

NBSIR 81-2342

FEDSOL: Program User's Manual and Economic Optimization Guide for Solar Federal Buildings Projects

-QC 100 .U56 81-2342 1981

August 1981

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Washington, D.C. 20234

NBSIR 81-2342

MATIONAL BUREAU OF STANDARDS LIBEARY SEP 16 1981

1901

FEDSOL: PROGRAM USER'S MANUAL AND ECONOMIC OPTIMIZATION GUIDE FOR SOLAR FEDERAL BUILDINGS PROJECTS

Jeanne W. Powell

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Building Technology Building Economics and Regulatory Technology Division Washington, DC 20234

Richard C. Rodgers, Jr.

Consultant in Solar Energy Research, Development, and Design Palo Alto, California 94302

August 1981

Sponsored by: Field Applications Branch Division of Active Heating and Cooling Office of Solar Applications for Buildings U.S. Department of Energy Washington, DC 20585

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

ABSTRACT

This report provides a user's manual for the FEDSOL computer program and a guide for designing and sizing solar energy projects for Federal buildings. The life-cycle cost procedures implemented by the computer program and explained in the report are consistent with the Federal Rules for Life-Cycle Costing (10 CFR Part 436) as applied to solar energy projects.

The FEDSOL program determines the economically optimal size of a solar energy system for a user-specified building, location, system type, and set of economic conditions; it conducts numerous breakeven and sensitivity analyses; and it calculates measures of economic performance as required under the Federal Rules. The economic model in the program is linked with the SLR (Solar Load Ratio) design method developed at Los Alamos National Laboratory to predict the performance of active systems. The economics portion of the program can, however, be used apart from the SLR method, with performance data provided by the user. An environmental data file for 243 U.S. cities is included in the program. Highly user oriented, the FEDSOL program is intended as a design and sizing tool for use by architects, engineers, and facilities managers in developing plans for Federal solar energy projects.

Key words: cost effectiveness; economic optimization; Federal buildings; life-cycle costing; solar economics; solar energy.

ACKNOWLEDGMENTS

The authors wish to thank all those persons who contributed to the preparation of this report. Rosalie T. Ruegg served as project leader during the formative stages of the project and provided substantial editorial and technical assistance to this final report. Much of the material in section 3 of this report was taken from the Life-Cycle Cost Manual for the Federal Energy Management <u>Program [1]</u>, prepared by Rosalie Ruegg, and Chapter 11 of the <u>Solar Design</u> <u>Workbook [2]</u>, prepared by Rosalie Ruegg, Thomas Sav, and Jeanne Powell. Dr. Harold E. Marshall, Group Leader of the Applied Economics Group, Dr. Kent Reed, Group Leader of the Solar Equipment Group, Lynne Charlton of the Solar Technology Group, Center for Building Technology, and Robert Atkins, Office of Engineering Standards, National Bureau of Standards also deserve special thanks for the time they spent in discussing and reviewing this report and for their many helpful comments.

Special acknowledgment and appreciation are extended to Drs. Norman E. Schnurr and Bruce D. Hunn of Los Alamos National Laboratory for their encouragment and technical assistance in incorporating "The Solar Load Ratio Method Applied to Commercial Building Active System Sizing"[3] within the FEDSOL program and for reviewing this report.

The authors also wish to thank Mr. William Lemeshewsky of the Department of Energy, Program Coordinator of the Solar Federal Buildings Program, and Mr. Robert Lorand of JRB Associates, Inc., Contract Manager, for providing financial support and guidance to this project.

PREFACE

This report was prepared by the Applied Economics Group, Building Economics and Regulatory Technology Division, Center for Building Technology, National Engineering Laboratory, National Bureau of Standards (NBS), for the Department of Energy, Office of Solar Applications for Buildings, under Interagency Agreement E(49-1)-3800, EA-77-A-01-6010.

The work is in support of the Solar Federal Buildings Program, whose broad objective is to stimulate the growth and improve the efficiency of the solar industry by providing funds to Federal agencies for the design, acquisition, construction, and installation of commercially applicable solar hot water, heating, cooling, and process systems in new and existing Federal buildings. The authorizing legislation for the Solar Federal Buildings Program (the National Energy Conservation and Policy Act of 1978) further ordered that a life-cycle cost analysis conducted in accordance with a uniform methodology and procedures to be established by the Department of Energy accompany proposals for project funding.

This report provides a comprehensive guide for applying life-cycle cost analysis to the economic evaluation, design, and sizing of Federal solar energy projects with FEDSOL, an interactive computer program that is fully consistent with the methodology and procedures for life-cycle cost analysis established by the Department of Energy. FEDSOL can be accessed through the Solar Energy Information Data Bank (SEIDB), the computer time-sharing network operated by the Solar Energy Research Institute, and is available on magnetic tape from the National Technical Information Service. The FEDSOL program and user instructions (section 2 of this report) were prepared by Richard C. Rodgers, Jr., Consultant in Solar Energy Research, Development, and Design, P. O. Box 1365, Palo Alto, California 94302.

TABLE OF CONTENTS

																						Page
ABSI	RACI		• • •	• • •	• •	•	• •	• •	٠	• •	•	٠	•	• •	٠	٠	•	•	•	•	•	iii
ACKN	IOWLE	DGMENTS		• • •	• •	•	••	• •	٠	• •	•	٠	•	• •	•	•	•	•	•	•	•	iv
PREF	ACE			• • •	• •	•	• •		•	• •	•		•	• •	٠	٠	•	•	•	•	•	v
LIST	OF	TABLES A	ND FIC	GURES	• •	•	••	•••	•	• •	•	•	•	• •	•	•	•	٠	•	•	•	viii
1.	INTE	RODUCTION	• • •	• • •	• •	•	••	••	٠	• •	•	•	•	••	•	•	•	•	•	•	•	1
	1.1	Backgro	und		• •	•			•	• •	•	•	•		•	•	•	•	•	•		1
	1.2	Purpose	and §	Scope	• •	•				• •	•	•	•	• •		•	•		•		•	2
	1.3	Approac	h and	Organ	niza	tio	n .	••	•	•••	•	٠	•	•••	•	•	•	•	•	•	•	3
2.	INST	TRUCTIONS	FOR (OPERAT	FING	G TH	E FH	EDSO	LC	OME	PUTI	ER	PR	OGR	AM	•	•	•	•	•	•	5
	2.1	Overvie	W •							• •			•		۰.							5
		2.1.1	Therma	al (S]	LR)	and	Eco	onom	ic	Per	fo	rma	inc	e A	na]	lys	is		•			5
		2.1.2	Econor	nic An	naly	sis	0n]	Ly .	•	• •	•				•	•	•			•		5
	2.2	Getting	Star	ted .	• •	•	• •		•	• •	• •	•	•	• •	•		•	•	•		•	6
		2.2.1	Calli	ng Up	FED	SOL	•		•	• •	•	•		• •	•		•		•	•	•	6
		2.2.2	Getti	ng Aco	quai	Inte	d Wi	Lth	FED	SOI		•	•	• •	•	•	•	•	•	•	•	7
	2.3	Creatin	g a No	ew Fil	le .		• •		•		•	•	•	• •	•		•	•	•		•	8
		2.3.1	Supp1	ying (the	Req	uire	ed D	ata		•	•	•	• •			•	•	•	•	•	8
		2.3.2	Chang:	ing De	efau	ilt	Valu	ıes	•	• •	•	•	•	• •		•	•	•	•		•	11
	2.4	Running	the I	Analys	sis	•	• •	• •	•	• •	•	•	•	• •	•	•	•	•	•	•		17
	2.5	Saving	a Filo	e		•	• •	• •	•	• •	•		•	• •	•	•	•	•	•			17
	2.6	Termina	ting]	Execut	tior	ı of	FEI	DSOL		• •	•	•	•	• •	•	•	•	•	•	•	•	18
	2.7	Learnin	g FED	SOL .	• •	•	• •	• •	•	• •	•	•	•	••	٠	٠	•	•	•	•	•	18
~												4.5	-									
3.	THE	LIFE-CYC	LE CO	ST ME	THOI	J FO	R SI	LEC	1.16	VG 2	SOL	AK	EN	EKG	Y S	512	TE	MS				0.0
	FOR	FEDERAL	BUILD.	INGS	• •	• •	• •	• •		• •	• •	•	•	••	•	•	•	•	•	•	•	20
	3.1	Compari	ng En	ergy l	Use	Wit	h ai	nd W	lith	out	: S(01 a	ır	• •	•	•	•	•	•		•	20
		3.1.1	Estim:	ating	Bui	lldi	ng I	Ener	gу	Req	ui	ren	ien	ts		•	•	•	•	•	•	21
		3.1.2	Estim:	ating	Ene	ergy	Sav	ving	S		•	•	•	• •	•	•	•	•	•	•	•	22
		3.1.3	Estim	ating	Ene	ergy	Sav	, ing	SW	ith	n Fl	EDS	OL		The	≥ S	LR					
			Metho	d	• •	• •	••		•	• •	•	٠	•	• •	•	•	•	•	•	•	•	23
	3.2	Identif	ying]	Releva	ant	Cos	ts,	Ass	ump	tic	ons	, а	ind	Со	nst	ra	in	ts		•		27
		3.2.1	Inves	tment	Cos	sts	•••		•		• •	•	•		•		•	•	•		•	30
		3.2.2	Recur	ring]	Non-	-fue	1 01	bera	tio	on a	nd	Ма	in	ten	and	e	Со	st	s	•	•	31
		3.2.3	Repla	cemen	t Co	osts	and	1 Sa	lva	ige	Va	lue	2		•		•	•	•		•	32
		3.2.4	Energ	y Cost	ts .	•	• •		•	• •	•	•	•	• •	•	•	•	•	•	•		33
		3.2.5	Infla	tion a	and	the	Di	scou	int	Rat	:e	•	•	• •	•	•	•	•	•	•		33
		3.2.6	Study	Perio	, bc																	35
	3.3	Calcula	ting '	Total	Lif	Ee-C	ycle	e Co	sts	s Wi	lth	ar	nd I	Wit	hou	ıt	So	1a	r		•	35
		3.3.1	Total	Life	-Cyc	le	Cost	ts W	lith	nout	: Se	01 a	ır	• •			•					36
		3.3.2	Total	Life	-Cvc	le	Cost	ts W	lith	1 Sc	ola:	r										36
		3.3.3	Net S	aving	s							•		• •		•		•				38
	3.4	Optimiz	ing S	ystem	Des	sign	•		•	•			•	• •								38
		3.4.1	Frame	work	for	Ont	imi	zati	on													38

TABLE OF CONTENTS (cont.)

				Page
	•		•	40
•	•	•	•	41

		3.4.2	Maximiz	ing Sa	vings		• •	• •	• •			• •	•	• •	•	40
		3.4.3	Minimiz	ing Lo	sses	• • •	• •	• •	• •	• •	•	• •	•	• •	•	41
		3.4.4	What To	Do Wh	en th	e Econ	omica	11y	Opti	mal	So	lar				
			Energy	System	Size	Is Ze	ro or	: Ver	y Su	a11	•	••	•	• •	•	41
		3.4.5	Optimiz	ing Sy	stem	Size w	ith H	FEDSO	L.	• •	•	• •	٠	• •	•	43
		3.4.6	Conduct	ing Se	nsiti	vity A	nalys	ses w	ith	FED	SOL	•	٠	• •	٠	45
		3.4.7	Making	the De	sign	and Si	zing	Deci	sion	•	•	• •	٠	• •	•	48
	3.5	Calcula	ating Ot	her Me	asure	s of E	conon	nic P	erfo	rma	nce	•	•	• •	•	48
4.	CASE	EXAMPL	ES ILLUS	TRATIN	G THE	FEDSO	L PRC	GRAM	•	•••	•	••	•	•••	•	51
REFI	ERENCE	zs	• • • •	•••	•••	• • •	•••	• •	••	•••	•	••	٠	••	•	74
APPI	ENDICE	ES	• • • •	•••	•••	•••	••	••	••	•••	•	••	•	•••	•	A1
A -	FEDSC	L Prog	ram Code	• •									•			A1
в –	Map a	and Code	ed List	of Cit	ies i	n FEDS	OL Ge	eogra	phic	al	Dat	a Ba	ank		•	B1
с –	Disco	ount For	rmulas	• • •			• •	• •	• •	• •	•	•••	•	•••	•	C1
D -	The S	Solar L	oad Rati	o Desi	gn Me	thod:	Perf	forma	nce	Cur	ves	and	1			
	Schen	natic Da	iagrams	• • •	• • •	• • •	• •	• •	• •	• •	•	• •	•	•••	•	D1
E -	Illus	stratio	ns and E	xplana	tions	of Ke	y Alg	gorit	hms	• •	•	• •	•	• •	•	E1
F -	Conve	ersion 1	Factors	for th	e Mos	t Comm	on Un	nits	Used	in	So	lar				
0	Energ	gy Syste	em Desig	n and	Evalu	ation	• •	• •	• •	• •	•	• •	٠	• •	٠	Fl
G -	Kange	e or Ace	ceptable	Value	s for	Input	Data	L •	• •	• •	•	• •	•	• •	•	Gl

LIST OF TABLES AND FIGURES

Page

Tables

2.1	Standard System Types 1
3.1	Thermal Performance for SAMPLE Case
3.2	Efficiency Curve Coefficients Used To Characterize the Generic Types of Flat Plate Collectors
3.3	The Standard Active System
3.4	Life-Cycle Cost Summary for the SAMPLE Case 4
3.5	Table of Solar Fractions and Net Savings for the SAMPLE Case 4
3.6	Breakeven Analysis for the SAMPLE Case

Figures

3.1	The Solar Load Ratio Method: A Generalized Design Curve	24
3.2	LCC Trade-Off Between Conventional Energy and Solar Energy	39
3.3	Determining the Economically Optimal System Size Through Minimizing TLCC _{s,a}	39
3.4	Determining the Economically Optimal System Size Through Maximizing Savings	39
3.5	Minimizing Losses (-NS) Associated with Solar Projects	42
3.6	Sizing Systems When No Optimization Is Possible (A System Size of Zero Minimizes Net Losses)	42
3.7	Annual Solar Fraction vs. Net Losses - Sample Test Results for an Office Building System for Space and Service Water Heating	
	in Four U.S. Cities	46

1. INTRODUCTION

To design and size solar energy systems for maximum economic efficiency, it is important to use life-cycle cost (LCC) analysis throughout the planning and design stages of a project. Federal agencies are required to submit a lifecycle cost evaluation consistent with a prescribed methodology and procedures for life-cycle cost analyses before undertaking an investment in solar energy.

1.1 BACKGROUND

The National Energy Conservation and Policy Act of 1978 (NECPA) authorized the Solar Federal Buildings Program (SFBP), a multi-year program designed to promote the use of solar energy and to develop a more efficient solar industry. The NECPA directed the Department of Energy to develop uniform LCC methods and procedures to be followed by all Federal agencies in evaluating the cost effectiveness of potential energy conservation and renewable energy investments in Federally owned and leased buildings. According to Title 5, Part 2, Sec. 523, of NECPA, these LCC procedures must be applied to projects funded under the Solar Federal Buildings Program.

The Federal LCC Rule was published in the January 23, 1980 issue of the <u>Federal</u> <u>Register</u> [4], with energy price data then current. A revision of the Rule, including new energy price data and other changes pursuant to the Energy Security Act of 1980, was proposed in the October 27, 1980 issue of the <u>Federal</u> <u>Register</u> [5] and was published in final form on September 1981 [6]. Further revisions to the LCC Rule, primarily to update energy prices, will be made periodically.¹ The "Methodology and Procedures for Life-Cycle Cost Analyses" is Subpart A of Part 436 of Title 10 of the Code of Federal Regulations. Subpart D of Part 436 sets forth guidelines for the Solar Federal Buildings Program.

To help implement the LCC methodology and procedures, an LCC Manual [1] has been prepared. The LCC Manual explains the life-cycle costing method, defines the terms, describes assumptions and procedures to follow in performing evaluations, and gives examples. In addition, it provides a set of worksheets, a computer program, and step-by-step instructions for performing the LCC evaluations of energy conservation and renewable energy projects for Federal buildings. The Solar Project worksheets were submitted with proposals for project funding under the Solar Federal Buildings Program.²

¹ The status of current energy price data for use in carrying out the Federal LCC evaluation can be ascertained by contacting Jack Vitullo, Federal Energy Management Program Office, Forrestal Building, U. S. Department of Energy, Washington, D.C. 20585. Telephone: 202-252-9471.

² The reader is referred to the LCC Rules, the LCC Manual [1], and to the A-2 Cost Data forms for Solar Federal Buildings projects for further information in applying the Federal LCC procedures and computer program contained in this report to solar projects in Federal buildings.

The worksheet evaluations are used as an indication of the relative cost effectiveness of various candidate projects. The resulting data are useful in selecting and sizing projects, and add to the body of knowledge concerning the economic viability of solar investments for Federal buildings.¹

To promote the economically efficient use of solar energy, the Solar Federal Buildings Program encourages selection of the system size which gives the greatest total net savings based on a life-cycle cost comparison of alternative solar energy systems and a reference energy system.² Proposals for funding must state the method of calculation used in optimizing collector area.

A number of solar analysis computer programs with life-cycle cost routines for system size optimization are available. Unfortunately, use of these programs to evaluate Federal building projects is difficult, requiring a thorough understanding of the economic models contained in them and considerable manipulation of data and program output to bring them into conformance with the Federal LCC Rule and SFBP Rule.³ The worksheets contained in Solar Form A-2 and the computer program in the LCC Manual are convenient for evaluating a single project. However, using them to evaluate a large number of design/size configurations requires laborious, repetitive calculations. This process can be streamlined by using a computerized economic optimization algorithm with a built-in thermal performance model.

1.2 PURPOSE AND SCOPE

The purpose of this report is to provide an easy-to-use computer program, FEDSOL, and guide for designing and sizing solar energy projects for Federal buildings according to required life-cycle cost procedures.

Although the FEDSOL program and guide should be useful to researchers and students in general in the solar energy field, they are intended primarily as

- ¹ The LCC data for projects funded under the Solar Federal Buildings Program are available through the Solar Data Center at the National Bureau of Standards. The data may be obtained in hard-copy report form or accessed interactively through an on-line, data retrieval system [8].
- ² A solar project need not be cost effective to be approved for SFBP funding although its comparative degree of cost effectiveness is one criterion, accounting for up to 20 percentage points, that is considered in its approval. "Cost effective" means that the estimated benefits (savings) from a project exceed its costs, where both are assessed over the life of the project (not to exceed 25 years) in accordance with the Federal LCC Rules.
- ³ F-CHART and SOLCOST, for example, contain life-cycle cost routines, including system size optimization. However, the users' guides provide little information about the life-cycle cost models contained in the programs. The NBS is currently preparing a report which compares the LCC sections of the following computer models: F-CHART 3.0, F-CHART 4.0, SOLCOST, BLAST, DOE-2, and FEDSOL [9].

working tools for practicing architects, engineers, facilities managers, and others engaged in the economic evaluation and design of Federal solar energy projects.

In addition to serving as a user's manual for the FEDSOL program, this guide describes the model for optimizing the size of a solar energy system according to the Federal LCC Rules. Since the FEDSOL program contains as default values the data and assumptions required (or recommended) under the Federal Rules, it is considerably easier to use for evaluating a Federal project than existing solar simulation programs with life-cycle cost routines.¹ At the same time, the life-cycle cost model contained in the program is sufficiently general to be applicable to a broad range of solar energy investment decisions undertaken in the public or other non-profit sectors.²

Using the solar load ratio (SLR) method for estimating solar energy system performance, FEDSOL determines the economically optimal size for a solar energy system and calculates the required life-cycle cost measures of economic performance for the optimal system. It also conducts sensitivity analyses of the effects on life-cycle costs of oversizing and undersizing systems. For systems that are not cost effective under the conditions specified, it determines the energy price assumptions and investment cost assumptions for which the system would be cost effective.

1.3 APPROACH AND ORGANIZATION

The approach taken in this users' manual and guide is, first, to provide instructions for operating the FEDSOL computer program and, second, to provide guidance in understanding the procedure and in applying the computer program to different kinds of solar projects for Federal buildings.

Section 2 provides a general overview of the thermal and economic analysis options contained in the FEDSOL program and step-by-step instructions for implementing the program on the SEIDB time-sharing system. Included are instructions for 1) calling the program, 2) using the program commands, 3) selecting an analysis option appropriate to a specified project, 4) changing the default values for input variables, 5) rerunning the program with changes in input values, and 6) saving input data for future use.

Section 3 explains the economic evaluation model for Federal buildings projects upon which the FEDSOL program is based. It describes the procedures, data, and assumptions required for conducting a life-cycle cost evaluation of a solar project undertaken in the Federal sector and provides guidelines for developing the additional data required.

¹ The program will assume these default values unless the user specifies otherwise.

² For more detailed economic models providing for in-depth analysis of investments in active and passive solar energy systems for commercial buildings, the reader is directed to references [10, 11, 12, 13]; for models that treat solar investments for buildings of State and local governments and non-profit organizations, the reader is directed to references [12, 13, 14].

Annotated examples of program input and output listings are provided in section 4. Appendices include a listing of the FEDSOL program code, documentation of the major algorithms contained in the program, discount formulas referenced in this report, and a map and coded list of 243 cities for which the program contains environmental and weather data.

Those who are familiar with the LCC method and the Federal requirements regarding data and assumptions may wish to proceed directly to the instructions for operating the FEDSOL computer program in section 2; those who are not may wish to review section 3, a primer on the method, data, and assumptions, before going to section 2.

2. INSTRUCTIONS FOR OPERATING THE FEDSOL COMPUTER PROGRAM

2.1 OVERVIEW

FEDSOL is a completely interactive, easy-to-use computer program available to Federal agencies and contractors to Federal agencies in the Program Library of the Solar Energy Information Data Bank (SEIDB) computer time-sharing system. This system is operated by the Solar Energy Research Institute through the TYMNET communications network. No computer programming knowledge or computer experience is required to use the program.

FEDSOL was designed to evaluate active solar domestic hot water and/or space-heating systems using the solar load ratio (SLR) method of predicting performance. Two solar analysis options are available:

- a Thermal (Solar Load Ratio method) and Economic Performance Analysis, for situations where both thermal and economic analyses are desired, and
- an Economic Analysis Only, for evaluating the economic performance of projects whose thermal performance is already known or has been projected by some other means.

2.1.1 Thermal (SLR) and Economic Performance Analysis

FEDSOL produces a thermal analysis for the type of "standard" active solar energy system that you, the program operator, specify. It then uses this thermal analysis as input, along with additional economic information that you are asked to supply, to perform a life-cycle cost analysis for the system under consideration. Once this analysis has been generated, you may return to the original data and change one or more items, then run the analysis again to obtain new results.

You have a choice of pre-specifying the size of the solar energy system or of solving for the size:

- a. you may specify the collector area of the system you wish to analyze, and FEDSOL will generate the thermal and economic analyses of a system of that size; or,
- b. you may request an optimization analysis, and FEDSOL will determine the optimal collector area (collector area which results in the lowest life-cycle cost).

2.1.2 Economic Analysis Only

If you wish to perform an economic analysis only, FEDSOL will accept the preestimated performance of the system as input data along with economic data for the project. It will then generate an economic analysis from these two sets of data. You may wish to employ this alternative if you already have a thermal analysis from another source. You will be asked to supply the annual heating requirement and annual solar heating fraction obtained from this source.

2.2 GETTING STARTED

To access and use FEDSOL, you will need a terminal, an acoustic or direct connect modem, and a telephone. The modem may be a separate unit or may be built into the terminal.

For information about accessing the SEIDB System, contact

Mr. Rafael E. Ubico SEIDB Network Coordinator Solar Energy Research Institute 1617 Cole Blvd. Golden, CO 80401 (FTS 327-1032 or 303-231-1032).

The program code, written in BASIC, is reprinted in Appendix A and is available on tape from

National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161.

2.2.1 Calling Up FEDSOL

To call up FEDSOL, dial the TYMNET number for your city and fit the telephone receiver into the acoustic coupler. Be sure that all of the components of your system are turned ON. The terminal should be set for FULL DUPLEX and upper case (for alpha entries).

After a brief pause the timeshare system should communicate with your terminal. You will receive information about log-in procedures when you obtain your account with the SEIDB system. NOTE: (A carriage return (hereafter referred to as (CR)) must follow each entry.

After you have completed the "sign on" procedure, the terminal will respond with the prompt character (*). The next step is to access FEDSOL by entering

- FEDSOL (CR).

Now the terminal will print:

FEDSOL - VERSION 1.0 *** NATIONAL BUREAU OF STANDARDS

COMMAND: N=NEW, O=OLD, L=LIST, C=CHANGE, R=RUN, S=SAVE,Q=QUIT, H=HELP ?

N allows you to create a completely new file, regardless of data previously entered;

- 0 calls up any previously saved FEDSOL file when you enter the name of the file;
- C permits you to edit data already present in a file;
- L lists the data elements of the current file, along with their current values;
- R executes either the economic analysis only or the thermal AND economic performance analyses;
- S saves the data in the current file and allows you to name the file;
- Q stops execution of FEDSOL and returns you to system;
- H accesses and prints the instructions for using FEDSOL.

You may enter data in either English or Standard International (SI) units. In addition, once the file has been created using one set of units, you may list (L) the data or run (R) the program in either that same set of units or the alternative set. There is no need for the program operator to make any unit conversions.

2.2.2 Getting Acquainted with FEDSOL

Each time you begin a session with FEDSOL you must select either N (New) or O (Old). N allows you to create an input file, and O retrieves an existing input file from storage. You may not perform the remaining operations, C, L, R, or S, until you have used N or O to create or access an input file. A demonstration file for a system for space and service water heating in an office building in Washington, D.C. is stored permanently under the filename "SAMPLE."

Retrieving an Existing File. The first time you run the program you may wish to call the demonstration file SAMPLE. This will help familiarize you with the required input data elements and with the C, L, and R commands.

Select O (CR) to retrieve an existing input file. You will be asked for the name of the file you are requesting. Type in SAMPLE (CR) in response to this prompt. Answer the next prompt, ENGLISH OR SI UNITS (E OR SI)? with E (CR) or SI (CR), depending on which units you wish to use. The command selection

COMMAND: N=NEW, O=OLD, L=LIST, C=CHANGE, R=RUN, S=SAVE, Q=QUIT, H=HELP ? will now print again. Select L (CR) to list SAMPLE.

Note carefully the data elements appearing in this SAMPLE listing. These are the data elements for which you will need to provide values when you create or change your own data files.

Now that you have listed SAMPLE, the command selection will reappear. Select R (CR) to run the analyses for this SAMPLE input file.

7

After the analyses have been completed and the results printed, the command selection menu will reappear. Select C (CR) to change any values in the input file. Type in the number of the line you wish to change (refer to listing) (CR). The description of the parameter and its current value will be displayed. In response to the LINE NUMBER? query, type in the new value you wish to use, followed by (CR). When you have completed making changes, you may exit the change mode by typing a (CR) in response to the LINE NUMBER? query. This will return you to the command selection. You may wish, for example, to change the last item (data input #70) in order to generate the "Extended" output (by entering "2" as the new value) or the "Summary" output (by entering "3" as the new value).

NOTE: To change units at this (or any) time, first select S (CR) to save the modified input data file under a filename. Then select 0 (CR) to recall the file by its name, and enter E or SI (CR) to designate the units you desire. If you have made changes to the input file since first retrieving it from storage, it is important to use the S command to save the current input file before you use the O command to recall it. Otherwise, you will lose any changes you have made since retrieving the input file from storage. Now you may list the file or run the analyses in the new units.

Once having made the desired changes in the data file, you may re-run the analyses (R), re-list the input data file (L), save the file in permanent storage, (S), terminate execution of FEDSOL (Q), or create a new file (N).

NOTE: You may not change a file to describe a system in a different location. Create a new file to consider a new location or different type of building. FEDSOL will then automatically select the appropriate geographical and energy price data for the new building and location.

2.3 CREATING A NEW FILE

Select N (CR) from the command selection to create a new file. Be sure first to save your previous file if you wish to retain it for later reference. If you have not saved it, the N command will cause that data to be lost.

In creating a new file, you will need to supply a minimum set of data. Once you have responded to the queries for this data, the program will supply its own default values for the remaining data elements. This enables you to create a usable data file almost immediately with little chance of error. At this point, you may list the file (L) to see your new input data along with the default values for the location you selected. Change (C) any of the data you wish, or simply run (R) the analyses.

2.3.1 Supplying the Required Data

Once you have given the N command, you will be queried for the following data:

ENGLISH OR SI UNITS? (E OR SI)?

Enter E (CR) for English units, SI (CR) for Standard International units.

PERFORMANCE ANALYSIS USING SLR METHOD (Y OR N)?

Enter Y (CR) if you wish a thermal analysis (using the Solar Load Ratio method) as well as the economic analysis. Enter N (CR) if you want the economic analysis alone.

ENTER CITY ID NUMBER?

Enter a number from 1 to 243 (CR) to designate the location (or nearest city in file) for the system you are evaluating. You will find the cities and their ID numbers listed in Appendix B.

RESIDENTIAL = 1; COMMERCIAL = 2; INDUSTRIAL = 3?

Enter 1,2, or 3 (CR). This response determines which set of base-year fuel prices and energy price escalation rates the program will use. These values are contained in the energy price data file used by FEDSOL. (Normally this prompt would be used to determine the type of ownership of the proposed project and the appropriate tax assumptions; however, this distinction is not relevant to this program since it is designed specifically for Federal buildings.)

THE FOLLOWING DATA ITEMS REPRESENT THE MINIMUM INFORMATION REQUIRED TO CREATE A USABLE INPUT DATA FILE. ITEMS PRECEDED BY (*T) ARE REQUIRED ONLY IF YOU REQUEST THE THERMAL-AND-ECONOMIC PERFORMANCE ANALYSIS USING SLR METHOD (ABOVE), ITEMS PRECEDED BY (*E) ARE REQUIRED ONLY IF YOU REQUEST THE ECONOMIC ANALYSIS ALONE. ITEMS NOT PRECEDED BY AN ASTERISK ARE REQUIRED IN BOTH CASES.

NOTE: Create a new data file to change from a combined thermal and economic performance analysis to an economic analysis alone, or vice versa. Since the two types of analyses require different data, the same data file cannot be used for both types of analyses.

(*T) TYPE OF SOLAR ENERGY SYSTEM (FROM CODED LIST)?

Enter a number from 1 to 19 (CR). The 19 "standard systems" are shown in table 2.1.

(*T) ENTER LOAD TYPE: 1=WATER HTG; 2=SPACE HTG; 3=BOTH?

Enter the appropriate number from 1 to 3 (CR).

(*T) DOMESTIC HOT WATER USAGE?

Enter hot water use (in gallons/day or liters/day) (CR). This prompt will occur only if you have indicated that your evaluation refers to a water heating or water/space heating combination system.

NOTE: Enter only the numeric value, expressed in the units shown (E or SI as you requested in creating the file). Do not type the units (gallons/day, MMBtu/Month, etc.).

(*T) MONTHLY SPACE HEATING LOADS?

Enter the 12 values representing the building's monthly space heating requirements (in MMBtu/month or GJ/month) (CR). Do not adjust for the operating efficiency of the non-solar heating plant. This prompt will occur only if you have indicated that the system under consideration is a space heating system or combined water/space heating system.

	SYSTEM	COLLECTOR	OPERATING						
NO .	TYPE	DESCRIPTION	TEMPERATURE, °F						
1	SHW	1 COVER, SELECTIVE	110 OUTLET WATER TEMP.						
2	SHW	1 COVER, SELECTIVE	130 OUTLET WATER TEMP.						
3	SHW	1 COVER, SELECTIVE	150 OUTLET WATER TEMP.						
4	SHW	1 COVER, SELECTIVE	170 OUTLET WATER TEMP.						
5	SHW	1 COVER, NON-SELECTIVE	110 OUTLET WATER TEMP.						
6	SHW	1 COVER, NON-SELECTIVE	130 OUTLET WATER TEMP.						
7	SHW	1 COVER, NON-SELECTIVE	150 OUTLET WATER TEMP.						
8	SHW	1 COVER, NON-SELECTIVE	170 OUTLET WATER TEMP.						
9	SHW	2 COVERS, NON-SELECTIVE	110 OUTLET WATER TEMP.						
10	SHW	2 COVERS, NON-SELECTIVE	130 OUTLET WATER TEMP.						
11	SHW	2 COVERS, NON-SELECTIVE	150 OUTLET WATER TEMP.						
12	SHW	2 COVERS, NON-SELECTIVE	170 OUTLET WATER TEMP.						
13	SHLS	1 COVER, SELECTIVE							
14	SHLS	1 COVER, NON-SELECTIVE							
15	SHLS	2 COVERS, NON-SELECTIVE							
16	SHAS	1 COVER, SELECTIVE							
17	SHAS	1 COVER, NON-SELECTIVE							
18	SHAS	2 COVERS, NON-SELECTIVE							
19	SH(R)	1 COVER, NON-SELECTIVE							

Table 2.1	Standard	System	Types
-----------	----------	--------	-------

SHW = Service Hot Water only, Commercial

SHLS = Space Heating with or without SHW, Liquid System, Commercial SHAS = Space Heating with or without SHW, Air System, Commercial SH(R) = Space Heating, Residential

NOTE: Systems 1 through 12 refer to water heating-only systems. Systems 13 through 18 refer to space heating systems or to combined space and water heating systems. System 19 refers to space heating-only systems or combined space and water heating systems where the hot water load is less than 20 percent of the total annual heating load. For systems other than those listed above, you may obtain a thermal analysis from other sources and use that information as input for the economic analysis. (*E) ANNUAL ENERGY LOAD?

Enter the total annual energy requirement for water heating only (systems 1-12), space heating only, or both (MMBtu/year or GJ/year) (CR). Do not adjust for furnace efficiency.

(*E) ANNUAL SOLAR FRACTION?

Enter your precalculated annual solar heating fraction (as percent) (CR). This is the annual percentage value (obtained from another analysis) of the total annual energy load which is to be supplied by the solar energy system.

(*E) COLLECTOR AREA?

Specify the area of the solar collector (in square feet or square meters) (CR) which corresponds to the solar fraction value specified above.

SOLAR ENERGY INVESTMENT - FIXED COST?

Enter the cost (in dollars) (CR) of the portion of the total system cost which tends to be independent of system size within the size range considered. This may be difficult to determine, but the accuracy of the optimization analysis depends on this breakdown of costs. See section 3.2.1 for further discussion.

SOLAR ENERGY INVESTMENT - VARIABLE COST?

Enter the size dependent cost of the system (dollars per square foot or square meter of collector area) (CR). See section 3.2.1 for a further discussion.

TYPE OF FUEL USED IN AUXILIARY SYSTEM?

Enter a number from 1 to 6 (CR) where

l=electric
2=distillate oil
3=residual oil
4=natural gas
5=coal
6=liquid propane gas

TYPE OF FUEL USED IN REFERENCE SYSTEM?

Enter a number from 1 to 6 (CR) as above.

2.3.2 Changing Default Values

Once the above information has been entered, FEDSOL supplements it with default values for the remaining data elements. You may see these values along with

the values you supplied for the required data by listing your file at this point with the L (List) command. FEDSOL will assume these values unless you specify other values using the C (Change) command. You may change the value of any data element by specifying the number of that data item and the new numeric value in response to the LINE NUMBER? and NEW VALUE? queries.

The entire set of data inputs for the FEDSOL program and the default values are reprinted below. These data elements provide for a life-cycle cost comparison of a combined solar and auxiliary back-up system with a reference non-solar system. Items under "Data for Performance Analysis (SLR Method)" will print only if you requested a performance analysis; items under "Data for Economic Analysis Only" will print only if you requested an economic analysis alone. For a further discussion of the individual data elements, see sections 3.1 and 3.2. The range of acceptable values for each data element is shown in Appendix G.

ENERGY ANALYSIS DATA

DATA FOR SOLAR PERFORMANCE ANALYSIS (SLR METHOD)

1. Type of Solar Energy System (from coded list)

See table 2.1.

2. Collector Tilt Angle

Number of degrees (from horizontal) that the collector is tilted. To change the tilt angle, enter the total number of degrees (from horizontal).

DEFAULT = LAT. $+ 10^{\circ}$

3. Optimization Analysis

If you wish an optimization analysis, enter 1. If you do not wish an optimization analysis, enter 2 and specify the collector area being considered (in data element #4). See section 3.4.5 for a more complete description of the optimization analysis provided by FEDSOL.

DEFAULT = 1

4. Collector Area

FEDSOL will ignore this value if you have requested an optimization analysis.

DEFAULT = 0 ft² (
$$m^2$$
)

5. Minimum Acceptable Solar Fraction

In an optimization analysis, the program will consider only system sizes that generate a minimum of this annual solar fraction.

6. Operating Efficiency of Auxiliary System

The annual average percentage efficiency of the auxiliary system in meeting the load specified (space heating, water heating, or both).

$$DEFAULT = 60$$
 percent

7. Operating Efficiency of Reference Non-Solar System

The annual average percentage efficiency of the reference non-solar system in meeting the load specified (space heating, water heating, or both).

$$DEFAULT = 60$$
 percent

8. Electric Energy as Percent of Useful Solar Energy

Nearly all active solar thermal energy systems require electric energy for pumps and controls. Because electricity consumption is dependent on system size and operating time, it is expressed as a percentage of useful solar energy provided by the system.

DEFAULT = 6 percent

9. Domestic Hot Water Usage

This value will default to zero if you specified 2 (SPACE HTG) in response to the LOAD TYPE? query.

10. Building Use Schedule

This value is only used in calculating hot water loads. It refers to the number of days per week the building is in normal (or near-normal) use.

11. Monthly Space Heating Loads

This value will default to zero if you specified 1 (WATER HTG) in response to the LOAD TYPE? query.

12. Average Daily Horizontal Radiation

These values are supplied by the program. When you select a city in the geographical data bank and create a new file, the program reads its stored environmental and weather data for that location. You may change these data by using the C (Change) command.

13. Average Ground Water Temperatures

Data are supplied by the program, from the geographical data bank. Values are entered as quarterly averages for DEC-FEB, MAR-MAY, JUN-AUG, SEP-NOV.

The default values for your location should be examined and changed as necessary to adjust for the position and type of water supply facility of the building under study.

DATA FOR ECONOMIC ANALYSIS ONLY

- 20. Annual Energy Load
- 21. Annual Solar Fraction
- 22. Collector Area
- 23. Operating Efficiency of Auxiliary System

DEFAULT = 60 percent

24. Operating Efficiency of Reference System

DEFAULT = 60 percent

25. Electrical Energy as Percent of Useful Solar Energy

DEFAULT = 6 percent

LIFE-CYCLE COST DATA

See section 3.2 for a further discussion of these data elements. BASE YEAR INVESTMENT COSTS

30. Solar Energy Investment - Fixed Cost

31. Solar Energy Investment - Variable Cost

32. Investment Credit (Externality Adjustment)

DEFAULT = 10 percent

33. Investment Cost for Auxiliary System

DEFAULT = \$0 34. Investment Cost for Reference Non-Solar System

DEFAULT = \$0

FUTURE NON-FUEL COSTS

SOLAR ENERGY SYSTEM

40. Annually Recurring O&M Cost (percent of investment cost)

Do not include electrical energy operating costs.

DEFAULT = 1 percent

41. Replacement Cost and Year

Include repair and replacement costs which are expected to occur on an irregular basis. Do not include costs covered under item #40. Six values must be entered when responding to this item. Each replacement cost is to be followed by the year of its occurrence (number of years after system purchase). Three different occurrences are allowed for. If there are fewer than three occurrences, enter zero's for the remaining positions. For example, if replacements of \$5000 occur at 5 years and \$7500 at 10 years, then the entry should appear as

> 5000,5,7500,10,0,0 ALL DEFAULTS = 0

42. Salvage Value at End of Study Period (precent of investment cost)

DEFAULT = 0 percent

AUXILIARY SYSTEM

44. Annually Recurring O&M Cost (dollars per year)

DEFAULT = \$0

45. Replacement Cost and Year

Same format as item #41.

ALL DEFAULTS = 0

46. Salvage Value at End of Study Period (dollars)

```
DEFAULT = \$0
```

REFERENCE NON-SOLAR SYSTEM

47. Annually Recurring O&M Cost (dollars per year)

DEFAULT = \$0

48. Replacement Cost and Year

Same format as item #41.

```
ALL DEFAULTS = 0
```

49. Salvage Value at End of Study Period (dollars)

DEFAULT = \$0

FUEL COSTS

The base-year energy prices and projected rates of energy price escalation published by the DoE are contained in the program as default values (see section 3.2.4). FEDSOL automatically calls the data for the type of building and location under study. Use the actual price (per MMBtu or GJ) to the agency undertaking the project, if available.

