
watjoUai, m-Tx/iu
OF 2TAI/DAf?D8

AlllQH mOQSD NBSIR 81-2302
^.le Positional Set Processor:

A Tool for Data Modeling

MBS

PUBLICATIONS
W. Terry Hardgrave
Sandra B. Salazar

National Bureau of Standards
Institute for Computer Sciences and Technology

Washington, D. C.

The Positional Set Processor (PSP) is a

software tool for manipulating mathematical ob-
jects such as sets, sequences, ordered pairs, etc.
The PSP serves as the underpinning for a Data
Model Processor (DMP), an experimental system for
emulating commercial and protorype database
management systems. The PSP also provides a

mathematical basis for semantic specification and
interpretation of database operations. Vvhile its
powerful query facilities make the PSP itself ap-
pear to be a database managem.ent system, it has no
explicit concept of data definition, no access
control, no integrity control, ere. Tne authors
prefer to viev7 the PS? as a tool for specifying
and building database managem.ent systems . This
paper reviews the mathematical form.alism, Posi-
tional Set Notation, and describes the design of
the Positional Set Processor.

30 November 1981

A.bstract

lUG

1 U56

cil-2302

1931

1 INTRODUCTION

Data models may be
nings for database man
Database Models Project
(NBS) is developing
data models. One objec
implement a Data Mod
that will accept a desc
the behavior of an im
is, a particular DBMS),
term "data model" is
specification for a dat
teristics

:

viewed as the theoretical underpin-
agement systems (DBMS). The Abstract
at the National Bureau of Standards

a structured approach to the study of
project is to design and
(DMP), a software system
data model and emulate
of that data model (that

a precise definition of the
evolving, we believe that a

tive of this
el Processor
ription of a

plementation
While
still

a model should have these charac-

It should include specifications for data structures
(e.g. trees, networks, relations, etc.) pi us specif-
ications for operations (e.g. find-record, join,
etc.) on those data structures.

It should account for both structures used for de-
finitional purposes and structures that appear as
occurrences in the database. It may also include
structures used for secondary indexing if the funda-
m.ental operations depend on those structures.

It should be documented in the open literature, in-
dependently of any vendor's literature.

* It should
framework
semantic s

be stipulated in a formal
that. requires rigorous

as v/ell as syntax.

or mathematical
specification of

An important concept in the DMP framework (v/hich is
consistent v;ith denotaticnal semantics [JONE78]) is that the
concepts of a data model can be expressed as set- theoretic
objects. Thus, we have chosen to express the data struc-
tures as "positional sets" and the operations as operations
on positional sets. This paper deals with the mathematical
formalism for expressing positional sets, called Positional
Set Notation (PSN), and a major component of the DMP, the
Positional Set Processor (PSP), a sophisticated tool for
storing and retrieving positional sets.

- 2 -

2 SUMMARY OF POSITIONAL SET NOTATION (PSN)

The philosophy behind Positional Set Notation is simi-
lar to the philosophy behind the Vienna Definition Method
(VDM)--see [JONE78]. That is, the semantics of operations
(i.e. functions, processes, etc.) programmed in computer
languages should be defined in terms of abstractions that
are divorced from physical implementations. These abstrac-
tions are, in turn, defined in a mathematical notation. The
VDM approach uses (with a few minor exceptions) traditional
mathematical notation and list structures. In this work, we
use PSN.

PSN provides sufficient expressive power to define a

wide range of data models. One salient feature is the avai-
lability of the "labeled tuple" which is the mathematical
counterpart of an ADP "record" and simplifies the definition
of most data models. This section provides an informal sum-
mary of PSN; more detail may be found in [HARDSla]

.

The essence of PSN is the recursive definition of the
positional set, S:

S := [x(l)@p(l), x(2)@p(2), ..., x(n)@p(n)]

where

* the p{ i) are called position identifiers and must be
atoms, that is, either numbers or character strings.
The p(i)'s need not be unique.

* the x(i) are el ements and may be either atoms or
themselves posirional sets.

The mathematical object S, above, is a mathematical set of
ordered pairs. Vie surround it with square brackets rather
than braces for reasons discussed below. For convenience,
the construction "x(i)(sp(i)" is called a "duplex". Duplexes
may appear in any order in the written representation of a
positional set.

