic pulse is shown in

Figure 4.3.3-14. As expected, it is characterized by four

distinct sections corresponding to the four frequency

components. The sound level of this radiated pulse, as

measured at 3 feet with the 1/8 inch condenser microphone

at grazing incidence, ranged from 93 to 96 dB (corrected to

free-field response) for the set of five transducers used

in the prototype system. These sound levels were recorded

from the meter on the measuring amplifier, shown in Figure

4.3.3-13, with the settings listed in Table 4. 3. 3-3 with

- 159 -

Table 4. 3. 3-3. Normal instrumentation settings for the equipment
used to make the acoustic characterization
measurements (see Figure 4.3.3-13).

INSTRUMENT NORMAL SETTINGS

B&K Type 2607 rms, 0.1 s averaging time, external filter, linear

output, ac output to Nicolet Model 660A, dc output

to B&K Type 2305.

SKL Model 302 1000 Hz high-pass filter.

B&K Type 2305 50 dB logarithmic potentiometer, 50 dB potentiometer

range, dc response, 20 Hz lower limiting frequency,

16 mm/s writing speed.

Nicolet
Model 660A

800 line spectrum, transient-peak averaging mode,

100 kHz frequency range.

8 cycles (§ 60 kHz

8 cycles @ 57 kHz

cycles @ 53 kHz

24 cycles (? 50 kHz

Figure 4.3.3-14. Time history envelope for a single ultrasonic
pulse radiated from the electrostatic
transducer

.

the exception that a meter averaging time of 1.0 second

rather than 0.1 second was used.

To determine the directional characteristics of these

transducers, the sensors were mounted on a turntable and

the sound level was recorded while the sensor was rotated

360 degrees. The sound level was recorded using the level

recorder shown in Figure 4.3.3-13 with the settings listed

in Table 4. 3. 3-3. Figure 4.3.3-15 shows a typical

directivity plot for one of the electrostatic transducers.

As shown by this plot, these transducers are very

directional. The 10 dB down points are located at

approximately + 10 degrees off the centerline of the main

forward lobe (+ 9 degrees for this particular transducer).

The two primary sidelobes are located at approximately + 16

degrees, with magnitudes between 13 and 15 dB less than the

main forward lobe. These directional characteristics are

advantageous because with such a narrow forward beam and

small sidelobes it is possible to locate intruders more

accurately and also to specify the areas of detection

coverage best suited for a particular application. The

disadvantage is that it takes several sensors to provide

adequate detection coverage around the entire robot.

The last set of characterization measurements conducted was

narrow band spectral analysis of the radiated pulse. An

- 160 -

0

. Plot of the directional characteristics of the
radiated ultrasonic sound waves from the
electrostatic transducer.

Figure 4.3.3-15

example of the results of these measurements is shown in

Figure 4.3.3-16. This plot, typical of all the transducers

tested, shows three major peaks located nominally at the

design frequencies of 50, 53 and 57 kHz. The magnitudes of

these spectral peaks, relative to the value at 50 kHz, are

-2.2 and -4.4 dB at 53 and 57 kHz, respectively.

From this plot it is not evident that there is any

component at 60 kHz. It is speculated that there is a

problem with filter sidelobe interference in the FFT

analyzer that effectively cancels the component at 60 kHz.

The presence of a 60 kHz component was verified

experimentally by using a time gating process to isolate

each component of the radiated pulse, i.e., the first eight

cycles, supposedly corresponding to 60 kHz, the second

eight cycles (cycles nine through sixteen) , supposedly

corresponding to 57 kHz, etc. Figure 4.3.3-17 shows the

results of these measurements for each component of the

radiated pulse. These data show that there is a component

at 60 kHz as originally specified for these transducers.

The receiving characteristics of the transducer were

examined by testing the appropriate outputs of the

ultrasonic circuit board (UCB) . The sensor is designed to

have an operating range of 0.9 to 35 feet. The limits of

this range are a function of the timing requirements of the

- 161 -

RELATIVE

NARROW

BAND

SPECTRUM

SOUND

LEVEL,

dB

Results of narrow band spectral analysis of a
single pulse radiated from the electrostatic
transducer

,

Figure 4.3.3-16.

KElATIVt

NARROW

BAND

SPECTRUM

SOUND

lEVEl,

dB

(a) Cycles 1 to 8

.