- 50. Electricity Price in Base Year
- 51. Distillate Oil Price in Base Year
- 52. Residual Oil Price in Base Year
- 53. Natural Gas Price in Base Year
- 54. Coal Price in Base Year
- 55. Liquid Propane Gas Price in Base Year
- 56. Type of Fuel Used in Auxiliary System

Enter a number from 1 to 6 (CR) where

l=electric 2=distillate oil 3=residual oil 4=natural gas 5=coal 6=liquid propane gas

57. Type of Fuel Used in Reference system

Enter a number from 1 to 6 (CR) as above.

58. Energy Price Escalation (percent per year, excluding inflation) DISCOUNT RATE AND STUDY PERIOD

60. Real Discount Rate (excludes inflation)

The Federal Rules require a value of 7 percent.

DEFAULT = 7 percent

51. Study Period

The value entered will be the period of the life-cycle cost analysis. The maximum value allowed under the Federal Rules is 25 years.

DEFAULT = 20 years

ANALYSIS OUTPUT

70. 1=STANDARD; 2=EXTENDED; 3=SUMMARY

This item controls the length and content of the analysis report generated by FEDSOL. The potential output created by FEDSOL consists of the following sections:

- 1. Table of solar fractions and net savings for a range of system sizes
- 2. Monthly thermal performance table
- 3. Life-cycle cost summary table showing breakdown of life-cycle costs
- 4. Measures of economic performance
- 5. Simple cash flow analysis: not discounted and not escalated
- 6. Discounted cash flow analysis: discounted and escalated
- Breakeven analysis (generated only when net savings are negative) for investment costs, base-year energy prices, and rates of energy price escalation.

The standard analysis consists of sections 1 through 4; the extended analysis, sections 1 through 7. The summary analysis is a one line output showing only the optimized or prespecified collector area, annual solar fraction, and net savings.

2.4 RUNNING THE ANALYSIS

Once you have called up an old file (O command) or created a new file (N command) and made any necessary changes (C command), you may run the analyses by simply selecting R (CR) from the command selection. The output selections are described above.

NOTE: If you previously answered Y to the prompt: PERFORMANCE ANALYSIS USING SLR METHOD (Y OR N)? you will receive both thermal and economic analyses. If you answered N, you will receive an economic analysis only.

2.5 SAVING A FILE

If you have changed an old file or created a new file without SAVING the current file, you will lose the data in the current file. Whenever you are satisfied with the data contained in your file, or think you might want to refer to it later, select the S option from the command selection to SAVE the file in permanent storage. When you enter the S command (CR), you will be prompted with: STORE DATA UNDER WHAT NAME? Your response should be a filename of your choosing of up to 7 characters in length (CR). The filename must begin with a letter and contain alpha-numeric characters only. Certain filenames are forbidden. The user will be notified if a forbidden filename has been entered. Selecting a name related to the actual data, such as the name of the city or building in which your system is located, is helpful for later retrieval. If you have more than one file for a system, you might want to code it by number, date, or code letter as well as a name, e.g., BDWYPO1, BDWYPO2 (Broadway Post Office 1st run, 2nd run, etc.). If an existing file already has that name, the terminal will respond "FILENAME" ALREADY EXISTS. DO YOU WISH TO USE THIS NAME (Y/N)? If a Y with: is entered, the current input data will be entered under this filename and will REPLACE the file previously stored under that name. If an N is entered, the current input data will not be saved under this filename, and the command prompt will appear again. If desired, this data file may be saved under some other valid filename by repeating the SAVE procedure.

NOTE: When you retrieve an existing file from storage, it is called into the computer's memory, but still remains in the long-term disk storage. You cannot lose a file that has been permanently saved unless you actually PURGE it. (This is done after exiting FEDSOL and is a system command.)

If you forget the name of the file you want to use, exit FEDSOL with a Q (CR) and then type CATLIST (CR). All files saved under your ID number will be displayed.

If you forget these procedures or instructions or need a brief refresher course on the operation of FEDSOL, type H (CR) to obtain the help instructions. It's a good idea to use the H command in your first session with FEDSOL and to keep a copy of the instructions near the terminal.

2.6 TERMINATING EXECUTION OF FEDSOL

Use the Q (Quit) command (CR) to end execution of FEDSOL. The terminal will respond with

READY

*

Type: BYE (CR) to terminate the session.

Now the timeshare system will log off, telling you the connection time and the system response units used in this session.

2.7 LEARNING FEDSOL

The following approach is recommended for learning to use FEDSOL:

- 1. Call upon the program;
- 2. Select O (CR) from the command selection menu;
- Retrieve the file SAMPLE;

- 4. Run through SAMPLE, listing, making changes, running the analyses, and saving it under your ID with another name until you are comfortable with operating the program;
- 5. Gather the data you need to evaluate your particular solar heating system and to create your own files. (Keep a copy of the SAMPLE listing to remind you what data you need to prepare); and
- 6. When your data are prepared, return to the system, call up the program, and begin new FEDSOL analyses.

 THE LIFE-CYCLE COST METHOD FOR SELECTING SOLAR ENERGY SYSTEMS FOR FEDERAL BUILDINGS¹

Life-cycle costing (LCC) is a method of economic evaluation by which all relevant costs over the life of a project are accounted for when determining the economic feasibility of projects. It is particularly suited for the evaluation of projects such as energy conservation and solar energy that realize their benefits primarily through long-run fuel cost avoidance.

Applied to solar energy projects, the Federal life-cycle cost method and procedures can be summarized in the following five steps:

- Compare energy use in the building with and without the proposed solar project.
- Identify the relevant costs, constraints, and assumptions associated with the project, including the special requirements under the Federal LCC Rules.
- Calculate total life-cycle costs of the building with and without use of solar energy.
- 4) Using the Federal life-cycle cost procedures, determine the optimal solar energy system size and design with the lowest life-cycle cost.
- 5) Calculate other measures of economic performance for this system as needed to determine project priorities and to meet Federal LCC requirements.

An economic model for determining the optimal solar design/size for a Federal building project is developed graphically and algebraically in this section within the framework of these steps. This is the model implemented by the FEDSOL computer program described in section 2. In addition, this section reviews the options and capabilities in FEDSOL for performing each step of the analysis.

3.1 COMPARING ENERGY USE WITH AND WITHOUT SOLAR

An essential first step in the life-cycle cost evaluation of a solar energy project is to determine the end-use energy requirements of the process to which solar energy is to be applied and the potential contribution of the proposed solar energy system in meeting these energy requirements. The application might be space heating, domestic hot water, process water, space cooling, or some combination thereof.

¹ Much of parts 3.1, 3.3, and 3.4 extending to 3.4.4 is taken from "Life-Cycle Cost Evaluation of Solar Energy Investments," Chapter 11 of the <u>Solar Design</u> Workbook, prepared by Rosalie T. Ruegg, G. Thomas Sav, and Jeanne W. Powell [2].

3.1.1 Estimating Building Energy Requirements

Energy requirements for hot water are generally determined by a static heat balance equation, whereby the energy requirement for water heating in a given period (E_w) is directly proportional to the hot water demand (D) and to the difference between the desired water temperature (T_d) and the temperature of water supplied to the building from the local sanitation system or other water source (T_{in}):

$$E_w = w \cdot c_p \cdot D \cdot (T_d - T_{ip}). \tag{3.1}$$

The proportionality factors w and c_p represent the density of water (8.33 lb/gal) and specific heat of water (1 Btu/lb/°F), respectively.

The method used to calculate energy requirements for space conditioning should be tailored to the type of buildings and systems evaluated.¹ In analyzing a small envelope-dominated structure for residential or light commercial use, a steady-state method based on the heat loss coefficient (UA) and degree days is generally sufficient.² Larger buildings with complex HVAC systems require more sophisticated transient analysis models which account for hourly differences in the building thermal capacity, heat generated by solar loading on the building envelope, and loads generated by mechanical systems, occupants, lights, and equipment. Examples of energy analysis computer programs with these capabilities are BLAST [15] and DOE-2 [16].

Energy loads for heating or cooling are usually calculated for each month and then summed to an annual value.³ Once the annual energy requirement for heating or cooling is known, the annual quantity of non-solar energy required to meet the load can be calculated based on the energy content of conventional fuel and the conventional energy equipment efficiency. Algebraically, the annual quantity of conventional energy required (E) is calculated as follows:

 $E = \frac{L}{e} , \qquad (3.2)$

where L represents the annual load for heating or cooling, and e, the annual efficiency of conventional energy equipment.

For example, assume that the space heating load of a building is 800 MMBtu per annum, the conventional fuel is oil, and the average annual efficiency of the furnace is 0.6. Then,

- ¹ For a more extensive overview of methods of evaluating building energy requirements, see reference [17].
- ² A variable base degree day method is preferred. A simplified method suitable for a hand calculator is described in reference [18].
- ³ Provided that the same energy source is used, water and space heating loads each month are summed to determine the total monthly energy requirements for heating.

$$E = \frac{800}{0.6} = 1,333.$$

Thus, it is estimated that 1,333 MMBtu of oil per annum are required for space heating purposes.

3.1.2 Estimating Energy Savings

The contribution of the solar energy system towards meeting the monthly energy requirement is a key measure of performance of the solar energy system. It generally is the major source of savings from undertaking the investment in solar energy.¹

Solar performance is incorporated into the economic analysis by expressing the useful monthly output of the solar energy system as a fraction of the monthly energy requirement and then determining the annual solar fraction corresponding to the total monthly solar contribution.² Thus, if the solar energy system is estimated to deliver a total quantity of useful Btu's per month (S_m), then the monthly fraction (F_m) of monthly load (L_m) met by solar is

$$F_{\rm m} = \frac{S_{\rm m}}{L_{\rm m}}, \qquad (3.3)$$

and the annual fraction is

$$F = \left(\sum_{m=1}^{12} L_m \cdot F_m\right)/L.$$
(3.4)

for m=1, January, m=2, February, etc.

Continuing with our previous example (L = 800 MMBtu), suppose a solar energy system of a particular design and size is expected to deliver 62.5 percent of the load for space heating during a year. Then it is expected to deliver .625 \cdot 800 MMBtu.

If the auxiliary heating system is assumed to be the same type and to have the same operating efficiency as the reference non-solar energy system used alone, the annual quantity of non-solar (fuel oil, in this example) energy required would be reduced from 1,333 MMBtu to 500 MMBtu using this solar energy system. That is, the annual quantity of non-solar energy (fuel oil) required by this solar auxiliary system (E_A) is

$$E_A = \frac{L(1 - F)}{e} = \frac{800 \cdot (1 - 0.625)}{(0.6)} = 500$$
 (3.5)

¹ Methods of evaluating non-energy benefits of investments in passive solar energy are treated in reference [10].

² In analyzing systems for service hot water only, annual calculations may often be used.

for savings of 833 MMBtu of oil per annum, assuming a constant system efficiency and a constant building energy load over the study period.

Energy required to operate the solar energy system components, such as electrical energy required to operate the pumps or fans and the control system, may also be significant to the analysis. Energy costs to operate the solar energy system reduce the overall savings in fuel from the solar energy system.

In the above example, the solar auxiliary system and the reference non-solar energy system are, for simplicity, assumed to be identical. This, of course, need not be the case. If the energy system used as an auxiliary to solar is different from the reference non-solar energy system, it may use a different type of fuel and have a different operational efficiency, as well as different investment and non-fuel operation and maintenance costs.

Furthermore, even if the two systems are identical, the part-load contribution of the auxiliary solar energy system may cause it to have a lower efficiency than the reference system. For example, if, in the above example, the system efficiency dropped from $e_N = .6$ for the reference non-solar energy system to $e_A = .5$ for that same system used as the solar auxiliary, the annual oil savings, S, would decrease from 833 MMBtu to 733 MMBtu; i.e.,

$$S = L \cdot \left(\frac{1-F}{e_N} - \frac{(1-F)}{e_A}\right) = 800 \cdot \left(\frac{1}{.6} - \frac{(1-.625)}{.5}\right) = 733.$$
(3.6)

3.1.3 Estimating Energy Savings with FEDSOL: The SLR Method

Brief Description. The solar load ratio (SLR) method for active systems is a simplified design method for analyzing solar energy systems in commercial and residential buildings employing flat plate collectors for space and/or water heating.¹ It was developed at Los Alamos National Laboratory by applying correlation analysis to numerous hour-by-hour computer simulations of a reference system in a large variety of locations performed with the DOE-2 building energy analysis computer program. The results of the simulation and correlation analyses are a set of "universal" design and sizing curves describing the solar heating fraction vs. the solar load ratio (SLR), as illustrated in figure 3.1.

The solar load ratio method for active systems in commercial buildings has recently been revised and extended by Schnurr, Hunn, and Williamson [3] to take account of advances in energy analysis techniques since the time of the original work reported in the <u>DoE Facilities Solar Design Handbook</u> [19]. The FEDSOL program incorporates the new set of design curves published in this recent study. The mathematical equations specifying the curves for 18 system types (six systems for space heating or combined space and water heating and

¹ The solar load ratio method is documented in references [3, 19, 20, 21]. For further information about the general applicability of this method and the validation tests conducted by Los Alamos National Laboratory, see these publications.

Figure 3.1 The Solar Load Ratio Method: A Generalized Design Curve

where $SLR = A \cdot I/L$ and

A = gross collector area;

- I = insolation on tilted collector surface, monthly for space heating or combined space heating and hot water systems; annually for service hot water only systems; and
- L = energy load to which solar energy is applied, monthly for space heating or combined space heating and hot water systems; annually for service hot water only systems.

twelve systems for water heating only) are included within FEDSOL. The complete set of curves is shown in Appendix D_*^1

¹ The recent Los Alamos study included evacuated tube collectors, as well as flat plate collectors, in its analyses of service hot water systems. Reference [3] includes design curves for service hot water systems with evacuated tube collectors. However, FEDSOL is limited to systems with flat plate collectors.

Unlike with the original SLR method for commercial buildings, the analysis of systems for service hot water only is performed on an annual instead of a monthly basis and different performance curves corresponding to the annual heating degree days are derived for different locations. These changes are due to research findings showing that 1) a better correlation of solar hot water system performance to the SLR is obtained on an annual than on a monthly basis because of the relative uniformity of water heating loads and 2) the performance of service hot water systems is highly correlated with ambient temperature. For a given value of the SLR, system performance is better in warmer climates than in colder climates because of smaller heat losses from the collector and higher collector efficiencies. The recent Los Alamos study suggests that the original design curves tend to overstate the performance of systems for hot water only in locations with substantial heating degree days.

In the recent study, the effect of location on the performance of systems for space heating was found to be sufficiently small that separate design curves corresponding to different degree day ranges were not required [3]. The major differences between the original and revised SLR methods as applied to systems for space heating reflect the lower collector efficiencies assumed in the recent study. Accordingly, the revised design curves can be expected to yield somewhat lower solar heating fractions than the original curves.

For the analysis of active systems in residential buildings, the curve-fit equation developed by Balcomb and Hedstrom for the design and sizing of a standard, residential system for space heating has been included in the FEDSOL program [21].

The FEDSOL data files contain values for monthly average daily solar radiation, latitude, the heating degree day range, and average earth temperatures (for estimating hot water loads) for the 243 cities shown on the map and coded list printed in Appendix B.¹ Using the data for the city, collector tilt, and water usage schedule specified by the user, the program calculates monthly solar radiation on a tilted surface, estimates the monthly energy requirement for hot water, combines the monthly energy requirement for hot water with the user specified monthly energy requirement for space heating, and calculates the SLR and solar heating fraction for each month. If the system being analyzed is for service hot water only, the program selects the curve corresponding to the ambient temperature (degree days) of the location being analyzed and uses annual calculations for the SLR and solar heating fraction. The program then adjusts for differences in predicted annual solar fraction provided by the ambient temperature curve, based on a single-glazed selective collector and design water temperature of 130°F, and predictions of annual solar fraction for the type of collector and for the design water temperature specified for study.²

¹ The solar radiation data contained in the program files are taken directly from <u>Input Data for Solar Systems</u>, by V. Cinquemani, a report prepared by the U.S. Dept. of Commerce, National Oceanographic and Atmospheric Administration for use in energy analysis programs requiring monthly data [22]. These data are derived from SOLMET weather tapes. Earth temperature data are obtained from tables of average earth temperatures 1-10 feet below the surface published by Kusuda and Saitoh [18].

² This adjustment procedure is described in detail in reference [3].

The user must specify: a) the energy requirements for space heating (by month, in the case of the SLR analysis; by year, in the case of the economics only analysis), b) the type of fuel used in the non-solar reference system and auxiliary system, c) the operating efficiencies of the reference non-solar and auxiliary heating plants,¹ and d) the electricity required to operate the solar energy system as energy data inputs to the program. Different fuel types and operating efficiencies are allowed for the reference non-solar system and the auxiliary system. (The default values for operating efficiencies of both the reference and the auxiliary systems are 60 percent. Electricity to operate the solar energy system is expressed as a percent of useful solar energy collected. The default value is 6 percent.)

The thermal analysis performed by FEDSOL for a sample office building system for space and water heating in Washington, D.C. is reprinted in table 3.1.²

Table 3.1 Thermal Performance for SAMPLE Case

THERMAL PERFORMANCE

COLLECTOR AREA = 1659.00 SQFT

TILT ANGLE = 48.57 DEGREES

	SOLAR	AVG DAILY	INCIDENT	SPACE	WATER	USEFUL
	FRACTION	HORZ RAD.	COLLECTOR	LOAD	LOAD	SOLAR
		(1)	(1)	(2)		(2)
JAN	.190	572.00	882.01	71.20	4.58	14.38
FEB	.347	815.00	1094.16	42.30	4.13	16.11
MAR	.491	1125.00	1272.36	37.90	4.36	20.77
APR	•744	1458.00	1384.72	21.60	4.22	19.21
MAY	.734	1718.00	1437.81	24.00	4.36	20.82
JUN	•690	1900.00	1496.00	28.20	3.41	21.81
JUL	.619	1817.00	1470.40	33.90	3.53	23.18
AUG	.756	1617.00	1455.68	23.70	3.53	20.60
SEP	.791	1340.00	1430.91	20.20	3.57	18.79
OCT	.755	1003.00	1316.55	21.00	3.69	18.65
NOV	•480	650.00	980.75	28.70	3.57	15.49
DEC	.211	481.00	753.07	53.60	4.58	12.28
YEAR	.489			406.30	47.53	222.09
1						

(1) = BTU/SQFT-DAY

(2) = MMBtu/MONTH

¹ The operating efficiencies of the auxiliary and reference non-solar heating plants have a large impact on the outcome of the investment in solar energy because the value of a unit of solar energy delivered increases directly as the operating efficiency of the auxiliary heating system declines. In determining the appropriate auxiliary and reference system operating efficiencies to use in the life-cycle cost analysis of a solar energy system, care should be taken to include only those inefficiencies in the auxiliary and reference systems that are relatively independent of those in the solar energy system. Do not include, for example, inefficiencies in the heat distribution system of the building that are common to the solar and auxiliary systems as well as to the reference system. Differences in efficiencies assumed for the reference and auxiliary systems should reflect any anticipated part-loading effects induced by the combined use of solar and auxiliary energy.

 2 The input data for this sample project are shown in section 4, case 1.
Limitations of the SLR Method. The SLR universal design and sizing curves are based on standard reference liquid and air systems. The design parameters for the standard systems simulated in the Los Alamos study were derived from a large number of parameteric optimization studies conducted at Los Alamos National Laboratory. The collector efficiencies assumed correspond to those considered typical of collectors of four generic types. Tables 3.2 and 3.3 show the collector performance coefficients and design values for these reference systems.¹ Schematic diagrams are shown in Appendices D.7-D.9.

Use of different design parameters from those used in the Los Alamos simulations will affect system performance, life-cycle costs for combined solar/auxiliary heating, and optimal system size. Thus, caution should be taken in using FEDSOL to predict the solar heating performance of systems with design parameters significantly different from those assumed in the Los Alamos study.

For evaluating passive systems, systems with combined solar/heat pump, systems for space cooling, or other systems whose design parameters differ significantly from those in tables 3.2, and 3.3, it is important that a method suited to that type of system be used to predict solar performance.² One can then use FEDSOL to perform an economic analysis by selecting the "economic analysis only" option and supplying as input data the solar heating fraction derived apart from FEDSOL by another method and the annual thermal energy load.

Comparison of the SLR Method With Other Methods. When applied to standard residential systems for space and water heating, the SLR method can be expected to give similar predictions of solar performance on an annual basis to those obtained from F-CHART, the design method most widely used, and from SOLCOST [9, 20, 23]. Unlike SOLCOST and F-CHART, the SLR method is designed specifically for office (or commercial) building systems. It should simulate the size and demand patterns of these buildings more accurately than these other programs [20]. Note, however, these studies by Los Alamos National Laboratory have shown that the SLR sizing curves are not highly sensitive to substantial differencces in load and use patterns.

3.2 IDENTIFYING RELEVANT COSTS, ASSUMPTIONS, AND CONSTRAINTS³

The life-cycle cost evaluation of an investment in solar energy for a Federal building requires and assessment of the following kinds of solar-related costs over the time horizon of the investment: 1) investment costs (capital costs),

- ² For a discussion of the different types of methods available for predicting solar heating performance and of recommended applications, see reference [20].
- ³ These guidelines for identifying costs, assumptions, and constraints are consistent with the Federal LCC Rule [4, 5, 6].

¹ Considerable sensitivity analyses have been conducted at Los Alamos to determine the effect of changing these design parameters; however, most of the resulting data reflect changes occurring when only one parameter is varied at a time [19]. For further documentation of results of studies performed at Los Alamos, see references [19, 21].

Transfer Medium	A		В	
		(W/m ² •K)	(Btu/h•ft ² •°F)	
LIQ	0.705	-5.04	-0.887	
LIQ	0.780	-7.50	-1.320	
LIQ	0.643	-5.00	-0.880	
AIR	0.550	-4.89	-0.860	
AIR	0.590	-6.25	-1.100	
AIR	0.475	-4.15	-0.730	
	Transfer Medium LIQ LIQ LIQ AIR AIR AIR	Transfer Medium A LIQ 0.705 LIQ 0.780 LIQ 0.780 LIQ 0.643 AIR 0.550 AIR 0.590 AIR 0.475	Transfer A Medium A LIQ 0.705 -5.04 LIQ 0.780 -7.50 LIQ 0.643 -5.00 AIR 0.550 -4.89 AIR 0.590 -6.25 AIR 0.475 -4.15	Transfer MediumB $(W/m^2 \cdot K)$ $(Btu/h \cdot ft^2 \cdot {}^{\circ}F)$ LIQ0.705 -5.04 -0.887 LIQ0.780 -7.50 -1.320 LIQ0.643 -5.00 -0.880 AIR0.550 -4.89 -0.860 AIR0.590 -6.25 -1.100 AIR0.475 -4.15 -0.730

Table 3.2 Efficiency Curve Coefficients Used to Characterize the Generic Types of Flat Plate Collectors^a

^a Collector type is designated by the collector efficiency curve, as specified by

E = A + Bx,

where

I = total solar radiation.

The collector efficiency coefficients in this table are intended to correspond to typical flat plate collectors of each type (single- or double-glazed with selective or nonselective absorber coatings).

Source - "The Solar Load Ratio Method Applied to Commercial Building Active Solar System Sizing" [3].

Parameter	Nominal Value
SOLAR COLLECTOR	
Orientation	Due south
Tilt (from horizontal)	Latitude + 10 ^{°a}
Coolant flow rate	Liquid
	112.6 kg/h per m ² of collector area
	(0.046 gpm per ft ² of collector area)
	Air
	2 scfm per ft ² of collection area
	$(0.0006 \text{ L/S per m}^2 \text{ of collector area})$
HEAT EXCHANGER	
Effectiveness	0.70
Cold site flow rate	112.6 kg/h per m^2 of collector area
	$(0.046 \text{ gpm per ft}^2 \text{ of collector area})$
STORAGE TANKS	
Capacity	Liquid (storage tank)
	73.4 kg of water per m^2 of collector area
	(15 lb. of water per ft^2 of collector area)
	Air (Rock bed)
	$0.22 \text{ m}^3 \text{ per m}^2$ of collector
	$(0.72 \text{ ft}^3 \text{ per ft}^2 \text{ of collector})$
	Air (Hot Water Storage Mass)
	3.67 kg of water per m^2 ft collector
	$(0.75 \text{ lb of water per ft}^2 \text{ of collector})$
	(por,
Height to diameter ratio	3.0
(Liquid System)	
Loss Coefficient	$0.28 \text{ W/m}^2 \text{ K}$
	$(0.05 \text{ Btu/h} \cdot \text{ft}^2 \cdot \text{°F})$
Environment temperature	21.1°C (70°F) ^C
Cold water supply temperature	$15.6^{\circ}C$ (60°F)
(to BSHW system)	
······································	

- ^a Parametric studies conducted at Los Alamos showed that for commercial building systems such as those described in reference [3], latitude + 10° was the optimal tilt angle for collectors in systems for space heating only or in combined service hot water and space heating systems; for service hot water only systems, a tilt angle of latitude + 5° was optimal. These studies also showed that system performance was relatively insensitive to variations in collector tilt angle within + 10° of the optimum.
- ^b Water, water/glycol, or nonaqueous collector heat transfer fluid could be used in liquid system.

^C Assumes storage losses do not contribute to meeting the heating load.

Source - "The Solar Load Ratio Method Applied to Commercial Building Active Solar System Sizing" [3]. 2) non-fuel operation and maintenance costs, 3) replacement costs, 4) energy costs, and 5) salvage or resale value net of removal and disposal costs. Since solar energy systems will generally be used in conjunction with an auxiliary energy system (e.g., electricity, natural gas, or oil), rather than alone, it is necessary to consider the costs of both the solar energy system and the auxiliary energy system to the extent that they differ from the reference nonsolar energy system. The special requirements for Federal building projects are highlighted with outline boxes in the sections to follow.

To establish a basis for comparison, these same elements of costs must be assessed for the reference non-solar energy system. As indicated above, costs which are expected to be approximately the same for the reference system as for the auxiliary system need not be included because they will be the same regardless of the solar investment decision. Additional costs which need not be considered are "sunk costs." These are costs incurred prior to the life-cycle cost analysis, for example, for planning, and preparation of preliminary designs.

3.2.1 Investment Costs

Solar energy investment costs include the costs of design, engineering, purchase, and installation (exclusive of sunk costs) of the proposed system. Consider all components necessary for the solar energy system's operation: 1) solar collectors, 2) thermal storage, 3) distribution systems (for transporting solar energy alone), 4) controls, motors, pumps, fans, and other ancillary equipment, and 5) special building features such as roof and wall modifications. In evaluating a system for retrofit to an existing building, the costs of building modifications required to install the solar energy system should be included among solar energy investment costs.

In evaluating passive systems, the cost of additional thermal mass for exterior walls or interior spaces in excess of conventional building costs, plus the cost of movable insulation and sensor controls, should be included among solar energy investment costs. Capital costs of the auxiliary heating plant and non-solar reference heating plant and mechanical systems should also be included in the life-cycle cost evaluation if these costs are different for the solar and reference buildings.

Federal LCC Rule: 1) Assume the investment costs occur in a lump sum at the beginning of the base year.¹ 2) Adjust investment costs to 90 percent of their actual value.²

 $^{^{}m l}$ The base year is the year in which the life-cycle cost analysis is conducted.

² The 10 percent investment credit is intended to serve as an interim adjustment for externality costs, such as the effect of imported oil use on strategic vulnerability, until improved measures are developed.

Since the economically optimal solar energy system size depends on the incremental costs of solar energy and non-solar energy, it is important to make as accurate a distinction as possible between fixed and variable (size dependent) components of solar energy costs.¹ Fixed costs are costs that are relatively independent of the size of the solar energy system. For example, the costs of system controls and some minimum set of pumps, heat exchangers, valves, piping and fittings may remain relatively constant over a substantial initial range of collector and storage sizes, and hence, be considered fixed costs.² The variable cost is the cost associated directly with each unit of collector area, plus the corresponding incremental costs of storage and piping.

It is important to note that for solar energy systems with significant fixed costs, using the average cost per square foot as the measure of investment cost will significantly underestimate the optimal system size.³ To simplify the calculation of the two types of costs, and at the same time to avoid the common tendency of underestimating the variable unit cost, the fixed cost may be defined as the cost for the smallest system that is realistic for a particular application of solar energy, including materials, labor, and design and engineering services; and the variable cost as the corresponding cost for each additional unit of system size.

FEDSOL contains separate parameters for investment costs for the solar, the reference non-solar, and the auxiliary energy systems. (The default values for investment costs for each of these systems are zero. The user <u>must</u> supply values for solar energy investment costs in order for the program to conduct a life-cycle cost analysis. Values for the reference and the auxiliary systems need be supplied only if they differ from one another.)

3.2.2 Recurring Non-Fuel Operation and Maintenance Costs

Recurring non-fuel operation and maintenance (O&M) costs are costs other than for fuel that are expected to recur uniformly in constant dollars every year over the life cycle of the solar investment.

¹ The trade-offs between solar energy costs and non-solar energy costs are illustrated graphically in section 3.4.1.

² Design and engineering typically are placed in this category. However, design and engineering costs may have both fixed and variable components. A survey of fee schedules for architectural and engineering services conducted by the State of Florida in 1977 showed that the basic rate for these services was dependent upon total construction costs; however, the basic percentage rate dropped substantially as construction costs increased. The cost of engineering services, for example, ranged from 15 percent of construction costs for small projects to 6 percent for multi-million dollar projects [24].

³ In a recent study, Los Alamos National Laboratory reports that significant fixed costs could not be identified for passive systems in residential buildings, but are expected to be significant for active systems [25]. Cost estimating equations developed by Honeywell, Inc. for NBS suggest high fixed costs for large active systems for commercial buildings [11].

Federal LCC Rule: Assume that annually recurring non-fuel operation and maintenance costs begin to accrue at the beginning of the base year and are evaluated as a lump-sum payment at the end of each year of the study period, starting at the end of base year.

The annual non-fuel operation and maintenance costs for the solar energy system, auxiliary system, and reference non-solar system are separate data inputs to the FEDSOL program. Non-fuel O&M costs for the solar energy system are expressed as a percentage of unadjusted solar energy investment costs, i.e., of the total investment costs before applying the externality adjustment. For non-fuel O&M costs of the auxiliary and reference systems, the user must specify the actual estimated annual cost, in constant dollar prices of the base year. (The default value for the solar energy system is 1 percent; for the auxiliary and reference systems, 0 percent.¹)

3.2.3 Replacement Costs and Salvage Value

Replacement solar energy costs are costs that occur on an irregular basis for major repair or replacement of damaged or worn out components of the solar energy system. The estimated repair or replacement cost(s), net of salvage value of the component(s) replaced, the year(s) of occurrence of repair or replacement(s), and the salvage value of the system at the end of the study period are separate inputs to the FEDSOL program. Solar energy replacement costs in up to three different years are allowed.

Replacement costs may, of course, arise for components of the reference or auxiliary systems as well as the solar energy system. If major repair or replacement costs (net of salvage value of the components replaced) are expected to be significantly different (in size or timing) for the reference and auxiliary systems, these costs should be included in the life-cycle cost evaluation of the solar energy system. FEDSOL contains separate variables for the costs of replacement parts for the reference and auxiliary systems and allows for three occurrences of replacement costs for each system. In addition, the program allows the user to specify separate values for the salvage or resale value of the auxiliary system and the reference non-solar system at the end of the study period.

Federal LCC Rule: Assume that replacement costs and salvage values are evaluated as lump-sum payments at the end of the year in which they are expected to occur.

(FEDSOL assumes zero values for all replacement costs and salvage values unless the user specifies otherwise.)

¹ The default values of 0 percent for non-fuel 0&M costs for the auxiliary and reference systems should be maintained if non-fuel 0&M costs are expected to be approximately the same for these systems.

3.2.4 Energy Costs

Federal LCC Rule: 1) Estimate the quantity of energy delivered annually to the building boundary with and without use of solar energy.¹ 2) Use actual prices to the agency undertaking the solar project, or use energy prices published by the Department of Energy in the LCC Program Rule (and revised periodically).² 3) Use projected annual real rates of fuel price escalation (rates excluding inflation) published by the Department of Energy in the LCC Program Rule (and revised periodically).³ If electricity component prices are used and forecasts of component price escalations are available from the local utility, they may be used in pricing electricity. 4) Assume fuel costs are paid annually in lump-sum payments at the end of each year, starting at the end of the base year.

The energy price data contained in the LCC Program Rule, as revised in the Federal Register, September 1981, are included in the FEDSOL Program as default values for the base year fuel prices and rates of energy price escalation for locations in each of the 10 DoE regions.

3.2.5 Inflation and the Discount Rate

In accounting for project costs, life-cycle costing requires that dollar costs occurring at different calendar times be adjusted to a common time basis, taking into account the cost of money over time. This technique is referred to as discounting. Discounting is necessary for a valid economic comparison because money in hand can be invested to yield a return over time, causing an expenditure or receipt that occurs at some future date not to have the same value as if it occurred today. This is true whether or not there is price inflation that changes the value of money over time.

Discounting is accomplished by applying discount formulas--or multiplicative factors pre-calculated from the formulas--to each item of cost. There are

¹ Energy analysis procedures have been discussed in section 3.1.

- ² Average prices are now provided for each of 10 DoE regions, by sector -residential, commercial, and industrial, -- and by fuel type -- electricity, distillate, natural gas, residual, and coal [6]. The Department of Energy (DoE) is developing marginal energy prices adjusted to reflect special subsidies and externalities such as the effect of imported oil use on national security [26].
- ³ Projected real rates of energy price escalation (excluding inflation) are provided for each of 10 DoE regions, by sector -- residential, commercial, and industrial --, by fuel type -- electricity, distillate, natural gas, residual, and coal -- and based on EIA price projection for four benchmarks --1980, 1985, 1990, and 1995. They appear in tables C-1 through C-11 of the LCC Rules [6]. Discount factors incorporating the energy price escalation rates have been developed to simplify the hand calculation of life-cycle energy costs. These are found in tables B-1 to B-11 of the LCC Rules [6]. (These data are subject to periodic revision.)

formulas or factors that can be used to discount each of the various patterns of cash flow: single future amounts such as replacement costs, recurring future amounts such as maintenance and repair costs, and escalating future amounts such as energy costs.

Discounting requires the selection of a discount rate that reflects the investor's time value of money. The discount rate is used either directly in the discounting formulas or--if factors are used--to select the appropriate factor from discount factor tables. If inflation is included in estimates of future costs and savings, then it must also be included in the discount rate. Alternatively, if all costs and savings are expressed in constant dollars, inflation should not be included in the discount rate. Working with constant dollars and a real discount rate, present prices can be used as estimates of future prices in constant dollars for those items whose prices can be expected to inflate at about the same rate as prices in general.

For future amounts that are expected to change at a rate different from the general rate of inflation, present prices will require adjusting in order to serve as estimates of future prices. In the case of future amounts that are not subject to price inflation, such as services fixed by contractual agreement, a price deflator index can be used to convert the future amounts to constant dollars prior to discounting. In the case of future amounts that are expected to increase faster than the rate of general price inflation, such as energy costs, differential price escalation rates can be used to find the future constant dollar equivalents.

The Office of Management and Budget (OMB) imposes specific requirements which all agencies must follow in adjusting costs for the time value of money. The Federal LCC Rule reflects the OMB requirements.

Federal LCC Rule: 1) Estimate all future amounts in constant dollars, i.e., in terms of the purchasing power of the dollar at the beginning of the base year, at the time the investment is made; 2) Discount all future amounts to their present values, using a 7 percent real discount rate;¹ i.e., the present rate is assumed to exclude expected inflation.

FEDSOL assumes that all cost inputs and salvage values represent purchasing power at the beginning of the base year; i.e., that they do not include expected inflation. The program discounts all future costs using a 7 percent discount rate unless the user specifies otherwise.

¹ A rate of 10 percent is dictated by the Office of Management and Budget in Circular A-94 [27]. On June 30, 1980, however, President Carter signed the Energy Security Act which requires a real discount rate of 7 percent per year in evaluating energy conservation and renewable energy projects for Federal buildings [28]. The Federal LCC Rule, as amended, reflects this legislation.

3.2.6 Study Period

The study period is the length of time covered by the life-cycle cost analysis. In comparing alternative energy systems for a given building application, the same study period should be used in evaluating each project and that period should not exceed the life of the building (or lease).

Federal LCC Rule: Select a study period that does not exceed 25 years.¹

3.3 CALCULATING TOTAL LIFE-CYCLE COSTS WITH AND WITHOUT SOLAR²

A life-cycle costing approach can be implemented by applying any or all of the following evaluation techniques or "modes of analysis": 1) total life-cycle cost (TLCC) analysis, which sums the discounted value of all the equivalent costs over the investor's time horizon; 2) net savings (NS) analysis, which finds the difference between the TLCC's of a proposed project and its alternative; a 3) savings-to-investment ratio (SIR) method, which indicates by a numerical ratio the size of savings relative to costs; and 4) internal-rate-of-return (IRR) technique, which gives the percentage yield on an investment.

Often these life-cycle costing techniques are supplemented by additional techniques of economic evaluation which focus upon some particular aspect of the investment, such as the time to payback (PB). Not a full life-cycle costing technique itself, the payback measure indicates the elapsed time until cumulative savings (or receipts) are sufficient to cover cumulative costs. There are two versions of the payback measure that are often used. Discounted Payback (DPB) takes into account the cost of money through discounting. Simple Payback (SPB) does not include discounting, nor does it typically include future escalation in energy prices.

Each of these evaluation techniques has its advantages and disadvantages that make it particularly appropriate for some purposes and less appropriate for others.³ The TLCC and NS techniques are especially useful for designing and sizing projects, while the SIR and IRR techniques are particularly useful for assigning priority to projects when the budget is limited. The DPB technique is useful when project life is very uncertain or when a speculative investment requires quick recovery of funds. Collectively they form tools of analysis which can be used in determining the cost-effective design and size of solar energy systems, the type of auxiliary energy system, the kinds and amounts of other energy conservation investments to use in conjunction with solar energy, and, when the budget is limited, the economic priorities that should be assigned to competing projects.

A cut-off for the study period of 30 years was originally adopted in the Federal LCC Rule. This limit is lowered to 25 years by the provisions of the Energy Security Act of 1980 [28].

 2 The discount formulas referred to in this section appear in Appendix C.

³ The advantages and disadvantages and recommended applications of these techniques are explained in some detail in reference [29].

The total life-cycle cost (TLCC) and Net Savings (NS) measures of economic performance provide the framework for describing the economic optimization model contained in the FEDSOL program. Other measures of economic performance required under the Federal LCC Rule are described in section 3.5.

Since solar energy systems will generally be used in conjunction with an auxiliary energy system (electricity, natural gas, oil, etc.), rather than alone, it is necessary to compare the Total Life-Cycle Costs (TLCC) of the combined solar energy/auxiliary energy system (TLCC_{s,a}) to the TLCC of a reference non-solar energy system (TLCC_w) which would be used in lieu of solar. If TLCC_{s,a} is lower than TLCC_w, the solar energy/auxiliary energy system is more cost effective than the non-solar energy system alone.

3.3.1 Total Life-Cycle Costs Without Solar

TLCC_w may be calculated as follows:

$$TLCC_{w} = P_{w} \circ \underbrace{L}_{e_{w}} \circ UPW_{w_{n}}^{*} + I_{w} + (\sum_{t=1}^{n} R_{w_{t}} \circ SPW_{t}) + (M_{w} \circ UPW_{n})$$

$$- (S_{w} \circ SPW_{n}), \qquad (3.7)$$

where the subscript "w" designates costs of the reference non-solar energy system; P_W represents the current price per energy unit of fuel used in the reference non-solar energy system (\$/MMBtu); L, the annual heating load; e_W , the average annual efficiency of this system; UPW^{*}_W, the uniform present

worth factor for the specified discount rate and period of study, n, modified to include projected price escalation rates for the fuel used in this system; I_w , the initial investment costs for this system; n, the number of years in the study period; R_w , the costs of replacements of this system net of salvage

value of components replaced in year t; SPW_t , the single present worth factor for the specific discount rate and the year, t, in which the replacement is expected to occur; M_W , the annually recurring non-fuel operation and maintenance cost for this system; UPW_n , the uniform present worth discount factor for the specified discount rate and period of study; S_W , the estimated salvage value of this system net of disposal costs at the end of the study period; and SPW_n , the single present worth discount factor for the specified discount rate and last year in the study period.

3.3.2 Total Life-Cycle Costs With Solar

TLCC_{s,a} is determined as follows:

$$TLCC_{s,a} = LCC_{s} + LCC_{a}$$
(3.8)

where LCC_s represent the life-cycle costs of the solar energy system, and LCC_a represents the life-cycle costs of the auxiliary system in a combined solar/auxiliary system.

