NBS PUBLICATIONS

NBSIR 81-2308

An Initial Study of the Application of the Numerical Method of Characteristics to Unsteady Flow Analysis in Partially Filled Gravity Drainage Sized Pipes

Dr. J. A. Swaffield

National Engineering Laboratory Center for Building Technology U.S. Department of Commerce National Bureau of Standards Washington, DC 20234

and

Drainage Research Group Department of Building Technology Brunel University Uxbridge U.K.

July 1981

QC 100 10NAL BUREAU OF STANDARDS 1056 61-2308 1981 C. 2

e de la construcción de la constru E construcción de la construcción de

NBSIR 81-2308

AN INITIAL STUDY OF THE APPLICATION OF THE NUMERICAL METHOD OF CHARACTERISTICS TO UNSTEADY FLOW ANALYSIS IN PARTIALLY FILLED GRAVITY DRAINAGE SIZED PIPES NATIONAL BUREAU OF STANDARDS LIBRARY JUL 3 0 1981

():

51 2:45

LE

198

1 0000

10 hal

Dr. J. A. Swaffield

National Engineering Laboratory Center for Building Technology U.S. Department of Commerce National Bureau of Standards Washington, DC 20234

and

Drainage Research Group Department of Building Technology Brunel University Uxbridge U.K.

July 1981

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Summary

The application of the numerical method of characteristics to the solution of the differential equations defining unsteady flow in partially filled drainage system sized pipes is outlined.

The derivation of the flow equations is presented, together with the necessary boundary equation formulation to represent variable inflow, system discharge and leakage flow past a stationary deposited solid.

A computer program, written in Fortran, is included, together with typical output, that establishes the applicability of this computational method to unsteady flow analysis in gravity flow drainage systems.

Proposals for the extension of the described techniques to the prediction of solid transport and flow attenuation in long pipes are also presented.

Preface

This report is one of a group documenting National Bureau of Standards (NBS) research and analysis efforts in developing water conservation test methods, analysis, economics, and strategies for implementation and acceptance. This work is sponsored by the Department of Housing and Urban Development/Office of Policy Development and Research, Division of Energy Building Technology and Standards, under HUD Interagency Agreement H-48-78.

Report prepared by Dr. J. A. Swaffield, Senior Lecturer, Drainage Research Group, Department of Building Technology, Brunel University, Uxbridge, UK., during a study leave period as a guest research worker at NBS/Stevens Institute of Technology.

Experimental results included in this report are drawn from the published work of the Drainage Research Group at Brunel University.

Table of Contents

		Page
SUM PRE Lis NOT	MARY FACE t of Figures ATION	iii iv vi vii
1.	INTRODUCTION	1
2.	UNSTEADY FLOW IN OPEN CHANNELS	3
	2.1 Defining equation 2.2 Solution by method of characteristics 2.3 Application of solution to drainage flow 2.4 Application to waste solid boundary condition	3 5 9 11
3.	PROGRAM OUTPUT AND DEVELOPMENT	13
4.	CONCLUSIONS	15
5.	REFERENCES	15
Арр	endix 1 Print out of program TRANSCA plus flow chart and sample input data	41
App	endix 2 Derivation of solid boundary equation for subroutine SOLID	A19
App	endix 3 Print out of typical TRANSCA output	A23

List of Figures

.

			Page
Figure	1.	Application of momentum equation to unsteady flow in a general open channel	
Figure	2.	Specified time interval technique, illustrating necessity for base condition interpolation	
Figure	3.	Modification to specified time interval grid for sub and super critical flow regimes	
Figure	4.	Application of specified time interval grid to simple channel with known entry and exit boundary equations	
Figure	5.	Measurement of the flow specific energy change across a solid stationary in a waste pipe under steady flow conditions	
Figure	6.	Flow rate vs time profiles at pipe entry, discharge and two intermediate points along the 5m simulated drain pipe	
Figure	7.	Depth profiles vs time along the simulated drainage pipe following an inflow variation	
Figure	8.	Depth profiles along the 5m simulated drain pipe at 14 time intervals illustrating surface wave motion	

A	Pipe flow cross section area
c+,c-	Notation referring to the positive and negative characteristics
c	Wave speed
Fr	Froude No = V/\sqrt{gh}
g	Acceleration due to gravity
h	Flow depth
К	Coefficient in solid leakage characteristics, $Q = K(SE-SE_0)^2$
m	Hydraulic mean depth
N,n	Nc of pipe length sections employed
Р	Wetted channel perimeter
Q	Flow rate
SE	Specific energy = $h + V^2/2g$
SEo	Minimum specific energy required to initiate flow past solid
s _o	Pipe slope
S	Slope of energy grade line, defined by Manning's Equation
Т	Surface width of flow within partially filled channel
t	Time
v	Local mean velocity
X1-4	Functions of h, V, c and S calculated at each base point at each time step
x	Distance, + ve in initial flow direction
α	Pipe slope, S _o = sina
Δt	Time step
Δx	Pipe section length
Θ	Δt/Δx

Notation

vii

- λ Multiplier in combination equation yielding total differential unsteady flow relationship = $\frac{+}{\sqrt{\frac{g}{AT}}}$
- ρ Fluid density
- T Wall to fluid shear stress

Suffixes

A, B, C Calculated points in an x-t grid at time t
P Calculated points in an x-t grid at time t + ∆t
R, S Interpolated points in an x-t grid at time t
U, D Upstream and downstream conditions relative to the solid boundary

1. INTRODUCTION

Unsteady flow is defined as fluid flow wherein the flow parameters vary with time and as such will occur in all fluid carrying conduits if the system boundary conditions are rapidly changed, either by design or as a result of some unforeseen event. The rate of change of the system boundary conditions determine the severity of the flow parameter changes that result. In many cases the resulting pressures generated in the flow system determine the design conditions.

The most well documented area of transient analysis refers to the propagation of pressure surges through full bore flow carrying pipe systems. For example the pressure variations following inadvertent power failure to a pipeline pumping station often provides the system design condition and leads to the need to introduce safety systems such as air chambers, increased pump inertia or by pass systems. Similarly the surges generated by load rejection by hydroelectric power station turbines lead to surge propagation in the water supply tunnels, normally dealt with by the inclusion of surge shafts cut into the rock surrounding the hydroplant supply tunnels.

The vast majority of research into unsteady flow has therefore been directed towards the large civil engineering applications such as power stations, cross country oil, water or sewage pipelines. Currently these areas are well documented and several texts are available describing appropriate analysis and design techniques [1,2].

The prediction techniques currently employed may be traced back to the late 19th century and for many years were based on the Bergeron graphical methods, that incidentally also find application in electrical surge problems.

The widespread availability of digital computers from the 1960's introduced or made practical, more versatile methods. Although translations of the graphical techniques were used initially, the numerical method of characteristics employed to solve the differential equations defining the unsteady flow has now come to be widely accepted as the more versatile technique [3].

As mentioned the applications to be found in the literature refer almost exclusively to large scale civil engineering applications. However, the problem of unsteady flow translates across the boundaries of scale, being dependent on the relationship between the rate of change of boundary conditions and the propagation rate of transient pressures within the system. Such applications may be found in a wide range of small scale systems, including, for example, diesel fuel injection systems. The analysis technique based on the method of characteristics solution was successfully applied to a transient analysis of the Concorde fuel system, both in the ground refuelling mode and the in flight fuel transfer and emergency ejection modes [4]. Similarly the methodology has been applied to airport hydrant refuelling networks. Although this vast bank of experience and literature exists it is, as mentioned, primarily directed to full bore flow large civil engineering applications.

Unsteady flow may, by definition, also occur in partially filled pipe or open channel flow. Again the available literature applies to the large excavated straight sided channels to be found in such applications as power station turbine discharge channels. In the open channel flow situation the full bore flow transient pressure changes are replaced by channel depth variations, pressure waves moving at the appropriate sonic velocity being replaced by surface waves. The simplification possible in air or vapor free fluid full bore flow that the wave propagation speed is constant, depending only on the liquid and pipe materials and dimensions, no longer holds as the wave propagation speed depends on flow depth and channel shape. Thus an extra variable is effectively added to the local flow velocity and pressure, or depth, namely the local wave speed.

As will be seen in the analysis presented this also introduces other difficulties in the numerical solution of the governing equations since the uniform x-t grid system generally employed has to be modified to allow for variable characteristic slope as the local wave speed varies.

As with the scale translation from hydroelectric plant to aircraft fuel system, so too does the basic flow analysis translate from large excavated open channels to partially filled drain piping systems. The boundary conditions change to represent, for example, varying inflow dependent on the appliances connected to the system. The channel cross sectional shape does not constrain the application of the fundamental analytical approach.

At present no numerical analysis technique has been documented to predict the depth and flow rate along gravity driven unsteady flow in partially filled drainage sized systems; however the analysis techniques incorporating the method of characteristics together with boundary conditions expressed in terms of time dependent depth or flow rates may be employed.

The current report is designed to act as an introduction to the use of these methods to predict depth-time profiles along a simulated drain. In particular the analysis will attempt to predict the depth history upstream of a deposited solid in the drain pipe as a prelude to a consideration of the forces acting on the solid and its subsequent motion along the drain pipe.

In addition the analysis techniques are shown to be applicable to determine flow attenuation in long drain pipes, this topic being considered increasingly important due to the probable reduction in overall system flow rates due to water conservation proposals.

Similarly the techniques can be applied to pipe sizing calculations in order to avoid the occurrence of local full bore flow and associated venting problems.

The differential equations defining unsteady flow are presented in this report, together with the application of the method of characteristics to yield a total differential equation which may be solved by numerical methods. The method of specific time intervals is presented together with the necessary formulation of boundary equations to represent variable inflow, pipe discharge and leakage flow past the solid. Finally a computer program designed to analyze the transient depth response to a stationary solid in a pipe supplied with a variable inflow is presented together with typical output for flow and system variables representative of drainage design values.

Extension of the methods described to flow attenuation and solid motion prediction are also proposed.

2. UNSTEADY FLOW IN OPEN CHANNELS

2.1 DEFINING EQUATIONS

The equations defining one dimensional unsteady flow are presented for open channels. Frictional losses are assumed to be adequately represented by the Manning equation utilizing the local velocity and flow depth. Channel slopes are assumed small enough for cosine slope (cosa) to be approximately 1.

Figure 1 illustrates an elemental fluid strip. Application of the unsteady momentum equation yields:

(i)	Net hydrostatic force:	$\begin{array}{c} \rho g \frac{\partial h}{\partial x} \Delta x A \\ \frac{\partial h}{\partial x} \end{array}$
(ii)	Shear force on wetted: perimeter P	-τ _ο Ρ Δχ
(iii)	Gravity force in flow: direction	ρg A Δx sinα
(iv)	Net efflux momentum:	$\frac{\partial}{\partial x} (\rho V^2 A) \Delta x$
(v)	Increase of momentum within:	$\frac{\partial}{\partial t}$ (pAV) Δx

Thus the momentum equation becomes

$$-\rho g \Delta x A \frac{\partial n}{\partial x} - \tau_0 P \Delta x + \rho g A \Delta x \sin \alpha$$

$$= \frac{\partial}{\partial x} (\rho V^2 A) \Delta x + \frac{\partial}{\partial t} (\rho A V) \Delta x$$
(1)

Expanding and dividing by $\rho A \Delta x$

$$g_{\frac{\partial h}{\partial x}} + \frac{\tau_{0}}{\rho m} - g \sin_{\alpha} + 2V \frac{\partial V}{\partial x} + \frac{V^{2}}{A} \frac{\partial A}{\partial x} + \frac{V^{2}}{A} \frac{\partial A}{\partial x} + \frac{V}{A} \frac{\partial A}{\partial t} + \frac{\partial V}{\partial t} = 0$$
(2)

where m = A/P

The continuity equation applied to the control volume of Figure 1 yields

$$\frac{-\partial (\rho AV)}{\partial x} \Delta x = \frac{\partial (\rho A\Delta x)}{\partial t}$$
(3)

Expanding and dividing by pax

$$V \frac{\partial A}{\partial x} + \frac{\partial A}{\partial t} + A \frac{\partial V}{\partial x} = 0$$
(4)

Multiplying (4) by V/A and subtracting from equation (2) yields

$$g \frac{\partial h}{\partial x} + \frac{\tau_0}{\rho m} - g \sin_\alpha + \frac{V_0 V}{\partial x} + \frac{\partial V}{\partial t} = 0$$
⁽⁵⁾

Let $S_0 = \sin \alpha$ and $gS = \tau_0 / \rho m$

where S is the slope of the energy grade line as defined by the Manning equation

$$S = \frac{n^2 V^2}{m^{4/3}}$$
(6)

Note that $S = S_0$ only under steady uniform flow conditions. Equation 5 becomes

$$g \frac{\partial h}{\partial x} + g(S - S_0) + \frac{V_0 V}{\partial x} + \frac{\partial V}{\partial t} = 0$$
⁽⁷⁾

From Figure 1 $\partial A = \partial h$. T.

where T is surface width.

Hence $\frac{\partial A}{\partial x} = T \frac{\partial h}{\partial x}$,

and $\frac{\partial A}{\partial t} = T \frac{\partial h}{\partial t}$

so that equation 4 becomes

$$\frac{\partial h}{\partial x} + T \frac{\partial h}{\partial t} + A \frac{\partial V}{\partial x} = 0$$
(8)

Thus equations 7 and 8 represent the unsteady flow conditions in terms of local depth and average velocity. These equations may be solved by means of the method of characteristics.

2.2 SOLUTION BY METHOD OF CHARACTERISTICS

Equation 7 and 8 may be combined as

 $L_1 + \lambda L_2 = 0$

where L_1 is equation 7 and L_2 equation 8

$$\begin{bmatrix} \frac{\partial V}{\partial x} & (V + \lambda A) + \frac{\partial V}{\partial t} \end{bmatrix}_{1}^{+} \lambda T \begin{bmatrix} \frac{\partial h}{\partial x} & (V + \frac{g}{\lambda T}) + \frac{\partial h}{\partial t} \end{bmatrix}_{2}^{-} (9)$$

$$+ g(S - S_{0}) = 0$$

In order to solve equations 7 and 8 it is necessary to transform the equations into a total derivative expression.

For the terms in bracket [1] to become the total derivative dV/dt, it is necessary for

$$V + \lambda A = \frac{dx}{dt}$$

and for the terms in bracket [2] to become the total derivative dh/dt then

$$\frac{dx}{dt} = V + g/\lambda T$$
hence $V + \lambda A = V + g/\lambda T$
therefore $\lambda = \pm \sqrt{\frac{g}{AT}}$
and $\frac{dx}{dt} = V \pm \sqrt{\frac{gA}{T}}$

The term $\sqrt{\frac{gA}{T}}$ has dimensions of velocity and is identified as the local wave speed

$$c = \sqrt{\frac{gA}{T}}$$
(10)

Equation 9 may now be expressed as:

$$\frac{dV}{dt} \pm \frac{g}{c}\frac{dh}{dt} + g(S - S_0) = 0$$
(11)

subject to
$$\frac{dx}{dt} = V \pm c$$
 (12)

Referring to Figure 2, if the variables V and h are known at R and S then four equations may be written in terms of the unknowns at point P, namely

$$c^{+} \int_{p}^{v} - v_{R} + g \int_{h_{R}}^{h_{P}} \frac{1}{c} dh + \int_{t_{R}}^{t_{P}} g(S-S_{o})dt = 0$$
(13)

$$x_{p} - x_{R} = \int_{t_{R}}^{t_{P}} (V+c)dt \qquad (14)$$

$$c^{-} \left[V_{P} - V_{S} + g \int_{h_{S}}^{h_{P}} \frac{1}{c} dh + \int_{t_{S}}^{t_{P}} g(S - S_{o}) dt = 0 \right]$$
(15)

$$x_P - x_S = \int_{t_S}^{t_P} (V-c)dt$$
 (16)

It is stressed that these equations are paired, i.e. equation 13 only holds if equation 14 is satisfied and 15 only applied if 16 is satisfied. Generally these are referred to as C^+ and C^- characteristics as shown above.