(b) Cycles 9 to 16.

(c) Cycles 17 to 32. (d) Cycles 33 to 56.

Figure 4.3.3-17. Results of narrow band spectral analysis of
the individual components of the radiated
ultrasonic pulse. .

transmit/receive cycle and the distance attenuation of the

ultrasonic pulse and its echo. The reliability of target

detection by the sensor is optimized by three design

features. The first feature is the use of a

multi-frequency pulse. By using a pulse with four

frequency components, the probability of setting up a

standing wave pattern between the target and sensor so that

a null occurs at the sensor (i.e., effectively no echo

signal at the sensor, and therefore, no detected target) is

minimized

.

The second feature is the use of automatic gain control on

the input amplifier to increase the signal- to-noise ratio

of the received echo by increasing the amplifier gain. The

reason for doing this is that the farther the pulse and

echo have to travel, the smaller the received signal will

be due to distance attenuation. Since this distance is

proportional to the time-of-flight , the gain increase is

keyed to the system clock, which is also used to measure

the time-of-flight . The gain is increased in finite steps

at specified timing points until an echo is received.

The third feature is automatic bandwidth control of the

input filter. This is necessary to minimize the effects of

extraneous background noise. Initially, the bandwidth is

relatively wide, so that all the frequency components of

- 162 -

the pulse can be received. Again based on the system

clock, the bandwidth of this filter is decreased to a

constant narrow bandwidth centered at 50 kHz. The reason

for this automatic bandwidth control is that at first

background noise is not a problem, because the magnitude of

the echo signal will be relatively large for close targets.

For targets farther from the sensor, the magnitude of the

echo signal will significantly decrease as a result of wave

spreading and distance attenuation so that background noise

may become a problem. By narrowing the bandwidth to center

on 50 kHz, the sensor can maximize the rejection of

background noise and thus reduce the possibility of false

detection signals. The filter is designed to center on 50

kHz rather than 60 kHz because the 50 kHz signal will be

stronger, since the attenuation of sound waves in air is

less for lower frequencies.

The sensor is designed to set a flag when an echo is

received. It is this flag that is used to determine the

time-of-flight . The detection scheme used to set this flag

is based on the magnitude of the amplified echo signal.

The flag is set when a threshold of approximately 0.2 volts

is exceeded. This is illustrated in Figure 4.3.3-18a,

which shows the amplified echo and echo flag signals from

the UCB during one transmit/receive cycle. In this figure

the upper trace is the amplified echo, which consists of a

- 163 -

1.0 msec

h Time-of-Flight

AMPLIFIED ECHO

ECHO FLAG

(a) Target distance greater than 0.9 feet.

than 1.6 msec after initiation of

the transmit pulse.

A21PLIFIED
ECHO

ECHO FLAG

(b) Target distance less than 0.9 feet.

Typical output signals for the amplified echo
and echo flag measured from the ultrasonic
circuit board (UCB)

.

Figure 4.3.3-18

signal corresponding to the transmit pulse and a

shutoff/recycle transient and then no signal until an echo

is received. When the echo signal exceeds the 0.2 volt

threshold, the echo flag is set as shown in the lower

trace. The time-of-flight is then the time between the

start of the transmit pulse and the echo flag as indicated

in the figure. This applies to targets in the range from

0.9 to 35 feet from the transducer.

If a target is closer than 0.9 feet, it can be detected,

but the sensor-to- target distance cannot be resolved. This

is shown in Figure 4.3.3-18b. The sensor has a 1.6 msec

dead time during the transmission of the pulse in which no

received echo can be detected. This 1.6 msec dead time

establishes the lower limit of the measurable range of the

sensor and corresponds to the time-of-flight for a target

located 0.9 feet away. However, because a reverberant

sound field will exist between the target and sensor, i.e.,

the pulse will echo back and forth off the target and the

sensor, there will still be an echo signal after 1.6 msec

which will cause the echo flag to be set. Although the

exact target distance cannot be determined (the sensor will

indicate 0.9 feet), the target, or intruder, will be

detected

.