LCC, is calculated in the following manner:1

L

$$CC_{s} = C_{s} + (V_{s} \cdot A_{s}) + (M_{s} \cdot UPW_{n}) + (P_{s} \cdot Q_{s} \cdot UPW_{s_{n}}^{*})$$

$$+ (\sum_{i}^{n} R_{s_{t}} \cdot SPW_{t}) - (S_{s} \cdot SPW_{n}),$$

$$j=1$$

$$(3.9)$$

where C_s represents the fixed costs of the solar energy system; V_s , the variable costs of the solar energy system per unit of solar collector area, A_s ; M_s , the annually recurring costs of maintaining the solar energy system, UPW_n, the uniform present worth factor for the specified discount rate and study period, n; P_s , the price of electricity per energy unit; Q_s , the quantity of electricity required annually to operate the fans, pumps, and controls of the solar energy system; UPW's, the uniform present worth factor for the specified

discount rate and study period, n, modified to include a set of projected energy price escalation rates for electricity; R_s, the costs of major replacements to

the solar energy system net of salvage value of components replaced in year t; SPW_t, the single present worth factor for the specified discount rate and year t, in which the repair or replacement is expected to occur; S_s , the estimated salvage value of the system at the end of the study period net of removal and disposal costs; and SPW_n, the single present worth factor for the specified discount rate and the last year in the study period.

LCC_a is calculated as follows:

$$LCC_{a} = P_{a} \cdot \frac{L(1-F)}{e_{a}} \cdot UPW_{a_{n}}^{*} + I_{a} + (\sum_{j=1}^{n} R_{a_{t}} \cdot SPW_{t}) + (M_{a} \cdot UPW_{n})$$

$$- (S_{a} \cdot SPW_{n}), \qquad (3.10)$$

where the subscript "a" designates costs of the auxiliary energy system; P_a represents the current price per energy unit of fuel consumed in the auxiliary system; L, the annual heating load; e_a , the average annual efficiency of the auxiliary heating system; F, the annual fraction of the heating load supplied by solar; UPW^{*}_a, the uniform present worth factor for the specified discount

rate and period of study, n, modified to include projected energy escalation rates for the auxiliary fuel; I_a , the initial investment costs for the auxiliary backup system; R_{a_+} , the costs of replacements to the auxiliary system

¹ This equation assumes that solar storage volume and all other variable system components increase proportionately with installed collector area. Therefore, the variable cost component (V_s) includes the cost of storage per unit of collector area, as well as all other variable system costs which increase proportionately with collector area.

net of salvage in year t; SPW_t , the single present worth factor for the specified discount rate and the year, t, in which the replacement is expected to occur; M_a , the annually recurring non-fuel operation and maintenance cost of the auxiliary system; UPW_n , the uniform present worth discount factor for the specified discount rate and study period, n; S_a , the estimated salvage of the auxiliary system net of disposal costs at the end of the study period; and SPW_n , the single present worth discount factor for the specified discount rate and study period.

3.3.3 Net Savings

Assuming that an auxiliary system for the solar energy system is required, Net Savings (NS) is computed for a given thermal load by subtracting $TLCC_{s,a}$ from $TLCC_w$; i.e.,

$$NS = TLCC_{w} - TLCC_{s,a}.$$
(3.11)

3.4 OPTIMIZING SYSTEM DESIGN

The TLCC for each alternative design and size under consideration can be calculated and compared. The alternative with the lowest TLCC is the most costeffective choice, provided possible differences in comfort and other effects not quantified in the cost equations do not outweigh the results of the lifecycle cost evaluation.

Similarly, projects can be designed and sized on the basis of their comparative NS. For example, the NS of a solar energy system of a given design and size can be found by subtracting the TLCC of the combined solar energy/auxiliary system from the TLCC of the reference non-solar energy system. If a project has a positive NS, it recovers its full costs plus a surplus, and, hence, is economically desirable. The system with the highest NS relative to the reference non-solar case is the most cost effective choice, other things being the same.

By repeating the procedures described above for a number of system designs and sizes (including different auxiliary systems), the system design/size configuration with the highest net savings and lowest total life-cycle cost can be identified.

3.4.1 Framework for Optimization

The optimal system design for a given application, building, and location depends on the trade-off between auxiliary energy costs (LCC_a) and solar energy system costs (LCC_s) as the size of a solar energy system of a given design is increased.

Consider the trade-off between solar energy system size and auxiliary energy cost for a system of a given design, as depicted graphically in figure 3.2. Collector area, as an indicator of overall system size, is shown along the horizontal axis. Present value costs are shown along the vertical axis. As collector area increases, the amount of energy supplied by the solar energy

Figure 3.2 LCC Trade-off Between Conventional Energy and Solar Energy

Figure 3.4 Determining the Economically Optimal System Size Through Maximizing Savings

Figure 3.3 Determining the Economically Optimal System Size Through Minimizing TLCC_{s,a} system increases. Thus, auxiliary energy usage and LCC_a decrease as LCC_s increases. The LCC_a line is curved toward the origin because additional units of A generally increase the fraction of the load supplied by solar by ever smaller amounts, i.e., as additional units of A are installed, the LCC_a curve declines at a decreasing rate. LCC_s , in contrast, is shown to increase linearly with A in figure 3.2, as would happen if there were a constant variable cost per each additional unit of A. C_s on the vertical axis indicates those system costs that are relatively insensitive to system size, that is, the "fixed costs." C_s may be much larger or it could be smaller than portrayed in figure 3.2.

The trade-off depicted in figure 3.2 suggests that there may be a solar energy system size which just balances the decrease in LCC_a with the increase in LCC_s as additional units of collector area (A) are installed. At this point $TLCC_{s,a}$ would reach a minimum value. This is depicted in figure 3.3, which is identical to figure 3.2 with the addition of the $TLCC_{s,a}$ curve. The $TLCC_{s,a}$ curve, obtained by adding LCC_a and LCC_s vertically, is U-shaped (although other shapes are possible, depending upon the shape of LCC_a and LCC_s). The $TLCC_{s,a}$ curve is shown as first decreasing, reaching a minimum value at A*, and thereafter increasing. The system size represented by A* collector area is the economically optimal size for the solar energy system. It is economically optimal in the sense that it minimizes the total life-cycle costs of the combined system, $TLCC_{s,a}$.

3.4.2 Maximizing Savings

Thus far we have considered trade-offs between LCC_a and LCC_s in order to determine the total costs of various size combinations of the solar/auxiliary energy system. Now let us examine the cost effectiveness of the combined solar/auxiliary energy system relative to the reference non-solar energy system. Figure 3.4 shows the TLCC curve for the reference non-solar energy system (TLCC100%W), added to the curves of figure 3.3. TLCC100%W is independent of collector area because it represents the total life-cycle cost without the solar energy system. Figure 3.4 also shows the NS curve for the combined solar/auxiliary energy system of alternative sizes. The NS curve is found by taking the difference between the TLCC100%W curve and the TLCCs, a curve. NS is shown to be initially below the horizontal axis, indicating higher lifecycle costs for small sizes of the combined solar/auxiliary energy system than for the reference non-solar energy system. NS then increases, rises above the horizontal axis, and reaches a maximum value for the solar energy system size designated A*. NS decreases thereafter and losses are incurred for the largest system sizes. (Other shapes of the NS curve are possible, depending on the shapes of LCC_a, LCC_s, and TLCC_{s,a}.)

It is important to note that NS reaches a maximum value at A* coincident with the minimum value of $TLCC_{s,a}$. Maximizing NS is identical to minimizing $TLCC_{s,a}$ in determining the optimal system size, A*. Only by selecting the economically optimal size (A*) of the solar energy system will the maximum cost effective-ness of the system be obtained.

3.4.3 Minimizing Losses

In the graphic exposition of figure 3.4, NS is positive at A* and, therefore, the solar energy system is cost effective. It recovers its full cost over the life-cycle plus some surplus, NS. The value of the surplus is over and above the opportunity cost of money, since all costs and savings are assumed to have undergone the discounting procedure.

The collector area which minimizes $TLCC_{s,a}$ will not necessarily produce a positive NS. That is, the minimum-cost solar energy system may not be cost effective relative to the 100 percent non-solar energy system. This situation is depicted graphically in figure 3.5. The collector size A* in figure 3.5 minimizes $TLCC_{s,a}$, but results in a negative NS, which means a higher life-cycle cost of supplying energy to the building.

If a solar energy system is to be installed regardless of its cost effectiveness, A* (as depicted in figure 3.5) is the optimally sized system to install, based on economic efficiency considerations. Although it is not cost effective, A* is optimal in the sense of minimizing total life-cycle losses (-NS), or "excess cost," from using solar energy. Any other size for this solar energy system, other than zero, would result in greater excess cost over the life of the system than size A*.

This same trade-off procedure could be applied to alternative system designs, for example, flat-plate collectors versus advanced technology collectors and air systems versus water systems. The system design and size with the highest net savings, or the lowest -NS, excess cost, is the economically preferred solar energy system, other things being equal.

3.4.4 What To Do When the Economically Optimal Solar Energy System Size Is Zero or Very Small

Figure 3.6 depicts a third possible configuration for the $TLCC_{s,a}$ and NS curves. The $TLCC_{s,a}$ curve is continuously increasing and lies everywhere above the $TLCC_{100\%}$ curve. Thus net losses result for all sizes of the solar energy system and continuously increase as solar is increased. In this situation, a collector area of zero minimizes losses.

What should one do if the life-cycle cost analysis shows that the optimal system size is 0 or so small that it does not represent a viable or realistic design decision? Answers to the following questions provide guidance:

1) Would a different type of system, with different cost and efficiency profiles, result in different trade-offs between solar costs and auxiliary energy costs?

2) What is the minimum acceptable solar heating contribution? What is the cost penalty for selecting the size that will meet the minimum requirement? Should this minimum solar contribution be used as a minimum size constraint?

Figure 3.6 Sizing Systems When No Optimization Is Possible (A System Size of Zero Minimizes Net Losses)

3) Can the system size be expanded beyond the minimum acceptable level without a large increase in dollar losses? That is, is the NS curve steep or flat in the region of the minimum acceptable size?

4) How sensitive is the outcome of the economic optimization to key assumptions, for example, investment costs and fuel costs, and how reasonable are those assumptions? Has sufficient care been taken to differentiate the solar energy investment costs that are relatively independent of system size (fixed costs), from those that vary directly with system size (variable costs)?

5) How important is it to the agency to have an alternative energy source? Are there benefits not accounted for in the life-cycle cost analysis? Do these expected benefits exceed the excess costs or net losses of a project of acceptable size?

Sections 3.4.5 and 3.4.6 describe special features of the FEDSOL program that are useful in developing answers to these questions.

3.4.5 Optimizing System Size with FEDSOL

FEDSOL identifies the economically optimal collector area (greater than zero) by computer search of net savings for a combined solar/auxiliary system relative to a reference non-solar energy system over a wide range of sizes of the solar energy system.

In essence FEDSOL constructs and scans the NS curve, locates the combined solar/auxiliary system resulting in highest net savings (or lowest net losses), and prints out the size, solar fraction, net savings measures for this optimal system, as illustrated for a sample case-an office building system for service hot water and space heating in Washington, D.C.--reprinted in table 3.4.¹ The table of solar fractions and net savings results for a range of system sizes is reprinted in table 3.5.

In FEDSOL, the optimal collector area is determined using an optimization technique called the "Golden Section Search." The "Golden Section" is a portion of the interval between specified lower and upper bounds, calculated by taking (SQR(5)-1)/2, or approximately 0.618, times the distance between these bounds. This distance is added to the lower bound and subtracted from the upper bound to determine the first two points at which to evaluate the net present value savings of the solar energy investment. The net present value savings at the two points are compared to determine which is greater, and, consequently, which end of the interval should move to form a new search interval. The procedure is repeated until the bounds converge on the optimal collector area.

This method allows one to find a maximum or minimum value, or constrained optimum, of a function over a specified interval with very few computer

¹ The input data for this sample Washington, D.C., case is shown in section 4, case 1.

Table 3.4 Life-Cycle Cost Summary for the SAMPLE Case

LIFE CYCLE COST SUMMARY

OPTIMAL COLLECTOR AREA = 1659.00 SQFT OPTIMAL SOLAR FRACTION = .489

	SOLA S	R ENERGY YSTEM	AU S	XILIARY YSTEM	REFERENCE SYSTEM
INVESTMENT (ADJ)	\$	93792.	\$	0.	\$ O.
FUEL	\$	2833.	\$	61303.	\$ 120054.
0&M	\$	11040.	\$	0.	\$ O.
REPLACEMENTS	\$	0.	\$	290.	\$ 767.
SALVAGE	\$	4040.	\$	0.	\$ O.
TOTAL LCC	\$	103626.	\$	61593.	\$ 120820.

Table 3.5 Table of Solar Fractions and Net Savings for the SAMPLE Case

SOLAR FRACTION	AND NS FOR A RANG	GE OF SYSTEM SIZES
AREA (SQFT)	SOLAR FRACTION	NET SAVINGS
250.0	•08	\$ -56202.
550.0	•18	\$ -52749.
850.0	.27	\$ -49293.
1250.0	.39	\$ -45585.
1700.0	.50	\$ -44411.
2300.0	.61	\$ -46994.
3050.0	.70	\$ -54843.
4200.0	.80	\$ -72484.
12700.0	•98	\$-262959 .

iterations. In FEDSOL, the lower bound of this interval initially is set equal to zero, and the upper bound set equal to the area which produces an annual solar fraction of approximately 99 percent.

In some cases, the optimization analysis performed by FEDSOL can result in a system too small or too large to be feasible in an engineering or design sense for the building to which it is to be attached. To avoid the outcome of too small a system, the minimum acceptable solar fraction input (FEDSOL line number 5) should be used to constrain the optimization analysis to systems with performance capabilities above some minimum acceptable level.¹ Furthermore, the

¹ The FEDSOL program sets zero square feet of collector area as the absolute minimum size constraint. This constraint is adjusted upward by changing the value of the minimum solar fraction input variable over the range of one to 98 percent solar. The default value is 30 percent.

table of solar fractions and net savings in the program output can be examined for the penalty of selecting a larger or smaller system than optimal on the basis of life-cycle cost considerations. For many buildings and locations, there is little change in net savings over a wide range of system sizes and performance capabilities. In other situations or over other size ranges, the effects on life-cycle cost and net savings from under- or over-sizing systems can be major. The maximum feasible system size from an engineering or design standpoint sets the upper size limit in interpreting the life-cycle costing results.

Consider the following example, illustrated in figure 3.7. The table of net savings and annual solar fraction results obtained for a similar building and system in four cities--Washington, D.C., Los Angeles, Phoenix, and Bismarck-- are plotted in the figure.¹ Annual solar fraction is plotted as a function of collector area in the upper quadrant; net losses (negative savings) as a function of collector area in the lower quadrant.

Note that net losses result from the use of solar energy in all four cases. However, in each case, net losses are minimized by a system size greater than zero. The collector area that minimizes net losses ranges from 628 square feet in Los Angeles to 1,659 square feet in Washington, D.C. Note further that in the Bismarck case, the optimally sized system provides only 15 percent of the annual energy requirement for space and water heating. This fraction is probably smaller than is feasible in an engineering sense. A further examination of the net losses curve for Bismarck shows it to be relatively flat for collector areas up to approximately 2,500 square feet, corresponding to a solar fraction of 22 percent. This suggests that the system could be expanded to 2,500 square feet with a relatively small economic or cost penalty. On the other hand, expanding the solar capability system to provide 40-50 percent or more of the energy load fraction capability would entail a substantial penalty.

3.4.6 Conducting Sensitivity Analyses with FEDSOL

FEDSOL contains a number of features that are useful in examining the sensitivity of analysis results to specific assumptions and in comparing the economic performance and optimal sizing of different types of systems.

Breakeven Analysis. The breakeven analysis portion of the program output provides a comprehensive sensitivity analysis for three key economic input variables:

- ° investment costs for solar energy system (fixed and variable components)
- base-year energy prices
- energy price escalation rates.

In the breakeven analysis, these variables are adjusted one at a time, with the others held at their original values, until the net life-cycle savings from the solar energy investment equal zero, the minimum conditions for cost effectiveness.

¹ The building and system are as described for the sample Washington, D.C., case described above.

Figure 3.7 Annual Solar Fraction vs. Net Losses--Sample Test Results for an Office Building System for Space and Service Water Heating in Four U.S. Cities

Fuel price escalation rates and investment costs are adjusted by applying incremental multipliers to the original values. The multiplier which causes net savings to equal zero is called the breakeven value. The breakeven baseyear fuel price is found by incrementing the original value for the base-year fuel price until net savings equal zero. Fuel prices and escalation rates are, of course, adjusted upward; investment costs downward. System size is reoptimized as prices and escalation rates are adjusted.

Note that FEDSOL conducts this breakeven analysis only when all of the following conditions apply:

- 1. the SLR performance analysis has been selected
- 2. the optimization option has been selected
- 3. the reference and auxiliary fuel types are the same
- 4. the extended output option has been selected
- 5. net life-cycle savings are negative for the original data and assumptions.

In situations where solar energy currently is not cost effective, this analysis serves to pinpoint the magnitude of the change required for the optimallysized solar energy system, of the type specified, to become cost effective; i.e., it shows the "gap" between the current cost conditions and cost effectiveness.

The breakeven analysis for the sample Washington, D.C., project is reprinted in table 3.6.

Table 3.6 Breakeven Analysis for the SAMPLE Case

BREAKEVEN ANALYSIS

OPTIMAL AREA = 2585.00 SQFT SOLAR FRACTION = .647

BREAKEVEN FUEL PRICE = 15.148908 \$/MMBtu

BREAKEVEN SYSTEM COST MULTIPLIER = .600340

BREAKEVEN FUEL ESCALATION RATE MULTIPLIER = 1.357 BREAKEVEN FUEL ESCALATION RATES 6.9729 7.1900 12.1557

This breakeven analysis shows that conventional fuel used as auxiliary to solar must cost at least \$15.15/MMBtu for the project to break even, i.e., for net savings to equal zero, given the conditions assumed. This minimum required cost can be compared with the default price of oil for commercial use in Washington, D.C., in 1981 of \$9.25. Alternatively, given the current price of oil, the breakeven analysis shows that reducing fixed and variable (per unit) solar energy investment costs to 60 percent of the costs assumed in the base-case analyses would cause the project to break even. Or, thirdly given the current price of distillate, investment and other costs assumed in the base-case analyses, the breakeven analysis shows that rates of fuel price escalation 1.36 times the current projections would be necessary for project savings to equal the costs.

Note that the optimal solar fraction and optimal system size in the Washington, D.C. case (project SAMPLE) increase from 49 percent and 1,659 square feet to 65 percent and 2,585 square feet, respectively, as solar energy investment costs or fuel prices approach their breakeven values.¹ (This can be seen by comparing tables 3.4 and 3.6.)

Flexibility in Changing Input Data. The FEDSOL user can take advantage of the ease with which FEDSOL's input data can be changed to develop economic profiles for making design and sizing decisions. All of the numbered items in the input data listing can be changed with the C (Change) command. Only if the location, the type of building, or the type of analysis (SLR or economic analysis alone) is changed is it necessary to start the program over by stopping execution of the current file and creating a new file. The summary output can be used to obtain a quick one-line summary of the results for alternative sets of data and assumptions (see data item 70, section 2.3.2).

3.4.7 Making the Design and Sizing Decision

By evaluating different types of systems and considering realistic ranges of values for key economic variables, one can develop a much more complete picture of the economic consequences of an investment in solar energy than that given by a single computer run for a single set of assumptions. After weighing the effects of uncertainties about investment costs, energy prices, and other costs and after considering engineering practice and architectural considerations, it remains for the decision maker to exercise a reasoned judgment as to the most economically efficient design and size under these conditions.

3.5 CALCULATING OTHER MEASURES OF ECONOMIC PERFORMANCE

The Federal LCC Rule requires the savings-to-investment ratio (SIR) and simple payback (SPB) measures of economic performance in addition to net savings (NS).

The SIR is a numerical ratio calculated with the combined change in energy costs and non-fuel operation and maintenance costs as the numerator, and the combined

¹ Given the particular mathematical model contained in the FEDSOL program, the breakeven optimal collector area and solar fraction are approximately the same regardless of whether base-year fuel prices, escalation rates, or investment costs are adjusted. Because of this approximate equality and in order to simplify the program output, a single set of breakeven optimal area and fraction values is printed.

change in investment costs, salvage values, and replacement costs in the denominator: 1

$$SIR = \frac{\Delta E - \Delta M}{\Delta I - \Delta S + \Delta R},$$
 (3.12)

where all amounts are expressed in present value dollars, and E represents energy costs; M, non-fuel operation and maintenance costs; I, investment costs; S, salvage value; and R, replacement costs. The delta symbol (Δ) indicates that only those changes attributable to the solar energy system need be considered. ΔE is calculated by subtracting life-cycle energy costs for the combined solar/auxiliary system from energy costs for the reference system; ΔM , ΔI , ΔS , and ΔR are calculated by subtracting the respective life-cycle cost for the reference system from the corresponding life-cycle cost for the combined solar/ auxiliary system. A SIR value greater than 1 means the project is cost effective. This measure is useful for ranking projects in descending order of their return per dollar cost and thus assigning priorities to projects competing for a limited budget, once the optimal size/design for a given project has been defined using the TLCC or NS measures. (For further explanation see the LCC Manual [1].)

The SPB measure computes the elapsed time between the time of the initial investment and the time at which cumulative savings through reductions in energy costs, net of other future costs, just offset the initial investment cost (ignoring the cost of money and energy price escalation). A payback period equal to or shorter than the study period means that the project is cost effective according to this measure.

If future costs and savings are estimated to occur in even yearly amounts, the following formula can be used to determine SPB:

$$SPB = \frac{\Delta I}{\Delta \overline{E} - \Delta \overline{M} - \Delta \overline{R}}$$
(3.13)

where I represents investment costs; \overline{E} , annual energy costs evaluated at base-year energy prices; \overline{M} , annual non-fuel operation and maintenance costs at base-year prices; and \overline{R} annual replacement costs at base-year prices. The bar above the symbols indicates that the base-year costs have not been discounted to present value and summed. If future costs and savings are not uniform, the following equation can be used:

Find y, the number of years, such that $\sum_{L=1}^{y} (\Delta \overline{E}_L - \Delta \overline{M}_L - \Delta \overline{R}_L) = \Delta I.$ (3.14)

¹ The assignment of values to the numerator and denominator varies, but this version is widely used and has been adopted for Federal LCC Rule [1, 4].

Otherwise, differences are calculated as for the SIR. The SPB is a rough, approximate measure of economic performance and should not be relied upon as the primary basis for an investment decision. (For further explanation, see the LCC Manual [1].)

The FEDSOL program output includes these additional measures in the results of the life-cycle cost analysis. In addition, it provides two cash flow analyses. The first shows annual and cumulative dollar values for the undiscounted net cash flow over each year of the study period. The second cash flow analysis shows discounted values for the annual and cumulative net cash flow over the study period. This second cash flow analysis includes the effects of escalation in fuel prices, while the first does not. (See section 4, case 1.)

4. CASE EXAMPLES ILLUSTRATING THE FEDSOL PROGRAM¹

This section includes five computer runs of the FEDSOL program. Case 1 illustrates the sample case stored permanently in the program files under the name "SAMPLE" (see section 2). Major elements of the program output are annotated for easy reference.

- Case 1. Optimization analysis of an office building system in Washington, D.C., for space heating and service water heating.
- Case 2. Thermal and economic analysis of a 800 ft² office building system for space heating and service hot water in Washington, D.C. (same building and location as Case 1).
- Case 3. Optimization analysis of an office building system for service water heating only in Washington, D.C. (same building and location as case 1).
- Case 4. Optimization analysis of a residential system in Bismarck, N.D. for space heating and service water heating.
- Case 5. Economic analysis only of a residential system for space heating in Bismarck, N.D. (same building and location as case 4; thermal performance estimate from F-CHART 3.0).

¹ The buildings and systems analyzed in the test cases are hypothetical in that they do not actually exist, nor have they been proposed for construction. The office building cases are based on a prototypical 3-story office building of 30,000 square feet with 300 occupants; the residential case, a singlestory detached residence of 1,500 square feet with four occupants. Solar energy systems costs are based on generalized cost functions for active solar energy systems prepared by Honeywell, Inc., under contract to the National Bureau of Standards [11].

Case 1. This case shows an economic optimization analysis of an office building system in Washington, D.C., for space heating and service water heating. It illustrates the use of the demonstration file called SAMPLE.

> FEDSOL - VERSION 1.0 *** NATIONAL BUREAU OF STANDARDS

COMMAND: N=NEW, O=OLD, L=LIST, C=CHANGE, R=RUN, S=SAVE, Q=QUIT, H=HELP ? O ENTER NAME OF DESIRED FILE >>>? SAMPLE ENGLISH OR SI UNITS (E OR SI) ? E COMMAND: N=NEW, O=OLD, L=LIST, C=CHANGE, R=RUN, S=SAVE, Q=QUIT, H=HELP ? L ANALYSIS FOR A FEDERAL OFFICE BUILDING IN WASHINGTON-STERLING, DC ****** ******* DATA FOR SOLAR PERFORMANCE ANALYSIS (SLR METHOD) 1 TYPE OF SOLAR ENERGY SYSTEM (FROM CODED LIST) 13.00 48.57 DEGREES 2 COLLECTOR TILT ANGLE 3 OPTIMIZATION ANALYSIS (YES=1;NO=2) 1.00 .00 SQFT 4 COLLECTOR AREA 30.00 Z 5 MINIMUM ACCEPTABLE SOLAR FRACTION 6 OPERATING EFFICIENCY OF AUXILIARY SYSTEM 51.00 % 7 OPERATING EFFICIENCY OF REFERENCE NONSOLAR SYSTEM 51.00 % 8 ELECTRIC ENERGY AS % OF USEFUL SOLAR ENERGY 6.00 Z ENERGY REQUIREMENTS DATA 9 DOMESTIC HOT WATER USAGE 300.00 GALLONS/DAY 10 BUILDING USE SCHEDULE 5.00 DAYS/WEEK 11 MONTHLY SPACE HEATING LOADS - MMBTU/MONTH - 71.20 JUL - 33.90 - 42.30 JAN FEB - 20.20 - 37.90 MAR SEP APR - 21.60 OCT - 21.00 MAY - 24.00 NOV - 28.70 - 28.20 JUN DEC 53.60 -ENVIRONMENTAL DATA 12 AVERAGE DAILY HORIZONTAL RADIATION - BTU/SQFT-DAY JAN - 572.00 JUL - 1817.00 FEB - 815.00 AUG - 1617.00 MAR - 1125.00 SEP - 1340.00 - 1003.00 APR - 1458.00 OCT MAY - 1718.00 NOV - 650.00 - 1900.00 - 481.00 JUN DEC 13 AVERAGE GROUND WATER TEMPERATURES - DEGREES F DEC - FEB = 47.0MAR - MAY = 51.0JUN - AUG = 66.0SEP - NOV = 63.0

The demonstration file SAMPLE is called from permanent storage.

Input data for SAMPLE are listed.

(The coded list of types of systems appears in table 2.1).

BASE YEAR INVESTMENT COSTS 30 SOLAR ENERGY INVESTMENT - FIXED COST 61577.00 \$ 30 SOLAR ENERGY INVESTMENT - FIXED COST 31 SOLAR ENERGY INVESTMENT - VARIABLE COST 32 INVESTMENT CREDIT (EXTERNALITY ADJUSTMENT) 25.70 \$/SQFT 10.00 % 33 INVESTMENT COST FOR AUXILIARY SYSTEM .00 \$.00 \$ 34 INVESTMENT COST FOR REFERENCE NONSOLAR SYSTEM FUTURE NON-FUEL COSTS SOLAR ENERGY SYSTEM 40 ANNUALLY RECURRING OSM COST (% OF SYSTEM COST) 1.00 % 41 REPLACEMENT COST AND YEAR \$ 0 AT YEAR 0 0 AT YEAR 0 0 AT YEAR 0 Ş Ś 42 SALVAGE VALUE AT END OF STUDY PERIOD 15.00 Z AUXILIARY SYSTEM 44 ANNUALLY RECURRING OSM COST 45 REPLACEMENT COST AND YEAR .00 \$ \$ 800 AT YEAR 15 \$ 0 AT YEAR 0 O AT YEAR O Ŝ 46 SALVAGE VALUE AT END OF STUDY PERIOD .00 \$ REFERENCE NON-SOLAR SYSTEM 47 ANNUALLY RECURRING O&M COST .00 \$ 48 REPLACEMENT COST AND YEAR \$ 1000 AT YEAR 10 \$ 1000 AT YEAR 20 Ś O-AT YEAR O 49 SALVAGE VALUE AT END OF STUDY PERIOD .00 \$ FUEL COSTS 16.38 \$/MMBTU 50 ELECTRICITY PRICE IN BASE YEAR 51 DISTILLATE OIL PRICE IN BASE YEAR 9.25 \$/MMBTU 52 RESIDUAL OIL PRICE IN BASE YEAR 6.66 \$/MMBTU 3.93 \$/MMBTU 1.84 \$/MMBTU 53 NATURAL GAS PRICE IN BASE YEAR 54 COAL PRICE IN BASE YEAR 55 LPG PRICE IN BASE YEAR .00 \$/MMBTU 56 TYPE OF FUEL USED IN AUXILIARY SYSTEM 2.00 57 TYPE OF FUEL USED IN REFERENCE SYSTEM 2.00 DOE REGION = 358 ENERGY PRICE ESCALATION (% PER YEAR ABOVE INFLATION) - COMMERCIAL TIME PERIODS: 1ST 4 YRS NEXT 5 YRS AFTER 9 YRS ELECTRICITY 5.29 .66 .14 DISTILLATE OIL

 2.51
 2.67

 9.00
 2.52

 8.84
 2.87

 6.04
 2.36

 .00
 .00

 2.51 2.67 6.33 RESIDUAL OIL 5.56 2.75 .90 .00 NATURAL GAS COAL LPG

DISCOUNT RATE AND STUDY PERIOD 60 REAL DISCOUNT RATE (EXCLUDES INFLATION) 7.00 % 20.00 YEARS 61 STUDY PERIOD ANALYSIS OUTPUT 70 1=STANDARD; 2=EXTENDED; 3=SUMMARY 1.00 COMMAND: N=NEW, O=OLD, L=LIST, C=CHANGE, R=RUN, S=SAVE, Q=QUIT, H=HELP ? C LINE NUMBER ? 70 70 1=STANDARD; 2=EXTENDED; 3=SUMMARY CURRENT VALUE = 1 NEW VALUE = ? 2 LINE NUMBER ? COMMAND: N=NEW, O=OLD, L=LIST, C=CHANGE, R=RUN, S=SAVE, Q=QUIT, H=HELP ? R * NET SAVINGS = \$ -44399 * AREA = 1659 SQFT * SOLAR FRACTION = .489 * ********************** WASHINGTON-STERLING, DC SYSTEM TYPE = 13SOLAR FRACTION AND NS FOR A RANGE OF SYSTEM SIZES AREA SOLAR FRACTION NET SAVINGS (SQFT) .08 \$ -56202. 250.0 550.0 .18 \$ -52749. 850.0 \$ -49293. •27 1250.0 .39 \$ -45585. 1700.0 \$ -44411. • 50 2300.0 •61 \$ -46994. 3050.0 .70 \$ -54843. • 80 4200.0 \$ -72484. • 89 6350.0 \$-114919. 12700.0 • 98 \$-262959. THERMAL PERFORMANCE TILT ANGLE = 48.57 DEGREES COLLECTOR AREA = 1659.00 SQFT INCIDENT SPACE COLLECTOR LOAD (1) (2) AVG DAILY WATER USEFUL SOLAR FRACTION HORZ RAD. LOAD SOLAR (1) (2) (2) .190
 882.01
 71.20

 1094.16
 42.30

 1272.36
 37.90
 14.38 572.00 4.58 JAN 42.30 37.90 815.00 1094.16 4.13 FEB •347 16.11 MAR •491 1125.00 1272.36 4.36 20.77 .744 1458.00 1384.72 21.60 4.22 APR 19.21 .734 1718.00 .690 1900.00 MAY 1437.81 24.00 4.36 20.82 JUN •690 1496.00 28.20 3.41 21.81

Input #70 is changed from "1" to "2" to request extended analysis output. A (CR) is entered in response to the line number query when no further changes are desired. The Run command is given.

JUL	.619	1817.00	1470.40	33.90	3.53	23.18
AUG	.756	1617.00	1455.68	23.70	3.53	20.60
SEP	.791	1340.00	1430.91	20.20	3.57	18.79
OCT	• 755	1003.00	1316.55	21.00	3.69	18.65
NOV	.480	650.00	980.75	28.70	3.57	15.49
DEC	.211	481.00	753.07	53.60	4.58	12.28
YEAR	.489			406.30	47.53	222.09

(1) = BTU/SQFT-DAY
(2) = MMBTU/MONTH

LIFE CYCLE COST SUMMARY

OPTIMAL COLLECTOR AREA = 1659.00 SQFT OPTIMAL SOLAR FRACTION = .489

	SOLA S	R ENERGY YSTEM	AU S	XILIARY YSTEM	REI S Y	ERENCE
INVESTMENT (ADJ)	\$	93792.	\$	0.	\$	0.
FUEL	\$	2833.	\$	61303.	\$	120054.
M30	\$	11040.	\$	0.	\$	0.
REPLACEMENTS	\$	0.	\$	290.	\$	767.
SALVAGE	\$	4040.	\$	0.	\$	0.
TOTAL LCC	\$	103626.	\$	61593.	\$	120820.

MEASURES OF ECONOMIC PERFORMANCE

TOTAL	LCC	WITHO	TUC	SOLAR	=	\$	120820.
TOTAL	LCC	WITH	SOL	AR	=	\$	165219.
NET SA	AVTNO	S			-	Ŝ	-44399.

SIMPLE PAYBACK TIME = 33.17 YEARS

SAVINGS TO INVESTMENT RATIO = .503

CASH FLOW ANALYSIS

SIMPLE					DISCOUNTED			
YEAR		ANNUAL	CU	MULATIVE	ANNUAL		CUMULATIVE	
0	\$ ·	-93792.	\$	-93792.	\$ -93792.	\$	-93792.	
1	\$	2768.	\$	-91024.	\$ 2670.	\$	-91122.	
2	\$	2768.	\$	-88257.	\$ 2576.	\$	-88546.	
3	\$	2768.	\$	-85489.	\$ 2483.	\$	-86063.	
4	\$	2768.	\$	-82721.	\$ 2394.	\$	-83669.	
5	\$	2768.	\$	-79954.	\$ 2320.	\$	-81349.	
6	\$	2768.	\$	-77186.	\$ 2249.	\$	-79100.	
7	\$	2768.	\$	-74418.	\$ 2178.	\$	-76921.	
8	\$	2768.	\$	-71650.	\$ 2110.	\$	-74812.	
9	\$	2768.	\$	-68883.	\$ 2042.	\$	-72769.	
10	\$	3768.	\$	-65115.	\$ 2580.	\$	-70189.	
11	\$	2768.	\$	-62347.	\$ 2098.	\$	-68090.	
12	\$	2768.	\$	-59580.	\$ 2122.	\$	-65968.	
13	\$	2768.	\$	-56812.	\$ 2144.	\$	-63825.	
14	\$	2768.	\$	-54044.	\$ 2162.	\$	-61662.	
15	\$	1968.	\$	-52077.	\$ 1889.	\$	-59773.	
16	\$	2768.	\$	-49309.	\$ 2194.	\$	-57580.	
17	\$	2768.	\$	-46541.	\$ 2206.	\$	-55374.	
18	\$	2768.	\$	-43774.	\$ 2217.	\$	-53157.	
19	\$	2768.	\$	-41006.	\$ 2226.	\$	-50930.	
20	\$	19400.	\$	-21606.	\$ 6532.	\$	-44399.	

BREAKEVEN ANALYSIS

OPTIMAL AREA = 2585.00 SQFT SOLAR FRACTION = .647 BREAKEVEN FUEL PRICE = 15.148908 \$/MMBTU BREAKEVEN SYSTEM COST MULTPLIER = .600340 BREAKEVEN FUEL ESCALATION RATE MULTIPLIER = 1.357 BREAKEVEN FUEL ESCALATION RATES 6.9729 7.1900 12.1557

Case 2. This case shows a thermal and economic analysis of a 800 ft^2 office building system for space heating and service hot water in Washington, D.C. It is based on the file SAMPLE. COMMAND: N=NEW, O=OLD, L=LIST, C=CHANGE, R=RUN, S=SAVE, Q=QUIT, H=HELP ? C The input data in LINE NUMBER ? 3 3 OPTIMIZATION ANALYSIS (YES=1;NO=2) SAMPLE are changed CURRENT VALUE = 1 NEW VALUE = ? 2 to specify 800 ft^2 of collector area LINE NUMBER ? 4 and the "standard' 4 COLLECTOR AREA CURRENT VALUE = 0 SQFT NEW VALUE = ? 800 output. LINE NUMBER ? 70 70 1=STANDARD; 2=EXTENDED; 3=SUMMARY CURRENT VALUE = 2 NEW VALUE = ? 1 LINE NUMBER ? COMMAND: N=NEW, O=OLD, L=LIST, C=CHANGE, R=RUN, S=SAVE, Q=QUIT, H=HELP ? L ANALYSIS FOR A FEDERAL OFFICE BUILDING IN WASHINGTON-STERLING, DC The revised input ******** data are listed. DATA FOR SOLAR PERFORMANCE ANALYSIS (SLR METHOD) 1 TYPE OF SOLAR ENERGY SYSTEM (FROM CODED LIST) 13.00 2 COLLECTOR TILT ANGLE 48.57 DEGREES 3 OPTIMIZATION ANALYSIS (YES=1;NO=2) 2.00 800.00 SQFT 4 COLLECTOR AREA 5 MINIMUM ACCEPTABLE SOLAR FRACTION 30.00 % 6 OPERATING EFFICIENCY OF AUXILIARY SYSTEM 51.00 % 51.00 % 7 OPERATING EFFICIENCY OF REFERENCE NONSOLAR SYSTEM 8 ELECTRIC ENERGY AS % OF USEFUL SOLAR ENERGY 6.00 % ENERGY REQUIREMENTS DATA 9 DOMESTIC HOT WATER USAGE 300.00 GALLONS/DAY 10 BUILDING USE SCHEDULE 5.00 DAYS/WEEK 11 MONTHLY SPACE HEATING LOADS - MMBTU/MONTH
 JAN
 71.20
 JUL
 33.90

 FEB
 42.30
 AUG
 23.70

 MAR
 37.90
 SEP
 20.20

 APR
 21.60
 OCT
 21.00
 OCT - 21.00 NOV - 28.70 DEC - 53.60 MAY - 24.00 JUN - 28.20 ENVIRONMENTAL DATA 12 AVERAGE DAILY HORIZONTAL RADIATION - BTU/SQFT-DAY JAN - 572.00 JUL - 1817.00 FEB - 815.00 AUG - 1617.00 AUG MAR-1125.00AGG-1617.00MAR-1125.00SEP-1340.00APR-1458.00OCT-1003.00MAY-1718.00NOV-650.00JUN-1900.00DEC-481.00

13 AVERAGE GROUND WATER TEMPERATURES - DEGREES F DEC - FEB = 47.0MAR - MAY = 51.0JUN - AUG = 66.0SEP - NOV = 63.0 BASE YEAR INVESTMENT COSTS 30 SOLAR ENERGY INVESTMENT - FIXED COST
31 SOLAR ENERGY INVESTMENT - VARIABLE COST
32 INVESTMENT CREDIT (EXTERNALITY ADJUSTMENT) 61577.00 \$ 25.70 \$/SQFT 10.00 % 33 INVESTMENT COST FOR AUXILIARY SYSTEM •**0**0 \$ 34 INVESTMENT COST FOR REFERENCE NONSOLAR SYSTEM .00 \$ FUTURE NON-FUEL COSTS SOLAR ENERGY SYSTEM 40 ANNUALLY RECURRING O&M COST (% OF SYSTEM COST) 1.00 % 41 REPLACEMENT COST AND YEAR \$ O AT YEAR O O AT YEAR O Ŝ 0 AT YEAR 0 Ŝ 42 SALVAGE VALUE AT END OF STUDY PERIOD 15.00 X AUXILIARY SYSTEM 44 ANNUALLY RECURRING O&M COST .00 \$ 45 REPLACEMENT COST AND YEAR \$ 800 AT YEAR 15 \$ 0 AT YEAR 0 \$ 0 AT YEAR 0 46 SALVAGE VALUE AT END OF STUDY PERIOD .00 \$ REFERENCE NON-SOLAR SYSTEM 47 ANNUALLY RECURRING O&M COST .00 \$ 48 REPLACEMENT COST AND YEAR \$ 1000 AT YEAR 10 \$ 1000 AT YEAR 20 \$ 0 AT YEAR 0 49 SALVAGE VALUE AT END OF STUDY PERIOD -00 S FUEL COSTS 50 ELECTRICITY PRICE IN BASE YEAR 16.38 \$/MMBTU 51 DISTILLATE OIL PRICE IN BASE YEAR 9.25 \$/MMBTU 52 RESIDUAL OIL PRICE IN BASE YEAR 6.66 \$/MMBTU 53 NATURAL GAS PRICE IN BASE YEAR 3.93 \$/MMBTU 54 COAL PRICE IN BASE YEAR 1.84 \$/MMBTU 55 LPG PRICE IN BASE YEAR .00 \$/MMBTU 56 TYPE OF FUEL USED IN AUXILIARY SYSTEM 2.00 2.00 57 TYPE OF FUEL USED IN REFERENCE SYSTEM DOE REGION = 3 58 ENERGY PRICE ESCALATION (% PER YEAR ABOVE INFLATION) - COMMERCIAL TIME PERIODS: 1ST 4 YRS NEXT 5 YRS AFTER 9 YRS 5.29 .66 .14 ELECTRICITY DISTILLATE OIL 2.51 2.67 6.33 6•33 5•56 2•75
 RESIDUAL OIL
 9.00
 2.52

 NATURAL GAS
 8.84
 2.87

 COAL
 6.04
 2.36

 LPG
 .00
 .00
 . 90 2.36

.00

DISCOUNT RATE AND STUDY PERIOD

60 REAL DISCOUNT RATE (EXCLUDES INFLATION) 61 STUDY PERIOD

7.00 Z 20.00 YEARS

ANALYSIS OUTPUT

70 1=STANDARD; 2=EXTENDED; 3=SUMMARY 1.00

COMMAND: N=NEW, O=OLD, L=LIST, C=CHANGE, R=RUN, S=SAVE, Q=QUIT, H=HELP ? R * NET SAVINGS = \$ -49872 * AREA = 800 SQFT * SOLAR FRACTION = .255 *

WASHINGTON-STERLING, DC SYSTEM TYPE = 13

SOLAR FRACTION AND NS FOR A RANGE OF SYSTEM SIZES

AREA (SQFT)	SOLAR FRACTION	NET SAVINGS
250.0	.08	\$ -56202.
550.0	.18	\$ -52749.
850.0	.27	\$ -49293.
1250.0	.39	\$ -45585.
1700.0	.50	\$ -44411.
2300.0	.61	\$ -46994.
3050.0	• 70	\$ -54843.
4200.0	• 80	\$ -72484.
6350.0	• 89	\$-114919.
12700.0	• 98	\$-262959.