An example of a positional set (abbreviated as "p-set")
in which all of the elements are atoms is:

[JONES0NAME, 25 0AGE, UMD(?SCHOOL, BA(?DEGREE]

Here the elements are JONES, 25, UMD, and BA. The
position_identif ier s (pids) are NAME, AGE, SCHOOL, and DE-
GREE. An example of a p-set in which some of the elements
are themselves p-sets is the p-set "STUDENT":

3 -

[[[[JfeMI, JONES0LAST, JOHN0FIRST](a#](3NAME, 25@AGE,
[[UMDC^SCHOOL, BA0DEGREE,

[[CMSC410@COURSE, B(3GRADE]@# ,

[CMSC420(§COURSE, A0GRADE]@#] @CURRIC]@#] @ED_HIST](§# ,

[[S(3MI , SMITHgLAST, SCCTTlsFIRST] 0NAME, 29 @AGE ,

[[UNC0SCHOOL, PHD(oDEGREE,
[[CMSC6200COURSE, A@GRABE]@#

,

[CMSC6300COURSE, A0GRADE]0#

,

[CMSC79S0COURSE, A0GRADE]@#

,

[CMSC720 0COURSE, B0GRAEE]0?] @CURRIC]0? j 0ED_HIST]@# J

The symbol 4 denotes the null position identifier. Given in
tabular form with the position identifiers as column
headers, the p-set above looks like;

STUDENT

NAME AGE ED_HIST

FIRST MI LAST SCHOOL DE GREE CURRIC

COURSE GRADE

JOHN J JONES 25 UMD BA CMSC410 B
CMSC420 A

SCOTT S SMITH 29 UNC PHD CMSC620 A
CMSC630 A
CMSC798 A
CMSC720 B

The PSP described here has print operations that display p-
sets in tabular form as well as the formal bracketed nota-
tion; both forms are shov/n above.

PSN allows the data modeler to use and m.anipulate a
number of objects similar to traditional m.athemat ical ob-
jects. The p— sets representing the classical set, the or-
dered pair, the sequence, and the labeled tuple are shown in
the table below. As mentioned above, the square brackets
are used to surround p-sets so the braces can be used to
surround classical sets (i.e., sets in which all the pids
are '*#")

. Ihe PSP will accept mathematical objects in ei-
ther the traditional notation or PSN. All traditional ex-
pressions are converted to PSN. The mathematical underpin-
ning is explained in detail in [HARBSla]

.

-4-

OBJECT TRADITIONAL
REPRESENTATION

POSITIONAL SET
NOTATION

CLASSICAL
SET

SEQUENCE <a(1) ,a (2) t • * • t a(n)> [a(1)$1 , a (2) 02 , . .
. , a (n) @n]

ORDERED (a,b) [a01 , b02

]

PAIR

2-ELEMENT <a,b> Ca01,b02]
SEQUENCE

The labeled tuple is an important concept found in most
data models and the basis for the relational model:

C(1) C(2) ... C(n)

a(l) a(2) ... a(n)

The C(i) are column-headings and a(j) are atomic elements;
this is represented in PSN as

:

[a(l)0C(1),a(2)0C(2), . . . ,a(n)0C(n)]

Following is an example of a relational database ex-
pressed first in the tabular form of [ZL0075], then in PSN
using the relational formulation given in [KARD7S].

Tabular form:

SALES DEPARTMENT ITEM

STATIONERY
HOUSEHOLD
STATIONERY
COSMETICS
TOY
TOY
TOY
COSMETICS
STATIONERY
HARDWARE

DISH
PEN
PENCIL
LIPSTICK
PEN
PENCIL
INK
PERFUME
PEN
INK

TYPE ITEM COLOR SIZE

DISH WHITE M
LIPSTICK RED L
PERFUME WHITE L
PEN GREEN S

PENCIL BLUE M
INK GREEN L
INK BLUE S

PENCIL RED L
PENCIL BLUE L

In PSN form, the set of relation occurrences, REL-OCC, is:

[[SALES® REL_NAME, [[STATIONERY^DEPARTMENT , DISH@ITEM] @#

,

[HOUSEHOLDGDEPARTMENT, PEN(§ITEM] §# ,

[HARDWARE (2DEPARTM ENT, INK@ITEM] @ RELATION] 0# ,

[TYPE0REL_NAME, [[DISH0I TEM , WHITE 0COLOR, M@S I ZE] 0#

,

[LIPSTICK0ITEM, RED0COLOR, L0SIZE]0#

,

[PENCIL0ITEM, BLUE0COLOR, L0SIZE]0#] 0RELATION] 0#

]

AN OVERVIEW OF THE POSITIONAL SET PROCESSOR3 .

The Positional Set Processor (PSP) is a collection of
37 commands (see Table 1). These commands are operations on
positional sets; most commands take p-sets as input and pro-
duce p-sets as output. They are not intended to comprise a

convenient high level query language.

