
j:r Reference pifbl-

Aiiios

NBSIH b1-2240

Design of Information Systems
Using Scenario-Driven Techniques
^lla<n^ll iiiiriTfiiM w wi

'

n i~ tm» \ ifiim iBim 'ii iTrni r iTrMniiwi i iii n iwi ii i iiiiTfwnnwrin n rr miMiTFi~wMraBmwiM»iM~mgwrwiir<MW¥trnmwniiTTniirTTBMTiMMiiTrT»wwri« irarM t

W. T. Hardgrave

S. B. Salazar

E. J. Seller, III

Data Management and

Programming Languages Division

Center for Programming Science and Technology

Institute for Computer Sciences and Technology

U.S. Department of Commerce
National Bureau of Standards

Washington, DC 20234

^/arch 1S81

100

. U56 EPARTMENT OP CCMMSPCc

VAVIOMAL UBBAU
cnr standawm

UBtABT

MAY 1 8 1981

NBSIR 81-2240
_ >0

DESIGN OF INFORMATION SYSTEMS
'

^

USING SCENARIO-DRIVEN TECHNIQUES l

W. T, Hardgrave

S. B. Salazar

E. J. Belief, III

Data Management and

Programming Languages Division

Center for Programming Science and Technology

Institute for Computer Sciences and Technology

U.S. Department of Commerce
National Bureau of Standards

Washington, DC 20234

March 1 981

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

s.

-r-

-
i4sau« ^J4t(OtTA« - w

•fMAOMAT* «0 „
TIAIKUl

/
:

M:.'
^

t

reef 8 ,i yaw
..3i

*v

rir?

'

r d* .,. -4 '

D^Si- f‘8

sM^trevg MOKTANmo^ ifloiaao

.iti

.

I<i.>’ ifT
'\ ';'«*. '.51

f'Ti

w:*'. :

.-Si'?

"^f c

I
.

»y*>QbS^' tvw

.'3i.
A>';

Hi'
«'

‘>.

' *

. V'" •

w

T.. T-t
B!1r'^' '*

. H'*

Rt,6<}

‘'#^1 "WW/*; %» " •* - ,' - - -7. - - -

I
>.'

. MMm,]:. '.:,T'^ ' '

iJd'l'nU*

hdAj.
.^i

rr,4H

%

•mm Jli''

..'A :k‘'

_jj;r iBfc f

;' A-:

„•>

, ..
.

' '*•
. ®

.V - V n- t

..i/W .

'*''
SL

,i*BaM¥ce’»o;’tMaMTJrA*!sa‘c»;^ •>

io|9«f^C^%,WrrvA,'j^ 5^:0: »iA3fRji0 JAH®t.Ak1--
#%' ; .ija’

3

Design of Information Systems
Using Scenario-Driven Techniques

W. Terry Hardgrave
Sandra B. Salazar

Edwin J. Beller III

6 January 1981

National Bureau of Standards
Institute for Computer Sciences and Technology

Washington, D.C.

This paper describes a technique for develop-
ing information systems using a scenario-driven
design approach. The approach emphasizes client
(that is, the user who is purchasing the system)
participation in the design process. The first
step is to develop a collection of "scenarios"
which document the interaction between the comput-
er and the human user. Using the scenarios,
information-flow diagrams and database designs may
be constructed. After the client has approved
these documents, they can be used to establish
disk capacity requirements and transaction rates,
and finally to specify all hardware and software
requirements. The primary advantage of this ap-
proach is that the scenarios provide a good indi-
cation of the ultimate usefulness and cost of the
system. The client can review these documents and
approve, modify, or reject the system design be-
fore any software is generated. This paper
describes the scenarios, the information flow
technique, and the database design approach using,
as an example, a small business application.

if-

m

cvaijmnis4^ to tt^ mma
p^Jkwt2

#V« *

/B ijbrtfiifc '
:])s

Itl * ft'iWbH

^

J0^ J Y30mA^
^wmoi

1 *;

4r
‘Ypolonrfa^T TOl

%
\‘

-<?olfve& ^o3f fi eBcU^ti^^b
' 1 m f ' • "

. w ji» —

^XT«jtio ff<ss43lKi<o*R© dnT «
‘ '

'

f ffVMs.

