NBSIR 81－2367

Prediction of the Hydraulic Jump Location Following A Change of Slope in A Partially Filled Drainage Pipe

U．S．DEPARTMENT OF COMMERCE
National Bureau of Standards
Center for Building Technology
Washington，DC 20234

and

Drainage Research Group
Department of Building Technology
Brunel University
U．K．

May 1981
Issued November 1981

PREDICTION OF THE HYDRAULIC JUMP
 LOCATION FOLLOWING A CHANGE OF SLOPE IN A PARTIALLY FILLED DRAINAGE PIPE

Dr. J. A. Swaffield

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Center for Building Technology Washington, DC 20234
and

Drainage Research Group
Department of Building Technology
Brunel University
U.K.

May 1981
Issued November 1981

1 3. ※4 \%.

Abstract

The criteria governing the formation of a hydraulic jump in a partially filled fluid conduit downstream of a slope change are presented together with the necessary techniques to enable water surface profiles and jump location to be predicted.

Computer programs designed to model the conditions leading to jump formation under flow and channel scale conditions compatible with current drainage system design are presented.

The results of a wide range of test conditions in terms of jump formation and position downstream of a change in channel slope are presented together with a set of criteria to be used in evaluating whether a jump will occur for a given set of design conditions.

This report is one of a group documenting National Bureau of Standards (NBS) research and analysis efforts in developing water conservation test methods, analysis, economics, and strategies for implementation and acceptance. This work is sponsored by the Department of Housing and Urban Development/Office of Policy Development and Research, Division of Energy Building Technology and Standards, under HUD Interagency Agreement H-48-78.

Report prepared by Dr. J. A. Swaffield, guest research worker at NBS-Stevens Institute of Technology from Brunel University, U.K.

TABLE OF CONTENTS

Page
SUMMARY iii
PREFACE iv
NOTATION ix
1.0 INTRODUCTION 1
2.0 THEORETICAL CONSIDERATIONS 3
2.1 Steady Uniform Flow in Oper Channels 3
2.2 Gradually Varied Flow in Open Channels 5
2.3 The Hydraulic Jump 8
2.4 Loss Coefficients at Channel Slope Transitions 11
3.0 CALCULATION TECHNIQUES AND PRESENTATION OF RESULTS 12
3.1 Determination of Normal and Critical Depths 12
3.2 Numerical Integration for Surface Profiles 12
3.3 Determination of Jump Location 13
3.4 Presentation of Results 14
3.5 Selection of Input Data 14
4.0 DISCUSSION OF RESULTS 15
5.0 CONCLUSIONS AND FURTHER WORK 20
6.0 REFERENCES 21
APPENDIX 1. JUMP LOCATION IN A 0.075 m DIAMETER PIPE Al. 1
APPENDIX 2. JUMP LOCATION, 0.10 m DIAMETER PIPE A2. 1
APPENDIX 3. JUMP LOCATION, 0.15 m DIAMETER PIPE A3. 1
APPENDIX 4. JUMP LOCATION, 0.075 m WIDE CHANNEL A4. 1
APPENDIX 5. JUMP LOCATION, 0.10 m WIDE CHANNEL A5. 1
APPENDIX 6. JUMP LOCATION, 0.15 m WIDE CHANNEL A6. 1
APPENDIX 7. JUMP FORMATION INDICATOR TABLES FOR CONSTANT MANNING COEFFICIENT OF 0.015 FOR BOTH CIRCULAR AND RECTANGULAR CHANNELS A7.1
APPENDIX 8. JUMP FORMATION INDICATOR TABLES FOR 0.15 m PIPE DIAMETER FOR A RANGE AT MANNING COEFFICIENTS FROM 0.009 to 0.018 A8. 1
APPENDIX 9. JUMP LOCATION IN A 0.15 m DIAMETER PIPE AT $1 / 300$ SLOPE CARRYING $61 / \mathrm{s}$ FOR A RANGE OF MANNING COEFFICIENTS A9. 1
APPENDIX 10. SAMPLE OUTPUT, PROGRAM HYDJUMP Al0.1
APPENDIX 11. PROGRAM HYDJUMP All. 1
APPENDIX 12. PROGRAM HYDSUM Al2. 1

LIST OF FIGURES

Page
Figure 1. Derivation of Chezy Equation for Steady Uniform Flow 22
Figure 2. Relationship Between Specific Energy and Flow Depth 23
Figure 3. Basis of Gradually Varied Flow Depth Profile Calculations 24
Figure 4. Schematic of Numerical Integration to Determine Water Surface Profile 25
Figure 5. Control Depths Employed in Water Surface Profile Integration 26
Figure 6. Forces Acting at Hydraulic Jump Location 27
Figure 7. Summary of Channel Cross Section Shape Calculations 28
Figure 8. Water Surface Profile and Associated (F\&M) Profiles Used to Position Hydraulic Jump 29
Figure 9. Boundary Conditions Governing Jump Location 30
Figure 10. Boundary Conditions Employed to Indicate Jump Formation 31
Figure 11. Schematic Representation of Jump Boundary Conditions 32
Figure 12. Schematic Representation of Jump Position Identification Technique Employed 33
Figure 13. Variation of Normal and Critical Depth with Flow Rate and Pipe Slope 34
Figure 14. Variation of (F\&M) Term with Flow Rate and Pipe Slope 35
Figure 15. Jump Location as a Function of Pipe Slope at $61 / \mathrm{s}$ Flow for a 0.15 Diameter Pipe 36
Figure 16. Jump Location in a Rectangular Channel, Width 0.15 m as a Function of Channel Slope 37
Figure 17. Variation of Jump Location with Flow Rate and Approach Pipe Slope, 0.15 m Diameter Channel 38
Figure 18. Variation of Jump Location with Flow Rate and Approach Pipe Slope, 0.15 m Width Channel 39

List of Figures (cont.)

Page
Figure 19. Pipe Diameter Effect at $Q=11 / s$ 40
Figure 20. Channel Width Effect at $Q=1 \mathrm{l} / \mathrm{s}$ 41Figure 21. Effect of Manning Coefficient on Jump Location. Noten Constant for Approach and Test Pipe42Figure 22. Effect of Manning Coefficient on Jump Location. Note nConstant in Approach Pipe at 0.015 , Varied in TestPipe43

Table 1. Summary of Hydraulic Jump Position Results for the 0.1 m Diameter Partially Filled Pipe with an Approach Pipe Slope of 45°
 44

Table 2. Summary of Hydraulic Jump Position Results for the 0.1 m
Width Channel with an Approach Channel Slope of 45° 45
Table 3. Schematic of Tabulated Jump Boundary Conditions 46

NOTATION

A Channel cross sectional area
C Chezy constant
D Pipe diameter
E Specific energy
$F \& M$ Sum of hydrostatic force, F, and momentum, M, at any flow section
$\mathrm{F}_{\mathrm{r}} \quad$ Froude number
g Acceleration due to gravity
h Flow depth
$\overline{\mathrm{h}} \quad$ Centroid depth
$h_{c} \quad$ Critical flow depth
$\mathrm{h}_{\mathrm{n}} \quad$ Normal flow depth
L Jump location distance from pipe entry
m Hydraulic mean depth
n Manning coefficient
P Wetted perimeter
Q Flow rate
S Slope of energy grade line
So Channel slope
T Water surface width in channel
V Local average velocity
W Width rectangular channel
Z Elevation channel above some datum
p Fluid density
$\theta_{1} \quad$ Approach pipe slope
θ_{2} Test pipe slope

1. INTRODUCTION

Early studies of the formation of a hydraulic jump in open channel fluid flow may be traced to the 1820 's and to a large extent were responsible for the classification of flow regimes in open channels now employed. The major work on jump formation has been, historically, directed towards the large civil engineering excavated channels with near horizontal bed slopes and straight sided cross sectional shapes. Both experimental and analytical treatments find wide application in such open channel design. Characteristically the presence of a hydraulic jump is responsible for the necessary water surface profile discontinuity that must occur if flow is established in a channel at a velocity compatible with the rapid or supercritical flow regime when the channel slope and roughness characteristics dictate that subcritical, or tranquil, flow regime conditions should prevail. Obviously such a method of increasing flow depth also provides a potent energy dissipation and flow mixing mechanism. These characteristics of the hydraulic jump to some extent explain the interest in this phenomenon in open channel design. Chow [1] quotes a wide range of useful applications of the jump mechanism in open channel erosion and bed uplift by decreasing local velocity and increasing flow depth. Similarly the mixing properties of the jump can be utilized in chemical water purification processes as well as in aeration.

A review of the literature on the topic therefore reveals a strong bias toward large scale applications, with the design criteria being designed with a view to including rather than excluding the hydraulic jump from open channel flow.

In drainage design both scale and motivation are diametrically opposed to the situation described above. The conditions governing the formation of a hydraulic jump translate unchanged with the scale of the system; however in the design of a drainage system the occurrence of a jump is to be avoided if possible. In a partially filled drainage pipe the occurrence of a hydraulic jump could result in a local full bore flow that would interfere with the venting of the system and could lead to back pressure problems upstream. Vertical stacks discharging into shallow gradient drains represent a design condition that could lead to jump formation. Additionally the local full bore flow could deposit suspended material on the crown of the pipe, leading after sometime to a possibility of pipe restriction and blockage. The location of a jump in plumbing systems design is of secondary importance.

In the special case of hospital drainage flow in the UK this has been found to be a particular problem due to the use of the drainage system to transport macerated disposable bed pans manufactured from strengthened paper-mache.

Thus in drainage design the hydraulic jump is to be avoided where possible by design.

The objective of the computer simulation described in this report therefore was to produce a usable computer program that could give guidance on the design condition likely to produce a hydraulic jump. It was intended that the computer program would be tested in the work reported for a range of flow
conditions and pipe sizes and slopes typical of drainage design. These values incidentally being far removed from the calculation examples found in the literature for channels carrying flows measured in MG/Day.

However, as mentioned, the basic prediction methods and the flow criteria translate across the scale differentials. One problem however does become obvious and that relates to channel cross section shape. The criteria relating to jump formation are primarily related to flow depth and velocity and hence, for a known flow rate, to channel cross section. Similarly the forces acting involve the calculation of flow centroidal depth. The large body of literature available is almost entirely restricted to simple, straight sided channel shapes, and understandably so. The introduction of circular sections, while not in itself difficult in a numerical computer aided solution, dispenses with any possibility of deriving analytical solutions for jump location, strength or depth change. Douglas et al. [2], for example present a jump location calculation technique for a simple rectangular channel, with a range of simplifying assumptions, that is typical of the analytical treatments available [3, 4].

The technique chosen for this study was based on the assumption of gradually varied flow conditions both upstream and downstream of the hydraulic jump formed in the channel as a result of the slope change. Gradually varied flow implies that the flow parameters change sufficiently slowed for the steady, uniform flow equations, characterized by Chezy and Manning, to be applied to incremental length sections employing the local depth and velocity values.

The criteria determining the formation of the jump are well documented in terms of a force and momentum balance at the jump between the upstream and downstream water surface profiles. This force and momentum balance leads to the concept of conjugate depths and hence to the strength and depth change associated with the jump. The gradually varied flow assumptions allow the water surface profiles to be calculated and hence the jump position may be calculated.

This report presents the theoretical background to a computer model based on the gradually varied flow assumption and the force and momentum equivalence criteria for jump formation. A listing of the Fortran programs written to model the problem is presented together with flow charts and data input descriptions that will allow future use of the developed techniques. Results for a range of flow and pipe and channel design parameters typical of drainage systems are included, both as summary tables produced by the programs and in graphical form to illustrate points and trends of particular interest.

2. THEORETICAL CONSIDERATIONS

2.1 Steady, Uniform Flow in Open Channels

Figure 1 illustrates the force balance equation for steady flow in an open channel or partially filled duct. The common expression of this relationship is known as the Chezy equation where

```
V = C }\sqrt{}{\mp@subsup{\textrm{mS}}{\textrm{o}}{}
m = hydraulic mean depth A/P, m
SO}=\operatorname{sin}0\mathrm{ duct slope
    V = mean velocity, m/s
    C = Chezy constant.
```

The value of Chezy coefficient C was found by Manning to be dependent on hydraulic mean depth and duct surface roughness n. The Manning formula is the simplest of the open channel equations:

$$
\begin{align*}
& \mathrm{V}=\frac{1}{\mathrm{n}} \mathrm{~m}^{2 / 3} \mathrm{~s}_{\mathrm{o}}^{1 / 2} \\
& \mathrm{Q}=\frac{1}{\mathrm{n}} \mathrm{Am}^{2 / 3} \mathrm{~s}_{\mathrm{o}}^{1 / 2} \tag{2}
\end{align*}
$$

where Q is the flow rate, $m 3 / s$
A is the flow cross sectional area, m^{2}
The value of the Manning coefficient, n, varies with pipe or channel material. Chow [l] suggests values in the range 0.009 to 0.018 for materials commonly found in building drainage systems.

Equation 2 determines the flow depth under steady, uniform conditions, only one value of h yielding the values of A and m necessary to satisfy the equation. As this depth is by definition constant downstream, $\mathrm{dh} / \mathrm{dx}=0$, it must also be the terminal depth corresponding to the flow terminal velocity at that channel slope.

This depth, h_{n}, is commonly referred to as the normal depth.
The specific energy of the flow may be defined as

$$
\begin{equation*}
E=h+\frac{v^{2}}{2 g} \tag{3}
\end{equation*}
$$

where $h=$ local flow depth, m

$$
\mathrm{V}=\text { local average flow velocity, } \mathrm{m} / \mathrm{s}
$$

For non-uniform velocity distributions a kinetic energy coefficient weighting factor, α, may be introduced as $\alpha V^{2} / 2 \mathrm{~g}$; here, the assumption is made of uniform distribution with $\alpha=1$.

It may be shown that for a rectangular channel, width W, that there are two possible depths for any particular value of E above a minimum.

$$
\begin{aligned}
& E=h+\frac{V^{2}}{2 g}=h+\frac{Q^{2}}{2 g A^{2}} \\
& A=h W \text { for rectangular case } \\
& E=h+\frac{Q^{2}}{2 g(h W)^{2}} \\
& h^{3}-E h^{2}+Q^{2} / 2 g W^{2}=0
\end{aligned}
$$

For a constant specific energy, E, this equation has three roots; two real, one imaginary. Figure 2 illustrates the alternate depths possible for a constant specific energy, generally characterized as rapid and tranquil flow. It will be shown that the boundary between these two alternatives depends on flow rate and cross sectional shape.

From equation 3 and Figure 2 it may also be seen that the flow specific energy has a minimum value below which the given flow conditions cannot exist. In a channel of arbitrary cross sectional shape this value may be determined as follows:

$$
\begin{align*}
& E=h+\frac{Q^{2}}{2 g A A^{2}} \\
& \frac{d E}{d h}=0=1-\frac{Q^{2}}{g A^{3}} \frac{d a}{d h} \tag{4}
\end{align*}
$$

From Figure 2

$$
\begin{equation*}
\mathrm{dA}=\mathrm{T} \mathrm{dh} \tag{5}
\end{equation*}
$$

where T is the surface width at any depth, h.
From equations (4) and (5) the minimum value of E will occur at a depth value, h_{c}, that satisfies the expression

$$
\begin{equation*}
1-Q^{2} T / g A^{3}=0 \tag{も}
\end{equation*}
$$

This value of h is referred to as the flow critical depth h_{c}.
If the normal flow depth h_{n} exceeds h_{c} then the terminal flow would be termed subcritical, or tranquil flow. If h_{n} is less than h_{c} then the flow is termed rapid or supercritical.

It should be stressed that h_{c} is independent of pipe slope and pipe surface roughness; while the normal depth is dependent on both. Thus the same volume flow rate in any particlilar pipe may be rapid or tranquil depending on pipe slope, and similarly the same flow rate in a series of constant diameter pipes will be tranquil or rapid depending on roughness.

Pipes or channels in which rapid flow is normal are termed steep; pipes or channels in which tranquil flow is normal are termed of mild slope. It will be shown that hydraulic jumps may only be established in mild slope channels.

2.2 Gradually Varied Flow in Open Channels

Gradually varied flow is steady non-uniform flow of a special type. The flow parameters are assumed to change slowly, if at all, in the flow direction. The basic assumption in the treatment of this type of flow is that the local head loss at any section is given by the Manning expession, equation 2, for the local flow depth and rate under assumed steady, uniform flow conditions.

Based on the assumptions above and figure 3, the depth profile may be expressed as follows:

$$
\begin{equation*}
\frac{d}{d L}\left\{\frac{V^{2}}{2 g}+\left(Z_{o}-S_{o} L\right)+h\right\}=-\left\{\frac{n Q}{A m^{2 / 3}}\right\}^{2} \tag{7}
\end{equation*}
$$

where $\left(Z_{0}-S_{o} L\right)$ is the elevation at distance L along the channel, measured in the downstream direction; S_{o} is $\sin \theta$, channel bed slope,
hence $-\frac{V}{g} \frac{d v}{d L}+S_{o}-\frac{d h}{d L}=\frac{n Q}{A m^{2 / 3}} 2$
and as, $Q=V A$

$$
\frac{d V}{d L} A+V \frac{d A}{d L}=0
$$

and $\frac{d A}{d h}=T$ from equation 5 it follows that

$$
\frac{d V}{d L}=-\frac{V}{A} \frac{d A}{d L}=-\frac{V T}{A} \frac{d h}{d L}=-\frac{Q T}{A^{2}} \frac{d h}{d L}
$$

and substituting in equation (8) yields

$$
\begin{align*}
& \frac{Q^{2} T}{g A A^{3}} \frac{d h}{d L}+S_{o}-\frac{d h}{d L}=\left\{\frac{\mathrm{n} Q}{\mathrm{Am}^{2 / 3}}\right\}^{2} \\
& \mathrm{dL}=\left\{\frac{1-Q^{2} T / g A^{3}}{S_{o}-\left(\mathrm{nQ} / \mathrm{Am}^{2 / 3}\right)^{2}}\right\} \mathrm{dh} \\
& \mathrm{~L}=\int_{h_{o}}^{h_{l}} \frac{1-\mathrm{O}^{2} \mathrm{~T} / \mathrm{gA}^{3}}{\mathrm{~S}_{0}-\left(\mathrm{nQ} / \mathrm{Am}^{2 / 3}\right)^{2}} \mathrm{dh} \tag{10}
\end{align*}
$$

where L is the distance between two known depths h_{0}, h_{1}.
Figure 4 illustrates this numerical integration, which may be conveniently achieved by Simpson's rule.

The numerator and denominator of the function to be integrated in equation 10 may be recognized as the equations determining the critical and normal flow depths in an open channel.

When the term ($1-Q^{2} T / g A^{3}$) is zero the flow is at critical depth, i.e., there is no change in L for a change in h.
When the term $S_{o}-\left(n Q / A m^{2 / 3}\right)^{2}$ is zero uniform flow depth is achieved, i.e., there is no change in h for a change in L.

For uniform cross section channels with constant roughness, n, and slope, S_{O}, the expression (10) becomes solely a function of flow depth h.

In order to numerically evaluate (10) it is necessary to define boundary conditions from which the integration may proceed. It should be stressed that the integration may be carried out either upstream or downstream from a known depth point. This ability is central to the use of this technique to determine the position of a profile discontinuity, such as an hydraulic jump.

Figure 5 illustrates the control depths used in the prediction of the water surface profiles in the case being investigated, namely the change in slope of an open channel.

It is assumed in figure 5 that suitable conditions exist for the formation of a hydraulic jump in the pipe downstream of the slope change. In order to predict the water surface profiles therefore three control depths are required as follows:

1) Downstream boundary at C. It may be assumed that the downstream boundary is formed by the condition that critical flow depth forms at a free discharge. Experimental work (3) has shown that the depth at such a discharge is slightly less than critical and that the critical depth occurs slightly upstream, around 0.7 pipe diameters, however this assumption is sufficient if the channel considered is long.

Naturally if the normal flow depth is less than critical then the flow depth is unaffected by the presence of the discharge point and normal depth is maintained up to the exit at C. In this condition the flow is termed supercritical and the local wave speed is less than the flow velocity. For this reason information concerning the presence of the open discharge cannot be transmitted upstream, hence the maintenance of normal depth.

Calculation of the water surface profile upstream from C show that normal flow depth is approached very rapidly, perhaps within $10-15$ pipe diameters. For this reason a simplification that is considered justified would be to assume normal flow depth, above critical, in the whole pipe section B to C. This simplification has a bearing on the calculated position of the hydraulic jump as will be discussed later.
2) The upstream boundary at $\mathrm{B}_{\text {. }}$ The upstream boundary is dependent on the exit conditions from the steep pipe $A B$, figure 5. If the specific energy at B in pipe $A B$ is known, together with the flow rate, Q, then it is possible to predict the depth at B in pipe BC. Alternatively the flow rate and specific energy at B could be used as input information to the calculation, dispensing with the pipe length $A B$ water profile integration.
3) The entry condition at A. The entry condition at A determines the flow profile in AB. Critical depth at the entry point A may be used, the normal depth in the steep pipe $A B$ will be less than this value and the profile will take on the shape shown in figure 5, approaching normal depth at some point along $A B$.

Alternatively the pipe length $A B$ may be assumed long enough for terminal flow conditions to be achieved at B. This despenses with the calculation of the water surface profile in $A B$ as equation (2) may be used to determine normal supercritical depth at B and equation (3) determines the appropriate specific energy provided the channel depth-area relationship is known.

The choice of the depth increment value dh in the numerical integration is based, in this treatment, on the difference between the control depth for that section and the "target" depth. For example in section C to B the control depth is the critical depth at C while the target is the normal flow depth reached at some point between C and B. The depth cannot exceed this target. Hence an appropriate increment site may be ralculated by

$$
\begin{equation*}
d h=\left(h_{n}-h_{c}\right) / N, C \text { to } B \tag{11}
\end{equation*}
$$

where N is some reasonable number in the range 10 to 30 , depending on the desired accuracy and computation time.

Similarly for the section B to C

$$
\begin{equation*}
\mathrm{dh}=\left(\mathrm{h}_{\mathrm{c}}-\mathrm{h}_{\mathrm{B}}\right) / \mathrm{N} \tag{12}
\end{equation*}
$$

For the steep slope A to B the increment would be

$$
\begin{equation*}
\mathrm{dh}=\left(\mathrm{h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{B}}\right) / \mathrm{N} \tag{13}
\end{equation*}
$$

where h_{B} is the normal depth expected for that particular channel and flow conditions.

2.3 Hydraulic Jump

The hydraulic jump is an important example of local nonuniform flow. In drainage design it is to be avoided as the local depth increase may be sufficient to produce full bore flow and associated back pressure problems. However, in the wider engineering context the inclusion of a hydraulic jump is often beneficial as a means of rapidly dissipating flow energy, with consequent reduction in channel erosion problems, the design of power plant turbine tail races being an example.

There is a considerable body of experimental and analytical literature available on the formation and characteristics of the hydraulic jump. The majority of this work is related directly to large civil engineering applications and is also confined to channels of straight sided cross sectional shape, from rectangular to trapezoidal. This is understandable as such channel shapes would be the naturally excavated design. Although laboratory models usually employ rectangular glass sided open channels to study, for example, jump formation downstream of a sluice gate, no references were found to the case of jump formation downstream of a slope change in small diameter partially filled pipes, namely the building drainage case.

The flow process leading to the formation of a hydraulic jump may be explained as follows: Assume that flow is established in a mild slope channel at a depth below critical for that channel and flow rate. As the normal flow depth is greater than critical, i.e., definition of mild slope, the effect of cumulative friction losses in the channel will be to increase the depth, with a consequent: decrease in local average velocity. This depth change should continue until normal flow depth is achieved at some downstream point. This cannot happen via a gradually varied flow process as the theoretical water surface slope would have to be vertical as the depth passed through the critical value. Hence a discontinuity, or jump, in the depth profile is required to transfer the flow from supercritical conditions upstream of the jump to subcritical downstream. It is important to note therefore that such a discontinuity can only occur froni a depth below critical to a depth above critical.

In the steady flow case, namely flow conditions constant with time, the position of this jump may be determined by a consideration of the forces acting on the fluid at the jump position and the water surface profiles upstream and downstream of the jump, figure 6 .

Referring to figure 6 and assuming both a near horizontal channel, so that the fluid weight component may be ignored, and steady flow conditions, application of the momentum equation yields:

$$
F_{h 1}-F_{h 2}=\rho Q\left(V_{2}-V_{1}\right)
$$

where F_{h} are the hydrostatic forces at 1 and 2
hence $\rho_{\mathrm{g}} \mathrm{A}_{1} \overline{\mathrm{~h}}_{1}-\rho_{\mathrm{g}} \mathrm{A}_{2} \overline{\mathrm{~h}}_{2}=\rho \mathrm{A}_{2} \mathrm{~V}_{2}^{2}-\rho \mathrm{A}_{1} \mathrm{~V}_{1}^{2}$
where A is the flow cross sectional area and h is the centroid depth, as illustrated in figure 7.

Rearranging (14) yields:

$$
\left(\rho g A \bar{h}+\rho_{g} A \bar{h}+\rho A V^{2}\right)_{2}
$$

or

$$
\begin{equation*}
(F+M)_{1}=(F+M)_{2} \tag{15}
\end{equation*}
$$

where M is the momentum term $\rho A V^{2}$
This analysis assumes that the jump length may be ignored, this allows the exclusion of local frictional effects over the pipe section containing the jump. This point will be returned to in the discussion of the prediction model.

It will be seen that both F and M depend on the flow depth and on the relationship between depth and area and hence centroid position.

The complexity of this expression (15) depends entirely therefore on the form of the depth to area relationship and on the local water surface profiles either side of the jump. The ($\mathrm{F}+\mathrm{M}$) term is sometimes referred to as the specific force (1); however this not entirely satisfactory due to the momentum content, and thereafter it is referred to as the (F \& M) term.

Thus the position of the jump may be predicted provided that the flow depth profiles upstream and downstream are known. A knowledge of local depth plus the steady flow assumption allows all the terms in equation (15) to be calculated and allows the (F \& M) values applicable to each point on either water
surface profiles upstream and downstream of the jump to be plotted as shown in figure 8.

The intersection of the two (F \& M) curves fixes the jump position. The two corresponding depths on the upstream and downstream water surface profiles are the conjugate depths for the jump and allow the energy loss to be calculated across the jump.

$$
\begin{equation*}
\Delta E=\left\{h+\frac{v^{2}}{2 g}\right\}_{2}-\left\{h+\frac{v^{2}}{2 g}\right\} \tag{16}
\end{equation*}
$$

The formation of a hydraulic jump downstream of a slope change is not inevitable however. Figure 9 illustrates five conditions that should be considered in evaluating the possibility of jump formation.
a) If the flow normal depth, dependent on both pipe slope and roughness, is less than the critical depth, that is independent of slope or roughness, then no jump will form.
b) If the flow normal depth is greater than the critical depth and the ($F \& M$) term at pipe entry is greater than the normal depth ($F \& M$) value, then a jump will form as shown in figure 9. Its position may be determined as described previously.
c) If the pipe is insufficiently large in cross sectional area to maintain a free water surface, i.e., open channel flow, then full bore flow will be established in the pipe. This case is not treated here beyond its identification by comparing the normal depth calculated to the available pipe diameter.
d) A more interesting case occurs if the ($F \& M$) value at pipe entry, i.e., at the slope change, is less than the (F \& M) value appropriate to the downstream normal flow depth. In this case the jump effectively forms in the steep pipe, or it may be regarded as drowned at pipe entry. Analysis of this case requires the introduction of the mass component down the steep slope appropriate to the water mass contained between the sections 1 and 2 in figure 6. This introduces the physical length of the jump, obviously a simple treatment regards the jump as concentrated in one location; however in practice it can have lengths several times its downstream depth. Chow [l] presents an analysis based on empirical jump length measurements for rectangular channels, however no data is available for partially filled pipes and for the purposes of this study this case is merely identified by a comparison of the ($F \& M$) term values as mentioned above.
e) A trivial case is formed when the length of pipe available downstream of the slope change is short. Here no jump will form if the length is less than that necessary for the flow depth to increase to the theoretical jump conjugate depth value appropriate to the upstream water surface profile. This case is not illustrated in figure 9.

Figure 10 illustrates the tests associated with these boundary conditions. It will be seen that ($F \& M$) curve vs. slope has a minimum value, hence for particular pairs of values of θ_{1}, and θ_{2} the ($F \& M$) terms may change in their relative magnitudes.

Figure 11 summarizes these tests into a format that will be employed later in the generation of tables to indicate jump formation possibility.

2.4 Loss Coefficients for Slope Transitions in Open Channel Flow

No data could be obtained on the loss coefficients for slope transitions in open channel flow. For this reason the results presented assume no loss at the test pipe entry. The computer program as written has been designed to include such a loss coefficient, in the range 0 to 1 , should such data become available from a future experimental program. The effect of such a loss would be to increase the flow depth at pipe entry, with a consequent decrease in the (F \& M) term at pipe entry. In turn this would have the effect of generally moving the jump location upstream towards pipe entry. At the lower approach pipe slopes this effect could result in the jump appearing to become drowned at pipe entry. Experimental work is required to verify the model and the predicted effects of the loss coefficient discussed above.

3. CALCULATION TECHNIQUES AND PRESENTATION OF RESULTS

3.1 Determination of Normal and Critical Depths

The bisection method was used to solve the equation defining both critical flow depth

$$
X=1-Q^{2} T / g A^{3}
$$

and normal flow depth

$$
Y=S_{o}-\left(n Q / A m^{2 / 3}\right)^{2}
$$

It may be assumed that both X and Y have zero values for some value of depth h in the range $0<h<D$ for pipe case or $0<h<W$ for the square section case. The process is described below:

The initial interval is bisected and a trial value of $h=\mathrm{D} / 2$ or $\mathrm{W} / 2$, depending on geometry, is used to evaluate X , Y above. If the resulting values are positive then the sought after root is less than the trial value just used.

A new trial value is obtained by bisecting the interval 0 to $\mathrm{D} / 2$ or $\mathrm{W} / 2$ and X and Y recalculated. If the values obtained remain positive, a further reduction in trial value is obtained by bisection.

If the values of X, Y are negative then the desired root is larger than the trial value and an increased h value is obtained by bisection between the upper limit, in this case D or W, and the trial value just employed. This process may be repeated until the required root is obtained.

Due to the need to include the area depth relationship the solution process must be iterative. The computation time depends largely on the complexity of the area-depth function.

3.2 Numerical Integration for Surface Profiles

The integration of the position vs depth profile

$$
\mathrm{L}=\int_{\mathrm{h}_{1}}^{\mathrm{h}_{2}} \frac{1-\mathrm{QT}^{2} / \mathrm{gA}^{3}}{\mathrm{~S}_{\mathrm{o}}-\left(\mathrm{nQ} / \mathrm{Am}^{2 / 3}\right)^{2}} d \mathrm{~h}
$$

h_{1}
is achieved by means of Simpson's Rule. Let the integral $X=\int F(h) d h$, h_{0}
then if the interval $h_{1}-h_{0}$ is divided into 2 equal increments, the value of X is given by

$$
X=\frac{1}{3} d h\left[\left(F\left(h_{0}\right)+4 F\left(h_{0}+d h\right)+F\left(h_{0}+2 d h\right)\right]\right.
$$

As the integration moves on the length traversed may be accumulated as $\mathrm{L}=\mathrm{L}+\mathrm{X}$ at the completion of each integration.

3.3 Determination of Jump Position

The water surface profiles and the associated ($F \& M$) curves for the flow upstream and downstream of the jump are illustrated by figure 8. The jump position is determined in the following manner within the computer program; figure 12 illustrates:

1) Choose a small increment Δx less than the smallest ΔL on either of the water surface profiles. Note $\Delta \mathrm{L}$ varies along each profile as shown in figure 4.
2) For the water surface profile downstream of the jump, i.e. that calculated by integration back from the critical depth at pipe discharge, determine the calculated profile points on either side of the Δx value, measured from pipe entry, points G, H figure 12.
3) Calculate the ($F \& M$) value at position Δx on the downstream profile, point J.
4) For the profile calculated by integration downstream from pipe entry determine whether the corresponding (F \& M) values at the known profile points on either side of Δx are bracketing the trial ($F \& M$) value from step 3, points K, M. If this is the case the curves intersect in this increment, if both are greater than the trial value then the curves have not intersected up to this interval.
5) If the curves have not intersected, increase the search position from x to $x+\Delta x$ and repeat steps 2 through 4 .
6) If the curves have intersected then the intersection point can be obtained by solving the two straight line equations representing the water surface profiles between the two pairs of known points bracketing the intersection position. This is illustrated by points $U V$, and $X Y$ in figure 12.

The technique uses the simplifying assumption that the water depth downstream of the jump is at the normal flow level, hence ($F \& M$) for C to B becomes a known constant. This simplification was extensively used in the results presented (in figure 12 the resulting downstream depth was H then became the constant normal depth value).

3.4 Presentation of Results

The parameters governing the flow and the location of the hydraulic jump are numerous. The selected test cases, analyzed by program HYDJUMP run on the NBS CBT Perkin Elmer 732 computer, are summarized below:
l.1) Pipe diameters: $0.075,0.10,0.15 \mathrm{~m}$.
1.2) Manning coefficient 0.015.
1.3) Test pipe slopes at all pipe diameters: $1 / 40,1 / 80,1 / 100,1 / 200$ (Additionally slopes $1 / 150,1 / 300,1 / 400,1 / 600$ were run for the 0.15 m diameter pipe only).
1.4) Approach pipe slopes $2^{\circ}, 4^{\circ}, 6^{\circ}, 10^{\circ}, 20^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 75^{\circ}$ and 90°.
1.5) Additionally for the 0.15 m pipe at $1 / 300$ slope, the effect of Manning coefficient values of $0.009,0.012,0.015$ and 0.018 on jump position for the whole range of approach slopes was carried out at one flow rate.
2.1) Rectangular channels, width $0.075,0.10,0.15 \mathrm{~m}$.
2.2) Manning coefficient 0.015 only.
2.3) Test pipe slopes $1 / 40,1 / 80,1 / 100,1 / 200$.
2.4) Approach pipe slopes $2^{\circ}, 4^{\circ}, 6^{\circ}, 10^{\circ}, 20^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 75^{\circ}$ and 90°.

The full results are presented in tabular form in a series of appendices.
In addition plotted data is presented to illustrate the main points in the discussion of the results.

The results indicated the need to determine the boundary conditions in terms of normal and critical flow depths, pipe diameter and ($F \& M$) values. This led to an additional program HYDSUM, capable of calculating normal and critical depths as well as (F \& M) values. Tables based on this program's output are included as a method of determining whether a jump will form in the test pipe.

The two main programs, HYDJUMP and HYDSUM are included in an appendix together with flow charts and input data instructions.

3.5 Selection of Input Data

The choice of input test conditions was governed by the range of values likely to be found in drainage systems. The pipe diameters chosen, $0.075,0.10$ and 0.15 conform to this criteria as do the pipe gradients used for all test cases, $1 / 40,1 / 80,1 / 100,1 / 200$. The choice of pipe roughness or Manning coefficient was more difficult, however values in the range 0.009 to 0.018 are recommended in many texts, i.e. Jaeger [3] and Chow [1].