The development of the PSP is part of an experimental
project and the collection of commands has been modified as
the Data Model Processor (DMP) design has proceeded. V^e be-
gan v/ith a basic set of Classical Set Operations (such as
union, intersection) that, when applied to positional sets,
are analogous to the traditional set operations. The
Utility Operations (such as print, copy) provide additional
capabilities needed for use in an interactive environment.

Tlie Positional Set Operations provide the user with the
basic database funcrions--retr ieving , updating, adding, and
deleting. The operation "CREATE" is the most important
operation and is analogous to the relational DBMS operations
"Retrieve" in QUEL or "SELECT" in SQL. There are also
operations to return the (classical) set of elements, return
the (classical) set of po sition_identi fier s for a p-set, and
distribute a posi tion_identi fier over a classical set. TEM-
PLATE, POPULATE, and CONFORM were designed specifically for
use by the various DMP roles.

Since some data models (e.g., CODASYL) require the
manipulation of sequences, the Sequence Operations were ad-
ded to allow manipulation of sequences as a special form of
p- sets .

We will not attempt to fully describe all
mands in this paper, but w'ill concen
group, the Positional Set Operations. A
tion of the ccminands (including both s

can be found in "The Positional Set Proc
es of the use of th
[KOLL82]

.

:he PSP com-

[HARDSlbJ and exampl
given in [K0LL81] and

trate on the central
complete desc rip-

yn tax and semant ic s

)

essor User' s Ma n ual"
e PSP by th e DMP are

- 7 -

TABLE 1 PSP COMMANDS

Classical Set Operations
IN Intersection
UN Union
RC Relative Complement
SY Symmetric Difference
CD Cardinal ity

Positional Set Operations
CR Create
RG Range
FR Freeze
ST Start
RL Release
TH Thaw

Extended Positional Set Operation
BR Break
RK Recur se
TMP Tempi ate
POP Populate
CNF Conform

Sequence Operations
SQ CAT Concatenate sequence
SQ EXC Extract by contents
SQ EXI Extract: by index
SC FLC Flush by contents
SQ lAC Insert after content
SQ lAI Index after index
SQ IBC Insert before conten
SQ_RPC Replace element

Utility Operations - Non-predicat
CP Copy
DE Delete
NS Null set

. PT Put
EN Enter
PN Print names
PS Print set

Utility Oper ations - Predicates
CS Classical set
EC Equal
I SIN Is in
NL Null
NN Not null
SB Sub set

- 8 -

POSITIONAL SET OPERATIONS4 .

The Positional Set Operations (CREATE, RANGE, FREEZE,
START, RELEASE, and THAW) allow traversal of p-sets and gen-
eration of new p-sets based on a specified condition. In

this section we will discuss "range variables" and the "dot
operator" and will then describe the commands.

Rang e Variables

Range variables (rv) allow access to p-sets. The name
"range variable" is taken from ALPHA [C0DD71] and QUEL

[STON76], but the concept is more general here. Unlike (nor-
malized) relations, p-sets may be nested to any depth. The
range variables provide a mechanism for accessing nested
structures as well as first normal form relations.

Each rv is associated with a particular p-set. That
is, the declaration of a range variable enables that vari-
able to take on, one- at- a- time and in no particular order,
the values of the elements of a p-set. If X is a variable
ranging over the p-set P, then "print all X" would print all
the elements of P. The qualification, "X = <value>" is TRUE
iff 9X (X P AND X = <value>). Thus, "print all X where
<condition>" would print those elements of P which satisfy
< condition> .

The association between the p-set and the rv is esta-
blished with the RANGE command and (unlike QUEL) remains in
effect until cleared by the RL or ST command (see below)

.

Dot Operator

The dot operator, often used without formal definition,
has been a mainstay for several relational languages (e.g.
QUEL, SEQUEL2), as it is quite useful in designing query
languages with substantial expressive power. It is also a
rotational device to simultaneously allow traversal of a set
and access to (elements of) tuples within the set. Since
both the tuples and the sets can be represented as p-sets, a
more precise definition of the dot operator expression can
be given in PSN.

Let X range over the p-set P. At any particular time,
X is a pseudon^^m for a tuple T that is an element of P. The
construction: "X.ATT" refers to the element at pid ATT con-
tained in the tuple T. "Print all X.ATT" would print all
the values, Y, such that Y@ATT is an element of an elem.ent
of P. That is:

"X.ATT = <value>" is TRUE iff

- 9 -

dY (Y(sATT i T AND T (P AND Y = <value>).