4

jeA.\f n. w 1 - '7
'

: ^r- o»., 1 «rf9#OTqq»

,9ir(T .#fe»,t»cT(^. £s-^ii^.f^^" tt^9. ai

,»(yi!ii!i;0^pfc rt^rnm 4rtJ h» 5 «i

"*'

Yirm effteiit-i.

id o/ 6c/JmJ
. '^‘S- . ,‘H’ -k. . avib ^£k f'o3 ', Bbsfj :' 4^' jsj>!irr '\^ 0 e 9a^ ^

bwi^a<SiRP>ltr^t' X«i6 i
«Tf iSV^taoa? brtTS »d / 4 1? yS^i159^ , oi? yil i*ni 1 60a ^ ^

-cA 3-<?AirtAvJtc ,Y^A<(fi,,'t'q, ''l^$;r^^ '4Bin;A>.JteAiiq|>ea
-ifcfri. Bofep 6^,e&ivOT% ffr>A07q

5o j
'

4oc3 „ 04'e^a,Mu. ««J ' ip ^mi^Bo
iiOB wBn^vwoob ‘

jfe Ae^-f " t v^'.. imp'' i^fUi&. ^ifff' /ftf«.5»vi
"Sd ap4»©,ft «is:J py« "<»vpVq4»
3«^q a 1 4JT » Jopj.a 3 s^'aa

,
.

. d'l
'

'

4''*''3*ip.a
.

y/t-a*. !»Kji'i
woXi oo4^Afjr^a/i|'
.p«i 0 <i dPAb'fqpA frplWfc P044fo'4 ,!&.' ,P^'p^<k;frS'

^9^^ eeeniAtfcf J' 4‘^A'9^A;' ta'iqau^e (ia

.r.9!

''.“ '*•
.

,
i’- 'd ./ I,. «„.*.• <;

^

TABLE OF CONTENTS

Page

1. Introduction 2

2. Scenarios 4

2.1 Definition 4

2.2 Development 4

2.3 Menu Format 5

2.4 Sample Screens and Menus 6

3. Flow Diagrams 10

3.1 Characteristics 10

3.2 Sample Flow Diagram 11

4. Data-base Design 14

4.1 Entities 14

4.2 Relationships 15

4.3 Data Dictionary 18

5. Concluding Remarks 20

6. References 20

1 . Introduction

Designing an interactive information system requires
specialized techniques that are unnecessary in the develop-
ment of other types of computer systems. Human factors is-
sues are involved, since the user community typically does
not consist of computer specialists. Interactions between
humans and computers must be clearly defined. The database
must be described independently of any particular programs.
Standard flowchart practices must be modified to capture the
data flow through an interactive system.

This paper describes a technique for developing a logi-
cal design for an interactive information system. The pro-
duct of this design process is a document having these com-
ponents :

* Collection of scenarios

* Information flow diagrams

* Data-base design

Step-by-step approaches to the development of the com-
ponents, which are identified below, will be presented in
subsequent sections.

The term "scenario" is defined for the purpose of this
paper as a detailed documentation of the interaction between
a computer system and the human user working at a terminal.
\ scenario is essentially a hard-copy of an interactive ses-
sion. This level of detail is seldom available until after
the system is implemented and capable of writing output to a
terminal. One goal of the scenario-driven design approach is
to capture this level of detail before implementation.

The collection of scenarios is a complete description
of every screen format that the terminal operator may possi-
bly encounter. The data appearing in the scenarios should
be typical of data that may actually be used in the applica-
tion. Thus, this collection of scenarios completely and "by
example" describes the user interface to the information
system. The scenarios are discussed further in Section 2.

The information flow diagrams describe the movement of
data through the system. They show where data enters the
system, where it exits, where it is stored, and where it is
displayed for the human user. While standard flowcharts
have had widespread usage, the application of flow diagrams
to interactive systems requires a somewhat different

- 2 -

approach. A particular format and some stringent conven-
tions are discussed in Section 3.

The database design is a complete description of the
data that is to be held and permanently maintained by the
system. One expects this data to have a long life span;
certainly it will be longer than the execution time of any
programs that manipulate it. Therefore, it is necessary to
describe the data apart from any particular program or
subroutine. The database design technique, discussed in sec-
tion 4, is an application and extension of the "entity-
relationship model" CCHEN76].

The scenario-driven technique is currently being
designed as part of a project to automate the operation of a
wholesale book dealer. The examples used throughout this
paper are taken from that application.