As previously discussed, the losses at the change of slope that produce the conditions conducive to hydraulic jump formation have been ignored in this treatment. No available data on open channel transition loss coefficients for partially filled pipes or channels could be obtained. The program is capable of dealing with transition losses however via an input data control variable provided the loss can be expressed as a factor, 0 to 1.0 , of the specific energy of the flow at pipe entry.

4. DISCUSSION

The position of the hydraulic jump in a mild slope channel following a change in bed slope is determined by the equivalence of the hydrostatic force plus momentum terms outlined in equations 14 and 15 and figures 6 and 8. If, as a starting assumption, the flow downstream of the jump is assumed to be uniform and at normal depth, then the jump position appears to be entirely dependent on the rate of change of the ($F \& M$) term with respect to distance along the channel. This is demonstrated in figure 12, and the following analysis.

The results for jump location therefore may be discussed in terms of the parameters governing this gradient, $d(F \& M) / d L$.

From equation 14, that the (F \& M) term at any location may be expressed as

$$
(F \& M)=\rho g A \bar{h}+\rho A V^{2}
$$

$$
\begin{equation*}
F \& M=\rho g A \hbar+\rho \frac{Q^{2}}{A} \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d(F \& M)}{d L}=\rho g A \frac{d \bar{h}}{d L}+\rho g h \frac{d A}{d L}-\rho \frac{Q^{2}}{A^{2}} \frac{d A}{d L} \tag{18}
\end{equation*}
$$

The form of equation (17) indicates that (F \& M) will initially decrease as depth and hence area A increase, however at some depth value the hydrostatic force term will predominate and the ($F \& M$) value will increase. It therefore follows that there would theoretically be two intersection points for the two ($F \& M$) curves in figure 12, however the intersection closest to the pipe entry is the valid solution and the technique described in figure 12 will ensure that this is the solution produced. The form of equation (18) confirms this point, $\mathrm{d}(\mathrm{F} \& \mathrm{M}) / \mathrm{dL}$ being initially negative due to the predominance of the momentum term.

As the rate of decrease of (F \& M) is dependent on both depth and rate of change of depth, it is necessary to incorporate the Manning equation to represent local friction losses at the equivalent steady, uniform flow conditions. This appears in the denominator of equation (10) and may be used to explain the movement of the jump position.

$$
\begin{equation*}
\frac{\Delta h}{\Delta L}=\frac{S_{0}-\left(\mathrm{n} \mathrm{Q}_{\mathrm{L}} / \mathrm{Am}^{2 / 3}\right)^{2}}{1-\mathrm{Q}^{2} \mathrm{~T} / \mathrm{gA}^{3}} \tag{19}
\end{equation*}
$$

Changes in S_{O}, Q, and n that result in an increase in the value of $\Delta h / \Delta L$ will indicate an increase in $\mathrm{d}(\mathrm{F} \& \mathrm{M}) / \mathrm{dL}$, however this does not automatically imply that the jump position will move upstream.

Figures 13 and 14 illustrate the dependence of flow normal and critical depths and ($F \& M$) values on flow rate and pipe slope for the 0.15 m diameter pipe case. It will be seen that as Q increases or S_{0} decreases, the values of normal depth and ($F \& M$) increase. This effectively reduces the necessary drop from the ($F \& M$) value associated with the water surface profile at pipe entry upstream of the jump, figure 12, and would imply, for a constant $d(F \& M) / d L$, a jump location movement towards pipe entry.

Consider the jump location movement illustrated in figure 15. For constant Q, D, n and test pipe slope, $S_{o}=\operatorname{Sin} \theta_{2}$, the value of $\Delta h / \Delta L$ will be constant, equation (19). Similarly for constant Q, D, n and S_{o} the value of normal depth in the test pipe, figure 13, will also be constant, providing a constant target (F \& M) value.

However as the approach pipe slope, θ_{1}, increases the value of the entry conditions to the test pipe change, the entry depth decreases and the entry velocity rises. Thus as θ_{1} increases the entry value of ($F \& M$) at $L=0$ increases, this effect for constant flow rate is illustrated in figure 14.

Therefore the intersection point between the ($F \& M$) curves associated with the water surface profiles upstream and downstream of the jump would be expected to move downstream as the approach pipe slope increased. This effect is illustrated in figure 15 for each of the test pipe slopes considered. Figure 16 confirms this result for the rectangular section channel.

Inherent in the definition of the hydraulic jump location is the criterion that the depth upstream of the jump is below critical and that downstream is above critical. This implies that the Froude Number (upstream of the jump), defined as

$$
\begin{equation*}
F_{r}=V / \sqrt{g h} \tag{20}
\end{equation*}
$$

is greater than unity upstream and less than unity downstream. This results in the inability of jump position information to be transmitted upstream as the wave speed is less than the local flow velocity. As a result of this the depth downstream of the jump may be thought of as the sole determinant of jump position for similar flow situations. This effect is illustrated in figure 15 and 16 .

Consider the case of constant approach pipe slope θ_{l} and constant flow rate Q, i.e. vertical lines drawn in the $\mathrm{L}-\sin \theta_{l}$ plane. In this situation the ($F \& M$) value at pipe inlet remains constant, however as the test pipe slope, θ_{2} decreases the normal flow depth increases and with it the target ($F \& M$) value, figures 13 and 14. Thus the downstream flow depth controls the jump position, the jump moving towards the pipe inlet as the test pipe becomes less steep. Jaeger [3] quotes this depth effect as the sole determinant of jump position in the case of hydraulic jump formation upstream of an obstruction to the flow.

As indicated in figure 15 jump location may be expressed by an equation of the form

$$
\begin{equation*}
L=L_{x}-C^{K} \sin \left(\theta-\theta_{O}\right)^{0.25} \tag{21}
\end{equation*}
$$

It was felt that such an empirical formula had little value in this situation due to the complexity of the boundary conditions already described and the ability of the computer simulation to predict jump positions for a wide range of flow conditions in a relatively short time. It would appear from the available literature, although primarily directed to large civil engineering applications, that this conclusion is shared by most investigators, as no similar relationship was found. In every case it was recommended that jump position be calculated by the gradually varied flow analysis presented for each set of flow conditions.

The downstream depth also controls jump position as indicated by the results presented in figures 17 and 18. Here for constant $S_{0}=\sin \theta_{1}=1 / 200$ and constant D and n the jump location moves upstream as the flow rate decreases from 8 to $l \bar{l} / \mathrm{s}$. Reference to figure 14 at any value of $\sin \theta_{1}$ indicates that the differential between ($F \& M$) at $L=0$, i.e. pipe entry value, and the ($F \& M$) value appropriate to normal depth in the test pipe, decreases as the flow rate decreases. Hence, with reference to figure 12, the intersection position would be expected to move upstream, as confirmed for both circular and rectangular cross section channels by figures 17 and 18.

It will be noted that none of the jump position curves pass through the origin. This is to be expected as theoretically the jump location would tend to $L=0$ as approach pipe slope θ_{1}^{-}approaches the test pipe slope θ_{2}. In addition to this effect some of the curves, namely those representing shallow test pipe slopes, intersect the $\sin \theta_{l}$ axis at approach pipe slopes greater than this minimum. This is due to the drowning of the jumps at pipe entry, as illustrated in figure 9 , Case 4, caused by a reversal of the differential between ($F \& M$) at pipe entry and the ($F \& M$) value associated with the normal depth flow in the test pipe. As mentioned previously the jump moves upstream into the approach pipe and a calculation of its position requires a knowledge of jump length and approach pipe slope. No theoretical calculation technique for jump length, i.e. the distance between control sections 1 and 2 in figure 6 , is available, the data on this variable being entirely empirical and generally applicable only to straight sided channel shapes.

Tabulated results for the full range of test cases represented by figure 15 to 18 for pipe diameters and channel widths 0.075 to 0.15 m are presented in Appendices 1 to 6 . Tables 1 and 2 present typical examples for the 0.1 m diameter pipe and channel cases. These results for the smaller dimensioned channels, 0.075 and 0.10 m diameter and width confirm the discussion presented above. Figures 19 and 20 are representative of these results.

Referring to figures 19 and 20 , it will be seen that considerable difficulty was experienced in producing comparable test cases for the three channel dimensions chosen. This is entirely due to the influence of the boundary conditions introduced in figures 9 to ll. Indeed no jump formation was possible at $1 / 40$ for the full range of test cases dealt with. This result prompted the preparation of tabular data based on the boundary conditions illustrated in figure lu
that would allow the formation of a jump, but not its location, to be predicted at considerably less computing time.

Table 3 illustrates the technique. Full tables for the test cases covered are presented in Appendix 7 and 8.

Referring to table 3, assume that the flow rate is Q_{2}, approach pipe slope is U_{1} and test pipe slope is S_{2}. Pipe diameter is D and the Manning coefficient is n . The table has been produced by means of equations (2), (6) and (14) and allows the following boundary checks to be made, corresponding to figure 9 .

1) Case 1 , compare $h n_{1,2}$ to $h c_{2}$, if $h n_{1,2}<h c_{2}$, no jump possible.
2) Case 2 , compare $h n_{1,2}$ to $h c_{2}$, if $h n_{1,2}>h c_{2}$, jump possible.
3) Case 3, compare $h n_{1,2}$ to D if $h n_{1,2}=D$, full bore flow, jump forms but location not determined.
4) Case 4, compare the normal flow depth value of ($F \& M$) at Q_{2} and S_{1} in the test pipe, $(F \& M)_{12}$, to the value of the ($F \& M$)* term at pipe entry. It is assumed that this is equal to the terminal (F \& M)* value in the approach pipe and that the approach pipe was sufficiently long to allow normal flow depth to be established. Approach pipe slope designated U_{1}.
hence (i) if $(F \& M)_{12}<(F \& M)_{12}^{*}$, jump possible
(ii) if $(F \& M)_{12}>(F \& M)_{12}^{*}$, then the jump forms in the approach pipe or is drowned at pipe entry.

Appendix 8 presents similar tables for the 0.15 diameter test pipe case only for a range of Manning coefficient values 0.009 to 0.018 . This table was used to determine a suitable test case for an evaluation of the effect of Manning coefficient on the jump location in a 0.15 m diameter channel. From Appendix 8 employing the method outlined above for table 3, a test case based in $61 / \mathrm{s}$ flow rate at a pipe slope of $1 / 300$ was seen to produce a hydraulic jump at each of the values of Manning coefficient between 0.009 and 0.018 chosen. Appendix 9 contains the results of this test series while figures 21 and 22 summarize the data.

Two test cases were investigated.

1) Manning coefficient constant for both approach pipe and test pipe.

Figure 21 illustrates this case. As is to be expected the jump location moves downstream as the value of Manning coefficient decreases. This is in line with Jaeger [3] comments on the importance of downstream depth as the normal flow depth will decrease with decreasing Manning coefficient.

Similarly this result agrees with the description of jump location movement based on ($F \& M$) values. As n decreases the normal flow depth ($F \& M$) value in the test pipe decreases. For the approach pipe the decreasing n
also results in a reduced normal depth, however due to the slope of the ($F \& M$) vs slope curve illustrated by figure 10 , this results in an increased value of ($F \& M$) at test pipe entry. This increase in the differential between the entry and target ($F \& M$) values in the test pipe effectively impose a downstream movement on to the intersection point and jump location, figure 12.
2) The Manning coefficient held constant at 0.015 for the approach pipe and only varied for the test pipe.

The general trend in these results is similar to that described above. The constant value of $n=0.015$ for the approach pipe effectively decreases the entry ($F \& M$) value for the $n=0.009$ and $n=0.012$ cases, comparing figures 21 and 22. Hence the jump position would be expected to move upstream, as is demonstrated by the results. For the $n=0.018$ case, the approach pipe effectively has a reduced n value and hence the terminal ($F \& M$) value is increased and the jump position should move downstream. Again the results confirm this.

All the results discussed above were obtained with the assumption that terminal conditions had been achieved in the approach pipe and that the flow downstream of the jump could be considered uniform, i.e., the depth was equal to the normal flow depth defined previously. This assumption was necessary if any order was to be found in the results produced by the computer program. The program however was capable of producing jump location for any combination of pipe lengths, slopes and roughness coefficients.

Appendix 10 presents the full program output for a given set of pipe lengths and slopes. This output may also be used to justify the normal flow depth assumption downstream of the jump, as 95 percent of normal depth is achieved in some 20 pipe diameters. The output also presents the water surface profiles in the approach pipe and upstream of the jump in the test pipe.

Appendix 11 contains the full print out of the program HYDJUMP employed to generate these results and the control data necessary to vary the format of the data output and control the assumptions made in the calculations.

Similarly Appendix 12 presents the program HYDSUM employed to produce the tabular guides to jump formation summarized in table 1.
5. CONCLUSIONS AND FURTHER WORK

The objective of this study was the development and testing of a computer program capable of predicting the location of a hydraulic jump following a change in slope in an open channel or partially filled pipe.

The program HYDJUMP presented has been shown to be capable of jump prediction based on the assumptions inherent in the application of gradually varied flow analysis.

An extensive range of program test conditions were considered within the limits set by parameter values encountered in building drainage system design.

It was found possible to explain the movement of jump location with such parameters as flow rate, pipe slope, and roughness in terms of the criteria determining jump formation in near horizontal channels.

Although a considerable body of literature exists on hydraulic jump formation in civil engineering style open channels, no comparable study was found employing the parameter values presented. Similarly the majority of the available literature referred to straight sided open channels rather than to partially filled pipes of small diameter. All analytical solutions were restricted to the simplest rectangular section channels due to the complexity introduced by the depth to area and centroid position funcitons in non-rectangular sections.

The computer program, as included, has been designed to deal with rectangular or circular section channels. Extension to other shapes requires only that the shape functions be introduced into the two main subroutines, BOUND and CALC, and that the range of control values assigned to the control variable SHAPE be extended accordingly.

It is felt that the next stage in this study should be an experimental phase designed to compare the predictions from HYDJUMP with laboratory observations, incorporating modified assumptions where necessary. The loss at the pipe slope change, although incorporated in the program for future use, has not been investigated as to do so without laboratory test backing would be of little value.

As a result of the computer study, several boundary conditions that govern the formation of a jump were identified. As an aid to future work these boundary conditions were incorporated into a program HYDSUM, also presented, that enables the probability of jump formation to be assumed prior to running the more time consuming HYDJUMP to determine its location. The predictions of HYDSUM could also be used in designing a laboratory test series.

6. REFERENCES

[1] Chow, V.T., Open Channel Hydraulics, McGraw Hill, 1970.
[2] Douglas, J.F, Gasiorek, J.M. and Swaffield, J.A., Fluid Mechanics, Pitman 1979.
[3] Jaeger, C., Engineering Fluid Mechanics, Blackie and Sons, London, 1956.
[4] Streeter, V.L. and Wylie, E.B., Fluid Mechanics, McGraw Hill, 1974.
$\sin \theta=\Delta z / \Delta x$

At stations 1 and 2 the following equations apply:
Energy equation

$$
\text { Losses }=h_{f}=\frac{p_{1}-p_{2}}{\rho g}+z_{1}-z_{2}
$$

as $\mathrm{V}_{1}=\mathrm{V}_{2}$; steady, uniform flow.
Momentum equation (down slope direction)

$$
\left(p_{1}-p_{2}\right) A+\rho g A \Delta x \sin \theta-\tau_{0} \Delta x P=0
$$

as $d V / d t=0 ;$ steady flow.
$\therefore \frac{p_{1}-p_{2}}{\rho g}+\Delta z=\tau \circ \frac{\Delta x P}{\rho g A}=h_{f}$
For turbulent flow $\tau \circ=\mathrm{f} \frac{1}{2} \rho v^{2}$

$$
\begin{aligned}
\mathrm{h}_{\mathrm{f}}=\mathrm{f} \frac{\Delta x V^{2}}{2 g \mathrm{~g}}, \mathrm{~V}=\mathrm{C} \sqrt{\mathrm{mS}}{ }_{\mathrm{o}}, \mathrm{~S}_{\mathrm{o}} & =\sin \theta \\
\mathrm{m} & =\mathrm{A} / \mathrm{p} \\
\mathrm{C} & =\text { constant }
\end{aligned}
$$

Figure 1. Derivation of Chez equation for steady uniform flow. Note no shape restriction on channel.

Figure 2. Relationship between specific energy and flow depth, illustrating alternate rapid or tranquil flow regimes.

Gradually varied flow, analysis based on head loss at any section being equal to Manning loss prediction, where

$$
\mathrm{S}=-\frac{\Delta \mathrm{E}}{\Delta \mathrm{~L}}=\left(\frac{\mathrm{nQ}}{\mathrm{Am}^{2 / 3}}\right)^{2}
$$

Figure 3. Representation of the gradually varied flow depth profile model.

Note 1. $\Delta \mathrm{L}$ increases as calculation proceeds
2. Calculation proceeds downstream from A to give profile $h_{0} \leq h<h_{c}$; h at A taken as intitial condition.
3. Calculation proceeds upstream from X to give profile $h_{c} \leq h<h_{n}$; h at X taken equal to critical depth as initial condition.
4. Value of N dependent on situation, range $10-30$.

Figure 4. Schematic representation of numerical integration to determine water surface profile.

Note: Water surface profiles approach h_{n} rapidly from an initial condition $h=h_{c}$.

Figure 5. Control depths employed in determining water surface profiles upstream and downstream of a pipe slope change.


```
\(F_{1}=\rho g A_{1} \bar{h}_{1}\)
    \(\bar{h}_{1,2}\) - centroid depth \(=f(\) channel shape)
\(F_{2}=\rho g A_{2} \bar{h}_{2}\)
\(M_{1}=\left(\rho A_{1} V_{1}\right) V_{1}\)
    \(F_{1,2}\) - hydrostatic forces
\(M_{2}=\left(\rho A_{2} V_{2}\right) V_{2} \quad\) volume boundaries at 1,2
\(M_{1,2}\) - momentum crossing control
Jump occurs if \((F+M)_{1}=(F+M)_{2}\).
Depths \(h_{1}, h_{2}\) known as conjugate depths.
Figure 6. Forces acting at the jump location in a horizontal, or near horizontal channel.
```


$$
\begin{aligned}
& =h \\
& =\left(D^{2} / 8\right) \times(\theta-\sin \theta) \\
& =2.0 \times \sqrt{h \times(D-h)} \\
& =\mathrm{D} \times \theta / 2 \\
& =h-D / 2+x_{0} \\
& \\
& x_{0}=\frac{2}{3} \times \frac{D}{2} \times\left(\frac{3 \times \sin \theta 2-\sin 3 \theta / 2}{4 \times\left(\theta / 2-\frac{1}{2} \times \sin \theta\right)}\right)
\end{aligned}
$$

Figure 7. Sumnary of duct cross section parameter calculations.

Profile $A B$ calculated from h_{0} with $\left(h_{c}-h_{0}\right) / N$ as Δh value.
Profile $X Y$ calculated from h_{c} with $\left(h_{n}-h_{c}\right) / N$ as Δh value

Figure 8. Water surface profiles and associated ($F+M$) profiles employed to position hydraulic jump.

Note: $\quad h_{c}$ given by: $Q^{2} T / g A^{3}-1=0$
Note: h_{n} given by: $S_{o}-\left(n Q / A m^{2 / 3}\right)^{2}=0$

Figure 9. Conditions governing jump formation.

Note, if $(F+M)_{A}>(F+M)_{B}$ or C, jump drowned at $L=0$.
if $(F+M)_{A}<(F+M)_{B}$ or C, jump possible.
if $\left(h_{n}\right)_{A}<\left(h_{c}\right)_{A}$ jump impossible.
if $\left(h_{n}^{n}\right)_{A}^{A}>D$, full backflow.
Figure 10. Tests employed to determine the possibility of jump formation.

h_{c} given by

$$
Q^{2} T / g A^{3}-1=0
$$

h_{n} given by

$$
\sin \theta_{2}-\left(n Q / A R^{2 / 3}\right)^{2}=0
$$

$h_{0}=$ depth at $L=0$ $(F+M)_{h}$ given by

$$
\rho g A_{h} \bar{h}_{h}+\rho A_{h} V_{h}^{2}
$$

Figure 11. Schematic representation of jump boundary conditions.

Figure 12. Schematic representation of jump position identification technique employed.

$h=D, 0.15 \mathrm{~m}$.

$$
\text { curves vs. } \sin \theta_{2}
$$

$$
\begin{array}{ll}
\infty & 0 \\
\dot{\infty} & 11 \\
> & 1 \\
0 & \infty \\
2 & \infty \\
3 & 1 \\
e^{u} & 0
\end{array}
$$

\sum_{0}^{n}

Figure 14. Variation of (F+M) term with pipe slope and flow rate. $D=0.15$, $\mathrm{n}=0.015$.

Figure 15. Jump location as a function of pipe slopes θ_{1}, θ_{2} for constant $Q=6(1 / s) D=0.15$ and Manning coefficient $=0.015$.

[^0]constant at $\mathrm{Q}=801 / \mathrm{s} \mathrm{W}=0.15 \mathrm{~m}, \mathrm{n}=0.015$. Rectangular channel results.

Manning coeff $=0.015$
$P_{\text {ip. }}$ dia $=0.15 \mathrm{~m}$

Figure 18. Jump position in a rectangular channel, width 0.15 m , slope $1 / 200$, as a function of flow rate and approach pipe slope.

Note curves do not pass through $\mathrm{L}=0$.

Note curves do not pass through L/W $=0$.

Figure 20. Channel width effect at $Q=1(1 / s) \theta_{2}=\sin ^{-1}(0.005)$, Manning coefficient $=0.015$.

$\sin \theta_{1}$

Figure 21. Effect of Manning coefficient n on jump location in a pipe at $1 / 300$ with a flow rate of $6(1 / \mathrm{s})$. Pipe 0.15 m diameter.

Figure 22. Manning coefficient effect. Note: n constant for approach pipe at 0.015 .

SU4P 035.
$0.0220 .4912 .2160 .0620 .0630 .0050 .0930 .093-0.0004 .4773 .063$
SUMP IMPOSSIBLE AS AMSHC IN TEST PIPE.
sUmp IMPOSSIBLE AS HMSHC IM TEST PIPE. FULL HORE FLOM ESTABLISMEO IM TEST PIPE FULL OORE FLOE ESTABLISHED IM TESI PIPE. FULL ODRE FLON ESTABLISAED IN TESI PIPE。

 FIJLL BORE FLOM ESIABLISHED IM TEST PIPE.

FULL BORE FLOM ESTABLISHED IM TEST PIPE.

$910^{\circ} 0$

8.00 .100 .0150 .70700 .0310 .7720 .00500 .0890 .100 $001^{\circ} 0 \quad 620^{\circ} 0 \quad 0500^{\circ} 0 \quad 559^{\circ} 0 \quad 220^{\circ} 0 \quad 0202^{\circ} 0 \quad 510^{\circ} 0 \quad 0 \pi^{\circ} 0 \quad 0^{\circ} 9$ 4.00 .100 .0150 .70700 .0220 .5180 .00500 .0650 .100
 $008^{\circ} 0 \quad 620^{\circ} 0 \quad 0010^{\circ} 0 \quad 559^{\circ} 0 \quad 220^{\circ} 0 \quad 0 \angle 02^{\circ} 0 \quad 510^{\circ} 001^{\circ} 0 \quad 0^{\circ} 9$
 1.00 .100 .0150 .70700 .0110 .2290 .01250 .0310 .030 2.00 .100 .0150 .70700 .0160 .3450 .01250 .0450 .044 $090^{\circ} 0 \quad 590^{\circ} 0 \quad 5210^{\circ} 0$ 日15 $5^{\circ} 0 \quad 220^{\circ} 0 \quad 0202^{\circ} 0 \quad 510^{\circ} 00 \mathbb{R}^{\circ} 00^{\circ} 4$ $001^{\circ} 0 \quad 620^{\circ} 0 \quad 5210^{\circ} 0 \quad 559^{\circ} 0 \quad 220^{\circ} 0 \quad 0202^{\circ} 0 \quad 510^{\circ} 0 \quad 01^{\circ} 0 \quad 0^{\circ} 9$ 6.00 .100 .0150 .70700 .0310 .7720 .01250 .0890 .100 1.00 .100 .0150 .70700 .0110 .2290 .02500 .0310 .025 2.00 .100 .0150 .70700 .0160 .3450 .02500 .0450 .036 $4.00 .10 \quad 0.0150 .7070 \quad 0.0220 .5180 .0250 \quad 0.065 \quad 0.054$ 6.00 .100 .0150 .70700 .0270 .6550 .02500 .0790 .071 Mis
M.
0.800 $4.00 .100 .0150 .70700 .0220 .510 \quad 0.0100 \quad 0.0650 .074$ 2.00 .100 .0150 .70700 .0100 .3450 .01000 .0450 .0470 .016 1.00 .100 .0150 .70700 .0110 .2290 .01000 .0310 .0320 .011 1.00 .100 .0150 .70700 .0110 .2290 .01000 .0310 .0320 .011

Table l. Jump location in a 0.1 m diameter partially filled

1.00 .100 .015
Table 2. Jump location in a 0.1 m wide channel at an

Table 3. Schematic of Tabulated Jump Boundary Conditions.


```
APPENDIX 1
JUMP LOCATION IN A 0.075 m DIAMETER PIPE, MANNING COEFFICIENT 0.015, AT SLOPES \(1 / 40,1 / 80,1 / 100,1 / 200\)
```

COMMON OATA APPKOACH PRPE OATA

좆ㄹ․

ENTRY ENTPY UPSUNP UUHN OLPTH ENTRGY ENERGY ENERLY JUMP JUMP

No
m 。 N．
FULL HJKE FLUN ESTABLISHED IN TEST PIPE．

JUMP 【MPOSSIBLE AS HMCMC IM TEST PIPE．

 $0.050 .0710 .0340 .0340 .000 \quad 0.047 \quad 0.0470$. FULL BORE FLUN ESTABLISHFD IM TEST PIPE．

FULL GOKE FLJA ESTABLISHED IM TEST PIPE．

FULL BOKE FLON ESTABLISAED IM TEST PIPE．
FULL BDRE F．JN ESTABLBSHED IN TEST PIPE．

FULL BORE FLOA ESTABLISHED IN TEST PIPE． | Lfen |
| :---: |
| $\csc 1^{\circ} 0$ | 0.2730 .336 － 10° T 16° T

0.7073 .553 ．
号就
TESI PIPE OATA aNO PRJGRAM KESULTS.
EXTRY ENTRY EYTRY UPJUAP JUNN DEPYH ENERGY ENERGY ENERGY JUYP B JQP
OEPTH ENERGY FAM DEPJH DEPTH CHANGE UP JUNP DONA CHANGE FAM. PJS:
i

HW
N.
FULL BORE FLUN ESTABLISHED IN TESI PIPE.
FULL $\triangle O R E$ FLUN ESTABLISHES IN IESI PIPE.
FULL GURE FLON ESIABLISHFD IN TEST PIPE.
JUMP IAPOSSIDLE AS HNCHC IN TEST PIPE.
-3dId 1S31 NI JHSNH SV 778ISSOdWI dWחr
FULL GORE FLON ESTABLISHED IN TESI PIPE.

- JdId 1S31 NI O3HSI78V1S3 MOTy 3HO日 7Tn」 FULL GORE FLON ESTABLISHED IN IEST PIPE.

TEST PIPE DATA ANO PROGRAM KESULTS.

1.00 .07
11.4

TEST PIPE DAIA AND PRTGRAM MESULIS.
EYIRY ENTKY ENTRY UPJUHP UJNN DEPIH ENERGY ENERGY ENERGR JUMP JUMP
OLPIH ENEKGY FOH UEPYH DIPIH CHANGE UPJUMP DONN CHANGE.FOM. POS.

HN M.

눈
$0.0 \quad 0.070 .0150 .17360 .0570 .3090 .0250 \quad 0.0740 .075$

$4.0 \quad 0.07 \quad 0.0150 .17360 .0360 .2240 .0250 \quad 0.067 \quad 0.075$

APPKOACH PIPE DAPA
TEKM. SLOPE
ENERGY SSIV)

2 | v |
| :--- |
| 2 |
| 2 |
| |

SLCPE
ISSNI

L/S

SUAP IAPDSSIBLE AS HNSHC IN TEST PIPE.

-3dId 1531 NI JH)NH SV 378ISCOdWI dWחS

FULL GORE FLON ESYAB.ISHEO IN TEST PIPE.
$0.025 \quad 0.15 \quad 3.2740 .045 \quad 4.054 \quad 0.008 \quad 0.072 \quad 0.071-0.0001 .9711 .537$
0.025
0.017
2.00 .070 .0150 .17360 .0250 .1540 .02500 .0490 .042
 $0.0 \quad 0.07 \quad 0.015 \quad 0.1736 \quad 0.057 \quad 0.309 \quad 0.0125 \quad 0.074 \quad 0.075$ $6.0 \quad 0.07 \quad 0.015 \quad 0.1736 \quad 0.046 \quad 0.2740 .0125 \quad 0.0730 .075$ や.0 0.07 $0.025 \quad 0.17360 .0360 .2240 .02250 .067 \quad 0.075$ $2.0 \quad 0.070 .0150 .17360 .0250 .1540 .01250 .0490 .054$ $1.00 .07 \quad 0.015 \quad 0.1736 \quad 0.017 \quad 0.1040 .0125 \quad 0.034 \quad 0.034$ $0.00 .07 \quad 0.015 \quad 0.1736 \quad 0.057 \quad 0.3090 .0100 \quad 0.074 \quad 0.075$
 $4.00 .070 .0150 .17360 .0360 .2240 .0100 \quad 0.0670 .075$ $2.0 \quad 0.07 \quad 0.015 \quad 0.1736 \quad 0.025 \quad 0.1540 .0100 \quad 0.044 \quad 0.059$ $1.0 \quad 0.070 .0150 .17360 .0170 .1040 .01000 .0340 .037$ $0.0 \quad 0.07 \quad 0.015 \quad 0.17360 .0570 .309 \quad 0.0330 \quad 0.076 \quad 0.075$ $6.0 \quad 0.070 .0150 .17360 .0460 .2740 .00500 .0730 .075$ 6.00 .070 .0150 .17300 .0360 .2240 .00500 .0670 .075 $2.0 \quad 0.07 \quad 0.015 \quad 0.17360 .025 \quad 0.1540 .0350 \quad 0.049 \quad 0.075$

MN
M.

$\dot{8}$
SLOPE
SLOPE
(SIN)
APPKIJACH PIPE DATA
TEKM.
ENERGY
 $510=0$ $510^{\circ} 0$
0.075 $240^{\circ} 0$
0.028 0.075 0.075

$0.234 .1330 .0430 .0340 .0000 .072 \quad 0.071-0.0001 .971$ 1.933)

$\begin{array}{lllllllll}0.23 & 4.133 & 0.041 & 0.051 & 0.010 & 0.075 & 0.074 & -0.001 & 2.0491 .342 \\ 0.151 .6 U 4 & 0.012 & 0.037 & 0.005 & 0.048 & 0.048 & -0.000 & 0.7931 .320\end{array}$
FULL GORE FLON ESTABL ISHEO IM TEST PIPE.
FULL GORE FLOA ESTABLISHED IN TEST PBPE.
FULL GURE FLOA ESTABLISHED IN TEST PIPE.

$2.00 .07 \quad 0.0150 .14020 .0210 .2300 .01250 .0490 .0540 .021$ $1.0 \quad 0.070 .0150 .14020 .0150 .1550 .01250 .0340 .0340 .015$ E.O $0.070 .0150 .34020 .0440 .4840 .0100 \quad 0.0740 .075$
 $4.00 .070 .0150 .34020 .030 \quad 0.3390 .0100 \quad 0.067 \quad 0.075$ $\begin{array}{lllllllll}4.0 & 0.07 & 0.015 & 0.3402 & 0.030 & 0.339 & 0.0100 & 0.067 & 0.075 \\ 2.0 & 0.07 & 0.015 & 0.3402 & 0.021 & 0.230 & 0.0100 & 0.049 & 0.059\end{array}$ 0.021 n
0
0
0 $d .00 .070 .015 \mathrm{C} .34020 .0440 .9840 .00500 .0740 .075$ $0.00 .07 \quad 0.0150 .34020 .0370 .420 \quad 0.0050 \quad 0.0730 .075$ $4.00 .07 \quad 0.015 \quad 0.3402 \quad 0.030 \quad 0.339 \quad 0.0050 \quad 0.007 \quad 0.075$ $2.0 \quad 0.07 \quad 0.0150 .3402 \quad 0.021 \quad 0.230 \quad 0.0050 \quad 0.049 \quad 0.075$ 1.00 .080 .0190 .34020 .0150 .1550 .00500 .0340 .045 J.015
TEST PIPE DAIA ANO PRJGRAM KE SULIS．

i^{i}

> FULL BUKE FLON ESTABLISHED IN TEST PIPE．
> FULL UTRE FLUN ESTABLISHED IN TEST PIPE．
> FULL GORE FLON ESTABLISHED IM TEST PIPE．
JUMP IHPOSSIBLE AS HNCHC IN JEST PIPE．
JUAP IMPUSSIBLE AS MNCHC IM TEST PIPE．

FULL BORE FLON ESTAGLISHED IN TEST PIPE．
FULL GOKE FLON ESTABLISMEO IN TEST PIPE．

FULL DORE F＿JN ESTABLISHED IN TEST PIPE．
FULL BORE FLON ESTABLISHED IN TEST PIPE．
FULL GURE FLON ESTABLISHEO IN TESI PIPE．
FULL GURE FLON ESTABLISMEU IN TEST PIPE．
$\operatorname{cr0} 00^{\circ} \mathrm{SH} 0^{\circ} \mathrm{O}$ と $0^{\circ} 0$ 0.075 $\$ 20^{\circ} 0$
$\$ 20^{\circ} 0$ 0.0670 .075
$2.0 \quad 0.070 .0250 .3000 \quad 0.0190 .2940 .0050 \quad 0.049 \quad 0.075$ $\begin{array}{llllllllll}9.0 & 0.07 & 0.015 & 0.5000 & 0.039 & 0.628 & 0.0100 & 0.074 & 0.075\end{array} \quad \begin{array}{llllllll} \\ 0.0 & 0.07 & 0.015 & 0.5000 & 0.033 & 0.543 & 0.0100 & 0.073\end{array} 0.075$ CTO $0.650^{\circ} 0 \quad 640^{\circ} 0 \quad 0070^{\circ} 0 \quad 62^{\circ} 0 \quad 610^{\circ} 0 \quad 0005^{\circ} 0 \quad 510^{\circ} 0<0^{\circ} 0 \quad 0.7$ $\begin{array}{lllllllll}2.0 & 0.07 & 0.015 & 0.5000 & 0.019 & 0.294 & 0.0250 & 0.049 & 0.042 \\ 1.0 & 0.07 & 0.015 & 0.5000 & 0.013 & 0.197 & 0.0250 & 0.034 & 0.028 \\ 9.0 & 0.07 & 0.015 & 0.5000 & 0.039 & 0.628 & 0.0125 & 0.074 & 0.075 \\ 3.0 & 0.07 & 0.015 & 0.5000 & 0.033 & 0.543 & 0.0125 & 0.073 & 0.075 \\ 4.0 & 0.07 & 0.015 & 0.5000 & 0.027 & 0.436 & 0.0125 & 0.067 & 0.075 \\ 2.0 & 0.07 & 0.015 & 0.5000 & 0.019 & 0.294 & 0.0125 & 0.049 & 0.054 \\ 1.0 & 0.07 & 0.015 & 0.5000 & 0.013 & 0.197 & 0.0125 & 0.034 & 0.034\end{array}$ $4.00 .070 .0150 .30000 .0270 .4360 .0250 \quad 0.0670 .075$
 HM
H．
HC
N.
こ」

$$
s c s^{\circ}
$$

$$
185 \cdot 1640^{\circ} 2
$$

$$
\begin{aligned}
& \text { FULL BORE FLON ESTABLISMFD IN TESI PIPE. } \\
& \text { FULL BORE FLON ESTABLISHEU IN TEST PIPE. } \\
& \text { FULL BURE FLON ESTABLISHED IN TEST PIPE. }
\end{aligned}
$$ 0.012

$1.00 .070 .0150 .70700 .012 \quad 6.2470 .01250 .0340 .034$ $0.00 .070 .0150 .7070 \quad 0.0360 .7990 .0200 \quad 0.0740 .075$ $6.0 \quad 0.070 .0150 .7070 \quad 0.030 \quad 0.6860 .0200 \quad 0.0730 .675$ 4.00 .070 .0150 .70700 .0240 .5510 .04000 .0670 .075 2.00 .070 .0150 .70700 .0170 .3700 .01000 .0490 .059 0.318 0.31%

$$
0.365 .2640 .041 \text { U.054 } 0.018 \quad 0.075 \quad 0.074-0.001
$$

3.00 .070 .0190 .70700 .0300 .6860 .04250 .0730 .075
$\$.00 .070 .0130 .70700 .0240 .5510 .01250 .0670 .075$ FULL DUKE = \quad ON ESTABLISMEO IN TESI PIPE. FULL GORE FGDA ESTABLISMED IM TEST PIPE. FULL GORE FLON ESTABLISNEO IM TESI PIPE. FULL GURE FLON ESTABLBSMEO IN TEST PIPE.

$$
\begin{aligned}
& 0.0 \quad 0.07 \quad 0.0150 .70700 .0360 .7990 .00500 .0740 .475 \\
& 9.00 .070 .0150 .70700 .0300 .6260 .00500 .0730 .075 \\
& 2.00 .070 .0150 .80700 .0170 .3700 .00500 .0490 .075
\end{aligned}
$$ 9.0340 .645 0.2470 .0050

HN
M. $510^{\circ} 0^{\prime}$

FULL BURE FLON ESTABLISHED IN TEST PIPE
FULL GURE FLON ESTABLISHED IN TEST PIPE.
FULL GORE FLON ESTABLISHED IN TEST PIPE.
JUMP IMPOSSIBLE AS HNSHC IN IEST PIPE.
JUAP IMPOSSIBLE AS HNSHC IN TEST PIPE.
FULL BURE FLON ESTABLISHED IN TEST PIPE.
FULL GORE FLON ESTABLISHED IM TEST PIPE.