For example, consider the <condition>;

X.AGE = 21

'

as evaluated for a particular value of X (ie . , some elemen
of P). The <condition> is TRUE if "21@AGE" is an element o
X (ie . , an element of an element of P). Similarly, the
< cond ition>

:

X.AGE > '30'

returns TRUE if there exists an M such that "M0AGE" is an
element of X and M > '30'.

Command s on Range Variables

The START (ST) command initializes the global range
variable by deleting all range variable associations.

The RANGE (RG) command declares and associates a range
variable with a p-set. It has two forms;

RG <rv> IS <p-set name>
or

RG <rvl> IS <rv2> . <pid>

For example, the command:

RG X IS STUDENT

declares "X" a range variable and associates it with the
p-set named "STUDENT". The rv "X" ranges over the duplexes
of the p-set "STUDENT".

The command form to declare and associate an rv with a

p-set element (that is itself a p-set) is somewhat more com-
plex. The dot operator indicates that the <pid> is at
the next level of nesting within the p-set or p-set element
associated with < rv2 > . For example, the command;

RG Y IS X.ED_HIST

declares "Y " a range variable and associates it with the
element X w'hich has pid "ED_HIST". "ED_HIST" is at the next
level of nesting within the p-set over which "X" ranges,
that is, "STUDENT".

-10 -

Hi

ft-

Declaring one range variable in terms of another im-

plies a relationship between range variables that is impor-
tant for the semantics of the CREATE command; this is an
ancestor relationship. If X is an rv and appears in an RG
statement

:

RG X IS <p-set name>

then X has no ancestors. If Z is an rv and appears in a

statement

:

RG Z IS Y.<pid>

then Y is both an ancestor and the parent of Z., All of Y's
ancestors are also ancestors of Z. In the example:

RG X IS STUDENT
RG Y IS X.ED_HIST
RG Z IS Y.CURRIC

"X " has no ancestors; "X" is an ancestor of "Y" and "Z" and
the parent of "Y"; "Y

"

is an ancestor and the parent of "Z".

The RELEASE (RL) command, which has the form:

RL <rv>

removes the association between the specified rv and a p-
set

.

The FREEZE (FR) command binds the rv to one duplex of
the p-set for which the specified <condition> is true. This
means that the rv no longer ranges over the entire p-set,
but indicates only one duplex. The form of the FREEZE com-
mand is:

FR <rv> WHERE <condition>

The rv must have been previously associated with a p-set us-
ing an RG command. The <condition> is a pr ed icate-- an ex-
pression involving comparison operators, boolean operators,
and parentheses, that returns "true" or "false". For exam-
ple, the command:

FR X WHERE "X.AGE = *29’"

indicates that the rv "X" ranges over the duplexes in the
p-set with v/hich it is associated. Wlien a duplex that sa-
tisfies the condition (that the value of the elem.ent associ-
ated with the pid "AGE" is '29') is found, the value of the
rv "X" is then frozen at (i.e. bound to) that duplex. If
the condition is never satisfied, the rv remains free.

-11 -

If an rv is frozen with the FREEZE command, all of its
ancestors will be frozen also. For example, if the unfrozen
rv ' s "X", "Y", and "Z" are associated with the p-sets "STU-
DENT”, "X.ED_HIST", and "Y.CURRIC", respectively, the com-
m^and ;

FR Z WHERE " Z . COURSE= ' CMSC798 ' "

will not only freeze "Z" at a duplex in the p—set element
"Y.CURRIC" v/nich has 'CMSC798' as the value of the element
associated with the pid "COURSE", but will also freeze "Y

"

and "X" at the duplexes which are their values when the con-
dition on "Z" is satisfied.

Note that when more than one duplex satisfies the con-
dition, the choice of a duplex is impl smientation-dependent
and cannot be anticipated or controlled by the user. The
capability to traverse the p-set, successively freezing on
each duplex that satisfies the condition, is an option.

The THAW (TH) ccm.mand , which removes the FREEZE bind-
ing, has the form:

TH <rv>

\^7hen an rv is thawed, any frozen descendants are also
thawed; ancestors are not affected. Thus in general, the
"TH X" command is not the reciprocal of the " FR X" command.

The CREATE Command

The PSP CREATE (CR) command is analogous to SELECT in
the SEQUEL language of SYSTEM R [ASTR76] or RETRIEVE in the
QUEL language of INGRES [STON76]. How’ever, unlike SEQUEL
and QUEL, the PSP allov/s nested relations. In relational
jargon, this means that first normal form (INF) is not re-
quired. The CREATE command builds a new p-set having (1)
the specified attributes from the original p-set(s) and (2)
the duplexes which satisfy a given condition. It has the
form

:

CR P V7ITH < attribute- list> WHERE <condition>

The <condition> has the same form and meaning for the CREATE
command as for the FREEZE command. 'The < attribute- list> de-
fines the structure of the new p-set by identifying its
pids. Syntactically, it is a list of < terra> '

s

and
< ass ig nmen t>

' s . A <term> specifies which pids are to be
taken from which p-sets; the basic form is:

"
< rv> .