There is one significant advantage of this method.
There will be detailed communication between the system
designer and the client (the user who has contracted to pur-
chase the system) during the design stage, as the client
will review the scenarios many times during their develop-
ment. Thus, when the report on the logical design is avail-
able, the client is already familiar with the system and can
be confident that it meets expected needs. There is no mys-
tery and little chance that the client will receive a system
substantially different than envisioned.

- 3 -

2 . Scenarios

2.1 Definition

A scenario is a detailed documentation of the interac-
tion between a computer system and the human user working at
a terminal. Scenarios may be written to mimic the interac-
tion on a line-by-line basis; a menu-by-menu basis, a
screen-by-screen basis, or any other basis that can reason-
ably be put into the design document. For the book
wholesaler system, scenarios are written on a screen-by-
screen basis, that is, each complete computer-human interac-
tion (such as "ordering", "receiving") is documented in
terms of the screens sequentially viewed by the user. Each
screen described here consists of a menu or a menu plus sys-
tem prompts.

Most importantly, the scenario is a tool to facilitate
communication between the client and the system designer.
That is, the scenario is a very simple visual image that
describes one part of system behavior. A comprehensive col-
lection of scenarios can describe system behavior in enough
detail to convince the client that the system will perform
as envisioned.

There are some other benefits that come with the
development of detailed scenarios:

* The scenarios may be included in the User's Manual
as tutorial material.

* The scenarios may be incorporated into a test plan
to determine system acceptance.

* The scenarios may be used as the basis for the con-
tract between the client and the systems designer or
software implementer.

The following subsections will discuss the development
of screen-based scenarios and the menu format. Examples of
menus from the wholesale book system are included.

2.2 Development

In a screen-based scenario design, all scenarios will
have in common the top level screen, that is, the first
screen that the user views. The master menu gives an over-
view of the aspects of the organization addressed by the

4

information system, thereby defining the scope of the sys-
tem. The designer and the client must work on the master
menu until an agreement is reached and the menu satisfies
both parties. During this process, the system designer and
the client must learn each other's terminology and develop a

common basis for further work.

After some agreement is reached on the nature of the
master menu, work may proceed on the screens at the next
level of detail. There is no established format for the
scenarios; the screens may describe menus, user commands, or
any interaction that is acceptable to both the client and
the designer. This process of defining progressively lower
levels of the system continues until all possible interac-
tions have been completely specified.

There are problems involved in the management of this
documentation. An exhaustive enumeration of all possible
scenarios will result in a large number of screens for even
a small system. As menus at different levels are
redesigned, it becomes tedious to maintain consistency and
verify correctness of the interfaces.

The notation used in the scenarios is not a
metalanguage. The data requested from the user or printed
for the user should be typical data from actual situations.
This avoids any formatting problems and similar misunder-
standings between the client and the systems designer.

2.3 Menu Format

The menu format is illustrated in Figures 2-1 through
2-4. Each menu (and its corresponding screen) is numbered
to indicate its level, starting with the master menu as 0.0.
A menu has four columns with the following headings;

* Mumber

* Option

* Next

* Page

Each entry in the menu represents a possible selection
by the user. The "option" is the textual statement of the
function that is displayed for the terminal operator. The
"num.ber" signifies the key stroke to select the correspond-
ing option.

- 5 -

The "next" and "page" fields do not actually appear on
the screen when the system is implemented. However, they
are necessary for the writer and the reader of the logical
design document in order to develop and follow the sequence
of menu displays. The "next" field indicates which menu ap-
pears next if the corresponding number is selected. The
"page" field gives the actual page number in the logical
design document. Both of these fields are useful, albeit
redundant. The page field is useful to the reader of the fi-
nal design document; and the next field is useful during the
development cycle, when menu numbers are available but page
numbers are not.

2.4 Sample Screens and Menus

The sample screens on the following pages describe part
of the "ordering" process for the book wholesaler system.
The level 0.0 menu is the first menu that a terminal user
would see after starting the system. "Ordering" is selected
t>y typing "1" in response to the system's prompt "Select
one :

"

.

The "Next" field of the "ordering" entry indicates that
the next menii to appear will be the 1.0 menu. After it ap-
pears, as shown in Figure 2-2, the terminal user may choose
to order for a customer or order something to be stored in
the inventory. In this case, a "1" is typed to signify an
order for a customer.