Another area of concern is the effect of different target

surfaces and geometries on the echo signal and on the

- 164 -

target detection capabilities of the sensor. To examine

this, another set of measurements was conducted in the

anechoic chamber using the following targets:

(a) Plywood panel, 3' x 3', 3/4” thick

(b) Pressboard panel, 16" x 27", 1/8" thick

(c) Pressboard panel same as (b) with a 2 1/2"

foam facing

(d) Plastic manikin

(e) Plastic manikin with clothes

(f) Human

The echoes from these targets were measured for various

sensor-to-target separation distances. Also, the effect of

angling the target relative to the centerline of the sensor

was investigated. The general setup for these measurements

is shown in Figure 4.3.3-19.

Two types of data were recorded for the echoes from these

targets: (1) acoustic measurement of the echo using a 1/4

inch microphone at normal incidence, and (2) examination of

the amplified echo and echo flag signals from the UCB. In

general the magnitude of the echo signals from these

targets is significantly less than that of the radiated

pulse. For this reason the measurements were made with a

1/4 inch microphone at normal . incidence because it has a

- 165 -

TARGET
ELECTROSTATIC

TRANSDUCER

TARGET-TO-SENSOR

DISTANCE

i n c h

MICROPHONE

(a) Side view showing relative positions of the hardware.

a

ELECTROSTATIC

TRANSDUCER

I

—

,i

!4 i n c h

MICROPHONE

(b) Top view showing the angular relationship between the
target and sensor.

Figure 4.3.3-19. Experimental setup for the investigation of
the effects of different target surfaces and
geometries.

lower noise floor and greater sensitivity than the 1/3 inch

microphone used for the transducer characterization

measurements

.

Table 4. 3. 3-4 lists the data for the 3' x 3' plywood panel

for various target-to-sensor distances. Also listed is the

maximum angle at which the panel can be turned relative to

the sensor (see Figure 4.3,3-19) and still be detected and

the echo flag set. These data show that the echo sound

level is relatively high for reflection off this panel.

For example, the sound level of the directly radiated pulse

ranged from 93 to 96 dB at 3 feet for all of the

transducers tested. The sound level of the echo for a

target-to-sensor distance of 3 feet (actually 6 feet of

total travel of the sound wave to the target and back) was

91.5 dB. This difference is about what would be expected

for normal attenuation with distance (3 feet versus 6

feet). Thus as expected for a hard, flat, smooth surface,

this panel has little effect on the pulse except to reflect

it. The data regarding angling the panel relative to the

sensor show that beyond an angle of + 25 degrees the echo

signal is not sufficient to set the echo flag; therefore,

the panel would not be detected.

Table 4. 3, 3-5 lists similar data for the pressboard panel

with and without a foam facing. Rather than list the

- 166 -

Table 4. 3. 3-4. Effect of target-to-sensor distance upon the target
echo strength and the maximum angle at which the
panel can be turned and the echo flag set for the
plywood target.

TARGET-TO-SENSOR ECHO SIGNAL MAXIMUM ANGLE FOR

DISTANCE, feet SOUND LEVEL, dB ECHO FLAG, degrees

1 100.5 —
2 96.5 —
3 91.5 ± 23

4 87.5 ± 25

6 83.5 GOrH+1

8 79.5 ±

10 74.5 + 20

20 65.5 —

Table 4. 3. 3-5. Comparison of target echo strengths for the
pressboard with and without a foam facing.

TARGET-TO-SENSOR

DISTANCE, feet

ECHO SIGNAL

RELATIVE SOUND LEVEL,

dB (see footnote)

MAXIMUM ANGLE FOR

ECHO FLAG, degrees

PRESSBOARD FOAM PRESSBOARD FOAM

1 0 -32.2 + 20 ± ^

4 -11.2 -39.5 + 20 ± ^

* The sound level of the echo signal is based on 20 times
the log of the peak-to-peak voltage referenced to the
value for pressboard at one foot.

absolute sound levels for these targets, all values are

referenced to the value for pressboard at a

target-to-sensor distance of 1 foot. These data show that

the foam facing has a significant effect on the level of

the echo signal reducing it by approximately 30 dB. This

effect is also evident when the target is turned relative

to the sensor. The angle at which the echo flag is set is

reduced from + 20 degrees to approximately + 5 degrees.

Thus, primarily because of absorption of the ultrasonic

sound waves, the foam has much more effect on the echo than

the hard, smooth surfaces of the pressboard or plywood.