<

pid> "

- 12 -

The < assignment> has the form:

"<pid> := <phrase> "

This allows the user to specify a pid for the nev/ p-set
which is not related to a previously defined p-set and to
assign a value for its element. The <phrasc> may be an ar-
ithmetic expression, a value, or a basic <term>. To rename
the pid in the new p-set, this form of the <assignment> is

used ;

"<pid> := <rv>.<pid>"

An example of the CR command using our sample database
is

:

RG X IS STUDENT
RG Y IS X.ED_HIST
RG Z IS Y.CURRIC
CR NEV'JSET WITH "X . NAME , X . AGE , CLASS := '1981',

TRANSCRIPT := Y.CURRIC" WHERE "Y. DEGREE = 'PHD' i

(Z. COURSE = 'CMSC498' & Z . GRADE = 'A')"

In the "WHERE" clause, "1 " is the logical "OR" operator and
"Sc" is the logical "AND" operator. The p-set "NEWSET" will
have the pids "NAME", "AGE", "CLASS", and "TRANSCRIPT".
"NAME" and"AGE" will be the same as in "STUDENT", and "TRAN-
SCRIPT" will be the same as "CURRIC" in "STUDENT" (only the
pid name is different) . Each duplex will have the new pid
"CLASS" v/hich has the element value '1981'. The duplexes
chosen from "STUDENT" are those v/hich have 'PHD' as the
value of "DEGREE" or that have a duplex in "CURRIC" wit
'CMSC498' as the value of "COURSE" and 'A' as the value o
"GRADE". The ansv/er to this query, given the p— set "STU-
DENT" of section 2, would be:

PSN form:

[[[S@MI, SMITH @LAST, SCOTT @FI RST] @NAME, 29(?AGE, 1981t2ciASS,
[[CMSC6200COURSE, A0GRADE](2# ,

[CMSC63G&COURSE, AiSGRADE]y# ,

[CMSC79S(§COURSE, AGGRADE]e# ,

[CMSC720(3COURSE, DEGRADE]0# J ^TRANSCRIPT] 0#]

- 13 -

Tabular form:

NEWSET

NAME AGE CLASS

LAST FIRST MI

TRANSCRIPT

COURSE GRADE

SMITH SCOTT S 29 1981 CMSC620 A
CMSC630 A
CMSC798 A
CMSC720 B

Notice the similarity in the QUEL equivalent of this
CREATE statement:

RETRIEVE INTO NEWSET
(AGE=X. AGE , M\ME=X. NAME, TRANSCRIPT =Y . CUT.RIC , CIi\SS= "1 981 ")

WHERE Y. DEGREE="PHD" OR
(Z.COURSE="CMSC498 " AND Z . GRADE =

" A"

)

Since the PSP was designed to contain the functionality
of the relational operators, it is appropriate to discuss
how the relational operarors (i.e. PROJECT, SELECT, and
JOIN) as well as p-set operators can be expressed in terms
of the CREATE command. A_n informal discussion and some ex-
amples are given here.

A PROJECT can be represented as a CR with no' <condi-
tion> , with the effecc that each duplex of the original p-
set is selected, but only the pids specified in the
attribute- list are copied. For example,

RG X IS STUDENT
CR AGES WITH "X.AGE"

creates the p-set "AGES" which is a classical set containing
all the elements with pid "AGE" in the p-set "STUDENT".

PS N fo rm :

[[25 (SAGE J (3# , [2 9 (SAGE] 0 #]

- 14 -

Tabular form:

AGES

AGE

25
29

A slightly more complicated example is a PROJECT involving a

nested pid

:

RG X IS STUDENT
RG Y IS X.ED__HIST
CR SCHOOLS WITH "Y. SCHOOL"

This creates the p-set
all elements with the
the p-set "STUDENT",
eliminated, since a p-

"SCHOOLS", a classical set
pid "SCHOOL" at the "ED_HIST
Any duplicate duplexes are,
set is a mathematical set.

containina
" level o
of course.