In most cases a first order integration is satisfactory, however attention must be paid to the choice of time step to ensure a stable solution, as mentioned by Fox [1].

In terms of Figure 2 the time step must be sufficiently small to ensure that points R and S fall within $\pm \Delta x$ on either side of point P.

Generally a suitable rule is to set

$$\Delta t = \Delta x/2c \tag{17}$$

where c is the wave speed appropriate to the initial flow in the channel prior to the initiation of unsteady flow. As will be seen the solution requires an initial steady flow in the channel, although this may be infinitesimal.

Applying a first order approximation to equations 13 to 16, in terms of Figure 2 yields

$$V_{\rm P} - V_{\rm R} + \frac{g}{c_{\rm R}} (h_{\rm P} - h_{\rm R}) + g(S_{\rm R} - S_{\rm O})\Delta t = 0$$
 (18)

$$x_{\rm P} - x_{\rm R} = (V_{\rm R} + c_{\rm R}) \Delta t \tag{19}$$

$$V_{\rm P} - V_{\rm S} - \frac{g}{c_{\rm S}} (h_{\rm P} - h_{\rm S}) + g(S_{\rm R} - S_{\rm O})\Delta t = 0$$
 (20)

$$\mathbf{x}_{\mathbf{P}} - \mathbf{x}_{\mathbf{S}} = (\mathbf{V}_{\mathbf{S}} - \mathbf{c}_{\mathbf{S}}) \Delta \mathbf{t}$$
(21)

It will be noted that conditions at R and S at time $(t-\Delta t)$ are determined by interpolation between points A and C and C and B respectively. This interpolation introduces a dispersive element to the calculation as effects arriving at A, C and B at time $t - \Delta t$ are assumed, via the interpolation, to effect conditions at R and S at time $t - \Delta t$. This is comparable to increasing the local wave speed.

Interpolation effects should be minimized by arranging for R and S to fall as close as possible to A and B by adjusting the time step Δt .

Two flow regimes may be identified for open channels defined in terms of the Froude Number $Fr = V/\sqrt{gh}$

1) Subcritical flow, Froude $N^{\circ} < 1$

Here the local wave speed is greater than the flow average velocity. Thus waves may be propagated upstream.

2) Supercritical flow, Froude $N^{\circ} > 1$

Here the local wave speed is less than the average flow velocity at that section, hence waves may not be propagated upstream. Flow may be transformed from supercritical to subcritical via a hydraulic jump.

Figure 3 illustrates the importance of these two flow regimes on the solution of equations 13 to 16.

If c > V then the conditions at P are determined by the intersection of the C^+ and C^- drawn from P into the AC and BC sections.

If $c \leq V$ then conditions in the downstream section BC cannot effect point P. The slope of the C⁻ characteristic, PS, becomes positive and both R and S lie in the AC section as shown.

For the <u>subcritical</u> flow encountered in the drainage applications considered and the equations derived below refer to this flow regime. Similar derivations may be undertaken for supercritical flow.

Referring to Figure 2 for subcritical flow:

$$\frac{V_{\rm C} - V_{\rm R}}{V_{\rm C} - V_{\rm A}} = \frac{x_{\rm C} - x_{\rm R}}{x_{\rm C} - x_{\rm A}} = (V_{\rm R} + c_{\rm R}) \frac{\Delta t}{\Delta x}$$

$$\frac{c_{\rm C} - c_{\rm R}}{c_{\rm C} - c_{\rm A}} = \frac{x_{\rm C} - x_{\rm R}}{x_{\rm C} - x_{\rm A}} = (v_{\rm R} + c_{\rm R}) \frac{\Delta t}{\Delta x}$$

and

$$\frac{n_{\rm C} - n_{\rm R}}{h_{\rm C} - h_{\rm A}} = (V_{\rm R} + c_{\rm R}) \frac{\Delta t}{\Delta x}$$

as $x_P = x_C$ and $x_P - x_R = (V_R + c_R)\Delta t$

Solution yields

$$V_{R} = \frac{V_{C} + \Theta (-V_{C}c_{A} + c_{C} V_{A})}{1 + \Theta (V_{C} - V_{A} + c_{C} - c_{A})}$$
(22)

$$c_{R} = \frac{c_{C}(1 - V_{R} \theta) + c_{A}V_{R} \theta}{1 + c_{C}\theta - c_{A}\theta}$$
(23)

$$h_R = h_C - (h_C - h_A)(\Theta(V_R + c_R))$$
 (24)

Similarly

$$V_{S} = \frac{V_{C} - \Theta(V_{C}c_{B} - c_{C}V_{B})}{1 - \Theta(V_{C} - V_{B} - c_{C} + c_{B})}$$
(25)

$$c_{S} = \frac{c_{C} + V_{S} \Theta (c_{C} - c_{B})}{1 + \Theta (c_{C} - c_{B})}$$
(26)

$$h_{S} = h_{C} + \Theta(V_{S} - c_{S})(h_{C} - h_{B})$$
(27)

The determination of conditions at P at time t + Δ t requires the following steps:

- (i) All conditions known at time t for nodal points A B C etc.
- (ii) Values of V, h and c at interpolation points K and S calculated from equations 21 - 27.
- (iii) Using these values of V, h, and c the conditions at P, i.e. velocity
 V and depth h, at time t + ∆t are calculated by means of equations
 18 and 20.
 - (iv) The value of wave speed c at P at time t + ∆t is calculated from equation 10. The value of flow surface width and cross sectional area are calculated from flow depth, h, and the channel shape relationships.
 - (v) The sequence is repeated at each time step.

2.3 APPLICATION OF SOLUTION TO DRAINAGE FLOW

Equations 18 to 21 may be expressed as:

 $V_{p} = X2 - X1 h_{p} c^{+} (28)$ $x_{p} - x_{R} = (V_{R} + c_{R})\Delta t c^{-} (29)$ $V_{p} = X4 + X3 h_{p} c^{-} (29)$ $x_{p} - x_{S} = (V_{S} - c_{S})\Delta t c^{-} (29)$

where $X1 = g/c_R$

 $X3 = g/c_{S}$ $X2 = V_{R} + g h_{R} - g(S_{R} - S_{o})\Delta t$ $X4 = V_{S} - g h_{S} - g(S_{S} - S_{o})\Delta t$

Figure 4 illustrates a typical drainage pipe length to be analyzed in terms of flow depth and velocity at each section.

The application may be dealt with in two distinct sections:

(i) Internal or nodal points.

The values of h, V and c at all points Δx apart between $x = \Delta x$ and $x = (L - \Delta x)$ may be calculated by the sequence set out above, namely by simultaneous solution of equations 28, 29 and use of equation 10 to yield wave speed.

(ii) Boundary conditions.

In order to predict h, V and c at the system boundary it is necessary to solve either 28 or 29 with an appropriate boundary condition.

At pipe entry a suitable boundary condition would be the inflow profile

Q = f(t)

to be solved with the C⁻ characteristic:

$$Q(t) = V_1A_1 = f(t)$$

 $V_1 = X4 + X3 h_1$
 $Q(t) = A_1 (X4 + X3 h_1)$

where $A_1 = f(h_1)$

$$Q(t) = f(h_1)(X4 + X3 h_1)$$

In the form

$$0 = Q(t) - f(h_1) \quad (X4 - X3 h_1) \tag{30}$$

this relationship may be solved by bisection method as values of Q are known at each time step. The channel cross section shape relationship is also required so that no direct solution of equation 30 is available for circular section channels.

At pipe exit in the subcritical flow regime the flow depth approaches the critical depth value, given by zero value of the expression:

$$\frac{q^2}{g A_{crit}^3} T_{crit} = 1,$$

where A and T are functions of depth, h.

This condition may be solved with the C⁺ characteristic

 $V_{N+1} = X2 - X1 h_{N+1}$

where N = N° of pipe length sections, each of length Δx .

The boundary condition becomes

$$[(X2 - X1 h_{N+1}) A_{N+1}]^2 T_{N+1}/g A_{N+1}^3 - 1 = 0$$
(31)

Solution may again be achieved by use of the bisection method together with the use of the area to depth relationship for the channel.

2.4 APPLICATION OT WASTE SOLID BOUNDARY CONDITION

Considering a stationary solid deposited at some point along the waste pipe, the water depth and velocity upstream of the solid may be predicted if a suitable boundary equation may be written linking flow past the solid to upstream conditions.

Figure 5 illustrates the relationship between flow past a stationary solid and the specific energy upstream. These results were compiled during a Brunel University Drainage Research Group study of solid transport in drainage systems. From the experimental work summarized by Figure 5, the flow past the solid may be expressed by the following relationship:

$$Q_{-} = K(h + \frac{v^2}{2g} - SE_0)^2$$
(32)

where $SE = h + V^2/2g$, flow specific energy and SE_0 is the flow specific energy required for flow initiation past the solid (when $SE_0 \neq 0$)

Equation 32 may then be solved with the C^+ characteristic

$$V_{N+1} = X2 - X1 h_{N+1}$$

where $Q = V_{N+1} A_{N+1}$

so that

$$A_{N+1} (X2 - X1 h_{N+1}) = K [h_{N+1} + \frac{1}{2g} (X2 - X1 h_{N+1})^2 - SE_0]^2$$

This expression results in a quartic in terms of water depth upstream of the solid, h_{N+1} , see Appendix 2.

This quartic must be solved by an iterative technique as the flow area, A_{N+1} , is a function of h_{N+1} .

The Newton-Raphson method may be employed to carry out the necessary iteration solution.

Once the value of h_{N+1} has been determined the value of V_{N+1} and c_{N+1} may be determined from equation 28 and 10.

As mentioned the SE₀ term is the flow specific energy required to initiate flow past the stationary solid. If the value of flow specific energy at time t is less that SE₀ then the value of flow velocity at the solid at time t + Δt is set equal to zero. The flow depth then comes directly from equation 28 as:

 $h_{N+1} = X2/X1$

(33)

This implies that the flow depth upstream of the solid must rise to SE_0 prior to the initiation of flow past the solid.

This solution is set out in detail in Appendix 2.

In this model no account is taken of flow downstream of the solid.

From Figure 5 the flow past the solid may alternatively be expressed as

$$Q = K_1 \left(SE_U - SE_D \right)^2$$

where SE_U , SE_D are the specific energy values immediately upstream and downstream of the solid.

This boundary equation may be used to link the flow conditions upstream and downstream of the solid, for example the upstream flow is governed by the C^+ equation 28 and that downstream is governed by the C^- equation 29.

This formulation of the boundary condition would allow a series of nodal points downstream of the solid to be dealt with, the pipe being then terminated by the boundary condition already described, i.e. critical depth at discharge.

The techniques described above have been included in a Fortran program TRANSCA run on the NBS Center for Building Technology Perkin Elmer 732 computer.

This program is included in Appendix 1 together with a flow chart and description and sample input data while representative program output are included in Appendix 3.

3. PROGRAM OUPUT AND DEVELOPMENT

Figures 6, 7 and 8 illustrate the predicted depth and flowrate at sections along the simulated drain pipe considered, while Appendix 3 presents typical program output.

The program calculation technique requires a known steady uniform flow to be set up along the channel prior to the calculation of unsteady conditions. In the model presented this is assumed to be established with no solid in the pipe. The calculation then assumes the presence of the solid from the first time step onwards. This explains the depth increasing wave that is shown in Figure 8 moving upstream from the solid boundary. This is merely a function of the initial conditions chosen.

An alternative base condition would be either steady flow with the solid in place, with the associated back water profile upstream of the stationary solid, or stationary fluid trapped behind the solid. In both cases the fluid depth would increase at the solid location, forming the expected backwater curve profile.

The former set of flow conditions could have been achieved in the current simulation by holding the inflow rate constant, however this would have required a longer computer run. The establishment of steady conditions is demonstrated in Figure 6 as the inflow profile is assumed to become constant. The results demonstrate that the techniques described may be employed to yield values of depth and flowrate under unsteady flow conditions in open channel flow. In particular the results indicate that the concept and use of specific energy to leakage flow characteristic, rather akin to a valve pressure flow relationship, is capable of accurately describing the boundary conditions at a stationary solid. The values of depth at the solid with time obviously require experimental verification, however the depths predicted are generally in line with observations of water build up behind stationary solids made during the Brunel University drainage investigations.

Two main development paths may be proposed based on the analysis techniques described:

(i) Application to the moving solid case.

This case would require the introduction of flow relative velocity into the boundary conditions describing the solid described above. It is proposed that, once this has been done, the stationary solid specific energy differential across the blockage to flow past relationship is assumed to apply to the moving case.

A number of unknowns are required to obtain a solution, namely the force balance necessary to be overcome to initiate motion and the solid-flow momentum equation that would determine solid velocity and distance traversed in each time step.

One simplifying assumption that could be made would be to assume that the flow ahead of the solid, i.e. downstream, assumes the normal depth and velocity characteristic to the channel dimensions and the flow past the solid.

This case is currently being considered.

(ii) Application of the techniques described to the prediction of flow attenuation in long channels.

At first sight it would appear that the existing program would be capable of dealing with this case, however the errors due to interpolation made necessary by the adoption of a fixed time-distance grid, Figure 2, could introduce errors. The interpolation techniques effectively disperse the moving wave fronts and would tend to overestimate the attenuation produced.

A free grid in which both time and distance become calculated variables is a solution to this problem. This is not normally done as it results in a rather "untidy" output, however this method will be investigated as part of the current investigation. As mentioned the method of characteristics requires that there be an initial steady flow condition along the channel, or that the flow is at rest at known depth. This limiting condition is necessary to provide the base values of depth, velocity and wave speed at each calculating position. The influence of magnitude of this initial assumed flow on the attenuation of a constant superimposed inflow will also be considered as part of (ii) above, together with an assessment of the effect of the interpolation ratio employed in choosing the appropriate calculation time step.

4. CONCLUSIONS

The program presented indicates that the techniques involved in the solution of unsteady flow problems via the method of characteristics may be applied to partially filled drainage pipeflow.

The methods presented will be employed to investigate further their application to solid waste transport analysis and to the study of flow attenuation in long channels, typically representative of underground building drainage systems.

- 5. REFERENCES
- J. A. Fox, Hydraulic analysis of unsteady flow in pipe networks. Macmillan Press London, 1977.
- 2. Wylie, E. B. and Streeter V. L, Fluid Transients, McGraw Hill, New York 1978.
- 3. Douglas, J. F., Gasiorek, J. M., and Swaffield, J. A., Fluid Mechanics, Pittman, London, 1979.
- Swaffield, J. A., Application of the method of characteristics to a pressure transient analysis of the BAC/SNIAS Concorde fuel system. Proceedings Institute of Mechanical Engineer London, 1972.

