

The Corrosion Behavior of Selected Stainless Steels in Soil Environments

W. F. Gerhold, E. Escalante, and B. T. Sanderson

Chemical Stability and Corrosion Division Center for Materials Science U.S. Department of Commerce National Bureau of Standards Washington, DC 20234

February 1981

A TO ACCOMPANY NBS REPORT, NBSIR 81-2228 (NBS), THE CORROSION AVIOR OF SELECTED STAINLESS STEELS IN SOIL ENVIRONMENTS BY W. F. GERHOLD, E. ESCALANTE AND B. T. SANDERSON	SHOULD READ	for specimens buried	SHOULD READ	for all welded	AISI 300 series	(upper right corner)	specimens having a	
	NOW READS IN PART	for specimens puried	IE NOW READS IN PART	for all elded	AISI 00 series	(lower right corner)	specimens havina a	
BEH	LINE	16	LINE	4	~	9	2	
	PAGE	13	FI GURE	ß	11	27	29	

-

~

æ

NBSIR 81-2228 (NBS)

THE CORROSION BEHAVIOR OF SELECTED STAINLESS STEELS IN SOIL ENVIRONMENTS

W. F. Gerhold, E. Escalante, and B. T. Sanderson

Chemical Stability and Corrosion Division Center for Materials Science U.S. Department of Commerce National Bureau of Standards Washington, DC 20234

February 1981

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Prepared for American Iron and Steel Institute 1000 16th Street, N.W. Washington, DC 20036

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

A. INTRODUCTION

Stainless steels* have been successfully used in limited applications (such as for pipe clamps on cast-iron sewer lines) in soil environments for many years. In recent years, other applications in use or under test include ground rods, transformer cases, submerged switches, underground residential distribution equipment, gas lines [1, 2], water lines, caskets, culverts, residential sewage disposal systems, etc.

Corrosion data for selected annealed, unstressed austenitic, martensitic and ferritic stainless steels, buried in various soils, have been reported in NBS Circular 579 [3]. Tests conducted for 14 years in various soils in the United States by NBS showed that austenitic Type 304 (containing Ni) and Type 316 (containing Ni and Mo) stainless steels were highly resistant to both pitting corrosion and general attack. Type 304 was susceptible to pitting corrosion in certain highly aggressive soils, while Type 316 was relatively unaffected by corrosion. The martensitic Type 410 (12% Cr) and the ferritic Type 430 (17% Cr) stainless steels were found to be fully resistant in only one-third of those soils where they were exposed. Branch [1] and Steinmetz and Hoxie [2] have reported on the suitability of stainless steels for some underground uses. Stress corrosion cracking has not been reported to be a problem with Types 304 or 316 in actual underground applications [1]. In a 2 year exposure to various soils in and around Baltimore, Maryland, Type 304 gas service lines [50 for a total length of 1 mile (1.61 km)] were

^{*}The term "stainless steel" is broadly used in industry to describe a number of different alloys of widely varying composition, corrosion resistance, mechanical properties and microstructures. The essential alloying element added to iron to form stainless steels is chromium, which is present from 10 - 30 percent. In many stainless steels, additional alloying elements are used such as nickel and/or molybdenum to enhance corrosion resistance.

reported to have suffered no corrosion effects [2]. However, one of these lines had failed after a little over five years of service in an area close to a road where deicing salts were used. Because of the critical nature of the service, it was decided to cathodically protect the remaining lines [4].

In order to evaluate more fully the corrosion and stress corrosion behavior of some of the different types of stainless steels considered for use in soil environments, NBS in cooperation with the Committee of Stainless Steel Producers, American Iron and Steel Institute, initiated in 1970 a soil burial program in corrosive soils utilizing 9 stainless steels in both the annealed and cold worked conditions with various treatments. Test specimens incorporated welds, crevices, galvanic couples and specimens which had been sensitized to induce carbide precipitation. In 1971 and in 1972, this program was expanded to include additional stainless steels. The results obtained for specimens buried in the soils for up to 4 years were reported in 1976 [5]. This report contains the results obtained for specimens buried at the NBS soil test sites for up to 8 years.

B. EXPERIMENTAL PROCEDURE

1. Soils at NBS Test Sites

Some of the properties of the soils at the NBS test sites are given in Table 1. The relative corrosivity of these soils on plain carbon steel is shown in Fig. 1. However, the corrosivity of these soils towards stainless steels may not necessarily be the same as with carbon steel. The following are detailed descriptions of the soils at the test sites which have been selected by NBS from 128 test sites previously evaluated to represent the range of soil properties having a bearing on the corrosivity of metals in soils: <u>Sagemoor Sandy Loam</u> (Site <u>A</u>) is a well-drained alkaline soil with a resistivity of 400 ohm-cm and a pH of 8.8 and is typical of that found in vast areas of eastern Washington and Oregon. The site is located on the Yakima Indian Reservation near Toppenish, Washington. The soil is consistent in composition to a depth of at least 7 feet (2.13 m) and supports an abundant growth of sage-brush.

<u>Hagerstown Loam</u> (Site <u>B</u>) is a well-drained soil representative of the majority of well-developed soils found in the eastern part of the United States. The site is located at the Loch Raven Reservoir of the Baltimore Water Department. The soil consists of a brown loam about 1 foot (0.30 m) deep, underlain by reddish-brown clay that extends about 5 feet (1.52 m) or more to underlying rock. The soil has a resistivity in the range of 12,600 to 37,300 ohm-cm and a pH of 5.3. Practically all of the materials that have been investigated in the extensive NBS soil corrosion tests have been exposed at this site which, therefore, can serve as a reference site for the correlation of data obtained for specimens in the present program with data obtained from the earlier tests.

<u>Clay</u> (Site C) is located in a large clay pit on level land at the U. S. Coast Guard Receiving Center, Cape May, New Jersey, and is subject to flooding during heavy rains. The soil consists of a plastic gray clay to a depth of 6 inches (15.24 cm) underlain by gray clay mixed with patches of brown clay to a depth of 12 inches (30.48 cm). This is underlain by a poorly drained very heavy plastic clay in which the specimens are exposed. The soil has a resistivity which ranges from 400 to 1150 ohm-cm and a pH of 4.3.

-3-

<u>Lakewook Sand</u> (Site D) is a white, loose sand with some black streaks occurring in places and supports an abundant growth of beach grasses. The site is located in a well-drained rolling area on the property of the U. S. Coast Guard Electronic Engineering Station, Wildwood, New Jersey. This site is not subject to overflow from the ocean except under unusual flood conditions. The sand has a pH of 5.7 and the resistivity ranges from 13,800 to 57,500 ohm-cm.

<u>Coastal Sand</u> (<u>Site E</u>) is a typical white, coastal beach sand with a high content of black sand; at this site, however, the sand is constantly damp and is occasionally flooded with sea-water. The site is located on the Two-Mile Beach on the property of the U. S. Coast Guard Electronic Engineering Station, Wildwood, New Jersey. The sand has a pH of 7.1 and the resistivity ranges from 1,320 to 49,500 ohm-cm.

<u>Tidal Marsh</u> (<u>Site G</u>) is a soil typical of the poorly-drained marsh soils that are found along the Atlantic and Gulf coasts. The site is located along a creek (Pine Hill Run) that empties into the Chesapeake Bay at the Patuxent Naval Air Station, Lexington Park, Maryland. The soil is naturally charged with hydrogen sulfide and has a resistivity in the range from 400 to 15,500 ohm-cm and a pH of 6.0.

2. Materials, Treatment and Preparation

In order to simulate some of the conditions that may be encountered with components fabricated from stainless steels, materials for these soil corrosion studies included stressed and unstressed flat sheet specimens with and without welds, welded tube specimens, coated specimens, sensitized specimens, and stressed and unstressed galvanically coupled .

-4-

Descriptions of the various stainless steel systems buried at each test site including treatments and preparation are given in Table 2. The chemical analyses and mechanical properties of each alloy are given in Tables 3 and 4. Typical microstructures for each alloy are shown in Figs. 2 and 3.

Upon receipt of the specimens from the stainless steel producers, the specimens were first stamped with identification numbers using chromium plated steel dies. All of the flat sheet materials [approximately 0.06 inch (0.15 cm) thick] were supplied with sheared edges which had been deburred. In some instances further deburring was necessary. All of the materials to be exposed unstressed were then degreased in trichlorethylene vapor, passivated (using procedures described in Table 2), scrubbed with a fiber brush, thoroughly rinsed with water and then air dried.

Of the total number of coated [coal-tar epoxy, 16 mils (0.04 cm) per side] specimens (System No. 61), half were scored diagonally from the corners, twice on one surface, by cutting through the coating to the base material with a sharp pointed instrument. The other half of the coated specimens were exposed in the "as coated" condition.

The cross-bead welded flat sheet materials (System Nos. 3, 9, 11 and 54) were prepared in accordance with Welding Research Council recommendations. Typical microstructures for welded materials are given in Figs. 4 and 5.

Type 304 tube (System No. 57) was prepared in accordance with ASTM Specification A249. Type 409 tube (System Nos. 62 and 63) was tested in the "as-welded" condition. Except for cleaning and passivating, the proprietary alloys were tested as supplied by the producers. The ends of the tube specimens were plugged with rubber stoppers and then plastic

-5-

or rubber caps were placed on each end to create a crevice.