PSN form:

[[UMD(5SCH00L]@# , [UNC 0SCHOOL]@^tt]

Tabular form:

SCHOOLS

SCHOOL

UMD
UNC

A SELECT can be expressed as a CR which copies each du-
plex of a p-set that satisfies a condition. For example,

RG X IS STUDENT
RG Y IS X.ED_HIST
CR DOCTORS WITH "X . NAME , X . AGE , X . ED_HI ST " VvHERE

"Y. DEGREE='PHD '

"

This creates a p-set "DOCTORS" having the same srructure as
the original p-set "STUDENT" but a subset of the original
duplexes-- those that satisfy the condition that 'PHD' is the
value of the element with pid "DEGREE" at the "ED_HIST" lev-
el .

-15 -

;i

4-1

PSN form:

C[[S@MI, SMITH@LAST, SCOTT (3FIRST] 0NAME, 29@AGE,
[[UNC@SCHOOL, PHD13DEGREE,

[[CMSC620C^COURSE, A0GRADE]@# ,

[CMSC6300COURSE, A0GRADE

,

[CMSC79S0COURSE, A0GRADE]0#

,

[CMSC7200COURSE, B0GRADEJ0#]@CURRIC]@#]0ED_HIST]0^^]

Tabular form:

DOCTORS

NAME AGE

FIRST MI LAST

ED HIST

SCPiOOL DEGREE CURRIC

COURSE GRADE

SCOTT S SMITH 29 UNC PHD CMSC620 A
CMSC630 A
CMSC798 A
CMSC720 B

A JOIN can be expressed as a CR which concatenates du-
plexes from two p-sets, based on a condition that links the
p-sets through some pids that presumably have the same
domain. For example, given the p-set "ADDRESS":

PSN form:

[[[S0MI, SMITK0LAST, SCOTT0FIRST] 0PERSON , RALE IGH 0CITY , NC@STATE]0#

,

[[J0MI, JONES0LAST, JOHN0FIRST]0PERSON, PITTSBURGH 0CITY, PA0STATE]@

Tabular form:

ADDRESS

PERSON CITY STATE

FIRST MI LAST

SCOTT S SMITH RALEIGH NC
JOHN J JONES PITTSBURGH PA

-16 -

Tb.e PSP cominands:

RG X IS STUDENT
RG S IS ADDRESS
CR COMPLETE VJITH "X . NAME , X . AGE , X . ED_H I ST , S . C ITY, S . STATE "

WHERE "X. NAME=S . PERSON"

create the p-set "COMPLETE" which consists of all concatena-
tions of a duplex from "STUDENT" and a duplex from "A.DDRESS"
containing the same value of the elements corresponding to
pid "NAME" in "STUDENT" and pid "PERSON" in "ADDRESS". The
answer to this query, given the example "STUDENT" database,
is :

PSN form:

[[[J@MI, JONES0LAST, JOHN0FIRST](3NAME, 25 0AGE,
[[UMD0SCHOOL, BA0DEGREE,

[[CMSC4100COURSE, B0GRADE]@#

,

[CMSC420 0COURSE , A0GRADE] 0#] 0CURRIC] 0#] 0ED_H 1ST

,

PITTSBURGH 0CITY, PA0STATE]0#

,

[[S0MI, SMITH0LAST, SCOTT 0FIRST] 0NAME , 290AGE,
[[UNC0SCHOOL, PHD0DEGREE,

[[CMSC6200COURSE, A0GRADE]0#

,

[CMSC6300COURSE, A0GRADE]0#

,

[CMSC7980COURSE, A0GRADE]0#

,

[CMSC720 0COURSE, B0GRADE J0#] 0CURRIC]0#] 0ED_HIST,
RALEIGH0CITY, NC0STATE]0#

]

Tabular form:

COMPLETE

NAME AGE ED__HIST CITY STATE

FIRST MI LAST SCHOOL DEGREE CURRIC

COURSE GRADE

JOHN J JONES 25 UMD BA CMSC410 B PITTSBURGH PA
CMSC420 A

SCOTT S SMITH 29 UNC PHD CMSC620 A RALEIGH NC
CMSC630 A
CMSC798 A
CMSC720 B

-17 -

5 CONCLUDING REMARI^S

The first version of the PSP is operational in an ex-
perimental environment. The system is quite slow and only
works with very small databases; so far, little v/ork has
been done on performance improvement. This section
discusses the success of the design and our plans for the
future

.

The PS P and Data Models

As mentioned earlier, the PSP is intended to be used as
a tool for studying DBMS’s, not as a DBMS itself. It has no
data definition facility, nor any restrictions on database
design, as would exist in a commercial DBMS that implemients
a particular data m^odel . However, unlike most tools, the
PSP has a tremendously powerful query facility. Consequent-
ly, iz. is useful to compare the expressive capabilities of
the PSP to those of various data models.