THERMAL PERFORMANCE

COLL	ECTOR AREA	= 800.00	SQFT	TILT AN	NGLE = 48.57	DEGREES
	SOLAR FRACTION	AVG DAILY HORZ RAD.	INCIDENT COLLECTOR	SPACE LOAD	WATER LOAD	USEFUL SOLAR
		(1)	(1)	(2)	(2)	(2)
JAN	• 092	572.00	882.01	71.20	4.58	6.93
FEB	.167	815.00	1094.16	42.30	4.13	7.77
MAR	• 237	1125.00	1272.36	37.90	4.36	1 0.0 0
APR	- 408	1458.00	1384.72	21.60	4.22	10.53
MAY	. 399	1718.00	1437.81	24.00	4.36	11.30
JUN	• 360	1900.00	1496.00	28.20	3.41	11.38
JUL	• 30 9	1817.00	1470.40	33.90	3.53	11.56
AUG	- 420	1617.00	1455.68	23.70	3.53	11.44
SEP	- 458	1340.00	1430.91	20.20	3.57	10.89
OCT	.419	1003.00	1316.55	21.00	3.69	10.35
NOV	.231	650.00	980.75	28.70	3.57	7.46
DEC	• 102	481.00	753.07	53.60	4.58	5.92
YEAR	۰25 5			406.30	47.53	115.55

(1) = BTU/SQFT-DAY

(2) = MMBTU/MONTH

No further changes are made. The Run command is given.

LIFE CYCLE COST SUMMARY

COLLECTOR AREA	=	800.00	SQFT				
SOLAR FRACTION	=	• 255					
INVESTMENT (ADJ	SOI	AR ENERGY SYSTEM 373923.	AUX SX Ş	KILIARY (STEM 0.	REF Sy \$	ERENCE STEM 0.	
FUEL	ş	\$ 1474.	Ş	89487.	Ş	120054.	
M&0	ş	\$ 8702.	\$	0.	\$	0.	
REPLACEMENTS	Ş	¢ 0.	\$	290.	\$	767.	
SALVAGE	Ş	\$ 3184.	\$	0.	\$	0.	
TOTAL LCC	Ş	\$ 80915.	Ş	89777.	\$	120820.	

MEASURES OF ECONOMIC PERFORMANCE

TOTAL LCC WITHOUT SOLAR= \$ 120820.TOTAL LCC WITH SOLAR= \$ 170692.NET SAVINGS= \$ -49872.SIMPLE PAYBACK TIME= 60.55 YEARS

SAVINGS TO INVESTMENT RATIO = .290

Case 3.	This is an economic optimization for service water heating only established to describe a service glazed collectors, a selective delivery temperature of 130°F.	on analys in Washi vice water ely coated	is ngt he ab	of on at so	an off , D.C. ing sys rber su	ice building system A new data file is tem with single- rface, and water
COMMAND: N=	NEW, O=OLD, L=LIST, C=CHANGE, R=RUN, S=S	AVE, Q=QUIT,	H=H	IELI	? N	
ENGLISH OR	SI UNITS (E OR SI) ? E					The user is
PERFORMANCE	ANALYSIS USING SLR METHOD (Y OR N)? Y					queried for the minimum data
ENTER CITY	ID NUMBER? 52					required for a life-
RESIDENTIAL	=1;COMMERCIAL=2;INDUSTRIAL=3 ? 2					cycle cost analysis.
THE FOLLOWI REQUIRED TO CHANGES CAN	NG DATA ITEMS REPRESENT THE MINIMUM INFO CREATE A USEABLE INPUT DATA FILE. ADDIT BE MADE BY THE CHANGE COMMAND.	RMATION IONAL				
TYPE OF SOL	AR ENERGY SYSTEM (FROM CODED LIST)		-	?	2	
ENTER LOAD	TYPE: 1=WATER HTG. 2=SPACE HTG. 3=BOTH		-	?	1	
DOMESTIC HO BUILDING US	T WATER USAGE E SCHEDULE	GALLONS/DAY DAYS/WEEK	=	? ?	300 5	
SOLAR ENERG SOLAR ENERG	Y INVESTMENT - FIXED COST Y INVESTMENT - VARIABLE COST	\$ \$/SQFT	-	? ?	12000 18.00	
TYPES OF FU 1 = ELECTRI 2 = DISTILL 3 = RESIDUA 4 = NATURAL 5 = COAL 6 = LPG	ELS USED IN AUXILIARY AND REFERENCE SYST C ATE OIL L OIL , GAS	EMS				
TYPE OF FUE TYPE OF FUE	L USED IN AUXILIARY SYSTEM		•	? ?	1 1	
COMMAND: N=	NEW, O=OLD, L=LIST, C=CHANGE, R=RUN, S=S	AVE, Q-QUIT,	H=1	HEL	P ? L	
ANALYSIS FO	R A FEDERAL OFFICE BUILDING IN WASHINGTO	N-STERLING,	DC			The current data
*** *** ***	**************************************	***********	** ** **			values and default values) are listed.
DATA FOR SC	LAR PERFORMANCE ANALYSIS (SLR METHOD)					
1 TYPE C	OF SOLAR ENERGY SYSTEM (FROM CODED LIST)	2	. 00			
2 COLLEC	TOR TILT ANGLE	48.	57 1	DEG	REES	
3 OPTIMI	ZATION ANALYSIS (YES=1;NO=2)	1.	.00			
4 COLLEC	TUK AKEA		.00	SQF	Г	
5 MINIMU	IN ACCEPTABLE SOLAR FRACTION	30	00	2		
O OPERA'	LING EFFICIENCY OF AUXILIARY SYSTEM	60	.00	76 10		
9 FLEOT	TING EFFICIENCI OF REFERENCE NONSOLAR SYS	DIEM 60	.00	% *		
O ELECT	ALC ENERGI AS & OF USEFUL SOLAK ENERGY	6.	• UU	6		

8 ELECTRIC ENERGY AS % OF USEFUL SOLAR ENERGY

61

ENERGY REQUIREMENTS DATA 9 DOMESTIC HOT WATER USAGE 300.00 GALLONS/DAY 10 BUILDING USE SCHEDULE 5.00 DAYS/WEEK 11 MONTHLY SPACE HEATING LOADS - MMBTU/MONTH - .00 JUL - .00 JAN - .00 AUG - .00 - .00 SEP - .00 - .00 OCT - .00 - .00 NOV - .00 - .00 DEC - .00 FEB MAR APR MAY JUN ENVIRONMENTAL DATA 12 AVERAGE DAILY HORIZONTAL RADIATION - BTU/SQFT-DAY JAN - 572.00 JUL - 1817.00 - 815.00 - 815.00 AUG - 1617.00 - 1125.00 SEP - 1340.00 - 1458.00 OCT - 1003.00 - 1718.00 NOV - 650.00 - 1900.00 DEC - 481.00 FEB MAR APR MAY JUN 13 AVERAGE GROUND WATER TEMPERATURES - DEGREES F DEC - FEB = 47.0MAR - MAY = 51.0JUN - AUG = 66.0SEP - NOV = 63.0BASE YEAR INVESTMENT COSTS

 30
 SOLAR ENERGY INVESTMENT - FIXED COST

 31
 SOLAR ENERGY INVESTMENT - VARIABLE COST

 32
 INVESTMENT CREDIT (EXTERNALITY ADJUSTMENT)

 33
 INVESTMENT CREDIT (EXTERNALITY ADJUSTMENT)

 12000.00 \$ 18.00 \$/SQFT 10.00 % •00 \$ 33 INVESTMENT COST FOR AUXILIARY SYSTEM
 34 INVESTMENT COST FOR REFERENCE NONSOLAR SYSTEM .00 S FUTURE NON-FUEL COSTS SOLAR ENERGY SYSTEM 40 ANNUALLY RECURRING O&M COST (% OF SYSTEM COST) 1.00 % 41 REPLACEMENT COST AND YEAR \$ 0 AT YEAR 0 O AT YEAR O Ś \$ 0 AT YEAR 0 42 SALVAGE VALUE AT END OF STUDY PERIOD .00 % AUXILIARY SYSTEM 44 ANNUALLY RECURRING O&M COST .00 \$ 45 REPLACEMENT COST AND YEAR \$ 0 AT YEAR 0 \$ 0 AT YEAR 0 O AT YEAR O \$ 46 SALVAGE VALUE AT END OF STUDY PERIOD •**0**0 \$ REFERENCE NON-SOLAR SYSTEM 47 ANNUALLY RECURRING O&M COST .00 \$ 48 REPLACEMENT COST AND YEAR \$ O AT YEAR O 0 AT YEAR 0 0 AT YEAR 0 \$ \$ 49 SALVAGE VALUE AT END OF STUDY PERIOD .00 \$

62
FUEL COSTS 50 ELECTRICITY PRICE IN BASE YEAR 16.38 \$/MMBTU 51 DISTILLATE OIL PRICE IN BASE YEAR 9.25 \$/MMBTU 52 RESIDUAL OIL PRICE IN BASE YEAR 6.66 \$/MMBTU 53 NATURAL GAS PRICE IN BASE YEAR 3.93 \$/MMBTU 1.84 \$/MMBTU 54 COAL PRICE IN BASE YEAR .00 \$/MMBTU 55 LPG PRICE IN BASE YEAR TYPE OF FUEL USED IN AUXILIARY SYSTEM 1.00 56 57 TYPE OF FUEL USED IN REFERENCE SYSTEM 1.00 DOE REGION = 358 ENERGY PRICE ESCALATION (% PER YEAR ABOVE INFLATION) - COMMERCIAL TIME PERIODS: 1ST 4 YRS NEXT 5 YRS AFTER 9 YRS 5.29 .66 ELECTRICITY .14 2.67 DISTILLATE OIL 2.51 6.33 2.52 RESIDUAL OIL 9.00 5.56 NATURAL GAS 8.84 2.87 2.75 2.36 • 90 COAL 6.04 • 00 • 00 LPG .00 DISCOUNT RATE AND STUDY PERIOD 7.00 % 60 REAL DISCOUNT RATE (EXCLUDES INFLATION) 20.00 YEARS 61 STUDY PERIOD ANALYSIS OUTPUT 70 1=STANDARD; 2=EXTENDED; 3=SUMMARY 1.00 COMMAND: N=NEW, O=OLD, L=LIST, C=CHANGE, R=RUN, S=SAVE, Q=QUIT, H=HELP ? C Changes are made in LINE NUMBER ? 2 2 COLLECTOR TILT ANGLE the collector tilt CURRENT VALUE = 48.57 DEGREES NEW VALUE = ? 43.57 angle and in the operating efficien-LINE NUMBER ? 6 6 OPERATING EFFICIENCY OF AUXILIARY SYSTEM cies of the aux-CURRENT VALUE = 60 % NEW VALUE = ? 100 iliary and reference systems. LINE NUMBER ? 7 7 OPERATING EFFICIENCY OF REFERENCE NONSOLAR SYSTEM CURRENT VALUE = 60 % NEW VALUE = ? 100 LINE NUMBER ? COMMAND: N=NEW, O=OLD, L=LIST, C=CHANGE, R=RUN, S=SAVE, Q=QUIT, H=HELP ? R * NET SAVINGS = \$ -10147 * AREA = 151 SQFT * SOLAR FRACTION = .490 * The Run command is ************** THERMAL & ECONOMIC ANALYSIS **************** given. *********** WASHINGTON-STERLING, DC SYSTEM TYPE = 2

SOLAR FRACTION AND NS FOR A RANGE OF SYSTEM SIZES

AREA (SQFT)	SOLAR FRACTION	NET SAVINGS
20.0	•10	\$ -11471.
50.0	•22	\$ -10842.
80.0	. 32	\$ -10455.
110.0	. 40	\$ -10241.
160.0	• 51	\$ -10151.
210.0	• 59	\$ -10286.
280.0	• 68	\$ -10723.
380.0	.77	\$ -11672.
570.0	•87	\$ -14097.
1140.0	• 98	\$ -23409.

THERMAL PERFORMANCE

COLL	ECTOR AREA	= 151+00	SQFT	TILT AN	GLE = 43.5	7 DEGREES
	SOLAR	AVG DAILY	INCIDENT	SPACE	WATER	USEFUL
	FRACTION	HORZ RAD.	COLLECTOR	LOAD	LOAD	SOLAR
		(1)	(1)	(2)	(2)	(2)
JAN	*	572.00	869.80	.00	4.58	*
FEB	*	815.00	1090.37	.00	4.13	*
MAR	*	1125.00	1286.82	• 00	4.36	*
APR	*	1458.00	1424.45	.00	4.22	*
MAY	*	1718.00	1498.08	• 00	4.36	*
JUN	*	1900.00	1569.07	.00	3.41	*
յու	*	1817.00	1537.68	.00	3.53	*
AUG	*	1617.00	1506.03	• 00	3.53	*
SEP	*	1340.00	1456.10	.00	3.57	*
OCT	*	1003.00	1315.43	• 00	3.69	*
NOV	*	650.00	968.90	.00	3.57	*
DEC	*	481.00	741.58	.00	4.58	*
YEAR	• 490			.00	47.53	23.31

(1) = BTU/SQFT-DAY
(2) = MMBTU/MONTH

LIFE CYCLE COST SUMMARY

OPTIMAL COLLECTOR AREA = 151.00 SQFT OPTIMAL SOLAR FRACTION = .490

64

	SOLA	R ENERGY YSTEM	AUX	ILIARY STEM	REFI	ERENCE STEM
INVESTMENT (ADJ)	\$	13246.	\$	0.	\$	0.
FUEL	\$	297.	\$	5149.	\$	10105.
0&M	\$	1559.	\$	0.	\$	0.
REPLACEMENTS	\$	0.	\$	0.	\$	0.
SALVAGE	\$	0.	\$	0.	\$	0.
TOTAL LCC	\$	15103.	\$	5149.	\$	10105.

MEASURES OF ECONOMIC PERFORMANCE

TOTAL LCC WITHOUT SO TOTAL LCC WITH SOLAN NET SAVINGS	DLAR = \$ R = \$ = \$	10105. 20252. -10147.
SIMPLE PAYBACK TIME	-	62.57 YEARS
SAVINGS TO INVESTMEN	NT RATIO =	. 234

Case 4. This case set up a new data file for a residential system for space and water heating in Bismarck, N.D. and shows the economic optimization analysis for this system.

COMMAND: N=NEW, O=OLD, L=LIST, C=CHANGE, R=RUN, S=SAVE, Q=QUIT, H=HELP ? N ENGLISH OR SI UNITS (E OR SI) ? E The user is queried for the minimum set PERFORMANCE ANALYSIS USING SLR METHOD (Y OR N)? Y of data. ENTER CITY ID NUMBER? 132 RESIDENTIAL=1;COMMERCIAL=2;INDUSTRIAL=3 ? 1 THE FOLLOWING DATA ITEMS REPRESENT THE MINIMUM INFORMATION REQUIRED TO CREATE A USEABLE INPUT DATA FILE. ADDITIONAL CHANGES CAN BE MADE BY THE CHANGE COMMAND. TYPE OF SOLAR ENERGY SYSTEM (FROM CODED LIST) = ? 19 ENTER LOAD TYPE: 1=WATER HTG. 2=SPACE HTG. 3=BOTH ? 3 -DOMESTIC HOT WATER USAGE GALLONS/DAY = ? 80 BUILDING USE SCHEDULE DAYS/WEEK = ? 7 MONTHLY SPACE HEATING LOADS MMBTU/MONTH JAN-? 21.12 FEB-? 17.3 MAR-? 14.84 APR-? 7.93 MAY-? 4.06 JUN-? 1.47 JUL-? .22 AUG-? .41 SEP-? 3.02 OCT-? 6.76 NOV-? 13. DEC-? 18.38 SOLAR ENERGY INVESTMENT - FIXED COST = ? 10270 SOLAR ENERGY INVESTMENT - VARIABLE COST \$/SQFT = ? 17.78 TYPES OF FUELS USED IN AUXILIARY AND REFERENCE SYSTEMS 1 = ELECTRIC 2 = DISTILLATE OIL 3 = RESIDUAL OIL 4 = NATURAL GAS 5 = COAL6 = LPG? 1 TYPE OF FUEL USED IN AUXILIARY SYSTEM ? 1 TYPE OF FUEL USED IN REFERENCE SYSTEM

COMMAND: N=NEW, O=OLD, L=LIST, C=CHANGE, R=RUN, S=SAVE, Q=QUIT, H=HELP ? L ANALYSIS FOR A FEDERAL RESIDENTIAL BUILDING IN BISMARCK, ND *************** ******** DATA FOR SOLAR PERFORMANCE ANALYSIS (SLR METHOD) 19.00 1 TYPE OF SOLAR ENERGY SYSTEM (FROM CODED LIST) 56.46 DEGREES 2 COLLECTOR TILT ANGLE 1.00 3 OPTIMIZATION ANALYSIS (YES=1;NO=2) .00 SQFT 4 COLLECTOR AREA 5 MINIMUM ACCEPTABLE SOLAR FRACTION 30.00 % 60.00 % 6 OPERATING EFFICIENCY OF AUXILIARY SYSTEM 7 OPERATING EFFICIENCY OF REFERENCE NONSOLAR SYSTEM 60.00 % 6.00 % 8 ELECTRIC ENERGY AS % OF USEFUL SOLAR ENERGY ENERGY REQUIREMENTS DATA 9 DOMESTIC HOT WATER USAGE 80.00 GALLONS/DAY 10 BUILDING USE SCHEDULE 7.00 DAYS/WEEK 11 MONTHLY SPACE HEATING LOADS - MMBTU/MONTH JAN - 21.12 JUL - .22 -.41 FEB - 17.30 AUG - 14.84 SEP - 3.02 - 7.93 OCT - 6.76 - 4.06 NOV - 13.00 - 1.47 DEC - 18.38 MAR APR MAY JUN ENVIRONMENTAL DATA 12 AVERAGE DAILY HORIZONTAL RADIATION - BTU/SQFT-DAY DEC - 372.00 13 AVERAGE GROUND WATER TEMPERATURES - DEGREES F DEC - FEB = 33.0MAR - MAY = 33.0JUN - AUG = 56.0 SEP - NOV = 51.0BASE YEAR INVESTMENT COSTS 10270.00 \$ 30 SOLAR ENERGY INVESTMENT - FIXED COST 17.78 \$/SQFT 31 SOLAR ENERGY INVESTMENT - VARIABLE COST 32 INVESTMENT CREDIT (EXTERNALITY ADJUSTMENT) 10.00 % 33 INVESTMENT COST FOR AUXILIARY SYSTEM .00 \$ 34 INVESTMENT COST FOR REFERENCE NONSOLAR SYSTEM .00 \$

Current data (user supplied values plus default values) are listed.

FUTU	E NON-FUEL COSTS		
SOLAI	R ENERGY SYSTEM		
40	ANNUALLY RECURRING O&M COST (% OF SYSTEM COST)	1.00	%
41	REPLACEMENT COST AND YEAR		
	S O AT YEAR O		
	S O AT YEAR O		
42	SALVAGE VALUE AT END OF STUDY PERIOD	• 00	%
AUXII 44	ANNUALLY RECURRING OWN COST	.00	s
45	REPLACEMENT COST AND YEAR		
	\$ O AT YEAR O		
	\$ 0 AT YEAR 0		
4.6	SALVACE VALUE AT END OF STUDY DEPIOD	. 00	s
40	SALVAGE VALUE AT END OF STODI TEXTOD		¥
REFE	RENCE NON-SOLAR SYSTEM		
47	ANNUALLY RECURRING O&M COST	•00	Ş
48	S O AT YEAR O		
	S O AT YEAR O		
	\$ 0 AT YEAR 0		
49	SALVAGE VALUE AT END OF STUDY PERIOD	• 00	\$
FUEL	COSTS		
50	ELECTRICITY PRICE IN BASE YEAR	16.35	\$/MMBTH
51	DISTILLATE OIL PRICE IN BASE YEAR	9.48	\$/MMBTU
52	RESIDUAL OIL PRICE IN BASE YEAR	•00	\$/MMBTU
53	NATURAL GAS PRICE IN BASE YEAR	4.00	\$/MMBTU
54	COAL PRICE IN BASE YEAR	00.	\$/MMBTU
56	TYPE OF FUEL USED IN AUXILIARY SYSTEM	1.00	\$/rrb10
57	TYPE OF FUEL USED IN REFERENCE SYSTEM	1.00	
DOD			
DOE 58	REGION = 8 ENERGY PRICE ESCALATION (% PER YEAR ABOVE INFLATION) -	RES IDE	INTIAL
	ELECTRICITY $5_{\circ}29$ $-3_{\circ}87$ $-3_{\circ}06$		
	DISTILLATE OIL 2.54 2.54 6.31		
	RESIDUAL OIL .00 .00 .00		
	NATURAL GAS 8.89 .00 1.61		
	COAL •00 •00 •00		
 DISC	OUNT RATE AND STUDY PERIOD		
60	REAL DISCOUNT RATE (EXCLUDES INFLATION)	7.00	X VEADC
01	STODI PERIOD	20.00	ILARS
ANAL	YSIS OUTPUT		
70	1=STANDARD; 2=EXTENDED; 3=SUMMARY	1.00	
COMM	AND: N=NEW, O=OLD, L=LIST, C=CHANGE, R=RUN, S=SAVE, Q=Q	UIT, H=	HELP ? C
LINE	NUMBER ? 6		
6	OPERATING EFFICIENCY OF AUXILIARY SYSTEM		
CURR	ENT VALUE = 60 % NEW VALUE = ? 100		

Input data for operating efficiencies of auxiliary and reference systems are changed. LINE NUMBER ? 7 7 OPERATING EFFICIENCY OF REFERENCE NONSOLAR SYSTEM CURRENT VALUE = 60 % NEW VALUE = ? 100

LINE NUMBER ? 45

AUXILIARY SYSTEM REPLACEMENT COST AND YEAR ENTER SIX VALUES, COST, YEAR, ETC. ? 1250,15,0,0,0,0

LINE NUMBER ? 48

REFERENCE NON-SOLAR SYSTEM REPLACEMENT COST AND YEAR ENTER SIX VALUES, COST, YEAR, ETC. ? 1500,8,1500,18,0,0

LINE NUMBER ?

COMMAND: N=NEW, O=OLD, L=LIST, C=CHANGE, R=RUN, S=SAVE, Q=QUIT, H=HELP ? R * NET SAVINGS = \$ -7488 * AREA = 269 SQFT * SOLAR FRACTION = .316 *

The Run command is given.

BISMARCK, ND SYSTEM TYPE = 19

SOLAR FRACTION AND NS FOR A RANGE OF SYSTEM SIZES

AREA (SQFT)	SOLAR FRACTION	NET SAVINGS
100.0	15	0110
100.0	• 15	Ş =0110.
150.0	• 20	\$ -7766.
300.0	. 34	\$ - 7501.
400.0	.41	\$ - 7729.
550.0	• 50	\$ -8465.
750.0	• 60	\$ -10003.
1000.0	• 69	\$ -12517.
1350.0	• 78	\$ -16800.
2000.0	• 89	\$ -26135.
4000.0	. 99	\$ -59701.

THERMAL PERFORMANCE

COLL	ECTOR AREA	= 269.00	SQFT	TILT AN	GLE = 56.46	DEGREES
	SOLAR FRACTION	AVG DAILY HORZ RAD. (1)	INCIDENT COLLECTOR (1)	SPACE LOAD (2)	WATER LOAD (2)	USEFUL SOLAR (2)
JAN FEB MAR	•146 •212 •296	466.00 775.00 1168.00	978.51 1323.48 1522.68	21.12 17.30 14.84	2.00 1.80 2.00	3.38 4.04 4.99

APR	.433	1459.00	1436.03	7.93	1.93	4.27
MAY	• 668	1848.00	1541.13	4.06	2.00	4.04
JUN	.939	2059.00	1589.97	1.47	1.47	2.76
JUL	1.000	2183.00	1739.39	• 22	1.52	1.74
AUG	1.000	1876.00	1747.98	• 41	1.52	1.93
SEP	• 783	1354.00	1592.03	3.02	1.57	3.60
OCT	• 503	907.00	1428.37	6.76	1.63	4.22
NOV	.219	507.00	976.00	13.00	1.57	3.19
DEC	.137	372.00	805.09	18.38	2.00	2.79
YEAR	.316			108.51	21.02	40.97

(1) = BTU/SQFT-DAY
(2) = MMBTU/MONTH

LIFE CYCLE COST SUMMARY

OPTIMAL COLLECTOR AREA =269.00 SQFTOPTIMAL SOLAR FRACTION =.316

	SOLA	R ENERGY SYSTEM	A	U XILIARY SYSTEM	R	EFERENCE System
INVESTMENT (ADJ)	\$	13548.	\$	0.	\$	0.
FUEL	\$	433.	\$	15615.	\$	22839.
0&M	\$	1595.	\$	0.	\$	0.
REPLACEMENTS	\$	0.	\$	453.	Ş	1317.
SALVAGE	\$	0.	\$	0.	\$	0.
TOTAL LCC	\$	15576.	\$	16068.	\$	24156.

MEASURES OF ECONOMIC PERFORMANCE

TOTAL LCC WITHOUT SOLAR TOTAL LCC WITH SOLAR NET SAVINGS	= \$ = \$ = \$	24156. 31643. -7488.
SIMPLE PAYBACK TIME	=	23.91 YEARS
SAVINGS TO INVESTMENT RA	ATIO =	.410

70

Case 5.	This case shown an economic a space heating in Bismarck, N. analysis data from another so	nalysis onl D. A new f ource (F-CHA	y o ile RT	of a resid e is estab 3.0).	ential system for lished with thermal
	NEW OFOLD. LELIST. C-CHANGE, R-RUN, S-	SAVE, Q=QUIT,	H=HI	ELP ? N	
OMMAND: N-	ar united (F OP ST) 2 K				The user is queried
ENGLISH OR	SI UNITS (E OK SI) : E				for the minimum data required to
PERFORMANCE	ANALYSIS USING SLR METHOD (I OK N)? N				perform an economic
ENTER CITY	ID NUMBER? 132				analysis only.
RESIDENTIAL	L=1;COMMERCIAL=2;INDUSTRIAL=3 ? 1				
THE FOLLOW REQUIRED TO CHANGES CAI	ING DATA ITEMS REPRESENT THE MINIMUM IN D CREATE A USEABLE INPUT DATA FILE. ADD N BE MADE BY THE CHANGE COMMAND.	FORMATION ITIONAL			
		MARTU/YEAR	-	? 162.78	
ANNUAL ENEL	AR FRACTION	Z SQFT	-	? 27 .5 ? 350	
CULLECION	ALLA	s	-	? 10270	
SOLAR ENER	GY INVESTMENT - VARIABLE COST GY INVESTMENT - VARIABLE COST	\$/SQFT	-	? 17.78	
1 = ELECTR $2 = DISTIL$ $3 = RESIDU$ $4 = NATURA$ $5 = COAL$ $6 = LPG$	NIC LATE OIL JAL OIL AL GAS				
TYPE OF FU	JEL USED IN AUXILIARY SYSTEM UEL USED IN REFERENCE SYSTEM		-	? 1 ? 1	
COMMAND:	N=NEW, O=OLD, L=LIST, C=CHANGE, R=RUN,	S=SAVE, Q=QUIT	, H=	HELP ? L	
					The current data
* * *	**************************************	***************************************	** **		are listed.
DATA FOR	ECONOMIC ANALYSIS ONLY				
20 ANNU	AL ENERGY LOAD	162	. 78	MMBTU/YEAR	
21 ANNU 22 COLL	AL SOLAR FRACTION	27 350	• 50	Z SOFT	
23 OPE	RATING EFFICIENCY OF AUXILIARY SYSTEM	6	0.00	2	
24 OPER 25 ELEC	ATING EFFICIENCY OF REFERENCE SYSTEM TRICAL ENERGY AS % OF USEFUL SOLAR ENER	60 GY 6	•00	z z	
	*****	*****	**		
*	**************************************	************	** **		
BASE YEAF	R INVESTMENT COSTS				
30 SOLA	AR ENERGY INVESTMENT - FIXED COST	10270	• 00	\$	
31 SOLA	AR ENERGY INVESTMENT - VARIABLE COST	17	. 78	\$/SQFT	
32 INVE 33 INVE	STMENT CREDIT (EXTERNALITY ADJUSTMENT)	10	• 00	x S	
34 INVE	ESTMENT COST FOR REFERENCE NONSOLAR SYST	TEM	.00	\$	

FUTU	RE NON-FUEL COSTS					
SOLAI	R ENERGY SYSTEM					
40	ANNUALLY RECURRIN	G O&M COST	X OF SYSTE	M COST)	1.00	X
41	REPLACEMENT COST	AND YEAR				
	\$ 0 AT YEAR	0	÷			
	\$ 0 AT YEAR	0				
	\$ 0 AT YEAR	0				-
42	SALVAGE VALUE AT	END OF STUDY	PERIOD		• 00	X
AUXII	LIARY SYSTEM					
44	ANNUALLY RECURRIN	G O&M COST			•00	\$
45	REPLACEMENT COST	AND YEAR				
	S U AT YEAR	0				
	S O AT TEAR	0				
46	SALVAGE VALUE AT	END OF STUDY	PERIOD		.00	\$
REFEI	ANNUALLY DECURPTN	STEM				•
47	ANNUALLI KEUUKKIN	AND VEAD			•00	Ş
40	S 0 AT YEAR	0				
	\$ 0 AT YEAR	õ				
	\$ 0 AT YEAR	0				
49	SALVAGE VALUE AT	END OF STUDY	PERIOD		.00	\$
FUEL	COSTS					
50	ELECTRICITY PRICE	IN BASE YEA	AR		16.35	\$/MMBTU
51	DISTILLATE OIL PR	ICE IN BASE	YEAR		9.48	\$/MMBTU
52	RESIDUAL OIL PRIC	E IN BASE Y	ZAR		.00	\$/MMBTU
53	NATURAL GAS PRICE	IN BASE YEA	AR		4.00	\$/MMBTU
54	LUAL PRICE IN BAS	E LEAK			9.44	\$/MARTI
56	TYPE OF FUEL USED) IN AUXTLIA	RY SYSTEM		2.00	<i>Ş/111</i> 010
57	TYPE OF FUEL USEI	IN REFERENCE	CE SYSTEM		2.00	
DOF	DECION - 9					
58	ENERGY PRICE ESCA	LATION (% P)	ER YEAR ABO	VE INFLATION)	- RESIDE	INTIAL
	TIME PERIODS:	IST 4 YRS	NEXT 5 YRS	AFTER 9 YRS		
	ELECTRICITY	5.29	-3.87	-3.06		
	DISTILLATE OIL	2.54	2.54	6.31		
	RESIDUAL OIL	.00	• 00	• 00		
	NATURAL GAS	8.89	• 00	1.61		
	COAL	• 00	• 00	• 00		
	LPG	2.53	2.35	5.99		
DISC	OUNT RATE AND STU	DI PERIOD				
60	REAL DISCOUNT RAT	TE (EXCLUDES	INFLATION)		7.00	X
61	STUDY PERIOD				20.00	YEARS
ANAL	YSIS OUTPUT					
70	1=STANDARD: 2=EX	CENDED: 3=SU	MMARY		1.00	

COMMAND: N=NEW, O=OLD, L=LIST, C=CHANGE, R=RUN, S=SAVE, Q=QUIT, H=HELP ? R * NET SAVINGS = \$ -6786 * AREA = 350 SQFT * SOLAR FRACTION = .275 *

BISMARCK, ND

LIFE CYCLE COST SUMMARY

TOTAL ANNUAL LOAD =162.78 MMBTU/YEARCOLLECTOR AREA =350.00 SQFTSOLAR FRACTION =.275

	SOLA	R ENERGY YSTEM	AU S	XILIARY YSTEM	REF	ERENCE STEM
INVESTMENT (ADJ)	\$	14844.	\$	0.	\$	0.
FUEL	\$	474.	\$	27099.	\$	37378.
0&M	\$	1747.	\$	0.	\$	0.
REPLACEMENTS	\$	0.	\$	0.	\$	0.
SALVAGE	\$	0.	\$	0.	\$	0.
TOTAL LCC	\$	17065.	\$	27099.	\$	37378.

MEASURES OF ECONOMIC PERFORMANCE

TOTAL LC	C WITHOUT SOLAR	-	\$ 37378.
TOTAL LC	C WITH SOLAR	-	\$ 44163.
NET SAVI	NGS	=	\$ -6786.

SIMPLE PAYBACK TIME = 29.78 YEARS

SAVINGS TO INVESTMENT RATIO = .543

COMMAND: N-NEW, O-OLD, L-LIST, C-CHANGE, R-RUN, S-SAVE, Q-QUIT, H-HELP ? Q READY. BYE No changes are made. The Run command is given.

REFERENCES

- Ruegg, Rosalie T., <u>Life-Cycle Costing Manual for the Federal Energy</u> <u>Management Program</u> NBS Handbook 135.
 Life-Cycle Costing Manual for the Federal Energy (Washigton, D.C.: National Bureau of Standards, 1980),
- Solar Federal Buildings Program, <u>Solar Design Workbook</u>, Chapter 11, "Life-Cycle Cost Evaluation of Solar Energy Investments," (Golden, CO.: Solar Energy Research Institute and Los Alamos National Laboratory, 1981), SERI/SP-62-308.
- 3. Schnurr, Norman M., Hunn, Bruce D., and Williamson, III, Kenneth D., "The Solar Load Ratio Method Applied to Commercial Building Active Solar System Sizing," Solar Engineering - 1981 Proceedings of the ASME Solar Energy Division 3rd Annual Conference on Systems Simulation, Economic Analysis/ Solar Heating and Cooling Operation Results, Reno, Nevada, April 27-May 1, 1981, (New York, NY: American Society of Mechanical Engineers, 1981).
- "Federal Energy Management Programs; Methodology and Procedures for Life-Cycle Cost Analyses," <u>Federal Register</u>, Rules and Regulations, Vol. 45, No. 16, January 23, 1980.
- 5. "Federal Energy Management Programs; Methodology and Procedures for Life-Cycle Cost Analyses, Average Fuel Cost," <u>Federal Register</u>, Rules and Regulations, Vol. 45, No. 196, 209, October 27, 1980.
- "Federal Energy Management Programs; Methodology and Procedures for Life-Cycle Cost Analyses," <u>Federal Register</u>, Rules and Regulations, September 1981.
- 7. "Solar Federal Buildings Program Rules," <u>Federal Register</u>, Rules and Regulations, No. 204, October 19, 1979.
- 8. <u>Solar Federal Buildings Data Center, User's Guide</u>, National Bureau of Standards. In Press.
- 9. Powell, Jeanne W., and Barnes, Kimberly A., Comparison of Economic Evaluation Models in Selected Solar Energy Analysis Programs (Washington, D.C., National Bureau of Standards, 1981). In Press.
- Powell, Jeanne W., <u>An Economic Model for Passive Solar Designs in</u> <u>Commercial Environments</u> (Washington, D.C.: U.S. Government Printing Office, 1980). NBS Building Science Series 125.
- 11. Ruegg, Rosalie T., Sav, G. Thomas, Powell, Jeanne W., and Pierce, Thomas E., Economic Feasibility of Solar Heating and Hot Water for <u>Commercial Buildings</u> (Washington, D.C.: National Bureau of Standards, 1981). In Press.

- 12. Ruegg, Rosalie T., Petersen, Stephen R., and Marshall, Harold E., <u>Recommended Practices for Measuring Life-Cycle Costs of Buildings and</u> <u>Building Systems</u> (Washington, D.C.: National Bureau of Standards, 1980). <u>NBS Interagency Report 80-2040.</u>
- Ruegg, Rosalie T., and Sav, G. Thomas, "Microeconomics of Solar Energy," Chapter 28, <u>Solar Energy Handbook</u>, eds. Jan F. Kreider and Frank Kreith (New York, NY: McGraw-Hill Book Company, 1981).
- Ruegg, Rosilie T., McConnaughey, John S., Sav, Thomas G., and Hockenbery, Kimberly A., <u>Life-Cycle Costing</u> (Washington, D.C.: U.S. Government Printing Office, 1978). NBS Building Science Series 113.
- 15. Hittle, D.C., BLAST, The Building Loads Analysis and System Thermodynamics Program CEEDO-TR-77-35/CERL-TR-E-119/ADA048734 (U.S. Army Construction Engineering Research Laboratory [CERL], December 1977).
- 16. DOE-2 Reference Manual (Version 2.1), eds. D.A. York and E.F. Tucker (Berkeley, CA and Los Alamos, NM: Lawrence Berkeley Laboratory and Los Alamos National Laboratory, 1980), LBL-8706 Rev. 1 and LA-7689-M. Ver. 2.1.
- 17. Solar Federal Buildings Program, <u>Solar Design Workbook</u>, Chapter 8, "Building Loads, Energy Requirements, and Characteristics" (Golden, CO: Solar Energy Research Institute and Los Alamos National Laboratory, 1981), SERI/SP-62-308.
- 18. Kusuda, Tamami, and Saitoh, T., <u>Simplified Heating and Cooling Energy</u> <u>Analysis Calculations for Research Applications</u> (Washington, D.C.: <u>National Bureau of Standards, 1980)</u>. NBS Interagency Report 80-1961.
- Department of Energy, <u>DOE Facilities Solar Design Handbook</u> (Washington, D.C.: U.S. Government Printing Office, 1978). DOE/AD-0006/1.
- Solar Federal Buildings Program, <u>Solar Design Workbook</u>, Chapter 10, "Active System Design and Sizing Methods" (Golden, CO: Solar Energy Research Institute and Los Alamos National Laboratory, 1981) SERI/SP-62-308.
- 21. Energy Research and Development Administration, San Francisco Operations Office, ERDA's Pacific Regional Solar Heating Handbook, 2nd edition. Available from Superintendent of Documents, Washington, D.C., Stock No.: 060-000-00024-7.
- Cinquemani, V., Owenby Jr., J.R., and Baldwin, R. G., <u>Input Data for Solar</u> Systems (Asheville, NC: National Climatic Center, 1978).
- Freeman, T.L., Maybaum, M.W., and Chandra, S., "A Comparison of Four Solar System Simulation Programs in Solving a Solar Heating Problem," Conference on Systems Simulation and Economic Analysis for Solar Heating and Cooling, June 27-29, 1978, San Diego, CA (Washington, D.C.: U.S. Department of Energy, 1978).