All of the sheet materials to be stressed as either single or double U-bends had oblong holes, 1/4 inch x 1/2 inch (0.64 cm x 1.27 cm), punched near each end so as to be self aligning after bending. Specimens to be connected to a dissimilar metal (galvanic couples) had an additional hole 0.093 inch (0.236 cm) drilled 1/4 inch (0.64 cm) from the end and side for wire connections.

The specimens to be stressed were initially bent using a die (shown in Fig. 6) to about 20° (internal angle). The only portions of the die in contact with the specimens during the forming operation were fabricated from Type 304 stainless steel. The specimens were then cleaned and passivated using the same procedures noted above for unstressed specimens.

Single U-bend specimens were then formed by bending the two ends in a wooden jig so that they were parallel [the inside diameter at the bend was approximately 1 inch (2.54 cm)] and clamping them in this position with a Type 316 stainless steel nut and bolt. Double U-bend specimens for crevice and stress corrosion studies were formed in the same manner except that some were spot welded together (see Fig. 7) prior to the bending operation. They were then bent at the same time to form the U and clamped at the ends with Type 316 stainless steel fasteners.

For the galvanic couple studies, specimens were connected to steel (iron), zinc or magnesium anodes or to copper strips. Connection was made by soldering 14 gauge stranded copper wire to the specimen at the drilled hole using 50-50 acid core solder.

The iron anode consisted of a 1 foot (0.3 m) length of a cold finished steel (AISI 1017-1018) 3/4 inch (1.90 cm) hexagonal shaped rod with a hole [0.093 inch (0.236 cm)] drilled in the rod mid-way between

-6-

each end for the electrical connection. The copper wire from the specimen was inserted in this hole and then soldered to the iron anode using 50-50 acid core solder.

The magnesium anode [4 feet (1.2 m) long and bent in the form of a horseshoe] was of the commercial flexible extruded type with an oval shaped cross-section 3/4 inch x 3/8 inch (1.90 cm x 0.95 cm) and a continuous centrally located 1/8 inch (0.32 cm) diameter iron wire core. The copper wire from the specimen was soldered to a 1 inch (2.54 cm) extension of the iron wire core using 50-50 acid core solder. In addition a bituminous (coal-tar epoxy) coating was applied to both 3/4 inch (1.90 cm) faces of the anode to extend its effective life.

The zinc anode [1 foot (0.30 m) long] was also of the commercial flexible extruded type with a diamond shaped cross section [5/8 inch x 7/8 inch (1.59 cm x 2.22 cm)] and a continuous centrally located 0.1 inch)0.25 cm) diameter zinc-coated (galvanized) iron wire core. The stranded copper wire from the specimen was soldered to an extension of the galvanized wire core.

Copper strips which were electrically coupled to the unstressed stainless steel specimens were cut from cold-rolled copper sheet, 0.065 inch (1.651 cm) thick and of the same dimensions as the stainless steel specimen [1 inch x 12 inches (2.54 cm x 30.48 cm)].

The areas at all soldered joints, including any exposed portions of the copper wire, were covered with a bituminous (coal-tar epoxy) coating. 3. Exposure

At each test site, the specimens were buried in trenches approximately 2-1/2 feet (0.76 m) deep and 2 feet (0.61 m) wide. The specimens were placed about 1 foot (0.30 m) apart. The 8 inch x 12 inch (20.32 cm x

-7-

30.48 cm) sheets buried in 1970 were placed in the trench in a vertical position with the short dimension horizontal, while those buried in 1971 and 1972 were placed in a vertical position with the long dimension horizontal. The specimens electrically connected to the steel and zinc anodes and to the copper strips were placed in the trench with the dissimilar metal parallel to the specimen and separated by approximately 1 foot (0.30 m). Specimens electrically connected to the horseshoe shaped magnesium anodes were placed at the center of the horseshoe. Upon backfilling the trenches, the insulated wires soldered to those specimens to be used in potential and corrosion current (couple corrosion) determinations were connected above ground to terminal strips mounted on 4 inch x 4 inch x 6 foot (10.16 cm x 1.83 m) wooden posts. Leads from the anodes and copper strips were connected to leads from the specimens at the terminal strips (potential and current measurements).

Sufficient specimens were buried at each of the 6 test sites to permit recovery of a complete set at specified intervals (1, 2, 4 and 8 years) and a final set to be removed at a later date to be determined. Each set of the 8 inch x 12 inch (20.32 cm x 30.48 cm) flat sheet systems and welded tube systems consisted of 4 specimens, while for the stressed and unstressed 1 inch x 12 inch (0.254 cm x 30.48 cm) sheet systems, each set consisted of 2 specimens.

The burial order for each test site is shown in Figs. 8a, b and c. One thousand fifty four (1054) specimens were buried at each test site for a total of 6324 specimens at the six test sites.

4. Electrochemical Measurements

All electrochemical measurements (potential, couple current, and corrosion current) were made at time of burial and subsequently 3 times

-8-

a year when possible with the exception of Site A where measurements were usually made once a year.

Electrochemical potentials of the specimens and couples \underline{vs} . a Cu-CuSO₄ half cell were measured using a high precision portable pH meter as a millivoltmeter. The half cell was placed in a remote area (usually at the edge of the test area) and shielded from light to prevent photochemical effects.

The couple currents of the anode systems and the stainless steelcopper systems were measured using a zero impedance circuit employing an operational amplifier (Fig. 9) for small currents and a commercially available zero resistance ammeter for larger currents.

Corrosion currents were measured using a modification of the linear polarization technique based on the following relationship derived by Stern and Geary [6]:

$$\frac{\Delta E}{\Delta I} = \frac{1}{2.31 (I_{corr})} \frac{B_a B_c}{B_a + B_c}$$

where ΔE is the overvoltage of the corroding specimen produced by a polarizing current, ΔI . B_a and B_c are the slopes of the anodic and cathodic polarization curves, respectively, in the Tafel region and I_{corr} is the corrosion current. Assuming B_a and B_c equal to 0.1 V in this investigation (the error will usually be about 20% or less, as established by Stern and Weisert [7]), the following equation was derived:

$$I_{corr} (mA) = \frac{2.7 \Delta I (mA)}{\Delta E (mV)}$$

The electrical circuit described previously [8], but minus the bridge circuit was employed. A soil auger was utilized as the auxiliary

electrode. The change in potential was measured directly using the pH meter or an electrometer (0-10 mV scale) plus a battery and variable resistor (to null the initial potential) and a Cu-CuSO₄ reference electrode. Electrodes (auxiliary and reference) were placed so that the specimen was between them or at approximately right angles to them. In making these measurements, an increment of current was applied to the specimen until a stable overpotential of usually 2 to 10 mV occurred. The potential and current readings were then recorded.

ļ

Occasionally the open circuit potential of the stainless steel alloy was found to fluctuate and the corrosion current measurements could not be made. At other times, extremely humid or rainy conditions prevented these measurements.

5. Examination of Specimens After Exposure

Upon removal from the trench after burial for 1, 2, 4 or 8 years, each of the stressed specimens was examined for indications of failure by cracking. All specimens were then returned to the laboratory for cleaning and a more thorough examination.

In the laboratory, the specimens were rinsed in tap water to remove adhering soil particles. They were then examined visually prior to further cleaning. The stressed U-bend specimens were disassembled by removing the Type 316 stainless steel fasteners. The copper wires were unsoldered from those specimens that had been coupled to dissimilar metals.

All specimens, except the coated ones (System No. 61) and the composites (System Nos. 14, 15 and 16), were then further cleaned ultrasonically using a 10% nitric acid solution heated to 120° - 130 °F (49° - 54 °C) for 20 to 30 minutes. Specimens from System Nos. 14 and

-10-

16 were ultrasonically cleaned using an aqueous 10% ammonium citrate solution heated to 175° to 185 °F (73° - 85 °C). The time for cleaning these specimens varied and was dependent upon the tenacity of the corrosion scale. The specimens from System No. 15 were ultrasonically cleaned for approximately 30 minutes using an aqueous ammonium chloride solution at 175° - 185 °F (79° - 85 °C). After cleaning, the specimens were rinsed in hot tap water and then air dried. The unstressed sheet [8 inches x 12 inches (20.32 cm x 30.48 cm)] and tube specimens were then weighed twice and their weight loss was determined. The average loss in weight of similar unexposed (control) specimens given the identical cleaning process was subtracted from the weight loss of the exposed specimens.

Pit depth determinations were obtained for all of the unstressed tube and 8 inch x 12 inch (20.32 cm x 30.48 cm) sheet specimens.

C. RESULTS AND DISCUSSION

Table 5 summarizes the results obtained from visual examination of the unstressed non-welded sheet materials. The results obtained for welded sheet and tube materials are summarized in Table 6. The results obtained from average weight loss and pit depth determinations are given in Tables 7 through 12 and are shown graphically in Figs. 10 through 14.

Data given for each alloy system are a compilation of results obtained from either 2 or 4 specimens depending upon the number of specimens of each system that was exposed. The weight loss for a given alloy system exposed in a particular soil may appear to be extremely small in comparison to the observed corrosion. This occurs because the corrosion of stainless steels in some environments can often be localized and confined to a very small area. Similarly, one specimen may have only one corrosion pit which caused perforation of the specimen, while there

-11-

was little or no corrosion observed on companion specimens exposed for the same period of time in the same environment.