When the sensors are used in the safety system to detect

intruders, the targets will be human. In order to obtain

information more closely related to this type of target,

data were recorded for a plastic manikin with and without

clothes. Also, a limited set of data was recorded for a

human target to verify the manikin data. The manikin,

shown in Figure 4.3.3-20, consists of the torso, head and

upper arms. It does not have legs or arms below the elbow.

Table 4. 3. 3-6 lists the data for the manikin and, for

comparison, the data for the plywood panel. These data

show that the sound levels of the echo signals are less for

the manikin than for the plywood panel. This is expected

based solely on the differences of total surface area

normal to the sensor for these targets. Adding clothes to

- 167 -

Figure 4.3.3-20. View of the piast*ic manikin used in the target
detection measurements.

Table 4. 3. 3-6. Comparison of the target echo strengths as a

function of target-to-sensor distance for the
manikin with and without clothes and the
plywood target.

TARGET-TO-SENSOR

DISTANCE, feet

ECHO SIGNAL SOUND LEVEL, dB (see footnote)

MANIKIN

(with clothes)

MANIKIN

(without clothes)

PLYWOOD

PANEL

1 86.5 93.5 100 .

5

2 82.5 86.5 96.5

3 74.5 81.5 91.5

4 70.0 78.5 87.5

6 68.0 72.0 83.5

8 62.0 68.5 79.5

10 61.0 66.0 74.5

20 42.5 41.5 65.5

* The sound level of the echo signals for target distances
4 feet and beyond are based on the level measured at one
foot minus 20 times the log of the ratio of the peak-to-
peak voltages of the echo pulse.

the manikin (long sleeve shirt and lab coat) reduced the

sound level of the echo signals between 4 and 8.5 dB for

distances out to 10 feet. For comparison to ensure that

these data were representative of human targets, the sound

level of the echo signal from a human at 4 feet was

measured. The sound level was between 68 and 71 dB,

compared to 70 dB for the manikin.

The most important fact is that the sensor, without fail,

detected the manikin in all cases out to 20 feet regardless

of whether the manikin was clothed or not. The manikin was

rotated 360 degrees and, again, was always detected. One

final test was conducted with the manikin turned sideways

in front of the plywood target to determine whether the

echo flag would trigger on the manikin or the plywood

panel. Measurements were made for the following two sets

of target-to-sensor distances:

Manikin Plywood Panel

(1) 4 feet 6 feet

(2) 20 feet 22 feet

In both cases the echo flag was set by the echo signal from

the manikin. This is exactly the result that is desired

when the sensor is used in the safety system.

- 168 -

Operation of the Prototype Safety System

The prototype safety system consists of the

pressure-sensitive mats, shown in Figure 4.3.3-11, and an

array of five of the electrostatic transducers mounted on

the Stanford Arm robot, as shown in Figure 4.3.3-21. This

prototype safety system is entirely hardware-based and does

not have the capability of utilizing joint position

information or similar data from the robot controller.

Because of this, it is necessary to mount the electrostatic

transducers so that they move with the robot. This is done

by fastening four of the transducers to a mounting bracket,

which is bolted around a section of the support for the

robot arm. In this position, the sensors rotate with the

robot arm while still providing clearance for the robot arm

to move up and down. The fifth transducer is mounted to

the rear end of the boom which moves back and forth as the

robot arm is withdrawn or extended.

As seen in Figure 4.3.3-21, the transducers are put inside

a phenolic case and fastened to a mounting bracket.

Individual coaxial cables run from the transducers to the

UCB and other electronics located under the table upon

which the robot is mounted. The tranducer mounting

brackets are designed to permit the transducer to be

rotated right or left and up or down so that the areas of

coverage can be easily set or changed as necessary.

- 169 -

Figure 4.3.3-21. View of the Stanford Arm robot showing the
locations of the five electrostatic
transducers

.

The two primary areas requiring coverage are those around

the gripper and around the end of the boom. Because these

transducers have a +10 degree cone in which an intruder

can be detected, the positions of the transducers must be

carefully selected to provide the desired coverage. One

constraint to this is that the transducers cannot

distinguish among an intruder, a workpiece on the table

top, wire cables on the robot arm, or the robot grippers.

Thus, the sensors must be positioned so that these other

objects do not enter the operating cone of the five

transducers

.