$0.015 .5440 .0454 .0540 .0040 .0720 .071-0.000$ $0.0160 .415 .5940 .0450 .0540 .0040 .0720 .071-0.0001 .9712 .228$ $0.012 \quad 0.20 \quad 2.3150 .0340 .034 \quad 0.000 \quad 0.047 \quad 0.047 \quad-0.000 \quad 0.7871 .864$ FULL GORE FLOW ESTABLISHED IN TEST PIPE.
FULL GORE FLOW ESTABLISHED IN TEST PIPE.
FULL BORE FLOW ESTABLISHEO IN TEST PIPE. 0.41 S.594 0.041 0.05y 0.010 0.075 0.074-0.001 $0.28 \quad 2.3150 .0320 .037 \quad 0.005 \quad 0.048 \quad 0.048 \quad-0.000$ FULL GORE FLOW ESTABLISHED IM TEST PIPE.
FULL GORE FLON ESTABLISHEC IM TEST PIPE.
FULL $O O R E ~ F L O W ~ E S T A B L I S H E O ~ I M ~ I E S T ~ P I P E . ~$ $0.20<.3130 .023$ J.04) $0.020 \quad 0.053 \quad 0.052-0.003$ 0.0670 .075 6.00 .070 .0150 .86600 .0290 .7910 .01250 .0730 .075 $4.0 \quad 0.07 \quad 0.0150 .8660 \quad 0.0230 .6310 .01250 .0670 .075$ $2.0 \quad 0.070 .0150 .86600 .0160 .4240 .01250 .0490 .054$ $1.0 \quad 0.070 .0150 .8660 \quad 0.0120 .2830 .01250 .0340 .034$ $4.0 \quad 0.07 \quad 0.0150 .8660 \quad 0.0340 .9210 .0100 \quad 0.0740 .075$ $6.00 .070 .0150 .86600 .0290 .7910 .0100 \quad 0.0730 .075$ $4.0 \quad 0.070 .0150 .8660 \quad 0.0230 .6310 .0100 \quad 0.067 \quad 0.075$ 2.00 .070 .0150 .86600 .0160 .4240 .01000 .0490 .0590 .016 1.00 .070 .0150 .66600 .0120 .2830 .01000 .0340 .0370 .012 $0.0 \quad 0.07 \quad 0.0150 .8660 \quad 0.0340 .9210 .0050 \quad 0.0740 .075$ $6.00 .070 .0150 .8660 \quad 0.0290 .7910 .00500 .0730 .075$ $4.00 .070 .0150 .4660 \quad 0.0230 .6310 .0050 \quad 0.067 \quad 0.075$ $2.0 \quad 0.07 \quad 0.0150 .8630 \quad 0.0160 .4240 .0050 \quad 0.049 \quad 0.075$ $1.00 .070 .0150 .84,600.0120 .2830 .00500 .0340 .0450 .012$

HM
M. $510^{\circ} 04$
$H C$
H

SLOPE
SSIV
APPROACH PIPE DATA
COMMON OATA
FULL BURE FLON ESTABLISHEG INTEST PIPE

FULL $O U K E$ FLOA ESTABLISHEU INTEST PIPE.
FULL $\triangle O R E$ FLUN ESTABLISHTD IN TEST PIPEO
FULL HORE FLUN ESTABLISHED INTESE PIPEO
JUMP INPOSSIBLE AS HNRHC IN TEST PIPE
JUMP LNPOSSIGLE AS HNSHC BN TEST PRPC.
JUMP IAPOSSIBLE AS HNSHC IN TEST PIPE.

$0.465 .9740 .045 \quad 0.054 \quad 0.008 \quad 0.072 \quad 0.071-0.000$

 0.042 0.067
0.049
 6.00 .070 .0151 .00000 .0280 .8720 .02500 .0730 .075 4.00 .070 .0151 .00000 .0220 .6960 .02500 .0070 .075

APPENDIX 2

JUMP LOCATION IN A 0.10 m DIAMETER PIPE, MANNING COEFFICIENT 0.015 , AT SLOPES $1 / 40,1 / 80,1 / 100,1 / 200$

REST PIPE DATA AND PROGRAM RESULIS. ENTHY ENTRY UP SUMP UUYM DEPTH EMFRGY EMERGY EMERGY JUMP JUTP su4p
pJs. $\stackrel{0}{2}$ NERCY
 ENTRY ENTRY ENTR HN
H. シ SLOPE
ISINI APPROACH PIPE DATA

TERM.
FNERGY
$\frac{7}{3} \dot{x}$ 0.100 0.071 0.054 $0.0349 \quad 0.0330 .072 \quad 0.0250 \quad 0.0450 .036$ 1.00 .100 .0150 .03490 .0230 .0500 .02500 .0310 .025
 6.00 .100 .0150 .03490 .0630 .1310 .01250 .0790 .100

FULL BORE FLOW ESTABLISHED IN TEST PIPE.

GULL BURE FLOW ESTABLISHED IN TEST PIPE.
FULL GORE FLOH ESTABLISHED IM TEST PIPE.
$\begin{array}{lllllllll}2.0 & 0.10 & 0.015 & 0.0349 & 0.033 & 0.072 & 0.0125 & 0.045 & 0.044 \\ 1.0 & 0.10 & 0.015 & 0.0349 & 0.023 & 0.050 & 0.0125 & 0.031 & 0.030 \\ 0.0 & 0.10 & 0.015 & 0.0349 & 0.078 & 0.153 & 0.0100 & 0.089 & 0.100 \\ 6.0 & 0.10 & 0.015 & 0.0349 & 0.063 & 0.131 & 0.0100 & 0.079 & 0.100\end{array}$
$\begin{array}{lllllllll}6.0 & 0.10 & 0.015 & 0.0349 & 0.063 & 0.131 & 0.0100 & 0.079 & 0.100\end{array}$
 $1.00 .10 \quad 0.0150 .03490 .0230 .0500 .0100 \quad 0.0310 .0320 .023$ 0.100
6.00 .100 .0150 .03490 .0630 .1310 .00500 .0790 .100
4.00 .100 .0150 .03470 .0490 .1050 .00500 .0650 .100
 $1.0 \quad 0.100 .0150 .03440 .0230 .0500 .00500 .0310 .0390 .023$

GOMmON DATA APPROACH PIPE DAJA

TEST PIPE DATA ANO PRJERAK KESULISO

TESP PIPE DATA AND PRJGRAM RESU．IS．

$466^{\circ} \mathrm{C}$	$+66^{\circ} 1$	¢00＊${ }^{\circ}$	$290^{\circ} 0$	$690^{\circ} 0$	C20 ${ }^{\circ}$	$850^{\circ} 0$	S¢0 ${ }^{\circ} \mathrm{O}$	C4\％\square°	$4{ }^{\circ} 0$	$220{ }^{\circ}$	8ऽ $0^{\circ} 0$	$540{ }^{\circ} 0$	$0 ¢ 00^{\circ} 0$	$541^{\circ} 0$	$220{ }^{\circ} 0$	9をく1＊0	$510^{\circ} 0$	$0 \mathrm{I}^{\circ} \mathrm{O}$	$0^{\circ} 2$
		－ 3118	1531	NI O3HSI	78V153	M0才』 3	3＊Oя 77ก				001＊0	$590^{\circ} 0$	$0500^{\circ} 0$	－1200	TEO 0	9iくt＊0	$510^{\circ} 0$	$01^{\circ} 0$	$0^{\circ} 4$
		－3814	1531	N1 $03 H 51$	78V153	M07」 3	3808 7า				$001{ }^{\circ} 0$	$620^{\circ} 0$	$0500^{\circ} 0$	$292^{\circ} 0$	$610{ }^{\circ} 0$	$9 E<1{ }^{\circ} 0$	$510^{\circ} 0$	$01^{\circ} 0$	$0^{\circ} 9$
		－ 3 d1d	d 1531	NI O3HS	178V153	M07』 3	3808770	nd			$001{ }^{\circ} 0$	$680^{\circ} 0$	$0 \operatorname{sen} 0$	21E＊O	$980^{\circ} 0$	9ELT＊	$510^{\circ} 0$	$0{ }^{\circ} \mathrm{O}$	$0^{\circ} 0$
＋12＊1	$\underline{c}+8^{\circ} 0$	$000{ }^{\circ} 0$	$\varepsilon \downarrow 0^{\circ} 0$	$E ャ 0^{\circ} 0$	$100^{\circ} 0$	260＊0	$1 \mathrm{CO}{ }^{\circ} \mathrm{O}$	$582^{\circ} \mathrm{T}$	$60^{\circ} 0$	$970 \% 0$	$2 ¢ 0{ }^{\circ} 0$	TC0＊O	$0010{ }^{\circ} 0$	$260^{\circ} 0$	$910^{\circ} 0$	$9 ¢ 15^{\circ} 0$	$510^{\circ} 0$	$08^{\circ} 0$	$0^{\circ} 1$
\＄210\％	$809^{\circ} 1$	$000{ }^{\circ} 0$	$290{ }^{\circ} 0$	$290^{\circ} 0$	C00 ${ }^{\circ}$	$290{ }^{\circ}$	$\underline{1}+0^{\circ} 0$	E4T＊	$48^{\circ} 0$	$220^{\circ} 0$	$140^{\circ} 0$	$540^{\circ} 0$	$0010{ }^{\circ} 0$	$560^{\circ} 0$	$220^{\circ} 0$	9¢ $<^{\circ} 0$	$50^{\circ} 0$	$01^{\circ} 0$	$0 \cdot 2$
$640^{\circ} 2$	625°	$000{ }^{\circ}$	$560^{\circ} 0$	$560^{\circ} 0$	$180^{\circ} 0$	$410^{\circ} \mathrm{C}$	$\angle 50{ }^{\circ} 0$	Pre\％ 2	1200	$1 \in 0^{\circ} 0$	$4 \mathrm{CO}^{\circ} \mathrm{O}$	$590^{\circ} 0$	$0010{ }^{\circ} 0$	\checkmark ちで0	$1 E 0^{\circ} \mathrm{O}$	9¢くて＊	ST0＊0	Or ${ }^{\circ}$	0^{*}
		－3d1d	1531	NI OJHSI	78v153	M07』	380 \％7				$007^{\circ} 0$	$620^{\circ} 0$	OOT0＊0	$292^{\circ} 0$	$6 \subset 0^{\circ} \mathrm{O}$	$9117^{\circ} 0$	S10＊0	$0 \mathrm{I}^{\circ} \mathrm{O}$	$0^{\circ 9}$
		－ 3 dId	11531	N1 O3HS	18v153	M07y 3	340\％ 77				$001{ }^{\circ} 0$	$680^{\circ} 0$	$0010{ }^{\circ} 0$	21E＊	$940{ }^{\circ} 0$	98170	$6: 0^{\circ} 0$	$07^{\circ} 0$	$0^{\circ} 8$
			d1d 153	1 NII JH	NH SV	3781550	JWI dH？				OCO ${ }^{\circ}$	ЈE0＊0	S21000	$260{ }^{\circ} 0$	$910{ }^{\circ} 0$	9\＆くす＊	$510^{\circ} 0$	$01{ }^{\circ} 0$	0＊1
		－3d	11d 153	1 NI JH＞	NH SV	3781550	OdWl dwn				$440^{\circ} 0$	$540{ }^{\circ} 0$	S210＊0	Str＊0	22000	$9 E 1^{\circ} 0$	$510{ }^{\circ} \mathrm{O}$	$07^{\circ} 0$	$0^{\circ} 2$
$815^{\circ} 2$	124＊＊	$000{ }^{\circ} 0$	E60 ${ }^{\circ}$	E60 0°	$500^{\circ} 0$	RGCO	$290^{\circ} 0$	818 ${ }^{\circ}$	12＊0	TC0＊0	$890^{\circ} 0$	$590^{\circ} 0$	$5210{ }^{\circ} 0$	＋12＊0	TEO＊O	9¢170	STO＊O	$01^{\circ} 0$	$0^{\circ 6}$
		－3d8d	1531	N1 O3HSI	78v153	M075 3	380¢ 770				$001{ }^{\circ}$	$610^{\circ} 0$	ST10＊0	$292^{\circ} \mathrm{O}$	$6 £ 0^{\circ} 0$	9Rく1＊0	$510^{\circ} 0$	$01^{\circ} 0$	$0^{\circ 9}$
		－3d1d	d 1531	NI O3HSI	70V153	MDTy 3	380877				001＊0	$680^{\circ} 0$	$5210^{\circ} 0$	27500	$940^{\circ} 0$	9ぐく＊	$510^{\circ} 0$	$07^{\circ} 0$	$0^{\circ} 8$
			1 Id 15	1 NI JH	WH SV	3781550	dWI dwn				$520^{\circ} 0$	リ10＊0	OS $20^{\circ} 0$	$260{ }^{\circ} 0$	$910^{\circ} 0$	9EくT＊	$510{ }^{\circ} 0$	$07^{\circ} 0$	$0^{\circ 1}$
			did 15	\ N1 JH＞	WH SV	79e8550	OdHI dHn				$9 ¢ 0^{\circ} 0$	$540^{\circ} 0$	$0520^{\circ} 0$	$5 \square^{\circ} 0$	$220^{\circ} 0$	9Eく ${ }^{\circ} 0$	¢ $10^{\circ} 0$	O1＊0	$0 \cdot 2$
		－ 38	11d 15	1 NI $3 H\rangle$	NH SV	37815\＄0	OdHI dWn				$450^{\circ} 0$	$590^{\circ} 0$	$0570^{\circ} 0$	\downarrow して＊ 0	イEO＊O	9を行0	$510{ }^{\circ} \mathrm{O}$	$01^{\circ} 0$	$0^{\circ}+$
			d1d 153	1 NI JH）	NH SV	$37815<0$	ddwl dwn				$1<0^{\circ} 0$	$620^{\circ} 0$	$0 \leq 20^{\circ} 0$	$192^{\circ} 0$	$650^{\circ} 0$	9\＆1T＊0	STO＊O	$01^{\circ} 0$	0－9
		－3d1d	1531	WI OJHSI	78v153	M07y 3	3＊0日 7 า				$007{ }^{\circ}$	$680^{\circ} 0$	$0520^{\circ} 0$	2If．0	$940^{\circ} 0$	9¢17＊	$510^{\circ} 0$	$01^{\circ} 0$	$0^{\circ} 8$
					－ M	－M	－W	－N	－${ }^{+}$	－H				－W					
$\begin{aligned} & \text { - Sce } \\ & \text { e inf } \end{aligned}$	－w－1	39 Vv｣	NHOO	dunr dn	Э ${ }^{\text {NWVHJ }}$	＋1dヨr	H1d30	H＊S	19 ${ }^{\text {anJ }}$	M1d ${ }^{\text {d }}$	－W	－ H	（NIS）	dJy 3	－W	（WIS）	\＄3303	－${ }^{\text {H }}$	S／7
	dwnr	1983M3	A983N3	\＆9 \％3n3	H1d30	HMOn	dwnrdn	AVINJ	A＞JN3	181N 3	NH	JH	$3<C 75$	－W831	NH	3d07s	－NNVM	－IIC	$\bullet 0$

C／S	DlA． M．	MANN． COEFF	SEOPE （SIW）	$\begin{aligned} & \mathrm{HN}_{\mathrm{N}} \\ & \mathrm{H}_{0} \end{aligned}$	TERM． ENERCY M．	$\begin{aligned} & \text { SLOPE } \\ & \text { PSINI } \end{aligned}$	$\begin{aligned} & M C \\ & M . \end{aligned}$	HM N.	ENTRY DEPTH M．	$\begin{gathered} \text { ENTRY } \\ \text { ENEKGY } \\ \text { M. } \end{gathered}$	$\begin{gathered} \text { ENTRY } \\ F \bullet M \\ N . \end{gathered}$	UP JUnP DEPTM M。	DUWN DEPTM M．	DEPTH CHANGE M。	EMERGY UP JUMP	ENERGY DOWN	EMERGV CHANGE	JUMP fon。	$\begin{aligned} & \perp J M P \\ & P J S \text {. } \end{aligned}$
0.0	0.10	0.015	0.3402	0.038	0．474	0.0250	0.089	0.100				ULL BORE	FLOM	ESTABL	SHED IM	N TEST	IPE．		
6.0	0． 10	0.015	0.3402	0.033	3．404	0.0250	0.074	0.071				MP 【MPD	SS18LE	AS HN	HC 【N	TEST P			
－0 0	$0 \cdot 10$	0.015	0.3402	0.026	． 0.322	0.0250	0.065	0.054				MP \｜M	SSIBLE	AS HM	HC【N	TEST P	－		
$2 \cdot 0$	0.10	0.015	0.3402	0.019	0.216	0.0250	0.045	0.036				UMP 【M	S1BLE	AS H	C IN	TEST	E。		
1.0	0.10	0.015	0.3402	0.023	0．144	0.0250	0.031	0.025				MP IAP	SSIBLE	AS HN	HC IN	TESTP	E。		
6． 0	0.10	0.015	0.3402	0.038	－0．474	0.0125	0.089	0.100				ILL BORE	FLOM	ESTABL	SHED IO	H TEST	SPE．		
6.0	0.10	0.015	0.3402	0.033	30.404	0.0125	0.079	0.100				ULL 80RE	FLOM	ESTABL	SHED IM	N TEST	PIPE．		
4.0	0.10	0.015	0.3402	0.026	． 0.322	0.0425	0.065	0.068	0.026	0.32	9.778	0.062	0.068	0.005	0.093	0.093	－0．000	4.477	3.33

$0.329 .7780 .0620 .0640 .0050 .0930 .093-0.0004 .0773 .331$

$$
\begin{aligned}
& \approx z \\
& \approx \underset{\sim}{2} \\
& \underset{\sim}{w} \\
& \hline
\end{aligned}
$$

0.026
SEST PIPE DATA AND PROGRAM KESULTSO
HM
ω

4.00 .100 .0150 .34020 .0260 .3220 .0100 .0 .0650 .074
－3」Id 1531 NI DHSNH SV 37EISSOdMI dHNP

－3did 1S3』 N1 03HST78v1S3 M07s 3808 77ns

$0.213 .9290 .0430 .047 \quad 0.0030 .062 \quad 0.062-0.000 \quad 1.808 \quad 2.088$
$0.141 .0120 .0310 .0320 .0010 .043 .0 .043-0.000 \quad 0.7431 .456$
FULL BORE FLON ESTABLISHED IN TEST PIPE．

－3dId 153\＆NI O3HSI78vis3 moty 3y0n 77ns

à
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
\vdots
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
$610^{\circ} 0<40^{\circ} 0 \quad 540^{\circ} 0 \quad 0070^{\circ} 0 \quad 912^{\circ} 0 \quad 610^{\circ} 0 \quad 204 \varepsilon^{\circ} 0 \quad \$ 10^{\circ} 0010^{\circ} 00^{\circ} \mathrm{Z}$
$1.00 .100 .0150 .34020 .0130 .1440 .0100 \quad 0.0310 .0320 .013$

 400.100 .0150 .34020 .0260 .3220 .00500 .0650 .100 $2.00 .100 .0150 .34020 .0190 .2160 .0050 \quad 0.049 .0 .058 \quad 0.019$ 1.00 .100 .0150 .34020 .0130 .1440 .03500 .0310 .0340 .013
TEST PIPE DATA ANO PROGRAM KESULIS.

FULL GORE FLOW ESTABLISHEO IN TEST PIPE.
JUAP IAPUSSIBLE AS HISHC IN TEST PIPE.

- Jdid LSBL NI JH>NH SV 3TgISCOdHI dWNT

JURIP IMPOSSIBLE AS HMCHC IN TEST PIPE.
JUMP IMPOSSIBLE AS YT\&HC IN TEST PIPE. FULL GJRE FLUN ESTABLISHED IN TEST PIPE.
 $500^{\circ} 0-160^{\circ} 0$ $0.4111 .1790 .062 \quad 1.063 \quad 0.005 \quad 0.093 \quad 0.09 ?-0.0054 .4773 .313$ IUMP IMPOSSIBLE AS HNSHE IN TEST PIPE. -3dIe 1531 HI JHJNH SV 3AISSOdNI dWNT FULL BORE FLON ESTABLISHEO IN JEST PIPE.

FULL GORE FLON ESTAOLISHED IM TEST PIPE.
$0.9111 .1740 .057 \quad 0.074 \quad 0.017 \quad 0.045 \quad 0.045-0.0004 .5772 .755$
 0.264 .390 .044 J.04 0.026

$001^{\circ} 0$

 0.008 0.044 $1.0 \quad 0.10 \quad 0.015 \quad 0.5003 \quad 0.0120 .1830 .01250 .0310 .030$ $0.0 \quad 0.10 \quad 0.0150 .5000 \quad 0.0340 .6110 .01000 .0890 .100$ $6.0 \quad 0.10 \quad 0.0150 .5000 \quad 0.0290 .5210 .0100 \quad 0.079 \quad 0.200$ 4.00 .100 .0150 .50500 .0240 .4130 .01000 .0650 .0740 .029 $2.00 .100 .0150 .50000 .0170 .2760 .01000 .0450 .0470 .0: 7$ 1.00 .100 .0150 .50000 .0120 .1830 .01000 .0310 .0320 .312 $4.00 .10 \quad 0.0150 .5000 \quad 0.0340 .3110 .0350 \quad 0.089 \quad 0.100$ 0.00 .100 .0150 .50000 .0290 .5210 .00500 .0790 .100 $4.00 .10 \quad 0.0150 .5000 \quad 0.0240 .4130 .0050 \quad 0.065 \quad 0.100$ $2.00 .10 \quad 0.015 \quad 0.5000 \quad 0.017 \quad 0.270 \quad 0.0050 \quad 0.0450 .05 \theta$ $1.00 .100 .0150 .50000 .0120 .1830 .0050 \quad 0.0310 .039$COMMON DATA APPRUAGH PIPE DATA

EMYRP ENIRY ENTRY UPJUAP UJHN DEPVH ENERGYEENEGY EYERGV JUNP SUYP
 I HM
M. 0.100
$0.00 .100 .0850 .7070 \quad 0.0270 .0550 .02500 .0740 .071$ $4.0 \quad 0.10 \quad 0.0150 .7080 \quad 0.022 \quad 0.5180 .0250 \quad 0.0650 .054$ 2.00 .100 .0150 .70700 .0160 .3450 .02500 .0450 .036 1.00 .100 .0150 .70700 .0210 .2290 .02500 .0310 .025 8.00 .100 .0150 .70700 .0310 .7720 .01250 .0890 .100
$6.0 \quad 0.10 \quad 0.0150 .7070 \quad 0.0270 .6550 .01250 .0790 .100$ $4.00 .10 \quad 0.0150 .7070 \quad 0.0220 .5180 .01250 .0650 .088$ $\begin{array}{lllllllll}2.0 & 0.10 & 0.015 & 0.7070 & 0.016 & 0.345 & 0.0125 & 0.045 & 0.044 \\ 1.0 & 0.10 & 0.015 & 0.7070 & 0.011 & 0.229 & 0.0125 & 0.031 & 0.030 \\ 8.0 & 0.10 & 0.015 & 0.7070 & 0.031 & 0.772 & 0.0100 & 0.089 & 0.100 \\ 6.0 & 0.10 & 0.015 & 0.7070 & 0.027 & 0.655 & 0.0100 & 0.079 & 0.100\end{array}$ $\begin{array}{lllllllll}2.0 & 0.10 & 0.015 & 0.7070 & 0.016 & 0.345 & 0.0125 & 0.045 & 0.044 \\ 1.0 & 0.10 & 0.015 & 0.7070 & 0.011 & 0.229 & 0.0125 & 0.031 & 0.030 \\ 8.0 & 0.10 & 0.015 & 0.7070 & 0.031 & 0.772 & 0.0100 & 0.089 & 0.100 \\ 6.0 & 0.10 & 0.015 & 0.7070 & 0.027 & 0.655 & 0.0100 & 0.079 & 0.100\end{array}$ $\begin{array}{lllllllll}2.0 & 0.10 & 0.015 & 0.7070 & 0.016 & 0.345 & 0.0125 & 0.045 & 0.044 \\ 1.0 & 0.10 & 0.015 & 0.7070 & 0.011 & 0.229 & 0.0125 & 0.031 & 0.030 \\ 8.0 & 0.10 & 0.015 & 0.7070 & 0.031 & 0.772 & 0.0100 & 0.089 & 0.100 \\ 6.0 & 0.10 & 0.015 & 0.7070 & 0.027 & 0.655 & 0.0100 & 0.079 & 0.100\end{array}$ $\begin{array}{lllllllll}2.0 & 0.10 & 0.015 & 0.7070 & 0.016 & 0.345 & 0.0125 & 0.045 & 0.044 \\ 1.0 & 0.10 & 0.015 & 0.7070 & 0.011 & 0.229 & 0.0125 & 0.031 & 0.030 \\ 8.0 & 0.10 & 0.015 & 0.7070 & 0.031 & 0.772 & 0.0100 & 0.089 & 0.100 \\ 6.0 & 0.10 & 0.015 & 0.7070 & 0.027 & 0.655 & 0.0100 & 0.079 & 0.100\end{array}$ 4.00 .100 .0150 .70700 .0220 .5100 .01000 .0650 .074 $2.0 \quad 0.10 \quad 0.0150 .70700 .0160 .3450 .0100 \quad 0.0450 .047$ $\begin{array}{lllllllll}2.0 & 0.10 & 0.015 & 0.7070 & 0.016 & 0.345 & 0.0100 & 0.045 & 0.047 \\ 1.0 & 0.10 & 0.015 & 0.7070 & 0.011 & 0.229 & 0.0100 & 0.031 & 0.032\end{array}$ 6.00 .100 .0150 .70700 .0310 .7720 .00500 .0890 .100 $0.0 \quad 0.10 \quad 0.0150 .7070 \quad 0.027 \quad 0.6550 .00500 .0790 .100$ $\begin{array}{lllllllll}6.0 & 0.10 & 0.015 & 0.7070 & 0.027 & 0.655 & 0.0050 & 0.079 & 0.100 \\ 4.0 & 0.10 & 0.015 & 0.7070 & 0.022 & 0.518 & 0.0050 & 0.065 & 0.100 \\ 2.0 & 0.10 & 0.015 & 0.7070 & 0.016 & 0.345 & 0.0050 & 0.045 & 0.058\end{array}$ $\begin{array}{lllllllll}4.0 & 0.10 & 0.015 & 0.7070 & 0.022 & 0.518 & 0.0050 & 0.065 & 0.100 \\ 2.0 & 0.10 & 0.015 & 0.7070 & 0.016 & 0.345 & 0.0050 & 0.045 & 0.058\end{array} 0.016$ 0.022
0.016
0.011
> $0.212 .0160 .0310 .0320 .001 \quad 0.0430 .043-0.000 .0 .7431 .621$
> $000^{\circ} 0=560^{\circ} 0 \quad \$ 60^{\circ} 0 \quad \angle 70^{\circ} 0 \quad \$ 20^{\circ} 0 \quad \angle 50^{\circ} 0 \quad 912^{\circ} 2864^{\circ} 0$ $0.062-0.003$。

FULL BORE FLON ESTABLISMED IN TEST PIPE.

JUAP INPOSSIBLE AS HNCHC IN TEST PIPE.
JUMP IMPOSSIBLE AS MNCHC IM TEST PIPE.
 - Jdid 1538 NI O3HSIT8V』S3 MO7d 3808 77ns

0．	DIA．	MANN．	SIDPE （SIN）	HN H.	TERM－ ENERCY	SLJPE （SIN）	He M.	H．	EvTR DEPIM	ENTRY ENEXGY	$\begin{aligned} & \text { ENTRY } \\ & \text { F\&M } \end{aligned}$	UPJUYP JEPTM	JJN $J \equiv \square r_{1}$	DEPTH CHAVEE	ENERGY UP JUMP	ENERGY OONM	$\begin{aligned} & \text { EYERGI } \\ & \text { EHAMS } \end{aligned}$	suap	$\begin{array}{lll} 1 & 140 \\ 015 \end{array}$
					M．				M．	H．	N ．	M．	M．	M．					
C． 0	0.10	0.015	0.8660	0.030	0.883	0.0250	0.089	0.100			FU	Ll dJRE	FLON	ESTABLI	SHED IN	TEST	PIPE．		
6.0	0.10	0.015	0.8630	0.026	0.753	0.0250	＇0．079	0.071				MP 1 APO	Sstale	AS HNS	HC IN TE	TEST P	Pf．		
9.0	0.10	0.015	0.8660	0.021	0.993	0.0250	0.065	0.054				MP IMPO	SSIBLE	AS HY	HC 1 N I	EST P	PE．		
2.0	0.10	0.015	0.8630	0.025	0.395	0.0250	0.045	0.036				MP IAPO	OSSI3．E	As HyC	HC IN 1	ESIPI	PE．		
1.0	0.10	0.015	0.8660	0.011	0.262	0.0250	0.031	0.025				MP IMPO	SSIble	AS HNC	HC IN I	EST P	Pf．		
B． 0	0.10	0.615	0.8660	0.030	0.883	0.0125	0.049	0.100			FU	LL BORE	FLOH	ESTABLI	SHED IN	TESI	PIPE．		
6.0	0.10	0.015	0.8660	$0.02 C$	0.753	0.0125	0.079	0.100			FUL	Ll bore	FLON	ESTABLI	SHEC IN	TEST	P『Pミ。		
4.0	0.10	0.015	0.8650	0.021	0.593	0.0125	0.065	0.068	$0.3 ? 1$	0.591	13.446	0.062	U．063	0.005	0.093	0.093	－0．000	4.477	1.533
2.0	0.10	0.015	0.8660	0.015	0.395	0.0125	0.045	0.044			Ju	MP IMPD	SSbibe	AS HA	HC IN T	EST PI			
1.0	0.10	0.015	0.8660	0.021	0.262	0.0125	0.031	0.030				AP IMPO	SSSdLE	AS HNS	HC IM T	EST PI	PF．		
6.0	0.10	0.015	0.8660	0.030	0.883	0.0100	0.089	0.100			FU	Ll Gore	FLOH	ESTABLI	SHFD IN	JESt	PIPE．		
6.0	0.10	0.015	0.8660	0.026	0.753	0.0100	0.079	0.100			FU	LL GORE	FLOH	ESTABLI	SHED IN	TESI	PIPE．		
4.0	0.10	0.015	0.8680	0.021	0.593	0.0100	0.065	0.074	0.021	0.591	13.446	0.057	0.074	0.017	0.095	0.045	－0．000	4.579	3.061
2.0	0.10	0.015	0.8650	0.015	0.395	0.0100	0.045	0.047	0．023	0.39	\＄． 459	0.044	0.047	0.003	0.062	0.062	－0．000	1.808	2．06）
1.0	0.10	0.015	0.8660	0.011	0.262	0.0100	0.031	0.032	0.011	0.24	2.148	0.031	J． 032	0.001	0.043	0.043	－0．002	0.743	1．651
8.0	0.10	0.015	0.8630	0.030	0.883	0.0050	0.089	0.100			FU	Ll Bure	FLON	ESTABLI	SHED IM	TEST	PIPE．		
6.0	0.10	0.015	0.8660	0.026	0.753	0.0050	0.079	0.100				Ll OORE	flow	ESTABLI	SHEO IN	JEST	PIPE．		
4． 0	0.10	9.015	$0.86 ヶ 0$	0.021	0.593	0.0350	0.055	0.100			FU	LL Gore	E FLOA	ESIABLI	SHEO IM	TEST	PIPE．		
2.0	0.10	0.015	0.8 － 0	0.015	0.395	0.0050	0.045	0.058	0.015	0.39	5.459	0.035	0.050	0.023	0.080	0.067	－0．003	1.994	1．6i）
1.0	0.10	0.015	$0.85 \sim 0$	0.011	$0.2 t 2$	0.0050	0.031	0.039	0.311	0.24	2.148	0.025	J．03\％	0.313	0.046	0.045	－0．008	0.799	1．135

(
TESI PIPE DATA AND PROERAM RESDLISO
1398
0350 EMERGV JUMP EMEROT EMF DEPTH EPRY ENTRY ENTRY UPSUMP DUNV
HM
 0.020
1.00 .100 .0151 .00000 .0100 .2880 .02500 .0310 .025
8.00 .100 .0151 .00000 .0290 .9780 .01250 .0990 .100
6.00 .100 .0151 .00000 .0250 .8270 .01250 .0790 .100 $4.0 \quad 0.10 \quad 0.015$:.econo $0.020 \quad 0.6540 .01250 .0650 .068$ 2.00 .100 .0191 .00000 .0140 .4360 .01250 .0450 .044 $1.0 \quad 0.10 \quad 0.0151 .00000 .0100 .288 \quad 0.01250 .0310 .030$ $0.00 .100 .0151 .00000 .0290 .97 e \quad 0.01000 .0890 .100$ $6.0 \quad 0.100 .0151 .00000 .0250 .8270 .01000 .0790 .100$ 4.00 .100 .0151 .00000 .0200 .6540 .01000 .0650 .074 $2.00 .100 .0151 .0000 \quad 0.0 .44 \quad \therefore .4360 .0100 \quad 0.045 \quad 0.047 \quad 0.014$ 1.00 .100 .0151 .00000 .0100 .2830 .01000 .0310 .0320 .010 $8.00 .100 .015 \quad 1.00090 .0290 .9780 .0350 \quad 0.089 \quad 0.100$ 6.00 .100 .0151 .00000 .0250 .8270 .00500 .0790 .100 $4.0 \quad 0.10 \quad 0.015 \quad 1.0000 \quad 0.020 \quad 0.3540 .0590 \quad 0.0650 .100$ 2.00 .100 .0151 .00000 .0140 .4360 .00500 .0450 .0580 .014 1.00 .100 .0151 .00200 .0100 .2880 .00500 .0380 .0390 .020

5

6
 1

Cor
(4)
-
$18+\frac{1}{1+2}$
-

(2)
$2-2+20+4$

$$
\begin{aligned}
& x-1 \\
& x+1
\end{aligned}
$$

里
$=$
\qquad
(1)

> APPENDIX 3
> JUMP LOCATION IN A 0.15 m DIAMETER PIPE, MANNING COEFFICIENT 0.015 , AT SLOPES
> $1 / 40,1 / 80,1 / 100,1 / 150,1 / 200,1 / 300,1 / 400,1 / 600$

> - JdId 2531 nI JHDNH Sy J7gISSTdMI dunt 3dId 153 IN NI JHDNH SV 37EISSCdul dwnr JUNP JURP IMPOSSIBLF AS HNCHC IN VEST PIPEO SUMP $\triangle M P J S S I B L E A S$ HNEHC IN TEST PIPE. - 3dre 1531 nI dhidn SV 378ISSCdHI duns SUAP BMPISSIBLE AS HNCBC IN EEST PEPE SUMP IMPISSIBLE AS HNCHC IN TEST PIPEE SUNP IRPUSSIALE IS HNCHC IN EEST PIPE SUAP IAPUSSIBLE AS HRCNC IN IEST PIPE. SUAP IAPUSSIBLE AS HNCMC IN TEST PIPE. $0.1411 .4360 .040 \quad 0.084 \quad 0.004 \quad 0.115 \quad 0.115 \quad 0.004 \quad 9.6851 .972$ 0.0016 .7952 .033
SUMP IMPASSIHLE AS HMCAC IN TEST PIPE.