Uepth vs time profiles along the simulated drainage pipe following an inflow variation. Figure 7.

Figure 8. Depth profiles along the 5m simulated drain at 14 time intervals illustrating surface wave motion.

Appendix 1

.

-

.

Program TRANSCA

This appendix presents a complete print out of this program, written in Fortran, together with a flow chart and sample input data. The program was run on the NBS Center for Building Technology Perkin Elmer 732 computer.

It was found necessary to employ double precision calculating techniques in the program due to the inclusion of calculations involving the root of small differences between large numbers. Otherwise no special facilities are required.

The program accepts data in SI units with the exception of the inflow profile, this is read in as litres/second and corrected to m^3/s within the program.

Calculation of initial steady uniform conditions at time zero

Assign time zero values along pipe.

A-4

Α.

Note - unsteady flow simulation achieved via a series of subroutines as follows

CALL INTER - interpolation technique to provide HR, HS etc from H, V values.

¥

¥

CALL	NODAL	 solution of Ct, CT characteristic
1		for each of the pipe section
		i = 2 to N.

CALL SOLID - solid boundary, solution of C⁺ characteristic with precific energy vs flow past characteristic for solid.

CALL ASSIGN - reassign arrays H, V, and C bused on HP, VP and CP values above to act as base for neact time step. A-5 WRITE - values of HP, VP, QP, CP for each calculated point, i=1, N+1. GOTO A

E. End of simulation

- Note (i) Subroutine SHAPE called from most other subroutines. SHAPE calculatos flow area, surface width atc based on circular pipe cross section geometry. Alternative channel shape investigations using TRANSCA only require replacement of geometry equations in SHAPE.
 - (iii) Double precision calculation required, mainly due to the need to V differences of large numbers, PP. need if these differences small.

PROGRAM TRANSCA.

Line 1 Pipe diameter, Manning coeff., slope, length. Format 4F10.4 VVVV 0.1000 VVVV 0.0150 VVVV 0.0033 VVVV 5.0000

Line 2 Solid minimum specific energy, SE vs Q coeff,XK. Format 2F10.4 VVVV0.0200 VVV0.6000

Line 3 N° calculation sections, TMAX, Time step factor Format I3, 2F10.4 VID VVV 25.0000 VVVV 5.0000

Line 4 N° pairs of coordinates on inflow -time curve. Format I3 VY 5

Lines 5-9 Inflow QIN at time TIN Format 2F10.4 VVVV 0.2000 VVVV 0.0000 VVVV 1.0000 VVVV 0.0000 VVVV 1.0000 VVVV 2.5000 VVVV 0.2000 VVVV 4.5000 VVVV 0.2000 VVVV 9.5000 Input data - units :-

S.I. units used in program TRANSC except specific energy in m.

S.I. units used in data input fields except for inflow profile data. QIN is read in 2/5 and converted to m³/s in the program. QP output is 2/5, otherwise SI used in output fields

Note value of XK, coefficient in solid boundary equation $\Theta = XK (SE - SEØ)^2$ is read in m^2/S .

-		
	2222222 222 222 222 22 222 22 222 22 222 22 22	
11111111111111111111111111111111111111		JEEAcob HJIHAcor HJIHAcor JANAbu JANAbu ABF6.4 H H JA JA JA JA JA JA JA JA JA JA JA JA JA
1) 1) 1) 1) 1) 1) 1) 1) 1) 1)		
NNN NNN NNN NNN NNN NNN NNN NNN NNN NN		227,222 227,222 217,222 222 222 222 222 222 222 222 222 22
22222 22222 22 22 22 22 22 22 22 22 22		
	300 300 <td>9 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</td>	9 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	10000000000000000000000000000000000000	

1

)

)

ь А-9

```
134204
          TRANSCA IS A PROGRAM DESIGNED TO APPLY THE METHOD OF
          IMARACTERISTICS SILUTION TO THE EQUATIONS DEFINING
   C
          UNSTEADY FLOW IN PARTIALLY FILLED CHANNELS.
(
          JJUSLE PRECISION JP(30), UIN(30), TIN(30), VP(15), HP(15), CP(15)
          DOUBLE PRECISION V(15),H(15)
Ł
          JOURLE PRECISION VR(15), HR(15), CF(15), VS(15), HS(15), CS(15), S3(15)
          JOUBLE PRECISION SRILSJ, XK(15), XS(15), XN(15), C(15)
          DOUBLE PRECISION TIME. D. H.SO.PL.SEU, XK. TMAX. TFAC
£
          JOUBLE PEFCISION HN. HC. A. T. PEF, CN, SLJ. O
          JOUSLE PRECISION DK, JT, DTU, DTFAT
          COMMON/CM1/DTC, DT, DX, D, SO, PL, SEC, XX, KR
£
           XAMT , N/ SHO/NUMBEL
          COMMON/CM3/NFTS, GIN, TIN
          COMMEN/CH4/VaHaCaVRaHKaCRaXKaSFaVSaHSaCSaXSaSSaXN
ŧ
          COMMON/CH5/HC .HN
          C JHMUN/CHE/GP, VP, 4P, CP
8
4
   3
          SET INITIAL CONDITIONS
1
          TIME=0.0
   Ĵ
          READ PIPE DESCRIPTION DATA
          X=AD(4,100)C,KF,SJ,PL
đ
          J-DIA. RH-MANNING COEFF. SU-MIPE SLUPE. FL-PIPE LENGTH
   101
          FORMAT(4F1C.4)
           READ SOLID DESCRIPTION DATA
1
          KEA3(4,101)SEG,XK
          SED-SPECIFIC ENERGY REQUIRED FOR FUGH PAST SULID.
           AK-FLOW TO SPECIFIC ENERGY CLEFF. AT SP VALUES ABOVE SEV.
¢
   101
          FURMAT(2F1C.4)
   0
          READ CALCULATION DATA
          READ(4, 103)N, THAX, TFAC
(
           N-NUMBER OF PIPE SECTIONS CONSIDERED, THAK-DUKATION UP CALC.
          TFAC-TIME STEP FACTOR, 1-10.
          FJRHAT(13,2F10.4)
   103
.
          KEAD INFLOW DATA PROFILE. INFLOW PROFILE USED IS BASED ON
          A LINEAR INTERPOLATION BETWEEN THESE DATA PUINTS. NOTE DATA
           READ IN IN L/S BUT USED IN FRUGRAM IN MERSIS.
4
           READ(4,102)NETS
          EURMAT(13)
   102
           JU 50 I=1. NFTS
1
           READ(4,104)CIN(I),TIN(I)
   1)4
          FORMAT(2F10.4)
           QIN(I)=01N(I)/1000.0
€
   50
          CONTINUE
   0
   Ĉ
С
   С
   00
6
           CALCULATION OF STEADY UNIFORM FLCM DEPTH BASED ON INITIAL FLUM
   C
           RATE DIN(1) PLUS CALCULATION OF INITIAL WAVESPEED AND LOSS
   C
           TERM SLO
.
           CALL DEPTH(TIME)
           CALL SHAPE (HN . A. T. P-K)
           CALL HAVSPDIHN, CNI
1
```

- it.

		SLD=(RM##2)#((QIN(1)/A)##2)/(A/Fi+)##1.3333
	÷ -	ASSIGN TIPE ZERE CONDITIONS ALONG TEST PIPE.
	•	JU 51 I=1+N+1
(VP([]=0[N(])/A
		JP(I) = OIN(I) + 1000.0
		HP(1)=HN
(CP(I)=CN
	51	CONTINUE
•		10.52 [=2.N+1
٤		
		(DIT)=(N
		(N(T) = YN(T-1) + FL - FL - DAT(N))
1		CONTINUE
	16	
1		33117-319
•		
1		
	13	CUNITAUT
		CALL ASSIGNANT
1	2	CALCULATION OF TINE STEP AND LENGTH SECTION.
		$\Im \chi = P [/ F [\Im A T (N)]$
		JT=DX/(TFAC*CN)
1		
	2	
	2	
4	-	
	C	
	2	
	\$	JUTPUT TEST LESCHIPTION PLUS INITIAL CONDITIONS.
		HRIT: (3,202)L, PP+37, PL
	: 22	FURMATILM1,/10X, "TEST PIPE CLNFIGURATION:",
		$1 / 10 \times 101 \text{ mETEK} = 10 \text{ Fig. 40} \text{ meters}$
		1 10Y, "MANNING COEFFICIENT:-""FIC.4.
		1 /10%, "PIPE SLOPE = ", F10.4," PIPE LENGTH = ",
		1 F10.4, " M. * +//)
τ.		(F(HL.GT.HN) WRITE(3,200)HN,-C
		IF(HC.LE.FN) WRITE(3,201)HN,HC
	200	FOFMATIIUX, "FLOW SUPERCHITICAL. ". "NURMAL DEPTH = ".FLO.4.
÷.		1 * ". *. * ANE CRITICAL UEPTH = **F10.44* M.**//)
	2.91	FUPMAT(10%."FLOW SUBCRITICAL, ", "NOPMAL DEPTH = ".
		1 FLO.4." M. AND CHITICAL DEPIN = "+FLUA4." Ma"+//)
1		##17E(3,2C3)CIN(1), 4%, CN
	2.33	FURMAT(10X. "INITIAL FLOW RATE = ".Flu.4." M##3/S.".
-		1 ' INITIAL DEPTH = '.FID.4. " D.".
		2 * INITIA: WEVE SPEED = ** F16-4** */5-**/1
		N1=N+1
		HRITE (3.204)07.05.11
1	2.34	EDRMAT(1)), (ALCH ATTON TIME STEP = ""EDU-4" S.".
	-0.	1 TIENGTH INCREMENT = " FID. 4." M. ". " NUMPER OF NOVES = "AI34/3
	-	OUTPUT TEST STEMATION RESULTS.
1	-	$a \in \{1 \in \{3, 2\}, \{1\}, \{1\}, \{1\}, \{1\}, \{1\}, \{1\}, \{1\}, \{1$
	2 1 5	EDMATINEY POSTINITY - TYTE
	200	
1	204	TALLES AND A LESS
	205	PUREMITERS (1185 - 1950-391 30191 UEFIRT9/X918-91164)
	107	CODMAT/142 8 5100 0475 1/5-8 1157 /1
	2.71	PUTCALLIDAS' FLUR CALE L/35 (11/64)
	2.27	TRITE(3,208)(CP(1),1=1,NL)
	:07	FUFMAILISA, VELUIIV M/S=*(11F/.4)

A-11

- 5

•

```
205
          FORMAT(13) .* WAVE SPD. #/S=*.1167.4./)
   C
   С
          UPDATE TIME AND CHECK CALCULATION LENGTH.
           CONTINUE
   500
   501
          TIME=TIME+CT
           IF(TIME.GT.TMAX) GOTJ 500
C
   С
C
   C
   С
           SET UP CALCULATIONS FUR THIS TIME STUP.
          DTRAT=DT/ETC
€
          IF(DTRAT.LT.U.06) GOTJ 500
          CALL INFLOR(TIME.J)
           11 = 1
€
          CALL INTERING
           J1=2
          CALL LOSS (VF, VS, HK. HS, N. SR, SS, FP)
•
           J1 = 3
          CALL ENTRY(TIME)
           11 = 4
6
          CALL NODAL(N)
           J1=5
           CALL SOLILITIMES
¢
           IFIDT.LT. ETCI COTI 500
           ST=DTO
           11=5
ſ
           CALL ASSIGNIN)
           J1 = 7
           ARITE (3+206)TIME+ (AP(1)+I=1+N1)
(
           HRITE(3,207)(VF(1),I=1,N1)
           HRITE(3,307)(CP(1),1=1,N1)
           #RITE(3,208)(0F(I),1=1,N1)
C.
           GGT0 501
   500
          CONTINUE
           ÉND
Œ
   Ç
   С
   C
C
C
   С
   С
6
           SUBROUTINE LOSS (VR, VS, HR, HS, N, SF, SS, RH)
           JOUGLE PRECISION VR(15),VS(15),HR(15),HS(15),SP(15),SS(15)
           THIS SUBREUTINE CALCULATES THE EQUIVALENT STEADY STATE
   C
6
   2
           LOSS BASED ON THE MANNING CLEFFICIENT.
           DUUBLE PRECISION A.T. PER.PF
           00 1 I=2, N+1
C
           CALL SHAPE (HE(I), A, T, PER)
           SR(I)=((VK(I)++2)+RM++2)/(A/PER)++1.33
           CONTINUE
   1
           00 2 1=1,N
           CALL SHAPE(HS(I),A,T,PER)
           SS(1)=((vS(1)++2)+R4++2)/(L/PEP)++1.333
2
           CONTINUE
           RETURN
           END
E
   C
   С
```

ŧ.

C Ø

****-

```
. . . . . . .
   2
   000
       -
           SUBROUTINE DEPTHITIME!
   2
           THIS SUBALUTINE USES A SECTION OF ENTRY TO CALCULATE NORMAL
           AND CRITICAL FLUH DEPTHS.
l
           JUUBLE PRECISIUN GIN(30), TIN(30)
           JUUBLE PRECISION HC. HN. TIME
           CUMMON/Ch3/NFTS, GIN, TIN
ŧ
           COMMUN/CH5/FC.HN
           CALL ENTRY(TIME)
           RETURN
1
           END
   C
1
   1111
ŧ
           SUBRIUTINE INFLUM(TIME, DAV)
           THIS SUBRUUTINE CALCULATES INFLOW PATES AT PIPE ENTRY HASED
ί
           IN THE ENTRY FLUM PROFILE DATA. NOTE THAT THE O CALCULATED
           IS AN AVEFAGE VALUE FUR THIS TIME STEP.
           JJUPLE PRECISION J(3)), T(30), 47(30)
2.4
           JUUILE PRECISION JAV, UTD, CT, UX, SU, PL, SEU, XK, KH
           JJUSLE PRECISION TI, TJ, TX
           JUMMON/CH1/DT0+DT+DX+U+S0+FL+SF0+XK+KM
l
           COMMUN/CM3/NPTS+4+T
           T1=TI≒E
           TO=TIME-UT
ł
           J=1
           TX = T_{\perp}^{\perp}
           JU B I=1, MATS-1
ŧ
           IF (TX.GE.T(I).AND.TX.LT.T(I+1)) GOT. 4
   3
           CONTINUE
           \frac{1}{2} (1) = \frac{1}{2} (1) + (\frac{1}{2} (1+1) - \frac{1}{2} (1)) \neq (T\lambda - T(T)) / (T(T+1) - T(T))
    +
1
           JAV=UX(1)
           KETU-N
           END
   2
   c
   0.0
1
   00
1
   2
           SUBROUTINE SHAPE (H,A,T,PEK)
           JUUGLE PRECISION OTO, DT, UX, C, SC, PL, ScO, XK, RM, K, PI
1
           JOUELE PRECISION H.A.T.PEP.THETA
           CONHUN/CHI/DTO,DT,DX,D,SO,PL,SEC,XK,KH
           THIS SUBRULTINE CALCULATES FLUE APLA, SURFACE WIDTH AND
           HETTED PERIPETER BASED ON FLUE DEPTH
           R=D/2.0
           21=3.142
IF(m.LT.K)THETA=2.0#9ATAN(CSGPT(H*()-H))/(R-H))
           IF (H. EQ.R) THE TA=PI
            IF(H.GT.K)THETA=PI+2.0+DATAN((H-K)/(JSORT(H+(U-H))))
           A = ((D \neq 2) / E \cdot C) \neq (THETA = DSIN(THETA))
           PER=D+THETA/2.C
           T=2.0+((n+(C-H))++0.))
           RETURN
           END
   C
```

A-13

.....