As indicated by the "Next" field of the first entry in
the 1.0 menu, the next menu to appear will be the 1.1 menu.
In menu 1.1, the terminal user may choose to create a new
order or to add to an existing order. In this case, the
user chooses to add to an existing order by selecting "2".

The system then prompts the terminal user for the "Customer
Order Group Number", abbreviated COG#. The system prints
the customer identifier and the shipping address.

According to the menu of the next screen, the 1.1.2
menu, the terminal user may select to search for the title
based on one of several possible inputs. In this case, the
terminal user selects a search on ISBN. The system prompts
for the ISBN, the International Standard Book Number, which
is the unique identifier for books. After the ISBN has been
entered, the system adds the book to the order group and
prints a message to that effect as shown. As indicated, the
screen would refresh itself to allow the operator to order
another title for this customer order.

-6 -

Menu 0.0

No. 1 Option
1

1 Next
1

1 Page
1

1

1

1 Ordering

1

- —— —— -

1

1 1.0
1

1 2

2 1 Receiving 1 2.0 1 40
3 1 Inquiry/Update 1 3.0 1 106
4 1 Picking List/invoice/PO 1 4.0 1 147
5 1 Accounting functions 1 5.0 1 166
6 1 End of day 1 6.0 1 183
7 1 Return to Operating System

1 1 1

Select one: 1

Figure 2-1 Screen 0.0

Menu 1 .

0

No. 1

- !

Option 1

. _ _ 1

.

Next 1 Page
1

1

1

1 Order for customer
1

1 1.1
1

1 3

2 1

1

Order for inventory 1

1

1.2 1 26
1

Select one: 1

Figure 2-2 Screen 1.0

- 7 -

Menu 1.1

No

.

1

- 1

Option 1 Next
- - 1

1

-

1

Page

1

1

1 New order
1

1 1.1.1
1

1 4
2 1

1

Add to order 1 1.1.2
1

1

1

10

Select one: 2

Enter COG#; 53296

Customer Id. is; MLM

Shipping Address is; National Library of Medicine
9600 Rockville Pike
Bethesda, MD 20014

Figure 2-3 Screen 1.1

-8 -

Menu 1.1.2

No. 1 Option
1

-

1 Next
1

1

-

1

Page

1

1

1 Search on alt. key

—
1

1

1 1.1. 2.1

1

1

! 30
2 1 Search on ISBN 1 1.1.2 1 10
3 1 Search on series 1 1.1. 2.

3

1 35
4 1 Enter as new title 1 1.1. 2.4 1 37
5 1 End order

1

1 0.0
1

1

1

1

Select one: 2

Enter ISBN: 0-13-854547

An order for Structured System Design by Gane and Sarson
has been added to COG# 53296 for National Library of Medi-
cine .

Figure 2-4 Screen 1.1.2

-9 -

3. Flow Diagrams

3.1 Characteristics

Flow charts have been used for many years to describe
the flow of computer programs and data. Although the di-
agrams used here are similar to traditional flow charts,
some stringent rules for their creation and use have been
imposed. These restrictions, discussed below, make the di-
agrams easier to read and more useful as a management tool.

As depicted in Figure 3-1, the format for the flow di-
agram exhibits the following characteristics:

* All flow is from left to right.

* The triggering event is the first box on the left.

* The process ends with the rightmost box (usually la-
beled "end").

* The left margin is partitioned by "roles"; that is,
the organizational (or external) entities are listed
down the left margin. One role that is usually in-
cluded is "database". In this way, processes that
store data in or retrieve data from the database may
be documented.

* The boxes have various shapes that are assigned
meanings to fit the application. This example uses
trapezoidal, square, and cylindrical symbols; the
meanings are explained below.

The diagram shown in Figure 3-1 is short and fits on
one page; most diagrams will require several pages.

There are several advantages in using this kind of flow
diagram:

* The triggering events can easily be spotted by look-
ing on the leftmost part of the diagrams.

* The involvement of a particular role can be isolated
by looking along the appropriate horizontal strip.

* Time may be measured horizontally. Time intervals
after triggering can be set up along the horizontal
axis and charting symbols placed in the appropriate
zones

.

ig-

* Parallel charts may also be created. For example,
in a manufacturing environment, a materials flow di-
agram can be set up parallel to the information flow
diagram. The materials flow documents the flow of
parts, subassemblies, etc.; the information flow do-
cuments the paperwork.