Th query language of the PSP may be viewed as an ex-
tension of relational query languages. Range variables,
similar to those in QUEL, enable referencing of attributes
in a relation. The basic data retrieval and manipulation
command, CREATE, is analogous to SELECT in SYSTEM R. Howev-
er, the PSP has somie important features that extend its ex-
pressive pov/er beyond that of currenr relational systems.

* It allows nesting of all kinds of m.athematical ob-
jects within one another: sets, sequences, rela-
tions, or any other structures definable in PSN.

* There are no intrinsic normal forms. Normal forms
are restrictions on the original mathematical con-
cept of a relation. The proliferation of normal
forms as anomalies or limitations are discovered in
each new one suggesrs that normalization is not
v/orth the sacrifice of the power of the mathematical
definition of "relation".

* The database may contain nested hierarchical struc-
tures that can be referenced with r el ational- like
command s

.

* Nodes from different subtrees can be specified in
the same query.

Thus, the PSP combines concepts from several data models and
serves as a powerful underpinning for the Bata Model Proces-
sor and as a basis for the study of future database manage-
ment systems.

-18 -

Future Directions

Project efforts in the next year are directed toward
applications of the Data Model Processor to such areas as
data model mappings, commercial DBMS validation, evaluation
of data model specifications, and query language transla-
tion. A paper on the DMP [KOLL82] is forthcoming. Work
will also be done on improving the efficiency and expressive
power of the PSP, so that it will be a more effective and
efficient tool. Some of our plans are discussed below.

Another version of the PSP, based on the same users
manual, but using an integer set processor (ISP), may be im-
plemented. This would be similar to a previous implementa-
tion described in [HARD76]. The ISP has the potential to
perform set operations rapidly on rather large classical
sets of positive integers represented by bit strings. A re-
vised bit- string technique has been developed by Gallagher
[GALL81]. By mapping p-sets onto the integers (using an
element table and the Cauchy-Cantor technique), the power of
an ISP can be used to implement p-sets.

Measurement and predictive performance modeling tech-
niques may be used to direct the further developm.ent of the
prototype PSP. A new predictive model that handles both re-
cursive routines and multiple concurrent processes may be
designed, implemented, and used to gather data on the execu-
tion of the major routines of the PSP. Eased on the
results, a model, similar to [DEUT78], that predicts perfor-
mance for the prototype may be attempted . The model v/ould
be validated by checking predictions against actual perfor-
mance in test cases, then the model would be used to fore-
cast performance in an operational environment. Modifica-
tion and optimization efforts would concentrate on the PS?
routines that the model shows to be problem areas.

The expressive power of the PSP will
modifications to some of the commands and
tional features for creating and accessing
will be specified.

be increased by
operators. A*ddi-
nested structures

We will be examining the relationship between the PSP
and other work on semantics, abstract data modeling, and
functional languages. We are trying to incorporate some
ideas from functional languages [BACK80] but this is just
beg inning

.

-19 -

6 ACKNOW LE DGEM ENT S

A major part of the design work on the PSP and DMP has
been done by Drs . M. Roll and G. Sockut . The implementation
(and some design) has been carried out by these part-time
and student programmers: Edwin J. Beller, Charles Haas,
Jerald Herstein, Thomasin Kirkendall, Anthony Marriott,
Joseph Naputi, Steven Norman, Sabrina Saunders, Michael
Shon, Cr is tine Shuey, and George Ski liman.

7. REFERENCES

ASTR76 Astrahan, M. M., et al . , "System R: Relational
Approach to Database Management", ACM Transactions
on Database Svstems, Vol . 1, No. 2, June 1976, pp

.

97-137.

BACKS0 Backus, J. , "Can Programming Be Liberated from the
von Neumann Style? A Functional Style and Its
Algebra of Programs" , Communications of the ACM ,

Vol. 21, No. 8, August 1978, pp . 613-641.

CODD 71

DEUT78

Codd, E. F., "A Data Base Sublanguage Founded on
the Relational Calculus", Proceed ing s of the 19 71

ACM- S IGF IDET Workshop on Data Description , Access ,

and Control , Nov. 1971, ACM, New York, 1971, pp

.

35—68

.

Deutsch, D
Techniaues

Model ing and Measur emen-
or Evaluation of Desian Alternarives

in the im.Dl emen tar ion Da tabas< Manaa ement
Soft’ware, ITiS Special Publication 500-49, 19/8.

GALL81 Gallagher, L. , "Comiputer Im.pl ementation of an In-
teger Set Algebra" , N'BS Special Publication (in
preparation), 1981.