Corrosion of stainless steels is generally attributed to a breakdown of the passive film at the surface of the material at localized or selective areas. If corrosion occurs it may often be influenced by one or more of the following:

- 1. Inhomogeneities of the metal surface.
- Concentration cell effects due to adhering soil particles or crevices where stagnant conditions may exist.
- 3. Presence of chlorides in the soil.
- 4. Microbiological organisms.
- Abrasion of the metal surface by soil particles or foreign debris.

A break in the passive film at the localized area results in a small anodic site. The larger surrounding area is the cathode. The electrolytic cell formed could result in localized pitting corrosion, which can rapidly penetrate the thickness of the metal. However, a stainless steel with adequate alloying content for the environment would repassivate without degradation. Concentration cells formed at stagnant areas beneath soil deposits or at crevice areas can also result in localized corrosion. An unusual form of pitting corrosion, tunneling, is normally associated with edges and can be increased by gravity flow of corrosion products. All flat sheet specimens were buried with either the long dimension [12 inch (30.48 cm)] or the short dimension [8 inch (20.3 cm)] in the upright (vertical) position in the trenches, thus increasing the propensity for tunneling. Typical examples of the degradation observed are shown in Figures 15 through 36.

1. GENERAL CORROSION BEHAVIOR

Materials Exposed in 1970

AISI 200 Series

Corrosion of the annealed Type 201 and 202 stainless steels (system Nos. 50 and 51) was nil or superficial** for specimens buried up to 8 years in alkaline soil (site A) and Hagerstown loam (Site B). Of these steels buried in Lakewood sand (Site D), one Type 201 specimen exhibited pitting corrosion at the edge after exposure for 4 years while specimens of both systems were perforated due to corrosion after burial for 8 years. Specimens of both systems, buried for up to 8 years in acid clay (Site C), coastal sand (Site E) and tidal marsh (Site G) were perforated due to localized corrosion. The time to perforation for specimens of both systems buried at Sites C and E was less than one year while time to perforation for specimens puried at Site G was in excess of one year. Specimens of both systems exhibited tunneling corrosion at Sites C, D, E and G.

AISI 300 Series

<u>Annealed Materials</u> - In general, corrosion was nil or superficial for the annealed austenitic stainless steels buried for up to 8 years at Sites A, B and D. Annealed Type 316 was susceptible to slight localized pitting corrosion at Site C while specimens buried at Sites E and G were perforated due to localized pitting corrosion. Annealed Types 301 and 304 stainless steels buried at Sites C, E and G were perforated due to corrosion after exposure for up to 8 years. Of the annealed 300 series

**Many of the specimens examined exhibited incipient pitting and various forms of discoloration, e.g., iridescence, rust and dark to black stains. However, no other degradation was observed on these specimens nor was there any loss in weight due to exposure in the soil environment. Corrosion of these specimens was considered to be nil or superficial. alloys all buried at Sites E and G, Types 301 and 304 buried at Sites C and annealed Type 304 buried at Site D exhibited tunneling corrosion.

Sensitized Materials - Degradation of the sensitized 300 series alloys buried for approximately 8 years at Sites A and B, was nil or negligible. However, some slight etching and pitting corrosion was noted at areas on some of the specimens buried at these sites. Of the sensitized materials buried at Site C, all were susceptible to pitting corrosion with Type 316 being the least susceptible. Sensitized Type 304 and Type 316 buried at this site were also susceptible to tunneling corrosion. Small blister-like eruptions at surface areas were noted on some of the sensitized Type 301 and Type 304 buried at Sites D and E. These appeared to be very small corrosion pits. Of the sensitized 300 series materials buried at these sites, degradation due to corrosion was most severe on Type 301 and Type 304 buried at Site E.

Degradation of sensitized Type 301 and Type 304 buried at Site G was generally due to severe etching and non-uniform corrosive attack. Corrosion was most severe on the Type 301. Cracking, due to mechanical damage incurred during removal from the trench, was noted on specimens of both materials. Sensitized Type 316 specimens buried at this site for approximately 8 years, while relatively free from degradation, were susceptible to pitting corrosion particularly at the edges. Tunneling corrosion was also noted on specimens of this material exposed at this site.

<u>Welded Materials</u> - Corrosion of the cross-bead welded Type 301 sheet and heliarc welded Type 304 tube specimens buried at Sites A, B and D for up to approximately 8 years was in general nil or superficial. Pitting corrosion was noted at and adjacent to the weld bead on the

-14-

cross-bead welded Type 301 sheet specimens buried at Sites C, E and G. Pitting corrosion was also observed at and adjacent to the weld seam of Type 304 tube specimens buried at Site C. However, pitting corrosion was also noted at areas remote from the weld. Metallographic examination of areas adjacent to the weld did not reveal sensitization at these areas. This would indicate that the pitting corrosion observed adjacent to the weld was not due to sensitization. Of the Type 304 tube specimens buried at Sites C, E and G, corrosion was observed at areas adjacent to the caps and at crevice areas (under the end caps).

AISI 400 Series

Materials in this series include the martensitic Type 410 and ferritic Type 409, 430 and 434 stainless steels.

Specimens of Type 409 (non-coated - annealed or welded) and Type 410 (annealed) were perforated by corrosion after burial for 4 years in 5 of the 6 soils. The time to first perforation (generally 1 or 2 years) for the non-coated Type 409 materials was less for specimens buried at Sites C, E and G. Corrosion of both Type 409 and 410 materials was nil or superficial at Site B. The coal-tar epoxy coated Type 409 sheet specimens were relatively unaffected by corrosion.

Types 430 and 434 were relatively unaffected by corrosion after burial for approximately 8 years at Sites A and B. Specimens of these materials buried at Sites C, E and G were perforated by corrosion generally in less than one year while for specimens buried at Site D, the first perforation was noted after exposure for 4 years.

Materials Exposed in 1971 and 1972

Steels in this portion of the investigation include newer stainless steels and composite materials. The proprietary stainless steels may be grouped as follows according to major alloying constituents.

- 1. Cr Stainless Steels
 - 26 Cr 1 Mo 18 Cr - 2 Mo 18 Cr - 2 Mo (Nb) 18 Cr - (Ti)
- <u>Cr-Ni Stainless Steels</u>
 26 Cr 6.5 Ni
 20 Cr 24-Ni 6.5 Mo
 18 Cr 8 Ni (N)

The results obtained from visual examination of these materials after burial in the various soils for up to 7 years are summarized in Tables 5 and 6.

<u>Cr Stainless Steels</u> - Alloy 26 Cr - 1 Mo [in the annealed condition (System No. 1)] was relatively unaffected by corrosion in any of the soils after burial for approximately 7 years. Pitting corrosion was noted particularly at or adjacent to crevice areas on some of the heliarc welded Alloy 26 Cr - 1 Mo specimens buried at Sites A, C, E and G.

Corrosion of annealed Alloy 18 Cr - 2 Mo (System No. 6) was nil or superficial for specimens buried for up to 7 years at Sites A, B and D. Scattered pitting corrosion with subsequent perforation of the material was observed on specimens buried at Sites C, E and G. Corrosion of annealed Alloy 18 Cr - 2 Mo (Nb)(System No. 7) specimens was in general nil or superficial after burial for up to approximately 6 years in 5 of the 6 soils. Specimens of this material buried at Site G had perforated due to corrosion. Pitting corrosion was noted at weld areas on crossbead welded sheet specimens (System No. 11) buried for up to approximately 3 years at Sites A, C, D, E and G and at weld areas on heliarc welded tube specimens (System 12) buried for approximately 3 years at Sites B, C and D. Tunneling corrosion was also noted at weld areas of specimens of System No. 11 buried at Sites C and G. Specimens of System 11 buried at Sites C, E and G were perforated due to corrosion. Of the alloy 18 Cr (Ti) (System Nos. 2, 3 and 18) materials exposed for up to 3 years, corrosion of specimens of Systems Nos. 3 and 18 buried at Sites A, B and D and System No. 2 buried at Sites A and B was in general nil or superficial. Some specimens buried at Sites C, E and G were perforated due to corrosion.

<u>Cr-Ni Stainless Steels</u> - The annealed Alloy 18 Cr - 8 Ni (N) specimens (System No. 8) were in general unaffected by corrosion after burial for approximately 7 years at Sites A, B, C and D, while specimens of this material buried at Site E for 8 years and Site G for 7 years were relatively unaffected by corrosion. Companion specimens buried at Site E for 3 years and Site G for 2 years were perforated due to corrosion. Sheet specimens of this alloy having a cross-bead weld (System No. 9) and buried at Site C for 7 years and Site E for 3 years were perforated due to corrosion. Of the specimens of this system buried for 3 and 7 years at Site G, corrosion was nil or superficial while pitting corrosion was noted on companion specimens after exposure for 1 and 2 years. Specimens of this system buried at Sites A, B and D were relatively unaffected by corrosion.

There was little or no appreciable corrosive attack on the annealed (System No. 4), sensitized (System No. 5) or heliarc welded (System No. 19) Alloy 20 Cr - 24 Ni - 6.5 Mo specimens buried for up to approximately 8 years at the six soil sites.

-17-

Corrosion of annealed Alloy 26 Cr - 6.5 Ni (System 10) specimens buried at Sites A and B was in general negligible. Companion specimens of this material buried at Sites C, E and G were perforated due to corrosion in less than one year, while the time to first perforation for this material buried at Site D was in excess of 3 years.