With these design goals and constraints, the transducers

were positioned to provide coverage in the areas

illustrated in Figure 4.3.3-22. The robot gripper and the

end of the boom are the two areas of primary coverage,

because these locations have the highest potential for a

collision. There is no coverage to the sides. The only

way the robot can strike an intruder is by rotating to the

right or left. However, before a collision could occur,

the intruder would be detected by one of the transducers,

since the cone sweeps across the intruder's location before

the robot arm does. The other area not covered is directly

in front of the robot gripper. Although this omission is

not desirable and will be eliminated in more advanced

safety system designs, it is not a problem in this

- 170 -

STANFORD

ARM

ROBOT

Figure

4.3.3-22.

Approximate

locations

of

the

electrostatic

transducers

on

the

robot

arm

and

the

areas

of

detection

coverage.

application, because the gripper is always operating over

the table top, which extends beyond the reach of the robot

arm.

The safety system electronics are designed so that any echo

signal corresponding to a target (i.e., an intruder),

beyond some minimum distance, is disregarded. Thus, as an

intruder approaches the robot, an echo signal is received,

but it is not until the intruder reaches this minimum

distance that the signal is sent to the controller and the

robot stopped. This minimum distance was set to be

approximately one foot beyond the reach of the robot arm,

so that the robot can be stopped before the intruder takes

one more step and can potentially be struck by the robot.

This distance was found to be more than adequate to stop

the robot and prevent a collision, even with the robot

operating at maximum speed and the intruder walking

directly towards the robot.

In operation, the safety system electronics are configured

to give a single output to the robot controller when an

intruder is detected by any of the sensors. (There is also

another signal input, corresponding to the circular mat,

which is independently sent to the controller.) When an

intruder is detected within the prescribed minimum distance

and the signal sent to the controller, the robot is halted.

- 171 -

As long as the intruder remains, the robot stays in this

position. The minimum length of time the robot is stopped

is 0.5 seconds (for a 25 msec sampling rate of the output

of the safety system electronics by the robot controller)

.

After the intruder has left, the robot continues to perform

the operation it had started from the position in which it

was halted.

One potential problem is false detection indications which

unnecessarily cause the robot to be stopped. These false

detection signals can be caused by electronic interference,

extraneous noise sources with frequency components in the

50 to 60 kHz range, or echo signals from one transducer

being received by another transducer. This problem was

handled in the electronics of the prototype system by

requiring that the echo flag be set at least twice in a 0.8

second period. With an electrostatic transducer repetition

rate between 7 and 8 pulses per second, this requires that

two out of six consecutive pulses from the transducer

result in an intruder detection indication. With this

design, false detection indications were totally

eliminated.

Overall, the prototype safety system performed well for all

tests that were conducted. The pressure-sensitive mats

operated as designed and will be used in the development of

- 172 -

future safety systems. For the electrostatic transducers,

false detection signals, unnecessarily causing the robot to

be halted, were totally eliminated. More importantly, the

robot was capable of stopping within an adequate distance

and in time to prevent any collisions with an approaching

intruder

.

Future Safety System Developments

Future safety system developments will be concentrated in

two areas. First, there will be further developments

utilizing the electrostatic transducers. This will involve

incorporating a microprocessor in the system electronics so

that information . from the robot controller, such as joint

positions, can be used to refine the operation of the

system. These refinements will permit techniques, such as

difference mapping, to be used. Difference mapping

involves storing a set of acceptable transducer outputs for

various joint positions when no intruders are present.

During operation, the safety system will compare the

currently measured values with the stored values for that

particular set of joint positions to determine if an

intruder is present. Using difference mapping will permit

sensors to be mounted on the robot near the gripper and at

other locations not on the robot. Even if the robot or the

workpiece triggers one of the sensors, the robot is not

halted because the stored values would indicate that these

- 173 -

conditions were acceptable for that set of joint positions.

Difference mapping will provide better protection coverage

without increasing unnecessary stops because of false

detection indications.

The other area will be development of Level III sensor

systems for detection close to the robot. As mentioned

previously, there are cases, such as teach-mode operations,

where an operator must be close to the robot while it is

operational. The Level III system will permit this, yet

still detect an imminent collision and signal the robot to

stop before it can occur. Various types of sensors, such

as infrared devices and piezoelectric polymers, will be

evaluated. A Level III system will be developed utilizing

one of these sensor techniques and will be incorporated

into the overall safety system design.

- 174 -

.!