- 24. State of Florida Department of General Services, Division of Construction and Maintenance, <u>Florida State A/E Guide</u> (Tallahassee, FL, June 1973) [Fee schedules for engineering and architectural services 1977 update].
- 25. Roach, Fred, Noll, Scott, and Ben-David, Shaul, "Passive and Active Presidential Solar Heating: A Comparative Economic Analysis of Select Designs," <u>Energy: The International Journal</u> (London: The Pergamon Press, August, 1979).
- "Federal Energy Management Programs; Methodology and Procedures for Life-Cycle Cost Analyses," <u>Federal Register</u>, <u>Marginal Prices and Adjust-</u> ments, Vol. 45, No. 196, October 7, 1980.
- 27. U.S. Office of Management and Budget, <u>Circular A-94</u>, "Discount Rate To Be Used in Evaluating Time-Distributed Costs and Benefits," March 27, 1972.
- Energy Security Act of 1980, Public Law 96-294, Sec. 405, 96th Congress, 94 Stat. 611.
- 29. Marshall, Harold E., and Ruegg, Rosalie T., <u>Simplified Energy Design</u> <u>Economics</u> (Washington, D.C.: U.S. Government Printing Office, 1980). NBS Special Publication 544.
- Klein, S.A., "Calculation of Monthly Average Insolation on Tilted Surfaces," Solar Energy, Vol. 19 (London: Pergamon Press, 1977).
- 31. Lameiro, Gerald F., and Bendt, Paul, <u>The GFL Method for Sizing Solar</u> <u>Energy Space and Water Heating Systems</u> (Golden, CO: Solar Energy Research Institute, 1978), SERI-30.

APPENDICES

APPENDIX A - FEDSOL PROGRAM CODE

00130 REM 00140 REM SPONSOR: NATIONAL BUREAU OF STANDARDS CENTER FOR BUILDING TECHNOLOGY 00150 REM 00160 REM APPLIED ECONOMICS GROUP 00170 REM WASHINGTON D.C. 00180 REM VERSION 1.0 00190 REM MARCH 1981 00200 REM 00210 REM AUTHOR: RICHARD C. RODGERS JR. 00220 REM 00230 REM DESCRIPTION: THE PROGRAM ANALYZES THE PERFORMANCE OF A STANDARD SOLAR ENERGY SYSTEM ON A FEDERAL BUILDING. THE PROGRAM 00240 REM 00250 REM WILL DETERMINE THE COLLECTOR AREA WHICH RESULTS IN 00260 REM THE LOWEST LIFE CYCLE COST AND PERFORM AN ECONOMIC 00270 REM ANALYSIS OF THIS OPTIMAL AREA OR OTHER SPECIFIED AREA. 00280 REM AN ALTERNATIVE MODE WILL ACCEPT THE THERMAL RESULTS 00290 REM FROM ANY OTHER SOLAR PERFORMANCE ANALYSIS (FOR NON-00300 REM STANDARD SYSTEM TYPES) AND PERFORM AN ECONOMIC ANALYSIS 00310 REM CONFORMING TO THE FEDERAL RULES. 00320 REM 00330 REM ------00340 REM 00350 REM MAIN LEVEL 00360 REM 00370 GOSUB 00710 00380 PRINT " FEDSOL - VERSION 1.0 ***" PRINT " NATIONAL BUREAU OF STANDARDS" 00390 00400 PRINT PRINT "COMMAND: N=NEW, O=OLD, L=LIST, C=CHANGE, R=RUN, S=SAVE,"; 00410 00420 PRINT " Q=QUIT, H=HELP "; ON ERROR GOTO 00410 00430 00440 INPUT X\$ 00450 ON ERROR IF X\$ = "N" THEN 00550 00460 IF X\$ = "0" OR X\$ = "0" OR X\$ = "F" THEN 00570 00470 IF X\$ = "C" THEN 00590 00480 IF X\$ = "L" THEN 00610 00490 IF X\$ = "R" THEN 00630 00500 00510 IF X\$ = "H" THEN 00650 IF X\$ = "S" THEN 00670 00520 IF X\$ = "Q" THEN 00690 00530 GOTO 00410 00540 00550 GOSUB 01010 ' CREATE NEW INPUT FILE 00560 GOTO 00400 00570 GOSUB 02580 GET OLD INPUT FILE 00580 GOTO 00400 GOSUB 03010 00590 ' CHANGE INPUT FILE DATA 00600 GOTO 00400 ' LIST CURRENT INPUT FILE 00610 GOSUB 08800 00620 GOTO 00400 . 00630 GOSUB 04410 RUN CURRENT INPUT FILE 00640 GOTO 00400 00650 ' PRINT "HELP" INSTRUCTIONS GOSUB 00870 00660 GOTO 00400 00670 GOSUB 06170 . SAVE CURRENT INPUT FILE 00680 GOTO 00400 00690 STOP STOP PROGRAM OPERATION 00700 GOTO 00400

MARGIN #0,80 00720 00730 Z9 = 000740 L\$ = "THERE IS NO CURRENT INPUT DATA FILE. USE NEW OR OLD COMMAND TO GET ONE." 00750 OPTION BASE 1 DIM Y(12), X(12), K(12), I(19), B(40), V(40) 00760 00770 DIM A(12), U(12), P(12) 00780 DIM N(12),S(12) 00790 DIM C(19,4),Q(12),G(12) 00800 DIM D\$(70),U\$(70),D(70) 00810 DIM L(12),M\$(12),R(20) 00820 DIM E(6,3),H(12),T(70,2) 00830 DIM F(6,10),J(12),Z(12) 00840 DIM 0(50) DIM A\$(100) 00850 00860 RETURN 00865 JUMP (ESL(X)-20) FILE #1 = "INSTRUC" 00880 00890 RESTORE #1 00900 MARGIN #0,100 MARGIN #1,100 00910 PRINT 00920 PRINT 00930 00940 IF END#1 THEN 00990 00950 DELIMIT #1,(CR) INPUT #1,A\$(1) 00960 00970 PRINT A\$(1) GOTO 00940 00980 CLOSE #1 00990 01000 RETURN 01020 Z9 = 101030 PRINT 01040 PRINT "ENGLISH OR SI UNITS (E OR SI)"; 01045 ON ERROR GOTO 1040 01050 INPUT U\$ IF U\$= "E" THEN 01090 01060 IF U\$= "SI" THEN 01090 01070 01080 GOTO 01030 01090 PRINT 01100 PRINT "PERFORMANCE ANALYSIS USING SLR METHOD (Y OR N)"; ON ERROR GOTO 1100 01105 01110 INPUT M\$ IF M\$ = "Y" THEN 01150 01120 IF MS = "N" THEN 01150 01130 01140 GOTO 01100 01150 PRINT PRINT "ENTER CITY ID NUMBER"; 01160 01165 ON ERROR GOTO 1160 01170 INPUT C9 01180 IF C9 <= 0 THEN 01160 01190 IF C9 > 243 THEN 01160 01200 PRINT 01210 PRINT "RESIDENTIAL=1:COMMERCIAL=2:INDUSTRIAL=3": 01215 ON ERROR GOTO 1210 01220 INPUT S1 01230 IF S1 = 1 THEN 0127001240 IF S1 = 2 THEN 0127001250 IF S1 = 3 THEN 0127001260 GOTO 01210 FILE #2 = "DEFALT1" 01270 01280 RESTORE #2 01290 MAT INPUT #2,D FILE #3 = "DATA" 01300 01310 RESTORE #3

01315	ON ERROR
01320	FOR $I = 1$ TO C9
01330	INPUT #3, Y3, X1, C\$, S\$, L1, R1, J8, N1, N2, N3, N4
01340	INPUT #3,Y3
01350	MAT INPUT #3,H
01360	NEXT I
01370	CLOSE #2
01380	
01390	FILE #4 = "PRICE"
01400	RESTORE #4
01410	FOR $J = 1$ TO 3
01420	MAT INPUT #4,F
01430	IF J <> SI INC (
01440	$D(A_{1}) = P(T P)$
01450	$D(4\mathcal{F}T) = \Gamma(1, \mathbf{X})$
01470	NET
01480	FOR $K = 1$ TO 3
01:490	FOR J = 1 TO 3
01500	MAT INPUT #4.F
01510	IF J <> S1 THEN 01550
01520	FOR $I = 1$ TO 6
01530	E(I,K) = F(I,RI)
01540	NEXT I
01550	NEXT J
01560	NEXT K
01570	CLOSE #4
01580	D(2) = L1 + 10
01590	GOSUB 10220
01600 REM	
01610	IF U\$= "E" THEN 01640
01620	GOSUB 13060
01630 REM	
01640	FOR $M = 1$ TO 12
01650	L(M) = 0
01660	K(M) = 0
01670	NEXT M
01680	FOR $I = I$ TO 18
01690	R(1) = 0
01700	NEXT 1
01710	PRINT
01720	PRINT HTUE POILOUTNO DATA TTENC DEDDECENT THE MINIMUM INFORMATION
01750	DELIT "DECUIDED TO CREATE A REFARE THREE DATA FILE ADDITIONAL".
01 750	PRINT "CHANGES CAN BE MADE BY THE CHANGE COMMAND."
01760	PRINT
01770	PRINT
01780	1F MS = "N" THEN 02500
01790	PRINT D\$(1):TAB(65):" = ":
01795	ON ERROR GOTO 1790
01800	INPUT D(1)
01810	IF $D(1) \Rightarrow T(1,1)$ AND $D(1) \le T(1,2)$ THEN 01840
01820	PRINT D\$
01830	GOTO 01790
01840	PRINT
01850	PRINT "ENTER LOAD TYPE: 1=WATER HTG. 2=SPACE HTG. 3=BOTH";
01860	PRINT TAB(65);" = ";
01865	ON ERROR GOTO 1850
01870	INPUT J
01880	ON J GOTO 01900,02000,01900
01890	GOTO 01870
01900	PRINT

01010	FOR I = 0.000 10
01910	$r_{0K} I = 9 I0 I0$
01920	PRINT D\$(I);TAB(52);U\$(I);TAB(65);" = ";
01925	ON ERROR GOTO 1920
01 02 0	
01 930	INPOL D(I)
01940	IF $D(I) => T(I, 1)$ AND $D(I) <= T(I, 2)$ THEN 01970
01950	PRINT DS
01060	
01900	6010 01920
01970	NEXT I
01980	PRINT
01000	TE $I = 1$ (TEN) 00100
01990	IF J = I IREN 02100
02000	PRINT
02010	PRINT "MONTHLY SPACE HEATING LOADS": TAB(52):U\$(11)
02020	FOR $T = 1$ TO 12
02020	
02030	PRINT M\$(1); "-";
02035	ON ERROR GOTO 2030
02040	INPUT L(I)
02050	T = 1 (T) = 0 AND $T (T) = 1 = 7$ THEN 00000
02030	$\Gamma L(\Gamma) = 0$ AND $L(\Gamma) < \Gamma L(\Gamma)$ $\Gamma L(\Gamma)$ $\Gamma L(\Gamma)$
02060	PRINT DŞ
02070	GOTO 02030
02080	NEYT I
02000	
02090	PRINT
02100	FOR $I = 30 \text{ TO } 31$
02110	PRINT $DS(T)$: TAB(52): HS(T): TAB(65): = ".
02115	
02115	ON ERROR GOTO 2110
02120	INPUT D(I)
02130	IF $D(I) \implies T(I, 1)$ AND $D(I) \le T(I, 2)$ THEN 02160
021/0	DETNT DC
02140	
02150	GOTO 02110
02160	NEXT I
02170	PRINT
02100	DELINE HENDER OF BURIC HORD IN AUTITANY AND DEPENDING CVCTORCI
02180	PRINT TIPES OF FUELS USED IN AUXILIARI AND REFERENCE SISTERS
02190	PRINT "1 = ELECTRIC"
02190 02200	PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL"
02190 02200 02210	PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL"
02190 02200 02210	PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL"
02190 02200 02210 02220	PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS"
02190 02200 02210 02220 02230	PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL"
02190 02200 02210 02220 02230 02235	PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "6 = LPG"
02190 02200 02210 02220 02230 02235	PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "6 = LPG"
02190 02200 02210 02220 02230 02235 02240	PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "6 = LPG" PRINT
02190 02200 02210 02220 02230 02235 02240 02250	PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "6 = LPG" PRINT FOR I = 56 TO 57
02190 02200 02210 02220 02230 02235 02240 02250 02250 02260	<pre>PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "5 = COAL" PRINT FOR I = 56 TO 57 PRINT D\$(1):TAB(52):U\$(1):TAB(65):" = ";</pre>
02190 02200 02210 02220 02230 02235 02240 02250 02260 02265	<pre>PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "6 = LPG" PRINT FOR I = 56 TO 57 PRINT D\$(I);TAB(52);U\$(I);TAB(65);" = "; ON EPEOP COTO 2260</pre>
02190 02200 02210 02220 02230 02235 02240 02250 02260 02265	<pre>PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "6 = LPG" PRINT FOR I = 56 TO 57 PRINT D\$(I);TAB(52);U\$(I);TAB(65);" = "; ON ERROR GOTO 2260 WIND P (1)</pre>
02190 02200 02210 02220 02230 02235 02240 02250 02250 02260 02265 02270	<pre>PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "6 = LPG" PRINT FOR I = 56 TO 57 PRINT D\$(I);TAB(52);U\$(I);TAB(65);" = "; ON ERROR GOTO 2260 INPUT D(I)</pre>
02190 02200 02210 02220 02230 02235 02240 02250 02265 02265 02270 02280	<pre>PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "5 = COAL" PRINT "6 = LPG" PRINT FOR I = 56 TO 57 PRINT D\$(I);TAB(52);U\$(I);TAB(65);" = "; ON ERROR GOTO 2260 INPUT D(I) IF D(I) => T(I,1) AND D(I) <= T(I,2) THEN 02310</pre>
02190 02200 02210 02220 02235 02240 02250 02260 02265 02270 02280 02290	<pre>PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "6 = LPG" PRINT FOR I = 56 TO 57 PRINT D\$(1);TAB(52);U\$(I);TAB(65);" = "; ON ERROR GOTO 2260 INPUT D(1) IF D(1) => T(I,1) AND D(1) <= T(I,2) THEN 02310 PRINT D\$</pre>
02190 02200 02210 02230 02235 02240 02250 02260 02265 02260 02265 02270 02280 02290	<pre>PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "6 = LPG" PRINT FOR I = 56 TO 57 PRINT D\$(1);TAB(52);U\$(I);TAB(65);" = "; ON ERROR GOTO 2260 INPUT D(1) IF D(1) => T(I,1) AND D(I) <= T(I,2) THEN 02310 PRINT D\$ COTO 02260</pre>
02190 02200 02210 02220 02235 02240 02250 02260 02265 02270 02280 02280 02290 02300	<pre>PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "5 = COAL" PRINT "6 = LPG" PRINT FOR I = 56 TO 57 PRINT D\$(1);TAB(52);U\$(1);TAB(65);" = "; ON ERROR GOTO 2260 INPUT D(1) IF D(1) => T(I,1) AND D(1) <= T(I,2) THEN 02310 PRINT D\$ GOTO 02260 </pre>
02190 02200 02210 02220 02235 02240 02250 02265 02265 02265 02270 02280 02290 022300 02310	<pre>PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "6 = LPG" PRINT "6 = LPG" PRINT FOR I = 56 TO 57 PRINT D\$(I);TAB(52);U\$(I);TAB(65);" = "; ON ERROR GOTO 2260 INPUT D(I) IF D(I) => T(I,1) AND D(I) <= T(I,2) THEN 02310 PRINT D\$ GOTO 02260 NEXT I</pre>
02190 02200 02210 02230 02235 02240 02250 02260 02265 02265 02270 02280 02290 02300 02310 02320	<pre>PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "6 = LPG" PRINT FOR I = 56 TO 57 PRINT D\$(1);TAB(52);U\$(I);TAB(65);" = "; ON ERROR GOTO 2260 INPUT D(1) IF D(1) => T(I,1) AND D(1) <= T(I,2) THEN 02310 PRINT D\$ GOTO 02260 NEXT I PRINT</pre>
02190 02200 02210 02230 02235 02240 02250 02260 02265 02270 02280 02280 02290 02300 02310 02320 02330	<pre>PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "6 = LPG" PRINT "6 = LPG" FOR I = 56 TO 57 PRINT D\$(1);TAB(52);U\$(I);TAB(65);" = "; ON ERROR GOTO 2260 INPUT D(I) IF D(I) => T(I,1) AND D(I) <= T(I,2) THEN 02310 PRINT D\$ GOTO 02260 NEXT I PRINT B(1) = N1</pre>
02190 02200 02210 02220 02235 02240 02250 02265 02260 02265 02270 02280 02290 02300 02310 02310 02320 02300	PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "6 = LPG" PRINT 6 = LPG" PRINT $1 = 56$ TO 57 PRINT D\$(I);TAB(52);U\$(I);TAB(65);" = "; ON ERROR GOTO 2260 INPUT D(I) IF D(I) => T(I,1) AND D(I) <= T(I,2) THEN 02310 PRINT D\$ GOTO 02260 NEXT I PRINT B(1) = N1 P(2) = N2
02190 02200 02210 02220 02235 02240 02250 02260 02260 02265 02270 02280 02290 02300 02310 02310 02320 02330 02340	<pre>PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "6 = LPG" PRINT FOR I = 56 TO 57 PRINT D\$(1);TAB(52);U\$(I);TAB(65);" = "; ON ERROR GOTO 2260 INPUT D(1) IF D(1) => T(I,1) AND D(1) <= T(I,2) THEN 02310 PRINT D\$ GOTO 02260 NEXT I PRINT B(1) = N1 B(2) = N2</pre>
02190 02200 02210 02230 02235 02240 02250 02260 02265 02270 02280 02290 02300 02310 02320 02330 02340 02350	<pre>PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "6 = LPG" PRINT f6 = LPG" PRINT D\$(1);TAB(52);U\$(I);TAB(65);" = "; ON ERROR GOTO 2260 INPUT D(I) IF D(I) => T(I,1) AND D(I) <= T(I,2) THEN 02310 PRINT D\$ GOTO 02260 NEXT I PRINT B(1) = N1 B(2) = N2 B(3) = N3</pre>
02190 02200 02210 02220 02235 02240 02250 02260 02265 02270 02280 02290 02300 02310 02310 02320 02340 02350 02350 02360	<pre>PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "5 = COAL" PRINT "6 = LPG" PRINT FOR I = 56 TO 57 PRINT D\$(I);TAB(52);U\$(I);TAB(65);" = "; ON ERROR GOTO 2260 INPUT D(I) IF D(I) => T(I,1) AND D(I) <= T(I,2) THEN 02310 PRINT D\$ GOTO 02260 NEXT I PRINT B(1) = N1 B(2) = N2 B(3) = N3 B(4) = N4</pre>
02190 02200 02210 02220 02235 02240 02250 02265 02265 02265 02270 02280 02290 02300 02310 02320 02310 02320 02350 02350 02360 02370	PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "6 = LPG" PRINT $G = LPG$ " PRINT b\$(1);TAB(52);U\$(1);TAB(65);" = "; ON ERROR GOTO 2260 INPUT D(1) IF D(1) \Rightarrow T(1,1) AND D(1) <= T(1,2) THEN 02310 PRINT D\$ GOTO 02260 NEXT I PRINT B(1) = N1 B(2) = N2 B(3) = N3 B(4) = N4 EOR L = 1 TO ϕ
02190 02200 02210 02230 02235 02240 02250 02260 02265 02270 02280 02290 02300 02310 02320 02330 02340 02350 02350 02360 02370	<pre>PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "6 = LPG" PRINT "6 = LPG" PRINT D\$(1);TAB(52);U\$(I);TAB(65);" = "; ON ERROR GOTO 2260 INPUT D(I) IF D(I) => T(I,1) AND D(I) <= T(I,2) THEN 02310 PRINT D\$ GOTO 02260 NEXT I PRINT B(1) = N1 B(2) = N2 B(3) = N3 B(4) = N4 FOR I = 1 TO 4 IF U (2000) </pre>
02190 02200 02210 02220 02235 02240 02250 02260 02265 02270 02280 02290 02300 02310 02320 02330 02340 02350 02360 02370 02380	<pre>PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "5 = COAL" PRINT "6 = LPG" PRINT b\$(1);TAB(52);U\$(I);TAB(65);" = "; ON ERROR GOTO 2260 INPUT D(I) IF D(I) => T(I,1) AND D(I) <= T(I,2) THEN 02310 PRINT D\$ GOTO 02260 NEXT I PRINT B(1) = N1 B(2) = N2 B(3) = N3 B(4) = N4 FOR I = 1 TO 4 IF U\$ = "E" THEN 02420</pre>
02190 02200 02210 02220 02235 02240 02250 02265 02260 02265 02270 02280 02290 02300 02310 02320 02310 02320 02340 02350 02340 02350 02360 02370 02380 02390	<pre>PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "5 = COAL" PRINT "6 = LPG" PRINT B\$(I);TAB(52);U\$(I);TAB(65);" = "; ON ERROR GOTO 2260 INPUT D(I) IF D(I) => T(I,1) AND D(I) <= T(I,2) THEN 02310 PRINT D\$ GOTO 02260 NEXT I PRINT B(1) = N1 B(2) = N2 B(3) = N3 B(4) = N4 FOR I = 1 TO 4 IF U\$ = "E" THEN 02420 IF B(1) => (5/9) THEN 02440</pre>
02190 02200 02210 02230 02235 02240 02250 02260 02265 02270 02280 02310 02310 02310 02320 02330 02340 02350 02350 02360 02370 02380 02390 02390 02400	PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "6 = LPG" PRINT "6 = LPG" PRINT b\$(1);TAB(52);U\$(1);TAB(65);" = "; ON ERROR GOTO 2260 INPUT D(1) IF D(1) \Rightarrow T(1,1) AND D(1) <= T(1,2) THEN 02310 PRINT D\$ GOTO 02260 NEXT I PRINT B(1) = N1 B(2) = N2 B(3) = N3 B(4) = N4 FOR I = 1 TO 4 IF U\$ = "E" THEN 02420 IF B(1) => (5/9) THEN 02440 B(1) = (5/9)
02190 02200 02210 02230 02235 02240 02250 02260 02265 02270 02280 02290 02300 02310 02320 02330 02340 02350 02340 02350 02360 02370 02380 02390 02400 02410	PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "6 = LPG" PRINT $(6 = LPG")$ PRINT $(6 = LPG")$ PRINT (1) ; TAB(52); U\$(I); TAB(65); " = "; ON ERROR GOTO 2260 INPUT D(I) IF D(I) => T(I,1) AND D(I) <= T(I,2) THEN 02310 PRINT D\$ GOTO 02260 NEXT I PRINT B(1) = N1 B(2) = N2 B(3) = N3 B(4) = N4 FOR I = 1 TO 4 IF U\$ = "E" THEN 02420 IF B(I) => (5/9) THEN 02440 B(I) = (5/9) GOTO 02400
02190 02200 02210 02220 02235 02240 02250 02260 02265 02270 02280 02290 02300 02310 02310 02320 02340 02350 02350 02360 02350 02360 02370 02380 02390 02400 02400	PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "5 = COAL" PRINT "6 = LPG" PRINT $6 = LPG$ " PRINT D\$(1);TAB(52);U\$(1);TAB(65);" = "; ON ERROR GOTO 2260 INPUT D(1) IF D(1) => T(I,1) AND D(1) <= T(I,2) THEN 02310 PRINT D\$ GOTO 02260 NEXT I PRINT B(1) = N1 B(2) = N2 B(3) = N3 B(4) = N4 FOR I = 1 TO 4 IF U\$ = "E" THEN 02420 IF B(1) => (5/9) THEN 02440 B(1) = (5/9) GOTO 02240 IF D(1) => C2 FULL 02(0)
02190 02200 02210 02230 02235 02240 02250 02260 02265 02270 02280 02290 02300 02310 02310 02320 02330 02340 02350 02360 02370 02380 02230 02380 02230	<pre>PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "6 = LPG" PRINT "6 = LPG" PRINT b\$(I);TAB(52);U\$(I);TAB(65);" = "; ON ERROR GOTO 2260 INPUT D(I) IF D(I) => T(I,1) AND D(I) <= T(I,2) THEN 02310 PRINT D\$ GOTO 02260 NEXT I PRINT B(1) = N1 B(2) = N2 B(3) = N3 B(4) = N4 FOR I = 1 TO 4 IF U\$ = "E" THEN 02420 IF B(I) => (5/9) THEN 02440 B(I) = (5/9) GOTO 02440 IF B(I) => 33 THEN 02440</pre>
02190 02200 02210 02230 02235 02240 02250 02260 02265 02270 02280 02290 02300 02310 02320 02320 02330 02340 02350 02350 02360 02370 02380 02390 02400 02410 02420 02430	PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "6 = LPG" PRINT 6 = LPG" PRINT $6 = LPG$ " PRINT $0 = LPG$ PRINT $0 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = $
02190 02200 02210 02220 02235 02240 02250 02265 02260 02265 02270 02280 02290 02300 02310 02320 02330 02340 02350 02350 02350 02350 02360 02370 02380 02390 02400 02410 02410	PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "5 = COAL" PRINT "6 = LPG" PRINT "6 = LPG" PRINT $6 = LPG$ " PRINT $0 = 100$ PRINT $0 = 100$ ON ERROR GOTO 2260 INPUT D(I) IF $D(I) \Rightarrow T(I,1)$ AND $D(I) <= T(I,2)$ THEN 02310 PRINT D\$ GOTO 02260 NEXT I PRINT B(1) = N1 B(2) = N2 B(3) = N3 B(4) = N4 FOR I = 1 TO 4 IF U \$ = "E" THEN 02420 IF $B(I) \Rightarrow (5/9)$ THEN 02440 B(I) = (5/9) GOTO 02440 IF $B(I) \Rightarrow 33$ THEN 02440 B(I) = 33 NEXT I
02190 02200 02210 02220 02235 02240 02250 02265 02260 02265 02270 02280 02290 02300 02310 02320 02310 02320 02340 02350 02360 02350 02360 02370 02380 02390 02400 02410 02420 02410 02420	PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "6 = LPG" PRINT "6 = LPG" PRINT $(6 = LPG)$ PRINT $(6 = LPG)$ PRINT (1) ; TAB(52); U (1); TAB(65); " = "; ON ERROR GOTO 2260 INPUT D(1) IF D(1) => T(1,1) AND D(1) <= T(1,2) THEN 02310 PRINT D(1) => T(1,1) AND D(1) <= T(1,2) THEN 02310 PRINT D(1) => T(1,1) AND D(1) <= T(1,2) THEN 02310 PRINT D(1) => T(1,1) AND D(1) <= T(1,2) THEN 02310 PRINT D(1) => T(1,1) AND D(1) <= T(1,2) THEN 02310 PRINT D(2) = N2 B(1) = N1 B(1) = N1 B(2) = N2 B(3) = N3 B(4) = N4 FOR I = 1 TO 4 IF U(1) => (5/9) THEN 02440 B(1) = (5/9) GOTO 02440 IF B(1) => 33 THEN 02440 B(1) = 33 NEXT I NL = B(1)
02190 02200 02210 02230 02235 02240 02250 02260 02265 02270 02280 02290 02300 02310 02320 02320 02330 02340 02350 02350 02360 02370 02380 02390 02400 02410 02420 02410 02420	PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "5 = COAL" PRINT "6 = LPG" PRINT $(1) = 100$ FOR I = 56 TO 57 PRINT D\$(I);TAB(52);U\$(I);TAB(65);" = "; ON ERROR GOTO 2260 INPUT D(I) IF D(I) => T(I,1) AND D(I) <= T(I,2) THEN 02310 PRINT D\$ GOTO 02260 NEXT I PRINT B(1) = N1 B(2) = N2 B(3) = N3 B(4) = N4 FOR I = 1 TO 4 IF U\$ = "E" THEN 02420 IF B(I) => (5/9) THEN 02440 B(I) = (5/9) GOTO 02240 IF B(I) => 33 THEN 02440 B(I) = 33 NEXT I N1 = B(1)
02190 02200 02210 02230 02235 02240 02250 02260 02265 02270 02280 02290 02300 02310 02320 02310 02320 02340 02350 02340 02350 02360 02370 02380 02390 02400 02410 02420 02430 02440 02450 02460	PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "5 = COAL" PRINT "6 = LPG" PRINT $(1 = 56 \text{ TO } 57$ PRINT D\$(I);TAB(52);U\$(I);TAB(65);" = "; ON ERROR GOTO 2260 INPUT D(I) IF D(I) => T(I,1) AND D(I) <= T(I,2) THEN 02310 PRINT D\$ GOTO 02260 NEXT I PRINT B(1) = N1 B(2) = N2 B(3) = N3 B(4) = N4 FOR I = 1 TO 4 IF U\$ = "E" THEN 02420 IF B(I) => (5/9) THEN 02440 B(I) = (5/9) GOTO 02240 IF B(I) => 33 THEN 02440 B(I) = B(1) N2 = B(2)
02190 02200 02210 02220 02235 02240 02255 02260 02265 02270 02280 02290 02300 02310 02320 02310 02320 02340 02350 02340 02350 02360 02370 02380 02390 02400 02410 02420 02440 02420 02440 02450 02460 02470	PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "6 = LPG" PRINT "6 = LPG" PRINT 05 (1);TAB(52);U\$(1);TAB(65);" = "; ON ERROR GOTO 2260 INPUT D(1) IF D(1) => T(1,1) AND D(1) <= T(1,2) THEN 02310 PRINT D\$ GOTO 02260 NEXT I PRINT B(1) = N1 B(2) = N2 B(3) = N3 B(4) = N4 FOR I = 1 TO 4 IF U\$ = "E" THEN 02420 IF B(1) => (5/9) THEN 02440 B(1) = (5/9) GOTO 02440 IF B(1) => 33 THEN 02440 B(1) = 33 NEXT I N1 = B(1) N2 = B(2) N3 = B(3)
02190 02200 02210 02230 02235 02240 02250 02260 02265 02270 02280 02300 02310 02310 02320 02310 02320 02330 02340 02350 02360 02370 02380 02390 02230 02390 02240 02400 02410 02420 02400 02410 02420 02400 02410	PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "5 = COAU" PRINT "6 = LPG" PRINT "6 = LPG" PRINT $6 = LPG$ " PRINT D\$(1);TAB(52);U\$(1);TAB(65);" = "; ON ERROR GOTO 2260 INPUT D(1) IF $D(1) => T(1,1)$ AND $D(1) <= T(1,2)$ THEN 02310 PRINT D\$ GOTO 02260 NEXT I PRINT B(1) = N1 B(2) = N2 B(3) = N3 B(4) = N4 FOR I = 1 TO 4 IF U = "E"$ THEN 02420 IF $B(1) => (5/9)$ THEN 02440 B(1) = (5/9) GOTO 02440 IF $B(1) => 33$ THEN 02440 B(1) = 33 NEXT I N1 = B(1) N2 = B(2) N3 = B(3) N4 = B(4)
02190 02200 02210 02230 02235 02240 02250 02260 02265 02270 02280 02290 02300 02310 02320 02320 02320 02340 02350 02350 02360 02370 02380 02390 02400 02410 02420 02410 02420 02420 02440 02420	PRINT "1 = ELECTRIC" PRINT "2 = DISTILLATE OIL" PRINT "3 = RESIDUAL OIL" PRINT "4 = NATURAL GAS" PRINT "5 = COAL" PRINT "6 = LPG" PRINT FOR I = 56 TO 57 PRINT D\$(1);TAB(52);U\$(I);TAB(65);" = "; ON ERROR GOTO 2260 INPUT D(1) IF D(1) => T(I,1) AND D(I) <= T(I,2) THEN 02310 PRINT D\$ GOTO 02260 NEXT I PRINT B(1) = N1 B(2) = N2 B(3) = N3 B(4) = N4 FOR I = 1 TO 4 IF U\$ = "E" THEN 02420 IF B(1) => (5/9) THEN 02440 B(1) = (5/9) GOTO 02240 IF B(1) => 33 THEN 02440 B(1) = B(1) N2 = B(2) N3 = B(3) N4 = B(4) RETURN

02500 FOR I = 20 TO 22 02510 PRINT D\$(I);TAB(52);U\$(I);TAB(65);" = "; 02515 ON ERROR GOTO 2510 INPUT D(I) 02520 IF D(I) => T(I,1) AND D(I) <= T(I,2) THEN 02560 02530 02540 PRINT D\$ 02550 GOTO 02510 NEXT I 02560 GOTO 02090 02570 02590 Z9 = 102600 PRINT PRINT "ENTER NAME OF DESIRED FILE >>>"; 02610 02615 ON ERROR GOTO 2950 02620 INPUT F\$ 02625 ON ERROR 02630 IF LEN(F\$) > 7 THEN 02720 02640 FOR I = 1 TO LEN(F\$) A = ORD(F\$(I:I))02650 IF (A=>48 AND A<=57) OR (A=>65 AND A<=90) THEN 02680 02660 GOTO 02720 02670 NEXT I 02680 CALL PF("GET", F\$, F\$, "RRC", K, "NA", J) 02690 02700 I = INT(K)02710 IF I = 0 THEN 02740 02720 PRINT "FILE NAME *** ";F\$;" *** IS INVALID. TRY AGAIN!" GOTO 02610 02730 FILE #1 = F\$ 02740 02750 REM >>>>>>>> READ FILE #1 INPUT DATA <<<<<<<< ON ERROR GOTO 02980 02760 MAT READ #1,D 02770 MAT READ #1,H 02780 02790 MAT READ #1,L READ #1,N1,N2,N3,N4 02800 MAT READ #1,R 02810 MAT READ #1,E 02820 READ #1,R1,L1,S1,J8 02830 02840 READ #1,C\$,S\$,M\$,U\$ 02850 CLOSE #1 02860 ON ERROR 02870 GOSUB 10220 02880 PRINT PRINT"ENGLISH OR SI UNITS (E OR SI)"; 02890 ON ERROR GOTO 2890 02895 02900 INPUT U\$ IF U\$ = "E" THEN 02950 IF U\$= "SI" THEN 02940 02910 02920 02930 GOTO 02890 GOSUB 13060 02940 02950 RETURN 02980 PRINT "DATA IN ";F\$;" IS INVALID" 02990 CLOSE #1 03000 GOTO 02610 03020 IF Z9 = 1 THEN 0305003030 PRINT L\$ RETURN 03040 03050 PRINT PRINT "LINE NUMBER"; 03060 03070 ON ERROR GOTO 04400 03080 INPUT X 03090 ON ERROR 03100 P = X

03110 IF X = 0 THEN 04400 03120 IF X <> INT(X) THEN 03050 03130 IF X < 1 OR X > 70 THEN 03050 03140 IF $X \Rightarrow 1$ AND $X \le 10$ THEN 03280 03150 IF X = 11 THEN 03360 IF X = 12 THEN 03460 03160 IF X = 13 THEN 03560 03170 03180 IF X => 20 AND X <= 25 THEN 03280 03190 IF X => 30 AND X <= 34 THEN 03280 03200 IF X => 40 AND X <= 42 THEN 03820 IF X => 44 AND X <= 46 THEN 03980 03210 03220 IF X => 47 AND X <= 49 THEN 04140 03230 IF X => 50 AND X <= 57 THEN 03280 03240 IF X = 58 THEN 04300 03250 IF X => 60 AND X <= 61 THEN 03280 03260 IF X = 70 THEN 03280 03270 GOTO 03050 PRINT P;" ";D\$(P) 03280 03285 I1 = D(P)03290 PRINT "CURRENT VALUE = ";D(P);" ";U\$(P);" NEW VALUE = "; 03300 ON ERROR GOTO 3290 03310 INPUT D(P) 03320 IF $D(P) \implies T(P,1)$ AND $D(P) \le T(P,2)$ THEN 03050 03330 PRINT DS 03340 D(P) = I1GOTO 3285 03350 03360 PRINT 03370 PRINT "MONTHLY SPACE HEATING LOADS - "; U\$(P) 03380 FOR I = 1 TO 12 PRINT M\$(I); "-"; 03390 03395 ON ERROR GOTO 3390 03400 INPUT L(I) 03410 IF $L(I) \Rightarrow 0$ AND $L(I) \iff 1E7$ THEN 03440 03420 PRINT D\$ 03430 GOTO 03390 03440 NEXT I GOTO 03050 03450 03460 PRINT PRINT "AVERAGE DAILY HORIZONTAL RADIATION - "; U\$(P) 03470 FOR I = 1 TO 12 03480 PRINT M\$(I); "-"; 03490 03495 ON ERROR GOTO 3490 03500 INPUT H(I) IF H(I) => 0 AND H(I) <= 3E3 THEN 03540 03510 03520 PRINT D\$ GOTO 03490 03530 03540 NEXT I GOTO 03050 03550 03560 PRINT PRINT "AVERAGE GROUND WATER TEMPERTURES - ";U\$(P) 03570 03580 PRINT M\$(12); " TO "; M\$(2); ON ERROR GOTO 3580 03585 INPUT N1 03590 IF U\$ = "E" AND N1 => 33 AND N1 <= 212 THEN 03640 03600 IF U\$ = "SI" AND N1 => 5/9 AND N1 <= 100 THEN 03640 03610 03620 PRINT D\$ 03630 GOTO 03580 PRINT M\$(3); " TO "; M\$(5); 03640 ON ERROR GOTO 3640 03645 INPUT N2 03650 IF U\$ = "E" AND N2 => 33 AND N2 <= 212 THEN 03700 03660 IF U\$ = "SI" AND N2 => 5/9 AND N1 <= 100 THEN 03700 03670 03680 PRINT D\$ GOTO 03640 03690 PRINT M\$(6); " TO "; M\$(8); 03700

03705	ON ERROR GOTO 3700
03710	INPUT N3
03720	IF IIS = "E" AND N3 => 33 AND N3 <= 212 THEN 03760
03730	TE US = "ST" AND N3 => 5/9 AND N3 <= 100 THEN 03760
037/0	DDINT DC
03740	COTO 02700
03750	DETERM $MC(0)$. I TO I. $MC(11)$.
03760	PKINI MŞ(9); 10 ; MŞ(11);
03765	UN ERROR GUIU 3760
03770	INPUT N4
03780	IF US = "E" AND N4 => 33 AND N4 \leq 212 THEN 03050
03790	IF UŞ = "SI" AND N4 \Rightarrow 5/9 AND N4 \leq 100 THEN 03050
03800	PRINT D\$
03810	GOTO 03760
03820	PRINT
03830	PRINT "SOLAR ENERGY SYSTEM"
03840	IF P = 41 THEN 03860
03850	GOTO 03280
03860	PRINT "REPLACEMENT COST AND YEAR - "
03870	PRINT "ENTER SIX VALUES, COST, YEAR, ETC."
03875	ON ERROR GOTO 3870
03880	INPUT R(1),R(2),R(3),R(4),R(5),R(6)
03890	IS = "NO ERROR"
03900	FOR $I = 1$ TO 5 STEP 2
03910	IF $R(I) \implies 0$ AND $R(I) <= 1E8$ THEN 03920 ELSE 03930
03920	$IF R(I+1) => 0 AND R(I+1) \le D(61) THEN 03950$
03930	PRINT DS
03940	IS = "FRROR"
03050	NEVT T
03950	TE TO - "FEDOR" THEN 03970
03900	
03970	GOID 05050
03980	PRINT PAUVITARY CVCTEN
03990	TE D = 45 THEN 04020
04000	1F P = 45 THEN 04020
04010	GOTO U3280
04020	PRINT "REPLACEMENT COST AND TEAR"
04030	PRINT "ENTER SIX VALUES, CUST, TEAR, EIC."
04035	UN ERROR GUTU 4030
04040	INPUT K(7), K(8), K(9), K(10), K(11), K(12)
04050	IS = "NO EKROK"
04060	FOR $I = 7$ TO 11 STEP 2
04070	IF $R(I) => 0$ AND $R(I) <= 1E8$ THEN 04080 ELSE 04090
04080	IF $R(I+1) => 0$ AND $R(I+1) <= D(61)$ THEN 04110
04090	PRINT DŞ
04100	I\$ = "ERROR"
04110	NEXT I
04120	IF IS = "ERROR" THEN 04030
04130	GOTO 03050
04140	PRINT
04150	PRINT "REFERENCE NON-SOLAR SYSTEM"
04160	IF $P = 48$ THEN 04180
04170	GOTO 03280
04180	PRINT "REPLACEMENT COST AND YEAR"
04190	PRINT "ENTER SIX VALUES, COST, YEAR, ETC."
04195	ON ERROR GOTO 4190
04200	INPUT R(13), R(14), R(15), R(16), R(17), R(18)
04210	I\$ = "NO ERROR"
04220	FOR $I = 13$ TO 17 STEP 2
04230	IF R(I) => 0 AND R(I) <= 1E8 THEN 04240 ELSE 04250
04240	IF $R(I+1) \implies 0$ AND $R(I+1) \iff D(61)$ THEN 04270
04250	PRINT D\$
04260	I\$ = "ERROR"
04270	NEXT I
04280	IF I = "ERROR" THEN 04190
04290	GOTO 03050

```
PRINT "ENERGY PRICE ESCALATION (% PER YEAR ABOVE INFLATION)"
04300
04310 PRINT "1=ELEC; 2=DIST OIL; 3=RES OIL; 4=NAT GAS; 5=COAL; 6=LPG; 0=FINISHED"
         ON ERROR GOTO 4310
04315
04320
          INPUT I
          IF I = 0 THEN 03050
04330
           IF I => 1 AND I <= 6 THEN 04370
04340
          PRINT D$
04350
04360
           GOTO 04310
           PRINT "ENTER THREE VALUES: 1ST 4 YRS, NEXT 5 YRS, AFTER 9 YRS"
04370
04375
           ON ERROR GOTO 4370
04380
           INPUT E(I,1), E(I,2), E(I,3)
           GOTO 04310
04390
04400
          RETURN
IF 29 = 1 THEN 04450
04420
04430
          PRINT L$
04440
          RETURN
          IF US = "E" THEN 04470
04450
04460
          GOSUB 13490
          J9 = D(1)
04470
04480
          X5 = 0
          IF M$ = "N" THEN 06020
04490
04500
          GOSUB 11700
04510
          GOSUB 08230
04520
          GOSUB 04800
04530
          IF D(3) = 2 THEN 04580
04540
          GOSUB 05750
04550
         GOSUB 05490
04560
         A5 = A9
04570
          GOTO 04590
04580
          A9 = D(4)
04590
          GOSUB 12190
04600
          GOSUB 13800
04610
          GOSUB 14410
04620
          C5 = C9
04630
          F5 \approx F9
          GOSUB 15130
04640
          \begin{array}{rrr} A6 &= A0 \\ F6 &= F9 \end{array}
84650
04670
          IF D(70) = 1 THEN 04750
04680
          IF D(3) = 2 THEN 04710
04690
          A9 = A5
04700
          GOTO 04720
04710
          A9 = D(4)
04720
          GOSUB 12190
04730
          GOSUB 13800
04740
          GOSUB 14410
04750
          IF U$ = "E" THEN 04770
04760
          GOSUB 13060
04770
          IF D(70) = 3 THEN 04790
04780
          GOSUB 06660
04790
          RETURN
04800 REM -----
          V1 = C(J8, 1)
04810
          V2 = C(J8, 2)
04820
04830
          V3 = C(J8, 3)
04840
          V4 = C(J8, 4)
04850
          V5 = 1.4
04860 REM
                 CALCULATE TEN SOLAR FRACTIONS FOR 10 EVENLY SPACED COLLECTOR
04870 REM
                AREAS FROM .1 TO .95 AND DETERMINE TOTAL LCC FOR EACH.
04880
          IF J9 = 19 THEN 05020
04890
          IF J9 > 12 THEN 05000
          IF J8 > 1 THEN 04930
04900
```