<u>Composite Materials</u> - The composite systems are sandwich materials where outer layers of carbon steel are metallurgically bonded to a thin core of stainless steel [total thickness approximately 0.120 in (0.305 cm)]. Composites A and B (System Nos. 14 and 15) were fabricated with Type 430 stainless steel as a core material while Composite C (System No. 16) utilizes Type 304 stainless steel. In addition, Composite B specimens were individually hot-dip zinc coated [galvanized, 4.5 to 5 oz/ft^2 (1377 to 1528 gms/m²) zinc]. This was a thicker coating than would normally be used on carbon steel products.

In general, there was little difference in the corrosion behavior of System Nos. 14 and 16 buried in the same soil environment for approximately 7 years. Pitting corrosion of the carbon steel outer layers was observed on all specimens buried at the six sites. The carbon steel was perforated by corrosion on specimens buried at Sites A, B and G which thus exposed the stainless steel core of both composite materials. While there was no apparent significant corrosion of the stainless steel core of these specimens, degradation of the carbon steel was more severe for specimens buried at Site G.

The hot-dip zinc coating on specimens of System No. 16 provided protection to the underlying carbon steel and stainless steel core in all of the soils. There was some dissipation of the zinc in all of the soils. However, there was some zinc remaining on all of the specimens

-18-

after burial for up to 7 years in the 6 soil environments.

2. Stress Corrosion Behavior

The results of visual and micro examinations made to determine failure of the various systems due to stress corrosion cracking are given in Table 13 for nongalvanically coupled specimens.

Materials Exposed in 1970

AISI 300 Series

Type 301 stainless steel in the half-hard condition was relatively immune to stress corrosion cracking in all of the soils after exposure for approximately 8 years. Micro-cracking was noted on one specimen buried for 2 years at Site C. Sensitization of the half-hard alloy increased the susceptibility to stress corrosion cracking in all of the soil environments. The same alloy in the full-hard condition was in general also immune to stress corrosion cracking in all of the soils after exposure for approximately 8 years. However, micro-cracking was noted on one specimen exposed for approximately 2 years in the soil at Site G. No failures were observed on stressed Type 304, annealed or half-hard specimens buried for up to approximately 8 years in the soils at the six sites. Cracking of the sensitized Type 304 stressed material was observed on specimens buried at Site C for 2 years and Site E for 1 Companion specimens of this material buried at these sites and at vear. Sites A, B, D and G had not failed after exposure in the soils for approximately 8 years. No stress cracking was observed on annealed or sensitized Type 316 stainless steel after exposure for approximately 8 years in the various soils.

Type 434 stainless steel was the only alloy in this series exposed in the soils. There were no failures after burial for 8 years in any of the soils.

Materials Exposed in 1971 and 1972

Steels in this category included Alloys 26 Cr-1 Mo, 18 Cr-2 Mo, 20 Cr-24 Ni -6.5 Mo, 8 Cr-8 Ni (N) and 26 Cr-6.5 Ni. There were no failures of these steels after exposure for up to 7 years at Sites A, B, C, D and G and approximately 8 years at Site E.

3. <u>Stressed Dissimilar Metal Couples</u>

The results for the stressed galvanically coupled specimens have been reported elsewhere [9]. Table 14 in this report summarizes the results obtained for specimens buried for approximately 4 years.

Materials Exposed in 1970

AISI 300 Series

There were no failures noted for Type 304 in the annealed condition when coupled to zinc, magnesium or iron (steel). Type 301 full-hard and Type 301 half-hard have a tendency to stress crack. As shown in Table 14 all of the stressed Type 301 full-hard stainless steel specimens and all but one of the Type 301 half-hard specimens coupled to magnesium failed in the four years of exposure. When coupled to iron, these materials were resistant to cracking at 4 of the 6 sites (Sites A, B, D and E). One Type 301 full-hard specimen buried at Site G had failed while Type 301 half-hard specimens buried at this site had not failed. Both materials when coupled to zinc had failed at all of the sites except for those buried at Site A. The largest currents were generated by magnesium followed by zinc and iron. It was noted that below 1 μ A/cm² all Type 301 full-hard specimens failed. The fact that the number of failures increased with increasing cathodic current indicates that hydrogen embrittlement was the mode of failure.

Materials Exposed in 1971 and 1972

There were no failures of the 26 Cr-1 Mo or the 26 Cr-6.5 Ni alloys galvanically coupled to zinc, magnesium or iron after exposure for approximately 3 years in the soils.

4. Unstressed Dissimilar Metal Couples

The results obtained for unstressed stainless coupled to a dissimilar metal (copper) and buried for up to approximately 4 years have been reported elsewhere [10]. Table 15 in this report summarizes the results obtained on an annual basis for these stainless steels coupled to copper over an exposure period of up to approximately 10 years. The average galvanic current and the average potential are given for these stainless steels when connected to copper and buried in the soil at each of the 6 sites. The direction of current flow between the electrodes is denoted by the sign of the current [(-) indicated the stainless is cathodic to the copper].

In general, the galvanic currents measured are small, and average less than $0.1 \ \mu A/cm^2$ in every case where stainless was anodic to copper. It was noted that the galvanic currents measured reversed direction of flow from one year to the next. This indicates that the potentials of these stainless steels is very similar to that of copper when buried in the soil. There is a lack of tendency for either electrode to be sacrificial to the other. The potential of any given couple was found to be stable with fluctuations of less than 100 mv over the period measured. No correlation was found between potential and direction of current flow.

-21-

In summary, there should be little or no corrosion damage of Type 304, Type 409 or Alloy 26 Cr-6.5 Ni stainless steels as a result of being coupled to copper. This is indicated by the small galvanic currents generated.

D. SUMMARY

1. <u>Materials Exposed in 1970</u>

a. AISI 200 Series

Both of the annealed austenitic 200 series stainless steels exhibited good resistance to corrosion after burial for approximately 8 years in alkaline soil (Site A) and Hagerstown loam (Site B). These stainless steels were susceptible to corrosion in acid clay (Site C), Lakewood sand (Site D), coastal sand (Site E) and tidal marsh (Site G). Degradation was generally due to pitting or tunneling corrosion with subsequent perforation at these localized areas on materials buried at Sites C, E and G.

b. AISI 300 Series

In general the austenitic 300 series stainless steels exhibited good resistance to corrosion after burial for up to approximately 8 years in the soils at Sites A, B and D. These stainless steels were susceptible to corrosion at Sites C, E and G. Type 316 (annealed) was the least susceptible to corrosion in the six soils investigated. Degradation of the 300 series stainless steels was generally due to pitting or tunneling corrosion or a combination of both with subsequent perforation of the specimens at localized areas. For some of the materials buried in the tidal marsh (Site G), corrosion was observed at large areas on the specimens and was attributed to severe etching or general corrosion of the metal surfaces. Sensitization by heat treatment of the 300 series stainless steels studied in this program generally resulted in increased susceptibility to corrosion in all of the soils. Pitting corrosion was observed at or adjacent to the weld bead on crossbead welded Type 301 sheet specimens buried at Sites C, D, E and G and at or adjacent to the weld seams on Type 304 tube specimens buried at Sites A, C, E and G. However, pitting corrosion was also observed at other areas remote from the welds on specimens of these materials. Metallographic examination of areas adjacent to the welds indicated that sensitization was not a factor in the cause of the corrosion observed. Type 304 tube specimens buried at Sites C, D, E and G were also susceptible to crevice corrosion.

With some exceptions, the non-galvanic coupled stressed 300 series alloys exhibited good resistance to stress corrosion cracking in all of the soils. Type 316 in the annealed or sensitized condition was immune to stress corrosion cracking in all of the soils after exposure for 8 years. Type 301 in the half-hard condition was susceptible to cracking at Site G. Sensitization of Type 301 half-hard increased the susceptibility to stress corrosion cracking in all of the soils. Type 304 (annealed) was immune to stress corrosion, but sensitization of this material made the alloy susceptible to stress corrosion at Sites C and E.

c. AISI 400 Series

The martensitic Type 410 and the ferritic Types 409, 430 and 434 stainless steels were in general susceptible to pitting or tunneling corrosion or a combination of both at Sites A, C, D and E and to severe etching or general attack at Site G. Of these materials buried at Site A, all except Types 430 and 434 were perforated due to corrosion while corrosion of the 400 series stainless steels buried at Site B was nil or superficial. Areas at or adjacent to the weld seam on the heliarc

-23-

welded and high-frequency welded Type 409 buried at Sites C, D, E and G were susceptible to pitting corrosion. Pitting corrosion was also observed at crevice areas on these materials buried at Sites A, C, D, E and G. The coal-tar epoxy coating applied to the Type 409 stainless steel was effective in providing protection from corrosion at all sites. However, some superficial degradation of the metal surfaces was observed, particularly at areas where the epoxy coating had blistered, where the coating was mechanically damaged and at some areas where the coating had been scored to bare metal prior to burial.

Type 434 was the only stainless steel in the 400 series included in the stress corrosion study. No failures were observed for non-galvanically coupled stressed specimens of this material in any of the soil environments. 2. Materials Exposed in 1971 and 1972

Annealed, sensitized and heliarc-welded alloy 20 Cr-24 Ni-6.5 Mo was in general resistant to corrosion in all 6 of the soils after burial for up to approximately 7 years.

There was little or no degradation due to corrosion of annealed Alloy 26 Cr-1 Mo after exposure for up to approximately 7 years at the 6 soil test sites. Heliarc-welded alloy 26 Cr-1 Mo was susceptible to pitting or crevice corrosion in 4 of the 6 soils. This material was not exposed in the sensitized condition.