* 0000 ŧ SUBROUTINE FAVSPULH, C) ſ DOUBLE PRECISION H, C, AREA, T, FEF THIS SUBROUTINE CALCULATES HAVE SPEED BASED ON DEPTH AND CRUSS SECTION SHAFE. ĉ £ CALL SHAFE (H, AREA, T, PER) C=DSJRT(+.E1#AREA/T) RETURN (END Ç 000 1 t SUBROUTINE INTEFINE l UJUELE PRECISION V(15), H(15), C(15), VX(15), HR(15), CP(15), V3(15) JUUBLE PRECISION HS(15), CS(15), SK(15), SS(15), AN(15) DOUBLE PRECISION KS(15), XF(15) USUBLE PRECISION OT DO DT OUX , C. SO, PL, SLU, XK, RH JUUSLE PRECISIUN THETA . COMMUN/CM1/DTO, LT, DK, J, SO, PL, SEC, XK, RM ſ CJMHUN/CH4/V, H, C, VR, HR, CR, XK, SF, VS, HS, CS, XS, SS, XN THIS SUERCUTINE SETS UP, BY INTERPOLATION, THE BASE CUNCITING FUR THE NEXT TIME STEP. 1 THETA=DT/CX N1=N+1 JÜ 1 I=2,N1 £ VR(1)=(V(1)+THETA*(C(1)*V(1-1)-V(1)*C(1-1))) 1 /(1.J+THETA=(V(1)-/(1-1)+C(1)-C(1-1))) CK([]=(C([)+(1.0-/?([)+THETA)+C([-1)+VR([)+THETA) € 1 /(1.0+C(1) *THETA-C(I-1)*THETA) HR(1)=H(1)-(H(1)-H(1-1))+THETA+(VR(1)+CR(1)) $xR(1) = XN(1) - (VR(1) + C < (1)) \neq CT$ € 1 CONTINUE 13 2 I=1, N VS([)=(V(1)-THETA+(/(1)+C(1+1)-C(1)+/([+1))) € 1 /(1.0-THETA=(V(1)-V(1+1)-C(1)+C(1+1))) CS(1)=(C(1)+VS(1)+TH:TA+(C(1)+C(1+1))) 1 /(1.0+THETA#(C(1)-C(1+1))) C HS(1)=H(1)+THETA+(VS(1)-CS(1))+(H(1)-H(1+1)) $XS(I) = XN(I) + (VS(I) - CS(I)) \neq LT$ CONTINUE 2 E RETURN END C С 00000 SUBROUTINE ENTRY(TIME) THIS SUBROUTINE CALCULATES THE UPSTREAM BUUNJARY CONJITIUNS C AT EACH TIPE STEP BASED UN A KNOWN INFLOW PRUFILE. đ DOUBLE PRECISION OP(30), GIN(30), TIN(30), VP(15), HP(15), CP(15) DOUBLE PRECISION V(15) H(15) DOUBLE PRECISION VR(15), HR(15), CR(15), VS(15), HS(15), JS(1), J, (1) .

.

(USUBLE PRECISION SR(15)+X+(15)+XS(15)+FN(15)+C(15)
		JOURLE PRECISION TIME JOUR 5 PRECISION ITJUITUNESSORFILESEORYKERM
C		JOUPLE PRECISION TAX
		JOUGLE PRECISION HC. HN
t		DOUBLE PRECISION GOLING JOURGUNG AREAGIGPERGHURIIGHUN
		COMMUN/CM1/CT0, DT, DX, D, S0, PL, SEC, XK, RM
		COMMON/COLINATOAK
		COMMON/CA3/NETS QUN FIN
		COMMON/CR5/HC +HN
		COMMON/CRE/CF, VP, HP, CP
		G=9.81
		IF(TIME_GT_0_0)CALL INFLUE(TIME_G)
		IF(TI=5.0T.C.C) GJT) 500
£		$IF(TIME.EC.C.O)G=\Im[N(1)$
	2	CALCULATION OF CRITICAL DEPTH.
		0-20 DN=0.0
E.		=C=(UP+0N)/2.0
	7	CONTINUE
•		dCRIT=1_0+(C++7)+T/(3+1+rc+)
		IF(HCRIT)3,4,5
£	3	JN=HC
	5	GUTU 6
	2	
. 4		IF (ASS((HEN-HE)/HE).LE.D.COL) GETT 5
		HC=HCN
- €	1	uli 1 ale ≢h€n
	4	CONTINUE
4	3	CALCULATION OF NUR TAL .DEPTH.
		HN=(UP+DN)/2.0
	3	CONTINUE
		CALL SHAPE (PN + AREA + T + PEP)
		IF(HNG9H)1C+11+12
	10	JN=H.v
		GATE 13
	13	
		IF (ABS((HNN-HN)/HN) .LE. 0.001) GUTG 14
		IN=HNN
	14	
	11	CONTINUE
		LF(TIME.EQ.C.C) GJTJ 500
	5	
	č	
	C	CALCULATION OF BOUNDARY DEPTH.
	600	
-		DN=0.0
		HB = (UP+CN)/2.0
	15	CONTINUE
ſ		UALL SHAPE IFE SAKEA SI SPEKI
		x

•

•

-

.

	•		
(x3=5/C5(1)	
		x4=v5(1)-C+(SS(1)-SO)+DT->3+HS(1)	
		HFL1#=9-(X4+X3+nc)+A2EA	
•		IF(HFLJw)16,17,16	
	16	UP=H5	
		010 19	
	13	ŪN≠HS	
	1 7	0.5/(NU+9U)=86h	
		IF (ABS((HEP-HB)/HS).LE.0.001) GDTD 20	
•		164=6h	
		GOTO 15	
	20	H d = H b d	
	17	CONTINUE	
		VP(1)=X4+X2#HP(1)	
1		CALL SHAPE (HEALER T. DED)	
•	500	CONTINUE	
	100		
1	~	END	
-	~		
	č		
1	2		
-	ž		
	5		
1	6		
		SUBRIGUINE NULLERI	
			,
		JUSEL PRECISION VISI, 4115	
		JUURLE PRECISION VX(15), HF(15), CF(15), VX(15), HS(15), CS(15),	22(12)
		JUALE FRE(ISION ST(L)), AF(15), YS(15), YN(15), C(15)	
		JOUGLE PRECISION JTD, JT, UX, C, SO, PL, SEU, FK, RA, HC, HNN	
		JUUBLE PRECISION G.XL XX3,22,24	
		COMMON/CM1/DT6,DT, JX, U, SO, PL, SE0,XK, KM	
		COMMUN/CH3/NFTS-UIN-	
		COMMUN/CM4/V, M+C, V2+M2+CK+XK, SK+F5+K5+C5+X5+S5, XN	
		COMMON/CA5/FC+HN	
		CONHUN/CAC/GF,VP,HP,CP	
	С	THIS SUBROUTINE CALCULATES THE FLOW VELOCITY AND DEPTH	
	С	AND HAVE SPEED AT EACH OF THE NELES BETHEEN THE UPSTREAM	
	3	AND DOWNSTFEAM BUUNDARIES BY SOLUTION OF THE THU HAVE	
	0	EQUATIONS.	
		5 = 9 a d 1	
		00 1 I=2,►	
		x1=G/CP(1)	
		$x_3 = G/CS(1)$	
_		$x^2 = x^1 + HP(1) + VR(1) - GP(SR(1) - SU) + ET$	
		x4=VS(1)=x3+HS(1)=:+(5(1)=S(1)+S(1)+DT	
		HP(1) = (x - y + 1) / (x + (3))	
		VP(1)=X4+X3===[1]	
		CALL SHAPF(HF(I) x1 x 3 x 4)	
		3P(1)=X)=VP(1)=)(00,0	
1	1	CONTINUE	
	*	JE TIID N	
6	~	ENU	
-	č		
	C		
	6		
-	6		
	C		
8	6		

A-16

i		SUPPOUTINE SOLICITIES
		DOUBLE PRECISION OP(30) OIN(30) TIN(30) VP(15) HP(15) CP(15)
	-	JUUSLE PRECISICN V(15)+H(15)
×.		DOUBLE PRECISION (2015) + HE(15) + CR(15) + VS(15) + HS(15) + CS(15) + SS(15)
		DOURLE PRECISION FS(2), SR(15), XF(15), XS(15), XN(15), C(15)
€		DOUDLE PRELISION THAY HE HAN (SEVENDERS OF AN ALST PERSING
		DOUBLE PRECISION Y2.SE.U.E.H.Y.Z.Z.A.Z.J.Z.Z.A.Z.J.Z.
		JOUBLE PRECISION DE, JH, H1, 42, SE2
•		COMMON/CH1/DT0.DT.OX.D.SO.PL.SE0.XK.KH
		COMMUN/CH2/N+TMAX
£ .		
		COMMON/CH5/FC,HN
		COMMON/CAL/CF.VP.HP.CP
•	2	THIS SUBROUTINE CALCULATES THE FLOW JEPTH, LEAKAGE RATE AND
	:	HAVE SPEEL AT THE DUHNSTKEAP BOUNDARY FURMED BY AN INITIALLY
1	5	G=9.01
		12=0
r		SEV=SEO
•		
_	50	CONTINUE
U		J=1
	3000	CALL SHAPE (HU, A1, T, PER)
£		$X1=G/(CP_1(N+1))$
-		<pre></pre>
		IF(SE-LT-SEC) GUTJ 5
t	55	CONTINUE
		U=X2+A1/XK
4		3=¥1*A1/>k
Ĩ		Y=(X2++2)/(2+0+6) - SE)
		$Z=(1,0-x2\neq x1/G)$
T.		24=W##2
L		Z1=Z=0+Y+Z+F
		20=Y++2-U
		F=Z4+H0++4+Z3+H0++3+Z2+H0++2+Z1+H0+2)
		FS(J)=F
-		
		H0=H0+0.001+H0
		GOTO 8000
	1020	DF=(F5(2)-F5(1))/(40/1000C.0)
-		H1=H0-Dh
		IF(ABS((H1-FC)/HU).LE.0.005) GOTO 70
		IF(H1.GT.E)+1=1.1=40
		IF(IZ.GT.CO) TIME=IMAX
		IF(12.GT.CO) GOTO 301
		IF(IZ.GT.10) GOTG 805
	70	GDTS 60
~	10	$IF(ABS((A2-A1)/A1) = E_0.005) GOTE R0$
		A1=(A1+A2)/2.0
		H0=H1
•		GOTO 65

A 12 MAR 1 12 MAR

.

à		
C.	30	CONTINUE
	-	HP(N+1)=h1
	-	VP(N+1)=x2-x1+H1
•		JP (N+1)=VF (N+1)+A2+1000.0
		6010 5
	6	VP(N+1)=0-0
	0	
		nr (ny 1)-AZ/AI Ob(ny 1)-AZ/AI
6	_	6010 5
	5	CALL WAVSFD(HP(N+1),CP(N+1))
		SE2=HP(N+1)+(VP(N+1)++2)/(2.0+C)
		IF (SE2.GT.SEG.AND.SE.LT.SED)GCTC 900
Ψ		GOTO 801
	300	SEGESE
8		
	301	CONTINUE
		SEG=SEV
		JT=DTC
		- GOTO - 606
	305	CONTINUE
		TIME=TIME=CT
		NT=0T/2.0
		SOTO 404
1	105	
		ENU
	9	
	C	· ·
	С	
	2	
	0	
	2	
	-	SUBPOUTINE ASSIGN(N)
	r	THIS SUPPRITING SETS OF THE NEW PASE CONDITIONS ALONG THE
	~	THIS SOURCOTTRE SETS OF THE REPORT CONDITIONS ALL TO THE
4	-	FILL IN FEFFARALLIN FUF IFE NEAR LINE SIEF.
		JJUSE PRECISION JOINTSCITTINGSCITTINGSCITTIST
		JUUGLE PRECISION V(15)+H(15)
•		DUUBLE PRECISION VR(15)+HK(15)+CK(15)+VS(15)+HS(15)+CS(15)+3,(15)
•		JGU9LE PRECISION S9(15), xf(15), XS(15), XN(15), C(15)
		COMMON/CM3/NPTS,QIN,FIN
		-COMMON/CM4/V,H,C,VR+1K,CR+XF+SF+VS+H5+CS+XS+S5+XN
•		COMMUN/CA6/QP . VP . HP . CP
		$2i1$ 1 $I = 1 \circ N + 1$
_		
		(1) MP(1)
	,	
	L	
		RETURN
		END
	\$BENJ	
4		
1		

Appendix 2

Derivation of solid boundary equations used in Subroutine SOLID

.

.

Available equations at solid boundary.

2) Continuity of flow over solid.

$$VA = Q$$

 $V \rightarrow D$
 $P = f(h)$

3) Characteristic equation C⁺ linking R at t to
P at
$$t + \Delta t$$
.
At c^+ C^+ equation of form
 $V = X2 - XI h$
N+1

$$Values of XI = g/c_{R}$$

$$X2 = V_{R} + gh_{R}/c_{R} - g(S_{R} - S_{0})\Delta t$$
From available equations at solid boundary,

$$Q = VR = (X2 - XIh)R = XK \{SE - SE_{0}\}^{2}$$

$$= XK \{h + \frac{V^{2}}{2g} - SE_{0}\}^{2}$$

$$(X2 - XI.h)\frac{A}{XK} = \{h + (X2 - XIh)^{2}/2g - SE_{0}\}^{2}$$

$$= \{h + (X2^{2} + XI^{2}h^{2} - 2X2.XI.h)/2g - SE_{0}\}^{2}$$

$$= \{h + (X2^{2} + XI^{2}h^{2} - 2X2.XI.h)/2g - SE_{0}\}^{2}$$
where $M = X2.R/XK$; $B = XI.R/XK$; $Y = Xt^{2}/2g - SE_{0}$;
 $N = XI^{2}/2g$; $Z = I - 2.XI.X2./2g$
 $U - Bh = \{Zh + Y + Wh^{2}\}^{2}$

$$= Z^{2}h^{2} + (Y + Wh^{2})^{2} + 2Zh(Y + Wh^{2}) + 2Zh^{2} + Y^{2} + W^{2}h^{4} + 2YWh^{2} + 2ZWh^{3}$$

$$W^{2}h^{4} + ZZWh^{3} + (Z^{2} + 2YW)h^{2} + (ZZY + B)h + Y^{2}-U = W$$

С

L

. .

The quartie in h cannot be solved directly as R = f(h) and therefore B and U = f(h)

Solution by Newton Raphson method is acceptable and employed in Subroutine SOLID.

Appendix 3

.

TRANSCA output

A-23

.