- 3did ISBa mi JHDNH SV $3781550 d u x$ dunf
-3dIA ISBI NT DHDNH SV 37g】SSCdUY dunt

 0.0004 .1070 .852 0.0001 .0920 .571 0.040 .7410 .0250 .0310 .0060 .0340 .0380 .0000 .7060 .321 0.00 .150 .0150 .03420 .0590 .1380 .01000 .0820 .0840 .059 $6.00 .150 .0150 .03490 .050 \quad 0.1180 .0400 \quad 0.0740 .0710 .054$ 4.00 .150 .0150 .03670 .0410 .0950 .01000 .0570 .057
 1.00 .150 .0150 .03490 .0210 .0440 .01000 .0280 .028
 6.00 .150 .0150 .03470 .0500 .1160 .00360 .0710 .0000 .051 4.00 .150 .0150 .03410 .0410 .0950 .04660 .0570 .0630 .041 2.00 .150 .0150 .03420 .0290 .0650 .00600 .0400 .0440 .029 1.00 .150 .0150 .03490 .0210 .4440 .04660 .0240 .0310 .021
 i
2
2
2
Hin
H．
$H C$
H
SLIPE
15148
APPKJACH PIPA CAJA
－ $\sin \rightarrow 1$
MEKC
JUMP INPISSIULE AS HNCHC IN TESS PIPE．
－ヨdId ISBI MI JHSNH SY 37EISSTAWI dWत －JdId ISJI nI DHDNH SV $\exists 7815 S C d W I$ dwn －Bdid 1531 NI JHSNH SV 1781 SSCdWI dWnt
 0.1813 .6070 .0800 .0840 .0040 .1150 .115 $0.159 .3840 .0710 .0710 .000 \quad 0.0980 .098$
80.0710 .071
SUMP 1：7P．JS5ISLF JUMP I：APMSSIGLF AS HNCHC IM EEST PIPE．
JUMP IMPOSSIBLF AS MNCHC BM EEST PIPE．

$$
0.120 \quad 0.119-0.0 c 110.2841 .835
$$

C15＊ $\mathrm{COT}{ }^{\circ} \mathrm{C} 000^{\circ} 0$

$$
\because E L^{\circ} \mathrm{T} E \angle B^{\circ} \rightarrow 200^{\circ} 0 \quad 001^{\circ} 0 \quad 101^{\circ} 0
$$

－Jd』 1531 NI DHDNH SV $37815 S 8 d W I ~ d W T V$ －JdId LSヨE MI JHDNH SV j7RBSSEdHI dHOT
 －Jdid ISJE ME DHPNH SY 37日IS50dW』 dwn SUMP IMPIOSSEBLE AS HNCOC IN EEST PEPE SUMP IMPISSSIBLE AS HNCOC IN EEST PIPE．
SUMP IAPISSISLE AS MNGHC IN SEST PIPE． n
0
0
0
0
0
0
0
0
0
0
0
0 0
0
0
\vdots
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0.044
0.057
$6 E 0^{\circ} 0$
$1.00 .150 .0150 .06990 .0170 .0560 .01000 .0280 .1 \angle 8$ $980^{\circ} 0 \quad 280^{\circ} 0 \quad 9900^{\circ} 0 \quad 0 日 1^{\circ} 0 \quad 640^{\circ} 0 \quad 8690^{\circ} 0 \quad 5 T 0^{\circ} O \quad 5 T^{\circ} 0 \quad 0^{\circ} 8$ 0
0
0
0
0
0
0
0
0 0.034 0.034 4． 025 0.016
.057
 0.1220 .0800 0.083 C．0100 0
0
0
0
0
0
0
0
0
0
0
0
0
\vdots
0
0
0 2.00 .150 .0150 .06980 .024 6.00 .150 .0150 .06990 .042 4.00 .150 .0150 .06990 .034 2.00 .150 .0150 .069413 .024 2.00 .150 .0150 .06990 .024
1.0
10.150 .0150 .06990 .017

> If SI prpe data and prugram uesults.
EuTRY ENTKY EATRY UPSUMP DOAN DFPTH ENERGY ENERGY ENERCK JUMP JUMP
depthenergr fan depih oeprh change upaump down charci foto pos.

Hin
M.

T:
sump inpjissible as hnerc in jest pipe.
sump inpassiale as hnctic in yest pipe.
sump impissiale as hnche in jest pipe.
sump inpassiale as hache in desi pipe.
sump impussiale as hnehc IN test pipe.
gump inpassiale as hnehc in tesi pipeo

-3did 1531 Ni Jhonh st beyssedwl dunt

- Jdid 1531 mi Jh>NH Sy 37eISSOdNy dwar

0.0006 .7953 .388
 $\begin{array}{llllll}0.2215 .472 & 0.070 & 0.096 & 0.027 & 0.120 & 0.119 \\ 0.1010 .601 & 0.002 & 0.040 & 0.018 & 0.101 & 0.100 \\ 0.14 & 6.271 & 0.032 & 0.063 & 0.012 & 0.080 \\ 0.10 & 2.585 & 0.036 & 0.044 & 0.007 & 0.055 \\ 0.06 & 1.015 & 0.025 & 0.031 & 0.006 & 0.038 \\ 0.0 .030\end{array}$ 4. 0 •0 $\begin{array}{llllllllllll}2.0 & 0.15 & 0.015 & 0.1045 & 0.022 & 0.100 & 0.0125 & 0.044 & 0.037 \\ 1.0 & 0.15 & 0.015 & 0.1045 & 0.016 & 0.067 & 0.0125 & 0.028 & 0.026\end{array}$ $\begin{array}{llllllllllllll}1.0 & 0.15 & 0.015 & 0.1045 & 0.016 & 0.067 & 0.0125 & 0.028 & 0.026 \\ 8.0 & 0.15 & 0.015 & 0.1045 & 0.044 & 0.219 & 0.0100 & 0.092 & 0.044\end{array}$ $6.0 \quad 0.150 .0150 .10450 .038 \quad 0.1860 .01250 .0710 .067$ 4.00 .150 .0150 .10450 .0310 .1480 .01250 .0580 .053 $1.0 \quad 0.150 .0150 .10450 .016 \quad$ C.067 0.02500 .0200 .022 3.00 .150 .0150 .10450 .0440 .2190 .01250 .0820 .089 0.0320 .064 0.0740 .053 4.00 .150 .0150 .10450 .0310 .1480 .02500 .0570 .044 2.00 .150 .0150 .10450 .0220 .1000 .02500 .0400 .031 $\begin{array}{lllllllllll}2.0 & 0.15 & 0.015 & 0.1045 & 0.022 & 0.100 & 0.0125 & 0.044\end{array}$ $\begin{array}{llllllll}8.0 & 0.15 & 0.015 & 0.1045 & 0.044 & 0.219 & 0.0100 & 0.092\end{array}$ 4.00 .150 .0150 .10450 .0310 .1480 .01000 .0570 .057 2.00 .150 .0150 .10450 .0240 .1000 .01000 .0400 .039 1.00 .150 .0150 .10450 .0160 .0670 .01000 .0240 .028 8.00 .150 .0150 .10450 .0440 .2190 .00660 .0820 .0960 .044 6.00 .150 .0150 .10450 .0380 .1660 .0066 U.071 0.0800 .036 $4.0 \quad 0.150 .0150 .10450 .031 \mathrm{C} 1480.00660 .0570 .0630 .031$ $\stackrel{~}{0}$
$\dot{0}$
$\dot{0}$
$\dot{\Delta}$
$\dot{0}$
$\dot{0}$ 0.0319 .016 0.031 v.02d

2
program results gasec un rerminar cemuatidios in tha

EJTRY ENIKY EVTKY UPJUMP JINV IKPTH ENEKGY ENERGY IMEFGY JUMP JUMP CHANGE HAB PJS. $0.125-0.00311 .0082 .21$ $0.103-0.0027 .3132 .143$ $0.042-0.0014 .<651.791$ $0.056-0.0011 .7501 .151$ $0.039-0.001 \quad 0.730 \quad 0.745$ $0.144-0.03713 .060$ U.941 $0.112-0.0138 .3091 .417$ $0.087-0.0074 .7121 .272$ i
∞
\vdots
i
0
0
\vdots
\vdots
$\dot{8}$
0
0
i
0
0
0
0 0.041 -0.003 0.795 0.553 N TESI PIPE.
N
か
\dot{j}
j $\stackrel{\rightharpoonup}{2}$
$\dot{\infty}$
$\dot{0}$ 0
0
0
0 $\stackrel{\circ}{i}$ FULR GURE FLOA ESIABLISHEL IN TESI PIPE. ESTABLISHEE IN TESU PIPE
 $0.046-0.013 \quad 0.484$
 롤 jeprat change
Ma ma 0.045 0.031 0.021 0.013 0.010
0.043
n
0
0
0
0
0
0
0
0
0
0.023

0.016
ñ
0
0
0
0
0
0
0
0
0
\vdots
\vdots
\sim
\sim
\vdots
0
0
$0.081 .2210 .0<10.037$
FURL HIRE FLON
 5
0
0
$\dot{0}$
0
0
0
0
0
0
0
0
\vdots
0
0
0
0 n
0
0
0
\sim
\vdots
0
0
0
0
0
$\dot{\sim}$
\sim
\sim
\vdots
0 0
0
0
0
0
0
0
0
-

a
0
0
0
0
0

FUle bure floa $\begin{array}{lll}n & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sim & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \underset{\sim}{1} \\ \vdots & 0 & \sim \\ \vdots & 0 & 0 \\ 0 & \sim & 0 \\ 0 & 0 & 0\end{array}$ 0.039 0.034 0.0770 .020
2.00 .150 .0150 .17360 .0200 .1310 .00500 .0400 .0530 .020 1.00 .150 .0150 .17360 .0140 .0870 .0050 U.02d 0.0370 .014 $1.00 .150 .0150 .17340 .0140 .0870 .00500 .02 d 0.0370 .014$ $\left.\begin{array}{llllllllll}0.0 & 0.15 & 0.015 & 0.1736 & 0.039 & 0.290 & 0.0025 & 0.082 & 0.150\end{array}\right] \begin{array}{lllllllll}6.0 .15 & 0.015 & 0.1733 & 0.033 & 0.246 & 0.0025 & 0.071 & 0.112 & 0.034\end{array}$ $4.0 \quad 0.150 .015 \quad 0.17340 .027 \quad 0.1950 .00250 .0570 .0840 .020$ $2.0 \quad 0.150 .0150 .17360 .020 \quad 0.1310 .00250 .0400 .0570 .020$ 1.00 .150 .0150 .17340 .0140 .0870 .00250 .0200 .0390 .014 $\stackrel{0}{0}$ 0.150 0.096 0.082 0.071 0.051 $?$
$\stackrel{r}{5}$
$\dot{0}$ v. $0<0$ $\begin{array}{lllllllll}0.0 & 0.15 & 0.015 & 0.1736 & 0.039 & 0.290 & 0.0025 & 0.082 & 0.150\end{array}$ 0.290 .0017 0.017
$1.0 \quad 0.150 .0150 .17330 .0140 . C 670.0017$
TEST PIPE DATA AND PRUGRAM \＆ESULTS．

HP
upsu
NGE
H．
chan
SOWN
DFPIN
2
2
2
2
2
2

JUMP IIPPISSIULE AS HNCHC IN TEST PIPE
JUMP IMPISSIDLE AS HNCHE IN JEST PEPEO
JUMP JMPJSSIBLE AS MNCHC IN TEST PBPEO
JUMP IMPJSSIWLE AS HNCHC INEEST PEPEO
JUMP IMPJSSIELE AS HNCHC IN TEST PIPE．
SUMP JMPISSIQLE AS MNCHC IN EESE PIPE
－3dIE SSI NI DHフNH SY $3781 S S C A H E$ dHNC
－Bdid 153P NI JHSNH SV g7eISSNdul dunt
－Jdid 153』 Ni Dhomh SV gipisscdell dunt

 $0.4322 .5440 .0010 .084 \quad 0.003 \quad 0.185 \quad 0.1185$
0.0009 .8854 .753
$0.3615 .6660 .0710 .371 \quad 0.000 \quad 0.098 \quad 0.098 \quad 0.000 \quad 6.7954 .375$
JUMP IMPISSIIBLE AS HNCHC IN TESI PIPE。
SUMP ITHPDSSIBLE RS HNSHC IN TEST PIPE．
SUAP IMPISSSBELE AS HNCHC IN TEST PIPE．
$0.4322 .5840 .0700 .0960 .0270 .120 \quad 0.119-0.00110 .<843.532$
$0.3615 .0060 .0620 .000 \quad 0.010 \quad 0.1010 .1000 .0006 .9733 .180$ 0.299 .3410 .0520 .0630 .0120 .1800 .0800 .0004 .1072 .632 $0.183 .6210 .0360 .0440 .007 \quad 0.0550 .0550 .001 \quad 1.692$ 1．69）
$0.131 .5410 .0250 .031 \quad 0.006$ C．038 $0.038 \quad 0.0040 .7061 .094$ f 0.057
2.00 .150 .0150 .34020 .0170 .1950 .01000 .0400 .019 1.00 .150 .0150 .34020 .0120 .1290 .01000 .0200 .028
 $970^{\circ} 0 \mathrm{BZ} 0^{\circ} \mathrm{C} 5270^{\circ} 0 \quad 621^{\circ} 0270^{\circ} 0 \quad 204 E^{\circ} 0 \quad 510^{\circ} 0 \quad 57^{\circ} 00^{\circ} 1$ $8.00 .150 .0150 .34020 .0330 .4370 .0100 \quad 0.0820 .0040 .033$ 0.024
$\mathrm{H}+$
M
M 0.064 0.053 0.044
 1.00 .150 .0150 .34020 .0120 .1290 .02500 .0240 .022 8.00 .150 .0150 .34070 .0330 .4370 .01250 .0820 .079 8.00 .1150 .0150 .34020 .0330 .4370 .01250 .0820 .079 6.00 .150 .0150 .34020 .0280 .3700 .01250 .0710 .067 4.00 .150 .0150 .34020 .0230 .2920 .01250 .0570 .053 0.0 .0 .150 .015 0．3102 0.0230 .2920 .01250 .057 なアOO BRO SZT000 6.00 .150 .0150 .34020 .0280 .3700 .01000 .0710 .071 4.00 .150 .0150 .34020 .0230 .2920 .01000 .057 －

$\pm x_{0}$

a
©
o
0

 0.057
 $-$ 2

reji pipe daja aivo prugrar $2 E S U L I S$.
3.359
-0.0C2 7.3133 .122
-0.001 4. 0652.573
$0.056-0.0041 .7501 .736$
$-0.0010 .7301 .354$
$-0.03713 .660<.132$

$-0.0074 .712<0075$
$0.059-0.0041 .9061 .377$
0.041 -0.001 0.795 0.856
TESI PIPE.
0.121 - D.031 9.511 2.854
$0.092-0.0155 .1931 .630$
n
n
i
0
0
0
0
\sim
i
0
0
0
0
i
n
0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
1
n
0
0
0 JESI PIPE.
IESI PIPE.
2
$\stackrel{1}{\infty}$
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
$\begin{array}{ll}\overrightarrow{0} & \tilde{0} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \dot{\sim} & 0 \\ 0 & n \\ 0 & 0 \\ 0 & 0 \\ 1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$
$H N$
n.

さ̌:

appkjach pipf cata

-	(AIS)	-4373	-
NH	9d075	-Nv\%n	-rio

i/5
0.020 0.024 0.0070 .024 0.0570 .0690 .019 0.014 1.00 .250 .0150 .70730 .0100 .2050 .00500 .0280 .0330 .014 $8.0 \quad 0.150 .0150 .7070 \quad 0.027 \quad 0.7050 .0450$ v. $082 \quad 0.132 \quad 0.024$ 6.00 .150 .0150 .70700 .0240 .5970 .0050 u.071 0.1010 .024 4.00 .150 .0150 .70700 .0190 .4690 .0050 u.057 0.077 0.014 4.00 .150 .0150 .70700 .0190 .4690 .00500 .0570 .0770 .019 $2.0 \quad 0.150 .0150 .70700 .0140 .3100 .04500 .0400 .0530 .014$ 1.00 .150 .0150 .70730 .0100 .2050 .03500 .0230 .0370 .010 $0.0 \quad 0.150 .0150 .70700 .0270 .7050 .04250 .0820 .150$ $6.0 \quad 0.150 .0150 .70790 .0240 .5970 .0425$ v.071 0.112 0.1126 .024 0.0840 .019 0.057 U.01* 0.016 0.03 0.150 0.150 0.0960 .019 0.0440 .010 0.044 0.00170 .057 0.040 v. 028 0.70700 .0100 .2050 .0017

$$
\begin{aligned}
& \text { SUMP IMPBSSIBLE AS HMCNC IN TEST PIPE. } \\
& \text { JUMP IMPOSSIALE AS HNCHC IA EEST PIPE. } \\
& \text { JUAP IMPASSIBLE AS HNGNC IN TEST PIPEO }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllllllll}
1.0 & 0.15 & 0.015 & 0.8660 & 0.010 & 0.234 & 0.0125 & 0.024 & 0.026 \\
8.0 & 0.15 & 0.015 & 0.8667 & 0.026 & 0.808 & 0.0100 & 0.0820 .084 \\
6.0 & 0.15 & 0.015 & 0.8667 & 0.023 & 0.883 & 0.0100 & 0.071 & 0.071
\end{array} \\
& 4.00 .150 .0150 .86670 .0190 .5360 .01000 .0570 .057 \\
& \text { 2.0 0.150.015 0.86600.018 0.355 0.01000.040.0.039 } \\
& 1.00 .150 .0150 .86670 .0100 .2340 .01000 .02 \text { d 0.028 } \\
& 1.00 .150 .0150 .86630 .0100 .2340 .01000 .02 d 0.028
\end{aligned}
$$

$$
\begin{aligned}
& 0.022 \\
& 0.0820 .079 \\
& 0.026 \\
& 0.023 \\
& \begin{array}{c}
8.00 .150 .0150 .86600 .0260 .6080 .02500 .0820 .065 \\
6.00 .150 .0150 .86670 .0230 .1830 .02500 .0710 .055
\end{array} \\
& 420^{\circ} 0 \angle 50^{\circ} 00570^{\circ} 0 J E 5^{\circ} 06 T 0^{\circ} 04990^{\circ} 05 T O^{\circ} O G T \circ O 0^{\circ} 4
\end{aligned}
$$

$1.00 .150 .0150 .86670 .0100 .2340 .02500 .02 d 0.022$
8.00 .150 .0150 .86610 .0260 .8080 .0125
台
Ј - !
$\begin{aligned} & \text { COMNUN DATA APPRJACH PIPE DATA } \\ & \text { J. DIAO MANNO SLOPE HN TEKFO SLOPK } \\ & \text { LSS MO CGEFF ISINJ ME ENEKCY SSINI }\end{aligned}$
$\begin{aligned} & \text { GOMNUN DATA APPRJACH PIPE DATA } \\ & \text { J. DIAO MANNO SLOPE HN TEKF } \\ & \text { LS MO CGEFF ISINJ MO ENEKCY }\end{aligned}$
$\begin{aligned} & \text { GOMNUN DATA APPRJACH PIPE DATA } \\ & \text { J. DIAO MANNO SLOPE HN TEKF } \\ & \text { LS MO CGEFF ISINJ MO ENEKCY }\end{aligned}$ 3 35. ENIFCY JUKP
CHANGL FAM-

$0.125-0 . \cos 11.6083 .517$
0.103 -0.04C 7.3131 .175 $0.042-0.0014 .265$ 2.65; $0.056-0.001 \quad 1.750 \quad 1.772$ $0.039-0.0410 .7301 .117$ $0.144-0.03713 .660<.277$ $0.112-0.023$ 8.j30 <.472 $0.047-0.0074 .2122 .156$ $0.059-0.0041 .4061 .455$ $\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & n \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$ $\stackrel{0}{\sim}$
$\dot{0}$
$\dot{0}$

$\begin{array}{lllllllll}0.5212 .045 & 0.032 & 0.076 & 0.064 & 0.141 & 0.101 & -0.040 & 6.199 & 1.252 \\ 0.34 & 5.120 & 0.024 & 0.063 & 0.039 & 0.086 & 0.067 & -0.014 & 2.386 \\ 0.0 .924 & 2.071 & 0.047 & 0.044 & 0.027 & 0.059 & 0.046 & -0.015 & 0.484 \\ 0.0 .571\end{array}$

GY
M.
FULE BURE FLOW ESXABLISHEC IN JESX PIPE. 0.023 0.019 $\stackrel{0}{2} \quad 0$ 0
0
0
0

UPSUMP
DEPYH OET*O
A MTS C. 106 0.003 0.057 0.640 0.161 0.125 $\stackrel{+}{\circ}$
 0.010 0.093 0.052 0.036 0.023 0.023

 4.00 .150 .0150 .66600 .0190 .5360 .00500 .0570 .077 0.053 0.037 0.150 0.023 0.019 $\stackrel{m}{0}$ $\stackrel{3}{0}$
0
\vdots 0.0710 .112 0.0570 .004 $0.040 \quad 0.057$ $0.02 d 0.039$ v. 0820.150 $6.0 \quad 0.150 .0150 .86600 .0230 .1830 .00170 .0710 .150$ 4.00 .150 .0150 .86600 .0190 .5360 .00170 .0570 .096 $2.00 .150 .0150 .86600 .0130 .3550 .0017 \quad 0.080 \quad 0.0630 .013$ 1.00 .150 .0150 .86630 .0100 .2340 .00170 .0200 .0440 .016

apprijach pipe cata
common data
O. DIA. MARN. Sllipe
LiS
Ho CEEFF

0.1070 .025 0.0870 .022 0.0690 .019 0.0470 .013 0.0330 .010 0.1320 .025 $6.00 .150 .0150 .96590 .022 c .7350 .00500 .0710 .1010 .022$ 4.00 .150 .0150 .96570 .0180 .5780 .00500 .0570 .0770 .019 2.00 .150 .0150 .96590 .0130 .3810 .00500 .0400 .0530 .013 \circ
$\stackrel{B}{0}$
$\stackrel{\circ}{0}$
\qquad m.
H. DFPIH ENERGY FOM DEPTH JEPYH CHANGE至:
İ:
Junt
\ddot{n}°
 ENER:Y
DGWN
test pipe data and program kesults.
 M. Mo M. 0.0620 .107
$0.8532 .330 \quad 0.062$ 0.6921 .8070 .0570 .087 0.5212 .6450 .0470 .067 0.345 .1200 .0543 .047 0.222 .0710 .0240 .033
 0.6921 .0070 .0480 .101 0.5212 .6450 .0410 .077 0.345 .1200 .0300 .053 0.222 .0710 .0280 .037 full dore flow 0.6921 .807 0.0.42 0.112 $0.5212 .645 \quad 0.037 \quad 0.084$ 0.345 .1200 .0270 .057 0.222 .0710 .0190 .039 FULL BORE FLOW FULL GURE FLOA ESJABLISHEE I

 $\begin{array}{llllllllll}4.0 & 0.15 & 0.015 & 0.9659 & 0.016 & 0.578 & 0.0617 & 0.057 & 0.096 & 0.014\end{array}$ $\begin{array}{lllllllll}8.0 & 0.15 & 0.015 & 0.9659 & 0.025 & 0.871 & 0.0017 & 0.082 & 0.150 \\ 6.0 & 0.15 & 0.015 & 0.9659 & 0.022 & 0.735 & 0.0017 & 0.071 & 0.150\end{array}$ $6.0 \quad 0.150 .0150 .96590 .022 \quad 0.7350 .00170 .0710 .150$ $\begin{array}{lllllllll}8.0 & 0.15 & 0.015 & 0.9659 & 0.025 & 0.671 & 0.0025 & 0.082 & 0.150 \\ 6.0 & 0.15 & 0.015 & 0.9659 & 0.022 & 0.735 & 0.0025 & 0.071 & 0.112\end{array}$ $4.0 \quad 0.150 .0150 .96590 .0160 .5760 .00250 .0570 .0040 .014$ 2.00 .150 .0150 .96570 .0130 .3620 .00250 .0400 .0570 .013 $1.00 .150 .0150 .96590 .0090 .2510 .00250 .0200 .0390 .01 \cup$ 9.00 .150 .0150 .96590 .0250 .0710 .00170 .0020 .150 tesi pipe.
M JESJ PIPI. 0.141 $\begin{array}{ll}0 \\ 0 \\ 0 \\ 0 \\ 0 & 0 \\ 0 & 0\end{array}$

¢ $\boldsymbol{1 1}^{\text {¢ }}$	OER゚O	$10000-$	$680{ }^{\circ} 0$
2el＊ 1	ose＇t	100－0－	$950{ }^{\circ}$
$9 ¢ \ell^{\circ} \mathrm{Z}$	5920ヶ	1000－	290\％0
$692^{\circ} \mathrm{E}$	ETE\％	20000－	EOT＊O
Pes．E	$800^{\circ} 11$	50000－	52100
－ 4	－${ }^{\text {r }}$	－${ }^{1}$	－${ }^{\text {H}}$
- srid		Эगマทร	nmgo
dunt	dunt		А5¢ヲ＊3

$0.144-0.03713 .0602 .356$
$0.112-0.0138 .3092 .543$
$0.087-0.0084 .2122 .234$

$0.041-0.0030 .7950 .926$ FULL BuRE FLON ESJABLISMED IM JESI PIPE． Esiablished la rest pipe．

1.751 $0.092-0.0155 .1931 .833$ $\stackrel{n}{\sim}$ $\stackrel{n}{\sim}$ | IESI PIPE． |
| :--- |
| IESI PIPE． |
| $0.101-0.040$ |
| 0.1991 .325 |
| $0.067-0.014$ |
| 0.046 | $\begin{array}{lc}\text { a } & 0 \\ \vdots & 0 \\ \dot{c} & 0\end{array}$ 0 0.047 $\begin{array}{ll}\text { A } & 0 \\ 0 & 0 \\ 0 & 0\end{array}$ 0.0921 .8070 .0420 .112 0.5013 .4060 .0170 .084

 0.222 .0710 .0190 .039 FLOA
FLOA
0.096
0.063
0.044 QEPrT M． 107 0.6532 .330 0．var 0.107 0.6921 .8070 .0570 .087 0.5913 .4060 .0473 .069 0.345 .1200 .0340 .047 0.222 .0710 .0240 .033 0.0532 .3300 .0490 .132 0.6921 .0070 .0480 .101 0.5413 .4060 .0410 .077 $0.345 .120 \quad 0.0300 .053$ 0.222 .0710 .0210 .037 0.036
0.023 0.023 $\stackrel{0}{0}$
$\dot{0}$
0
0
0.010 ． 0.022 0.018 $\begin{array}{ll}0 & 3 \\ 0 & 0 \\ 0 & 0\end{array}$ 0.010 0.150 0.112 0.084 0.057 0.082 150.0 C80．0 5 crooo pzo－n 0.0820 .150 6.00 .150 .0151 .00000 .0220 .7520 .00170 .0710 .150 4.00 .150 .0151 .00090 .0180 .5910 .00170 .0570 .096 0.5910 .00170 .0570 .0960 .018 $\begin{array}{lllllllllllll}2.0 & 0.15 & 0.015 & 1.0003 & 0.013 & 0.390 & 0.0017 & 0.040 & 0.063 & 0.013 \\ 1.0 & 0.15 & 0.015 & 1.0000 & 0.009 & 0.257 & 0.0017 & 0.020 & 0.044 & 0.010\end{array}$
 ITSI PIPE OATA ANO PRUGNAM NESULTSE FVTKY CNJKY FNTKY UPSUMP DDAN DE TH ENEKGY ENERGY ENEFGY JUMP IUMP
i^{-2} 2 CHANGE
P。 sump impossiale as hnche in test pipe.
sump impjssible as hnche in vest pipe. sunf impissiale as hinche in tesi pipe.
 sump ampassiale as hnenc in test pipe. sump Impassible as hnche IN JESt PIPE. sump inpassible as mache in test pipe. sump impassibla as hache in test pipeo sump inpossiale as hachc in fest alpe. sump Impassiale as hache in test pipe.
0.6532 .330 0.081 $0.0860 .003 \quad 0.1450 .115 \quad 0.000 \quad 9.685 \quad 3.531$
0.6924 .807 .0 .0710 .071 0.000 0.098 0.09日 0.000 6.795 4.99? sump Impissible as hnchic in gesi pipe. sump impussiale as hiche in test pipe.

 0.025
0.022 $\begin{array}{lllllllll}6.0 & 0.15 & 0.015 & 1.0000 & 0.022 & 0.752 & 0.0250 & 0.071 & 0.055 \\ 4.0 & 0.15 & 0.015 & 1.0000 & 0.018 & 0.591 & 0.0250 & 0.057 & 0.044 \\ 2.0 & 0.15 & 0.015 & 1.0000 & 0.013 & 0.390 & 0.0250 & 4.040 & 0.031 \\ 1.0 & 0.15 & 0.015 & 1.0000 & 0.009 & 0.257 & 0.0250 & 0.025 & 0.022 \\ 8.0 & 0.15 & 0.015 & 1.0003 & 0.025 & 0.592 & 0.0125 & 0.082 & 0.079 \\ 6.0 & 0.15 & 0.015 & 1.0000 & 0.022 & 0.752 & 0.0125 & 0.071 & 0.067 \\ 4.0 & 0.15 & 0.015 & 1.0009 & 0.016 & 0.591 & 0.0125 & 0.057 & 0.053 \\ 2.0 & 0.15 & 0.015 & 1.0000 & 0.013 & 0.390 & 0.0125 & 0.040 & 0.037 \\ 1.0 & 0.15 & 0.015 & 1.0007 & 0.004 & 0.257 & 0.0125 & 4.028 & 0.020\end{array}$ 9.00 .150 .0151 .00000 .0250 .8920 .04000 .0820 .084 6.00 .150 .0151 .00000 .0220 .7520 .01000 .0710 .071 4.00 .150 .0151 .00070 .0100 .9910 .01000 .0570 .057 2.00 .150 .0151 .00000 .0130 .3900 .01000 .0400 .639 1.00 .150 .0151 .00000 .0090 .2570 .0100 U.028 0.028 8.00 .150 .0151 .00000 .0250 .6920 .00660 .0820 .0460 .025 $6.00 .150 .0151 .00070 .0220 .7520 .80660 .071,0.0300 .024$ 4.00 .150 .0151 .00000 .0160 .5910 .00660 .0570 .063 U.024 $2.00 .150 .0151 . v 0900.0130 .34 C \quad 0.00660 .0400 .0440 .013$ 1.00 .150 .0151 .00000 .0090 .2570 .0060 v.020 0.031 0.010

APPENDIX 4
JUMP LOCATION IN A 0.075 m WIDE RECTANGULAR CHANNEL, MANNING COEFFICIENT 0.015, AT SLOPES $1 / 40,1 / 80,1 / 100,1 / 200$

$0.00 .070 .0150 .03490 .0750 .1780 .0100 \quad 0.0750 .075$
$\begin{array}{lllllllllll}0.0 & 0.07 & 0.015 & 0.0349 & 0.075 & 0.133 & 0.0100 & 0.075 & 0.075\end{array}$
2.00 .070 .0150 .03440 .0320 .0670 .01000 .0420 .0510 .023 $1.00 .070 .0150 .03400 .0200 .0430 .0100 \quad 0.0260 .030 \quad 0.014$ $0.0 \quad 0.070 .0150 .01490 .0750 .1780 .00500 .0750 .075$ $6.0 \quad 0.07 \quad 0.015 \quad 0.03490 .0750 .1330 .0350 \quad 0.0750 .075$ 4.00 .070 .0150 .03490 .0540 .1040 .00500 .0660 .075 2.00 .070 .0150 .01490 .0320 .0670 .03500 .0420 .068 1.00 .070 .0150 .03490 .0200 .0430 .00500 .0200 .039 U.014

dunp
F*
N。

1.949 1. 18
 JUMP URUNIEED AT L-O AT TESI PIPE ENPRV.
JUMP URUNACO AT L=O AT TEST PIPE ENTRY.
 $2.0091-230$ 0.7790 .375
$\rightarrow 5^{\circ} \mathrm{C} 426^{\circ}$

Mn
M.