Alloy 18 Cr-2 Mo (Nb) (annealed and cross-bead welded sheet and heliarc welded tube materials), buried for up to approximately 6 years, was resistant to corrosion in 3 of the 6 soils (Sites A, B and D).

Annealed and cross-bead welded Alloy 18 Cr-8 Ni (N) stainless steel, buried for up to approximately 7 years, was also resistant to corrosion at Sites A, B and D and similarly was also susceptible to pitting corrosion at Sites C, E and G. Alloy 26 Cr-6.5 Ni in the annealed condition and buried for up to approximately 7 years was susceptible to pitting corrosion in 5 of the 6 soils (Sites A, C, D, E and G), but was relatively unaffected by corrosion at Site B.

Corrosion of Alloy 18 Cr (Ti) was nil or superficial for annealed and cross-bead welded sheet materials exposed for up to approximately 7 years at Sites A, B and D. Heliarc welded tube material of this alloy was resistant to corrosion at Sites A, B, D and E. These materials were severely corroded in the other soils in which they were buried.

Of these proprietary steels included in the stress corrosion study, there were no failures of either galvanically coupled or non-galvanically coupled specimens after exposure for up to 4 years in any of the soils.

ACKNOWLEDGMENTS

The assistance of James L. Fink in various capacities during this investigation is acknowledged.

Acknowledgment is made also to the following organizations which provided test sites and assistance during the burial and removal of the specimens and during the inspections at the test sites.

> Bonneville Power Administration U. S. Department of Interior Portland, Oregon 97208

Baltimore Bureau of Water Supply Baltimore, Maryland 21217

U. S. Coast Guard Training Center Cape May, New Jersey 08204

Patuxent Naval Air Station Lexington Park, Maryland 20653

U. S. Coast Guard Electronics Engineering Station Wildwood, New Jersey 08260

REFERENCES

- [1]. Branch, H. C., Corrosion Resistant Materials for URD Equipment, Materials Protection and Performance, 12, 9-14 (March 1973).
- [2]. Steinmetz, G. F. and Hoxie, E. C., A Field Test of Type 304 Stainless Steel for Gas Service, <u>Materials Protection and Performance</u>, 12, 41-44 (September 1973).
- [3]. Romanoff, M., Underground Corrosion (NBS Circular 579), National Technical Information Service, PB 168350 (April 1957).
- [4]. Hoxie, E. C., International Nickel Company, Private Communication.
- [5]. Gerhold, W. F., Escalante, E. and Sanderson, B. T., Progress Report on the Corrosion Behavior of Selected Stainless in Soil Environments, (NBS Report, NBSIR 76-1081), (August 1976).
- [6]. Stern, M. and Geary, A. L., Electrochemical Polarization, I. A theoretical Analysis of the shape of Polarization Curves, Journal Electrochemical Society, 104 (1) 56-63 (1957).
- [7]. Stern, M. and Wisert, E. D., Experimental Observations on the Relation Between Polarization Resistance and Corrosion Rates, <u>Proceedings ASTM</u>, 59, 1280-1291 (1959).
- [8]. Iverson, W. P., Tests in Soils, p. 588, <u>Handbook on Corrosion</u> <u>Testing and Evaluation</u>, (W. H. Ailor, Ed.) Wiley, New York (1971).
- [9]. Escalante, E. and Gerhold, W. F., "Galvanic Coupling of Some Stressed Stainless Steels to Dissimilar Metals Underground", Galvanic and Pitting - Field and Laboratory Studies, ASTM STP 576, American Society for Testing and Materials, pp. 81-93 (1976).
- [10]. Escalante, E. and Gerhold, W. F., The Galvanic Coupling of Some Stainless Steels to Copper - Underground, <u>Materials</u> <u>Performance</u>, 14, 16-20 (October 1975).

Figure 1. Relative corrosion effects of the soils at the six NBS Test Sites on carbon steel.

Transverse sections showing typical microstructures for Figure 2. standard stainless steels.

- (a) AISI Type 201 stainless steel. Etched electrolytically, 10% oxalic acid. X100.
- AISI Type 202 stainless steel. Etched electrolytically, (b) 10% oxalic acid. X200.
- (c) AISI Type 301 stainless steel. Etched electrolytically, 10% oxalic acid. X200.
- (d) AISI Type 301 stainless steel (sensitized). Etched electrolytically, 10% oxalic acid. X200.
- AISI Type 304 stainless steel. Etched, acetic acid, HCl, (e) glycerol and HNO₂. X200.
- AISI Type 304 stainless steel (sensitized). Etched (f) electrolytically, 10% oxalic acid. X200.
- (g) AISI Type 316 stainless steel. Etched electrolytically, 10% chromic acid. X200.
- (h)AISI Type 316 stainless steel (sensitized). Etched, lactic acid, methanol and HCl. X200.
- (1)AISI Type 409 stainless steel. Etched, acetic acid, HC1, glycerol and HNO₃. X200. AISI Type 410 stainless steel.
- Etched electrolytically, (j) methanol and HCl. X200.
- (k) AISI Type 430 stainless steel. Etched, Vilella's Reagent. X200.
- (1)AISI Type 434 stainless steel. Etched electrolytically, methanol and HCl. X200.

(b)

(a)

(d)

(f)

(h)

(g)

FIGURE 2

(i)

(j)

(1)

- Figure 3. Transverse sections showing typical microstructures for alloy stainless steels.
 - (a) Alloy 26 Cr-1 Mo. Etched electrolytically, 10% oxalic acid. X100.

- Alloy 18 Cr-2 Mo. Etched, lactic acid, HF, HCl and HNO₃. (b) X200.
- (c) Alloy 18 Cr-2 Mo (Nb). Etched electrolytically, 10% oxalic acid. X100.
- Alloy 18 Cr (Ti). Etched, aqua regia. X100. (d)
- Alloy 26 Cr-6.5 Ni. Etched electrolytically, 10% oxalic (e) acid. X100.
- Alloy 20 Cr-24 Ni-6.5 Mo. Etched, aqua regia. X100. (f)
- Alloy 20 Cr-24 Ni-6.5 Mo (sensitized). Etched, lactic (g) acid, HF, HCl, and HNO₃. X100. (h) Alloy 18 Cr-8 Ni (N). Etched, 10% oxalic acid. X200.

(d)

(g)

Figure 4. Section from a Type 304 stainless steel specimen at the weld bead area showing little or no apparent heat affected zone adjacent to the weld bead. This was typical for all cross-bead welded materials examined in this study. Etched, 10% oxalic acid. X50.

Figure 5. Section from a Type 304 stainless steel tube specimen at the heliarc weld seam showing a narrow band (heat affected zone) between the weld metal and the tube material. This was typical for all elded tube materials examined in this study. Etched, 10% oxalic acid. X50.

Figure 6. Die for forming U-bend specimens.

Figure 7. Double or crevice U-bend specimens for underground corrosion.

50x03 [*] 51 52 53	50 x05*	50×07*				B .		
51 52 53	50,005		50-00-	50-11	50-12	50-15	50-17	501
52 53	71	51	51	51	51	51	51	51
53	52	52	52	52	52	52	52	52
	53	53	53	53	53	53	53	53
54	54	24 55	54	54	55	54	55	55
56	56	56	56	56	56	56	56	56
57	57	57	57	57	57	57	57	57
58	58	58	58	58	58	58	58	58
59	59	59	59	59 60	59	59	59	59
61	61	61	61	61	61	61	61	61
62	62	62	62	62	62	62	62	62
63	63	63	63	63	63	63	63	63
65	65	65	65	65	65	65	65	65
66x03	66x05	66x07	66x09	66x11	66x13	66x15	66x17	66x1
50x04	50x06	50x08	50x10	50x12	50x14	50x16	50x18	50x2
51	51	51	51	51	51	51	51	51
52	52	52	52	52	53	52	53	52
54	54	54	54	54	54	54	54	54
55	55	55	55	55	55	55	55	55
56	56	56	56	56	56	56	56	56
5/	5/	57	5/	5/	5/	57	5/	57
59	59	59	59	59	59	59	59	59
60	60	60	60	60	60	60	60	60
61	61	61	61	61	61	61	61	61
62	62	62	62	62	62	62	62	62
64	64	64	64	64	64	64	64	64
65	65	65	65	65	65	65	65	65
66x04	66x06	66x08	66×10	66x12	66x14	66x16	66x18	66x
	(7.0)	(7.00	1	1				
68	68	68	69	69	63	68	69	69
69	69	69	71	71	69	69	71	71
70	70	70	73	73	70	70	73	73
71	71	71	74	74	71	71	74	74
73	72	73	75	75	73	72	75	75
74	74	74	78	78	74	74	78	78
75	75	75	79	79	75	75	79	79
76	76	76 77	81x10	81x12	76	76	81x18	81x
78	78	78	70×10	70x12	78	78	70x18	70x
79	79	79	1 1	1 1	79	. 79		1
80	80	80			80	80		
82	81	82		Ŧ	81 91	81 91	4	4
83	83	83			92x14	92x16		
84	84	84	72×10	72x12	_	_	72×18	72x
85	85	85	77x10	77x12-4			77x18-	77x
80	80	80	B0x10	80x12 82x12			80x18	-80x
88	88	88	11	I II				1 1
89	89	89	1	1 <u>1</u>			1	
90	90	90						
91 920/	91	91		Ti II			<u>ti</u>	Ī
92 804	92200	92,000	83x10	83x12			92x18	92 1
-	-		84x10-	84x12			PERIO	
			185×10	585×12				
			86×10	86x12				
				1 11				
				A. 1				
			11					
			87x10	87x12				
			89x10	-89x12				
			90x10	90x12				
			1 +1	1 +I				
			المعهد 🖬 جديا	<u> -+ 10] + </u>				
			ti 11	<u>†1 </u>				
			91×10	91x12				
			92x10	92x12				
4 ¹⁰ ×4 ¹¹ Per	• • • • • • • • • • • • • • • • • • •							
	59 60 61 62 63 64 65 50x04 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66x04 67x04 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 70 71 72 73 74 75 76 87 88 89 90 91 92x04 11 12 12 12 12 12 12 12 12 12	39 39 39 60 60 61 61 62 62 63 63 64 64 65 65 66x03 66x05 50x04 50x06 51 51 52 52 53 53 54 54 55 56 56 56 57 57 58 58 59 59 60 60 61 61 62 62 63 63 64 64 65 66x04 66x04 66x06 Image: State	59 59 59 59 60 60 60 60 61 61 61 61 62 62 62 62 63 63 63 63 64 64 64 65 65 65 65 66x03 66x05 66x07 50x04 50x06 50x08 51 51 51 51 52 52 52 52 53 53 53 54 54 54 54 55 55 55 55 56 56 56 56 57 57 57 57 58 58 58 58 59 59 59 60 60 60 60 61 61 61 61 62 62 62 63 63 63 63 64 64 64 64 65 65 65 65 66x04 66x06 66x08 67x04 67x06 67x08 68 68 68 69 69 69 69 70 70 70 70 71 71 71 72 72 72 73 73 73 73 74 74 74 74 74 74 75 75 75 76 76 76 76 77 77 77 77 77 78 78 78 78 78 78 79 79 79 80 80 80 81 81 81 81 81 81 82 82 82 83 83 83 84 84 84 85 85 85 86 86 86 87 87 87 87 87 87 87 87 87 88 88 89 89 89 90 90 90 91 91 91 92x04 92x06 92x08 • • •	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