	1 u l 1. ú	
	COD1.10111-	J . (1 - 1) . (
	111 1 10 × 2	the rule -
L SURATION :-	0.1000 h.	1 f frit * f
TOT PHE CON	DIAMLII -	,= 14135 1414

Ľ 0. 11 .0 8 P T H 5 AND CRIFICAL r. v.010.0 N FLOW SUPERISICAL, HOWAR LEFT

U.354C P/S. . 1 SPI15 HAV. INLI 1 AL r 0.110.0 44 FIH ē 1. ULL 2 4003/5. INITAL н RATIC FL UH INITIAL

. STODA TO HUM SC R ż 0004.0 n C. 785 S. LENGDI INCREMENT CALCULATION TITE STEP

5.001+0 0004.4 4.0000 0004.1.0000 1.5000 2.5000 2.000 2.0000 3.0000 ; FROM P US 111 1M ENTRY 4.

0.0169 0.1945 0.2000 0 6 4 8 * 0 0.1945 0.02.000 0.3540 0.6184 0.1945 0.2040 9610.0 0.1510 0,001.0 0,010.0 0,000. C.U189 0.U189 U.1945 U. 11922.0 0925.0 H/5+ FLUM RATE HAVE SP.D. VELUCITY Ot PTH s. ÷ . T14E

0.0256 0.0116 0.0164 0.4220 0646.0 0.00 2.0 0.0169 0.1946 0.0169 0.1946 0.010 0.1540 9510.0 0.1440 0.1440 0.010 1.2010 0.21. U. J. J. J. J. J. 0.0144 0.1946 0.002-0 U051.U 0.0189 0.010V 0.1946 0.2000 0.2000 0.2000 01.41.0 0.0134 0.1946 0.1946 04:26 - 0 0446.0 0.0189 0002*6 1.122.0 P.0184 0.2454 0.1446 0.2846 6.020J 0.3775 L/5--5/H FLUM RATE HAVE SPIL. V EI OLI TY UE PTM ς. 0.274 я 311.46

0°0135 9120.0 0-4264 0.0261 12.16.0 0.0195 0.1904 0.1762 0.0189 0.1946 0.2030 0.31.0 0.35 10 .1. 1510 J.1946 0.2000 0.9189 0.0114 0.000 0.1446 U. 15'10 U. 151'1 0. 15'40 0.0189 0.1946 0.4 000 0.014.0 0.1940 0.002.0 0.0149 0.1946 0002.0 0.0189 0.1946 0.3540 0.000 11. 3644 0.0194 5012-0 0.2260 0.0224 0.2468 U. 37F1 1696.0 ۲/2۰ H/5= FLUN RATE MAVE SPD. VELOCITY OL PTH s. 0.557 8 3K11 0

A-24

0-0149 0.026.4 0-0247 1+2+0 0.1583 C.1802 0.0202 1516.0 0.1.120 0.0183 1946 0.3546 0.1946 0.1346 0.2080 0.2010 9610° C 01 61 .0 U. 15 .U 0.0139 0.1946 9.0109 00460 0.2001.0 0.0139 0.3593 0•1440 0•2•0 0.0139 0646.0 6461.0 0.10.0 1102.0 0.1608 0.3211 9.2351 0°J204 1.3742 0.4086 0.0241 VELOCITY FLOW RATI PAVE SPIJ. UEPTH s. 0.436 . 11-15

U.U160 0120.0 0-0267 5562.0 0.1693 0.0210 4141-0 1916.0 6.1493 0.0140 0.1973 0.3633 0.2000 U.2000 0.1946 9.1944 1146.0 **U**.Uld4 00.46.0 0.0144 0.1946 0007*0 0.0189 004100 0.018-0.1340 0.2000 64.58 .0 0.1961.0 4-205-0 0252-0 21.01 .0 910.0 0.2103 0.0144 0. 1549 6202-0 0.1302 0.0216 -)- 105r 0 1955 •0 11233.0 0-4229 н. Н/5-5 P.). ULPIH VELOCITY FLUM RATE MAVE ς. 1.114 0 1146

0=0269 0.0269 0-0149 0.4342 0-3866 1120.0 0.1578 0.1257 0.1856 9411.0 0.3623 0.0112 901000 0+1-0 0.2000 J.191H 51 ct . L D1 cE . U 0.1946 0.0114 0.0189 0.1946 0.00 2.0 0441 .0 0.0144 0461.0 24-56 -0 1.2047 1.2031 2102.0 0.3715 0.3611 0.0191 1020.0 6122.0 4962°0 H/S- 1.431 0. 1421A 0120.0 0.3746 0.2940 0.6467 0.4023 0.0272 475+ ż HAVE SPIL. FLUH ZAFF VELOCITY **HT9 30** \$ 1.393 . TIAL

0.4159 0.0305 0 = 0271 0-0177 9220.0 6.1114 0-1462 0.3930 \$4.10.0 0.1901 511110 0. 1647 D {{{}} U.010.0 V.10.0 0.0130 0.01HV 0.1991 0.1941 3.2032 0.2002 1.21.0 2026.0 U.255 U 2445 U \$0.10 °U 3120 °U U - 3643 0.1.1.03 0.12430 0.6286 9.0245 1.9127 0. 3956 0.44.00 1.07346 = 5 / W ÷ FLOW RATE PAVE SPD. VILDCITY **HEPTH** ŝ 1.671 . 1146

0°0273 0.0184 0.017 0 V-4374 1440.0 0620.0 4461.0 9066.0 0.1717 1.1.0 4/51-0 0.0147 0111-1 (107-0 0110.1 10.0 1.4 26 . 6 54144 0.1414 0.4751 0.4211 0.4001 0.1952 110 2.0 1 FOS. L 695 ... Eact. 0 0. 3644 0. 573 J 0.0140 1010-0 U . 36.42 01.99 0.0222 111.1.0 L/5+ (+12+2 0-3691 M/5+ 0-4614 0-4747 0.220.0 6.0364 = C. / N ÷ FLDM AVE MAVE SPID. VI 1 0 0 1 1 Y **UEPT**SC 2 1.050 . TINE

0.0100 220°0 **Filu.0** 6.0677 6.0677 522423 0.2000 0.3644 1961-0 0.10.0 4010.0 1001.0 4001.0 1111-0 2002-0 11 48 - 0 0.3135 0.0189 1001-0 2005-0 J.4244 U.2717 J.2114 7.6014 U. 1421 U. 144 U 9620.0 0+0735 M= 0.0355 0.0275 M/2+ (+4311 0.5759 L/5+ 1-9135 0.5791 JAS HULL VELOCITY LI FIH \$ 2.128 • 1145 7

0.4347 0.0276

0.41.44

11111

U. 1912 J. 5101

0.1741 0.141 0.1410

11 14 11

M/5+ (+4713 9.4191

1.0.

١٨٧

1

)

1220-0

2020-0 1410-C 4410-0 0610-0 2040-0 4420-0 6520-0 0.20.0 2200 ÷ LCPTH \$ 2.501 111

C.1144 C.0141 C.1144 C.0141	1.44.0.0277 4.5765 4.4765 4.4765 4.4355 4.4355 4.4355 4.4355 4.44154 4.4415 4.4415 4.4415 4.4415 4.4415 4.4415 4.4415 4.4415 4.4415 4.4415 4.4415 4.4415 4.4415 4.4415 4.4415 4.4415 4.4415 4.4415 4.44154 4.4415 4.4415 4.44154 4.4415 4.4415 4.4415 4.4415 4.4415 4.44154 4.4415 4.4415 4.44154 4.4415 4.4415 4.44154 4.4415 4.44154 4.4415 4.4415 4.44154 4.4415 4.44154 4.4415 4.44154 4.4415 4.44154 4.4415 4.44154 4.4415 4.44154 4.4415 4.44154 4.4415 4.44154 4.4415 4.44154 4.4415 4.44154 4.4415 4.44154 4.44154 4.4415 4.44154 4.44154 4.44154 4.44154 4.4415	E 344-0 0.670-0 0260-0 4600-0 6201-0 2214-0 6201-0 2214-0	\$20,000,000,000,000,000,000,000,000,000,	0.0257 V=0281 V.0543 V.0218 V.V.6423 V.0218 V.V.6445 V.4234 V.4445	0.0260 0.0282 0.0510 0.0273 0.0626 0.04273 0.0626 0.04273	8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	0.0265 0.0285 0.0471 0.0234 5.010 0.0434 0.0709 0.0435 0.4309 0.4455	0.0268 V.0286 0.0464 V.0240 0.0745 V.0745 0.4785 V.0446	0.0270 0.0288 0.0460 0.0247 0.0662 0.0472 0.4562 0.0472 0.4369	0.0273 0.0289 0.0484 0.0255 0.0640 0.0442 0.0640 0.0442	1.6276 0.0291 0.0913 0.0275 0.0913 0.0275 0.0907 0.05133	0.0780 0.0746 (
() (*) () (*)	2110 0-020 2110 0-02 21110 0-0 21110 0-02	114 0.0212 117 0.1413 103 0.1714 104 0.3815	110 0.0216 41 0.1368 963 0.1657 969 0.3936	118 0.0220 730 0.1246 174 0.1600 534 0.3873	231 0.0225 775 0.1171 1913 0.1549 716 0.1941	205 U.U230 872 U.U230 8010 U.U30 800 U.150U 8050 0.1915	211 0.0235 22010 0.12 2120 0.12 2120 0.12 2120 0.15	217 U.U24. 823 U.1028 213 U.1948 215 U.498 466 U.4978	225 0.0245 448 0.1021 447 0.1527 447 0.1527	2420-0-462 0401-0-474 712-0-101-0-120	1 4 2 0 • 0 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10/01 0-020 221 0-12/0 220 0-12/0 220 0-12/0
0.82010 v.1	U-110	1.6 1710.0 1.6 2721.0 1.6 240.5 1.6 240.5 0	0.0111 J.0 0.2001 U.1 0.2124 J.1 0.2124 J.1	U-U 4410-0 U-U 240-0 U-U 140-0 U-U 1	0.0 99 0.0 1. c 212.0 2. v 1 c 21.0 1. v 2 1 v v v	0.0 4020-0 0.2 4020 1.0 42420 5.0 17742-0 1.0 1410-0	0.0212 J.0 0.2312 J.0 0.2645 J.2 0.2614 J.2 0.3614 J.2	0.0221 J.0. 0.2514 J.0. 1.0.3214 J.0. 2.0 2128 U.321	U-0.11 J-0. U-2614 J-10 U-3614 J-12 U-3614 J-20	0.0241 J.0 U.2012 U.2 U.4 2112 U.4 15 U.4 15 U.4 15 U.4	1 - 1 - 2 - 2 - 1 - 1 - 1 - 1 - 1 - 1 -	1.1.1.1.0.0 1.1.1.1.1.1.1.1.1.1.1.1.1.1.
2364 0.7030 8673 0.7030	2013 8.01% 2210 0.2041 611 0.2162 8720 0.1624	2213 0.0195 2923 0.2116 2923 0.2272 1900 0.3658	214 0.0200 678 0.2223 1416 J.2444	2231 0-0206 2213 0-2369 3384 0-2365 3384 0-2757	0241 0-0214 152 0-2539 125 0-1123 0145 0-1123	724 0.0223 1370 0.2741 1320 0.1741 1320 0.1554 1724 0.157	1267 0-J234 1540 0-J2954 167 0-4136 111 0-4137	272 V.U245 2512 V.125 2522 V.125 2522 V.125 2525 V.125	1286 9-9256 1766 9-1537 971 3-5311 971 9-524	1243 0.0267 141. 0.2474 1322 0.5474 1322 0.5474 1323 0.4318	10,00,00,00,000 (10,00,00,00,00) 216,00,00,00,00 216,00,00,00,00,00	1904 V. V 244 1741 V. 1654 7712 V. 16644 7712 V. 4664
U- 3/21 (- 2	U-0220 0-1 0-707 0-2 0-8775 0-2 U-1255 0-1	u - 10237 11. u u - 1072 11. u u - 4411 11. u u - 4071 13. J	U.U23 0.0 0.1354 U.5 1.0 4214 U.5 1.0 4214 U.1	0.0350.0 2.0 4728.0 2.0 4128.0 1.0 4118.0	U-0274 J-U U-3749 O- J U-427 J-4 U-427 J-4	U.0239 U.U.929 U.3461 U.4 U.427 U.429 U.429 U.4	0.0 7 Y20.0 1.0 25 YE 0 2.0 3447 0 2.0 3447 0	0.0346 0.0 0.3754 0.1 0.1010 0.0 0.1010 0.0	0.0100 0.1000 0.1000 0.0111 0.0111 0.00 0.00 0.00 0.00	0.0)14 0.0 0.175 6.1 0.175 6.1 0.144 8.1	U-1310 9.1 U-1977 9.1 U-1941 - 1-1	1.0 11.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
430 m 704	6220-0-2010 1225-0-2225 1225-0-1225 1225-0-1225 1255-0-1225	114 0.0274 4214 0.1274 1491 0.6767 4726 0.4421	1920 0 0500 1245 0 522 1205 0 7714 7524 0 7714	U326 0.0301 4194 0.4039 7319 0.4335 7820 0.4335	0130 0-0109 4 161 0-4076 1198 0-6171 1998 0-6171	2110-0 1115 111 0-4040 111 0-4040 111 0-413 111 0-4128	4925-0 2114 4925-0 1404 4928-0 4444 4926-0 1404	72000000000000000000000000000000000000	141 0-0328 1464 0-4013 1451 0-4731 1451 0-4731	0140-0-0140 2015-0-1014 2015-0-1001 2014-0-1014	1410-0-1410 1410-0-141 1410-0-1414 1410-0-1414 1410-0-1414	1110 0.9530 1011 0.9530 1904 0.8678
с (, , чу, и , , , , , , , , , , , , , , , , , ,	6.6334 0. 6.4376 0. 1.5442 0.	- (-0337 0. - 0.9311 0. - 1.6(16 0.	6.(1340 0. 0.4253 0. 1.0016 0.	• 0• 0343 0• • 0• 4144 0• • 0• 4947 0•	0.4145 0. 0.4145 0. 0.4943 0.	0.0349 0.0 0.4102 0.0 1.0005 0.0	0.0351 0. 0.4056 0. 0.50487 0.	6.0349 0.0 0.349 0.0 0.9465 0.0	0.6346 0	0.0343 0. 0.3775 0. 0.5775 0.	0.0339.0. 	0.135 0. 0.1517 0. 0.1517 0.
		1117 M/S	LITY M/S- RATE L/S- SPD. M/S-	SPD. M/S	ALTE M/S-	ATE L/S	ATE L/S	LITY M/S- RAFE L/S- SPU. M/S-	LTY M/S- RATE L/S- SPD. M/S-	ALLUS	ALLE HALL	ALL ALS
141	5. LTPTF VELIG FLCH HAVL	S. LEPTH VILOC FLOH HAVE	S. DEPTH VELOU FLOW MAVE	S. DEPTH VELOC FLCM MAVE	S. DEPTH VELOU FLCW HAVE	5. DEPTH VELOC FLOW MAVE	S. DEFTH VILGC FLCM WAVE	5. UEPTH VELOC FLOW HAVE	5. LEPTH VILUC FLUN HAVL	5. DEPTH VILCC FLCH Havi	5. 1/1 1/1 VILOC 1 1/54	5. [] P] I V([])C F [] H H A V]
	2.785	3.064	3.342	3.621	3.879	4-178	4.456	561 **	\$10*5	242.5	115-5	(.4.1 * 4
	140 a	1146 •	TIME .	11 1E •	• 3611	r146 -	TINE -	1140 +	FINL -	• 34 11	• 3111	f 1 4t •

•

C

C

C

¢

1

((

C

۲.