HC
H.
SLODE
SSPO
APPROACI PPPE UATA

0.475 0.075

$$
\begin{aligned}
& \text { ㄷ }
\end{aligned}
$$

4.00 .070 .0250 .36020 .0230 .2920 .02500 .0660 .062
2.00 .070 .0150 .34020 .0140 .1900 .02500 .0420 .036 $270^{\circ} 0 \quad 920^{\circ} 0.0520^{\circ} 0$ GTI 0 600 $0 \quad 20 t E^{\circ} 0$ S $20^{\circ} 0 \quad 10^{\circ} 00^{\circ}$?
$0.00 .07 \quad 0.0150 .3422 \quad 0.038 \quad 0.430 \quad 0.01250 .0750 .075$
$6.0 \quad 0.07 \quad 0.015 \quad 0.3472 \quad 0.0310 .3680 .01250 .0750 .075$
4000.070 .0150 .34220 .0230 .2920 .01250 .0660 .075
 1.00 .070 .0150 .34020 .0090 .1190 .01250 .0260 .0240 .007 0.00 .070 .0150 .34020 .0380 .4300 .01000 .0750 .075 6.00 .070 .0150 .34020 .0310 .3680 .02000 .0750 .075 $4.00 .070 .0150 .3402 \quad 0.0230 .2920 .01000 .0660 .075$ $2.0 \quad 0.070 .0150 .34020 .0140 .190 \quad 0.0100 \quad 0.042 \quad 0.031$ $1.00 .070 .0150 .3472 \quad 0.0090 .1190 .0100 \quad 0.020 \quad 0.030$ 0.00 .070 .0190 .34020 .0380 .4300 .00500 .0750 .075 $6.00 .070 .0150 .34020 .0310 .3680 .0 .330 \quad 0.0750 .075$ 0.00 .070 .0250 .34020 .0230 .2920 .00500 .0660 .075
 1.00 .070 .0150 .34220 .0090 .1190 .0 .300 .0260 .03 .7

8580
ล̊．
$\sum_{9}^{5} \dot{5}_{8}^{0}$

enter intur		V UPJuap	．JWN	OEPTH	EMFRGY	ENERGV	En＝85\％
$\begin{gathered} \text { ENE } R \text { CY } \\ \text { N. } \end{gathered}$	F $¢$ N	DEPIM	dtPit	Change	UP JLMP	DOWm	Cnambi
	N ．	H．	4 ．	N 。	N ．	－ $\mathrm{H}_{\text {。 }}$	4.
		JUAP DRUM	Mines at	Leo all	TES 8	PIPE EN	PRV。
		JUMP UROW	WNED at	Leo ar	TESt	PIPE En	ア9\％。
		SUMP \triangle APOS	OSSIOLE	As MNC	SHC IN	TEST PIP	
		SUMP \triangle APOS	ass 18 Lt	AS HM	SHC IN	IEST PIP	PE．
		JUMP \MPU	U）S10．E	As HNC	CHC IN	TCSI PIP	PE．
		SUMP UROW	Mneg at	LeO ar	TEST	PIPE EN	『ッ\％
		JUAP URUNAL	Wnis at	Loo al	TEST	PIPE En	アPV。

GMTRY
UEP？
M．
HN
N．
N．
HC
H.
 $520^{\circ} 0$
0.075
6.00 .070 .0150 .4590 .0210 .7330 .02500 .0750 .075
．0．0 0．07 0．015 0．965 $0.0160 .5710 .0!500.0660 .062$
$2.00 .070 .0150 .96540 .0100 .3600 .0<500.0420 .036$ 1.00 .070 .0150 .46590 .0060 .2210 .02500 .0260 .022 9.00 .070 .0150 .96590 .0260 .8690 .01250 .0750 .075 $6.00 .070 .0150 .46590 .0210 .7330 .0125 \quad 4.0750 .075$ $\begin{array}{llllllllll}4.0 & 0.07 & 0.015 & 0.9654 & 0.016 & 0.571 & 0.0125 & 0.006 & 0.075\end{array}$ FULL UJKE FLUW ESJABLISHFU IM BEST PIPE。

TEST PIPE UATA AMO PRJORAM RESULTS.
$304 P$
$3 J 5$.

JUMP URONNED AT L=O AI TEST PIPE ENTRY.
JUAP URUANEO AT L-O AT TEST PIPE ENTRY.

$\rightarrow C^{\circ} \mathrm{T} 622^{\circ} 0$
2.4740 .91
$0.23<.121$ 0.017 U.331 0.023 0.030 0.049 -0.003 0.909 0.37 $1.00 .070 .0191 .00900 .0360 .2260 .03300 .026 \quad 0.0310 .005$
0.075
 $4.00 .070 .0851 .0000 \quad 0.0100 .9840 .02300 .0660 .062$ $2.00 .07 \quad 0.0151 .00000 .010 \quad 0.3680 .0<90 \quad 0.0420 .036$ $220^{\circ} 0 \quad 920^{\circ} 0 \quad 0 \leq 20^{\circ} 0 \geqslant 22^{\circ} 0 \quad 900^{\circ} 0 \quad 0000^{\circ} \mathrm{I}$ S $10^{\circ} 0<10^{\circ} 00^{\circ} 1$ $\$.00 .070 .0191 .0070 \quad 0.026 \quad 0.890 \quad 0.01250 .0750 .075$ $6.00 .070 .0151 .0000 \quad 0.0210 .7500 .0125$ 4.075 9.075 $4.00 .07 \quad 0.0151 .0020 \quad 0.0160 .9840 .01250 .0660 .075$ $2.00 .070 .0151 .0000 \quad 0.0100 .3640 .01250 .0420 .047$ 1.00 .070 .0151 .00000 .0060 .2260 .01250 .0260 .028 $0.00 .07 \quad 0.025 \quad 1.0000 \quad 0.026 \quad 0.8900 .0100 \quad 0.075 \quad 0.075$
$6.00 .070 .0251 .0000 \quad 0.0210 .7500 .01000 .0750 .075$
$4.00 .070 .0151 .0000 \quad 0.0160 .5840 .01000 .0660 .075$
 0.013 0
0
0
0
0 0.075
0.00 .070 .0191 .00000 .0210 .7900 .00500 .0750 .075
$4.00 .070 .0191 .0000 \quad 0.0160 .5840 .00500 .0660 .075$ 2.00 .070 .0151 .09700 .0100 .3680 .0050 U.042 0.068 $8.00 .070 .0151 .0000 \quad 0.0260 .890 \quad 0.0350 \quad 0.075$ $\begin{array}{lllllllll}8.0 & 0.07 & 0.015 & 1.0000 & 0.026 & 0.890 & 0.0550 & 0.075\end{array}$ 1.00 .070 .015 2.00 .070 .015

[^1]| COMAOM | | data | APPROACH | PIPE | OATA | | | | TEST PIPE DAIA ANO PRJGRAM RESULIS． | | | | | | | | | | SUMP |
| :---: |
| J． | O！A． | NANN． | SLUPE | HN | TEKM． | SLOPE | HC | HN | ENTRY | ENTKY E | ENTRY | UP JUAP | JJWN | DEP TH | ENPRGY | EHERGY | ENFPGY | JUnP | |
| L／S | N． | COEFF | （SIN） | H． | ENERGY N． | （SIN） | H． | H． | OEPTH M. | $\begin{aligned} & \text { ENEKGY } \\ & \text { M. } \end{aligned}$ | $\begin{gathered} \text { F•M } \\ \text { N. } \end{gathered}$ | UEPTA H． | $\begin{gathered} \text { UEPIN } \\ \text { H. } \end{gathered}$ | Change M． | UP JUMP | DUWN M． | CMANG: | f \uparrow ． N． | $\begin{aligned} & \text { Ps. } \\ & 4 . \end{aligned}$ |
| 0.0 | 0.10 | 0.015 | O．Un） | 0.052 | 0.172 | 0.0250 | 0.087 | 0.078 | | | | MP IMPO | D）SIBLE | AS HNC | HC INTE | EST PIP | PE | | |
| 0.0 | 0.10 | 0.015 | 0.0698 | 0.042 | 0.145 | 0.0250 | 0.072 | 0.062 | | | | MP IMPU | U）SIOLE | AS HN | SHC IN JES | EST PIP | PE． | | |
| －． 0 | 0.10 | 0.015 | 0.0698 | 0.032 | 0.114 | 0.0250 | 0.055 | 0.046 | | | | UMP 1 MPO | O）SIALE | AS HM | HC IN TES | ESTPIP | E． | | |
| 2.0 | 0.10 | 0.015 | 0.069 d | 0.019 | 0.073 | $0.0<50$ | 0.034 | 0.028 | | | | UnP InPO | OSSIBLE | AS HNS | CHC IN TE | ESt PIP | PE． | | |
| 1.0 | 0.10 | 0.015 | 0.0098 | 0.012 | 0.046 | $0.0<30$ | 0.022 | 0.017 | | | | UMP IMPO | JSSI日le | AS HN | HC IN TES | EST PIP | PE． | | |
| 0.0 | 0.10 | 0.015 | 0.0898 | 0.052 | 0.172 | 0.0125 | 0.087 | 0.100 | | | | UL HOKE | FLOH | ESTABLI | SMED IN | IEST P | PIPE． | | |
| 0.0 | 0.10 | 0.015 | 0.0698 | 0.042 | 0.145 | 0.0125 | 0.072 | 0.081 | 0.036 | 0.181 | 10.747 | 0.063 | 0.081 | 0.019 | 0.109 | U． 109 | －0．005 | 7.875 | 1．528 |
| 4.0 | 0． 10 | 0.015 | O．OnJ | 0.012 | 0.114 | 0.0125 | 0.055 | 0.059 | 0.027 | 0.14 | 6.324 | 0.050 | U．05＊ | 0.009 | 0.083 | 0.083 | －0．00u | 4．425 | 10529 |
| 2.0 | 0.10 | 0.015 | 0.0690 | 0.019 | 0.073 | 0.0125 | 0.034 | 0.036 | 0.018 | 0.09 | 2．531 | 0.033 | 0.010 | 0.002 | 0.052 | 0.032 | －0．006 | 1.345 | 1．23j |
| 1.0 | 0.10 | 0.015 | 0.03810 | 0.012 | 0.046 | 0.0125 | 0.022 | 0.022 | 0.011 | 0.06 | 1．004 | 0.022 | U． 022 | 0.000 | 0.033 | 0.033 | －0．005 | 0.692 | 0．33） |
| 3.0 | 0.10 | 0.015 | 0.0304 | 0.052 | 0.172 | 0.0100 | 0.087 | 0.100 | | | | ULL ORE | FLON | ESTABL | MED IN | TESI P | PIPE． | | |
| 6.0 | 0.10 | 0.015 | 0.0610 | 0.042 | 0.145 | 0.0100 | 0.072 | 0.089 | 0.030 | 0.181 | 10.747 | 0.057 | U．08＊ | 0.031 | 0.114 | 0.112 | －0．002 | 7.439 | 1．263 |
| 4.0 | 0.10 | 0.015 | 0.0648 | 0.032 | 0.114 | 0.0100 | 0.055 | 0.065 | 0.027 | 0.14 | 6.324 | 0.646 | U．363 | 0.019 | 0.085 | 0.084 | －0．001 | 4.526 | 1.236 |
| 2.0 | 0.10 | 0.015 | 0.0698 | 0.019 | 0.073 | 0.0100 | 0.034 | 0.039 | 0.017 | 0.09 | 2.533 | 0.031 | v． 039 | 0．008 | 0.052 | 0.052 | －0．000 | 1.766 | 0.944 |
| 1.0 | 0.10 | 0.015 | 0.0698 | 0.012 | 0.046 | 0.0100 | 0.022 | 0.024 | 0.011 | 0.06 | 1．004 | 0.020 | J．024 | 0.004 | 0.033 | 0.033 | －0．000 | 0.697 | 0．630 |
| 0.0 | 0.10 | 0.015 | 0.0698 | 0.052 | 0.172 | 0.0050 | 0.087 | 0.100 | | | | UL GORE | F FLOn | ESTABLI | SHED IN | TEST P | PIPE． | | |
| 6.0 | 0.10 | 0.015 | 0.0695 | 0.042 | 0.145 | 0.0050 | 0.072 | 0.100 | | | | LL BORE | F゙LON | ESTABLI | SHE 3 IN | IESTP | PIpt． | | |
| 4.0 | 0.10 | 0.015 | 0.0648 | 0.032 | 0.114 | 0.0050 | 0.053 | 0.085 | 0.027 | 0.14 | 6.324 | 0.033 | U．O甘S | 0.052 | 0.109 | 0.096 | －0．013 | 5.427 | 6.393 |
| 2.0 | 0.10 | 0.015 | 0.0698 | 0.019 | 0.073 | 0.0050 | 0.034 | 0.050 | 0.017 | 0.09 | 2．533 | 0.023 | v．050 | 0.027 | 0.062 | 0.056 | －0．004 | 2.015 | 0.412 |
| 1.0 | 0.10 | 0.015 | 0.0078 | 0.012 | 0.046 | 0.0050 | 0.022 | 0.030 | 0.011 | 0．0n | 1.004 | 0.015 | U．03u | 0.013 | 0.038 | 0.036 | －0．002 | 0.775 | 6． 305 |

JUMP $\stackrel{5}{5}$

2．
ie

SLOPE
（SSN）
COMMON DAPA APPKJACI PIPE CATA
TEKM．
ENEKCY
졸

に
に
に
に
J．DIA．MASAN．
L／S Mo COEFF
8.00 .100 .015
7.0754 .358
$0.043-0.0064 .4251 .835$ 1.7451 .317
0.692 2．431
0.692 20．751
$0.109=0.005$ 0.2111 .6140 .061 V．081 0.0140 .109 0.160 .8410 .050 U．05 0.0090 .083 $0.002 \quad 0.052$
$0.000 \quad 0.033$ $0.102 .7310 .034 \quad 0.036$ 0.061 .0740 .0220 .022 rovi 3yop 7 gny APOORLSO O AT 0° IITI $2^{\circ} O$ 0.2111 .6140 .057 v．084 $0.166 .8410 .046 \quad 0.065$
$0.102 .7330 .631 \quad 10.039$ $\begin{array}{llll}0.102 .733 & 0.631 & 1.039 \\ 0.06 \quad 1.079 & 0.020 \quad 0.024\end{array}$ 0.032 0.024 0.015 0.010 $001^{\circ} 0<80^{\circ} n 0010^{\circ} 0-902^{\circ} \mathrm{G}$ 6日月 0 R2C 0 0070ン0 921 n 0.100
$6.00 .10 \quad 0.0150 .10450 .0360 .1750 .00500 .0720 .100$ $40.0 .10 \quad 0.0150 .10450 .0270 .1370 .04500 .0550 .085$ 2.00 .100 .0150 .10450 .0170 .0870 .0050 0．034 0.050 0．015
 $1.00 .100 .0150 .10450 .0110 .0540 .0050 \quad 0.0220 .0300 .020$
JUNP
POS.
n.
2
$5:$

${ }_{2}^{2}$
JUMP IMPOSSIBLE AS HNSHC IN TESI PIPE.
JUMP IMPOSSIBLE AS HNSHC IN TEST PIPE.
JUMP IAPO,SIBLE AS HNCHC IN IESI PIPE.
JUMP IMPOSSBBLE AS HNSHC IN TEST PIPE.
FULL GORE FLON ESTABLISHEU IN TEST PIPE.
0.2613 .1110 .063 U.081 $0.0190 .1090 .109-6.000 \quad 7.073$ <.1s0
0.20 .7 .0940 .050 v.05 0.004 0.043 0.083-0.0464.425 1.730
$0.133 .0640 .034 \quad 0.030 \quad 0.002 \quad 0.052 \quad 0.052-0.000 \quad 1.745 \quad 1.033$
0.6920 .785
7.439 1. 787
4.5261 .620
$1.760 \quad 1.178$
0.0970 .783
 0 0 o
变安 0.00 .100 .0150 .17360 .0100 .2290 .01250 .0720 .081 0.00 .100 .0150 .17360 .030 C. 2290.01250 .0720 .0810 .020
-
$0.001 .2040 .022 \quad 0.0220 .000 \quad 0.033 \quad 0.033-0.000$ TEST PIPE.
$0.112-0.002$
$0.084-0.001$
2
0
0
0
\tilde{i}
$\tilde{0}$
0
0 0.2611 .1140 .058 v.084 0.0330 .114
0.0190 .085
0.00 0.032
0.0040 .033
$0.033-0.000$
FULL BORE FLON ESTABLISHEO IM TEST PIPE.
FULL GOKE FLOW ESTABLISMED IM IESI PIPE. 0
0
0
0
0
0
0
\vdots
0
\vdots
\vdots
0
0
$0.133 .0040 .031 \quad 1.034$
$0.041 .2040 .020 \quad 0.024$
 0.2611 .1110 .058 v.084
$0.208 .694 .0 .040 \quad 0.065$
\qquad -

EMrKY EMRRY UP
家
sUMP INPODSIGLE AS HNCHC IM PEST PIPE．
－idid 153』 wl jhinh sq juplscodmi dunt
－
 －カ

U
088
0.02
.46

 $110^{\circ} 0 \quad 220^{\circ} 0 \quad \sigma 520^{\circ} 0 \quad 001^{\circ} 0<200^{\circ} 0 \quad 204 E^{\circ} 0 \quad 510^{\circ} 0 \quad 07^{\circ} 0 \quad 0^{\circ} 1$

 SUAP IAPUSSIULE AS HNCHC IN PEST PIPE

 $0.109-0.005$ 0.3615 .7900 .0630 .0810 .0190 .109
$0.0230 .3615 .7900 .003 \mathrm{J.041} 0.0190 .109 \quad 0.109-0.00 \% 7.0752 .550$ 0.023 0.00 .100 .0150 .34920 .0100 .2630 .01250 .0550 .0540 .313 2．1） $0.10 \quad 0.0850 .34020 .0120 .1640 .01250 .0340 .0360 .081$ 1.00 .100 .0150 .341220 .0070 .1090 .01250 .0220 .0220 .007 $8.00 .10 \quad 0.0150 .3402 \quad 0.0290 .408 \quad 0.0100 \quad 0.0870 .100$ $8.00 .10 \quad 0.0150 .34020 .0290 .408 \quad 0.0100 \quad 0.087 \quad 0.100$ SLODE
SSDD
APPMORET PIPE DA PA

$904^{\circ} \mathrm{O}$	$670^{\circ} 0$	20tE ${ }^{\circ}$	$510^{\circ} 0$	$01{ }^{\circ} 0$	$0^{\circ} \mathrm{P}$
－					
AJ\％IN3	－${ }^{\text {w }}$	（N8S）	すねコつつ	－${ }^{\text {H }}$	\＄17
－セu31	NH	まd07s	－NNVW	－ 110	－r

 FULR GJRE FLOA ESTABLISMED IM TEST PIPE． $100^{\circ} 00-211^{\circ} 0$ \＆T10 EEON
$7.439 \quad 2.135$
4.3261 .712
1.7531 .385
0.697
TULL GJRE FLON ESTABLISMEO IN TESTPIPミ。

 $110^{\circ} n 590^{\circ} 0$ 0.039 0．0ill 0.10240 .037 0.100
5.00 .100 .0150 .34920 .0240 .3420 .00500 .0120 .100
 $2.0 \quad 0.100 .015 \quad 0.3472 \quad 0.012 \quad 0.1640 .0150 \quad 0.0340 .050 \quad 0.018$ 1.00 .100 .0150 .34220 .007 v．1C0 0．0J30 0．022 0．010 0．307

		－3d	1531 N		517	78v153	M07t 3	3＊08 7า	nf			$001{ }^{\circ} 0$	$280^{\circ} 0$	S $710^{\circ} 0$	$125^{\circ} 0$	$920^{\circ} 0$	$0005^{\circ} 0$	$510^{\circ} 0$	$01^{\circ} 0$	$0 \cdot 8$
			did 1531	NI J	H）	NH \＄V	37pis＇0	Odwl dw				く19＊0	$270^{\circ} 0$	0¢2000	¢2100	$200^{\circ} 0$	$0005^{\circ} 0$	¢ $10^{\circ} 0$	$01^{\circ} 0$	$0{ }^{\circ} 1$
			11d 1531	N1 J	H）N	NH SV	37815 0	dWI dW				$920^{\circ} 0$	$4 \mathrm{CO}^{\circ} \mathrm{O}$	$0520^{\circ} \mathrm{O}$	－02＊0	$010^{\circ} 0$	$0005^{\circ} 0$	$510^{\circ} 0$	$01^{\circ} 0$	$0 \cdot 2$
			did 1571	N1 3	$4) \mathrm{N}$	NH $¢ V$	3761く00	Odul dw				$940^{\circ} 0$	S $50^{\circ} 0$	$0520^{\circ} 0$	CとE＊	$910^{\circ} 0$	$0005^{\circ} 0$	$510^{\circ} 0$	$07^{\circ} 0$	0°
			d1d 1531	N1 \boldsymbol{J}	H）N	NH SV	37essen	OdHI dW				$290^{\circ} 0$	$210^{\circ} 0$	05 $20^{\circ} 0$	－¢ ¢ ${ }^{\circ}$	12000	000 ${ }^{\circ} 0$	$510^{\circ} \mathrm{O}$	01＊0	$0^{\circ} 9$
			118531	NI J		NH SV	37P！くく！	1dul dw				$00^{\circ} 0$	$\angle P O^{\circ} O$	$0 ¢ 70^{\circ} 0$	$125^{\circ} 0$	$920{ }^{\circ} 0$	0cos ${ }^{\circ}$	$510^{\circ} 0$	$01{ }^{\circ} 0$	$0^{\circ} 0$
－	－${ }^{\text {N }}$	－	－W	－${ }^{\text {u }}$		－${ }^{\text {W }}$	－	－H	－ N	－\quad	－${ }^{\text {r }}$				－W					
－！¢ d	－4．s	プめッムコ	Nann	dunt on		？${ }^{\text {PNVHJ }}$	Hidar	midje	W－1	A9Y3N 3	＋1d7	－W	－${ }^{\text {H }}$	（A）S	Aכy 3	－W	（N）S	11303	－${ }^{\text {H }}$	317
－bry	dunf	1914W3	А9×3＊3	A5 \％3n		H1＋ 70	nror	duntan	AHINJ	AMSN？	ArJa3	NH	31	3.075	－wyl	NH	3d07s	－nNra	－${ }^{\text {co}}$	－ 0
					17%	C．53v mv	vrgcrad	CWV V1	V¢ 3 di	\＆1531					V1V0	3dld	HJVCyddr	180	NOWM	

$4 \cdot 0$	0.10	U． 015	0.3050	0.026	0.333	0.0125	0.053	$0.0>9$	U． 316	0.351	16.337	0.050	1．0s）	0.004	0.083	0.063	－0．062	4.425	2.370
2.0	0.10	0.015	0.5000	0.010	0.206	0.0125	0.034	0.036	0.010	0.22	4.071	0.434	3.036	0.002	0.032	0.052	-0.006	1.745	1．73s
1.0	0.10	0.015	0.5009	0.007	0.125	0.0125	0.022	0.022	U．00b	0.13	1.506	0.022	0.022	0.000	0.033	0.03	-0.002	0.692	1．163
3.0	0.10	0.015	0.5000	0．026	0.321	0.0200	0.087	0.100				L OURE	F：OH	ESIABL	MEJ IN	TES 1	PIP：。		
－． 0	0.10	0.015	0.5000	0.021	0.434	0.0100	0.072	0.089	0.021	0.45	7．715	0.057	U．O04	U．033	0.114	0.112	－0．062	7．939	$2 \cdot 381$
4.0	0.10	0.015	0.5000	0.016	0.333	0.0100	0.035	0．063	0.016	0.35	U．337	0.446	J．065	0.019	0.065	0.044	－0．COL	$4 \cdot 326$	2．0i）
$2 \cdot 0$	0.10	0.015	0.30011	0.010	0.206	0.0100	0.034	0.039	0.015	0.22	4.071	0.031	3．931	NOOOH	0.052	$0.0>2$	－0．000	1.766	1．158
1.0	0.10	2.015	0.5000	0.007	0.125	0.0100	U． 022	0.024	0.056	0.13	1.546	0.020	0.324	0.004	0.033	0.033	－U． 003	0.697	0.762
d． 0	0.10	0.015	0.5030	0.026	0.521	0.0030	0.007	0.100	－		F	L GOKE	FLJd	ESIABL	HEJ IN	TES	IPE．		
0.0	0.10	0.015	0.5000	0.021	0.434	$0.00 ゝ 0$	U． 072	0.100			F	L BJME	FLON	ESJABL	HE O IM	IEST	PIPE。		
4.0	0.10	0.015	0.3070	0.016	0.333	0.0330	0.055	0.085	0.016	0.351	10.131	0.013	1．08）	0.052	0.109	0．09b	－4．013	5.427	1.232
2.0	0.10	0.015	0.9090	0.020	0.200	0．0330	U．034	0.050	J． 012	0.22	4.071	$0 . \cup<1$	コロJちu	0.027	0.062	0.058	－6．064	2.415	2.721
1． 0	0.10	0.015	0.3070	0.007	0.125	0．UJ50	6.022	0.010	U．U06	0.13	1．500	0.613	10031	0．013	0.038	0.031	－0．002	0.775	U．336

，

$$
\operatorname{cect}^{\circ} \text {. }
$$

GOMAJN DATA APPRDACT PIPF DATA
test pipe data and prigeam zesu．is．

ッ。

$$
0.4311 .4710 .0500 .0510 .009 \quad \text { C.043 } 0.043-0.0039 .4252 .524
$$

$$
0.26405040 .0340 .0330 .302 \quad 0.0520 .032-6.000 \quad 1.7451 .311
$$

$$
0.16 \text { 1.744 0.028. } 0.022 \quad 0.000 \quad 0.033 \quad 0.033-0.00 ; 0.0921 .108
$$

FULL GJKE FLOA ESJABLISMEJ IM TESJ PIPE: FULL HORE F：ON ESTABLISMED IN TEST PIPE． 6.0270 .062

$$
\begin{aligned}
& \text { TESY PIPE. } \\
& \text { TEST PIPE. }
\end{aligned}
$$

$$
\begin{aligned}
& 0.109-0.00 j \\
& 0.003-0.002
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{0} \\
& 0 \\
& \dot{0} \\
& 0 \\
& 0 \\
& \dot{0} \\
& \dot{0} \\
& 0
\end{aligned}
$$

[^2] $0.096-0.011$ $0.056-0.064$ 0.0520 .109 EVYRY
ytPr4
z． 0.07 H 0.002 0.046 0 0.08 m $0.01 r$

0.0	0.10	0.015	0.7070	0.023	0.651	0.0185	9.087	0.100
0.0	0.10	0.013	0.7070	0.019	0.541	0.0125	0.072	C．081
－．0	0.10	0.015	C． 7070	0.014	0.412	0.0225	0.053	0.059
2.0	0.10	0.013	707	0.009	0.254	0.042	0.034	.036
4.0	0.10	0.015	0.7070	0.006	0.153	0.0125	0.022	0.022
0.0	0.10	0.015	0.8070	0.023	0.651	0.0100	U．047	0.100
6.0	0.10	0.015	0.7070	0.019	0.541	0.0100	0.072	0.089
9.0	0.10	0						

9.00 .100 .0150 .70700 .0140 .4120 .01000 .055
\qquad

$$
0.112-0.002
$$

Ei
SLOPE
（SIV）
HN ILRM．
H．CNEKCY
 0.088
N
0
0
0
0
n
\tilde{n}
$\dot{0}$
$\dot{0}$
$0.0250 \quad 0.034$
0.0250
0.081 U． 014 0.007
U． 30 b

$$
452^{\circ}
$$

，
0.023

$$
0.0490 .541
$$

$90^{\circ} 0$

$$
0.02 \%
$$

0.05

$$
0.264 .5040 .0310 .0300 .0060 .052 \quad 6.032-0.0051 .7361 .501
$$

$$
220^{\circ} 0 \quad 0 \varsigma 70^{\circ} 0
$$

0.4311 .4710 .033 J．10）
0.264 .5040 .023 v．3．J
$2.0 \quad 0.10 \quad 0.0130 .7070 \quad 0.0090 .2540 .0100 \quad 0.0340 .039$

$$
\text { n.16 1.749 0.013 J.j3J 0.015 0.038 } 0.036-0.0 .04 \quad 0.775 \text { G.363 }
$$

\qquad $\therefore \backsim \quad$ ：

$$
\begin{aligned}
& \text { JUMP INHUSSIHLE AS MNKMC IN TEST PIPE } \\
& \text { - } 3 d 1 d 1538 \text { Ni Jh>NH SV 37alscodmy dmar } \\
& \text {-3did } 1531 \text { NI JH2NH } 5 \mathrm{CV} 37815 \mathrm{COdFl} \text { didn }
\end{aligned}
$$

0.6320 .990	0.063	0.091	0.019	0.109	0.109	－0．000	8.675	3．28j
0.9812 .200	$0 . \cup \geqslant 0$	U．03）	0.009	0.083	0.083	－0．0c0	4．425	2．33）
0.304 .804	0.034	U． 036	0.002	0.052	0.052	－0．002	1.745	1.932
0．1H 1．054	0.022	0.022	0.000	0.033	0.033	－0．003	0.692	1．21）
ESTARLISMFD IN IEST								
0.6320 .996	0.057	U．08＊	0.033	0.114	0.112	－0．002	7.439	$2 \cdot 342$
$0.451<.200$	0.046	U．363	0.017	0.085	0.084	－0．c01	4.326	2.259
0.30 －． 784	0.031	2．03）	0.003	0.052	0.052	－0．000	1.760	1.581
0.181 .854	0.020	U．024	0.004	0.033	0.033	－0．006	0.697	1．31）
FULL dORE FLUN ESTABLISMEU IN TEST PIPĖ．								
FULL GJRE FLON ESTAOLISHED IN TEST PIPE．								
$0.4 月 12.204$	0.033	J．002	0.052	0.109	0.046	－0．013	5.427	1．02）
3.30 －． 704	0.023	コ．115	0.028	0.262	U．050	－0．004	$2 \cdot 415$	1．330
J．14 i．854	0．01s	」．）3」	6.015	0．038	0.016	－0．102	0.775	U．36）

I安
TEAMA SLONE
ENEKCY PSIV） ${ }_{z}^{x}$
포̇́́․
完
这首
OlA．
－へ
$0.00 .100 .0150 .86600 .0210 .7430 .0250 \quad 0.0870 .678$
$6.0 \quad 0.10 \quad 0.0150 .8$ 亿b $0.0180 .6150 .0<50 \quad$ U．072 0.062
40.100 .0150 .86500 .0130 .4 Ce 0.02500 .0550 .046
$2.0 \quad 0.10 \quad 0.0150 .8660 \quad 0.009 \quad 0.2870 .0250 \quad 0.0340 .028$
$1.00 .100 .0150 .6650 \quad 0.0060 .1720 .0250 \quad 0.0220 .017$
$d .00 .100 .0150 .8660 \quad 0.0210 .7430 .01250 .0870 .100$ 6.00 .100 .0150 .86600 .0100 .6150 .01250 .0720 .0810 .017 $4.0 \quad 0.100 .0150 .06600 .0130 .4680 .01250 .0550 .0590 .013$ 2.00 .100 .0150 .06600 .0090 .2870 .01250 .0340 .0360 .003 $1.00 .100 .0150 .86600 .0060 .1720 .01<50.0220 .0220 .005$ 1.00 .100 .0150 .0660 .0060 .1720 .01250 .0220 .0220 .002 8.00 .10 U． 0150.86600 .0210 .7430 .01000 .0870 .100
6.00 .100 .0150 .86600 .0180 .6150 .01000 .0720 .0890 .017 4.00 .100 .0150 .86600 .0130 .4680 .01000 .0550 .065 U．013 2.00 .100 .0150 .86600 .0090 .2870 .01000 .0340 .0390 .003 $1.0 \quad 0.100 .0150 .86300 .0060 .1720 .01000 .0220 .0240 .005$

$0.0 \quad 0.100 .0150 .4660 \quad 0.0210 .7430 .00500 .0870 .100$ $3.0 \quad 0.100 .0150 .86600 .0160 .0150 .00500 .0720 .100$ 4.00 .100 .0150 .86600 .0130 .4680 .00500 .0550 .0850 .313 | 2.00 .100 .0150 .8650 |
| :--- |
| 1.0 .009 |
| 1.0 .287 |

$$
\begin{gathered}
\text { dJns. } \\
\text { pJi。 } \\
\text { y: }
\end{gathered}
$$

$$
\frac{\sum_{0}}{2}
$$

$$
\dot{i} \dot{i}
$$

$$
7.6853 .378
$$

0.012 1．2．2

$$
\begin{aligned}
& 7.4392 .310 \\
& 4.92020972
\end{aligned}
$$

$$
4052620 ? 72
$$

$$
1.7661 .698
$$

$$
0.047 . .5
$$

$$
5.027 \text { b.0is }
$$

$$
2061510357
$$

HC
H_{0} 0.013 0.053 v．055 － 0.217 0.013 0.058 3.035 0.100
0.00 .190 .0150 .46590 .0170 .6610 .65500 .0720 .100 $9.00 .100 .0150 .96540 .0130 .5010 .0050 \quad 0.0550 .005$
 $\begin{array}{llllllll}2.0 & 0.100 .015 & 0.4554 & 0.008 & 0.307 & 0.05500 .034 & 0.0500 .00 s\end{array}$
 $4.0 \quad 0.10 \quad 0.0150 .96510 .0130 .501 \quad 0.0<90 \quad 0.0550 .046$ $0.0 \quad 0.10 \quad 0.015 \quad 0.4657 \quad 0.018 \quad 0.6610 .0250 \quad 0.0720 .062$
$\$.00 .10 \quad 0.0150 .43590 .0200 .7970 .01250 .0870 .100$
0.00 .100 .0150 .96590 .0170 .6610 .01250 .0720 .041
4.00 .100 .0150 .46590 .0130 .5010 .01250 .0550 .059 $2.0 \quad 0.10 \quad 0.0150 .96540 .008$ 0．307 $0.0125 \quad 0.0340 .0186$ $1.0 \quad 0.100 .0150 .96540 .0050 .2840 .01250 .0220 .022$ 0.0550 .005 0.0340 .639 0.0220 .024 0.088
TEST PIPE DATA AND PRSEAAM AESU:ISO

$$
\begin{aligned}
& \text { JUMP IAPUISIIULE AS HN\&HC \&N TEST PIPE. } \\
& \text { JUAP AMPOSSIOLE AS MNSMC IN TEST PIPE. }
\end{aligned}
$$

JUMP IAPUISIDLE AS HNEHC \&N TEST PIPE.