When terminate (patwarte couple) to POSt for electrical measurements.
 *Specimen identification: Digits preceding "x" denote system number (see Table 2)
 "x" represents site designation. You'd be A, B, C, D, E or G depending upon where
 specimen was exposed. Digits following "x" are specimen numbers.

First R (1	emoval yr)	Second F	Removal /r)	Third Re (4 y	emoval /r)	Fourth (8	Removal yr)	Fifth Re (X y	emoval vr)
5	Š #			-	57	2	3		
1×01*	1×03*	1x05*	1x07*	1x09*	1x11*	1×13*	1x15*	1x17*	1x19*
2x	2x	2x	2x	2x	2x	2x	2x	2x	2x
3x	3x	3x	3x	3x	3x	Зx	3x	Зx	3x
4x	4x	4x	4x	4x	4x	4x	4x	4x	4x
5x	5x	5x	5x	5x	5x	5x	5x	5x	5x
6X	6X	6X	bX ov	6X	6X	6X	6X	6X	6X
0X Qv	OX Qv	OX Qy	0X Qy	oX Qy	0X Qy			8X 9y	OX Qy
10x	10x	10x	10x	10x	10x	10x	10x	10x	10x
14x	14x	14x	14x	14x	14x	14x	14x	14x	14x
15x	15x	15x	15x	15x	15x	15x	15x	15x	15x
16x	16x	16x	16x	16x	16x	16x	16x	16x	16x
17x	17x	17x	1/X	1/X 19.	1/X	1/X	1/x	1/x	17x
18X	18X 10v02	18X	18X 10×07	18X	18X	18X 10v12	18X	188	18X
1 x02	1 x 0 4	1x06	1x08	1x10	1x12	1111	1116	1x18	1x20
2x	2x	2x	2x	2x	2x	2x	2x	2x	2x
3x	3x	3x	3x	3x	3x	3x	3x	3x	3x
4x	4x	4x	4x	4x	4x	4x	4x	4x	4x
5x	5x	5x	5x	5x	5x	5x	5x	5x	5x
6X	6X	6X	6X	6X	6X	6x	6X	6X	6X
8X 0x	8X	8X	8X	8X 0v	8X	8X 0v	8X	8X	8X
9X 10y	9X 10x	9X 10y	9X 10x	9X 10x	9X 10y	9X 10x	9X 10v	9X 10y	9X 10y
14 2	14 2	14 2	14x	14 x	14 2	14 x	14	14 2	14
15x	15x	15x	15x	15x	15x	15x	15x	15x	15x
16x	16x	16x	16x	16x	16x	16x	16x	16x	16x
17x	17x	17x	17x	17x	17x	17x	17x	17x	17x
18x	18x	18x	18x	18x	18x	18x	18x	18x	18x
19x02	19x04	19x06	19x08	19x10	19x12	19x14	19x16	19x18	19x20
the second se	1	14 m		(internet	<u>Ha</u>				
20x02	20x04	20x06	20x08	20x10	20x12	20x14	20x16	20x18	20x20
21 x	21x	21 x	21x	22x	22x	21x	21 x	22x	22x
22X	22X	22X	22X	24X	24X	22X	22X	24X	24X
23X 24 v	23x	23X 24 y	238	20X 27y	25X 27y	23×	238	20X 27v	25X 27v
25x	25x	25x	25x	= 21x	-21x	25x	25x	=21x	-21x
26x	26x	26x	26x	23x10	23x12	26 x	26x	23x18	23x20
27x	27x	27x	27x	1 1	1	27x	27x	1	1
28x	28x	28x	28x			28x	28x		
30x	30x	30x	30x	T I		30 x	30x	ΤI	ī
33X 34 v	33X 34 v	33X 24 v	33X 34 v	2610	26112	42X 43y	42X 13v	26 18	26×20
34X 35y	34X 35y	35 x	35x	28x	281	44 x	43X 44 y	28x	28x -
36x	36x	36x	36x	- 30x	- 30x	45x14	45x16	-30x	-30x
37 x	37x	37 x	37x	33x10	33x12			42x18	42x20
38x	38x	38x	38x	1	1 11			11	L LI
42x	42x	42x	42x			*	4		
52	1	5		11	11				
				34x10	34x12				
				35x —	35x				
				1 36x	130X				
				3/X	3/X *I				
				L- 🕅	L>				
				14					
				38x10	38x12				
				42x	42x				

Figure 8b. Map showing burial order for specimens exposed in 1971 at the various sites.

🔚 4"x4" post

→ 🛃 Wire terminal to post for electrical measurements

Wire terminals (galvanic couple) to post for electrical measurements.

*Specimen identification: Digits preceding "x" denote system number (see Table 2) "x" represents site designation. Hould be A, B, C, D, E or G depending upon where specimen was exposed. Digits following "x" are specimen numbers.

First F	Removal	Second	Removal	Third R	Removal	Fourth	Removal	Fifth R	lemoval
(1 Y	'r)	(2	Yr)	(4 Y	Yr)	(8	Yr)	(X Y	r)
		F		\$		Ş	*	<u>a</u>	M
7x01*	7x03*	7x05*	7x07*	7x09*	7x11*	7x13*	7x15*	7x17*	7x19*
11	11	11	11	11	11	11	11	11	11
12	12	12	12	12	12	12	12	12	12
7x02	7x04	7x06	7x08	7x10	7x12	7x14	7x16	7x18	7x20
11	11	11	11	11	11	11	11	11	11
12	12	12	12	12	12	12	12	12	12
	22	*			1	Pa			

Figure 8c. Map showing burial order for specimens exposed in 1972 at the various sites.

🔯 - 4"x4" post

*Specimen identification: Digits preceding "x" denote system number (See Table 2) "x" represents site designation. Would be A, B, C, D, E, or G depending upon where specimen was exposed. Digits following "x" are specimen numbers.

tion. (a) Site C. (b) Site E. (c) Site G.

Average weight loss (mg/dm²) and maximum pit depth (mils) for AISI 200 Series stainless steels after exposure in various soils. See Table 2 for descriptions of the systems. H-denotes perfora-Figure 10.

slim ,HT930 TI9 MUMIXAM

Figure 11. Average weight loss (mg/dm²) and maximum pit depth (mils) for AISI 00 series stainless steels after exposure in various soils See Table 2 for descriptions of the systems. O-none, N-<1 mg/dm², H-perforated and T-tunneling.

- (a) Site C.
- (b) Site E.
- (c) Site G.

AVERAGE WEIGHT LOSS, mg/dm?

OE I P

Z£ 99 991Z-

\$451-

+ 5430

14.000

Figure 13. Average weight loss (mg/dm²) and maximum pit depth (mils) for Fe-Cr alloy stainless steels after exposure in various soils. See Table 2 for descriptions of the systems. O-None, N-<1 mg/dm², H-perforated, I-incipient pitting and S-<5 mils.

- (a) Site C.
- (b) Site E.
 - (c) Site G.

Average weight loss (mg/dm²) and maximum pit depth (mils) for Fe-Cr-Ni alloy stainless steels after exposure in various soils.² See Table 2 for descriptions of the systems. O-none, N-<1 mg/dm², H-perforated, I-incipient pitting, S-<5 mils. Figure 14.

- Site C. (a)
- (b) (c)
- Site E. Site G.

- Figure 15. Type 202 stainless steel buried for approximately 8 years at Site C. Arrows denote areas where tunneling corrosion was observed. X0.3.
- Figure 16. Type 301 stainless steel buried for approximately 8 years at Site C. Tunneling corrosion was observed at edge areas (arrows). X0.3.