*

8

3 3 3

2

)

> >

)

ر

ر

A-25

I																	
•	7 F11	•	6.124	\$	DEPTH Vilocity HLGM Rafe Mavi SPD.	AN Se N Se N Se N Se	0.0330 0.3275 0.7434 0.7434 1.434	0. 1332 0. 1317 1565 -0 2562 -0	U.U.J.J.U. U.J.J.U. U.S.J.Z.L U.S.754	U = 03. < U = 3419 U = 6392 U = 6759	0.0338 0.3532 0.7944 0.7944 0.4570	0.2290 7.6730 7.6732 9.524	0, 0273 1028-0 0, 02-0 0, 02-0	4.4265 4.237 4.3472 4.3472	0.9276 0.1777 0.1275 0.2253 0.4337	C。U285 C.C.C.Z L.C.L.J C.L.L.J C.e.4.74	6.0297 0.0270 0.0270 6.4353
	TLAE	4	6.40C	2	DEPTH VELOCITY FLOM KATE MAVI 5P0-	M.S= M/S= M/S=	0.0325 0.3136 0.4445 0.4434	6.48 1.49 1.49 1.49 1.49 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48	0.0120 0.120 0.3603 0.8078 0.8078 0.4139	U - 0322 U - 3744 U - 4742 U - 4742	1169 • 0 64 76 • 0 61 67 • 6 0 1 67 • 6	0.4296 0.5210 0.7215 0.7215 0.9725	0.6231 0.3344 0.5055 0.4447	12222 1222 122 12	0.0246 0.1436 0.2692 0.4433	0.0771 0.0766 0.1342 0.4527	0.0101 0.0111 0.00.0 0.4416
• •	3⊬11	8	6.085	2	DEPTH Vilocity Flom 2473 Mave SPD.	M/S= M/S= M/S=	0.6320 0.370 0.4715 0.4770	0.922 0.922 0.925 0.925 0.925 0.919	0795°n 6656°n 976°°	0 • 0 352 0 • 3669 0 • 7990 0 • 7394	5782 °6 6426 °6 6426 °6 6427 °6	0195°0 7572°0 1025°0	0.121.0 1112.0 1122.0	U- J270 U- 2574 U- 2574 U- 4519 U- 4519	0.0276 1771 0.1777 0.07 0.07 0.074	0.020 0.020 0.120 0.121 0.121 0.121	0 - 0306 4 - 0336 4 - 0336 4 - 06 1 - 40 1 -
•	3611		6 • 463	\$	DEPTH VELGLITY FLON RATH Mavi Spo.	H/S+ L/S+ N/S+	U. 0314 U. 2874 U. 6058 U. 4721	0.0321 0.5160 0.5160 0.5966	0.3392 0.3392 0.3497 0.747	0256°0 1260°0 1277°0 1277°0	u. U314 U. 3673 3. 7764 U. 4724	0.0304 J. J67J U. 7414 U. 7414	0.02.76 0.3410 0.5027 0.4220	J. 93J0 J. 2642 J. 2642 J. 5264	0.0306 0.1895 0.3841 0.3441 0.4655	0.0306 0.0524 0.1883 0.4658	0.0313 0.0368 0.4715 0.4715
• •	1146	•	1.242	\$	DEPTH VLLULITY FLUM RATL Mave SPU.	N/S-	0. U 307 0. 2735 U. 5105 U. 4116	0.0316 0.1040 0.6472 0.6472 0.6472	02125°0 50712°0 5878°0 0710°0	0.0319 0.1475 0.1475 0.0275	0-0314 0-3605 0-7617 0-7725	0.0307 7.3628 9.7407 0.4661	0.050.0 5025.0 5170.0 0.404.0	u. 0 308 U. 2721 U. 5721 U. 5676	0.0316 0.1423 0.1881 0.4733	0.4015 0.4048 0.5220 0.527	0.0321 0.0409 0.0669 0.4751
• •	T146	u	1. 520	°.	DEPTH VELGCITY Flum Ratë Mave Spn.	M/S= M/S=	0-03C1 0-2662 0-5166 0-4614	1140.0 2122.0 2122.0	0.0316 9.6762 9.6762 0.4740	1180°0 1180°0 1182 1282 1282 1282 1282 1282 1282 128	0. U314 0. 3524 0. 7434 0. 7422	0. 0 304 0. 2 5 1 0. 2 5 1 0. 2 6 1 0. 1 0 2 0	0.0346 0.111 0.666 0.6663 0.6657	U+0316 J-2725 U+7464 U+74U	0-0325 0-1940 0-4317 0-4317	97 95 °0 7 97 95 °0 6 2 1 1 °0 6 2 1 1 °0 6 2 0 °0	0°0330 U°0457 U°1035 O°4859
•	TIAE	•	1.744	\$	DEPTH Velocity Flom Rate Mave SPD.	M/S+ L/S+ M/S+	U.0294 U.2452 U.4714 U.4714 U.4262	0.0306 4672.0 6462.0 64653	U.UJ42 U.J465 0.6415 U.47U7	0.0314 0.152 0.472 0.4726 0.4726	0.0313 0.3437 0.7223 0.4714	8.0309 1.3502 1.2502 1.250 1.250 1.250	0.110.0 0110.0 0140.0 0140.0	J. 0322 U. 2769 U. 5452 U. 5413	0.0334 0.2034 0.4672 0.4632	0°0336 0°1290 0°2391 0°2393	1 + 60 • 0 + 1 50 • 0 + 1 50 • 0
• •	1146	"	8.077	\$	DEPTH Velucity Flom rate Mave Spu.	H/S+ H/S+ H/S+	0-0286 0-2307 0-4285 0-4285	00100000000000000000000000000000000000	U.0308 U.2755 U.6060 U.6061	1 1 5 0 ° 0 1 4 1 6 ° 0 1 6 1 6 ° 0 1 6 1 6 ° 0 1 0 7 9 ° 0	0.0311 0.3351 0.6350 0.6732	0.0310 0.3425 0.7077 0.7048 0.4688	6114.0 0 6 9 4 7 7 7 6 0 1 1 7 4 5 0 0 6 9 4 9 0 0 6 9 4 7 1 9	J。(J J Z H Z H Z H Z H Z H Z H Z H Z H Z H	7580°0 7617°0 7617°0 7665°0	1,450.0 0,451.0 0,451.0 1,472.0	4749.0 16378 0.5042 0.5042
	1146		8. 356	~	DEPTH Vilguty Flow Aafe Mavi Spo-		0.0276 (.2144 0.382 0.4415	\$620°0 \$567°0 \$645°0 \$645°0	500.0 5712.0 5172.0	0.0308 0.304L 0.314L 0.6337	0 • 4 3 L 0 9 • 5 2 6 4 9 • 6 7 4 5 0 • 6 7 4 5	0.0310 9.141 0.0427 0.4683	2110-0 2120-0 2123-0 2124-0	5689.0 7675.0 1956.0 6769.0	8480°0 8412°0 712°0 700°.0	0.0357 0.1469 7632.0 7702.0	0.0365 0.0646 0.16.75 U.5141
	3 F 11		8.434	\$	БЕРТН Velucity Flum Kate Mave SPJ.	н 125- 12-	0. 0270 5. 1964 6. 3391 0. 4340	/ 0.55° 0 06555° 0 2057° 0 2870° 0	1444 0.42729 1444 1444	2.0305 0.4250 0.4030 0.0440	0.0307 1.316.1 1.4.515 0.4.555	0. J 256 0. J 256 0. 4694	1110.0	J. 8336 J. 2677 J. 2677 L 2677 L 707	4460.0 1112.0 1112.0 1114.0 1114.0	1360-0 5261-0 5261-0 5261-0 6616-0	0,2240 0,0777 0,0715 0,5240
	114			\$	ULPIH VILUCITY FLCH 415 Mavi 503	E S S S S S S S S S S S S S S S S S S S	0+0201 0+1605 0+2977 0+2977	1227-0 1227-0 1257-0	2505-0 21-2-0 21-2-0	1140-0 1777-0 1772-0	0.4305 0.4307 0.4075 1.4725 1.474 1.474 1.474	0.0309 0.3166 0.6574 0.6578	0.0310 0.3040 0.6540	1.0350 2.2455 2.2451 2.1411	0-10-0 1-12-0 3-24-0 25-02-0	0-0376 6-1555 6-192 0-5-79	U.OJF9 U.U763 V.2213 V.2333
• •	113		1.1.42	\$	00418 1100117 1006 210 2201 280	Н 1/16 1/26 1/26	7715-1 7656-1 7131-1 7131-1	9.4779 9.4779 9.4764 9.4079	0.0767 0.1474 0.1474 0.1475	7 - 2 - 0 - 0 - 7 - 7 - 0 - 4 - 7 - 0 - 1 - 2 - 0 - 1 - 2 - 0	2010-0 1112-0 1212-0 1212-0	0.4 300 0. 3 0 72 0.6 5 0 1. 5 6 6 1	0.0100	1 - 1 - 1 2 - 1 - 1 2 - 1 - 1 2 - 1 - 1 2 - 1 - 1	0+0.06 0+175 0+2477 0+5477	6.0 184 (.1555 0.4340 0.5545	0 * 0 * C 0 5 * 0 4 4 7 7 * 5 0 * 6 7 * 4 1 4
•	114	-	9.470		11 FT11 VI1 (LTTY	чР. н С./ м	1.50746 6.1410	4261-0	2420-0	0-9215 0-9215	12.20-0	0.0306 0.976	0,00,00	1.11.1.	0.0500 0105-0	2010-0	0140-0

\$

ر

.

LULUL VILLETY MAULETY MAULETY	алар проведа превида прогида превида преда преда 1 тели 1 преда 1 преда 1 тели 1999 на 1999 на 1999 на 1999 на 1999 преда 1999 на 1999 на 1999 на 1999 преда преда 1 преда 1 преда 1 преда 1 преда 1999 на 1999 на 1999 на 1999	180-0 000 1.00 2.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 1910-0 0000 0.000 0.0000 0 0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	0200 0.0747 0.0200 0.710 0.720 0.000 0.000 0.0200 0.0140 0.0140 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0140 0.0200 0.0140 0.01	0.234 0.0244 0.0245 0.0272 0.0249 0.0249 0.0249 0.0344 0.0344 0.0412 0.0412 0.0414 0.0404 0.0414 0.0404 0.0414 0	1232 0.0241 0.0253 0.0267 0.0281 0.0297 0.0319 U.0349 0.0369 0.0464 0.0436 1443 0.1584 0.1833 0.2120 0.2350 U.2453 0.2419 U.2045 0.1641 U.1338 0.1065 1997 0.2315 0.2868 0.3570 0.4250 0.4720 0.4780 U.24948 0.4940 0.2024 1009 0.4114 0.2868 0.3570 0.4250 0.4780 0.4788 0.4948 0.4014 0.5249	1231 0.4239 0.0200 0.0263 0.4777 0.4274 4.4034 4.0350 0.4754 0.4744 0.4754 0.4754 0.4744 0.4754 0.4754 0.4744 0.4744 0.4754 0.4744 0.47	UZ3V 0.UZ37 0.UZ47 0.UZ47 0.UZ74 0.UZ92 0.03419 0.U351 0.0347 0.0417 0.0438 1464 0.1568 0.1736 0.1753 0.2150 0.2226 0.2191 U.1622 0.1501 0.1241 0.1080 1496 0.2235 0.2019 0.3150 0.17747 0.4252 0.4262 0.4466 0.4707 0.3851 0.3576 1467 0.4054 0.4142 0.4222 0.4540 0.4537 0.4537 0.5010 0.5112 0.5556 0.5721	0279 0.0236 0.0244 0.0226 J.J.71 0.0230 0.01818 J.0352 0.0348 0.0448 0.0438 147. 0.156. 0.1135 0.1129 0.2750 0.2113 0.1241 0.1410 0.1410 0.113 77.5 0.1527 0.2717 0.271 0.2717 0.1572 0.2499 0.2451 0.2414 0.1410 0.251 72.5 0.5050 0.2512 0.2512 0.24153 0.2451 0.2451 0.5503 0.2552 0.2557 0.2525	0228 0.0234 0.0242 0.0253 0.0259 0.0258 0.031/ J.937 0.0383 0.0418 0.0438 0.0438 0.0418 0.0438 0.0438 0.0438 0.0438 0.0438 0.0438 0.1076 0.107	7590.0 1940.0 (1900.0 1990.0 1990.0 1970.0 0070.0 1970.0 1	0220 0.0277 0.0739 0.0299 0.0269 0.0260 0.0317 0.0395 0.0388 0.0446 0.04935 1109 0.1271 0.1254 0.1740 0.4910 0.1770 0.1017 0.1209 0.1206 0.300 110 0.071 0.7126 0.2072 0.1013 0.1300 0.1444 0.1117 0.1264 0.0274 0.2477 110 0.035 0.4173 0.4173 0.1212 0.4402 0.4417 0.4770 0.516 0.5247 0.5047	5540.0 4140.0 4660.0 4460.4 1600.0 4820.0 2020.0 8420.0 0620.0 1650.0 4240
	FLIN SAT 175 1.4	LEPD: 4/2 (1) VILLIT 4/2 (1) FLLM 2/10 L/25 (1) MAVI 5/00, 4/25 (1)	111114 M= () VELGLITY M/S= U ELLIM 34TE L/S= U HAVE SUU. M/S= U	UEPTH M: U. VELOCITY M/S= 0.1 FLOH RATE L/S= 0.1 HAVE SPID. M/S= 0.2	UI PTH H= 0. VLI UCI TY H/S= 0. FLGH AAIF L/S= C. HAVE SPD. H/S= 0.	DEPTH M= 0.4 VELOLITY M/S= 0.1 FLON RATE L/S= 0.1 MAVE SPD. M/S= 0.2	DEPTH M- M- U.L VILICITY M-> 0.1 FLUM RATE L-> 0.1 MAVE SPD. M->= 0.1	DEPTH M= 0. VELGETY M/S= 0. FLUM RATE L/S= 0. MAVI SPI). M/S= 0.	DEPTH A= 0. VILGUEY M/S= 0. FLCH 4AIE L/S= 0. MAVE 5PD. M/S= 0.	01874 M= 0. VILOLITY M/5= 0. FI 0H 4/15 L/5= 1. MAVE 5P3. H/5= 0.	UEPTH M- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	61816	6.61 Di 11+ 0+0