.-

04910	E = 1E6*X9*LOG(2*C(1,3))/(C(1,4)*28)
04920	GOTO 05040
04930	$A =5*(V1*(V2^2)*EXP(-V2*V5) + V3*(V4^2)*EXP(-V4*V5))$
04940	B = V1 * V2 * EXP(-V2 * V5) + V3 * V4 * EXP(-V4 * V5)
04950	C = 5 - V[AEXP(-V2AV5) - V3AEXP(-VAAV5)]
04960	$V_{6} = (-B + SOR((B^{2}) - A + A + C))/(2A + A)$
04900	$v_0 = (-D + S(R)(D + D) + (-R))$
04970	
04980	$E = 1E0^{-}A^{-}V/20$
04990	G010 05040
05000	J = J + I
05010	GOTO 05030
05020	J7 = 15
05030	E = 1E6*X(3)/(2*C(J7,2)*Z(3)*N(3))
05040	A1 = E
05050	A9 = A1
05060	GOSUB 12190
05070	F1= F9
05080	$A2 = 8 \star A1$
05090	A9 = A2
05100	GOSUB 12190
05110	$F_{2} = F_{9}$
05120	GOSUB 13800
05130	$C_1 = (A_2^*(-LOG(1-F_1)) - A_1^*(-LOG(1-F_2))) / (A_2^*A_1^2 - A_1^*A_2^2)$
05140	$C_{2} = ((A ^{2})*(-LOG(1-F_{2})) - (A2^{2})*(-LOG(1-F_{1}))) / (A2*A1^{2} - A1*A2^{2})$
05150	IF A1 <= 50 THEN 05220
05160	F = 1 + 1 = 100 THEN 05240
05170	F = 1 = 200 THEN 05250
05180	F = 1 < 200 THEN05280
05100	$\frac{1}{10} \text{ m} = \frac{1}{100} \text$
05200	
05210	
05210	
05220	
05230	
05240	
05250	6010 0310
05260	R9 = 10
05270	6010 05310
05280	R9 = 25
05290	GOTO 05310
05300	R9 = 50
05310	FOR $F = 1$ TO 9
05320	$C_3 = LOG(1 - (F/10))$
05330	$A(F) = (-C2+SQR((C2^{2})-4*C1*C3)) / (2*C1)$
05340	A(F) = R9*INT((A(F)/R9)+.5)
05350	A9 = A(F)
05360	GOSUB 12190
05370	P(F) = F9
05380	GOSUB 14410
05390	U(F) = C9
05400	NEXT F
05410	A(10) = 2*A(9)
05420	A(10) = R9*INT((A(10)/R9)+.5)
05430	A9 = A(10)
05440	GOSUB 12190
05450	P(10) = F9
05460	GOSUB 14410
05470	U(10) = C9
05480	RETIRN

05490	REM	
05500	REM	CALCULATE AREA FOR AREA CORRESPONDING TO MIN SOLAR FRACTION
05510		IF F9 => D(5)/100 THEN 05720
05520		X5 = 1
05530		C3 = LOG(1-(D(5)/100))
05540		$A9 = (-C2+SQR((C2^{2})-4*C1*C3))/(2*C1)$
05550		GOSUB 12190
05560		IF $(F9*100) < (D(5)4)$ THEN 05590
05570		IF $(F9*100) > (D(5)+.4)$ THEN 05670
05580		RETURN
05590		A8 = A9
05600		$Ay = 1 \cdot 1 \times Ay$
05620		GUSUB 12190 TE (E0+100) < (D(5), () THEN 05500
05630		$IF (F9*100) \times (D(5)+.4)$ THEN 05650
05640		RETURN
05650		A9 = (A8+A9)/2
05660		GOTO 05610
05670		A8 = A9
05680		A9 = .9*A9
05690		GOSUB 12190
05700		IF (F9*100) < (D(5)4) THEN 05730
05710		IF $(F9*100) > (D(5)+.4)$ THEN 05670
05720		RÉTURN
05730		A9 = (A8+A9)/2
05740		GOTO 05690
05750	REM	
05760	REM	THE OPTIMAL COLLECTOR AREA WILL NOW BE FOUND
05770	REM	
05/80		BI = 0
05200		$D_2 = A(10)$ C = (SOP(5)-1)/2
05810		$B = B^2 - B^1$
05820		r = b2-b1 IF R <= 1 THEN 05990
05830		T1 = B2 - R*G
05840		T2 = B1 + R*G
05850		A9 = T1
05860		GOSUB 12190
0 5870		GOSUB 14410
05880		P1 = C9
05890		A9 = T2
05900		GOSUB 12190
05910		GOSUB 14410
05920		$P_2 = C_9$
05930		IF PZ < PI IMEN UDYDU
05940		
05950		$S_2 = 12$
05970		BI = TI
05980		GOTO 05810
05990		A0 = INT(B1)
06000		A9 = A0
06010		RETURN
06020	REM	
06030	REM	PERFORM ECONOMIC ANALYSIS ON NON-STARDARD ANALYSIS
06040		Xy = D(2U)
06050		FY = D(21)/100
06070		D(4) = D(22)
06080		D(7) = D(24)
06090		D(8) = D(25)
06100		GOSUB 13800
06110		GOSUB 14410
06120		GOSUB 15130
06130		IF U\$ = "E" THEN 06150
06140		GOSUB 13060
06150		GOSUB 06660
06160		RETURN

IF Z9 = 1 THEN 0621006180 06190 PRINT LS 06200 RETURN 06210 PRINT 06220 PRINT "STORE DATA UNDER WHAT NAME"; 06225 ON ERROR GOTO 6650 06230 INPUT X\$ IF X\$ = "FEDSOL" OR X\$ = "DATA" THEN 06300 0624**0** 06250 IF X\$ = "DEFALT1" OR X\$ = "PRICE" THEN 06300 06260 IF X\$ = "INSTRUC" OR X\$ = "SAMPLE" THEN 06300 06270 GOTO 06320 PRINT "FILE NAME *** ";X\$;" *** IS INVALID. TRY AGAIN!" 06280 06290 GOTO 06220 06300 PRINT "FORBIDDEN NAME. USE ANOTHER NAME!" 06310 GOTO 06220 06320 IF LEN(X\$) > 7 THEN 06280 06330 FOR I = 1 TO LEN(X\$) 06340 A = ORD(X\$(I:I))06350 IF (A=>48 AND A<=57) OR (A=>65 AND A<=90) THEN 06370 06360 GOTO 06280 06370 NEXT I 06380 FILE #1 = X\$ 06390 **RESTORE #1** 06400 MAT WRITE #1,D 06410 MAT WRITE #1,H 06420 MAT WRITE #1,L WRITE #1,N1,N2,N3,N4 06430 06440 MAT WRITE #1,R 06450 MAT WRITE #1,E 06460 WRITE #1,R1,L1,S1,J8 06470 WRITE #1,C\$,S\$,M\$,U\$ 06480 CLOSE #1 06490 CALL PF("SAVE", X\$, X\$, "RRC", K1, "NA", J) I = INT(K1)06500 06510 IF I = 0 THEN 06650IF I = 5 THEN 0654006520 06530 GOTO 06280 06540 PRINT X\$;" ALREADY EXISTS. DO YOU WISH TO USE THIS NAME (Y/N) "; 06550 ON ERROR GOTO 06650 06560 INPUT Y\$ 06570 ON ERROR 06580 IF Y\$ = "N" THEN 06650 06590 IF Y\$ = "Y" THEN 06610 06600 GOTO 06540 CALL PF("REPLACE", X\$, X\$, "RRC", K2, "NA", J) 06610 06620 I1 = INT(K2)06630 IF I1 = 0 THEN 0665006640 GOTO 06280 RETURN 06650 IF M\$ = "Y" THEN 06800 06670 06680 PRINT 06690 PRINT " 06700 PRINT " 06710 PRINT " ****** 06720 PRINT 06730 PRINT C\$;", ";S\$ 06740 PRINT "-PRINT "LIFE CYCLE COST SUMMARY" 06750 06760 PRINT 06770 PRINTUSING 06780, D(20), U\$(20) 06780 06790 GOTO 07320 06800 PRINT 06810 PRINT 06820 PRINT " 06830 PRINT " 06840 PRINT " 06850 PRINT

PRINT CS;", ";S\$ 06860 PRINT "SYSTEM TYPE =";D(1) 06870 PRINT 06880 06890 PRINT "-----PRINT "SOLAR FRACTION AND NS FOR A RANGE OF SYSTEM SIZES" 06900 06910 PRINT PRINT " AREA SOLAR FRACTION NET SAVINGS" 06920 PRINT " (";U\$(4);")" 06930 06940 PRINT FOR I = 1 TO 10 06950 06960 PRINTUSING06970, A(I), P(I), U(I) #######.# S#######. 06970 : 4.44 NEXT I 06980 06990 PRINT 07000 PR INT 07010 PRINT "----PRINT "THERMAL PERFORMANCE" 07020 07030 PRINT PRINTUSING 07050, A9, U\$(4), D(2) 07040 07050 TILT ANGLE = ##.## DEGREES 07060 PRINT 07070 PRINT " SOLAR AVG DAILY INCIDENT WATER USEFUL" SPACE 07080 PRINT " HORZ RAD. FRACTION COLLECTOR LOAD LOAD SOLAR" 07090 PRINT " (2)" (1)(1)(2) (2) 07100 PRINT FOR M = 1 TO 12 07110 07120 IF J9 < 13 THEN 07150 07130 PRINTUSING 07160, M\$(M), G(M), H(M), Z(M), L(M), K(M), Q(M) 07140 GOTO 07180 07150 PRINTUSING 07170, M\$(M), H(M), Z(M), L(M), K(M) ****.** ****.** ****.** 07160 :<#### #.### ***** ****.** 07170 :<#### * ####.## ****.** ****.** ****.** * 07180 NEXT M PRINTUSING 07200, F9, L9, K9, Q9 07190 07200 :YEAR #.### *******.** *****.** ******** 07210 PR INT PRINT " (1) = "; U\$(12)07220 PRINT " (2) = "; U\$(11)07230 07240 PRINT 07250 PRINT 07260 PRINT "----07270 PRINT "LIFE CYCLE COST SUMMARY" 07280 PRINT 07290 IF X5 = 1 THEN 07320 07300 IF D(3) = 1 THEN 0738007310 A9 = D(4)07320 PRINTUSING 07330, A9, U\$(4) 07330 07340 PRINTUSING 07350, F9 07350 :SOLAR FRACTION = *.*** 07360 PRINT 07370 GOTO 07430 PRINTUSING 07390, A5, U\$(4) 07380 07390 07400 PRINTUSING 07410,F5 07410 :OPTIMAL SOLAR FRACTION = 4.444 07420 PRINT 07430 PRINTUSING 07590 07440 PRINTUSING 07600 07450 PRINT 07460 PRINTUSING 07610, "INVESTMENT (ADJ)", P6, D(33), D(34) 07470 PRINT PRINTUSING 07610, "FUEL", G3, G2, G1 07480 07490 PRINT 07500 PRINTUSING 07610,"O&M",M3,M2,M1 07510 PRINT

PRINTUSING 07610, "REPLACEMENTS", H3, H2, H1 07520 07530 PRINT 07540 PRINTUSING 07610, "SALVAGE", Z3, Z2, Z1 07550 PRINT 07560 PRINTUSING 07610, "TOTAL LCC", J3, J2, J1 07570 PRINT 07580 PRINT SOLAR ENERGY AUXILIARY REFERENCE 07590 07600 SYSTEM SYSTEM SYSTEM 2 07610 \$#######. \$#######. \$#######. 07620 PRINT "----07630 PRINT "MEASURES OF ECONOMIC PERFORMANCE" 07640 PRINT 07650 PRINTUSING 07680, J1 07660 PRINTUSING 07690, J4 07670 PRINTUSING 07700,C9 :TOTAL LCC WITHOUT SOLAR = \$########### 07680 07690 :TOTAL LCC WITH SOLAR = \$###########. = S#########. 07700 :NET SAVINGS 07710 PRINT :SAVINGS TO INVESTMENT RATIO = ##. ### 07720 07730 IF P8 => 0 THEN 07760 PRINT "SIMPLE PAYBACK TIME = NEVER" 07740 07750 GOTO 07780 07760 PRINTUSING 07770, P8 07770 SIMPLE PAYBACK TIME = ###.## YEARS 07780 PRINT 07790 PRINTUSING 07720,R8 07800 PRINT 07810 IF D(70) = 1 THEN 0822007820 PRINT "----PRINT "CASH FLOW ANALYSIS" 07830 07835 PRINT 07840 PRINT " DISCOUNTED" SIMPLE 07850 PRINT " YEAR ANNUAL CUMULATIVE ANNUAL CUMULATIVE" 07855 PRINT 07860 T2 = X807870 T3 = X7PRINTUSING 07930,0,X8,T2,X7,T3 07880 07890 FOR Y = 1 TO N5 T2 = T2 + O(Y)07900 07910 T3 = T3 + V(Y)07920 PRINTUSING 07930, Y, O(Y), T2, V(Y), T3 07930 : ## S#######. S#########. 07940 NEXT Y 07950 PRINT 07960 PRINT 07970 IF C9 > 0 THEN 08220 07980 IF D(3) = 2 THEN 08220IF M\$ = "N" THEN 08220 07990 08000 IF D(56) <> D(57) THEN 08220 08010 PRINT "-08020 PRINT "BREAKEVEN ANALYSIS" 08030 PRINT 08040 PRINTUSING 08050, A6, U\$(4) 08050 08060 PRINTUSING 08070, F6 08070 :SOLAR FRACTION = #.### 08080 PRINT 08090 PRINTUSING 08100, Q4, U\$ (50) 08100 BREAKEVEN FUEL PRICE = ###.###### <####### 08110 PRINT 08120 PRINTUSING 08130, Y1 08130 BREAKEVEN SYSTEM COST MULTPLIER = #.###### 08140 PRINT 08150 PRINTUSING 08160, A3 BREAKEVEN FUEL ESCALATION RATE MULTIPLIER = ##.### 08160 08170 PRINTUSING 08180, W(1), W(2), W(3) ##.#### ##.#### ##.#### BREAKEVEN FUEL ESCALATION RATES 08180 08190 PRINT

08200	PRINT "
08210	PRINT
08220	RETURN
08230	REM ************************************
08240	BEM
08250	K9 = 0
08260	R(1) = N1
00200	P(2) = N1
00270	D(2) = N1
08280	D(3) = NZ
08290	B(4) = NZ
08300	B(5) = NZ
08310	B(6) = N3
08320	B(7) = N3
08330	B(8) = N3
08340	B(9) = N4
08350	B(10) = N4
08360	B(11) = N4
08370	B(12) = N1
08380	I(1) = 110
08390	I(2) = 130
08400	I(3) = 150
08410	I(4) = 170
08420	I(5) = 110
08430	I(6) = 130
08440	I(7) = 150
08450	I(8) = 170
08460	T(9) = 110
08470	I(10) = 130
08480	T(11) = 150
08490	I(12) = 170
004500	POP T = 13 TO 10
08510	$r_{1} = 13 10 19$
00510	
08520	NEAL I
08530	
08540	K(M) = 0
08550	NEXT M
08560	IF J9 > 12 THEN 08600
08570	FOR $M = 1$ TO 12
08580	L(M) = 0
08590	NEXT M
08600	FOR $M = 1$ TO 12
08610	K(M) = D(9)*D(10)*(N(M)/7)*8*3*(I(D(1))-B(M))
08620	K(M) = K(M)/1000000
08630	K9 = K9 + K(M)
08640	NEXT M
08650	REM B(M) = MONTHLY GROUND WATER TEMPERATURE
08660	REM I(D(1)) = WATER HEATER SET TEMPERATURE
08670	REM $D(9) \approx GALLONS/DAY USAGE$
08680	$REM \qquad D(10) = DAYS/WEEK USAGE$
08690	REM $N(M)/7 = NUMBER OF WEEKS IN EACH MONTH$
08700	REM K(M) = DHW MONTHLY LOAD IN MMBTU/MONTH
08710	REM K9 = ANNUAL DHW LOAD IN MMETU/YEAR
08720	X9 = 0
08730	L9 = 0
08740	FOR $M = 1$ TO 12
08750	X(M) = L(M) + K(M)
08760	X9 = X9 + X(M)
08770	L9 = L9 + L(M)
08780	NEXT M
08790	RETURN
08800	REM ************************************
08810	TF 79 = 1 THEN 08840
08830	
00020	
00000	
08850	PRINT PRINT
08860	PRINT "ANALYSIS FOR A FEDERAL ".TS(SI)." IN H.C

```
08880 PRINT "
                ******************
                08890 PRINT "
                ********
08900 PRINT "
08910 PRINT
08920 PRINT "DATA FOR SOLAR PERFORMANCE ANALYSIS (SLR METHOD)"
08930 PRINT
08940 FOR I = 1 TO 8
08950 PRINTUSING 08970, I, D$(I), D(I);
08960 PRINT " ";U$(I)
08980 NEXT I
08990 PRINT
09000 PRINT "----
09010 PRINT "ENERGY REQUIREMENTS DATA"
09020 PRINT
09030 PRINTUSING 08970,9,D$(9),D(9);
09040 PRINT " ";U$(9)
09050 PRINTUSING 08970,10,D$(10),D(10);
09060 PRINT " ";U$(10)
09070 PRINT " 11 MONTHLY SPACE HEATING LOADS - ";U$(11)
09080 \text{ FOR I} = 1 \text{ TO } 6
09090 PRINTUSING 09180, M$(I), L(I), M$(I+6), L(I+6)
09100 NEXT I
09110 PRINT
09120 PRINT "---
09130 PRINT "ENVIRONMENTAL DATA"
09140 PRINT
09150 PRINT " 12 AVERAGE DAILY HORIZONTAL RADIATION - ";U$(12)
09160 \text{ FOR I} = 1 \text{ TO } 6
09170 PRINTUSING 09180, M$(I), H(I), M$(I+6), H(I+6)
09180:
           <##### - ####.##
                             <##### - ####.##
09190 NEXT I
09200 PRINT
09210 PRINT " 13 AVERAGE GROUND WATER TEMPERATURES - ";U$(13)
09220 PRINTUSING 09260, M$(12), M$(2), N1
09230 PRINTUSING 09260, M$(3), M$(5), N2
09240 PRINTUSING 09260,M$(6),M$(8),N3
09250 PRINTUSING 09260, M$(9), M$(11), N4
           <### - <### = ###.#
09260:
09270 IF M$ = "Y" THEN 09400
09280 PRINT
09290 PRINT
09300 PRINT "
                **********
09310 PRINT "
                09320 PRINT "
                09330 PRINT
09340 PRINT "DATA FOR ECONOMIC ANALYSIS ONLY"
09350 PRINT
09360FOR I = 20 TO 25
09370 PRINTUSING 08970, I, D$(I), D(I);
09380 PRINT " ";U$(I)
09390 NEXT I
09400 PRINT
09410 PRINT "
                 09420 PRINT "
                 09430 PRINT "
                 09440 PRINT
09450 PRINT "BASE YEAR INVESTMENT COSTS"
09460 PRINT
09470 FOR I = 30 TO 34
09480 PRINTUSING 08970, I, D$(I), D(I);
09490 PRINT " ";U$(I)
09500 NEXT I
09510 PRINT
09520 PRINT "-
09530 PRINT "FUTURE NON-FUEL COSTS"
09540 PRINT
09550 PRINT "SOLAR ENERGY SYSTEM"
09560 PRINTUSING 08970,40,D$(40),D(40);
09570 PRINT " ";U$(40)
```

```
09580 PRINT " 41 REPLACEMENT COST AND YEAR"
09590 PRINTUSING 09620, R(1), R(2)
09600 PRINTUSING09620, R(3), R(4)
09610 PRINTUSING 09620, R(5), R(6)
             $###### AT YEAR ##
09620:
09630 PRINTUSING 08970,42,D$(42),D(42);
09640 PRINT " ";U$(42)
09650 PRINT
09660 PRINT "AUXILIARY SYSTEM"
09670 PRINTUSING 08970,44,D$(44),D(44);
09680 PRINT " ";U$(44)
09690 PRINT " 45 REPLACEMENT COST AND YEAR"
09700 PRINTUSING 09620,R(7),R(8)
09710 PRINTUSING 09620, R(9), R(10)
09720 PRINTUSING 09620, R(11), R(12)
09730 PRINTUSING 08970, 46, D$(46), D(46);
09740 PRINT " ";U$(46)
09750 PRINT
09760 PRINT "REFERENCE NON-SOLAR SYSTEM"
09770 PRINTUSING 08970, 47, D$(47), D(47);
09780 PRINT " ";U$(47)
09790 PRINT " 48 REPLACEMENT COST AND YEAR"
09800 PRINTUSING 09620, R(13), R(14)
09810 PRINTUSING09620, R(15), R(16)
09820 PRINTUSING 09620, R(17), R(18)
09830 PRINTUSING 08970, 49, D$(49), D(49);
09840 PRINT " ";U$(49)
09850 PRINT
09860 PRINT "-----
09870 PRINT "FUEL COSTS"
09880PRINT
09890 \text{ FOR I} = 50 \text{ TO } 57
09900 PRINTUSING 08970, I, D$(I), D(I);
09910 PRINT " ";U$(I)
09920 NEXTI
09930 PRINT
09940 PRINT "DOE REGION = ";R1
09950 PRINT " 58 ENERGY PRICE ESCALATION (Z PER YEAR ABOVE INFLATION) - ";$$($1)
09960 PRINT
09970 PRINT "
                                       1ST 4 YRS NEXT 5 YRS AFTER 9 YRS"
                     TIME PERIODS:
09980 PRINTUSING 10030, "ELECTRICITY", E(1,1), E(1,2), E(1,3)
09990 PRINTUSING 10030, "DISTILLATE OIL", E(2,1), E(2,2), E(2,3)
10010 PRINTUSING 10030, "RESIDUAL OIL", E(3, 1), E(3, 2), E(3, 3)
10015 PRINTUSING 10030, "NATURAL GAS", E(4, 1), E(4, 2), E(4, 3)
10020 PRINTUSING 10030, "COAL", E(5, 1), E(5, 2), E(5, 3)
10025 PRINTUSING 10030, "LPG", E(6, 1), E(6, 2), E(6, 3)
10030
                     <*****
                                                       ###.##
                                                                     ***.**
             :
10040 PRINT
10050 PRINT "-----
10060 PRINT "DISCOUNT RATE AND STUDY PERIOD"
10070 PRINT
10080 PRINTUSING 08970,60,D$(60),D(60);
10090 PRINT " ";U$(60)
10100 PRINTUSING 08970,61,D$(61),D(61);
10110 PRINT " ";U$(61)
10120 PRINT
10130 PRINT "-----
10140 PRINT "ANALYSIS OUTPUT"
10150 PRINT
10160 PRINTUSING 08970, 70, D$(70), D(70);
10170 PRINT
10180 PRINT
10190 RETURN
```

10210 RETURN 10230 RESTORE 10240 D\$(1) = "TYPE OF SOLAR ENERGY SYSTEM (FROM CODED LIST)" 10250 D\$(2) = "COLLECTOR TILT ANGLE" 10260 D\$(3) = "OPTIMIZATION ANALYSIS (YES=1;NO=2)" 10270 D\$(4) = "COLLECTOR AREA" 10280 D\$(5) = "MINIMUM ACCEPTABLE SOLAR FRACTION" 10290 D\$(6) = "OPERATING EFFICIENCY OF AUXILIARY SYSTEM" 10300 D\$(7) = "OPERATING EFFICIENCY OF REFERENCE NONSOLAR SYSTEM" 10310 D\$(8) = "ELECTRIC ENERGY AS % OF USEFUL SOLAR ENERGY" 10320 D\$(9) = "DOMESTIC HOT WATER USAGE" 10330 D\$(10) = "BUILDING USE SCHEDULE" 10340 D\$(20) = "ANNUAL ENERGY LOAD" 10350 D\$(21) = "ANNUAL SOLAR FRACTION" 10360 D\$(22) ="COLLECTOR AREA" 10370 D\$(23) = "OPERATING EFFICIENCY OF AUXILIARY SYSTEM" 10380 D\$(24) = "OPERATING EFFICIENCY OF REFERENCE SYSTEM" 10390 D\$(25) = "ELECTRICAL ENERGY AS % OF USEFUL SOLAR ENERGY" 10400 D\$(30) = "SOLAR ENERGY INVESTMENT - FIXED COST" 10410 D\$(31) = "SOLAR ENERGY INVESTMENT - VARIABLE COST" 10420 D\$(32) = "INVESTMENT CREDIT (EXTERNALITY ADJUSTMENT)" 10430 D\$(33) = "INVESTMENT COST FOR AUXILIARY SYSTEM" 10440 D\$(34) = "INVESTMENT COST FOR REFERENCE NONSOLAR SYSTEM" 10450 D\$(40) = "ANNUALLY RECURRING O&M COST (% OF SYSTEM COST)" 10460 D\$(42) = "SALVAGE VALUE AT END OF STUDY PERIOD" 10470 D\$(44) = "ANNUALLY RECURRING O&M COST" 10480 D\$(46) = "SALVAGE VALUE AT END OF STUDY PERIOD" 10490 D\$(47) = "ANNUALLY RECURRING O&M COST" 10500 D\$(49) = "SALVAGE VALUE AT END OF STUDY PERIOD" 10510 D\$(50) = "ELECTRICITY PRICE IN BASE YEAR" 10520 D\$(51) = "DISTILLATE OIL PRICE IN BASE YEAR" 10530 D\$(52) = "RESIDUAL OIL PRICE IN BASE YEAR" 10540 D\$(53) = "NATURAL GAS PRICE IN BASE YEAR" 10550 D\$(54) = "COAL PRICE IN BASE YEAR" 10555 D\$(55) = "LPG PRICE IN BASE YEAR" 10560 D\$(56) = "TYPE OF FUEL USED IN AUXILIARY SYSTEM" 10570 D\$(57) = "TYPE OF FUEL USED IN REFERENCE SYSTEM" 10580 D\$(60) = "REAL DISCOUNT RATE (EXCLUDES INFLATION)" 10590 D\$(61) = "STUDY PERIOD" 10600 D\$(70) = "1=STANDARD; 2=EXTENDED; 3=SUMMARY" 10610 D\$ = "DATA OUT OF RANGE. TRY AGAIN!" 10620 J9 = D(1) $10630 \ Q1 = D(49+D(5/))$ $10640 \ Q2 = D(49+D(56))$ 10650 Q3 = D(50)10660 U\$(1) = "" 10670 U\$(2) = "DEGREES" 10680 U\$(3) = " " 10690 U\$(4) = "SQFT" 10700 U\$(5) = "%" 10710 U\$(6) = "Z" 10720 U\$(7) = "%" 10730 U\$(8) = "Z" 10740 U\$(9) = "GALLONS/DAY" 10750U\$(10) = "DAYS/WEEK" 10760 U\$(11) = "MMBTU/MONTH" 10770 U\$(12) = "BTU/SQFT-DAY"

10780 U\$(13) = "DEGREES F"
10790 U\$(20) = "MMBTU/YEAR"
10800 U(21) = "Z"
10810 U(22) = "SQFT"
108200 (23) = ""
10830U\$(24) = "%"
10840 U\$(25) = "%"
10850 U(30) = "\$"
10860 U(31) = "\$/SQFT"
10870 U(32) = "%"
10880 U(33) = "\$"
10890 U(34) = "\$"
10900 U(40) = "%"
10910 U\$(42) = "%"
10920 U\$(44) = "\$"
10930 US(46) = "S"
10940 US(47) = "S"
10950 US(49) = "S"
10960 US(50) = "S/MMBTU"
10970 HS(51) = "S/MMBTH"
10980 IIS(52) = "S/MMBTH"
10900 US(52) = "S/MMBTU"
11000 IIS(54) = "S/MMBTH"
$11010 \text{ H}^{\circ}(55) = "^{\circ}(MMBTH"$
11010 03(55) = 3742010
$11025 \text{ H}^{\circ}(57) = "$
11025 05(57) = 1771
11050 05(00) = 3
11040 05(01) - 124RS
$11000 \ SS(1) = RESIDENTIAL$
11070 $SS(2) = "COMPLEXCIAL"$
$\frac{11080}{1000} = \frac{11000}{1000} = 11$
11090 TS(1) = "RESIDENTIAL BUILDING"
$11100 T_{S}(2) = "OFFICE BUILDING"$
11110 TS(3) = "INDUSTRIAL FACILITY"
11120 MS(1) = "JAN"
11130 M(2) = "FEB"
11140 M\$(3) = "MAR"
11150 M\$(4) = ``APR''
11160 M\$(5) = "MAY"
11170MS(6) = "JUN"
$11180 M_{S}(7) = "JUL"$
$11190 M_{S}(8) = "AUG"$
11200 M\$(9) = "SEP"
11210 M\$(10) = "OCT"
11220 M\$(11) = "NOV"
11230 M\$(12) = "DEC"
11240 MAT READ C
11250 DATA .366, .573, 1.026, .713
11260 DATA .815, .470, .185, 2.003
11270 DATA .570, .336, .430, .946
11280 DATA .783, .327, .217, 1.429
11290 DATA .638, .269, .362, .966
11300 DATA .438, .159, .562, .740
11310 DATA .092, .080, .908, .690
11320 DATA .652, .328, .348, 1.074
11330 DATA .819, .308, .181, 2.020

11340 DATA .819, .248, .181, 2.342 11350 DATA .652, .328, .348, 1.074 11360 DATA .627, .255, .373, 1.239 11370 DATA .660, .278, .340, 1.011 11380 DATA 1.478, .317, 1.314, .613 11390 DATA 1.581, .291, 1.298, .555 11400 DATA 1.605, .287, 1.302, .550 11410 DATA 1.187, .415, 1.360, .830 11420 DATA 1.177, .426, 1.392, .872 11430 DATA 1.314, .371, 1.353, .739 11440 MAT READ N 11450 DATA 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 11460 MAT READ Y 11470 DATA 17,47,75,105,135,162,198,228,258,288,318,344 11480 FOR I = 1 TO 70 11490 READ X\$, T(I, 1), T(I, 2) 11500 NEXT I 19, #3, 1, 2, #7, 0, 1E3, #1, 1, 19, #5, 0, 100, #4, 0, 1E6 11510 DATA #2, 0, 90, #8, 0, 100 11520 DATA #6, 0, 1E3, #10, 1, #14, 0, #12, 0, #16, 0, 0, 7, 0, 11530 DATA #9, 0, 1E6, #11, 0, 0 0, 0, 11540 DATA #13, 0, Ó #15, 0, #18, 0, 11550 DATA #17, 0, 0, 0, #19, 0, 0, #20, 0, 1E6 11560 DATA #21, 0, 100, #22, 0, 1E6, #23, 0, 100, #24, 0, 100 11570 DATA #25, 0, 100, #26, 0, 0, #28, 0, 0, #27, 0, 0 0, 11580 DATA #29, 0, #32, 0, 100 #30, 0, 1E8, #31, 0, 1E4, 0, 11590 DATA #33, 0, 1E8, #34, 0, 1E8, #35, 0, #36, 0, 0 #38, 0, 11600 DATA #37, 0, 0, 0, #39, 0, 0, #40, 0, 100 11610 DATA #41, 0, #42, 0, 100, #43, 0, #44, 0, 1E7 0, 0, #45, 0, 0, #48, 0, 11620 DATA #46, 0, 1E8, #47, 0, 1E7, 0 11630 DATA #49, 0, 1E8, #50, 0, 1E3, #51, 0, 1E3, #52, 0, 1E3 11640 DATA #53, 0, 1E6, #54, 0, 1E3, #55, 0, 1E3, #56, 1, 6 0, 11650 DATA #57, 1, 6, **#58, 0,** #59, 0, 0, #60, 0, 100 11660 DATA 0, #63, 0, 0, #61, 1, 40, #62, 0, #64, 0, 0 0, 11670 DATA #65, 0, #66, 0, 0, 0, #67, 0, #68, 0, 0 11680 DATA #69, 0, 0, #70, 1, 3 11690 RETURN 11700REM ******** CALCULATE SOLAR RADIATION ON TILTED SURFACE ******** 11710 REM 11720 P1 = 3.141592611730 P2 = 57.295779 11740 19 =428.9 11750 S = D(2)11760 L = L1 $11770 \ Z8 = 0$ 11780 FOR M = 1 TO 12 11790 N = Y(M)11800 D1 = 23.45*SIN(360*(284+N)/(365*P2)) 11810 W1 = -TAN(L/P2) * TAN(D1/P2)11820 IF W1 > .999 THEN 11870 11830 IF W1 < -.999 THEN 11850 11840 GOTO 11890 11850 W1 = P111860 GOTO 11900 11870 Z(M) = 011880 GOTO 12040 $11890 W1 = (P1/2) - ATN(W1/((1-W1^2)^{.5}))$ 11900 G = (24/P1)*I9*(1+.033*COS(360*N/(365*P2)))11910 G = G * (COS(L/P2)*COS(D1/P2)*SIN(W1)+W1*SIN(L/P2)*SIN(D1/P2)) 11920 K = H(M)/G11930 D = 1.00 - 1.13 * K11940 W2 = -TAN((L-S)/P2)*TAN(D1/P2) $11950 W2 = (P1/2) - ATN(W2/((1-W2^2)^{.5}))$ 11960 IF W1 < W2 THEN 11990 11970 W3 = W211980 GOTO 12000

```
11990 W3 = W1
12000 \text{ J} = \text{COS}((L-S)/P2)*\text{COS}(D1/P2)*\text{SIN}(W3) + W3*\text{SIN}((L-S)/P2)*\text{SIN}(D1/P2)
12010 J = J / (COS(L/P2)*COS(D1/P2)*SIN(W1) + W1*SIN(L/P2)*SIN(D1/P2))
12020 J(M) = (1-D)*J + D*(1+COS(S/P2))/2 + .2*(1-COS(S/P2))/2
12030 Z(M) = J(M) * H(M)
12040 Z8 = Z8 + Z(M) * N(M)
12050 NEXT M
12060 REM
               I9 = SOLAR CONSTANT
12070 REM
               N = DAY OF YEAR
12080 REM
               S = COLLECTOR TILT ANGLE IN DEGREES
12090 REM
               D1 = SOLAR DECLINATION ANGLE IN DEGREES
               W1 = SUNSET ANGLE ON HORIZONTAL SURFACE IN RADIANS
12100 REM
12110 REM
               W2 = SUNSET ANGLE ON TILTED SURFACE IN RADIANS
12120 REM
               W3 = MINIMUM OF W1 AND W2
12130 REM
               K = K SUB T
               D = RATIO OF AVG HORIZ DIFFUSE TO AVG HORIZ TOTAL RADIATION
12140 REM
12150 REM
                J = RATIO OF BEAM ON TILTED SURFACE TO BEAM ON HORIZ SURFACE
12160 REM
             J(M) = RATIO OF AVG DAILY RADIATION ON TILTED TO HORIZ SURFACE
12170 REM
             Z(M) = AVERAGE DAILY RADIATION ON TILTED SURFACE (BTU/SQFT*DAY)
12180 RETURN
12200 REM
12210 REM
              ENTER WITH COLLECTOR AREAEQUAL TO A9
12220 REM
              EXIT WITH F9, Q(M), F(M), Q9, L9
12230 REM
12240
           Q9 = 0
           IF J9 = 19 THEN 12920
12250
           IF J9 > 12 THEN 12780
12260
12270 REM ***** SYS 1 THRU SYS 12 DHW ONLY *****
12280
          S9 = Z8 * A9 / (1E6 * K9)
12290
          IF J8 > 1 THEN 12350
12300
         IF S9 > C(1,1) THEN 12330
          K1 = C(1, 2) * S9
12310
12320
          GOTO 12360
12330
          K1 = 1 - C(1,3) * EXP(-C(1,4) * S9)
12340
          GOTO 12360
12350
          K1 = 1 - C(J8,1) \times EXP(-C(J8,2) \times S9) - C(J8,3) \times EXP(-C(J8,4) \times S9)
12360 ON J9 GOTO 12370, 12400, 12430, 12460, 12490, 12520, 12550, 12580, 12610, 12640, 12670, 12700
12370
          E1 = 7
12380
           E2 = 11
           GOTO 12720
12390
12400
           E1 = 8
12410
           E2 = 11
12420
           GOTO 12720
12430
           E1 = 9
12440
          E2 = 11
12450
           GOTO 12720
12460
          E1 = 10
12470
          E2 = 11
12480
          GOTO 12720
12490
          E1 = 7
12500
          E2 = 12
12510
           GOTO 12720
12520
           E1 = 8
12530
          E2 = 12
12540
          GOTO 12720
          E1 = 9
12550
12560
           E2 = 12
12570
           GOTO 12720
12580
           E1 = 10
12590
           E2 = 12
12600
           GOTO 12720
12610
           E1 = 7
          E2 = 13
12620
12630
          GOTO 12720
```