Figure 17. Type 301 stainless steel (sensitized) buried for approximately 8 years at Site C. Note etching of the surface and pitting corrosion where the specimen was perforated (arrow). Cracking was observed in the upper right quadrant (note missing portion of the specimen at this area). X0.3.

Figure 18. Type 301 stainless steel (sensitized)
 buried for approximately 8 years at
 Site G showing severe localized
 corrosion attack and cracking. X0.3.

Figure 19. Type 301 stainless steel with a cross-bead weld after exposure for approximately 8 years at Site C. With the exception of a small corrosion pit and tunneling corrosion observed at the weld (arrow), this specimen was relatively unaffected by corrosion. X0.3.

Figure 20. Type 304 stainless steel after exposure for approximately 8 years at Site G. Note sever etching (light areas on the left side) and tunneling corrosion at the top edge (arrow). The remainder of the surface was relatively unaffected by corrosion. X0.3.

Figure 22. Type 304 stainless steel (sensitized) buried for approximately 8 years at Site E. Note tunneling corrosion which apparently originated at a corrosion pit on the surface of the specimen. X1.25

Figure 23. Type 304 stainless steel (sensitized) after exposure for approximately 8 years at Site E. Arrow denotes areas at end where cracking was observed. X0.6.

Figure 24. Type 409 stainless steel buried for approximately & years at years at Site C. Note severe corrosive attack on surface. Arrow denotes area where the specimen was perforated due to to corrosion. X0.3.

Figure 25. Type 409 stainless steel buried for approximately 8 years at Site G. Note severe localized corrosion and subsequent perforation of the material. X0.3.

Figure 26. Type 410 stainless steel after burial for approximately 8 years at Site E. Arrows denote areas which exhibited tunneling corrosion. X0.3.

Figure 27. Type 430 stainless steel after burial for approximately 8 years at Site G. This specimen was virtually destroyed due to corrosion. However, a small segment (lower right corner) was unaffected by corrosion. X0.3.

Figure 28. Type 430 stainless steel after exposure for approximately 8 years at Site D. Arrows denote areas where tunneling corrosion was observed. Filiform areas were etched. X0.3.

Type 409 stainless steel tube with a high frequency welded seam after exposure for approximately 8 years at Site C. Severe corrosion at crevice areas (areas at and adjacent to the capped ends) was observed. Other areas on the tube specimens exhibited severe general and localized pitting corrosion. All were perforated due to corrosion. X0.3.

Figure 30.

Type 409 stainless steel tube

Figure 29.

specimens havina a heliarc welded seam after exposure for approximately 8 years at Site G. Note severe localized corrosion at crevice areas (ends) and at other areas on the surfaces of the tubes. All were perforated due to corrosion. X0.3.

Figure 31. Alloy 18 Cr (Ti) stainless steel after exposure for approximately 7 years at Site G. Note severe localized corrosion with subsequent perforation of the specimen at areas denoted by arrows. X0.3.

Figure 32.

Alloy 18 Cr (Ti) stainless steel with a cross-bead weld after burial for approximately 7 years at Site G. This specimen exhibited severe localized corrosion, particularly in the lower right quadrant, at and adjacent to the weld. Arrow denotes area where the specimen was perforated due to corrosion. X0.3.

Figure 33. Alloy 18 Cr-8 Ni (N) stainless steel with a cross-bead weld after exposure for approximately 7 years at Site G. Pitting corrosion at area near the weld is shown at arrow. X0.3.

Figure 34. Alloy 18 Cr-8 Ni (N) stainless steel with a cross-bead weld after burial for 7 years at Site C. Localized corrosion is shown at the weld area designated by arrow. X0.3.

Figure 35. Alloy 18 Cr-2 Mo (Nb) stainless steel with a cross-bead weld after burial for approximately 7 years at Site C. Areas designated by arrows show pitting corrosion observed at the weld beads. X0.3.

Figure 36. Alloy 18 Cr (Ti) stainless steel tube with a heliarc weld seam after exposure for approximately 7 years at Site C. Note severe corrosion at and adjacent to crevice areas (top ends) on two specimens at the left. Both were perforated due to corrosion. X0.3.

												6		ы	9	
		N03	9	•	118	1	31	37		0.0	1	0.1	1	0.0	0.0	
		IJ	330	ı	3,529	ı	5,765	3,259		0.93	ı	9.94	ı	16.2	9.18	
	act	so ₄	216	۲	6,768	ı.	1,133	1,709		0.45	ı	14.0	ı.	2.36	3.56	posit se
	er Extra 11ion)	нсо3	5 ,002	, 1	0.0	ı	55	0.0	of soil	8.20	ı	0.0	ı	0.09	0.0	La la la
	of Wat per Mi	co ₃	0.0	ı.	0.0	ı	0.0	0.0	grams	0.0	ı	0.0	·	0.0	0.0	l's can
	nposition (Parts	Na + K as Na	1,960	I	2,242	ı	3,230	2,392	s per 100	8.50	ı	9.51	ı	13.9	10.2	chenard
	Con	ВM	23	ī	754	ı	329	165	valents	0.19	·	6.18	•	2.70	1.35	A where
- 21 CE2.		S.	108	ı	540	ı	302	140	am equi	0.54	ı.	2.70	ı	1.51	0.70	or Site
ס מר רבאר		TDS (b)	7,080	(c)	14,640	(c)	11,020	11,580	(Milligr	ı.	(c)	ı	(c)		ı	excent f
		표	8.8	5.3	4.3	5.7	7.1	6.0		ı	I	ı	ı	ı	I	hod [5]
	Resistivity ^(a)	(otm - cm)	400	,600-34,760	400-1,150	3,800-57,500	1,320-49,500	400-15,500		•	ĩ	ı	ı	•	ı	nner's 4-nin met
	Internal Braínage	of lest Site	Good	Good 12	Poor	Good 13	Poor 1	Poor		ı	ı	ı	ı	ı	ı	site by We
	Location		Toppenish, Wash.	Loch Raven, Md.	Cape May, N.J.	Wildwood, N.J.	Wildwood, N.J.	Patuxent, Md.		ł	ı	ı	ı	8	ı	is made at the test
	Soil		Sagemoor sandy loam	Hagerstown loam	Clay	Lakewood sand	Coastal sand	Tidal marsh		8	ı	ł	ı	ı	t	sîstîvîtv determînation
	Site	Iden	A	æ	ပ	D	ш	ധ		A	8	ပ	0	ш	ശ	(a) Re

B

(b) TDS, total dissolved solids - residue dried at 105°C.

(c) Analysis not made for soils at Sites B and D because of the very low concentration of soluble salts in these soils.

Table 1. Properties of soils at test site:

Table 2. Stainless steel systems in underground corrosion tests

System	Burial Year	Stainless Steel	Spec. Config. & Size(a)	Treatment(b)	Passivation(c) Procedure	Stressed(d)	Dec. Coupled To
1	1971	26 Cr-1 Mo	Sheet (8"x12")	А	I		
2	11 11	18 Cr (Ti)	и і й і и п	A	I		
4	н	20 Cr-24 Ni-6.5 Mo		A	I		
5	и 11	" 18 Cr=2 Mo	11 11 11 11	S A	I		
7	1972	18 Cr-2 Mo (Nb)		Â	I		
8	197 1	18 Cr-8 Ni(N) "	u u	A XBW	I		
10		26 Cr-6.5 Ni		A	Î		
12	19/2	18 Cr-2 Mo (Nb)	Tube (2" ODx12")	XBM XBM	I		
14	1971	Composite A	Sheet (8"x12"x0.12")	A			
15	н	Composite C		A			
17	н	26 Cr-1 Mo	Tube (2" ODx12")	HW	I		
19	н	20 Cr-24 Ni-6.5 Mo	(1 1/8" 00x12") (7/8" 00x12")	HW	I		
20 21		26 Cr-1 Mo	Sheet (1"x12")	A	I	(UU)	
22		20 Cr-24 Ni-6.5 Mo		Â	Î	(ບບັ)	
23 24	0		и и	A S	I	UU	
25		18Cr-2Mo	11 H	A	Ī	(00)	
26 27		18 Cr-8 Ni(N)	0 0	A	I I	(UU)	
28			н н н н	A	I	Ŭ	
30	н	26 Cr-1 Mo	н	Â	Î	UUU	Zn
34 35	и 11	н 11	N N N N	A	I	U	Mg Fe
36	н	26 Cr-6.5 Ni	н н	A	Î	Ŭ	Zn
37 38				A	I	U	Mg Fe
42	"	"		Ä	Ĩ		Cu
50 51	1970	201 20 2	Sneet (8"x12")	A	I I		
52		301	H 49 H 11	A	I I(f)		
53 54	U U	u	0 U	XBW	I		
55 56	. " #	304	н н н н	A			
57			Tube (2" ODx12")	HW(e)	I		
58 59		316	Sheet (8"x12")	A S	I I		
60	11	409	н н н н	A	IIĪ		
62		U U	Tube (1-1/8" ODx12")	HW	III		
63	8 11	" 410	Tube (7/8" ODx12")	HFW	III		
65	н	430		Â	II		
66 67		434	" " Sheet (1"x12")	А	I		
68				нн	Î	(UŬ)	
69 70			H 11	HH+S FH	I(†) I	UU U	
71	н 0	"	H H	FH	I	(UU)	
72		304 II	и и	Â	I ·	(UU)	
74		u 11	H H	нн	I	U (1111)	
76		u	u u	S	Î(f)	UU	
77 78		316	и и и и	A	I	U (1111)	
79			11 H	S	Î(f)	νυ,	
80 81	0	434		A	I I	U (UU)	
82	11	301	0 0 0 1	HH	I	U	Zn
83 84	U II	II	u H	HH	I	U	Mg Fe
85	11 11	u u	H H H H	FH	I	U	Zn
87	н	н	u u	FH	I	Ŭ	Fe
.88 89	11 11	304	0 U	A	I I	U	Zn Ma
90			11 H	A	Ī	Ŭ	Fe
91	0	409		Â	III		Cu

(a) All sheet and tube specimens 0.064" thick.