However, since a flow diagram should be generated for
each possible flow sequence, there may be problems with the
management of this volume of documentation.

3.2 Sample Flow Diagram

The sample flow diagram shown in Figure 3-1 depicts the
flow for the part of the ordering process discussed previ-
ously. The trapezoidal boxes represent the display of a
menu; the menu number is given inside the box. In cases
where there is a square box underneath the trapezoid, the
menu interaction requires input of a data-item by the termi-
nal user. The name of the data-item is contained in the
box. The freestanding square boxes represent processes that
the system performs. If the process stores or retrieves
data from the databases, this is signified by a line from
the process to the appropriate database. Herein, the term
"database" is used very loosely and could, in this case be
used interchangeably with the term "file". The various da-
tabases are represented by the cylindrical symbols.

In Figure 3-1, the flow begins on the left when the
customer prepares the order. The order then goes to the
ordering department. The terminal operator calls the system
into operation and the level 0.0 menu is displayed. This is
signified by the trapezoid containing 0.0. The terminal
operator selects option 1; this is signified by the "1"

above the trapezoid. Then menu 1.0 is displayed. The ter-
minal operator selects option 1; again this is signified by
the "1" above the trapezoid. Then menu 1.1 is displayed;
the terminal operator selects option 2. The box below the
trapezoid indicates that the terminal operator must enter
the "Customer Order Group Number", abbreviated COG#. As
shown by the square box, the system retrieves the customer
order group from the "Customer Order File", abbreviated CO.
Also, the system gets the "Customer Identifier", abbreviated
C#, from information contained in the COG. Finally, the
system retrieves the "Shipping Address", abbreviated SA and
displays it along with the customer number.

- 11 -

Tha next menu to be displayed is menu 1.1.2. The ter-
minal operator chooses to search on ISBN. The system re-
quests the ISBN and the operator enters it. The system then
searches the title file to ensure that the ISBN is valid.
If the ISBN is not valid, then other menus not shown here
are invoked. Finally, the title is added to the COG and the
process ends.

12 -

roles

I

PROCESS:

I

ADD-TO-ORDER

FIGURE

3'1:

SAMPLE

FLOW

DIAGRAM

4. Data-base Design

The database design is, roughly speaking, the format of
the various data files that are to be stored permanently
(usually on a disk). The actual values in the files may
change as different data enters and leaves the system. We
will refine this concept as we proceed.

Our approach to database design consists of several
steps as described below. While it is similar to the
entity-relationship approach described by Chen [CHEN76], the
technique is specified in more detail and may differ some-
what from his philosophy.

The process consists of:

* Enumerating entities

* Determining the key attribute of each entity

* Defining non-key attributes for each entity

* Enumerating relationships

* Determining keys for the relationships

* Defining non-key attributes for the relationships

* Determining which relationships may also have the
dual role of entities

* Assigning dual keys to dual entity/relationships

4.1 Entities

First, the designer must enumerate the entities. An
entity is a concept that the designer wants the information
system to recognize and manipulate. For example, in an in-
ventory system, a part would be an entity. For some applica-
tions, there are many possible choices for entities and de-
cisions on tradeoffs may be required. The discussion herein
will center on the Wholesale Books example rather than deal-
ing with generalities.

In the wholesale book application, the basic entities
are

:

- 14 -

* Customers

* Publishers

* Titles

Sample record diagrams giving the most important attri-
butes of each entity are shown in Figure 4-1. In the actual
database, more attributes are necessary; some are omitted
for this discussion to keep it manageable.

Each entity is uniquely identifiable by a single attri-
bute called the key (denoted by in the figures). For
example, a person may be uniquely identifiable by his/her
social security number or a part may be uniquely identifi-
able by the part number.

4.2 Relationships

Next, the designer must enumerate the relationships,
that is, the associations among entities. The attributes of
a relationship should describe the relationship, not the in-
dividual entities, and therefore must include the keys, but
no other attributes, of the entities involved.

Figure 4-2 shows some typical relationships; again
these are modified from the actual application for simplici-
ty. However, they are quite similar to an early design be-
fore the complexity required by the client was introduced.
The item-order relationship relates customers to titles. A
customer (CID) orders a title (ISBN) in some quantity (QTY)

.

The title/publisher relationship relates titles to publish-
ers. A publisher (PID) publishes a title (ISBN).