12640		E1 = 8
12650		E2 = 13
12660		GOTO 12720
12670		E1 = 9
12680		EZ = 13
12690		GOTO 12720
12700		EI = IU
12710		$E_2 = 13$ $E_2 = 1 - C(8, 1) \pm EYE(-C(8, 2) \pm C(8, 3) \pm EYE(-C(8, 4) \pm C(8, 3))$
12720		$K_2 = 1 = C(0, 1) + EXP(-C(0, 2) + Sy) = C(0, 3) + EXP(-C(0, 4) + Sy)$
12750		$K_{4} = 1 - C(E_{2}, 1) * E X (-C(E_{2}, 2) * S_{3}) - C(E_{2}, 3) * E X (-C(E_{2}, 4) * S_{3})$
12750		$F_{9} = K_{1} + (K_{3}-K_{2}) + (K_{4}-K_{2})$
12760		$09 = F9 \times K9$
12770		RETURN
12780	REM	***** SYS 13 THRU SYS 18 SPACE + DHW COMBINED
12790		J7 = J9 + 1
12800		FOR $M = 1$ TO 12
12810		IF X(M) = 0 THEN 12870
12820		S(M) = Z(M) * A9 * N(M) / (1E6 * X(M))
12830		IF $S(M) > C(J7, 1)$ THEN 12860
12840		G(M) = C(J, Z) = S(M)
12850		$G(1) = 1 - G(17, 2) \pm PVP(-G(17, 4) \pm G(4))$
12870		$G(M) = C(M) \pm Y(M)$
12880		Q(n) = O(n) + O(m)
12890		NEXT M
12900		F9 = 09/X9
12910		RETURN
12920	REM	***** SYS 19 - SPACE HEATING RESIDENTIAL *****
12930		FOR $M = 1$ TO 12
12940		G(M) = 0
12950		IF $X(M) = 0$ THEN 13010
12960		S(M) = Z(M) * A9 * N(M) / (1E6 * X(M))
12970		IF $S(M) > 5.66$ THEN 13000
12980		$G(M) = 1.06 - 1.366 \times EXP(55 \times S(M)) + .306 \times EXP(-1.05 \times S(M))$
12990		
13000		$G(\mathbf{M}) = \mathbf{I}$
13020		$Q(n) = O(n) \cdot X(n)$
13030		$V_{\text{S}} = V_{\text{S}} + V_{\text{C}}$
13040		F9 = 09/X9
13050		RETURN
13060	REM	**************************************
13070		U\$(4) = "M2"
13080		U\$(9) = "LITERS/DAY"
13090		U\$(11) = "GJ/MONTH"
13100		$U_{S}(12) = "MJ/M2 - DAY"$
13110		$U_{S}(13) = "DEGREES C"$
13120		$U_{S}(20) = "GJ/YEAR"$
13140		$U_{2}(22) = M2^{\prime\prime}$
13150		$D(4) = D(4) \star .092903$
13160		D(9) = D(9) * 3.785/4
13170		D(20) = D(20) * 1.05506
13180		D(22) = D(22) * .092903
131 9 0		D(31) = D(31)/.092903
13200		FOR I = 50 TO 54
13210		U\$(I) = "\$/GJ"
13220		D(I) = D(I) * (1/1.05506)
13230		NEXT 1
13250		FUK M = 1 TU 12
13260		$K(M) = K(M) \pm 1.05506$
13270		X(M) = X(M) * 1.05506
13280		0(M) = 0(M) * 1.05506
13290		H(M) = H(M)/88.05
13300		Z(M) = Z(M)/88.05
13310		NEXT M

```
13320
          N1 = (N1-32)*5/9
13330
          N2 = (N2-32)*5/9
13340
          N3 = (N3-32)*5/9
          N4 = (N4-32)*5/9
13350
13360
          FOR I = 1 TO 10
13370
           A(I) = A(I) * .092903
          NEXT I
13380
13390
          A9 = A9 * .092903
          A5 = A5 * .092903
13400
          A6 = A6 * .092903
13410
13420
          A0 = A0 * .092903
          K9 = K9 * 1.05506
13430
13440
          L9 = L9 * 1.05506
13450
          X9 = X9 \times 1.05506
13460
          09 = 09 \times 1.05506
13470
          Q4= Q4/1.05506
13480
          RETURN
U$(4) = "SQFT"
13500
          U$(9) = "GALLONS/DAY"
13510
          U$(11) = "MMBTU/MONTH"
13520
          U$(12) = "BTU/SQFT-DAY"
13530
13540
          U$(13) = "DEGREES F"
          U$(20) = "MMBTU/YEAR"
13550
          U$(22) = "SOFT"
13560
          U$(31) = "$/SQFT"
13570
13580
          D(4) = D(4) / .092903
13590
          D(9) = D(9)/3.78544
13600
          D(20) = D(20)/1.05506
          D(22) = D(22)/.092903
13610
13620
          D(31) = D(31) * .092903
13630
          FOR I = 50 TO 54
13640
            U$(I) = "$/MMBTU"
13650
            D(I) = D(I)*1.05506
13660
          NEXT I
13670
          FOR M = 1 TO 12
13680
            L(M) = L(M)/1.05506
13690
            K(M) = K(M)/1.05506
13700
            X(M) = X(M)/1.05506
13710
            Q(M) = Q(M)/1.05506
13720
            H(M) = H(M) * 88.05
13730
            Z(M) = Z(M) * 88.05
13740
          NEXT M
13750
          N1 = (N1*9/5)+32
          N2 = (N2*9/5)+32
13760
13770
          N3 = (N3*9/5)+32
          N4 = (N4*9/5)+32
13780
          RETURN
13790
13810 REM ----- PART 1 OF LCCA -----
13820
          N5 = D(61)
          I5 = D(60)/100
13830
13835
          16 = N5
13836
          IF I5 = 0 THEN 13850
13840
          I6 = (((1+I5)^N5)-1) / (I5*((1+I5)^N5))
13850
          I7 = 1 / (1+I5)^{N5}
13860
          GOSUB 13880
13870
          GOTO 14030
13880 REM ------ YEAR BREAKS FOR MPW FUEL FACTOR -----
13890
          IF N5 => 9 THEN 13990
          IF N5 => 4 THEN 13950
13900
13910
          M(1) = N5
13920
          M(2) = 0
13930
          M(3) = 0
13940
          GOTO 14020
```
13950		M(1) = 4
13960		M(2) = N5 - 4
13970		M(3) = 0
13980		GOTO 14020
13990		M(1) = 4
14000		M(2) = 5
14010		M(3) = N5 - 9
14020		RETIRN
1/030	REM	REFERENCE SYSTEM
14050	KL41	$T_5 \sim D(57)$
14040	<u>01 –</u>	D(40475)
14050	QI =	
14000		GUSUB 14200
14070		
14080		$MI = D(14) \times 10$
14090		$HI = R(13)/((1+15)^{K}(14)) + R(15)/((1+15)^{K}(10)) + R(1/)/((1+15)^{K}(18))$
14100		Z1 = D(49)*1/
14110	REM	AUXILIARY SYSTEM
14120		T5 = D(56)
14130		Q2 = D(49+T5)
14140		GOSUB 14260
14150		D2 = D
14160		M2 = D(44) * I6
14170		$H2 = R(7)/((1+I5)^{R(8)}) + R(9)/((1+I5)^{R(10)}) + R(11)/((1+I5)^{R(12)})$
14180		Z2 = D(46) * I7
14190	REM	SOLAR SYSTEM
14200		T5 = 1
14210		$Q_3 = D(50)$
14220		GOSUB 14260
14230		D3 = D
14240		$H3 = R(1)/((1+I5)^{R}(2)) + R(3)/((1+I5)^{R}(4)) + R(5)/((1+I5)^{R}(6))$
14250		RETURN
14260	REM	MOD NPW FACTOR FOR FUEL PRICE
14270		I(1) = E(T5, 1)/100
14280		I(2) = E(T5, 2)/100
14290		I(3) = E(T5, 3)/100
14300		$\mathbf{D} = 0$
14310		D5 = 1
14320		FOR I = 1 TO 3
14330		$IF_{I}(I) = 15$ THEN 1/260
14340	D/ =	$D_{5}/(1+T(T))/(T_{5}-T(T))) + ((1+T_{5})) + (1+T(T))) + ((1+T_{5})) +$
1/350	54 -	COTO 1/370
1/360		
14370		$D_4 = D_5 m(J)$
1/380		$D_{2} = D_{2} + D_{1}^{2}$
1/300		
14390		NEAL J
14400	REM	
14410	DEM	DEPEnden average
14420	KEM .	C1 - 100+01+V0+D1 /D (7)
14450		GI = IOU * (I * X 9 * D I / D (/))
14440	DEM	JI = D(34) + GI + MI + HI - ZI
14450	KEM ·	C2 = 100 to 2 t (1 PO) TRAIN (1 PO)
14400		$G2 = 100 \times Q2 \times (1 - F9) \times X9 \times D2/D(6)$
14470	DEM	$J_2 = D(33) + G_2 + M_2 + H_2 - Z_2$
14480	KEM ·	DE DIGOLAR SYSTEM
14490		$P_{5} = D(30) + D(31)*A9$
14500		P6 = (1-(D(32)/100))*P5
14510		E3 = D(8) * F9 * X9/100
14520		$G3 = Q3 \times E3 \times D3$
14530		M3 = P5*D(40)*I6/100
14540	Z :	3 = D(42) * P5 * I7/100
14550		J3 = P6 + G3 + M3 + H3 - Z3
14560		J4 = J2 + J3
14570		C9 = J1 - J4
1/580		RETURN

```
14590 REM ----- SET UP FOR ANNUAL DISC CASH FLOW
14600
          X6 = 0
14610
          FOR N5 = 1 TO D(61)
            GOSUB 13880
14620
14630
            GOSUB 14260
14640
            B(N5) = D
14650
          NEXT N5
14660
          N5 = D(61)
14670
          RETURN
                    ----- DISC CASH FLOW -
14680 REM -
14690
           FOR I = 1 TO N5
14700
          V(I) = 0
          NEXT I
14710
14720
          F1 = Q1 * X9 * 100 / D(7)
14730
          F2 = Q2*(1-F9)*X9*100/D(6)
14740
          F3 = Q3*F9*X9*D(8)/100
          X7 = D(34) - (D(33)+P6)
14750
          T5 = D(57)
14760
14770
          GOSUB 14590
           FOR Y = 1 TO D(61)
14780
14790
            IF Y = 1 THEN V(1) = F1 + B(1)
             IF Y > 1 THEN V(Y) = F1*(B(Y)-B(Y-1))
14800
14810
          NEXT Y
14820
          T5 = D(56)
14830
           GOSUB 14590
14840
           FOR Y = 1 TO D(61)
14850
             IF Y = 1 THEN V(1) = V(1) - F2*B(1)
14860
             IF Y > 1 THEN V(Y) = V(Y) - F2*(B(Y)-B(Y-1))
14870
           NEXT Y
14880
           T5 = 1
           GOSUB 14590
14890
14900
           FOR Y = 1 TO D(61)
14910
             IF Y = 1 THEN V(1) = V(1) - F3 \pm B(1)
14920
             IF Y > 1 THEN V(Y) = V(Y) - F3*(B(Y)-B(Y-1))
14930
           NEXT Y
14940
           FOR I = 2 TO 12 STEP 2
14950
             IF R(I) = 0 THEN 14970
             V(R(I)) = V(R(I)) - R(I-1)/((1+I5)^R(I))
14960
14970
           NEXT I
14980
           FOR I = 14 TO 18 STEP 2
             IF R(I) = 0 THEN 15010
14990
15000
             V(R(I)) = V(R(I)) + R(I-1)/((1+I5)^{R}(I))
15010
           NEXT I
15020
           FOR Y = 1 TO N5
             V(Y) = V(Y) + D(47)/((1+15)^{Y})
15030
15040
           NEXT Y
15050
           FOR Y = 1 TO N5
15060
             V(Y) = V(Y) - D(44)/((1+I5)^{Y})
15070
           NEXT Y
15080
           FOR Y = 1 TO N5
15090
             V(Y) = V(Y) - D(40) * (P5/100) / ((1+I5)^{Y})
           MEXT Y
15100
15110
           V(N5) = V(N5) + Z2 + Z3 - Z1
           RETURN
15120
15140:* NET SAVINGS = $######## * AREA = ###### SQFT * SOLAR FRACTION = .### *
15150:* NET SAVINGS = $######## * AREA = ###### M2 * SOLAR FRACTION = .### *
15160 IF U$ = "E" THEN 15190
15170 PRINTUSING 15150, C9, A9*.092903, F9
15180 GOTO 15210
15190 PRINTUSING 15140, C9, A9, F9
15200 GOSUB 14680
```

15210 REM	SAVINGS TO INVESTMENT RATIO
15220	R8 = (G1-G2-G3+H1-H2-H3)/(P6+D(33)-D(34)+Z1-Z2-Z3+H2+H3-H1)
15230	IF R8 > 0 THEN 15250
15240	K8 = 0
15250 KEM	The other of the second
15200	FI = QI = A + A + A + A + A + A + A + A + A + A
15270	FZ = QZ = (1 - FY) = X = 100 / D(0)
15280	$F_{3} = 0_{3}F_{3} \times 0_{3} \times 0_{3} \times 0_{3}$
15290	AS = D(34) - (D(33) + PO)
15300	POK I = 1 IO NJ $O(N) = (R1) P((7)) (R2) P((7)) (R2) P((0)) + P5(100)$
15310	O(I) = (II+D(4/)) - (I2+D(44)) - (I3+D(40)+I3/100)
15330	FOR $V = 2$ TO 12 STEP 2
15340	TEP(Y) = 0 THEN 15360
15350	O(R(Y)) = O(R(Y)) - R(Y-1)
15360	NEXT Y
15370	T2 = 0
15380	FOR $Y = 14$ TO 18 STEP 2
15390	IF R(Y) = 0 THEN 15410
15400	O(R(Y)) = O(R(Y)) + R(Y-1)
15410	NEXT Y
15420	Y = 0
15430	T2 = 0
15440	T1 = T2
15450	IF $Y = 0$ THEN T2 = T2 + X8
15460	IF $Y > 0$ THEN $T2 = T2 + O(Y)$
15470	IF T2 > 0 THEN 15510
15480	IF Y = N5 THEN 15530
15490	Y = Y + 1
15500	GOTO 15440
15510	P8 = Y - (T2/(T2-T1))
15520	GOTO 15550
15530	T2 = T2 - X8
15540	P8 = -X8/(T2/N5)
15550	O(N5) = O(N5) + D(46) + D(42)*P5/100 - D(49)
15560	IF $MS = "N"$ THEN 16520
15570	1F D(3) = 2 THEN 10520
15500	1F = 0.9 = 0.01 HEN 10520 TE D(54) <> D(57) THEN 14520
15600	TF D(30) < 2 D(37) THEN 10320
15610	IF D(70) = 3 THEN 16520
15620 REM	BPEAKEVEN RIEL PRICE
15630	N7 = 02
15640	P4 = C9
15650	B3 = 02
15660	B4 = B3 + N7
15670	P3 = P4
15680	Q1 = B4
15690	Q2 = B4
15700	IF D(56) > 1 THEN 15720
15710	Q3 = B4
15720	GOSUB 05750
15730	P4 = C9
15740	IF P4 > 0 THEN 15760
15750	GOTO 15650
15760	Q4 = B3 + (-P3*(B4-B3)/(P4-P3))
15770	Q1 = Q4
15780	$Q^2 = Q^4$
15/90	1F D(56) > 1 THEN 15810
15800	$V_3 = B4$
15010	$V_{2}/20$
15820	D3 - C0
15840	$B_3 = 0/$
15850	$B_{4} = B_{3} = \frac{2 \pi (9 \pi ((B_{4} - B_{3}))/(D_{4} - D_{3}))}{2}$
10000	

```
Q1 = B4
15860
           Q2 = B4
15870
15880
           IF D(56) > 1 THEN 15900
15890
           Q3 = B4
15900
           GOSUB 05750
15910
           P4 = C9
           GOTO 15760
15920
15930
            REM
15940 REM ----- BREAKEVEN FUEL ESCALATION RATE ----
           T5 = D(56)
15950
15960
           FOR I = 1 TO 3
15970
             J(I) = E(T5, I)
15980
           NEXT I
           A1 = Q4*D2
15990
16000
           A2 = 1
16010
           A3 = 1.3 * A2
16020
           FOR I = 1 TO 3
16030
            W(I) = A3*(J(I)+10)
16040
             W(I) = W(I) - 10
16050
             I(I) = W(I)/100
16060
           NEXT I
16070
           GOSUB 14300
           IF N7*D => A1 THEN 16110
16080
16090
           A2 = A3
16100
           GOTO 16010
16110
           A4 = A3
           IF ABS(N7*D-A1) < .01 THEN 16230
16120
           A3 = (A2 + A4)/2
16130
16140
           FOR I = 1 TO 3
16150
             W(I) = A3*(J(I)+10)
16160
             W(I) = W(I) - 10
16170
             I(I) = W(I)/100
16180
           NEXT I
16190
            GOSUB 14300
16200
           IF N7*D => A1 THEN 16110
16210
           A2 = A3
16220
           GOTO 16120
16230 REM
          -----BREAKEVEN SYSTEMCOST -
16240
           A9 = A5
16250
           P3 = C5
16260
           GOSUB 13800
16270
           S5 = D(30)
16280
           S6 = D(31)
16290
           Y1 = D(49+D(56))/Q4
16300
           D(30) = S5*Y1
           D(31) = S6*Y1
16310
16320
           GOSUB 05750
16330
           P4 = C9
16340
           Y_2 = 1 + P_3 * (1 - Y_1) / (P_4 - P_3)
16350
           P3 = P4
           D(30) = S5*Y2
16360
16370
           D(31) = S6*Y2
16380
           GOSUB05750
16390
           P4 = C9
            S7 = (Y1-Y2)/(P4-P3)
16400
           Y1 = Y2 + P4*S7
16410
16420
           D(30) = S5 * Y1
16430
           D(31) = S6*Y1
16440
           GOSUB 05750
16450
           P3 = C9
16460
           IF ABS(P3) < 1 THEN 16490
16470
           Y2 = Y1 + 2*P3*S7
16480
           GOTO 16360
16490
           REM
16500
           D(30) = S5
16510
           D(31) = S6
16520
           RETURN
```


APPENDIX B - MAP AND CODED LIST OF CITIES IN FEDSOL GEOGRAPHICAL DATA BANK

B.2 CODED LIST OF CITIES IN FEDSOL GEOGRAPHICAL DATA BANK

City Code	City	State	Latitude
1	ADAK	AK	51.53
2	ANNETTE	AK	55.02
3	BARROW	AK	71.18
4	BETHEL	AK	60.47
5	BETTLES	AK	66.55
6	BIG DELTA	AK	64.00
7	FAIRBANKS	AK	64.49
8	GULKANA	AK	62.09
9	HOMER	AK	59.38
10	JUNEAU	AK	58,22
11	KING SALMON	AK	58.41
12	KODTAK	AK	57.45
13	KTTZEBIJE	ΔK	66 52
14	MCGRATH	AK	62 58
15	NOME	AK	64 30
16	CUMMIT	AK	63 20
17	VAUITAT	AIC	50 31
10		AL	22 24
10	BIRMINGHAM	AL	33.34
19	MOBILE	AL	30.41
20	MONTGOMERY	AL	32.18
21	FORT SMITH	AR	35.20
22	LITTLE ROCK	AR	34.44
23	PHOENIX	AZ	33.26
24	PRESCOTT	AZ	34.39
25	TUSCON	AZ	32.07
26	WINSLOW	AZ	35.01
27	YUMA	AZ	32.40
28	ARCATA	CA	40.59
29	BAKERSFIELD	CA	35.25
30	CHINA LAKE	CA	35.41
31	DAGGETT	CA	34.52
32	EL TORO	CA	33.40
33	FRESNO	CA	36.46
34	LONG BEACH	CA	33.49
35	LOS ANGELES	CA	33.56
36	MOUNT SHASTA	CA	41.19
37	NEEDLES	CA	34.46
38	OAKLAND	CA	37.44
39	POINT MUGU	CA	34.07
40	RED BLUFF	CA	40.09
41	SACRAMENTO	CA	38.31
42	SAN DIEGO	CA	32.44
43	SAN FRANCISCO	CA	37.37
44	SANTA MARIA	CA	34.54
45	SUNNYVALE	CA	37.25
46	COLORADO SPRINGS	CO	38.49

City Code	City	State	Latitude
47	DENVER	СО	39.45
48	EAGLE	CO	39.39
49	GRAND JUNCTION	CO	39.07
50	PUEBLO	CO	38.17
51	HARTFORD	CT	41.56
52	WASHINGTON-STERLING	DC	38.57
53	WILMINGTON	DE	39.40
54	APALACHICOLA	FL	29.44
55	DAYTONA BEACH	FI.	29.11
56	JACKSONVILLE	FI.	30,30
57	MTAMT	FI.	25.48
58	ORLANDO	FI.	28 33
59	TALLAHASSEE	II.	30 23
60	ΤΔΜΡΔ	FL	27 58
61	LIEST DAIM BEACH	FI	26 41
62	ATIANTA		33 30
63	AUCUSTA	CA	22.02
64	AUGUSTA	GA	33.22
65	MACON	GA	32.42
66		GA	32.00
67	BARBERS FUINI		21.19
07	HILD	HL	19.43
00	HONOLULU	HL	21.20
70	LIHUE	HL	21.59
70	BURLINGTON		40.47
/1	DES MOINES	IA	41.32
72	MASON CITY	IA	43.09
73	SLOUX CITY	IA	42.24
/4	BOISE	ID	43.34
/5	LEWISTON	ID	46.23
/6	POCATELLO	ID	42.55
//	CHICAGO	IL	41.47
/8	MOLINE	IL	41.27
/9	SPRINGFIELD	IL	39.50
80	EVANSVILLE	IN	38.03
81	FORT WAYNE	IN	41.00
82	INDIANAPOLIS	IN	39.44
83	SOUTH BEND	IN	41.42
84	DODGE CITY	KS	37.46
85	GOODLAND	KS	39.22
86	TOPEKA	KS	39.04
87	WICHITA	KS	37.39
88	LEXINGTON	KY	38.02
89	LOUISVILLE	KY	38.11
90	BATON ROUGE	LA	30.32
91	LAKE CHARLES	LA	30.07
92	NEW ORLEANS	LA	29.59
93	SHREVEPORT	LA	32.28
94	BOSTON	MA	42.22
95	BALTIMORE	MD	39.11

96 PATUKENT MD 38.17 97 BANCOR ME 44.46 98 CARIBOU ME 46.52 99 PORTLAND ME 43.33 100 ALPENA MI 45.04 101 DETROIT MI 42.53 102 FLINT MI 42.53 104 HOUGHTON MI 42.53 105 SAULT SAINT MARIE MI 46.28 106 TRAVERSE CITY MI 44.44 107 DUUTH NN 46.34 108 INTERNATIONAL FALLS NN 46.34 109 MINNEAPOLIS-ST. PAUL MN 44.53 110 ROCHESTER NN 43.55 111 COUNBIA MO 38.45 113 SPRINCPIELD MO 37.14 114 ST. LOUIS MO 37.14 115 JACKSON MS 32.19 116 MERIDIAN	City Code	City	State	Latitude
97 BANCOR ME 44.48 98 CARIBOU ME 46.52 99 PORTLAND ME 43.39 100 ALPENA MI 42.05 102 FLINT MI 42.75 103 GRAND RAPIDS MI 42.53 104 HOUGHTON MI 47.10 105 SAULT SAINT MARIE MI 46.28 106 TRAVERSE CITY MI 44.44 107 DULUTH MN 46.33 108 INTERNATIONAL FALLS MN 48.34 109 MINREAPOLIS-ST. PAUL MN 44.33 110 ROCHESTER MN 43.55 111 COLUMEIA MO 38.49 112 KANSAS CITY MO 38.49 113 SPRINGFIELD MO 38.45 114 ST. LOUIS MO 38.45 115 JACKSON MS 32.19 116 MERID	96	PATUXENT	MD	38.17
98 CARLEOU ME 46.52 99 PORTLAND ME 43.39 100 ALPENA MI 45.04 101 DETROIT MI 42.25 103 GRAND RAPIDS MI 42.53 104 HOUGHTON MI 42.53 105 SAULT SAINT MARIE MI 46.28 106 TRAVERSE CITY MI 44.44 107 DUUTH MN 46.50 108 INTERNATIONAL FALLS MN 43.35 110 RCHESTER MN 43.55 111 COLUMEIA MO 39.18 112 KANSAS CITY MO 37.14 114 ST. LOUIS MO 37.44 114 ST. LOUIS MO 38.45 115 JACKSON MS 32.20 117 BILLINGS MT 48.36 119 DILLON MT 47.03 122 HELENA	97	BANGOR	ME	44.48
99 PORTLAND ME 43.39 100 ALPENA MI 45.04 101 DETROIT MI 42.25 102 FLINT MI 42.53 104 HOUGHTON MI 42.53 105 SAULT SAINT MARIE MI 46.28 106 TRAVERSE CITY MI 44.44 107 DULUTH MN 46.50 108 INTERNATIONAL FALLS MN 48.34 109 MINEAPOLIS-ST. PAUL MN 44.53 110 ROCHSSTER MN 43.55 111 OLUBIA MO 38.49 112 KANSAS CITY MO 39.18 113 SPRINCFIELD MO 38.45 114 ST. LOUIS MO 38.45 115 JACKSON MS 32.19 116 MERIDIAN MT 45.48 118 CUT BANK MT 46.35 120 GLASGOW<	98	CARIBOU	ME	46.52
100 ALPENA MI 45.04 101 DETROIT MI 42.25 102 FLINT MI 42.53 103 GRAND RAP IDS MI 47.10 105 SAULT SAINT MARIE MI 47.10 105 SAULT SAINT MARIE MI 46.28 106 TRAVERSE CITY MI 44.44 107 DULUTH MN 46.50 108 INTERNATIONAL FALLS MN 43.55 110 ROCHESTER MN 43.55 111 COLUBIA MO 39.18 113 SPRINGFIELD MO 37.14 114 ST. LOUIS MO 38.45 115 JACKSON MS 32.20 117 BILLINGS MT 48.36 119 DILON MT 48.13 121 GREAT FALLS MT 46.36 122 HELENA MT 46.36 124 MILES CI	99	PORTLAND	ME	43.39
101 DETROIT MI 42.25 102 FLINT MI 42.53 103 GRAND RAPIDS MI 42.53 104 HOUGHTON MI 47.10 105 SAULT SAINT MARLE MI 46.28 106 TRAVERSE CITY MI 44.44 107 DULUTH MN 46.50 108 INTERNATIONAL FALLS NN 43.51 100 ROCHESTER MN 43.55 111 COLUMBIA MO 38.49 112 KANSAS CITY MO 39.18 113 SPRINGFIELD MO 37.14 114 ST. LOUIS MO 38.45 115 JACKSON MS 32.20 117 BILLINSS MT 45.48 118 CUT BANK MT 45.15 120 GLASGOW MT 45.13 121 GREAT FALLS MT 46.26 123 LEWISTON	100	ALPENA	MI	45.04
102 FLINT MI 42,58 103 GRAND RAPIDS MI 42,53 104 HOUGHTON MI 47,10 105 SAULT SAINT MARIE MI 46,28 106 TRAVERSE CITY MI 44,44 107 DULUTH MN 46,50 108 INTERNATIONAL FALLS MN 48,34 109 MINNEAPOLIS-ST. PAUL MN 44,53 110 RCHESTER MN 48,36 111 COLUMBIA MO 38,49 112 KANSAS CITY MO 39,18 113 SPRINGFIELD MO 37,14 114 ST. LOUIS MO 38,45 115 JACKSON MS 32,19 116 MERIDIAN MS 32,20 117 BILLINGS MT 45,48 119 DILLON MT 45,15 120 GLASGOW MT 46,36 121 GREAT FALLS MT 46,36 122 HELENA MT	101	DETROIT	MI	42.25
103 GRAND RAPIDS MI 42,53 104 HOUGHTON MI 47,10 105 SAULT SAINT MARIE MI 46,28 106 TRAVERSE CITY MI 44,44 107 DULTH MN 46,30 108 INTERNATIONAL FALLS MN 48,34 109 MINNEAFOLIS-ST. PAUL MN 44,53 110 ROCHESTER MN 43,55 111 COLUMBIA MO 39,18 113 SPRINCFIELD MO 37,14 114 ST. LOUIS MO 38,45 115 JACKSON MS 32,20 117 BILLINGS MT 45,48 118 CUT BANK MT 46,36 120 GLASCOW MT 46,36 121 GREAT FALLS MT 46,36 122 HELENA MT 46,36 123 LEWISTOWN MT 46,36 124 <	102	FLINT	MI	42.58
104 HOUGHTON MI 47,10 105 SAULT SAINT MARIE HI 46,28 106 TRAVERSE CITY MI 44,44 107 DULUTH MN 46,50 108 INTERNATIONAL FALLS MN 48,34 109 MINNEAPOLIS-ST. PAUL MN 44,53 110 ROCHESTER MN 43,55 111 COLUMBIA MO 38,49 112 KANSAS CITY MO 39,18 113 SPRINGFIELD MO 37,14 114 ST. LOUIS MO 38,45 115 JACKSON MS 32,20 116 MERIDIAN MS 32,20 117 BILLINGS MT 48,13 120 GLASGOW MT 48,13 121 GREAT FALLS MT 47,03 122 HELENA MT 46,35 123 LEWISTOWN MT 46,36 124 <	103	GRAND RAPIDS	MI	42.53
105 SAULT SAINT MARIE MI 46.28 106 TRAVERSE CITY MI 44.44 107 DULUTH MN 46.50 108 INTERNATIONAL FALLS NN 48.34 109 MINNEAPOLIS-ST. PAUL NN 44.53 110 ROCHESTER MN 43.55 111 COLUMBIA MO 38.49 112 KANSAS CITY MO 39.18 113 SPRINGFIELD MO 37.14 114 ST. LOUIS MO 38.45 115 JACKSON MS 32.19 116 MERIDIAN MS 32.20 117 BILLINCS MT 45.15 120 GLASGOW MT 45.15 121 GREAT FALLS MT 46.36 122 HELENA MT 46.36 123 LEWISTOWN MT 46.35 124 MILES CITY MT 46.36 125 MISOULA MT 46.55 126 ASHEVILLE NC	104	HOUGHTON	MI	47.10
106 TRAVERSE CITY MI 44.44 107 DULUTH MN 46.50 108 INTERNATIONAL FALLS MN 48.34 109 MINNEAPOLIS-ST. PAUL MN 44.53 110 ROCHESTER MN 43.55 111 COLUMBIA MO 38.49 112 KANSAS CITY MO 39.18 113 SPRINGFIELD MO 37.14 114 ST. LOUIS MO 38.45 115 JACKSON MS 32.20 117 BILLINCS MT 45.48 118 CUT BANK MT 48.36 119 DILLON MT 48.13 120 GLASCOW MT 46.36 123 LEWISTOWN MT 46.36 124 MILS CITY MT 46.36 125 MISSOULA MT 46.36 126 ASHEVILLE NC 35.16 127 CAPE HA	105	SAULT SAINT MARIE	MI	46.28
107 DULUTH NN 46.50 108 INTERNATIONAL FALLS NN 48.34 109 MINNEAPOLIS-ST. PAUL NN 44.53 110 ROCHESTER NN 43.55 111 COLUMBIA MO 38.49 112 KANSAS CITY MO 39.18 113 SPRINGFIELD NO 37.14 114 ST. LOUIS MO 38.45 115 JACKSON MS 32.19 116 MERIDIAN MS 32.20 117 BILLINGS MT 45.48 118 CUT BANK MT 48.33 120 GLASCOW MT 48.13 121 GREAT FALLS MT 47.29 122 HELBNA MT 46.36 123 LEWISTOWN MT 46.26 124 MILS CITY MT 46.26 125 MISOULA MT 46.26 126 ASHEVILLE </td <td>106</td> <td>TRAVERSE CITY</td> <td>MT</td> <td>44.44</td>	106	TRAVERSE CITY	MT	44.44
108 INTERNATIONAL FALLS NN 48.34 109 MINNEAPOLLS-ST. PAUL NN 44.53 110 ROCHESTER MN 43.55 111 COLUMBIA MO 38.49 112 KANSAS CITY MO 39.18 113 SPRINGFIELD MO 37.14 114 ST. LOUIS MO 38.45 115 JACKSON MS 32.19 116 MERIDIAN MS 32.20 117 BILLINOS MT 45.46 119 DILLON MT 48.36 119 DILLON MT 46.36 121 GREAT FALLS MT 47.29 122 HELENA MT 46.36 123 LEWISTOWN MT 46.35 124 MILES CITY MT 46.26 125 MISSOULA MT 46.35 126 ASHEVILLE NC 35.16 128 CHARLOTTE	107	DULITH	MN	46.50
109 MINNEAPOLIS-ST. PAUL MN 44.53 110 ROCHESTER MN 43.55 111 COLUMBIA MO 38.49 112 KANSAS CITY MO 39.18 113 SPRINGFIELD MO 37.14 114 ST. LOUIS MO 38.45 115 JACKSON MS 32.19 116 MENDIAN MS 32.20 117 BILLINOS MT 45.48 118 CUT BANK MT 45.48 120 GLASGOW MT 48.13 121 GREAT FALLS MT 46.36 122 HELENA MT 46.26 123 LEWISTOWN MT 47.03 124 MILSOULA MT 46.55 125 MISSOULA MT 46.55 126 ASHEVILLE NC 35.26 127 CAPE HATTERAS NC 35.13 128 CHARY POINT <td>108</td> <td>INTERNATIONAL FALLS</td> <td>MN</td> <td>48.34</td>	108	INTERNATIONAL FALLS	MN	48.34
110 RCHESTER MN 44.55 111 COLUMBIA MO 38.49 112 KANSAS CITY MO 39.18 113 SPRINCFIELD MO 37.14 114 ST. LOUIS MO 38.45 115 JACKSON MS 32.19 116 MERIDIAN MS 32.20 117 BILLINGS MT 45.48 118 CUT BANK MT 48.13 120 GLASCOW MT 48.13 121 GREAT FALLS MT 47.29 122 HELENA MT 46.26 123 LEWISTOWN MT 46.26 124 MILES CITY MT 46.26 125 MISSOULA MT 46.55 126 ASHEVILLE NC 35.16 128 CHARLOTTE NC 35.13 129 CHERRY POINT NC 36.05 131 RALEIGH-DURHAM	109	MINNEAPOLIS-ST. PAUL	MN	44.53
111 COLUMBIA MQ 38.49 112 KANSAS CITY MO 39.18 113 SPRINGFIELD MO 37.14 114 ST. LOUIS MO 38.45 115 JACKSON MS 32.19 116 MERIDIAN MS 32.20 117 BILLINGS MT 45.48 118 CUT BANK MT 48.36 119 DILLON MT 45.15 120 GLASGOW MT 46.36 121 GREAT FALLS MT 47.29 122 HELENA MT 46.36 123 LEWISTOWN MT 46.26 124 MILES CITY MT 46.26 125 MISSOULA MT 46.55 126 ASHEVILLE NC 35.16 128 CHARLOTTE NC 35.16 129 CHERRY POINT NC 36.45 130 GREND ISLAND <	1 10	ROCHESTER	MN	43 55
112 OUDSTRACT ND D3 + 18 112 KANSAS CITY MO 37 + 14 113 SPRINGFIELD MO 37 + 14 114 ST. LOUIS MO 38 + 18 115 JACKSON MS 32 + 29 116 MERIDIAN MS 32 + 20 117 BILLINGS MT 45 + 48 118 CUT BANK MT 48 + 13 120 GLASGOW MT 48 + 13 121 GREAT FALLS MT 47 - 29 122 HELENA MT 46 - 35 123 LEWISTOWN MT 46 - 35 126 ASHEVILLE NC 35 - 16 128 CHARLOTTE NC 35 - 16 129 CHERRY POINT NC 36 - 05 131 RALETH-DURHAM NC 35 - 52 132 BISMARCK ND 46 - 46 133 FARGO ND 46 - 46 134	111	COLIMBIA	MO	38 49
112 RANGS GTRA NO 37.14 113 SPRINGFIELD MO 37.14 114 ST. LOUIS MO 38.45 115 JACKSON MS 32.19 116 MERIDIAN MS 32.20 117 BILLINGS MT 45.48 118 CUT BANK MT 45.48 119 DILLON MT 45.15 120 GLASGOW MT 48.13 121 GREAT FALLS MT 47.29 122 HELENA MT 46.36 123 LEWISTOWN MT 46.36 124 MILES CITY MT 46.26 125 MISSOULA MT 46.55 126 ASHEVILLE NC 35.16 127 CAPE HATTERAS NC 35.13 129 CHERRY POINT NC 35.52 130 GREAND SCAN ND 46.46 133 FARGO <t< td=""><td>112</td><td>VANGAG CITY</td><td>MO</td><td>30 18</td></t<>	112	VANGAG CITY	MO	30 18
113 SFRINGTIELD ND 37.14 114 ST.LOUIS MO 38.45 115 JACKSON MS 32.19 116 MERIDIAN MS 32.20 117 BILLINGS MT 45.48 118 CUT BANK MT 48.36 119 DILLON MT 45.15 120 GLASGOW MT 46.13 121 GREAT FALLS MT 47.29 122 HELENA MT 46.36 123 LEWISTOWN MT 46.26 124 MILES CITY MT 46.26 125 MISSOULA MT 46.26 126 ASHEVILLE NC 35.16 128 CHARLOTTE NC 35.13 129 CHERY POINT NC 35.52 131 RALEICH-DURHAM NC 35.52 132 BISMARCK ND 46.46 133 FARGO ND 46.54 135 GRAND ISLAND NE 41.08	113	CDDINCETEID	MO	37 14
114 51. LOUIS NS 32.19 115 JACKSON MS 32.20 117 BILLINGS MT 45.48 118 CUT BANK MT 45.15 120 GLASGOW MT 45.15 120 GLASGOW MT 46.36 121 GREAT FALLS MT 46.36 122 HELENA MT 46.36 123 LEWISTOWN MT 46.26 125 MISSOULA MT 46.26 126 ASHEVILLE NC 35.16 128 CHARLOTTE NC 35.13 129 CHERRY POINT NC 36.05 131 RALEIGH-DURHAM NC 35.52 132 BISMARCK ND 46.46 133 FARCO ND 46.46 134 MINOT ND 48.16 135 GRAND ISLAND NE 40.58 136 NORTH OMAHA NE 41.22 137 NORTH PLATTE NE 41.52 <td>115</td> <td>SFRINGFIELD ST LOUIS</td> <td>MO</td> <td>37 • 14 39 / 5</td>	115	SFRINGFIELD ST LOUIS	MO	37 • 14 39 / 5
115 JACKSON PIS J2.17 116 MERIDIAN MS 32.20 117 BILLINGS MT 45.48 118 CUT BANK MT 48.36 119 DILLON MT 45.15 120 GLASGOW MT 48.13 121 GREAT FALLS MT 46.36 123 LEWISTOWN MT 46.26 124 MILSOULA MT 46.55 126 ASHEVILLE NC 35.26 127 CAPE HATTERAS NC 35.16 128 CHARLOTTE NC 35.16 129 CHERY POINT NC 36.05 131 RALEIGH-DURHAM NC 35.52 132 BISMARCK ND 46.46 133 FARGO ND 46.54 134 MINOT ND 48.16 135 GRAND ISLAND NE 40.58 136 NORTH OMAHA NE 41.08 138 SCOTTSBLUFF NE 41.52	114	SI. LUUIS	MC	20.40
110 MERIDIAN MS 32.20 117 BILLINGS MT 45.48 118 CUT BANK MT 48.36 119 DILLON MT 45.15 120 GLASGOW MT 48.36 121 GREAT FALLS MT 46.36 123 LEWISTOWN MT 46.36 124 MILES CITY MT 46.55 126 ASHEVILLE NC 35.16 127 CAPE HATTERAS NC 35.16 128 CHARLOTTE NC 35.13 129 CHERRY POINT NC 36.05 131 RALEIGH-DURHAM NC 35.52 132 BISMARCK ND 46.54 134 MINOT ND 46.54 135 GRAND ISLAND NE 40.58 136 NORTH OMAHA NE 41.022 137 NORTH PLATTE NE 41.08 138 SCOTTSBLUFF NE 41.52 139 CONCORD NH 43.1	115		MS	32.19
117 BLLINGS MI 43.46 118 CUT BANK MT 48.36 119 DILLON MT 48.31 120 GLASGOW MT 48.13 121 GREAT FALLS MT 47.29 122 HELENA MT 46.36 123 LEWISTOWN MT 46.26 124 MILES CITY MT 46.26 125 MISSOULA MT 46.55 126 ASHEVILLE NC 35.16 128 CHARLOTTE NC 35.16 129 CHERRY POINT NC 36.05 131 RALEIGH-DURHAM NC 35.52 132 BISMARCK ND 46.46 133 FARGO ND 46.46 134 MINOT ND 48.16 135 GRAND ISLAND NE 40.58 136 NORTH PLATTE NE 41.02 137 NORTH PLATTE NE 41.52 139 CONCORD NH 43.12 <td>117</td> <td>MERIDIAN</td> <td>MO</td> <td>32.20</td>	117	MERIDIAN	MO	32.20
110 COT BARK MI 48.36 119 DILLON MT 45.15 120 GLASGOW MT 48.13 121 GREAT FALLS MT 47.29 122 HELENA MT 46.36 123 LEWISTOWN MT 46.36 124 MILES CITY MT 46.55 126 ASHEVILLE NC 35.26 127 CAPE HATTERAS NC 35.16 128 CHARLOTTE NC 35.16 129 CHERRY POINT NC 36.05 131 RALEICH-DURHAM NC 35.52 132 BISMARCK ND 46.54 133 FARGO ND 46.54 134 MINOT ND 48.16 135 GRAND ISLAND NE 40.58 136 NORTH OMAHA NE 41.02 137 NORTH PLATTE NE 41.08 138 SCOTTSBLUFF NE 41.02 139 CONCORD NH 43.12	110	BILLINGS	MI	42.48
119 D1LLON MT 45.15 120 GLASGOW MT 48.13 121 GREAT FALLS MT 47.29 122 HELENA MT 46.36 123 LEWISTOWN MT 46.26 124 MILES CITY MT 46.26 125 MISSOULA MT 46.55 126 ASHEVILLE NC 35.16 128 CHARLOTTE NC 35.13 129 CHERRY POINT NC 36.05 131 RALEIGH-DURHAM NC 35.52 132 BISMARCK ND 46.46 133 FARGO ND 46.54 134 MINOT ND 48.16 135 GRAND ISLAND NE 40.58 136 NORTH OMAHA NE 41.22 137 NORTH PLATTE NE 41.08 138 SCOTTSBLUFF NE 41.02 139 CONCORD NH 43.12 140 LAKEHURST NJ 40.02	110	CUI BANK	MI	48.30
120 GLASGOW MT 48.13 121 GREAT FALLS MT 47.29 122 HELENA MT 46.36 123 LEWISTOWN MT 46.36 124 MILES CITY MT 46.26 125 MISSOULA MT 46.55 126 ASHEVILLE NC 35.26 127 CAPE HATTERAS NC 35.16 128 CHARLOTTE NC 35.13 129 CHERY POINT NC 34.54 130 GREENS BORO NC 36.05 131 RALEIGH-DURHAM NC 35.52 132 BISMARCK ND 46.46 133 FARGO ND 46.46 134 MINOT ND 48.16 135 GRAND ISLAND NE 40.58 136 NORTH OMAHA NE 41.22 137 NORTH PLATTE NE 41.22 138 SCOTTSBLUFF NE 41.52 139 CONCORD NH 43.12<	119	DILLON	MT	45.15
121 GREAT FALLS MT 47.29 122 HELENA MT 46.36 123 LEWISTOWN MT 47.03 124 MILES CITY MT 46.36 125 MISSOULA MT 46.55 126 ASHEVILLE NC 35.26 127 CAPE HATTERAS NC 35.16 128 CHARLOTTE NC 35.13 129 CHERRY POINT NC 36.05 131 RALEIGH-DURHAM NC 35.52 132 BISMARCK ND 46.46 133 FARCO ND 46.46 134 MINOT ND 48.16 135 GRAND ISLAND NE 40.58 136 NORTH OMAHA NE 41.22 137 NORTH PLATTE NE 41.68 138 SCOTTSBLUFF NE 41.52 139 CONCORD NH 43.12 140 LAKEHURST NJ 40.40.42 141 NEMARK NJ 40.40	120	GLASGOW	MT	48.13
122 HELENA MT 46.36 123 LEWISTOWN MT 47.03 124 MILES CITY MT 46.26 125 MISSOULA MT 46.55 126 ASHEVILLE NC 35.26 127 CAPE HATTERAS NC 35.16 128 CHARLOTTE NC 34.54 130 GREENSBORO NC 36.05 131 RALEIGH-DURHAM NC 35.52 132 BISMARCK ND 46.46 133 FARCO ND 46.54 134 MINOT ND 46.54 135 GRAND ISLAND NE 40.58 136 NORTH OMAHA NE 41.22 137 NORTH PLATTE NE 41.08 138 SCOTTSBLUFF NE 41.52 139 CONCORD NH 43.12 140 LAKEHURST NJ 40.40.42 141 NEWARK NJ 40.42 142 ALBUQUERQUE NM 35.03 </td <td>121</td> <td>GREAT FALLS</td> <td>MI</td> <td>47.29</td>	121	GREAT FALLS	MI	47.29
123 LEWISTOWN MT 47.03 124 MILES CITY MT 46.26 125 MISSOULA MT 46.55 126 ASHEVILLE NC 35.26 127 CAPE HATTERAS NC 35.16 128 CHARLOTTE NC 35.13 129 CHERRY POINT NC 36.05 131 RALEIGH-DURHAM NC 35.52 132 BISMARCK ND 46.46 133 FARGO ND 46.54 134 MINOT ND 48.16 135 GRAND ISLAND NE 40.58 136 NORTH OMAHA NE 41.22 137 NORTH PLATTE NE 41.08 138 SCOTTSBLUFF NE 41.52 139 CONCORD NH 43.12 140 LAKEHURST NJ 40.02 141 NEWARK NJ 40.42 142 ALBUQUERQUE NM 35.03 143 CLAYTON NM 36.27 </td <td>122</td> <td>HELENA</td> <td>MT</td> <td>46.36</td>	122	HELENA	MT	46.36
124 MILES CITY MT 46.26 125 MISSOULA MT 46.55 126 ASHEVILLE NC 35.26 127 CAPE HATTERAS NC 35.16 128 CHARLOTTE NC 35.13 129 CHERRY POINT NC 36.05 131 RALEIGH-DURHAM NC 35.52 132 BISMARCK ND 46.46 133 FARGO ND 46.54 134 MINOT ND 46.54 135 GRAND ISLAND NE 40.58 136 NORTH OMAHA NE 41.22 137 NORTH PLATTE NE 41.52 138 SCOTTSBLUFF NE 41.52 139 CONCORD NH 43.12 140 LAKEHURST NJ 40.42 141 NEWARK NJ 40.42 142 ALBUQUERQUE NM 35.03 143 CLAYTON NM 36.27 144 FARMINGTON NM 36.45<	123	LEWISTOWN	MT	47.03
125 MISSOULA MT 46.55 126 ASHEVILLE NC 35.26 127 CAPE HATTERAS NC 35.16 128 CHARLOTTE NC 35.13 129 CHERRY POINT NC 34.54 130 GREENSBORO NC 36.05 131 RALEIGH-DURHAM NC 35.52 132 BISMARCK ND 46.46 133 FARGO ND 46.46 134 MINOT ND 48.16 135 GRAND ISLAND NE 40.58 136 NORTH OMAHA NE 41.22 137 NORTH PLATTE NE 41.08 138 SCOTTSBLUFF NE 41.52 139 CONCORD NH 43.12 140 LAKEHURST NJ 40.42 141 NEWARK NJ 40.42 142 ALBUQUERQUE NM 35.03 143 CLAYTON NM 36.27 144 FARMINGTON NM 36.45<	124	MILES CITY	MT	46.26
126 ASHEVILLE NC 35.26 127 CAPE HATTERAS NC 35.16 128 CHARLOTTE NC 35.13 129 CHERRY POINT NC 34.54 130 GREENSBORO NC 36.05 131 RALEIGH-DURHAM NC 35.52 132 BISMARCK ND 46.46 133 FARGO ND 46.54 134 MINOT ND 46.54 135 GRAND ISLAND NE 40.58 136 NORTH OMAHA NE 41.22 137 NORTH PLATTE NE 41.52 138 SCOTTSBLUFF NE 41.52 139 CONCORD NH 43.12 140 LAKEHURST NJ 40.02 141 NEWARK NJ 40.42 142 ALBUQUERQUE NM 35.03 143 CLAYTON NM 36.27 144 FARMINGTON NM 36.45	125	MISSOULA	MT	46.55
127 CAPE HATTERAS NC 35.16 128 CHARLOTTE NC 35.13 129 CHERRY POINT NC 34.54 130 GREENSBORO NC 36.05 131 RALEIGH-DURHAM NC 35.52 132 BISMARCK ND 46.46 133 FARGO ND 46.54 134 MINOT ND 48.16 135 GRAND ISLAND NE 40.58 136 NORTH OMAHA NE 41.22 137 NORTH PLATTE NE 41.08 138 SCOTTSBLUFF NE 41.52 139 CONCORD NH 43.12 140 LAKEHURST NJ 40.02 141 NEWARK NJ 40.42 142 ALBUQUERQUE NM 35.03 143 CLAYTON NM 36.27 144 FARMINGTON NM 36.45	126	ASHEVILLE	NC	35.26
128 CHARLOTTE NC 35.13 129 CHERRY POINT NC 34.54 130 GREENSBORO NC 36.05 131 RALEIGH-DURHAM NC 35.52 132 BISMARCK ND 46.46 133 FARGO ND 46.54 134 MINOT ND 48.16 135 GRAND ISLAND NE 40.58 136 NORTH OMAHA NE 41.22 137 NORTH PLATTE NE 41.68 138 SCOTTSBLUFF NE 41.52 139 CONCORD NH 43.12 140 LAKEHURST NJ 40.02 141 NEWARK NJ 40.42 142 ALBUQUERQUE NM 35.03 143 CLAYTON NM 36.27 144 FARMINGTON NM 36.45	127	CAPE HATTERAS	NC	35.16
129 CHERRY POINT NC 34.54 130 GREENSBORO NC 36.05 131 RALEIGH-DURHAM NC 35.52 132 BISMARCK ND 46.46 133 FARGO ND 46.54 134 MINOT ND 48.16 135 GRAND ISLAND NE 40.58 136 NORTH OMAHA NE 41.22 137 NORTH PLATTE NE 41.08 138 SCOTTSBLUFF NE 41.52 139 CONCORD NH 43.12 140 LAKEHURST NJ 40.02 141 NEWARK NJ 40.42 142 ALBUQUERQUE NM 35.03 143 CLAYTON NM 36.27 144 FARMINGTON NM 36.45	128	CHARLOTTE	NC	35.13
130 GREENSBORO NC 36.05 131 RALEIGH-DURHAM NC 35.52 132 BISMARCK ND 46.46 133 FARGO ND 46.54 134 MINOT ND 48.16 135 GRAND ISLAND NE 40.58 136 NORTH OMAHA NE 41.22 137 NORTH PLATTE NE 41.52 138 SCOTTSBLUFF NE 41.52 139 CONCORD NH 43.12 140 LAKEHURST NJ 40.42 141 NEWARK NJ 40.42 142 ALBUQUERQUE NM 35.03 143 CLAYTON NM 36.27 144 FARMINGTON NM 36.45	129	CHERRY POINT	NC	34.54
131 RALEIGH-DURHAM NC 35.52 132 BISMARCK ND 46.46 133 FARGO ND 46.54 134 MINOT ND 48.16 135 GRAND ISLAND NE 40.58 136 NORTH OMAHA NE 41.22 137 NORTH PLATTE NE 41.68 138 SCOTTSBLUFF NE 41.52 139 CONCORD NH 43.12 140 LAKEHURST NJ 40.42 141 NEWARK NJ 40.42 142 ALBUQUERQUE NM 35.03 143 CLAYTON NM 36.27 144 FARMINGTON NM 36.45	130	GREENSBORO	NC	36.05
132 BI SMARCK ND 46.46 133 FARGO ND 46.54 134 MINOT ND 48.16 135 GRAND ISLAND NE 40.58 136 NORTH OMAHA NE 41.22 137 NORTH PLATTE NE 41.08 138 SCOTTSBLUFF NE 41.52 139 CONCORD NH 43.12 140 LAKEHURST NJ 40.02 141 NEWARK NJ 40.42 142 ALBUQUERQUE NM 35.03 143 CLAYTON NM 36.27 144 FARMINGTON NM 36.45	131	RALEIGH-DURHAM	NC	35.52
133 FARGO ND 46.54 134 MINOT ND 48.16 135 GRAND ISLAND NE 40.58 136 NORTH OMAHA NE 41.22 137 NORTH PLATTE NE 41.08 138 SCOTTSBLUFF NE 41.52 139 CONCORD NH 43.12 140 LAKEHURST NJ 40.02 141 NEWARK NJ 40.42 142 ALBUQUERQUE NM 35.03 143 CLAYTON NM 36.27 144 FARMINGTON NM 36.45	132	BISMARCK	ND	46.46
134 MINOT ND 48.16 135 GRAND ISLAND NE 40.58 136 NORTH OMAHA NE 41.22 137 NORTH PLATTE NE 41.08 138 SCOTTSBLUFF NE 41.52 139 CONCORD NH 43.12 140 LAKEHURST NJ 40.02 141 NEWARK NJ 40.42 142 ALBUQUERQUE NM 35.03 143 CLAYTON NM 36.27 144 FARMINGTON NM 36.45	133	FARGO	ND	46.54
135GRAND ISLANDNE40.58136NORTH OMAHANE41.22137NORTH PLATTENE41.08138SCOTTSBLUFFNE41.52139CONCORDNH43.12140LAKEHURSTNJ40.02141NEWARKNJ40.42142ALBUQUERQUENM35.03143CLAYTONNM36.27144FARMINGTONNM36.45	134	MINOT	ND	48.16
136 NORTH OMAHA NE 41.22 137 NORTH PLATTE NE 41.08 138 SCOTTSBLUFF NE 41.52 139 CONCORD NH 43.12 140 LAKEHURST NJ 40.02 141 NEWARK NJ 40.42 142 ALBUQUERQUE NM 35.03 143 CLAYTON NM 36.27 144 FARMINGTON NM 36.45	135	GRAND ISLAND	NE	40.58
137 NORTH PLATTE NE 41.08 138 SCOTTSBLUFF NE 41.52 139 CONCORD NH 43.12 140 LAKEHURST NJ 40.02 141 NEWARK NJ 40.42 142 ALBUQUERQUE NM 35.03 143 CLAYTON NM 36.27 144 FARMINGTON NM 36.45	136	NORTH OMAHA	NE	41.22
138 SCOTTSBLUFF NE 41.52 139 CONCORD NH 43.12 140 LAKEHURST NJ 40.02 141 NEWARK NJ 40.42 142 ALBUQUERQUE NM 35.03 143 CLAYTON NM 36.27 144 FARMINGTON NM 36.45	137	NORTH PLATTE	NE	41.08
139 CONCORD NH 43.12 140 LAKEHURST NJ 40.02 141 NEWARK NJ 40.42 142 ALBUQUERQUE NM 35.03 143 CLAYTON NM 36.27 144 FARMINGTON NM 36.45	138	SCOTTSBLUFF	NE	41.52
140 LAKEHURST NJ 40.02 141 NEWARK NJ 40.42 142 ALBUQUERQUE NM 35.03 143 CLAYTON NM 36.27 144 FARMINGTON NM 36.45	139	CONCORD	NH	43.12
141 NEWARK NJ 40.42 142 ALBUQUERQUE NM 35.03 143 CLAYTON NM 36.27 144 FARMINGTON NM 36.45	140	LAKEHURST	NJ	40.02
142 ALBUQUERQUE NM 35.03 143 CLAYTON NM 36.27 144 FARMINGTON NM 36.45	141	NEWARK	NJ	40.42
143 CLAYTON NM 36.27 144 FARMINGTON NM 36.45	142	ALBUQUERQUE	NM	35.03
144FARMINGTONNM36.45	143	CLAYTON	NM	36.27
	144	FARMINGTON	NM	36.45