•

A-27

	x > c 4	5 M S M	m4.=0	0252	~ 9 ~ ~	* O C 2	-026	~~~~	ቀቀጠ ው	~~~~		£ 4
0.043 0.103 0.103 0.103 0.103 0.103	0.101	0-042 0-100 0-319	0.560	5+0-0 5-045 5-05 5-0 5-0 5-0	0 • 041 0 • 044 0 • 243 0 • 555	140-0 260-0 282-0	140°0 160°0 160°0	0+0-0 980-0 952-0	0-040 0-047 0-265 U-265	0-040 0-085 0-252 0-252	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1560°0
0-0412 0-0412 0-3020 0-3020 0-3024	0 • 0 • 1 0 0 • 0 • 0 7 • 7 0 • 0 • 0 • 0 • 0 0 • 5 • 9 5	0°0°0°0°0°0°0°0°0°0°0°0°0°0°0°0°0°0°0°	U.U404 U.U441 U.U441 U.5454	0°0401 0°0402 0°241 0°241 0°241	0,0,2,0 2,0,0 2,0,2 2,0,2 2,0,2 2,0,2 2,0,2	0.0946 0.0910 0.5385 0.5385	200,0343 20,0253 20,253 20,253	0.0390 1.41 2.175 0.5339	7 860.0 0670.0 0112.0 7 16 4.0	0.0384 0.0735 0.2643 0.5246	0+0382 0+0382 0+122 0+122 0+122	PTE 0.1
0-0166 0-1013 0-2012	0.0385 0.0947 0.2442 0.2301	0.0783 1980 9997 9997 9997 9997 99753 9	54.60.0 96.90.0 1.05.0 0.5273	1760-0 2470-0 2412-0 7222-0	1760-0 2426-0 2426-0	27225°0 1120°0 27120°0 27222°0	0.03/3 0.0667 0.1650 2.1520	1760-0 6990-0 9671-0 15142	640000 649000 174100	1020-0367 0-0529 0-1619 0-1210	0.03% 0.0%(/ 0.1%/	10[0.0
9660.0 1411.0 9665.0 9665.0	4-0354 4-1031 1-21-0 1-25040	0,62.0 1,0,0 0,62.0 0,62.0	6 40 4 - 0 6 40 4 - 0 7 - 10 6 40 4 - 0 6 40 4 - 0 6 40 4 - 0	0.0352 0.0415 0.2014 0.2018	2080 - 5 2010 - 5 2011 - 5 2102 - 1	1460.0 6070.0 7271.0 7204.0	J.JJ50 J.J559 J.1516 J.1516	J.0349 J.0349 J.1524 J.1524	u.0348 U.0536 J.145U	1989-1 2120-1 2111-1		1.4345
8. 0317 0. 1370 0. 2372 0. 2772 0. 472	8760°0 5571°0 5175°0 5678°0	0°114 0°1141 0°24'7	4474-0 4472-0 4472-0	0.260-0 0.097e 0.112-0 2112-0	12F0-0 9790-0 4770-0	0.0322 0.0022 0.1002 0.1002 0.4784	(710-0 (910-0 (112-0 (112-0	1505-0 01/0-0 1505-0	0.0124 7.00.0 7.10.0 7.11.0	0-0324 0-0623 0-1519 0-1517	5360°0 1120°0 21110	0.0123
0.0245 9.1590 9.2427 9.4474	0.0285 0.1470 0.272 0.2720 0.4470	0.82450 1.1.1406 0.2450 0.4480	4.0286 0.1319 0.2447 0.24487 0.4447	0.2300 0.1236 0.2300 0.2300	0.289 0.1150 0.2173 0.4510	U • U 290 U • U 290 U • 2 047 U • 2 4 7	U.U292 U.101U U.1929 0.4539	13 - 0 2 94 0 - 0 9 4 4 0 - 1 8 1 4 0 - 4 5 5 4	0.0246 0.0884 0.1717 0.4570	0.0240 0.0429 0.1624	1144*E	101 0.6
1428-0 1443-0 1443-0 1443-0 1443-0 1443-0	9.4261 9.4261 9.4267 9.4267	0-0261 0-1572 0-2580 0-5269	U • J 2 6 1 U • 1 5 1 7 O • 2 4 7 2 D • 4 2 6 7	U°1261 U°1462 U°237U U°4272	0.3262 0.1407 0.2311 0.4777	0-0263 0-1352 0-2233	0.0265 0.1277 0.2157 0.4331	0.0266 0.1241 9.2042 0.4314	0.4264 0.1146 0.2037 9.4330	0- 0270 0- 1130 0- 1932 3- 1932	2776-0 670)-0 6601-0 6601-0	97 (1 ° P
0.0247 0.10.4 0.2015 0.4157 0.4157	u = 0246 U = 1677 U = 2442 U = 2442	0.9245 0.1631 0.2434 0.2434	0.0245 0.1646 0.2370 0.4122	0.0244 0.1540 0.214.0	0.15.0 6.41.0 6.41.0 0.1210 0.4120	U .0245 U.1526 U.2271 U .4122	U • U 2 45 U • 1 476 U • 2 2 3 3 U • 4 1 2 6	3 • U246 U • 1464 U • 2173 U • 4131	U • U 2 46 U • 1 • 5 U • 2 1 5 2 U • 4 1 5 d	7+14-1 7+114-1 7+14-1	0.19.0 0.1906 0.41.0 0.41.0 0.41.0	0 < 20 * 0
76:0.0 78:1.0 78:1.0 1262.0	U . 42 36 U . 16 30 U . 2 365 U . 4042	U.UZJ5 0.LUZJ5 U.4UJ5 U.4UJ5	U • 02 34 U • 161 7 U • 2266 U • 4U2 A	0.40234 0.1010 0.40230 0.4023	0.0233 0.1002 0.2230 0.4016	0.4015 0.2213 0.2215	0.0233 0.1582 0.2194 0.4012	1105-0 1161-0 1161-0	1105-0 7221-0 7222-0 7215-0	5145-0 1511-0 1512-0 2512-0	0.10233 4.1.0 4.1.0 4.10240	61,50.0
546F*0 635F*0 085F*0 085F*0	0.2279 2421.0 741.0 7702.0	0,1220-0 9,1285 9,12,0 9,12,0 9,12,0	0.1527 0.1571 162150 56150 0.1961	0.0226 0.1594 0.2126 0.2126 0.1974	0-0226 0-1246 0-126 0-126 0-126	1566.0 15220.0 1112.0 1112.0	0-0224 0-1598 0-2106 0-3736	0.225 0.225 0.2594 0.2594 0.2594 0.2594 0.25540 0.25540 0.25540 0.25540 0.255400 0.255400 0.25540000000000000000000000000000000000	0.0273 0.0273 0.02.0 0.02.0	422000 4641.0 4902.0	1257-0 1257-0 1257-0 1251-0	1.521.0
0. 4224 0. 1524 0. 1521 0. 2530	0. 572 J 6. 1535 9. 202 0. 202 0. 292 J	6.0222 1.1541 1.1548 1.1948 0.3912	0.0221 0.1552 0.2002 0.3405	0.022U 0.1562 0.2005 C.369b	0.0219 0.1564 1.1995 0.18879	0-0219 6-1576 0-2605 C-3864	0.0218 0.1561 0.2662 0.2677	U. U217 U.1545 U.1545 U.1947 U.1947 U.3870	0. 6217 0. 1553 0. 1553 0. 346 0	0. 1595 0. 1595 0. 7062 0. 5001	0.0216 6.1663 6.2666 6.3756	(120-)
31 21 21 21 21 21 21 21 21 21 21 21 21 21	A M 15 H M S H	ANS= H/S= H/S=	M+ H/S+ L/S+ H/S+	A- M/S- L/S- M/S-	A- M/S- L/S- M/S-	M/S- L/S- H/S-	н Н/S+ Н/S+	n= n/s= L/s= n/s=	A/ST 1/21	n= 10 10 10 10 10 10 10 10 10 10 10 10 10	42 H	Ľ
UEPTN VEC⊂EFF FLGM 87F MAVE 8P1.	UEPTH Velocity Flom Rate Mavi Sp.).	UEPTO Vilulity Flum Raté Mave Spd.	LEPTH Vilucity Flom Rate Mave SPI3.	DEPTN Velolity Flow Rate Mave Spi).	DEPTH Velocity Flom Rate Mave Spj.	UEPTH Velocity Flom Rate Mave Sp.).	DEPTH Velolity Flon Rate Mave SPO.	DEPTH Velgeity Flem Rate Mave Spn.	06 PTH VLLUCITY 5 LOH Rats 4 Ave 5P.D.	LEPTH VELELITY FLGM Rafi Mave SPJ.	LEPTH VELGEET LEGE CAT LECE CAT	11 11
\$	\$	~	\$ •	s.	\$	\$	\$	ŝ	ŝ	~	:	· · ·
13. 091	1 3. 364	13.648	13.421	14. 205	14.484	14.762	15.041	15. 319	15.598	15.476	16.155	16.43]
•	۳ ۳	= 10	÷ ÷	н Ц	μ 	۹ ۹	• •	* ¥	• ₩	۰ پ	•	4

-

.

			•	HAVI SPO.	H/5=	1. 3414	0.4970	0.4016	0.4400	4.4330	0.4611	0.4013	4115.6	1215-0	9623.0	U • 5 3F 4
- 114	. Ik.	112	°.	LEPIN VILLLITY FLLN RAL MAVI SPU.	H/5+ L/5+ H/5+	6- 04 15 6- 14 14 P- 2044 0- 3140	6160*6 2502*0 2502*0	0.14024 0.1403 0.2070 0.4073	0-0251 0-1275 0-1275 0-1975	111-0 5700-0 5171-0 7171-0	0,0302 107 0.0 107 0.0 105 0.0	6104-0 7 (21-0 7 (21-0	1.0144 1.1241 1.1215 1.1215	1010-0	1160-0 2010-0 2010-0 704-0 7622-0	0.1344 0.010 0.2325 0.43224
1146	- 15.	990	2	UEPTH VELUCITY FLUM RATE MAVI SPO.	A/S=	0° 1715 0° 1717 0° 1717 0° 1717	0.0223	0-0234 0-1459 0-7445 0-7445	5571-0 5571-0 5571-0	\$1\$\$ 200-0 200-0 1760-0	0.0303 0.05071 0.1549 0.4532	0.0325 0.0540 0.1212 0.1212	0.0143 1.470.1 0.1240 0.1.245	1410-0 1410-0 141-0 141-0 141-0	0.5220	1960.0
	. 17.	269	°.	ULPIN VELUCITY FLCM RAFE MAVE SPJ.	N/S- N/S- N/S-	0.0215 0.1616 0.2663 6.3695	0-0223 0-1565 0-2940 0-3920	0.1435 0.1433 0.2019 0.4036	0.0255 0.1150 17910 0.1272	0+0279 0+0304 0+1532 0+1533	0+9+0 0+90-0 4050-0	1105.0	5466.0 1460.0 16630.0	1460-0 14191-0 14191-0	6-0373 0-0690 0-1643 0-5204	6.0389 0.0764 0.2216 0.2334
• 11.46	. 17.	547	ŝ	UEPTH VILOCITY FLOM RATE Mave SP3.	H/S-	U. U214 U. 1616 U. 1999 O. 3843	5220-0 6661-0 7276-0	35050 1661-0 9651-0	0.0226 U.1146 U.1423 U.4227	1820 °0 1844 °0	0.0305 0.1627 0.151.0 1721.0	0.0324 0.6537 0.11.0 0.480d	1+fn. 1+fn. 1+40.0 1+21.0	0-0356 0-0405 0-151 0 0-15065	0.0371 0.6687 0.1620 0.5189	0.0347 0.0777 0.2168 0.5318
	. 17.	826	°.	DEPTH VELUCITY FLOW RATE MAVE SPD.	M.S- L/S- H/S-	0.0214	0.0223 0.1543 0.2016 0.5125	1620.0 9761.0 8541.0	0.0258 0.1103 0.1773 0.4243	3.02d3 0.0410 0.1410 0.1471	U.U 305 U.U.U 1245 U.U.12452	\$760.0 1940.0 1940.0	9119-0 1-46-0 911-0 914-0	6405-0 6151-0 6151-0	0.15175	0.0160 0.0760 0.122 0.5123 0.52123
• 341	. 16.	104	\$	UEPTH VELUCETY FLOW RATE MAVE SPJ.	HS:	U. U214 U. 1621 U. 2002 U. 2002 U. 3443	0.0224 0.1530 0.2007 0.3927	0-0239 0-1345 0-1432	0.0240 0.1063 0.1163 0.4260	2722-0 2772-0 2522-0	0.0 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0	1004.0	4161.0 2020.0 2161.0 2242.0	5404.9 6190-0 6192-0 6192-0 6192-0	0.0366 0.0682 0.1717 0.5162	0.0364 0.0751 0.2022 0.2022 0.2202
• 361	. 18.	383	ŝ	DEPTH Velgeity Flom Rate Mavi Spij.	M= H/S= H/S=	0.0214 0.1616 0.1616 0.2949 0.3443	0.0224 0.1515 0.1519 0.1519	0.420.0	0.0262 0.1024 0.1024 0.4275	0.13240 0.1754 0.1379 0.1379	0.0306 0.0576 0.1217 0.4654	1171.0 7440.0 7440.0	1140.0 1140.0 2(61.0	0.0352 1530-0 1651-0 0.15032	1515°0 917120 0.1751	0.0362 0.0742 0.2076 0.2078
146 •	18.	662	\$	DEPTH VELUCITY FLUH KATE FAVE SPD.	н. Н/5+ L/5+ Н/5+	U. U215 U. 1416 E. 2002 C. 3445	1461-0	0 • 02 41 0 • 12 50 0 • 12 50 0 • 4 0 4 2	0.0264 0.0767 0.1632 0.4291	0.0297 1111 1111 1111 1111 1111 1111 1111 1	0.0300 0.0596 0.1210 0.4659	0.0322 1820.0 1221.0	1.1336 2020-0 2011-0 906-0	0.0425 0.0425 0.1541 0.5022	0+15*0 2990-0 2991-0	0.0361 20.034 2102.0 7324.0
146	14.	056	\$	CEPTIC VELCETTY FLOH RAF. MAVI SPO.	HANNA HANNA	0.0715 0.1615 0.2162 0.31647	0.14431 0.14431 7.1944 0.7944	U-0243 U-1247 U-1447 U-1437 U-1437	0.0265 0.0754 0.1754 0.1715	0-0240 0-0717 0-13717 0-1370	0.0106 0.1220 0.1220 0.444	0.0322 0.0572 0.1256 0.111	0.1146 0.0544 0.1374 0.4911	6105-0	0.0364 1612-0 1812-0 1812-0	0.0379 7570.0 8921.0 8921.0
1146 •	19.	219	\$	DEPTH VILOCITY FLOM RAFF HAVE SPD.		0- 02 15 0- 17 04 0- 1997 0- 3150	1220.0	0.0244 0.121-0 0.1213-0 0.1213-0	1761-0 4761-0 4761-0	0-0285 0-0285 0-1325 0-4325	0.01306 0.05030 0.05030 0.05030	1751.0 25172.0	4.0335 0.0556 0.1114 0.2114	4460-0 4440-0 4440-0	0.0122 12122 1222	0-0378 0-0721 0-1962 0-5247
F14E •	19.	2 - 5	\$	ULPTH VILCLITY ILCM 3AF HAVI 303.	-111 -111 -111 -111 	0.6216 U.1715 U.12555 U.2555	1061°0 1061°0 1967°0 1967°0	0.7246 U.14d3 U.1743	0.0266 1.0013 0.1222 0.1222 0.1222	0.0247 0.0697 2181.0 2181.0	0.0106 0.1610 0.1242 0.1242	0320-0 11 01-0 11 11-0	9110-0 9146-0 9146-0 9111-0	U.U347 0.U552 U.1541 U.1541	U-U362 0-U362 0-1755 C-175	7760-0 2170-0 0221-0 0221-0
111	. 1	116	* *1	414 81 VII 661 FY VII 661 FY VII 6415 VII 644.	41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0. 6710 1. 1. 97 0. 1. 97 0. 1. 95 0. 38 55	1141-0	0.0248 0.115. 0.115. 0.4148	U-0270 L-0570 U-1574 U-4344	1845-0	0-0306 0-0619 0-1259	0.2020 0.011 0.011 0.5172 0.5772	11111 11111 11112 11112 11112	1+(0-0)+/ 0+0+0 0+1++0 0++++0	196 J.J. 6 - 0 6 4 7 6 4 7 1 8 9 7 1 1 8 - 0	0-0176 0-0710 0-1720 0-1720 0-1720
111.	20.	440	\$	11111	H F	0.0211	0. 02 30	1.420-0	1120.0	04.25.4	0.0300	. 11.0.0	2610.0	0.0346	0.010.0	0.0176