Our example is somewhat more complex. The item-order
relationship needs to be grouped to reflect which books ap-
pear on an incoming order. Also, the item orders need to be
grouped to reflect which items are included on a single ord-
er to the publisher. Therefore, the item-order relationship
needs to be referenced as an entity in other relationships.
This is accomplished by adding an attribute. Customer Order
Group (COG#) which becomes the key of the augmented item-
order dual entity/relationship (as shown in Figure 4-3, with
the key denoted by "**").

-15

TITLES

ISBN* 1 Title 1 Author I Cost 1 Price

CUSTOMER 1

1

CID*
^

1

1 C-Name 1 C-Address I

PUBLISHER

I PID* 1 P-Name 1 P-Address

Figure 4-1 Entities

I ITEM-ORDERS
I

I CID* 1 ISBN* 1 Qty

title/publisher

ISBN* 1 PID*

Figure 4-2 Relationships

I ITEM-ORDERS
1

1 COG#** 1 CID* 1 ISBN* ! QTY

Figure 4-3 Dual Entity/Relationship

- 17 -

4.3 Data Dictionary

The purpose of the data dictionary is to provide a
written description of each attribute that is referenced in
the database (in both entities and relationships). The data
dictionary can be used as a basis for communication among
the various people working on the design of the system and
for resolving the inevitable questions that arise during the
design process concerning the purpose and meaning of various
data-items. Whenever the database is reorganized, the data
dictionary is updated to reflect the new organization.
Thus, the data dictionary is an important tool for managing
and controlling the system design process.

Although the creation and maintenance of a dictionary
can be an expensive undertaking, it is possible to scale the
complexity to fit the application. For example, the dic-
tionary may contain many attributes for each data-item or as
few as two; it may be managed manually or with a computer-
ized system.

Because this approach is intended for a small organiza-
tion with limited resources, the data dictionary described
here is as simple as possible and may be managed manually at
a small cost. As depicted in Figure 4-4, the dictionary is
a table with two columns: data-item and narrative. Each en-
try in the table describes one data-item, or attribute, that
is defined in the system. The column labeled "data-item"
contains the names of the data-items, while the column la-
beled "narrative" contains descriptions of the data-items
meaningful to the user. The usefulness of the data diction-
ary (as well as its complexity and cost) could be increased
by adding more information to each entry. For example, a

column "entity" could be added to keep track of the entities
in which each data-item appears.

I

)

r

- 18-

1 DATA DICTIONARY I

i DATA-ITEM ! NARRATIVE
-

i
- - -

1 ISBN 1 International Standard Book Number
1 Title 1 Title of book
1 Author 1 Author of book
1 Cost 1 Publisher's price of book
1 Price 1 Our normal price for this book
1 CID 1 Unique identifier for customer
1 C-Name 1 Name of Customer
1 C-Address 1 Address of Customer
1 PID 1 Unique identifier for Publisher
1 P-Name 1 Name of Publisher
1 P-Address 1 Address of Publisher
1 Qty 1 Quantity; Number of this ISBN

1 ordered by this CID
1 COG# 1 Customer Order Group Number: Unique

1 identifier for Purchase Order

Figure 4-4 Data Dictionary Table

- 19-

5. Concluding Remarks

The information system design technique presented in
this paper is based on a surprisingly simple but rarely-used
idea— that the systems analyst build a mock-up of the sys-
tem for review by the client before implementation begins.
The method of constructing the mock-up, described herein, is
the development of a collection of "scenarios," the possible
interactions between the computerized information system and
the human user. The client and the system designer take
part in a number of iterations of reviewing and revising the
scenarios, while the information flow and the database
design proceed in parallel. Approval of a collection of
scenarios by the client is the first milestone in the
development of the system.

6. References

CHEN76 Chen, Peter, "The Entity-Relationship Model — To-
ward a Unified View of Data", ACM Transactions on
Database Systems, Vol. 1, No. 1, March 1^76, pp.

GANE79 Gane, Chris and Sarson, Trish, Structured Systems
Analysis ; Tools and Techniques Prentice-Hall, En-
glewood Cliffs, NJ, 1979, 241 p.