$$
\begin{aligned}
& \text { JUAP IMPOSSIOLE AS MNSHC IN TEST PIPE. } \\
& \text { JUMP IMPOSSIBLE AS HNSMC IN TEST PIPE. }
\end{aligned}
$$

SUMP IAPUSSIBLE AS WNSHC IN TEST PIPE.

$$
0.0421 .7300 .0610 .051 \quad 0.014 \quad 0.1090 .109-0.00
$$

$$
0.5112 .6200 .450 \text { J.054 } 0.0040 .083 \quad 0.003-0.0004 .0252 .520
$$

$$
0.324 .9410 .0340 .030 \quad 6.002 \quad 0.032 \quad 0.032-6.003108451 .383
$$

FULL UJKE FLON ESJABLISMFD IN TEST DIOE. $001^{\circ} 0 \quad \angle 80^{\circ} \mathrm{C} 0010^{\circ} 0 \angle 62^{\circ} 0 \quad 020^{\circ} 0 \quad 6545^{\circ} 0 \quad 510^{\circ} 0 \quad 01^{\circ} 0 \quad 0^{\circ} g$

00
0.0100 FULL $\triangle O N F$ FLUS ESTAB－ISHED IN TESI PIPE． $700^{\circ} 0=277^{\circ} 0$ $0.084-0.001$ $0.052-0.002$ 0.0330 .114 0.0240 .085 0.0080 .052 0.5112 .6200 .0461 .005 0.324 .9430 .031 J．034

- Jdga IST\& NI JH>NH SV zרpISCOdul dwar
-adBd ISJINI JWSNH ©V ? TeJssodwi dwar 6.00 .100 .0150 .46540 .0170 .6610 .01000 .0720 .089
OOWN.
FULL BURE FLON ESTABLISMEO IN TEST PIPE.
$2.0 \quad 0.10 \quad 0.0150 .4650 \quad 0.0080 .3070 .0250 \quad 0.0340 .028$ $170^{\circ} 0 \quad 220^{\circ} 0 \quad 0520^{\circ} 0+9 \pi^{\circ} 0 \quad 500^{\circ} 0 \quad 6596^{\circ} 0 \quad 510^{\circ} 001^{\circ} 00^{\circ} 7$
 0010 0 0.0050 105 ${ }^{\circ}$ ． 307 0.184 0.104 0.79
 J． 324.9430 .023 J．051

－Dia mamn． D．DIA．MAMN．SLUDE
LSS M．COEFF RSINI .465 0.465

$$
\begin{aligned}
& \text { EvTAV } \\
& \text { OSPY }
\end{aligned}
$$

$$
0.017
$$

$$
0.191 .915 \quad 0.0200 .0 \geq 4 \quad 0.004 \quad 0.033 \quad 0.033-0.00 j .0 .497 \text { 1.02? }
$$

FULL BURE FLON ESTABLISMEO IM TEST PIPE.

$$
\begin{array}{lll}
0.109 & 0.046 & -0.013 \\
0.062 & 0.050 & -0.004
\end{array}
$$

I-

$$
0.027
$$

ค.

$$
\begin{aligned}
& \text { Enz A i Y } \\
& \text { CHANCE }
\end{aligned}
$$

\qquad

$$
0.141 .91, \text { v.01, v.33u } 0.0150 .0380 .036-6.0620 .8750 .312
$$

5
5
5
管
 CHANF ENERGY ENERGY DOWN
URERGY UP JUGP JUNN DEFIH
OEPTH JEPTH CHANGE

 ENTRY ENTRY ENTRY ENTRY ENTKY ENTRY
OEPT ENEKGY FOM \qquad
z

TEKHO SLOPE
$\stackrel{\pi}{5}$

zi

- ~
JUAP IMPOSSIBLE AS HNSHC IM TEST PIPF.
JUMP IMPUSSIDLE AS HNSHC IN TEST PIPE. SUAP INPODSBDLE AS HNEHC IN TEST PIPE. JUAP IAPOSSBDLE AS HNSHC IN TEST PIPE.
JUMP IMPOSSIGLE AS HNSHC IN TEST PIPE. SUMP IMPOSSIBLE AS HNSHC IN TEST PIPE.
 0.6921 .9740 .063 U.081 $0.0190 .109 \quad 0.109-0.000$ 0.5212 .7500 .050 u.05t 0.009 0.003 0.003-0.000 $0.002 \quad 0.052 \quad 0.052-0.060$ $0.191 .9340 .022 \quad 0.022 \quad 0.003 \quad 0.0330 .033-0.003$ FULL GORE FLON ESTABLISHED IN TEST PIPE。 $0.112-0.002$ $0.088-0.0 \mathrm{C} 1$ $0.052-0.000$ $0.033-0 . C 00$ TEST PIPE.
TEST PIPE.
$0.046-0.01$

 $0.018-4.0020 .7750 .684$

 0.191 .4340 .015 U.030 0.015 0.038 0.013 0.004 v.003 0.100
0.081 $20000210^{\circ} 0$
$\uparrow .00 .10 \quad 0.0151 .0000 \quad 0.0130 .5120 .02500 .0550 .046$
 1.00 .100 .0151 .00000 .0050 .1880 .02500 .0220 .017
 0.072 0.055 0.034 0.022 $0.022,0.022$.0470 .100 0.3921 .9790 .057 ग.001 $0.5212 .756 \cdot 0.046$ U.005 0.324 .9910 .0321 .037 $0.191 .9340 .020 \mathrm{J.024}$ 1 U.003
 $2.00 .10 \quad 0.015 \quad 1.0000 \quad 0.008 \quad 0.3130 .01250 .0340 .036$ 0.0000 .3130 .0125 0010
0010 0.015 4.00 .100 .0151 .00000 .0130 .5127 .01000 .0550 .0650 .013 2.00 .100 .0151 .00300 .0000 .3130 .01000 .0340 .0390 .003 0.005 .005 $1.00 .70 \quad 0.020 \quad 0.816 \quad 0.0$ د50 $0.087 \quad 0.100$ $008^{\circ} 0 \quad 210^{\circ} 0 \quad 0500^{\circ} 0 \quad 929^{\circ} 0<210^{\circ} 0 \quad 0 C L 0^{\circ} 1$ 0.013 2.00 .100 .0151 .00000 .0080 .3130 .03500 .0340 .050 V.008 $0.0050 .188 \quad 0.0050 \quad 0.022 \quad 0.030$.0000 1.0000 1.0000 1.00 .100 .015 d. 00.100 .015 6.00 .100 .015 $0.0 \quad 0.100 .015$ \qquad
s.0 0.100 .015 4.0 0. $100.0151 .0 .000 \quad 0.0130 .5120 .0050 \quad 0.055$
$\begin{array}{lllllllll}2.0 & 0.10 & 0.015 & 1.0000 & 0.008 & 0.313 & 0.0550 & 0.014\end{array}$

APPENDIX 6

JUMP LOCATION IN A 0.15 m WIDE RECTANGULAR CHANNEL, MANNING COEFFICIENT 0.015, AT SLOPES $1 / 60,1 / 80,1 / 100,1 / 200$

Hifk	EnJRy	UPJUMP	JJWd	DEPTH	EMEKGY	EMEmCl	EnEGG\％	dunp	2840
NERGY	For	OEPTH	JEPTH	chancé	UPJUMP	UOmm	Cmanct	$F \rightarrow M_{\text {a }}$	P3i．
H．	N 。	H．	由．	月．	\cdots 。	N。	ω 。	N 。	－
		MP IMP	－SlyLE	As HN	SHC 1 M	TESTPI	P		
		UMP IAP	OS 1 Ble	AS HN	CHC In	TESI PI	PE		
		UMP INP	S S136E	AS HN	SHC IN	TEST PR	PE．		
		UAP ImP	S S1BLE	AS NM	SHC IN	TEST PI	F．		
		UMP \triangle AP	SIBLE	AS HN	SHC IN	IESIPI	PE．		
0.15	12.93	30.066	2．06\％	0.000	0.049	0.099	－0．000	9.0070	2.518
		DHP IMP	dsi ble	AS WN	SHC IN	TEST PI	P。		
		UMP IAP	OSSBLE	AS HN	CHC IN	TESTPI	PE。		
		UnP IMP	S13L	AS HM	SHC IM	TESP PI	PE		
		UMP IMP	SSI日le	AS HN	SHC IM	TES 8 PI	PE．		
0.15	12.93	30.461	4.078	0.012	0．100	0.100	-0.002	9.746	1．008

$0.1512 .9330 .1561 \mathrm{u} 0.07 \mathrm{0.012} 0.100 \quad 0.10000 .0029 .7461 .008$
$0.082-0.0006 .020$ 1．028
$0.063-0.0033 .0962 .008$
$0.039=0.000 \quad 1.525^{\circ} 3.233$
$0.025-0.000 \quad 0.005 \quad 0.518$
$0.110-0.00718 .0370 .681$
$0.090-0.0237 .3740 .681$
$0.060-0.0434 .<120.590$
à
0
0
－
$\dot{8}$
$\dot{-}$
0
0
0
0
0
0
0
0
0
 0.0080 .042
$0.004 \quad 0.063$
o
$\stackrel{0}{0}$
$\dot{0}$
0.025
0.110
0.094 0.0260 .070
0.0150 .043
∞
0
0
0
0
0
0
0
0
 0.103 .1600 .0402 .044 0.062 .0450 .025 v．027 3
0
\vdots
0
0
\vdots
0
0
0
0
0
0
0
0 0.1512 .9330 .445 J．074 0.12 5．030 0．U34 J．076 0.10 3．160 0．0．00 1．050 0.03 2．045 0.020 J．014 0.045 .8080 .0121 .022 6.00 .150 .0150 .03490 .0380 .0950 .01000 .0580 .0500 .029 4.00 .150 .0150 .03470 .0280 .0730 .01000 .0420 .0440 .022 2.00 .150 .0150 .03490 .0180 .0460 .01000 .0200 .0280 .014 1.00 .150 .0150 .03490 .0120 .0290 .01000 .0170 .017 J．001 $8.00 .150 .0150 .03490 .0460 .1150 .0050 \quad 0.060 \quad 0.040 \quad 3.036$ 6.00 .150 .0150 .03490 .0380 .0950 .03500 .0590 .076 U．0？ 0 $4.00 .150 .0150 .034 \geqslant 0.0280 .0730 .00500 .0420 .0560 .522$ 2.00 .150 .0150 .01490 .0180 .0460 .02500 .0200 .0340 .016 1.00 .150 .0150 .03400 .0120 .0290 .00500 .0180 .0220 .031

I
$\pm \div$
SLIO
SIT1
APPOIACA PIPE CATA
TERN.
2
2
2
2 0.052
0.042 0.012 $2.0 \quad 0.150 .0150 .00 \%$ d $0.0240 .0580 .0230 \quad 0.0260 .020$ 1.00 .150 .0150 .067 H 0.0090 .0340 .02300 .0170 .013
 0.030 no123 0.01250 .0550 .034 $0.00 .15 \quad \mathrm{C} .015 \quad 0.0018 \quad 0.030 \quad 0.1230 .0125 \cdot 0.0550 .034$ 9.00 .150 .0150 .06780 .0230 .0940 .01250 .0420 .640 $2.0 \quad 0.150 .0250 .069$ 2 $0.014 \quad 0.0580 .01<50.0260 .025$ 1.00 .150 .0150 .06940 .0070 .0360 .01250 .0180 .016
 0.00 .150 .0150 .06980 .0360 .1480 .01000 .0600 .4120 .031 6.00 .150 .0150 .06980 .0300 .1230 .0 .000 .0550 .0580 .326 $4.00 .150 .0130 .06980 .0230 .0940 .0100 \quad 0.0420 .0440 .02)$ $2.00 .150 .0130 .064811 .0140 .0580 .0100 \quad 0.0260 .0270 .012$ $1.0 \quad 0.150 .0150 .06$ JA $0.0090 .0330 .0100 \quad 0.0170 .417$ U.031 $0.00 .150 .0150 .06980 .0360 .148 \quad 0.0350 \quad 0.046 \quad 0.074 \quad 1.031$ $0.0698 \quad 0.030 \quad 0.1230 .0350 \quad 1.0550 .486$ U.326 0.08 ひ.J2b 0.476
0.15 \%.740 0.usd J.1570 0.038 0.049
$0.090-0.0437 .3742 .75)$ $\begin{array}{lllllllll}0.115 .700 & 0.030 & 1.335 & 0.026 & 0.070 & 0.003 & -0.003 & 4.212 & 4.911\end{array}$ 4.00 .150 .0150 .06450 .0230 .0940 .0150 U.042 0.036 U.J3)
 1.00 .150 .0150 .06900 .0090 .0300 .03500 .0180 .022 U.309

퐁
JUMP IMPOZSISLE AS HNSHC IN TEST PIPE.
JUNP IMPOSSIALE AS HNEHC IN TEST PIPF.
SUMP IAPOASIBLE AS HNEHC IM TESV PIPE.
JUMP IAPOSSIBLE AS HNSHC IN TEST PIPE.

$$
0.001
$$

$$
290^{\circ} 0
$$

$$
\operatorname{seg}^{\circ} 2988^{\circ} 6900^{\circ} 0-008^{\circ} 0 \quad 008^{\circ} 0 \quad 780^{\circ} 0 \quad 310^{\circ} \mathrm{C} \quad 190^{\circ} 0 \quad 9 \angle 5^{\circ} 5818^{\circ} 0
$$

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { 0. } \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{array}{ll}
0 & 0 \\
0 & f \\
0 & 0 \\
0 & 0
\end{array}
$$

$$
\begin{array}{lllllllll}
4.0 & 0.15 & 0.015 & 0.1045 & 0.020 & 0.113 & 0.0250 & 0.042 & 0.032 \\
2.0 & 0.15 & 0.015 & 0.1045 & 0.013 & 0.069 & 0.0250 & 0.026 & 0.020
\end{array}
$$

$$
\begin{array}{lllllllll}
1.0 .15 & 0.019 & 0.1045 & 0.031 & 0.179 & 0.0100 & 0.066 & 0.072
\end{array}
$$

0.026
0.013 $0.136 .182 \quad 0.040 \mathrm{J.049}$ 0.09 2.424 0.025 U.027 3.05 2.944.0.016 1.318 0.021 0.052

$$
0.1810 .6300 .0513 .0500 .007
$$ 0.2115 .5700 .0453 .044 0.1710 .0300 .0303 .376 0.13 b.1dく U.UsU v.350 $0.09<.424 \quad 0.020 \quad 1.030$ 0.054

0.040
0.02 .5
0.016

$$
\begin{array}{lllllllll}
0.0 & 0.15 & 0.015 & 0.1045 & 0.026 & 0.140 & 0.0250 & 0.055 & 0.042 \\
.00 .15 & 0.015 & 0.1045 & 0.020 & 0.113 & 0.0250 & 0.042 & 0.032
\end{array}
$$

$$
4.00 .15 \quad 0.015 \quad 0.10450 .0200 .1130 .01250 .042
$$ 0.00 .250 .0150 .10450 .0260 .1480 .00500 .0550 .0760 .023 0.00 .150 .0150 .10450 .0200 .1130 .30500 .0420 .056 J.014

$$
0.068-0.0034 .<120.330
$$ - $20^{\circ} 0$

$$
2.00 .150 .0150 .10450 .0130 .0690 .01250 .026
$$ 0.023 0.013 2.00 .150 .0150 .10450 .0130 .0090 .01500 .0260 .034 j.011 $1.00 .150 .0150 .10450 .008 \quad 0.0420 .04500 .0180 .022 \quad 1.008$

$$
0.004
$$

$$
0.002
$$

$$
0.040
$$

$$
\begin{aligned}
& 0.025 \\
& 0.118
\end{aligned}
$$

$$
0.037 \quad 0.094
$$

$$
\begin{aligned}
& 0.343 \\
& C .027
\end{aligned}
$$

$$
0.082-0.0036 .0202 .232
$$

$$
0.063-0.0053 .046 \quad 1.793
$$

$$
0.039-0.005 \quad 1.325 \quad 1.1: 1
$$

$$
0.025-0.0030 .0050 .331
$$

$$
0.110-0.00781 .6371 .878
$$

$$
0.090-0.0058 .3741 .155
$$

$$
\begin{aligned}
& \dot{0} \\
& \vdots \\
& 0 \\
& \vdots \\
& \vdots \\
& \vdots \\
& \vdots \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$ N

0
0
0
\vdots
0
0
0
0
0
0
0
0
0
0
0 $\angle 90^{\circ} 0 \quad 990^{\circ} 0 \quad 5270^{\circ} 0 \quad 621^{\circ} 0$ IC $0^{\circ} 0 \quad 5601^{\circ} 0 \quad 510^{\circ} 051^{\circ} 00^{\circ} 8$

$$
540^{\circ} 05^{\circ} 210^{\circ} 0041^{\circ} 0
$$ $\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & n & 0 \\ \ddot{0} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \vdots \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sim & 0 & A \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ & n & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ & n & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sim & 0 & 0\end{array}$

合：
5
范 UUWN

SUNP IAPOSSIBLE AS HNSHC IM TEST PIPE．
－3dId 1531 NI JHフNH SV TCPISCOdWI dWNR

SUMP IAPO，SIBLE AS NHEHC IN TEST PIPE．

$0.002 \quad 0.002-0.0036 .220<.071$
$0.063 \quad 0.003-0.0053 .0161 .780$
1.525 1．23j
$0.029-0.0050 .0050 .731$
n
\vdots
\vdots
0
0
\vdots
\vdots
0
0
\vdots
\vdots
\vdots
\vdots
0

\vdots
\vdots
0
$-0.0057 .3701 .011$
 $\begin{array}{ll}20 & 0 \\ i & 0 \\ i & 0 \\ 0 & \sim \\ 0 & 0 \\ 0 & 0 \\ \vdots & 0 \\ 0 & 0 \\ 0 & 0 \\ i & 0 \\ \approx & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$ $0.2111 .98 y 0.051$ j．35s 0.007 $\stackrel{\circ}{0}$ 0.002
0.001 0.047
0．037
0.020
$\begin{array}{ll}n & 0 \\ 0 & 0 \\ 0 & 0\end{array}$
J． 16 6．94 0.040 N．244 0.102 .724 .0 .0201 .027
0.061 .0300 .010 U．017 0.2617 .58 c 0．045 J．0） 0
0.2111 .9740 .018 5．070 0.160 .9470 .0302 .030
$0.102 .71 \%$
0.0202 .330 2
0
i
2
3
0
2
0
\vdots
\vdots
i
i
4.025
ェ

$$
22
$$ $\begin{array}{lllllllllll}6.0 & 0.15 & 0.015 & 0.1736 & 0.022 & 0.193 & 0.0<50 & 0.059 & 0.042 \\ 4.0 & 0.15 & 0.015 & 0.1716 & 0.017 & 0.146 & 0.0250 & 0.042 & 0.032 \\ 2.0 & 0.15 & 0.015 & 0.1736 & 0.011 & 0.089 & 0.0250 & 0.020 & 0.020 \\ 1.0 & 0.25 & 0.013 & 0.1735 & 0.007 & 0.054 & 0.0250 & 0.017 & 0.013\end{array}$ 0.00 .150 .0150 .17360 .0260 .2340 .01250 .0630 .467 6.00 .150 .0150 .17360 .0220 .1930 .01250 .0550 .059 $4.0 \quad 0.150 .0150 .17100 .0170 .1460 .01250 .0420 .040$ $2.0 \quad 0.150 .015 \quad 0.17360 .0110 .0890 .01250 .020 \quad 0.025$ 1.00 .850 .0150 .17360 .0070 .0540 .01250 .0170 .016 0.00 .150 .0150 .17360 .0260 .2340 .01000 .0860 .0720 .025 0.00 .150 .0150 .17360 .0220 .1930 .21600 .0530 .0580 .021 $0.00 .150 .0150 .17160 .0170 .1460 .0100 \quad 0.0420 .0490 .016$ $2.00 .150 .0150 .17760 .0210 .0890 .0100 \quad 0.026 \quad 0.0270 .015$ 1.00 .150 .0150 .17160 .0070 .4540 .01000 .0170 .01710 .007 0.00 .250 .0150 .17360 .0260 .2340 .01500 .0660 .094 U．025 $3.00 .150 .0150 .17160 .0220 .1930 .0050 \quad 0.0550 .076 \quad 10.021$ 4.00 .150 .0150 .17160 .0170 .1460 .03500 .0420 .0560 .010 2.00 .150 .0150 .17300 .0110 .0890 .00500 .0260 .0340 .010 $1.00 .150 .0150 .17330 .0070 .0540 .03500 .01 \% 0.0220 .037$

COMAJM DATA APPMDACH PIPE DATA

Evid	ENTAP	Entuy	UPJUAP	JJinn	OEPTH	©MFKGV	ENERGV	FNOMCy	JUMP	1898
OEPTH	ENERGY	Y Fom	UEPVA	SLPTt	CMANGE	UPJUnP	OOWM	CHANE	Fon。	P13．
4.	\cdots ．	N。	n．	N。	N ．	M．	\ldots	4.	N．	

－ssarsmi wvescra CMV vivo ヨald 」S3i
Mn
Mo
0.052
0.042
－ H
jM
SRPMDACH PIPE DITA
HN TEKA．
M．ENLEGY

JUMP IAPOSSIBLE AS MMSHC IM REST PIPE．
－JdBd 1531 NI JHSNH SV 3THISCOdWI dWNS

JUMP IMPO，SIDLE AS HNCHC IN TEST PIPE．
SUMP IMPDASIBEE AS HNEHC IN TEST PIPE．
－3dId 1531 NI JHSNH SV 3T日ISSOdWI dHCR

$0.082-0.0036 .0202 .872$
$0.033-0.00 ;$ 30＇846 2．251
$0.143 .2250 .026 \quad 0.0280 .002 \quad 0.039 \quad 0.039-3.0031 .3251 .381$
$0.025-0.0050 .0050 .171$
$0.119-0.00711 .0371 .382$

$$
\text { - 3did } 1531 \text { wi Juswh sv zopIS Sndmi dwnir }
$$

$\begin{array}{ll}\text { D．ORA．MAMN．} \\ \text { L／S } & \text { H．CUFFF }\end{array}$

$$
4.00 .150 .0150 .3422 \quad 0.0140 .2120 .0290 \quad 0.0420 .012
$$

COKMON DATA APPROAGH PIPE DATA
\%

HANC FAn。
UEPIt ENENGY FON OEPIH JEPTH CHANGE UPSUNP DUNM : TE

JUAP IMPODSIA-E AS MNSHC IN TEST PIPE.
JUAP ITPOSSIULE AS HNSHC IM TEST PIPE.
JUMP IMPDSSIULE AS HNSHC IN TEST PIPE。
SUMP IMPUSSIdLE AS HNSHC IN IEST PIPE.

宽
䜌害 vumn MP No
JUAP IMPD，SId IEE AS HNEAC IN TEST PIPE．
－3did 1538 NI JHSNH SV 37alseodml dunt

 rest pipe data ani pajosam nesuliso
JJAN DEPIH ENENG

른
Hn
H． $25 n^{\circ} 0$
롳 n̂ 6.00 .150 .0150 .70700 .0140 .4390 .02500 .0550 .042 $4.0 \quad 0.150 .0150 .70700 .0110 .3270 .02500 .0420 .012$ $2.00 .150 .0150 .70800 .0070 .1950 .0<500.0200 .020$ 1.00 .150 .0150 .70700 .0050 .1150 .0250 0．018 0．413 0.00 .150 .0150 .70700 .0170 .3390 .01250 .0600 .067 6.00 .150 .0150 .70700 .0140 .4340 .01250 .0550 .054 4.00 .150 .0150 .74700 .0110 .3270 .01250 .0420 .040 $2.0 \quad 0.150 .0150 .7070 \quad 0.0070 .1950 .01250 .0260 .025$ 1.00 .150 .0150 .70700 .0050 .1150 .01250 .0180 .016 d．0 0.150 .0150 .70700 .0170 .5390 .01000 .0660 .072 SUMP IMPDOSIG－E AS HNSHC IN TEST PIPE．
sump Itposjajle as hashc in test plpe．
JUMP IAPJDSIBLE AS HNSAC IN TEST PIPE． sump bapjasible as hashe in test pipe．
 0.4517 .7410 .051 v．05s $0.007 \quad 0.082 \quad 0.002-0.0066 .6203 .33 j$ $0.3413 .2150 .0401 .0440 .0040 .003 \quad 0.063-4.0033 .0462 .0 ? ?$ $\stackrel{\stackrel{\circ}{0}}{\stackrel{0}{0}}$
$0.030-0.002 \quad 1.5251 .028$
$0.025-0.0030 .0050 .351$
$0.110-0.00711 .0372 .337$
$0.090-0.0057 .3742 .380$
$0.008-0.0034 .0121 .597$
$0.048-0.0011 .0450 .880$
 0.002
0.001 0.049
0.037
0.020
0.015
0.009 $180^{\circ} \mathrm{C} 920^{\circ} 0.056^{\circ} \mathrm{F} 02^{\circ} 0$
0.121 .5140 .0101 .317 0.5626 .2210 .0451 .380 0.4517 .7430 .03810 .070 0.3410 .215 U．0．30 0.030 0.201 .9500 .020 5．036 0.17 1．514 0.012 J．322 0.097 0.004 0.00 .150 .0150 .70700 .0170 .5390 .03500 .0660 .01440 .016 6.00 .150 .0150 .70700 .0140 .4390 .23500 .0550 .0760 .014 9.00 .150 .0150 .70700 .0110 .3270 .03500 .0420 .0560 .011 2.00 .150 .0150 .70700 .0070 .1950 .01500 .0260 .034 j． 007 $1.00 .150 .0150 .70700 .00 \leqslant 0.1150 .00500 .0170 .0270 .036$
TEST PIPE OAIA ANO PABEKAM MĖSJLTS.

JUNP IAPOSSIBLE AS HNCMC IMTEST PIPEO
sunp Impuosldae as hashic in test pipe.
sump thpossidle as merhc in test pipe.

- Jdid lS3a Ni JH>NH SV 37月1SCOdHI dWar
$0.6327 .8650 .0615 .0720 .0820 .1000 .100-0.000 .8463 .38$

i
i
i
0
i
i
$\dot{0}$
\vdots
\vdots
0
\vdots
$\dot{0}$
$\stackrel{i}{i}$

$0.110-0.00711 .0372 .023$

$0.070 \quad 0.008-0.0034 .2121 .501$
$0.042-0.0081 .0451 .330$
$0.026-0.001$ 0.652 U.571 $140^{\circ} 0$ 200.0 $\stackrel{8}{0}$
$\stackrel{0}{\circ}$
0.002
0.131 .6050 .0161 .3180 .008
0.041
0.088 0.5118 .8610 .051 1.053
 $3.234 .2800 .020-3.27$ 0.0327.863 0.045 8.070 0.5118 .8070 .0380 .970 $0.1910 . d 400.010$ J.350 0.083 2
0
0
0 0.056
1.00 .150 .0150 .86600 .0040 .1300 .31000 .0170 .0170 .094 0.00 .150 .0150 .86600 .0100 .0110 .01500 .0660 .048 J.015 $\$.0 \quad 0.150 .0150 .86600 .0130 .4980 .0350 \quad 0.0550 .0760 .318$ 4.00 .150 .0150 .46350 .0100 .3690 .04500 .0420 .0560 .012
$2.00 .150 .0150 .86600 .0070 .2200 .01<50.0200 .025$

 0.00 .150 .0150 .06000 .0160 .6110 .01000 .0600 .072
 0.067 0.054 0.040 0.042 0.4980 .31250 .053 $0.8660 \quad 0.010 \quad 0.3690 .0125$ 1.0 0.150 .0150 .85600 .0100 .6110 .01250 .066 0.013

立 \dot{x} SLOPE
lSIN) MANN.
COEFF $\stackrel{\circ}{\circ}$ \div

$0.6728 .820 \quad 0.461 \quad 0.382 \quad 0.012 \quad 0.100 \quad 0.100-0.000 \quad 9.3463 .825$ $0.5417 .4920 .0511 .3500 .007 \quad 0.0420 .082-030320.620$ 3.131
$1 \mathrm{Cs}^{\circ}$? $90^{\circ} \mathrm{CO} 0^{\circ} 0-\int 90^{\circ} 0$ $0.034-0.00: 1.5251 .501$ $0.141 .6540 .4160 .018 \quad 0.0010 .225 \quad 0.025-0.0020 .005$ 4.181
 $0.5414 .49<0.0183 .070 \quad 0.038 \quad 0.094 \quad 0.040-0.005 \quad 7.374<.181$

 $0.141 .0540 .0121 . J 220.0040 .0220 .028-0.0010 .052$ u.j33 $810^{\circ} 0$ c10.0 $55^{\circ} 00^{\circ} 0$
 0.00 .150 .0150 .96590 .0100 .3950 .01000 .0420 .0440 .010 2.00 .150 .0150 .96590 .0060 .2350 .31000 .0200 .0270 .236 1.00 .150 .0150 .46590 .0040 .1380 .01000 .0180 .4170 .000 $\$.00 .15 .0 .0150 .96590 .0150 .6940 .00500 .0660 .094$ U.015 $6.00 .150 .0150 .96540 .0130 .5320 .3 J 500.0530 .086 \quad 0.388$ 0.00 .150 .0150 .95590 .0100 .3950 .20500 .0420 .056 U.012 $2.00 .150 .0250 .96540 .0060 .2350 .0250 \quad 0.0260 .034 \quad 0.005$ 1.00 .150 .0150 .96510 .0040 .1380 .0 .150 U.0170.022 J.030

APPENDIX 7
JUMP FORMATION INDICATOR TAKES FOR CONSTANT
MANNING COEFFICIENT OF 0.015 FOR BOTH
CIRCULAR AND RECTANGULAR CROSS SECTION CHANNELS

A7. 2

A7. 4

JABILATED VALUES OF F AH AI MORMAL DEPTHS IN A CIRCULAP. CROSS SECTION CHANNEL OIAHETER
※ 0
0
0
0
0
0
0 0

0
0
0
0
 0.0750

气 WIPENH W.

tabulateo m	FLOM DEPTHS FUR		a RECIANC	CHANME	UF WIOTIO	0.012	M. AND	MANNIMG COEFF.	0.0150
flow rate -	1.0000	2.0000	3.0000	๑. 00000	5.0000	0.0000	7.0300	$0.0000 \mathrm{l} \mathrm{S}^{0}$	PIPE DPA. OR WIDTM M.
				NORMAL DEA					
PIPE SLOPE									
(SIN)									
0.0018	0.0200	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100
0.0025	0.0100	0.0100	0.4100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100
0.0033	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0160
0.0050	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100
0.0088	0.010	0.0100	0.01100	0.0100	0.0100	0.0100	U. 0100	0.0100	0.0100
0.0100	0.0100	0.0100	0.3100	0.0160	0.0100	0.0100	0.0100	0.0100	0.0160
0.0125	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	U.0100	0.0140
0.0250	0.0100	0.0100	0.0100	0.01100	0.0100	0.0100	0.0100	0.0100	0.0160
								.	
0.0349	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100
0.0898	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0200	0.0160
0.1045	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100
0.1736	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100
0.3402	0.0100	0.0100	0.0100	0.01100	0.0100	0.0100	0.0100	0.0100	0.0100
0.5000	0.0100	0.0100	0.01100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100
0.7070	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	U.0100	0.0100
0.8660	0.9100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	- 0.0100	0.0160
0.7659	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100
1.0000	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100
CRITICAL DEPIM M.	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	

tabulateo y	Values of fon	AT NORMAL	DEPTHS : ب!	a rectanc	ular chanme	L UF WIOT	0.01	00 M. AND	MAMMIMC	COEFF. 0	0.6150
FLOM RATE -	- 1.0000	2.0000	3.0000	4.0000	5.0000	6.0000	7.0000	8.0000	L/S.	PIPE DIA. MIDTM $\mathrm{H}_{\text {. }}$	
			FOM VALUE AT NORAAL DEPTH. N.								
$\begin{aligned} & \text { PIPE SLOPE } \\ & \text { (SIN) } \end{aligned}$											
0.0017	10.0147	40.0440	90.0928	160.1610	250.2491	360.3562	490.9d 36	640.6299		0.0160	
0.0025	10.0147	40.0440	90.0928	160.1610	230.2491	360.3502	490.4036	640.6299		0.0160	
0.0033	10.0147	40.0440	90.0928	160.1610	250.2491	360.3502	440.4836	640.6249		0.0100	
0.0050	10.0147	40.0440	90.0928	160.1610	250.2491	360.3562	490.4836	640.6294		0.0100	
0.0066	10.0147	40.0440	90.0928	160.1610	250.2491	360.3562	470 . Vd36	640.6249		0.0100	
0.0100	10.0147	40.0440	90. 928	160.1610	250.2491	360.3502	490.6418	640.6299		0.0100	
0.0125	10.0147	40.0440	90.J428	160.1610	250.2491	360.3562	470.6836	640.6299		0.0100	
0.0250	10.0147	40.0440	90.3928	160.1610	250.2491	360.3562		640.6249			
			-**00*								
0.0349	10.0147	40.0440	90.0920	160.1610	250.2491	380.3562	490.0636	640.6299		0.0100	
0.0698	10.0147	40.0440	90.0420	160.1610	250.2191	360.3562	490.4036	640.6299		0.0100	
0.1045	10.0147	40.0440	90.0928	169.1610	250.2491	360.3562	490.4036	640.6299		0.0140	
0.1736	10.0147	40.0440	90.0428	160.1610	250.2491	360.3562	440.0036	640.6299		0.0100	
0.3402	10.0147	40.0440	90.092 B	160.1610	<50.2491	360.3502	490.9036	640.6299		0.0160	
0.5000	$10.014 ?$	40.0440	90.0920	160.1610	250.2491	360.3562	490.4036	640.6299		0.0100	
0.7070	10.0147	40.0440	90.0928	160.1610	250.2491	360.3562	490.4836	640.6299		0.0160	
0.8860	10.01 ${ }^{1} 7$	40.0440	90.0928	160.1610	250.2491	360.3502	440.40816	640.6249		0.0100	
0.4659	10.0147	40.0440	90.0428	160.1610	<50.2+91	360.3562	490.4036	640.6299		0.0160	
1.0000	10.0147	40.0940	90.0920	160.1610	<50.2491	360.3502	4.10 .6836	640.6299		0.0100	

APPENDIX 8
JUMP FORMATION INDICATOR TABLES FOR 0.15 m PIPE DIAMETER
FOR A RANGE OF MANNING COEFFICIENTS FROM
0.009 то 0.018

A8. 1
z

\circ
0
0
0
0
0.1500
$0.154 c$
$0.154 c$

0
0
0
0
0
0
0
03
0
0.
0.0
0.1500
0.1500

90
$0:$
0 9
0
n
:
0

0
00
00
0
0
0
0
0
0
0
0
0
pabulateo moraal flaw oeptirs for a circular cross section camanel uf diamejer

$\hat{0}$
0
0
0

0.1499
 0.0481
0.0714 0.0649
0.0538
0.0484
0.0424
0.0358
0.0325
0.0298
0.0284
0.0274 0.0603
0.0501
0.0451
0.0190
0.0335
0.0304
0.0479
0.0260
0.0259
0.0258 0.0707
 .0504 .0421 0.0360 0.013 0.0283
0.0258 0.0237 0.0225
0.0220 0.0220
0.0218 0.0643

 0.0349
0.0698
0.1045
0.1736
0.3402
0.5000
0.7070
0.8660
0.9659
1.0000

CRITICAL
OEPTM M.
TABULATED VALUES OF F AH AT MORMAL CEPTHS IN A CIRCULAR CROSS SECTION CHANMEL DIAMEYER

tabulated val	values of fon	AI NORMAL	CEPTHS IN	A circula	CROSS SEC	On Chan	EL dIAMEY	0.1500	MD MAMHING
flow rate -	- 1.0000	2.0000	3.0000	4.0000	5.0000	0.0000	7.0000	0.0000 LS.	PIPE DIA. OR MIOTH M.
			F $\cdot \mathrm{M}$	alue ar notar	MAL OFPTH.	N.			
$\begin{aligned} & \text { PIPE SLUPE } \\ & \text { (SIM) } \end{aligned}$									
0.0017	1.1498	2.8170	4.4391	7.7442	14.3911	13.0137	15.7493	16.5942	0.1560
0.0025	0.9169	2.3649	4.0733	6.1254	0.7352	13.0137	13.8493	16.5982	0.1500
0.0033	0.6832	2.1300	3.0275	5.3807	7.4354	10.0378	15.7493	16.5442	0.1560
0.0050	0.7846	1.8831	3.1749	4.6410	6.2039	0.1512	10.1555	13.1422	0.1500
0.0066	0.7405	1.7754	$2 \cdot 0831$	4.3346	5.8291	7.4600	9. 1020	11.3472	0.1500
0.0100	0.7030	1.6862	2.0247	4.0062	5.6579	0.9329	-3.jucl	10.2006	0.1500
0.0129	0.6948	1.0407	2.7945	4.0379	5.3 H11	0.0163	8.1394	4.9506	0.1500
0.0250	0.7166	1.7319	2.4036	4.1925	5.5738	7.0300	8.3117	10.1044	4.1500
				-	$0 \cdot 0$				
0.0349	0.7504	1.8190	3.0543	4.4097	5.4673	7.4052	9.0154	10.6423	0.1500
0.0698	0.8662	2.1107	3.3540	5.1371	6.8461	4.6404	10.7224	12.4816	0.1560
0.1045	0.9603	2. $3+91$	3.9598	5.7368	7.6462	9.6044	11.7778	13.9551	0.1500
0.1736	1.1120	2.7306	4.6096	6.6785	8. 9005	11.2524	13.7371	10.3096	0.1500
0.3402	1.3176	3.3763	5.7122	8.2796	11.0505	13.9804	17.0065	20.2740	0.1540
0.5000	1.5578	3.8312	6.4611	9.4097	12.3739	13.4100	$14.00+5$	21.0919	0.1540
0.7070	1.7472	4.3045	7.2440	10.5 514	14.1396	12.9074	21.0134	23.9091	0.1500
0.8680	1.0705	4.8152	7.0089	11.3462	15.1510	$1 \% .1840$	23.0040	27.4297	0.1540
0.9650	1.4302	4.7743	B.J446	11.7604	15.1251	14.8442	$24 .\langle 4 y 2$	20.9223	0.1960
1.0000	1.4635	4.8419	8.1441	11.4240	15.9137	20.1301	24.3419	24.2493	0.1560

D. 1500 M. AND MAMNIMC COLFF.
on
0.1540
0.1500
0.1540
0.1500
0.1540
0.1500
0.1540
0.1500
1
0.1500
0.1500
0.1500
0.1500
0.1500
0.1500
0.1500
0.1540
0.1500
0.1500
1
0.1500
0.1500
0.1500
0.1500
0.1500
0.1500
0.1500
0.1540
0.1500
0.1500
0.0000 L/S.