City Code	City	State	Latitude
145	ROSWELL	NM	33.24
146	TRUTH OR CONSEQUENCES	NM	33.14
147	TUCUMCARI	NM	35.11
148	ZUNI	NM	35.06
149	ELKO	NV	40.50
150	ELY	NV	39.17
151	LAS VEGAS	NV	36.05
152	LOVELOCK	NV	40.04
153	RENO	NV	39.30
154	ТОЖОРАН	NV	38.04
155	WINNEMUCCA	NV	40.54
156	YUCCA FLATS	NV	36.57
157	ALBANY	NY	42.45
158	BINGHAMPTON	NY	42.13
159	BUFFALO	NY	42.56
160	MASSENA	NY	44.56
161	NYC (CENTRAL PARK)	NY	40.47
162	NYC (LA GUARDIA)	NY	40.46
163	ROCHESTER	NY	43.07
164	SYRACUSE	NY	43.07
165	ADRON-CANTON	OH	40.55
166	CINCINNATI	OH	39 04
167	CLEVELAND	OH	41 24
168	COLUMBIIS	OH	40 00
169	DAYTON	OH	39 54
170	TOLEDO	OH	/1 36
171	YOUNGSTOLN	OH	41 16
172	OKLAHOMA CITY	OK	35 24
173	TILLSA	OK	36 12
174	ASTORIA	OR	50.12 //6 00
175	BUDNS	OR	43 35
176	MEDEOPD	OR	40 00
177	NORTH BEND	OR	43 25
178	PENDI ETON	OR	45 41
179	PORTLAND	OR	45 36
180	REDMOND	OR	44 16
181	SALEM	OR	44 55
182	ALLENTOLIN	PA	40.39
183	FRIF	PA	42 05
184	HARRISBURG	ΡΔ	40.13
185	PHILADEL PHIA	PA	39 53
186	PITTSBIRCH	PA	40 30
187	WILKES-RARRE-SCRANTON	PΔ	41 20
188	PROVIDENCE	PT	41.20
189	CHADIECTON	SC	22 5/
190	COLIMBLY	SC	32.54
191		50	2/ 5/
192	UIDON	SC SD	// 22
193		SD	44.23
1))	I LEKKE	JU	44.23

City Code	City	State	Latitude
194	RAPID CITY	SD	44.03
195	SIOUX FALLS	SD	43.34
196	CHATTANOOGA	TN	35.02
197	KNOXVILLE	TN	35.49
198	MEMPHIS	TN	35.03
199	NASHVILLE	TN	36.07
200	ABILENE	TX	32.26
201	AMARILLO	TX	35.14
202	AUSTIN	TX	30.18
203	BROWNSVILLE	TX	25.54
204	CORPUS CHRISTI	TX	27.46
205	DALLAS	TX	32.51
206	DEL RIO	TX	29.22
207	EL PASO	TX	31.48
208	FORT WORTH	TX	32.50
209	HOUSTON	TX	29.59
2 10	KINGSVILLE	TX	27.31
211	LARE DO	TX	27.32
212	LUBBOCK	TX	33.39
213	LUFKIN	TX	31.14
214	MT DLAND-ODESSA	TX	31.56
215	PORT ARTHUR	TX	29.57
216	SAN ANGELO	TX	31.22
217	SAN ANTONTO	TX	29.32
218	SHERMAN	TX	33.43
210	WACO	TX	31.37
220	WICHITA FALLS	TX	33,58
220	REVOE CANYON	IIT	37.42
221	CEDAR CITY	UT	37.42
222	CEDAR CITT	UT	40.46
225	NOPFOLV	VA	36 54
224	PICUMOND	VA VA	37 30
225	POANOVE	VA VA	37 19
220	BUDI INCTON	VA VT	44 28
227	OI YMDIA		46 58
220		UA UA	40.50
229	CDOV ANE	WA UA	/7 38
230	SPURANE	WA	4/.50
221	WHIDBEI ISLAND	WA	40.21
232		WA	40.54
233	EAU GLAIKE	WL	44.02
234	GREEN BAI	WL UT	44.29
235	LA CRUSSE	WL	43.52
236	MADISON	WL	43.00
237	MILWAUKEE	W1	42.07
238	UHAKLESTUN	WV	20.22
239	HUNTINGTON	WV	30.22 40 EE
240	CASPER	WI	42.00
241	CHEYENNE	WI	41.09
242	ROCK SPRINGS	WY	41.30
243	SHERIDAN	WY	44.40

×
ŝ
¥.
5
3
2
8
Ĕ.
E
2
2
ວ
õ
H
0
1
C
×
뒫
Ē
P
4
<.

Algebraic Form	$SPW = \frac{1}{(1 + d)^n}$	UPW = $\frac{(1 + d)^{n-1}}{d(1 + d)^{n}}$	$UPW* = \left(\frac{1+e_1}{d-e_1}\right) \cdot \left[1 - \left(\frac{1+e_1}{1+d}\right)^{n_1}\right]$	$\left[\frac{1+e_2}{1+d}\right)^{n_2} \cdot \left(\frac{1+e_1}{1+d}\right)^{n_1}$	$\left[\frac{1+e_3}{1+d}\right)^{n_3} \cdot \left(\frac{1+e_2}{1+d}\right)^{n_2} \cdot \left(\frac{1+e_1}{1+d}\right)^{n_1}$
Use When	Given a future sum of money expressed in current (future year) dollars; to find a present sum of money	Given a uniform annual, end-of-period payment; to find a present sum of money	Given an annual end-of-period payment, escalating at an annual rate of e_1 for the first n_1 years, e_2 for the next n_2 years, and e_3 for the last n_3 years; to find a present sum of money	$+ \left(\frac{1}{d} - \frac{e_2}{e_2}\right) \cdot \left[1 - \left(\frac{1}{d}\right)\right]$	$+\left(\frac{1}{d}+\frac{e_3}{e_3}\right)\cdot\left[1-\left(\frac{1}{d}\right)\right]$
Nomenclature	Single Present Worth (SPW)	Uniform Present Worth (UPW)	Modified Uniform Present Worth (UPW*)		

* d = the discount rate, and n = the number of periods (years).

APPENDIX D - THE SOLAR LOAD RATIO DESIGN METHOD: PERFORMANCE CURVES AND SCHEMATIC DIAGRAMS

D.1 Design Curves for Various Degree-Day Ranges, Service Hot Water Only, Commercial Buildings

D.2 Design Curves for Various Delivery Temperatures, Service Hot Water Only, Commercial Buildings

SOURCE: "The Solar Load Ratio Method Applied to Commercial Building Active System Sizing" [3].

D.3 Design Curves for Various Collector Types, Service Hot Water Only, Commercial Buildings

D.4 Design Curves for Various Collector Types, Space Heating, Liquid Systems, in Commercial Buildings

SOURCE: "The Solar Load Ratio Method Applied to Commercial Building Active System Sizing" [3].

D.5 Design Curves for Various Collector Types, Space Heating, Air Systems, in Commercial Buildings^a

D.6 Design Curve for Space Heating System, Residential Building^b

^aSOURCE: "The Solar Load Ratio Method Applied to Commercial Building Active System Sizing" [3].

bSOURCE: ERDA'S Pacific Regional Solar Design Handbook [21].

D.7 Schematic Diagram of Standard Service Hot Water Systems

D.8 Schematic Diagram of Standard Space Heating (or Combined Space and Service Water Heating) Liquid System

- D.9 Schematic Diagram of Standard Space Heating (or Combined Space and Service Water Heating) Air System
- SOURCE: "The Solar Load Ratio Method Applied to Commercial Building Active System Sizing" [3].

APPENDIX E - ILLUSTRATIONS AND EXPLANATIONS OF KEY ALGORITHMS

E.1 CALCULATION OF AVERAGE SOLAR RADIATION ON A TILTED SURFACE

In order to use the Solar Load Ratio (SLR) design method, or other methods based on monthly calculations, such as F-CHART, it is necessary to estimate the solar radiation incident on the collector surface monthly, from average daily values. The total solar radiation incident on any surface is the sum of the direct beam, diffuse, and reflected components. The radiation model used in FEDSOL to calculate monthly values for the average daily total radiation is that devised by Liu and Jordan and improved upon by Page and Klein [30]. It is limited to south-facing surfaces.

The only data required by this model are: 1) the slope of a collector surface, 2) the ground reflectance near the collector, 3) the monthly average daily total horizontal solar radiation (measured), and 4) the latitude of the site. This model is summarized below:

Let

 \overline{H}_{T} = total monthly average daily solar radiation on a tilted surface, and \overline{H}_{T} = $\overline{R} \cdot \overline{H}$,

where

- \overline{H} = monthly average daily total solar radiation on the horizontal surface,
- R = ratio of the monthly average total daily solar radiation on a tilted surface to that on a horizontal surface, and

$$R = (1 - (H_{\rm D}/H))R_{\rm R} + (H_{\rm D}/H) [1 + \cos(S)]/2 + \rho [1 - \cos(S)]/2.$$

Then:

The monthly average total daily solar radiation, H, has been measured for over 250 sites around the United States. The solar radiation data used by FEDSOL was obtained from Input Data for Solar Systems [22].

FEDSOL uses the value of 0.2 for ground reflectance, ρ . This value may tend to underestimate incident radiation on tilted collectors at sites where there is snow cover during winter months. However, the error should be small and may be expected to result in only a slightly conservative estimate of solar fraction.

 $(\overline{H}_D/\overline{H})$ and \overline{R}_B are calculated with the following equations:

$(\overline{H}_{D}/\overline{H})$	=	ratio of monthly average daily diffuse radiation to daily average total radiation on a horizontal surface,
$(\overline{H}_{D}/\overline{H})$	=	$1 - 1.13 \ \overline{K}_{T},$
R _B	=	ratio of monthly average daily beam radiation on a tilted surface to daily beam radiation on a horizontal surface,
₽ ₽ ₽	=	$\frac{\cos(L-S) \cos(\delta) \sin(\omega_{s}') + \omega_{s}' \sin(L-S) \sin(\delta)}{\cos(L) \cos(\delta) \sin(\omega_{s}) + \omega_{s} \sin(L) \sin(\delta)}$
where		
S	=	slope of collector surface (tilt angle),
L	=	latitude,
δ	=	solar declination angle,
δ	=	23.45 sin[360(284+n)/365],
n	=	day of the year,
$\overline{\kappa}_{\mathrm{T}}$	=	ratio of monthly average daily total radiation to the extraterrestrial daily solar radiation (both horizontal),
$\overline{\kappa}_{\mathrm{T}}$	=	$\overline{H}/(H_o)_n$,
(H _o) _n	=	extraterrestrial daily solar radiation on a horizontal surface on day n,
(H _o) _n	=	$(24/\pi)I_{sc}$ [1+.033cos(360n/365)] [cos(L)cos(δ)cos(ω_s) + $\omega_s sin(L) sin(\delta)$],
I _{sc}	=	solar constant (1353 watts/sq. meter),
ω _s	=	sunset hour angle on horizontal plane, radians,
ω _s	=	$\arccos [-\tan(L)\tan(\delta)],$
ω _s '	=	sunset hour angle on tilted surface, radians, and
ω _s '	=	minimum of ω_s and arccos [- tan(L-S)tan(δ)].

In order to evaluate \overline{K}_T , and therefore $(\overline{H}_D/\overline{H})$, it is necessary to know the average monthly extraterrestrial radiation. The equation above for $(H_0)_n$ calculates the value for only one day of the year. It is necessary either to calculate $(H_0)_n$ for each day of the month and average all the days to one average monthly value or to use a day within the month which yields a value near the average value. Klein has determined that the following days give good results:

month		Julian	Day
		- 17	
Jan	-	17	
Feb	-	47	
Mar	-	75	
Apr	-	105	
May		135	
Jun	-	162	
Jul	-	198	
Aug	-	228	
Sep	-	258	
0ct	-	288	
Nov	-	318	
Dec	-	344	

As described for FEDSOL, this method is designed for collectors facing due south. However, collectors which face within 20 degrees east or west of south can be evaluated with this radiation model without significant error.

N.,

OVERVIEW:

The table of solar fractions and net savings for a range of system sizes included in the FEDSOL program output is derived using a mathematical model that combines elements of the GFL(G-CHART) design method [31] with the SLR design method [3, 19, 21] taking advantage of the simplicity of the annual methods such as the former and the greater flexibility and accuracy of monthly analysis methods such as the SLR or F-CHART.

A primary assumption of the GFL method, as derived by Lameiro and Bendt, is that the annual performance (annual solar fraction, f_a) for any active solar energy system for service hot water, space heating, or combination thereof, can be described by the following equation [31]:

$$f_a = 1 - e^{-(RA + SA^2)}$$
 (E.2.1)

where A is the collector area and R and S are constants that can be calculated. If one knows the annual solar fractions associated with any two collector areas for a system, the SLR method can be used to generate two initial predictions of annual solar fraction. These two pairs of collector areas and annual solar fractions are then employed to calculate R and S, and finally an expression is developed to determine the area required to give any desired solar fraction (see eq. (E.2.5)). Lastly, the SLR method is employed to obtain more accurate annual solar fraction solutions for the collector areas identified with GFL method.

By expressing the annual solar fraction as a function of collector area, one can print a table of system sizes and solar fractions (as in the FEDSOL program output) or plot a curve of solar fraction vs. collector area. Moreover, when combined with a model for life-cycle cost analysis, the model provides the basis for a very fast method of calculating the economically optimal collector area.

SHW SYSTEMS (TYPES 1 - 12)

Earlier versions of the SLR method and the initial version of the FEDSOL program expressed the monthly solar fraction of SHW (service hot water) systems as a function of the monthly SLR. The annual solar fraction was calculated from the results of the twelve monthly calculations.

The recently revised SLR method expresses the annual solar fraction for service hot water only systems as a function of the annual SLR [3]. With this revised method, it is possible to calculate the annual solar fraction directly from the annual SLR and, hence, from the collector area. However, the combined GFL - SLR approach was still useful in generating a series of collector areas, solar fractions, and net savings values for which solar fractions are evenly spaced over a range from 10 percent to 90 percent. The SLR annual solar fraction equation for SHW systems has the form

$$f_a = 1 - a_1 e^{-a_2 x_a} - a_3 e^{-a_4 x_a}$$
, (E.2.2)

where

- f_a = annual solar fraction,
- x_a = annual solar load ratio = $A_c H_a/Q_a$,
- $A_c = collector area,$
- H_a = solar energy per unit area incident annually on the plane of the collector, and
- Q_a = annual SHW load.

In order to calculate the area required to produce a desired solar fraction, one may guess an area, solve equation (E.2.2) to obtain a solar fraction, guess a new area larger or smaller depending on the outcome of the first guess, and solve the equation again, until the area which gives the desired solar fraction is found. An alternative method, that adopted in FEDSOL, is to solve equation (E.2.2) for x_a and hence A_c . Unfortunately, it is not a simple matter to solve this equation for x_a as a function of f_a . However, for reasons which will become obvious later, it is necessary only to solve the equation for f_a equal to .5. This has been done by expanding a Taylor's series about a = 1.4, using only the first three terms of the series to approximate the function f_a when the value of f_a is near 0.5:

$$f_{a}(x_{a}) = 1 - a_{1}e^{-1.4a_{2}} - a_{3}e^{-1.4a_{4}} + [a_{1}a_{2}e^{-1.4a_{2}} + a_{3}a_{4}e^{-1.4a_{4}}] (x_{a}-1.4)$$

+ .5 $[a_{1}a_{2}e^{-1.4a_{2}} + a_{3}a_{4}e^{-1.4a_{4}}] (x_{a}-1.4)^{2}$.

Setting f = .5 and solving for x_a gives

$$x_a = \frac{[-B + (B^2 - 4AC)^{\cdot 5}]}{2A} + 1.4$$
,

where

$$A = .5 [a_1 a_2 e^{-1.4a_2} + a_3 a_4 e^{-1.4a_4}]$$

$$B = a_1 a_2 e^{-104a_2} + a_3 a_4 e^{-104a_4}, \text{ and}$$

$$C = .5 - a_1 e^{-1.4a_2} - a_3 e^{-1.4a_4}$$

 $x_a = A_c H_a/Q_a$ and $A_{50} = x_a Q_a/H_a$ because x_a was solved for f = 0.5.

and

We now have a good estimate of the collector area which will give this system a 50 percent solar fraction. This value, A_{50} , is put into equation (E.2.2) and the equation is solved for f_a . The value of f_a will be close to .5, which is all that is necessary at this point. The area (A_{50}) and its corresponding solar fraction are denoted as A_1 and F_1 respectively. Another area, A_2 , is obtained by multiplying A_1 by 8. There is nothing special about the number 8 except that it causes A_2 to be significantly larger than A_1 . (Smaller numbers cause computational problems at a later point in the procedure.) The new area A_2 is put into equation (E.2.2) and the equation is solved again for f_a . The solar fraction associated with area A_2 is labeled F2. Recalling equation (E.2.1) and expressing it as two equations with two unknowns:

F1 = 1 - $e^{-(RA1 + SA1^2)}$, and F2 = 1 - $e^{-(RA2 + SA2^2)}$.

The two equations can be solved for R and S:

$$R = \frac{A1^2 [-ln(1-F2)] - A2^2 [-ln(1-F1)]}{A1^2A2 - A1 A2^2}, \text{ and}$$
(E.2.3)

$$S = \frac{A2 [-ln(1-F1)] - A1 [-ln(1-F2)]}{A1^2A2 - A1 A2^2} .$$
(E.2.4)

Finally solving equation (E.2.1) for A gives

$$A_{c} = \frac{-S + [S^{2} - 4 R \ln(1/(1-f_{a}))]^{5}}{2 R}$$
 (E.2.5)

Once S and R have been calculated for a specific solar energy system, it becomes a quick matter to determine the collector area which will give any desired solar fraction. For example, if a system with a solar fraction of .65 were desired, equation (E.2.5) would be solved simply with f_a =.65 to determine the required area (A_c).

The FEDSOL program uses the above method to predict collector areas corresponding to annual solar fractions of .1, .2, 3, up to .9. Each collector area predicted with this method is then put into equation (E.2.2) to obtain the exact annual solar fraction according to the SLR method.

SPACE HEATING SYSTEMS (TYPES 13 - 19)

The SLR design for space heating systems does not give annual results directly. Calculations must be performed monthly and the annual solar fraction determined from those results. The same is true with F-CHART. The following method is particularly useful for this situation.

The SLR method for space heating systems calculates monthly solar fractions with the following equations

$$f_m = b_1 x_m$$
 for $0 < x_m < b_2$, and (E.2.6a)

$$f_m = 1 - b_3 e^{-D_4 x_m}$$
 for $x_m > b_2$, (E.2.6b)

where

 $f_m = monthly solar fraction,$

 $x_m = monthly solar load ratio = A_c H_T/Q_m$,

 $A_c = collector area,$

 \overline{H}_t = solar energy per unit area incident monthly on the plane of the collector, and

 $Q_m = monthly load.$

It is possible to solve equation (E.2.6b) for x_m in terms of f_m . Recalling that $x_m = H_T A_c/Q_m$, the following equation will predict the area required to give any specified monthly solar fraction:

$$A_{c} = \frac{Q_{m} \cdot \ln (b_{3}/(1-f_{m}))}{b_{4} \overline{H}_{r}}$$

However, an annual, not a monthly fraction is needed. Drawing on past experience, we know that if a space heating system has an annual solar fraction near 50 percent, the average of the February and March monthly fractions is in nearly all cases within 1 percent of 50 percent. This observation is exploited here. For simplicity, we assume that the collector that provides a solar fraction of 50 percent in March will also give approximately a 50 percent solar fraction on an annual basis:

$$A_{c} = \frac{Q_{Mar} \ln(2 \cdot b_{3})}{b_{4} \overline{H}_{T Mar}}$$

We call this area Al. Area Al is evaluated with the SLR subroutine for twelve months to determine an annual solar fraction Fl. Then area Al is multiplied by

8, as before, to yield the new area A2. Area A2 is evaluated with the SLR subroutine for twelve months and an annual solar fraction F2 determined, also as before. Again, we have two equations and two unknowns:

$$-(RA1 + SA1^2)$$

F1 = 1 - e , and

$$F2 = 1 - e^{-(RA2 + SA2^2)}$$

and these equations are solved for R and S as before:

$$R = \frac{A1^2 [-ln(1-F2)] - A2^2 [-ln(1-F1)]}{A1^2A2} - A1 A2^2, \text{ and}$$

$$S = \frac{A2 [-ln(1-F1)] - A1 [-ln(1-F2)]}{A1^2A2 - A1 A2^2},$$

Solving equation E.2.1 for A_c yields

$$A_{c} = \frac{-S + (S^{2} - 4 R \ln(1/(1-f_{a})))^{5}}{2R}$$

We then determine the areas corresponding to the series of solar fractions .1, .2, .3, up to .9, and submit each of these areas to the SLR subroutine for a more exact prediction based on monthly calculations.

APPENDIX F - CONVERSION FACTORS FOR THE MOST COMMON UNITS USED IN SOLAR ENERGY SYSTEM DESIGN AND EVALUATION

Length:	<pre>1 inch (in) = 25.4 millimeters (mm) 1 foot (ft) = 0.3048 meter (m)</pre>
Area:	$1 \text{ ft}^2 = 0.092903 \text{ m}^2$
Volume: Fluid Capacity: Temperature:	1 ft ³ = 0.028317 m ³ 1 gallon (gal) = 3.78541 liters (L) $1^{\circ}F = 9/5^{\circ}C + 32$
Temperature Interval:	$1^{\circ}F = 5/9^{\circ}C \text{ or } K$
Mass:	1 pound (1b) = 0.453592 kilogram (kg)
Mass per unit length:	l lb/ft = 1.48816 kg/m
Mass per unit area:	$1 \ 1b/ft^2 = 4.88243 \ kg/m^2$
Mass per unit volume:	1 1b/ft ^{3~} = 16.0185 kg/m ³
Energy: Heat flow rate: Specific heat:	1 Btu = 1.05506 kilojoules (kJ) 1 Btu/h = 0.293071 Watt (W) 1 Btu/(1b)(°F) = 4.1868 kJ/(kg)(K)
U-value:	1 Btu/(ft ²)(h)(°F) = 5.67826 W/(m ²)(K)
Energy per unit area:	$1 \text{ Btu/ft}^2 = 0.011357 \text{ MJ/m}^2$

DATA ITEM	MINIMUM VALUE (SI)	MAXIMUM VALUE (SI)
1	1	19
2	0	90
3	1	2
4	0	1,000,000
5	0	100
6	0	1 000
7	Ő	1,000
8	Ő	100
9	Ő	1 000 000
10	1	7
11	0	10,000,000
12	0	3 000
12	22 (5 /9)	212(100)
15	55(578)	212(100)
20	0	1,000,000
21	0	100
22	0	1,000,000
23	0	100
24	0	100
25	0	100
30	0	100,000,000
31	0 🔪	10,000
32	0	100
33	0	100,000,000
34	0	100,000,000
40	0	100
41	0	100,000,000
42	0	100
44	0	10,000,000
45	0	100,000,000
46	0	100,000,000
47	0	10,000,000
48	0 year < stud	y period 100,000,000
49	0	100,000,000
50	0	1,000
51	0	1,000
52	0	1,000
53	0	1,000,000
54	0	1,000
55	0	1,000
56	1	6
57	1	6
58	any number (+/-)	
60	0	100
61	. 1	40
70	1	3

NBS-114A (REV. 2-80)				1	
U.S. DEPT. OF COMM.	1. PUBLICATION OR	2. Performing Organ. Report No.	3. Publicat	tion Date	
BIBLIOGRAPHIC DATA	REPORT NO.				
SHEET (See instructions)	NB31K 01-2342		· · · ·		
4. TITLE AND SUBTITLE					
FEDSOL: Program User's Manual and Economic Optimization Guide for Solar					
Federal Buildings Projects					
5. AUTHOR(S)					
Jeanne W. Powell and Richard C. Rodgers, Jr.					
6. PERFORMING ORGANIZA	TION (If joint or other than NBS	see instructions)	7. Contract/	Grant No.	
NATIONAL BUREAU OF STANDARDS					
DEPARTMENT OF COMMERCE			8. Type of R	eport & Period Covered	
WASHINGTON, D.C. 20234			Final		
9 SPONSORING ORCANIZA	TION NAME AND COMPLETE A	DDRESS (Street, City, State, 710	1		
at an ortaoning on geniza	HON THREE MILL COMPLETE A	control on control and a store ZIP			
Department of Energy					
Washington, D.C. 2	20585				
	ES				
10. JUFF LEMENTART NUT					
Document describes	a computer program: SE-185, EIP	S Software Summary, is attached.			
11. ABSTRACT (A 200-word)	or less factual summary of most	significant information If docum	ent includes	a significant	
bibliography or literature	survey, mention it here)	ing infrance information. If cocom		a organiticant	
This report prov	ides a user's manual fo	or the FEDSOL computer	program	and a guide	
for designing and	d sizing solar energy	projects for Federal b	ildings.	The life-	
avela cost proces	duras implemented by t	he computer program and	d explain	ed in the	
roport are consid	stept with the Federal	Rules for Life-Cycle	Costing (10 CFR Part	
(36) as applied t	to solar energy project	te	000000000	10 officiale	
450) as applied to solar energy projects.					
The FEDSOL program determines the economically optimal size of a solar energy					
system for a user	r-specified building.	location, system type,	and set	of economic	
conditions: it co	onducts numerous break	even and sensitivity a	alvses:	and it	
calculates measure	res of economic perfor	mance as required under	r the Fed	eral Rules.	
The economic mode	el in the program is l	inked with the SLR (So	lar Load	Ratio)	
decign method developed at Los Alamos National Laboratory to predict the					
performance of active systems. The economics portion of the program can, however,					
be used apart from the SLR method with performance data provided by the user.					
An environmental data file for 243 U.S. cities is included in the program.					
Highly user oriented the FEDSOL program is intended as a design and sizing tool					
for use by architects, engineers, and facilities managers in developing plans					
for Federal solar energy projects.					
tor rederar borar energy projecto.					
12. KEY WORDS (Six to twelve entries: alphabetical order: capitalize only proper campation and concerts how words by annia-to-al					
and separate key words by semicolons)					
economic optimization; life-cycle costing; solar economics; solar energy.					
13. AVAILABILITY				14. NO. OF	
				PRINTED PAGES	
XXUnlimited					
For Official Distribution, Do Not Release to NTIS			124		
Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.			15. Price		

Order From National	Technical Information Service (N	ITIS), Springfield, VA. 22161		\$11.00	

USCOMM-DC 6043-P80