- 20 -

U.S. DEPT. OF COMM. 1. PUBLICATION OR 2. Performing Organ„ Report No,^ 3. Pl''.

|

BIBLIOGRAPHIC DATA
REPORT NO. i

i

1

SHEET (See Instructions) NBSIR 81-2240
i March 1981

4. TITLE AND SUBTITLE

Design of Information Systems Using Scenario-Driven Techniques

5. AUTHOR(S)

W. Terry Hardgrave , Sandra B. Salazar, Edwin J. Seller III

6. PERFORMING ORGANIZATION (If joint or other than MBS. see instructions)

national bureau of standards
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

8. Type of Report & Period Covered

9.

SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City, State. ZIP)

10.

SUPPLEMENTARY NOTES

I I

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11.

ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here)

This paper describes a technique for developing information systems using a

scenario-driven design approach. The approach emphasizes client (that is^
the user who is purchasing the system) participation in the design process.
The first step is to develop a collection of "scenarios" which document the
interaction between the computer and the human user. Using the scenarios

,

information-flow diagrams and database designs may be constructed. After the
client has approved these documents, they can be used to establish disk
capacity requirements and transaction rates, and finally to specify all
hardware and software requirements. The primary advantage of this approach
is that the scenarios provide a good indication of the ultimate usefulness
and cost of the system. The client can review these documents and approve,
modify, or reject the system design before any software is generated. This
paper describes the scenarios , the information flow technique, and the database
design approach using, as an example, a small business application.

12.

KEY WORDS (Six to twelve entries; aiphabeticai order; capitaiize oniy proper names; and separate key words by semicolons)

Database design; data dictionary ; design; flowchart; information flow;
information systems; interactive systems; requirements ; scenarios

.

13. AVAILABILITY

Unlimited

I I
For Official Distribution. Do Not Release to NTIS

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

21

15. Price

$5.00

USCOMM-DC 8043-P80

r*

. —

1

AO

^ >/

'

C'-^ rv.>l "-(<.'•

, 3

'

! A-A,) 3,r-S
-j

?r^,
;
«T.\

*
'

CCiiiO '' tr-?>c*:r ' ,.<,

^ JS IT’} ' orj

1

-^ V '

/ o*

-^x£. .- .

'

-- r-’u %ll'-‘"

x». .-•r-.m yt ,AO««in>LM2

.yOt^ ,ft«U*nT'(liV'

Aji^ar. ?»t >
.

.'
I •._

!*^ 7-'Mjqiy|; .|![i^
,

wv: ;-«i(!»i»?yWr» ^

Mr V ^ 4 <ilrttkih^in4 t <u. Mtj4. .-r^i

,'va.s. ‘mU vi’.l«V 4»%tlP>

r\;3 Ttiiyj .1-. . V't^'^ ’.,)*.?• I'-'di'

tlx

If*.

'^v,»,-, ' "
' yitH' tF\<i".il>C. v'"’'«‘‘‘t.X'''; -'jiA’t . «5vX‘‘isr'-i'’t t

' If.
.

'i lv_ '*'j 'U>i lvy'';' ..‘? %i^K>\e! u ^bivo't*^ 4^'

— '. :cu< ctJcw ’.'V" ’
•*";' ’> '*'*^ 1 '' JiiBiiT,' %t\1E ^ ^ aOO biBjC'

iiir . 1 ' .fci ov kaW ".•''. o'Tflyi riip'iii-.'jb w»5*Vli .u'^x.Jjia

Ofcfe f : !*“ van t»d-J --'iw^l,

,oo'tS&oi?1lncf. LUi!i», isfc ,.^'jialLlU

.A .'f\'.:i‘^**» v3 r".-<w(>t»* *>K.iAq»» ter - yliw ;U.; t.|i' '<

,
•

, •iijt’V W.:>1-’ l«ft‘70’>a 'A V •.,v;'.Tv«)l't ‘xfCatt"-'

,A .-c,*i'ii;,i«v.i» *j[rH'’'^iSrs/vivrpi)!iT

’iii'kMagu; ' '

• C

.. .-^ .!{

00 . C*

.0 »,• •,i ’‘3 'r.»

i.f

.

A* V .it'i

. «'.*»• ; jHw..'

^rv

a:? :- ..

'

4'
' '

1 u'tiiA'xn l.-ar. >Mi')>.-,Tt »w)

I

•«’-.'• '''lA ' v 3

J

|*>< tiOVt V.0 .fio*! .<;.

' \ Vb-OQ
•/f !' V ',v^'“>''