12.8466
15.7753
17.9724
21.2261 26.6646 30.4470
34.3322 0
0
0
0
0
\vdots
0
0

 7.1483
8.1427
FOM VALUE AT NORAAL DEPTH. N.
6.4560
6.0720
5.6901
5.4081
5.3720
5.5059
5.6619
6.4555

flow rate -

0.0349
0.0698
0.1045
0.1736
0.3402
0.5000
0.7070
0.8660
0.9659
1.0000
\because

FLOM RATE	100000	2.0000	3.0000	4.0000	5.0000	6.0000	8.0000	$0.0000 \mathrm{~L} / \mathrm{S}$.	PIPE DIA. O MIOTHM.
	MORMAL OEPTH M.								
PIPE SLOPE									
(SIN)									
0.0017	0.0336	0.0479	0.0594	0.0697	0.0795	0.0840	0.4988	0.1094	0.1560
0.0025	0.0306	0.0433	0.0533	0.0025	0.0709	0.0790	0.0868	0.0448	0.1500
0.0033	0.0245	0.0463	0.0497	0.0500	0.0656	0.0728	0.uP98	0.0860	0.1560
0.0050	0.0258	0.0363	0 0.3446	0.0514	0.0585	0.0046	0.0105	0.0762	0.1540
0.0066	0.0241	0.0339	0.1416	0.0402	0.0542	0.0549	U.0.51	0.0703	0.1260
0.0100	0.0218	0.0368	0.1374	0.0433	0.0488	0.0535	0.JつロI	0.0025	0.1500
0.0125	0.0206	0.0264	0.0354	0.0409	0.0459	0.0504	0.ust1	0.0389	0.1540
0.0250	0.0175	0.0244	0.3298	0.0343	0.0154	0.0422	0.0456	0.0489	0.1500
-00000									
0.0349	0.0161	0.0225	0.3274	0.0316	0.0353	0.0387	0.0419	0.0449	0.1500
0.0698	0.0137	0.0190	0.0232	0.0266	0.0298	0.0185	0.3351	0.0370	0.1560
0.1045	0.0124	0.0173	0.3210	0.0242	0.0269	0.0295	0.0116	0.0340	0.1500
0.1736	0.0110	0.0153	0.0180	0.0213	0.0238	0.0260	0.0280	0.0299	0.1500
0.3402	0.0074	0.0130	0.0238	0.0102	0.0202	0.0221	$0.0<38$	0.0254	0.1500
0.5000	0.0086	0.0119	0.0144	0.0106	0.0184	0.0201	$0.0<17$	0.0231	0.1500
0.7070	0.0078	0.0120	0.0133	0.0152	0.0170	0.0185	$0.01 \geqslant 9$	0.0213	0.1500
0.8660	0.0076	0.0145	0.0127	0.0145	0.0162	0.0170	0.0170	0.0202	0.1560
0.9059	0.0078	0.0:02	0.)124	0.0142	0.0157	0.0172	0.0105	0.0197	0.1560
1.0000	0.0073	0.0102	0.0123	0.0140	0.0156	0.0170	O.US ${ }^{\text {a }}$	0.0195	0.1560
CRITICAL OEPTH M.	0.0280	0.0400	0.0493	0.0572	0.0643	0.0707	0.0867	0.0421	

TABULATEO value S of Fon at mormal deptas in a circular cross sectiun channel olaneter
0.1540 ois $\begin{array}{llllr}96 & 5.7404 & 7.4107 & 9.2041 & 11.2255 \\ 02 & 5.4579 & 5.9124 & 8.5061 & 10.2006 \\ 37 & 5.3741 & 0.8040 & 8.1184 & 4.9185 \\ 50 & 5.4468 & 0.8805 & 0.1881 & 9.9597 \\ 00 & 5.0137 & 7.0848 & 0.5120 & 10.2404 \\ 24 & 6.4198 & 7.5984 & 9.2516 & 10.9717 \\ 72 & 8.1096 & 7.9701 & 9.1007 & 11.5005 \\ & 7.5473 & 9.5363 & 11.0299 & 13.7430\end{array}$
$\begin{array}{rlll}0.3254 & 10.5201 & 12.0359 & 15.2213 \\ 10.3665 & 13.1106 & 15.4440 & 18.9736 \\ 11.8299 & 14.9720 & 10.2423 & 21.7196 \\ 14.0482 & 17.8014 & 21.7185 & 25.8130 \\ 17.7094 & 22.4214 & 27.1807 & 32.5169 \\ 20.1048 & 27.5894 & 11.2053 & 37.1610 \\ 22.7101 & 28.8800 & 15.2458 & 41.9394 \\ 24.4377 & 34.9414 & 37.0332 & 45.0414 \\ 25.3453 & 32.1490 & 34.1014 & 46.7453 \\ <5.0997 & 32.5517 & 39.0193 & 47.3810\end{array}$

0.0349
0.0698
0.1045
0.1736
0.3402
0.5000
0.7070
0.8680
0.9659
1.0000

APPENDIX 9

JUMP LOCATION IN A 0.15 m DIAMETER PIPE AT SLOPE $1 / 300$, CARRYING $6 \mathrm{l} / \mathrm{s}$, FOR A RANGE OF MANNING COEFFICIENTS 0.009 to 0.018 . RESULTS PRESENTED FOR UNIFORM MANNING COEFFICIENTS IN BOTH APPROACH PIPE AND TEST PIPE AND CONSTANT APPROACH PIPE MANNING COEFFICIENT OF 0.015.
dest pleg data anj prjgata mesults．

dis	$\begin{aligned} & 01 A_{0} \\ & N_{0} \end{aligned}$	NANN. CuEFF	$\begin{aligned} & \text { SLOPE } \\ & \text { IS IND } \end{aligned}$	$\begin{aligned} & \mathrm{NH} \\ & \mathrm{~N}_{0} \end{aligned}$	TERの。 © NERGY H．	$\begin{aligned} & \text { scost } \\ & \text { isivi } \end{aligned}$	$\begin{aligned} & \mathrm{HC}_{\mathrm{C}} \\ & \mathrm{H}_{0} \end{aligned}$		$\begin{aligned} & \text { ENTR } \\ & \text { DCPIH } \end{aligned}$	$\begin{aligned} & \text { ENTRY ミMTRY } \\ & \text { ENERGY FOH } \\ & \text { N. } \end{aligned}$	UP JUAP UEPI．A M．	uJn sefr н．	DCPTH change n．	EMFHCY UP SUAP の．	EnENCY DOWN N．	EMEDE Chanci h．	$\begin{aligned} & \text { dunf } \\ & \text { fon. } \end{aligned}$ N_{0}	1890 P3s． \qquad
0.0	0.15	0.018	0.0349	0.035	0.107	0.0033	0.071	0.117			jump waum	W．ot J Afl	Loo at	ifsi	Pe	V．		
0.0	． 0.15	0.010	0.0098	0．09e	0.132	0.0033	0.071	0.117			Jun or	Lu ar	lou at	UEst	IPE	V．		
0.0	0.15	0.010	0.1045	0.042	0.156	003	0.071	0.117			unt ondm	co ${ }^{\text {a }}$	Las al	ist	IPE	，		
0.0	0.15	0.010	0.1736	0.037	0.201	U33	0.071	0.117	0.037	0.2011 .218	00.080	J． 118	0.076	0.160	0.125	－0．041	－ 136	2.20
6.0	0.15	0.010	0，3402	0.031	0.295	0.0033	v．07t	0.117	0.031	0．2013．68）	，0．040	0.118	0.076	0.166	0.125	－0．0411	． 38	535
3.0	0.15	0.010	0.5000	0.028	0.375	0.2033	6.081	0.117	0.028	0．3015．066	0.050	J．118	0.070	0.166	0.123	－0．0411	0.038	111
0.0	0.15	0.018	0.7070	0.026	0.469	0.0333	0.071	0.117	0.025	0.0517 .550	0 U．J40	1．118	0.076	0.166	0.125	－0．0411	．030	asi
0.0	0.15	0.018	0.8660	． 025	0.536	0.0033	0.071	0.117	．02，	0．5317．056	60.040	J． 117	0.070	0.160	0.129	－0．0621	10．03s	．073
\＄．0	0.15	0.010	0．405＊	0.024	0.575	0．0．333	0.071	0.117	0．0？5	0.5314 .056	0 0．u4u	J．118	0.076	0.106	0.125	－0．0411	10．030	． 070
3．0	0.15	0.010	1.0000	0.024	0.569	0.0033	0.071	0.117	0．0？4	0.5714 .400	0.040	J．	U．070	0.166	23	－6．0411	0.635	

[^3]TEST PiPE data and piJganan hesulis．

REST PIDE UATA ANU PAJESAN QESJLIS．

U／S	O！${ }_{\text {N．}}$	NANM CUFFF	$\begin{aligned} & \text { SLOPE } \\ & \text { (SIN) } \end{aligned}$	HW	TEKP． ENERGY M．	SLOPE $\text { (s) } 1$	HC N	$\begin{aligned} & \text { HK } \\ & \text { H. } \end{aligned}$	$\begin{gathered} \text { EサI \& } \\ \text { OLPIみ } \\ \text { M. } \end{gathered}$	ENTAR ENTHY ENE 1CY F•M A． N。	UP JUTP UEPIA H．		$\begin{aligned} & \text { DFRIM } \\ & \text { CMAMGE } \\ & \text { M. } \end{aligned}$	UP JUAP N．	EMERGV DUWM N．	$\begin{aligned} & \text { fnlt: } \\ & \text { CTAMGE } \\ & \text { ज. } \end{aligned}$		$\begin{gathered} 1390 \\ 1350 \\ \text { } 1 . \end{gathered}$
6.0	0.15	0.012	0.0349	0.045	0.138	0.0433	U． 071	0.081	0.045	0.14 .3080	0.037	5．00d	0.030	0.105	0.103	－0．042	7.181	1－83s
6.0	0.15	0.012	0.0678	0.038	0.190	3.0033	0.071	0.007	0.033	0.1913 .091	0.057	1．0d 1	0.030	0.105	0.103	－0．008	7．811	2．137
0.0	0.15	0.012	0.1045	0.034	0.231	0.0133	0.071	0.047	0.036	0．8316．150	0.057	U．J31	0.427	0.163	0.163	-3.002	7.471	3.332
－． 0	0．15	0.012	0.1736	0.030	0.322	0.0233	0．031	0.1087	U． 030	0.3214 .610	U．US？	200d	0.030	0.105	0.103	-0.008	7.871	－0．00
6.0	0.15	0.012	0.3002	0.025	0.493	0.0333	0.071	0.687	2.325	0.4918 .270	0.057	d． 318	0.027	0.105	0.103	－0．006	7.281	0.728
－0 0	0.15	0.012	0.5000	0.023	0.636	0.0033	0.071	0．08 7	0.023	0.6325 .815	0.428	J．081	0.029	0.105	0.103	－0．00i	7.481	5.050
6.0	0.15	0.012	0.7070	0.021	0.804	0.0333	0.071	0.087	3.022	0.1526 .887	0.057	2.038	0.029	0.103	0．103	－0．002	7.271	5．803
3.0	0.15	0.012	0.8630	0.020	0.424	0.0033	0.071	0.007	U． 023	0.7229 .350	0.051	J． 301	0.030	0.103	0.103	－0．632	7.271	3.517
6.0	0.15	0.012	0.4657	$0.0<0$	0．994	0．0333	0．081	0.087	0．020	0.4223 .350	0.451	1． 397	0.030	0.105	0.103	－0．002	7． 171	5.318
5.0	0.15	0.012	1.0000	0.020	1．021	0.0333	0.071	0.087	0． 320	0.72250356	0．03 7	1．39 1	0.030	0.105	0．103	－0．00i	7.481	3．517

TEST Pipe dara anu majcisan hesu-ts.

OIR
DEPI
M.
룽
. \mathbf{I} •

BLJo
SSU
COMABN DAPA APPKUACIT PIPE DATP
J. SHA. MANN. SLUPE HN TGARO
0.00 .150 .0140 .09410 .0500 .1180 .00330 .0710 .117 2.00 .150 .010 U.U04月 0.0420 .153110 .34330 .0710 .117

Appreach pipa
ress oipe data anu piljanm nisslis.
$n=0.015$

폴
-

vavn sdid mjvorddv vivo wemhes

 3.8015.06, 0.040 J.131 0.132 C.123 0.112 -9.013 10.134 1.910

 $0.1 / 9 \quad 0.112-6.0134 .1172 .503$ 0
i
i
0
\vdots
n
\vdots
J.39?1.801 0.vin).1J1 U.J52
 2.00 .15 0.015 0.30020 .0200 .3700 .30313 .0710 .1013 .0 .1 3.0 0.15 v.015 0.50000 .026 0.479).3J33 u.071 0.101 J.0!5 3.0 0.15 0.0150 .70700 .0240 .9973 .333310 .0710 .101 0.0?0
 5.00 .15 0.01; $0.40510 .0<20.7353 .03330 .0710 .1010 .92$? 3.00 .15 0.015 1.00.70 $0.0<20.7520 .0$ J33 J.0/1 0.101 J.32?

TEST PIDE UATA ANO MBDIAAM EESJ－IS．

Lis	JA． no．	mann．	SLOPf，	HN M.	$\begin{aligned} & \text { TkAno } \\ & \text { PNLACV } \end{aligned}$ n.	it3） （SIN）	Ne $n-1$	nn	$\begin{aligned} & \text { EVIAP } \\ & \text { DEPTH } \end{aligned}$ n.		UPJU4A UEPI：4 N．	$\begin{aligned} & \text { 3unfit } \\ & \text { NLPT } \end{aligned}$ H.	DEPIM Change n．	ENPAGY ω ．	ENTRGI OOWN M．			pis＂． －
6.0	0.19	0.012	0.0347	0.030	0.110	．0033	0.071	0.001	U．031	0.127 .844	0.051	．0007	0.030	0.105	0.103	－0．062	7.671	0.843
0.0	0.15	U．014	0.0690	0.042	0.153	0.0033	0.072	0.081	－．04，	0.157 .300	0.051	J．301	0.1030	0.105	0.103	－0．cos	$7 .<31$	2.000
2.0	0．1）	0.012	0.1095	0.030	0.186	0．J333	0.011	0.001	1．01，	0．1913．001	0.021	1.347	0.033	0.105	0.103	－0．10c	$7 . ⿱ 亠 䒑 ⿱ ⿻ 土 ㇒ 日 \zh20$	©． 109
－0 0	0.15	0.012	0.1736	0.033	0.246	0.0033	0.071	0.041	13.334	0.2412 .444	0.021	1．0．98	0．02v	0.105	0.103	－0．004	272	3． 12
0.0	0.15	0.012	0.3032	0.028	0.376	0.0233	0.011	0.081	2.023	0．361）．60s	0．0． 1	ग． 391	0.02	0.10	0.10	－0．06	7.871	20
3.0	0.15	3.012	c． 3000	0.046	0.475	0.0133	0.011	0.081	1 2．096	0．9517．55u	0.0 .7	1.331	0.32	0.105	0.10	－0．	$7 .<81$	－0．605
5.0	0.15	0.012	0．70rs	0.024	0.597	0．J3J3	3.011	0.087	7 ）．0？	0．511\％．903	0.02	1．948	0.02	c． 105	10	－3．00？	$7 .<71$	95
3.0	0.15	0.012	0.0600	0.023	30.083	0.0033	4.071	0.087	1 U．3？1	1 p．3323．01s	ט．0．1	1．301	0.02	10	． 10	－6．00＇	$7 . ¢ 71$	05
－． 0	0.15	0.012	0.9659	0.022	20.735°	0.0133	J．071	0.087	1 1．32！	9．6921．8u8	0．0．7	ग． 33	0.327	0.105	0.103	－0．002	7.271	． 102

A9．5－

APPENDIX 10

SAMPLE OUTPUT PROGRAM HYDJUMP. THE OUTPUT CONTROL PARAMETER SET TO GIVE WATER SURFACE PROFILES IN BOTH THE APPROACH PIPE AND UPSTREAM AND DOWNSTREAM OF THE JUMP IN THE TEST PIPE

PGEDICTION UF TME HYORAJLIC
JUMP PISITION IN A CIRCJLAR
CROSS SECTION PIPE AT MILD SLOPE．

MANMI VÉ CDEFF．$=0.0120$ FLDMRATE＝ 0.0060 Mあき $3 / 5$ ．

NOFMAL JEPTH $=0.0231 \mathrm{M}$ ．

CONTRJL IS UPSTKEAH，DEPTH＝

PIPE HIDTA OR OIAMETER＝
CUNTKOL UEPTH $=0.0707 \mathrm{M}$ ．

CRITICAL DEPTH $=0.0707 \mathrm{~m}$. $0.0707 \mathrm{M}$.

DISTANCE	OEPTH	energy	$F+M$
0.	0.0707	0.0980	6.7950
0.0001	0.0691	0.0981	6.8004
0.0305	0.0675	0.0983	6.8173
0.0214	0.0060	0.0987	6.8463
0.0525	$0 . C 644$	0.0993	0.8881
0.0042	0.0628	0.1001	6.9436
0.0063	0.0012	0.1011	7.0135
0.0093	0.0596	0.1024	7.0990
0.0123	0.0281	0.1041	7.2010
0.0263	0.0565	0.1060	7.3209
0.0212	0.0549	0.1084	7.4601
0.3271	C．0．0533	0.1113	7.6201
0.0342	0.0517	0.1146	7.8029
0.0425	0.0501	0.1180	8.0104
0.0525	0.0486	0.1234	8.2452
0.0543	0.0470	0.1289	8.5100
0.0733	0.0454	0.1359	8.8079
0.0753	0.0438	0.1433	9.1428
0.1150	0.0422	0.1524	9.5191
0.1390	0.04 Ct	0.1633	9.9418
0.1530	0.0391	0.17 万く	10.4171
0.2033	0.0375	0.1916	10.9524
0.2457	0.0359	0.2100	11.5562
0.3112	0.0343	0.2321	12.2393
0.3702	0.0327	0.2590	13.0146
0.4510	0.0311	0.2917	13.8931
0.5807	$0.0<9 t$	0.3321	14.9094
0.7516	$0.02 t 0$	0.3823	10.0736
1.0150	0．Cくも4	0.4453	17.4224
1.5032	0.0248	0.5250	18.9969
2.0037	$0 . C 246$	0.5401	19.2002

```
PIPE LEVGTH= 40.0000 M.
MANNIVF CDFFF. = 0.0120
```

FLOHRATE $=0 . \operatorname{COFOMFF3/5.}$
NORMAL JEPTH $=0.0865 \mathrm{M}$.
CCNTRTL IS UPSIKEAF, DEPTH =

PIPE WIDTM JK OIAMETER $=0.15 J 0 \mathrm{M}$.
PIPE SLOPE $=0.0033$
CUNTKUL DEPTH $=0.0247 \mathrm{~m}$.

GKITICAL JEPTH $=0.0707 \mathrm{M}$.

DISTANEE	CEPTH	EASERGY	$F+M$
0.	0.0247	0.3286	19.0558
0.4772	0.0278	0.3874	10.1981
0.9597	C. 0309	0.2978	14.0539
1.4445	C.C339	0.2370	12.4072
1.7237	0.6370	0.1966	11.1211
2.4775	0.0401	0.1676	10.1049
2.8731	0.0431	0.1470	9.2458
3.3459	0.0462	0.1320	8.0501
3.7935	0.0493	0.1211	8.1359
4.2212	0.6523	0.1133	7.7294
4.5222	C. 0554	0.1076	7.4131
4.9337	C.C585	0.1030°	7.1731
5.3102	C.Cel 15	0.1009	6.9983
5.5722	C. C 446	0.0992	6.8820
5.7533	0.0677	0.0983	6.8158
5.8237	0.0707	0.0980	0.7950

PIPE LENGTH $=40.0000 \mathrm{M}$ ．PIPE HIOTH OR DIAMETER $=0.15 \cup 0 \mathrm{M}$ ． MANNINE COEFF．$=0.0120$ PIPE SLOPE＝U．0033
FLOHRATE $=0.00$ CO M\＆F3／S．CONTROL JEPTH＝ 0.0707 K ．

NORMAL JEPTH $=0.0865 \mathrm{M}$ ．CRITICAL DEPTH $=0.0707 \mathrm{M}$ ．

CONTRJL IS DOHNSTREAM，UEPTH $=0.0707 \mathrm{M}$ ．

D151Aなこ	CEPTH	ENERGY	$F+M$
0.	0.0707	0.0980	0.7950
0.0104	0.0718	0.0981	6.7974
0.0429	0.0728	0.0982	6.8047
0.1014	0.0739	0.0983	6.8164
0.1700	0.0750	0.0955	6.8326
0.3159	$0 . C 7$ co	0.0967	t．0．521
0.4330	0.0771	0.0990	6.8708
0.7145	c．c7el	0.15993	0.9056
1.0120	0.6742	0.0747	6．9343
1.4023	0.0 ÓO	0.1001	6.9749
1.9202	0.0413	0.1005	7.0151
2.0237	0．cとで	0.100%	7.0591
3.9227	C．Cと34	0.1014	7.1066
5.1555	C．Ct45	0.1014	7.1576
8.3673	C．0856	0.1025	7.2119
40.0001	0.0866	0.1030	7.2696

APPENDIX 11
PROGRAM HYDJUMP

All. 1

A full print out of HYDJUMP is included in this appendix. The program was written in Fortran for use on the NBS CBT Perkin Elmer 732 computer. No special facilities are required, single precision sufficient.

The program contains numerous comment blocks describing the calculation technique, however a simple flow diagram is included in this appendix.

Input data to the program is simple, the program being designed to carry out numerous repeat passes to generate the tabular data included in earlier appendices. In order to facilitate use, a set of example data is included in this appendix for a number of options.

It should be noted that all calculations are carried out in SI units. All input data are in SI units with the exception of flow rate; this is entered in litres/s and converted within the program to $\mathrm{m}^{3} / \mathrm{s}$.

HYJUMr Schematic flow diagram.

Read output control IOUT.
$1=$ summary tables only

Read channel shape control SHPAPE $1=$ rectangular, $2=$ circular.
B. 1

From C.

Read NN, NS, ICON
NN-determines size of Δh in Simpsons Rule NS- No of steps necessary to complete water surface profile in Simpsons Rule. ICON - calculation control,
= Approach pipe surface profile call. $=1$ Pipe entry energy as input data.
$=2$ Terminal conditions assumed in approach pipe plus normal flow depth downstream jump in test pipe.
\downarrow
Read $B, R M \varnothing, R M 1, D E N$
$B=$ pipe diameter or channel width
RM $\phi=$ approach pipe Manning Coif.
RMI $=$ test pipe Manning Coeff.
$D E N=$ loss factor at test pipe entry, 0-1.0

Write titles.

Set pipe count $I Z=0$

A
\uparrow

From F, G, H.

Read PL, $S \phi, Q, H C O N T, E N Z$ $P L$ - pipe length, $S \phi$ - pipe slope
Q - flow rate, HCONT - call. control, $=0$, control depths sort to flow critical depth values; $=1$, control depth at pipe entry to bi calculated.
ENZ - pipe entry energy, $=0$ if I son = 0 or 2 .
check PL, $=0$ GOTO C, >OGOTO D
set pipe count $I Z=I Z+1$
1 =approach pips
2 = test pipe upstream jump
3 = " " downstream "
\downarrow
if. IZ>3, IZ set to 1.

Check ICON, IZ=1

$I C O N=0,2$.
Calculate pipe entry depth from entry energy ENZ and flow rate Q. set pipe count to Z

Calculate normal and critical flow depth h_{n}, h_{c}.

Determine control depth position, from HCONT input.

F. Calculation abort checks,
$h_{n}>B$ for $I Z=2$, full bore flow, GOTOA $h_{n}>B$ for $I z=3$, ". ", GOTtA $h_{n}<h_{c}$ for $I Z=2$ and 3, no jump, Goto A.

Calculate water surface profiles, check ICON, II values.

ICON $=0, \quad I_{2}=1,2,3=$ Calculate water surface profiles

ICON $=2, \quad I Z=1$
Terminal conditions in approach pipe,
set depth $=h_{n}$, energy $=h_{n}+Q^{2} / 2 g A_{n}^{2}$
ICON $=2, \quad I Z=3$
Normal flow depth downstream jump
set depth $=h_{n}$, calculate $(F+M)_{n}$.
$I C O N=1, \quad I Z=2,3$
Calculate water surface profiles.
(Note ($F+M$) values calculated with water surface profiles)

Jump location determination
G. Abort check, if $(F+M) I Z=3, L=0$ $>(F+M) I Z=1$, terminal value then write "jump drowned", GOTO A

Check ICON

ICON $=2$
Employ $(=+M)$ at normal depth for I $2=3$ as interpolation target on (F+M) profile $I z=2$

ICON <2
Use full intersection ($F+M$) curve technique for $\mp 2=2,3$.

Write out results, format control IOUT $=1$, summary tables an ty $\downarrow=0$, water surface profiles.
From H. GOTO A
C.

$$
\begin{aligned}
\text { Read SHAPE } & =0 \text { run terminated } \\
& >0 \text { GOTO } B
\end{aligned}
$$

Example DATA program HYDJUMP

Case 1 Rectangular and circuitar channels, 2 approach pipe slopes. Note ∇ indicates space in format field.

Line 1 IouT, Format I 3
هणD (full output)
Line 2 SHAPE, Format I 3
$\nabla \nabla 1$ (rectangular section)
Line $3 N N, N S$, ICON, Format 3 IL $\nabla \nabla 30 \nabla 200 \nabla \nabla \circ 0$
Line 4 B, RMP, RMI, DEN, Format 4 FlO. 4 $\nabla \nabla \nabla \nabla 0.1500 \nabla \nabla \nabla \nabla 0.0150 \nabla 0000.0150 \nabla 0011.0000$
Line $5 \mathrm{PL}, 5 \phi, Q, \mathrm{HCONT}, \mathrm{ENZ}$, Format 5 F10.4 (approach pipe data)
$80002.000000000 .500000006 .000000000 .000080000 . C$
Line 6 PL, S P, Q, HCONT, ENZ, Format 5 F10.4 $\nabla \nabla 040.0000 \vee 0000.002500006 .000000001 .000000000 . C$ (test pipe, upstream jump)
Line 7 PL,S $7, Q$, HCONT, ENZ Format 5 F10.4 $\nabla 0040.000000000 .002500006 .000000000 .000000000 .06$ (test pipe, downstream jump)

Line 8
Line 9
Line 10
Line 11

Line 12 SHAPE Format I 3 $\nabla 02$ (circular section).
Line 13-21 Repeat Line 3-11
Line 22. SHAPE Format I 3
$\nabla 00$ indicates end of data file.
All. 7

Case 2 Repeat case 1 but summary data only required.

Wine 1 IouT, Format I 3
Line 2-22 as Case 1

Case 3 .