-20 -

HARD76

. HARD78

HARDSla

HARDSlb

JONE78

K0LL81

KOLL82

KURA76

STON76

ZL0075

Hardgrave, W. T. , "A Technique for Implementing a

Set Processor", Con ference on Data ; Abstraction ,

Definition, and Structure, ACM, N.Y., 1976, pp

.

8-94.

Hardgrave, W. T. , "The Relational Model: A Refor-
mulation of Some Mathematical Aspects Using Posi-
tional Set Notation", IFSM T.R. No. 25, University
of Maryland, 1978.

Hardgrave, V^/ . T. , "Positional Set Notation", to
appear in Advances in Database Manag ement , Vol .

Heyden and Son, New York, 1981.

Hardgrave, W. T. , et al .

,

"The Positional Set Pro-
cessor User's Manual", NBSIR (in preparation),
1981 .

Jones, C. B. and D. Bjorner (eds.)

,

The Vienna
Development Me thod : The Meta-Lang uag

e

, Springer-
Verlag, New York, 1978.

Koll, Matthew, "Data Model Processor User's Manu-
al", NBSIR (in preparation). National Bureau of
Standards, Washington, D. C., 1981.

Koll, Hatthev; B., Hardgrave, W. Terry, and Sandra
B. Salazar, "Data Model Processing", submitted to
NCC, Houston, Texas, May, 1982.

Kur atov/ski , K. and A. Mostowski , Set Theory ,

North-Holland Publishers, New York, 1976.

Stonebraker, M., E. Wong, et . al .

,

"The Design and
Implementation of INGRES" , ACM Transactions on
Database Systems , Vol. 1, No. 3, September 1976,
pp . 189-222.

Zloof, M.M., "Query-By-Exampl e"
, Proceed ing s of

the ’ AFIPS National Computer Conference Vol . 44,
AFIPS Press, Montvale, N.J. (May 1975) pp

.

431-438.

-21 -

e 1

--•A Jf
-

'-i* 7

:7 .

: .V*l 31 •

t «(?<.»*

^
V _. fl'

.' fX'

'
‘•^'"n.rni-

- •^^. - '’^^^ 3?&S£i

-^l«v ^
''

-f
}%^iS

^'''

,-.y '., i' 't. .,
'

t<\-

' '7^ ^mr

NBS-n4A I REV. 2 -ec)

U.S. DEPT. OF COMM. 1. PUBLICATION OR 2. Performing Organ. Report No. 3. Publication Date

BIBLIOGRAPHIC DATA
SHEET (See instructions)

REPORT NO.

NBS-IR-81-2302 Nov. 30, 1981

4. TITLE AND SUBTITLE

The Positional Set Processor: A Tool for Data Modeling

5. AUTHOR(S)

W. Terry Hardgrave, Sandra B. Salazar
6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

8. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZiP)

Institute for Computer Sciences & Technology
Data Management & Programming Languages Division
National Bureau of S tandards/DoC/Bldg . 225, Room A265

Washington, DC 20234

10.

SUPPLEMENTARY NOTES

I I

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11.

ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bibliography nr litpraturesurvev. mention it here)

The Positional Set Processor (PSP) is aj
software tool for manipulating mathematical ob-
jects such as sets, sequences, ordered pairs, etc.
The PSP serves as the underpinning for a Data
Model Processor (DMP), an experimental system for
emulating commercial and prototype database
management systems. The PSP also provides a

mathematical basis for semantic specification and
interpretation of database operations. hbile its
powerful query facilities mtake the PSP itself ap-
pear to be a database management system, it has no
explicit concept of data definition, no access

,

control, no integrity control, etc. Tne authors
prefer to view the PSP as a tool for specifying
and building database management system.s. This
paper reviev;s the m.athemat ical formalism, Posi-

|

tional Set Notation, end describes the design of'
the Positional Set Processor.

12.

KEY WORDS (Six to twelve entries; alphabetical order; capitalize oniy proper names; and separate key words by semicolons)

databases, software tool, DBMS, database management systems

13. AVAILABILITY 14. NO. OF
PRINTED PAGES

Unlimited

For Official Distribution. Do Not Release to NTIS

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

22

15. Price

iy

V

Order From National Technical Information Service (NTIS). Springfield, VA. 22161

uscomm-dc 60o-per

|'

'. J ••*-,

ri;;c ' . s/Hi? :r
" a -"^8^

fo i ;X.4^4|fe.y ^^!;,t.9
'

,ii-^

. n<><ia»in>.^g>»*.'>»^.'^«<«-ii..o'

ti*' -:f^. ,.:,vi^^J^:, ,#