\$

2

2

2

)

Э

)

1)

ر

:

(

C

¢

 C

C C

C

C

C (

C

1

A-29

8779 - 1949 - 1949 - 1977 1977 - 1977 - 1977 - 1977 1977 - 1977 - 1977 - 1976 - 1976	710,000,000,000,000,000,000,000,000,000,	6.0.0 4460 0.034 0.034 0.034 0.00 0.004 0.004 0.027 271.0 0.000 0.051.0 1.45 0.50 0.474 0.504 0.54	2110 0.0110 0.0340 0.0350 0.000 0.000 0.0000 0.000 0.0104 0.01040 0.0101 0.0200 0.0400 0.0000 0.0200 0.0400 0.0000	71117 0.0130 0.035 0.035 0.010 0.0014 0.016 0.010 0.010 0.016 0.010 0.0110 0.0110 0.010 0.0440 0.014	1116 J.0129 0.0341 0.035 7770 J.0205 0.016 0.070 1411 J.1749 0.1642 0.176 142 J.4449 0.4961 0.507	7110 0.01129 0.0342 0.035 7113 0.0716 0.0711 0.070 7110 0.1614 0.1649 7020 0.1614 0.1649 0.16176	712.0 20128 0.034 0.034 0.035 07020 01010 02010 02010 7210 01010 010110 0101 7210 02010 01010 01010 702010 02000 02000 02000	2110 228 0.038 0.037 0.035 270.0 2270.0 2270.0 270 271.0 2171.0 2241.0 270 271.0 2241.0 2241.0 250 202.0 2242.0 2542.0 157	2040 0200 0200 0200 0200 0200 02000 16200 22000 0200 1210 16210 12010 0200 2040 0200 0200	250.0 1260.0 7260.0 216 170.0 2670.0 2670.0 270 871.0 2271.0 0141.0 250.0 002.0 12922 25020 2682.0 2502	040.0 140.0 720.0 410.0 120.0 410.0 410.0 140.0	0210°0 1960°0 2260°C 9160 9210°0 3920°0 1226°C 6220 9210° 3920°0 1226°C 6220
1,0 2,002 0,200 0,0 0,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	272 8.2220 9.2210 9.0 243 -21619 9.00642 9.0 420 0.1314 9.2310 0.1 423 0.4522 9.459 0.4	2/3 0.0200 0.0200 0.0 342 0.0730 0.0070 0.0 444 0.112 0.1370 0.1 311 0.447 0.4	2/4 0.0290 0.0404 0.0 250 0.0707 0.040 451 0.1217 0.425 749 0.4231 0.425 749 0.4231 0.425 740 0.425	274 0.0270 0.0304 0.0 9.2 0.0717 0.0545 0.0 4.3 0.1757 0.1382 0.1 304 0.4524 0.4549 0.4	275 0.0279 0.0304 0.0 222 0.0723 0.0700 0.0 141 0.1712 0.1411 0.1 159 0.4772 0.474 0.4	275 0.4294 0.4303 4.9 875 0.4741 0.4716 0.4 924 0.1442 0.1440 0.1 374 0.4722 0.4533 0.4	0.0 270.0.0 0070.0 072 0.0 2570.0 0720.0 168 1.0 0721.0 1241.0 202 2.0 0521.0 1262.0 202	276 0.0244 0.0302 0.4 119 0.4770 0.7749 0.4 110 0.1455 0.1459 0.4 140 0.1455 0.4	276 U.U'TU U.U'TU U.202 U.U 449 U.U'TU 0479.U 0470 1.0 0121.U 0471.U 0170 1.0 0121.U 0441.U 044 4.0 1234.U 1244.U 1440.U 044	276 0.0297 0.0302 0.0 160 0.0919 0.0216 1.0 0.0219 0.0216 1.0 0.0219 0.0216 1.0 0.0200 0.0200 0.0	0.0 1060.0 0020.0 775 0.0 7910.0 0280.0 248 1.0 0021.0 0281.0 042 2.0 2132.0 2421.0 042	0*0 1000*0 (620*0 222 0*0 1000*0 (620*0 222
	9-9231 9-0251 5-9 0-1-1-20 -1-1-0 0-1-1-20 -1-1-0 1-1-20 -1-1-0 1-1-20 -1-1-0 1-1-20 -1-1-0 0-1-1-0 1-1-0 0-1-0 0-1-0 0-1-0 0-0 0	0.0 2520.0 (820.0) 4.0 25010 15110 4.1 151 0.10120 0 1.1 151 0.1500 0.101 10150	0.0 12010 0100 0100 0100 0100 0100 0100	0.0255 0.0255 0.0 0.1311 0.1033 0.0 0.1812 0.1631 0.1	0.0 3237 0.0256 0.0 0.1242 0.1012 0.1 0.1241 0.1012 0.1 0.1415 0.1012 0.1 0.1415 0.1227 0.0	0.0239 0.0258 0.0 0.1274 0.1007 0.0 1.0.1439 0.1512 0.1 0.4067 0.4236 0.4	0.0240 0.0259 0.0 0.1257 0.0779 0.0 1.0.123 0.1099 0.1 0.1823 0.1098 0.4	0.0241 0.0260 0.0 0.1243 0.0994 0.0 0.1817 0.1617 0.1	0.0243 0.0241 0.0 0.0243 0.0242 0.0 0.1812 0.1615 0.1 0.4104 0.4263 0.4	0.01244 0.0261 0.0 0.1214 0.0243 0.0 0.1017 0.1624 0.1 0.1017 0.162 0.4	0.0265 0.0262 0.0 0.1211 0.0267 0.0 0.1011 0.1636 0.1 0.1011 0.1636 0.1	0.0 2020 0.0263 0.0
LUGIET MUSE (1193) The RATE LANE Control ME 2010, MASE (10194)	а150.0 № М. М. М. LLLITY M/S= L.1949 M & A L L22= L1949 M & A L 202= CL23= LT2= A/5= CL23=	PH ====================================	PTH M= 6.0219 UCLTY M/S= 0.1575 N 24TE L/S= 0.1995 M 24TE L/S= 0.1995 M 24D5 M/S= 0.3849	ТН н= 0.0221 00.1ГV м/S= 0.1560 0.8 Rafe L/S= 0.2005 01 SPD: м/S= 0.3900	<pre>PTH M= 0.0224 UCIFY M/S= 0.1544 UF44F5 L/S= 0.2600 H 4AF5 L/S= 0.3409 H SPD. M/S= 0.3409</pre>	PTH H= 0.6223 ULITY M/S= 0.1535 ULITY M/S= 0.1535 M RAFE L/S= 0.3921 M/S= 0.3921	TH N= 0.024 -0117 N/5= 0.1524 -0117 N/5= 0.1524 	TH N= 0.0225 -ULIFY N/S= 0.1510 N RAFE L/S= 0.2001 M SPD. M/S= 0.3944	11) A= 0.0226 0CLTV M/S= 0.1496 34 RAFE L/S= 0.1997 36 SP0. M/S= 0.3955	PTH H= 0.0226 1446 14 4ATL H/S= 0.1446 14 4ATL L/S= 0.2005 11 5PU, H/S= 0.3979	PTM Mm 0.0279 LOLIT M/J= 1.1474 M 94FE L/J= 0.2013 M 94FE L/J= 0.2013	PTH 1= (.0230 LUCITY M/J= (.(40)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 = 20.313 5. LFF Vit Flo	 20.611 5. 66Р 116 116 146 146 	: • 20.890 5. UEP Vie hav	: - 21.168 5. DEP FLO Adv	: - 21.447 5. DEP VIL Flo	5 = 21.725 5. UIP 946 910 910	: = 22.004 5. DEP VIL Flo	: - 22,292 5, DEP VIL И ли	: = 22.561 5. DEP FLC FLC	E = 22.840 5. 11P VIL FLU	- 73.114 5 411-65 - 5 114 114 114	• 23.347 5. LEF

. . .

•

-

((

ر ر

)

)

1

0.0716 0.0161 0.0716 0.0612 0.1779 0.1611 6910.0 1002-0 1-1-1-0 1+60.0 0.4945 9-0247 9-0301 0-0314 9-0327 9-0426 9-0529 0-0414 9-032 12752 9-0599 0-1579 9-0542 9-1569 0-1579 0-5424 9-5429 • 0.0263 0.0277 5 • 0.1010 0.0277 5 • 0.1010 0.0205 5 104400 424°U
 DEPTH
 M*
 C. U.232
 U.24F

 VILGLITY
 M/S*
 U.1049
 U.1199

 FLOH
 RAF
 L/S*
 U.1199

 HAVE
 SP10
 M/S*
 U.4163
 . 23.675 5. 11.46

(

C

ſ

- 0.1411 U.0642 1720.0 6.0716 0.1800 0.5067 0.0356 1+60.0 0.1704 6404-0 0.0313 J.0327 U 0.0617 U.0759 U 0.1722 J.1759 U 0.4716 J.4628 U 0.0301 0.0845 0.1679 0.1670 0. 0239 0. 0974 0. 1642 0. 4510 0 • 9277 0 • 9922 0 • 1634 0 • 4403 0.1020 0.1609 0.1609 0.0264 0.4159 0.11.0 0.0744 U. 6233 U. 1430 U. 1490 U. 1490 U. 4014 H/S+ H/S+ VELOCITY FLGN RAFE I MAVE SPD. UEPTH 5 23.954 . TIAE
- U.0662 0.1911 U.5192 1710.0 0.0356 0.0720 0.1865 100000 1460-0 0.0326 0.0737 0.1775 1.1775 0.0110.0 0.0174.0 0.174.0 1.4 704 1060.0 0.0060 0.4610 0.0291 0.0265 U.0277 0 0.1011 U.0439 0.11110 U.16439 0.4400 7422.0 0.0250 0.1195 0.1191 0.1631 0.4167 0.0234 6202.0 =5/1 L/5= + S / H ÷ FLON RATE NAVE SPD. DEPTH VELUCITY ŝ 24.232 . TIME
- 0.0171 0.0662 0.1811 0.5192 U.U356 0.0722 0.1869 0.5067 0.0341 0.0704 0.1444 0.4944 J. 9326 J. 9404 U. 1711 1.4426 6160°0 1400°0 1401°0 2411°0 0.01100 0.4400 0.0244 0.0909 0.1707 0.1707 146.0.0 10++-0 U.U265 0.1042 U.1733 U.43U0 0.0250 U.1196 U.1842 0.4174 0.1423 0.1423 0.2005 0.4036 -----DEPTH VELUCITY -FLUM RAFE L MAVE SPJ. -\$ * 24.511 TIME
- 2181 °0 2181 2 20°0 °0 2781 20 2781 20 0.506724 0.1815 0.5067 9560.0 0.0341 0.0708 0.1414 0.4945 J.0326 U.0326 U.1417 U.1417 0.4826 1 4124°0 0680.0 0.06 0.0 0.4608 0.0284 0.0727 0.1737 U.02778 U.0975 U.1728 0.44.08 0.0265 0.1055 0.175F 0.4303 0-1251 0-1200 0-1855 0.41HL 0.0236 0.1414 0.7003 0.4045 H/S= H/S= DEPTH VELGCITY FLOW RATE HAVE SPD. s. * 24.789 3611

3

3

2

(

A-31

NBS-114A (REV. 2-80)			
U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA	1. PUBLICATION OR REPORT NO. NBSIR 81-2308	2. Performing Organ. Report No	J 3. Publication Date July 1981
SHEET (See instructions)		<u> </u>	
4. TITLE AND SUBTITLE	TE THE ADDITCATION OF	THE NUMERICAL METHOD	TE CHARACTERISTICS TO
INGTEADY FLOW ANAL	VSTS IN PARTALLY FIL	LED GRAVITY DRAINAGE	SIZED PIPES
UNSTEADT FLOW ANAL	JIJID IN IANIALLI III		
5. AUTHOR(S)		······································	
John A. Swaffield			
6. PERFORMING ORGANIZA	TION (If joint or other than NBS	, see instructions)	7. Contract/Grant No.
NATIONAL BUREAU OF	STANDARDS		H-48-78
DEPARTMENT OF COMM WASHINGTON, D.C. 2023	ERCE		 Type of Report & Period Covered
9. SPONSORING ORGANIZAT	FION NAME AND COMPLETE A	DDRESS (Street, City, State, Zil)
Department of Hou	using and Urban Develo	opment	
451 7th Street, S	SW		
Washington, D.C.	20410		
10. SUPPLEMENTARY NOTE	-5		
University of the second secon	a computer program; SF-185, FIP	Significant information If docum	nent includes a significant
bibliography or literature	survey, mention it here)	significant information. If week	
The application of	the numerical method	of characteristics to	the solution of the
differential equat:	ions defining unsteady	y flow in partially fi	lled drainage system
sized pipes is out	lined.		
The derivation of	the flow equations is	presented together w	ith the necessary
boundary equation	formulation to represe	ent variable inflow, s	ystem discharge and
leakage flow past	a stationary deposited	i solid.	,
A computer program	, written in Fortran,	is included, together	with typical output,
analysis in gravit	v flow drainage system	ns.	ou to unsteady 110w
	<i>y</i> 110# d1d2mdgo bybtom		
Proposals for the	extension of the descr	ribed techniques to th	e prediction of solid
transport and flow	attenuation in long p	pipes are also present	ed.
		,	
12. KEY WORDS (Six to twelv	e entries; alphabetical order; ca	pitalize only proper names; and	separate key words by semicolons)
filled pipe flow:	waste solid transport	ioi transfent deptn, c	Steady particulty
fiffed pipe filow,	Habte being crampford	•	
13. AVAILABILITY			14. NO. OF
Vnlimited			PRINTED PAGES
For Official Distribut	ion. Do Not Release to NTIS		64
Order From Superinter	ndent of Documents, U.S. Govern	ment Printing Office, Washington	n, D.C. 15. Price
20702.			\$\$ 00
X Order From National	Technical Information Service (N	ITIS), Springfield, VA. 22161	·90.00
			USCOMM-DC 6043-P80