Line 1-2
Line 3
Line $u-22$

Case 4

Line 1-3
Line 4
Line 5-13
Line 14 Repeat Live 4 above.
Line 14-22 Repeat case 1

```
DOA:-1
のにのnのに。
    PROGRAM HYEJUMP HEFE?S TO A PFLCFGM DESIGNED TU
    GALCULATE THE HYDFAILIC JUMP POSITION AFTER. A CHANCE IN
        SLOPE IN EITHER A R:STANGULAF GG CIRCULAR CROSS
        SECTION PIPE.
        OIMENSION ) (2,100),F(2,10U),FP(2,<<),I1(0)
        UIMENSION [P(2,2),E N(2,10O), CEP(2,100),IP(2),HJ(2),EJ(2)
        DIMENSIDN OT(3CC),SI(1DO),FNI(3CC),S2(300),HC<(300)
        UIMENSIDN HN2(3CU), TENL(3UC),EEN(GOU), HEN(300), HUF(30J)
        JIMENSION HCN(3CU), EJD(300), E[N(3CO), &FPM(jO0)
        OIMENSION FEM(300),.) SH(30C),[L&(3LO)OXSUMF(3JU)
        INTEGER SHAFE
        GUHMO:\Downarrow/CM:/P,C,G,CJ'V,S J,SAM,FHG,HCPIT,HNDKM,AKEA,PEZ,FPM, ENE,G:G
        COMMON/CM2/SHAPE
        COMMON/CM3/I2
        READ(4,702)ICUT
        READ(4,702)SHAPE
C IUUT IS A CUTFUT FJマ4AT CUHTFLL CLOEg=L BNLY UUTPUT
F IS A SUMF
702 FUKMAT(I3)
902 REAJ(4,12U)NM,MS,IC71
        READ(4,121)E,HFC,K.11,):W
121 ruRMAT(4FIC.4)
        ;=9.31
のいいのrimnris
        IC=O
        ICOUNT=0
        I Z=0
        CONTIMUE
        IF(IZ.EO.3) GUTC YJIO
        CDNTINUE
        IF(IZ.ST.L)IN(IZ)=ij
        IL=IL+1
        IF(I2.EQ.1)HKITE(3,5.34)
504 FORMAT(1HL,/////)
        IF(IZ.EO.L.ANG.SHADE.EO.L)HFITE(3.505)
505 FURMAT////////////, ?OX, 'PKECICTICM OF TME HYORAULIC',
    L/, 20X, "JUMF PGSITIJV IN A RECTANGLLAR,,/2CX,
    2'CROSS SECTICH, PIPE AT MILD SLCFF.',////////)
        IF&SHAPE.EC.2.AHC.IZ.EJ.L)HFITE(2.500)
```



```
    I'JUMP HOJITICM IN A CIRCULAK',/,2EX.
    2'GROSS SECTICN FIP: AT MILI SLGPE.',//////)
    \F(IZ.CT.3)IZ=1
    IF|IZ.E2.1)|C=IC+i
    QEAO(4,1OC)PL,SO,C,HISJNT,ENZ
```

C IF ICON＝2 THE ANALYSIS IS PASED ON THE ASSUMPTICN OF TERMINAL FLCH CONOITIJNS AT THE CISCHARCE FROM THE APPROACH PIPE． ICON＝ 2 ALSC INTKJJU：ES THE LCNSTEAI．VT THAT THE TEST PIPE IS LONG EVJUGH FOF NOFMAL FLOM DEPTH TO BE ESTARLISHEC DJANSTREAM UF THF JJMP．NORMAL depth then eecores the donnstkeam conjugate depth HHICH ALLOHS CALCULATION UF THE＇FGM＇TEPM HITHOUT calculating tre hater surface pfefile downstream uf the JUMP．
IF ICUN＝ 1 THE FLGH ANALYSIS IS PASEO UN AN IMPUT ENERGY AT ENTRY TO TRE MILC SLUPE PIPE，TEFM ENL．SIMILAKLY THE LOSS GOEFFICIENT AT PIPE EYTRY MAY \＆E LXPRESSEU AS A FACTOR DEN， VALUE 0 TO 1．C．TO 9 I MULTIPLIER EY THE ENZ TERM． AS THE ENTFY FLCH DSPTH IS TC EF CALCULATED FKOM ENZ\＃UEN AND NLT BASEC CN FLTA CPITICAL［EPTH，THE CONTKCL TEQM HCONT IS SET TO I．D．THE UTHEF．PAFAFETEFS REFEX TO PIPE FLJH pate im orremsicins．
0U FURMAT（5F1C．4） IF（PL．ED．U．C）COTG OJI
C PL－PIPE LENGTH，E－HIJTH，RM－MANMINAT CJEFF，SO－SLGFE，
 jet TU ZEKC If CKITISAL DEPTH ISSUME』。
$y=2 / 1000.0$
々のij＝1うしゃの。i
IF（IL．EU．L）$F P_{i}=K M U$
IF（IZ．GT．i）FM＝FMI
CON $=P . Y+2 / 5 C$
GAM＝G\＃RHO
$\operatorname{AT}(I C)=0+16 C C .0$
IF（IZ．E（U．1）SI（IC）＝S）
IF（I2．EO．2）SE（IC）＝50
c program comtacl data．
6 NN－SILE OF THE CH STEP IN SITPSCNS RULE，NSONO．
C STEPS IN ÜFTH CALC．IICTN GETLRMINES HHETHER ENERUY INPUT OR UFSTFEAH SL．3PE IS USE［．LFN IS THE ENERGY LUSS FACTUF FLF THE PIPE ENTFY，IN EITITEF ENTRY CASE． ENZ－INPUT ENERGY TJ REPLACE SLOPE IF ICON $=1$ ． IF（ICON．EG．I）GCTO 550
GOTO 651
$E N Z=D E N$＊ENZ
CALL BOUND（ENZ，O，E，H3）
12＝2
$H C O N T=H B$
GOTO 18
651 CONTINUE
［FIHCONT．EC．I．OI GOTO 17

GOTD 19
CALLOENOEMGC
CALL BOUND（ENCD， $0,3,4 B 1$
MCONT＝HE
cuntinue
G JETERMINATICN OF CQITICAL ANC NCFPAL DEPTHS.
C THIS SECTICN CALCULATES THE NURMAL ANU CRITICAL DEPTH IN
[F(HNORM) 1C,il,12
cOTO 13
$12 \quad J P=H N$
$13 \quad H N N=(U P+D N) / 2.0$
IF(A35((HNH-HN)/HN).LE.D.UCI) COTL 14
1.d= Hinio
GOTB 9
14
$-\operatorname{IN}=$ HN. V
11 CONTINUE
1F(IOUT.EG.1) UCTU Ji)

```

                FORMAT /////2CX, \({ }^{\circ}\) PIPE LENGTH \(={ }^{\circ}, F 10.40^{\circ} \mathrm{M} 0^{\circ} .5 \mathrm{X}\),
                1'PIPE WIDTH CK OIAYETER \(=0, F 10.4,^{\circ} M 0^{\circ}, / .20 X 0^{\circ}\) MANNING COEFF. \(=0\),


        HRITES3,201)FNoHC

        LF10.40' \(\mathrm{M} 0^{\circ}\).// /
    FORMATION CF A HYCRAJIC JUMP KECUIRES THAT DEPTH
    GHANGES FRGH GELOH CRITICAL TO AEGVE ERITICAL, HENCE
    IF NORMAL [EPTH IS LESS THAN CEITITAL NO JUMPFGRMS.

    FJRMAT I/ LCX, JUMP FJRMATICN :MPCSSIR-E AS HNくHC..\(/ 1\)
    continue
    IFIIZ.EO.1)HR1(IC)=HM
    If (IZ.GT. I) HN Z (IC) \(=4.4\)
    IF(IZ.GT.1)FCZ(IC)=4に
    IF(IZ.CT. I. \(\angle N C . H N . L E . T C) G O T C ~ E O C ~\)
    FULL BORE FLCH IS MJT DEALT WITH EY THIS PROGRAM.
    If the valle cf mn > Pipe ciaretef solution is
    TERMIMATEU.
    IF(IZ.上タ.j.\&A~。ICCV.Eう. 21 COTi G4c
    いうTO 947
    \&F THE TESt FIPE IS LJNG THEN A CLNSIJERAÉLE SIMPLIFICATICN IS
    possigle as the flod jepih may pe assumeo to de onurmal.
    DEPTH ANO THE (FtM) VALUE AT TKE JUMP IS FIXED.
    CALL CALC(HA,CL)
    \(F X=F P M\)
    EX2 =ENERG
    \(H \times 2=H N\)
    HLI IM=0*0.99
    IF(HN.CE.MLIM) HN2(IC)=8
    1F(HN.GE.HLIM) GOTO 300
    DO 949 J6=1,IS-1
    If the far: term at entry is less thain the fat value
        FOR THE NCFMAL FLIH UEPTM THIS IMOICATES THAT THE
        JUMP HAS PCVED TO L=O AS A CKCKNED JJAP.
    FEN(IC) \(=F(1,1)\)
    IF(FR.CT.F(1, 1)) GJi3 330

    covithue
```

 HXL=D\subseteqP(1, \t)*R4(UEP(1,Jわ+1)-CEP(1, \t))
 EXL=EN(1,JG)+Fक(EN(1,J6+1)-EN(1,JO))
 CHH=HH-HXL
 CHE =E \2-EX1
 IF(IOUT.EO.1) GUTU 311
 HRITE(3.952)
 952 FOKMAT//2OX, 'TEST PIP: ASSUMEL LONGSNJKMAL FLOK OEPTH*.
 1.ESTABLISHEC COHNSTREAM OF THE JUMP.",/I
 HRITE(3,107)XX,HX1,HX2,EX1,FXZ,FX,CHH,CHE
 GJTO 600
 3L CUNTINUE
HUP(IC)=HXI
HON([C)=HN
EUP(|C)={.^1
EON(IC) =EXZ
O SH(IC) = CHH
DEJ(IC)=CHE
CFPM(IC)=FX
XJUMP(|C)=>.\
ういT? jun
333 IF(IOUT.EG\&C) HFITE(3,332)
FEN(IC)=F(1,1)
CFPM(IC)=FX
SOTO 300
のルののルのなのひは
947 CONTINUE
C THE APPROACH PIFE LENGTH MAY GE IGNOPED IF TERMINAL
C CONDITIONS AFE ASSUYEJ. THIS SECTION USES THIS CFTION
C
C
945
I=HN
CALL CALC\&H,CLI
ENGC=EMERC
IF(IOUT.EO.1)CCTE 312
HRITEP 3.944)F,ENCD
944 FIRMAT//20X, "TERMINAL VELECITY CCNDITIUNS IN APPPLUCH PIPE.",

```

```

 LOTO OOO
 312 EjNTINUF
TENI(IC)=ENGC
GITO 800
945 CONTIIUE
MLIT=U.GC\&F
IF(IOUT.FJ.1) CCTU 313
IF\&12.CT.L.ANC.HN.FE.:HLIMIHFITF(3.790)
313 \&F(HN.GE.MLIM) HNZIIC)=?
1F(12.GT.1.ANE.HN.らF.HLIM)LC.TL PCC
\imath

```
6
C
C
C
C
C
C SUECRITICAL FLUN, :ICONT GT. HC.
    jIGN=-1.0
    OH=(HC(3WT-FP)*C.0F93/FLOAT(NN)
    IF(IOUT.EQ.C) HFITE(3,2DZIHCENT
202 FURHAT(2OX, 'CCNTKCL IS DOHNSTKEAM. DEPTH = ',F10.4.0'M.')
    GOTO GO
C JUPERCPITICPL FLON, HCONT LT. HC.
45 jIGiv=1.0
    JH=(HE-HCLKT)/FLCAT('AN)
    IF(IDUT.EGOR) h&ITE\3,2D3IH:CCNT
203 FURHAT(20x, "CGHTFOUL IS UPSTKEAP, [PPTA = ',FIO.4," M.0')
    GOTO 60
G STEEP SLOPE, HA LT 4C.
5C [FPHCONT.L!.tC) GLTJ S5
O jusごiTICんL FLCm, HCDHT GT HC.
    3!JN=-1.0
    UH=(HCUNT-FC)/FLCAT(VV)
    〔F(IOUT.EG.O) HRITE(3,2O2)HCEMT
    GOTO GO
    SUPERGNITICAL FLOH, HECNT LT FC.
5 5 ~ S I G N = 1 . C ~
    N2=NN%2
DH=(HN-HCUNT)*0.998/FLOAT(N2)
    IF(IOUT,EQ.C) HRITE(3,2O3)HCCMT
SL=0.0
IS=1
H= HCONT
CALL CALC(H,EL)
E=ENERG
FM=FPM
IF(I2.GT.1)F(I2-1,[S)=FM
IF(12.E0.2)\times(1,15)=3.1)
(F(IZ.R.G.j)入(&,|S)=PL
IF(IL.CT.1)[EP(IE-L,IS)=4
{F(IZ.GT.1)EN(\Z-1,\J)=E
```

IF（IOUT．EG．1）CGTO 314 HRITE（3，204）
 HRITE（3，205）SL，ohotofa
20；FUSMAT（1ホX，4F10．4）
314 ［F（I2．EO．2）HEN（IC）＝
IF（IZ．EO．2）EEN（IC）$=$ E

HATER SUFFGCE FFLFILE こALCULATICMS UJANG SIMPJLR：J マULE TU EVALUAT：THE INTESマAL。
2け $80 \quad \mathrm{l}=1 \mathrm{~N}$ S． 2
$S L O=S L$
I $S=15+1$
－ $2=$ HCLHT＋SICNFCHFFLJAT（I＋1）

こALL CALC（F，LL）
こALL CALC（rizell2）
CALL CALC（H3，LL3）
J $\mathrm{X}=\mathrm{DH}+(0 \mathrm{CL}+[\mathrm{CL} 2+4.0$ 5．）$-31 / 3.0$
$S L=S L+E Y$
IFISL．GE．PLJGCTO 62
$\mathrm{H}=\mathrm{H}$ ？
CALL こaLC（T，EL）
E＝ENERC
FM＝FPM
904 CUNTINUE
IFIIZ．ED．1．ANL．H．LF．UVIGOTC 911
GUTO 312
$911 \quad S_{L}=P L$
$: 1=t+N$
CALL CALC（H，CL）
E＝ENEKG
FM＝FPM
912 CONTIHUE
\｛F（IL．EQ．3．ANC．H．CE．3）COTO EIL
$H H X=A O S((H-H N) / H N)$
IF（IZ．EC．3．ANE．FTHX．LE．O．0U1）SL＝PL
©ll GUNTINUE

```
    IF(IZ,EO,3)\times(2,IS)=PL-SL
    IF(II,CT,1)CEP(IZ-1,IS)=H
    |F(IZ,GT,I)EN(\mathbb{Z-1,IS)=E}
    IFIIZ.EQ.2.&NC.H.GT.HCI GUTCC EOC
    IF|IL.EQ.S.AML.F!.GE.J) ,OTO EOC
    IF(IOUT.EJ.I) GGTO 315
    HRITE(3,2O5)SL,H,E,FY
CONTINUE
    IF\IZ.EO.1.ANC.SL.GE.PLJ GOTC &CI
    IFIIL.EO.L.ANL.SL.LS.SLOI CCTL KCL
    IF(IZ.EQ.3.ANC.SL.GE.PLJ GUTC GOC
    CUNTINUE
801 ENGD=E
    IF(IL.[Q.3) CETC 9.)?
    GUTO 800
    H=H2-SIGN*2.C&LH*(SL-PL)/UX
    CALL CALCIHgLL)
    E=ENERG
    FM=FPM
    EMCO=「
    SL = PL
    BJTS #C4
    CUNTINUE
C
Cc
C
C
    THIS SECTIUR OEALS WITH THE POSSIEILITY OF FULL GORE FLOH
    3ECDMIGG ESTAELISHE) IN TME FIPF COHijTREAM. OF Tr:E JUMP
    LJCATIGN. THE fESITIJN OF THE HYRKAULIC JUMP IS
    JETERMINED PY ECUIVALENCS CF THE FHM TEDM JETAEEN THE
    FULL BGRE FLGH ANU THE UPSTKEAM SUPERCRITICAL FLUW.
    IF(SHAPE.EG.1) AREA=3%*2
    IF(SHAPE,EC.2). AREA=(3.142#E**2)/4.0
    IF(IOUT.EO.1) GOTO 310
    HRITE(3,790)
770 FUKMAT(/,2CY,0FULL 3JRE FLCH ESTAELISAED.'/)
316 CunTINUE
```



```
    F(2,15)=RHD&G*C/AREA+jAM&AREA*R/2.0
    IF(10UT.EO.1) CGTO 317
    HRITE(3,2C5)SL,6,EN(2,IS),F(2,IS)
317 CONTINUE
    XL=PL-SL
    \S=IS+1
    OEP(2,IS)=E
    X(2,15)=0.C
    SL=PL
    EN(2,1S)=EN(2,IS-1)
    F(2,IS)=RHO*O#O/AREA*;AM*AREA&(E/2.0)
    &F(IOUT.EQ.I) GOTU 3171
    WRITE(3,205)SLっB,EN(?,(S),F(2,IS)
3171 CONTINUE
    GOTO 900
900 CUNTINUE
C
```


IDENTIFICATION CF JUMP POSITION EY EGUIVALENCE

IF(F(1,1).LT.F(2,15).1NO.IOLT.EO.0) HRITE(3.3Eう)
FORMAT(/2OX, "JUMP JROANEJ \&T L $=0$ AT TEST PIPE ENTKY',/)
(F(F(1,1).LT.F(2,Ij)) GOTU \&CU
$X P=0.0$
JELX=PL/SOC.O
$X P=X P+U E L X$
Ju $102 \quad I=1,100$
$s=2$
IF (X(J,I +1), LE.XP.AV).X(J,I).CE.XP) GUTO 108
IF(X(J,I+1).EG.0.0) G!JTO 103
CDNTINUE
БALL INTER(X(J,I+1),F(J,I+1),X(」,1),F(J,I),XP,FX)
$J=1$
$00104 \mathrm{~K}=1,100$
LF(K.CT.İ(天) CCTJ!O3

GOTO 104
COVTINUE

104
b
c
c
b
c
c
c
c
CUNTI:UGF
C
continle
$F P(1,1)=F(1, k)$
$F P(1,2)=F(1, k+1)$
JP $(1,1)=x(1, k)$
$D P(1,2)=x(1, k+1)$
$\operatorname{FP}(2,1)=F(2,1+1)$
FP $(2,2)=F(2,1)$
JP $(2,1)=x(2,1+1)$
J) $P(2,2)=X(2,1)$
$1 P(1)=k$.
$\{P(2)=1$
CALL SOLVE! CP(1,1),FP(1,1),CP(1,2),FP(1,2),OP(2,1),FP(2,1),
1DP(2,2),FP(2,2), X」, ₹3)
CALCULATION CF סEPTH AND ENEPGY Changes at the jump.
DO $49 \mathrm{~K}=1$, ©
CALL IHTEん(X(K, IP(K)), ワミP(K, IF(K)), X(く, IP(K)+1),
lJEP(K, IP(K) +1), XJ, بJ(K))
GALL : NTER(X(r, IP(く)), EV(K,If(K)), V(K,If(K)+1),
LEN(K,IP(K)+I),XJ,EJ(K))

```
    CHH=HJ(2)-HJ(1)
    CHE=EJ(2)-EJ(1)
    \F(IDUT.EQ.I) GCTO 3&t
    HRITE(3,107)xJ,HJ(1),HJ(2),EJ(1),EJ(2),FX,CHH,CHE
```

C THIS OUTPUT SECTION IS JNLY USER IF IUUT=I,TABULAR
C JUTPUT ONLY
IF(ICLN。EU.2.AND.ICJUNT.EO.O) HFITE(3,325)
FORMATG'I PFCGKAM RESMLTS ELSEC CM TEKMINAL CONOITIDN' ${ }^{\circ}$ 1. IN THE APFFCACH PIPE ANU NCKMRL FLOH DEPTH JUWNSTPEAM'.
2° OF THE JUMP IN THE TEST PIPE. $0,1 / 1$
IF(ICON.EQ.Z.AND.ICJUNT.EG.OIHKITE 3,3218
$I=I C$
IF IICQUNT.EC. 2 O.AND.ICDN.EC. 2) HPITE(3,325)
IF(ICOUNT.EC.20)HRITE(3,321)
\&FIICUUNT.EC.2CIICMSNT=0
ICOUNT = ICUUNT + I
IF(HNZ(I).LT.HCZ(I)) j0TO 370
【F(MNZ(I).EC.E) GUT? 371
[F(FEN(I).LÉCFFM(I)) COTO $37<$
HRITE(3,323)CT(I),3,27.51(1), HM1(I), TEN1(1), S2(1), HC2(I),

2JEJ(I), CFPM(I), XJUYP(I)
Gutn 322

GuTO 322

371
j.jT? or:!
CuntI:HuF
READR4,70LISHAPE
IF (SHAPE.GT.O) CCTリ 寻2
ENO
jUgRTUTINE INTEF（A， $3, \therefore$ ， $0, X, Y)$
SUBROUTINE IMTEK SIMPLY INTERHULATES LINEARLY GETKEEN
THO SETS GF CATA PIINTS ANC IS USED TJ CALCULATE
JUMP OEPTH AND ENE？GY CHANCES AS HELL AS PUSITAON．
$Y=8+(X-A) *(C-E) /(L-A)$
RETURN
END

SUBROUTINE SOLVE $(X 1, Y L, X 2, Y 2, X 3, Y 3, \because 4, Y 4, X 5, Y 5)$

SUBQDUTINE SCLYE UETERMIMES THE INTERSECTIDN PUINT OF

$A=(Y 1-Y 2) /(X 1-X 2)$
$B=Y 1-X 1 \div A$
$C=\left(Y_{3}-Y_{4}\right) /\left(X 3-X_{4}\right)$
$J=Y 3-X \geq \neq C$
Xう $=(0-2) /(1-C)$
「5＝A＊$\times 5$－
RETURN
END
JISCHARGE FFGF THE STEEP SLOFE PIPE $(12=11$, OR SIMPLY
FROM TME ENFFGY IMPIST DATA IF THAT MOJE IS CHDUSEN
BY THE INPLT UF ICJV = I IN THE INITIAL KEAD STATEMENTS.
PIPE CRDSS SECTILN IJ COvTRCLLEE EY THE VALUE UF
TERM SHAPE, I=RECTAVOJLAR LF $<=C$ IFCULAR, IN TIE INPUT.
$G=9.81$
IF(SMAPE.G7.1) COTO 2
$Y 1=0$. 0

UH=HE/200.C
$H x=48 / 2.0$
$0075 \quad 1=1,1 C 0$
IF(I.j)
$H X=H X+O H$

IF(I.EO.1)(CTU 75

CONTINUE
Hぶ $=H X$
60701
SUdROUTINE CALC（H，UL）

SUBROUTINE CALC IS gSED THRCULHUUT THE PKUGRAM TO
JETERMINE THE FLCH-PIPE PARGMETERS SUCH AS FLUH
DEPTH,AREA, NETTED PEQIMETÉG AS HELL AS BEING USED
IN THE BISECTION METHJ.) CALCULATICN OF NOKMAL AND
CRITICAL DEPTHS IN EAGH OF THE PIPE LENCTHS.
IN THE CIHCULAR PIPE CROSS SECTICN CASE IT ALSU
calculates suetenleo angle and the hater surface
AIDTH AS UEFTH CHANOES.
as in éounc and maiv progkam the pipe shape is cetermined
by the vallf cf the term shape infut as data.
INTEGER SHAPE
COMMBN/CMI/P, O, C, CUV,SO, CAM,RHC, HCRIT, HNORM, AKEA,PER,FPM,ENERG
COMMON/CMZ/SHAPE
CDMMON/CM3/IZ
IF(SHAPE.ET. I)COTU 1
IFIIZ.ED.3.AMC.H.GE.B)H=3
ARE $A=H 43$
$P \subseteq R=B+2.0$ $\Rightarrow H$

JL=HCNT/(1-NGKFSC)

julC ?
くここそう。
$\therefore i=3 .-48$

IF (H.E G.R) THETA=FI

Gう「11 22
$1=\mathrm{j}$
THETA $=2.00 \mathrm{PI}$
AREA=P1*(3/2.0) $\%$ \#
\because
PER=PI*Q
$X 0=012.0$

GOTO 21
22．Continle
AREA＝（（B＋72）／8．0）\＆（THETA－SIN（THETA））
PER＝8 $=$ THETA／2．0
$T=2.0$（ $\left.\left.\left(\mathrm{HF}=\left(E-\mathrm{H}_{1}\right)\right) \neq \mathrm{F}_{1}\right) . j\right)$

OL＝HCRIT／（HNSKMFSO）

1／（4．07（THETR／2．0－0．575IN（THETA）））
$H 3 A R=X U+H-E / 2 . U$

ENERG＝H＊（0＊＊2）／（（ARE1＊＊2）＊2．0＊C）
CUNTINUE
RETURN
End

APPENDIX 12

PROGRAM HYDSUM

Al2. 1

PROGRAM HYDSUM

A full printout of program HYDSUM is included in this appendix. The program was written in Fortran for use on the NBS CBT Perkin Elmer 732 computer. No special facilities are required, single precision sufficient.

The program is designed to calculate the critical and normal flow depths based on pipe slope, cross sectional size and shape, flow rate and Manning coefficient. No flow chart is included as the program is directly copied from the early sections of HYDJUMP.

The output is in tabular form and presents critical and normal depths as functions of pipe slope and flow rate for set values of Manning coefficients. In addition (F \& M) values based on normal flow depths are calculated and tabulated as functions of pipe slope and flow rate.

Sample data are included in this appendix.

All calculations are carried out in $S I$ units and all data are input in these units with the exception of flow rate which is input in litres/s and converted in the program to $\mathrm{m}^{3} / \mathrm{s}$.

Case 1	Tabulation of $h_{n}, h_{c},(F+M)$ for a range of 8 flow rates for circular and rectangular channels.
Line 1	$\begin{array}{ll} \text { SHAPE } \quad 1=\text { rectangular } \\ & 2=\text { circular } \end{array}$
	$\begin{aligned} & \text { Format I3 } \\ & \nabla \nabla 2 \end{aligned}$
Line 2	T (diameter or width), RM(Manning coefficient), QMIN(lowest flow rate), $\mathrm{DQ}\left(f 1 \mathrm{l}\right.$ (increment) $\mathrm{NI}\left(\mathrm{N}^{\circ}\right.$ of test pipe slopes), $\mathrm{N} 2\left(\mathrm{~N}^{\circ}\right.$ of approach pipe slopes).
	```Format 4F10.4, 2I3 \nabla\nabla\nabla\nabla0.1500\nabla\nabla\nabla\nabla0.0150\nabla\nabla\nabla\nabla1.0000\nabla\nabla\nabla\nabla1.0000\nabla\nabla2\nabla\nabla3```
Line 3	Sl test pipe slope, Format F10.4. VマVVO.0025
Line 4	Sl test pipe slope, Format F10.4 VマVV0.0050
Line 5	S2 approach pipe slope, Format Fl0.4 $\nabla \nabla \nabla \nabla 0.5000$
Line 6	S2 approach pipe slope, Format F10.4 VVDV0. 7070
Line 7	S2 approach pipe slope, Format F10.4 $\nabla \nabla \nabla \nabla 0.8660$
Line 8	SHAPE Format I3 $\nabla$ I
Line 9	B, RM, QMIN, DQ, N1, N2 Repeat Line 2
Line 10	SHAPE   $\nabla \nabla 0$ - indicates end of file.

5BAT:-1

```
C HYOSUM CALCULATES VALUES OF HC ANO HN TO DETERAINE
G WHETHER JUMP FOMATION IS POSSIELE, ALSO VALUES OF
G FHM ARE CALCULATED TO INDICATE HHETHER THE JUMP IS
C JROHNED ET PIPE ENTRY.
 OIMENSION OT(10),SLTPE(100),FNP(1CC,IJ),HCP(10),F(100,10)
 INTEGER SHAPE
 COMMON/CHL/E,O,G,CJN,SO,GAM,RHO,HCRIT,HNOKM,AREA,PER,FPM,ENERJ
 COMMON/CM2/SHAPE
 READ(4,702)SMAPE
702 FORMAT(I3)
 READ(4,600)E,RM,OMIN,OQ,N1,N2
600 FGRMMAT (4F10.4,213)
 UT(1)=日MIN
 0) 601 K=2,8
 OT}(K)=\operatorname{OT}(K-1)+D
601 CONTINUE
 I =0
 00602 J=1,N1
 I=|+1
 READ(4.603)S1
5O3 FORMAT (F10.4)
 SLOPECII=SI
SO2 COMTINUE
 Du 604 J=1,N2
 I=1+1
 READ|4,603152
 SLOPE(I)=S2
 CONTINUE
 N3=N1+N2
 N4=NI
622 CONTINUE
 00 605 I=1,N3
 DU 606 K=1,8
 D=QT(K)/1000.0
 G=9.81
 RHO=1000.0
 GAM=G#RHO
 SO=SLOPE(I)
 CON=(RM&क2)/SO
6 DETERMINATICN OF CPITICAL AND NORMAL JEPTHS.
C GALCULATICN OF CRITICAL DEPTH.
 JP=8
 DN=0.0
 HC=UP/2.0
 CONTINUE
 GALL CALC(HC,EL)
 IF(HCRIT)3.4.5
 DN=HC
 GOTO 6
 UP =MC
 HCN=(UP*ON)/2.0
 \F(ABS((HCN-HC)/HC).LE.O.001) GOTO 8
 HC=HCN
 GOTO }
9 HC=HCN
4 IFBHCONT.EO.O.OJHCONT=HC
C GALCULATION OF NORYAL DEPTH.
 UP=8
 DN=0.0
 HN=UP/2.0
7
 CONTINUE
```

```
 IF(HNORM) 10,11,12
10 DN=HN
 GOTO }1
12 UP =HN
13 4NN=(UP+DN).12.0
 IF(ABS(|HNN-HN)/HNN).LE.O.OO1) GOTO.14
 HN=HNN
 GOTO 9
14 HN=HNN
L1 CONTINUE
 IF(HN.GE.8) MN=B
 CALL CALC(HN,DL)
 HNP(I,K)=HN
 HCP(K)=HC
 F(I,K)=FPM
 CONTINUE
 GINTINUE
 {F(SHAPE.EO.I) HRITE(3,607)B,RM
 IF(SHAPE.EO.2) HRITE(3,60y)E,RM
507 FORMAT (IHI, IX,//,5X, 'TABULATED NCRMAL FLOH DEPTHS'.
 1. FOR A RECTANGULAP CHANNEL CF HICTH. FIC.4.0 M.",
 2*AND MANNING COEFF.`F10.4,/%
SO9 FORMATILHL,IX,//////,* TABULATED VORMAL FLOW DEPTHS =JR A %,
 1.CIRCULAR CFOSS SECTION CHANNEL CF OIAMETER *,F10.4.
 2* M. AND MANNING COEFF. *F1O.4./I
 HRITE(3,609)(CT(K),K=L,8)
609 FORMAT///.5X, 'FLOM RATE = *, RFIO.4.0 L/5.*.5X,
 L'PIPE DIA. OR*,/,107X,*HIOTH K.*)
 #RITE(3,619)
619 FORMAT (/50X, 'NCRMAL JEPTH M.0)
 HRITE(3,610)SLOPE(1),(HNP(1,K),K=1, 3),8
610 FORMAT(5x, 'PIPE SLJPE*,2X,/.7x, '(SIN)*,/.5x.
 LF10.4,2X, oF 10.4,10X,F10.41
 OO 611 I=2:N1
 WRITE(3,612)SLOPE(I),(:HNP(I,K),K=1,9),B
612 FORMAT(5X,F10.4,2X,3F10.4,10X,F10.4)
611 CONTINUE
 I =N4
 HRITE{3,613)
613 FORMAT(//, 56x, "######**//)
 N5=N4+1
 DO 614 I=N5,N3
 HRITE(3,612)SLOPE(I), (HNP(I,K),K=1,B),B
S14 GUNTINUE
 4RITE(3,615)(HCP(K),K=1,8)
615 FORMAT(//, 5x,*CRITICAL*,4X,8FIO.4./.5x,*DEPTH M.*,/1
 IF (SHAPE.EO.1)HRITE(3.616)B,RM
 IF(SHAPE.EO.2IHRITE(3.617)B,RM
616 FORAAT(IHL,IX,//////5X. 'TAEULATED VALJES OF FFA AT NORMAL,*
 LOEPTHS IN A RECTANGULAR CHANNEL CF HIDTH ©.F1O.4.
 2' M. ANO MANNING COEFF. !,F10.4.1)
b17 FORMAT(IHI,IX,//////5x, 'TABULATED VALJES OF F*M AT NORMAL.
 L'OEPTHS IN A CIRCULAR GROSS SECTICN CHANNEL DIAMETER *
 2F10.4,' M. ANC MANNINS COEFF. ,F10.4,/)
 WRITE(3,609)(CT(K),K=1,8)
 HRITE(3,620)
620 FJRMAT (/4 3X, 'F &M VALUE AT NORMAL CEPTT, N.')
 4RITE(3,610)SLOPE(1),(F(1,K),R=1,8),8
 DO 618 I=2,N3
 IF(I.LE.N4)WRITE(3,G12)SLOPE(I),(F(I,<),K=1,8),B
 IF(I.GT,N4)HRITE(3,512)SLUPE(I), (F(I,N),K=1,d),8
 IF(I.EEO.N4)HRITE(3,513)
```

continue
रEAD（4．702）SHAPE
IF（SHAPE．EQ．O）COTO 621
READ（4，600）E，RM，GMIN，JQ，N1，N2
GOTO 622
Continue
END
SUBROUTINE CALC（H．DL）
SUBROUTINE CALC IS IJSEO THROUGHOUT THE PROSRAA TO
JETERMINE THE FLOHGPIPE PARAMETERS SUCH AS FLOW
DÉPTH，AREA，HETTED PERIMETER AS WELL AS EEING USED
IN THE 8ISECTION METHOO CALCULATIGN OF NORMAL AND
CRITICAL DEPTHS IN SAGH OF THE PIPE LENGTHS．
IN THE CIRCULAR PIPE GROSS SECTICN CASE IT ALSO
GALCULATES SUBTENDED ANGLE AND THE HATER SURFACE
HIDTH AS DEPTH CHANGES．
AS IM BOUND AND MAIN PROGRAM THE PIPE SHAPE IS OETEPMINED 3Y THE VALUE GF THE TERM SHAPE INPUT AS DATA．
INTEGER SMAPE
COMMON／CH\＆／E，O，G，CIN，SO，GAM，RHO，HCRIT，HNORM，AREA，PER，FPH，ENERG
COMMON／CH2／SHAPE
COMMON／CM3／IZ
IF（SHAPE，GT．1）GGTO 1
IF（IZ，EO．3．AND．H．GE，BIH＝8
AREA＝H＊B
PER＝B＋2．0劵

HNORM＝1。0－（Cもあ2）क CON／（（AREA＊＊3．333）／（PER＊क1．333））
OL＝HCRIT／（HNORMFSO）
FPM＝（GAM＊AREA＊H／2．D）＊（RHO＊Q＊O／AREA）
ENERG＝H＊（Q＊＊2）／（（AREA＊＊2）＊2。C＊G）
SOTO 2
$1 \quad R=B=0.5$
$P I=3.142$
IF\＆IZ．EQ．3．ANE．H．CE． 31 GOTO 20
【F（H，LT，R）THETA＝2．$) \neq A T A N(S O R T(H *(8-H)) /(B / 2,0-H))$
【F（H．EQ．R】 THETA＝PI
IF（H．GT•R）THETA＝PI＊2．0＊ATAN（（M－R／2．0）／（SORT（H\＃（B－M））））
GOTO 22
$t=8$
THETA $=2$ ．0＊PI
AREA＝P1＊（B／2．0）\＃\＃2

K $0=B / 2$－ 0
608021
22 CONTINUE

PER＝B＊THETA／2．0


HNORM＝1．0－（0\＃\＃2．0）कCJN／（（AREA＊＊3．333）／（PER＊＊1．333））
DL＝HCRIT／（HNCRM＊SO）

1／14．0＊（THETA／2．0－0．5＊SIN（THETA）））
$21 \quad-1 B A R=X O+H-E / 2.0$
$F P H=G A M \neq A R E A \neq B A R+R H O \neq O \neq Q / A R E A$
ENERG＝M＋（Q＊＊2）／（（AR5A＊＊2）＊2。O＊C）
2 CONTINUE
RETURN
ENO
\＆ENJ

1. PUBLICATION OR REPORT NO. NBSIR 81-2367
2. Performing Organ. Report No.
3. Publication Date

November 1981
November 1981
4. TITLE AND SUBTITLE

PREDICTION OF THE HYDRAULIC JUMP LOCATION FOLLOWING A CHANGE OF SLOPE IN A PARTIALLY FILLED DRAINAGE PIPE
5. AUTHOR(S)

John A. Swaffield

| 6. PERFORMING ORGANIZATION (If joint or other than NBS, see in structions) | 7. Contract/Grant No. |
| :--- | :--- | :--- |

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20234

## 9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. Stote, Z(P)

Department of Housing and Urban Development
451 7th Street, SW
Washington, D.C. 20410
10. SUPPLEMENTARY NOTES
[] Document describes a computer program; SF-185, FIPS Software Summary, is attached.
11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here)
The criteria governing the formation of a hydraulic jump in a partially filled fluid conduit downstream of a slope change are presented together with the necessary techniques to enable water surface profiles and jump location to be predicted.

Computer programs designed to model the conditions leading to jump formation under flow and channel scale conditions compatible with current drainage system design are presented.

The results of a wide range of test conditions in terms of jump formation and position downstream of a change in channel slope are presented together with a set of criteria to be used in evaluating whether a jump will occur for a given set of design conditions.
12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons) building drainage; gradually varied flow; hydraulic jump; partially filled pipe flow.
13. AVAILABILITY
[X] Unlimited
$\square$ For Official Distribution. Do Not Release to NTIS
$\square]$ Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.
[X]Order From National Technical Information Service (NTIS), Springfield, VA. 22161
14. NO. OF

PRINTED PAGES

193
15. Price
\$15.50


[^0]:    Figure 16. Variation of jump position with test pipe slope $1 / 80-1 / 200$. Flow fIgure
    1/80-1/200

[^1]:    APPENDIX 5
    JUMP LOCATION IN A 0.10 m WIDE
    RECTANGULAR CHANNEL, MANNING COEFFICIENT 0.015,
    AT SLOPES $1 / 40,1 / 80,1 / 100,1 / 200$

[^2]:    
    FULL GJRE FLON ESTABLISHES IN TEST PIPE。

[^3]:    COMND DATA APPRUACI PIPE GATA TEST PIPE DATA ANO PBJERAM KESULTSO
    Constent $n$ ，tast and approach pip
    NTAV ENTRY UPJUMP JJNY DEPTH ENFRGV EMERGY ENEPCV JUMP AJ\＆＊
    EPIH ENEAGY FOM DEPTM JEPIIA CHANGE UPJUMP DOMN CHANGE FOM．PJSO
    sump urumald as loo at test pape entav．
    
    
    $0.00 .150 .0150 .17360 .0330 .2460 .03333 .0710 .10140 .034 \quad 3.2412 .4440 .040$ J．104 $0.052 \quad 0.125 \quad 0.112 \quad 0.0130 .3091 .385$
    
     0.5714 .400 U．U．4 $v .1010 .032 \quad 0.1250 .112-0.1138 .3092 .350$
    
    

    0
    0
    0
    0
    0
    0
    0
    $\vdots$
    0
    0
    $\vdots$
    $\vdots$
    0
    0
    0.123
    0.052