(b) Key: A - Annealed.

S

- Sensitized (by heating at 1200°F for 2 hours, followed by air cooling and descaling in sodium hydroxide).
- HW Heliarc weld.
- HFW High frequency weld.
- C Coated (coal-tar epoxy).
- HH Half hard.
- FH Full hard
- XBW Cross bead weld (specified to be done in accordance with Welding Research Council recommendations. On half of these specimens, the welds were cleaned prior to exposure. The other half of the specimens were to be exposed "as welded".
- (c) Passivation procedure:
 - I 20 to 40% by volume of 67% nitric acid at 120-160°F for 20-30 minutes.
 - II 20% by volume of 67% nitric acid plus 2-6% sodium dichromate at 110-140°F for 20-30 minutes.
 - III 20 to 40% by volume of 67% nitric acid at 110-140°F for 20-30 minutes.
- (d) Key: -- Unstressed.
 - U Single U-bend specimen.
 - UU Double U-bend specimen, not spot welded.
 - (UU) Double U-bend specimen, joined by a spot weld.
- (e) Welded with a full finish per ASTM specification A249.
- (f) Minimum specified concentration of acid, temperature and time for sensitized materials.

Table 3. Chemical analyses of non-ferrous constituents in stainless steels buried at various NES underground test sites.

Meight %

THERS		0-0.09		.1<0.01,V-0.026	11-0.13			Nb-0.07, Pb-0.002	10.0-14.000.0-110	N1<0.01,V-0.054 Nb-0.47,A1-0.01 Pb-0.003		1-0.048
ات اتت		0			0.55	4	0.55					
5	0.12		0.19 0.25	0.11	0.3/	0.05		0.08	0.18	0.08		0.017
Z	0.078 0.15		0.042	0.16		0.046	0.010	0.023	0.25	0.021		
ଛା	0.15	0.22	0.17 0.40	0.15	0.12	0.76	0.94	6.50 2.15	0.26	0.04		
Ni	5.10 5.13	7.14	9.80	9.8 13.53	0.67 0.34 0.34	0.32	0.10 0.49	23.61	8.15	6.2 0.28		0.28 0.28 10.2
기	16.76 17.50	10.1 17.43 16 98	18.2 18.45	17.6 17.48	11.22 11.22	16.67 16.67 18.2	26.18 18.22	20.41	19.29	26.5 18.54		16.86 16.86 17.3
۵.۱	0.034 0.003	0.030	0.024	0.022	0.024	0.017	0.010 0.023	0.013	0.029	0.022 0.02		0.015 0.015 0.007 0.007
νI	0.009	0.016	0.012	0°.009	0.013	0.010	0.011	0.004	0.012	0.020 0.016		0.008 0.008 0.018 0.012
Si	0.47	0.34	0.50	0.64	0.57 0.44 0.44	0.14 0.50 0.43	0.21	0.10	0.36	0.40 0.78		0.31 0.31 0.48 0.009
MA	6.90 8.05	1.1 1.02 0.86	1.46	1.0	0.47	0.55 0.46 0.42	0.01	1.73	1.64	0.49 0.91		0.16 0.16 1.26 0.32
اں	0.066	0.10	0.06	0.051 0.049	0.0580.058	0.14 0.060 0.076	0.002	0.013	0.035	0.015		0.06 0.06 0.02 0.042
SYSTEMS	50	52,53,54 67,68,69,82,83,84 70,71 05 05 07	/0,/1,00,00,0/ 55,56,72,73,76,88,89,90,5 57	74,75 58,59,77,78,79	60,61,92 63 63	64 65 66,80,81	1,17,20,21,33,34,35 2,3,18	. 4,5,19,22,23,24 6,25,26	8,9,27,28	10,30,36,37,38,42 7,11,12	;(a);	14 15 16 14,15,16
Stainless <u>Steel</u>	Type 201 Type 202	Type 301 Type 301	Type 304 Type 304 Type 304	Type 304 · Type 316	Type 409 Type 409 Type 409	Type 410 Type 430 Type 434	6Cr+1Mo BCr(Ti) i	0Cr-24Ni-6.5Mo. 8Cr-2Mo	8Cr-8Ni(N)	6Cr-6.5Ni 8Cr-2Mo (Nb)	omposite Alloys	A Type 430 B Type 430 C Type 304 arbon steel

(a) A. Carbon Steel/430/Carbon Steel B. Galv. Steel/430/Galv. Steel C. Carbon Steel/304/Carbon Steel

Hardness	RB 92.5 RB 92.5 RB 92.5 RB 92.5 RB 85 RC 24 RC 24 RB 85 RB 85 RB 85 RB 81 RB 72 RB 81 RB 88 RB 78 RB 78
Percent, Elongation in 2-in	52.5 52.0 64.0 64.0 25.0 25.0 25.0 26.0 31.0 31.0 26.0 31.0 26.5 31.0 26.5 31.0 26.5 31.0 26.5 31.0 26.5 31.0 26.5 31.0 26.6 31.0 26.0 31.0 26.0 31.0 26.0 31.0 26.0 31.0 26.0 31.0 26.0 31.0 26.0 31.0 26.0 31.0 26.0 31.0 26.0 31.0 26.0 31.0 26.0 26.0 26.0 26.0 26.0 27.0 26.0 27.0 26.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27
Yield Strength, Ksi(d)	53.0 52.0 52.0 52.0 52.1 38.1 38.1 38.1 38.1 37.5 46.4 41.3 44.9 60.0 44.7 59.1 64.7 55.3 59.1 64.7 55.3 54.0 59.1 64.7 55.3 54.0 55.3 56.3 56.3 56.3 56.3 56.3 56.3 56.3
Tensile Strength, Ksi(d)	103.5 100.6 120.1 107.9 162.0 147.0 203.0 86.9 86.9 85.3 85.3 85.3 85.3 85.3 81.8 1144.7 81.6 91.6 91.6 91.6 70.7 70.7 71.5 71.5 71.5 71.5 71.6 73.8 83.8 81.0 81.0
System	50 51 52 53 67,68,82,83,84 69 70,71,85,86,87 56,76 74,75 56,76 74,75 59,79 60,92 60,92 60,92 60,92 60,81 1 7 1,13,13 20,21,33,34,35 20,21,33,34,35 20,21,33,34,35 6,25,26 6,25,26 7,11,12
Treatment(b)	
Alloy Designation	Type 201 Type 202 Type 301 Type 301 Type 301 Type 301 Type 301 Type 301 Type 304 Type 304 Type 304 Type 304 Type 304 Type 304 Type 304 Type 409 Type 409 Type 409 Type 409 Type 409 Type 409 Type 409 Type 400 Type 410 Type 430 Type 430 Type 430 Type 430 Type 430 Type 430 Type 430 Type 400 Type 26 Cr-1 Mo 26 Cr-1 Mo 26 Cr-1 Mo 26 Cr-1 Mo 18 Cr(Ti) 20 Cr-26 Ni 18 Cr2 Mo (Nb)

Table 4. Mechanical properties^(a) of stainless steels studied in this investigation

(a) Properties are as furnished by supplier.
(b) All materials were in the annealed condition unless otherwise noted.
(c) Welded with a full finish per ASTM Specification A249.
(d) 1 Ksi = 6.8948 MPa.
Table 5. Summary of results^(a) obtained from visual examination of stainless steel sheet specimens buried in the soils at the NBS soil corrosion test sites. Specimens of System Nos. 1 through 6, 8, 10, 14, 15, and 16 were buried for approximately 7 years. System No. 7 was buried for approximately 6 years while others were buried for approximately 8 years.

System	Stainless	Specimen Type T and Treatment S	Test	Result			
			(c)	Exposed 1 year	Exposed 2 years	Exposed 4 years	Exposed 8 years
Exposed	in 1970						
50	Type 201	Sheet, annealed	A B C D E G	N T,P,H IP H,P,T A,P,IP,Et(sli)	N RS P(F,E),T,IP P,IP H,T,P,IP,Et(sli) H(E),P,A(sev),IP	N RS H,P,T N H,T(E,F),P P+T(E,AE)	N N H,P,T(AE,E,F) H,P,T(AE,E,F),IF H,P,T(AE,E,F),IF H,P,T(F,AE,E)ET
51	Туре 202	Sheet, annealed	A B C D E G	N T,P,H IP H,T(E),P,IP P,IP	IP RS H,P(F,E),T,IP DS H,P,T,IP,IF P,IP	DS DS+RS(sli) H,P,T,RS DS H,P,T,RS H,P,RS,DS,IP	P(F) N H,T,P(F,E,AE) H,P,T(F,E,AE) H,T,P(AE,E,F),IF H,T,P(AE,E,F)
52	Туре 301	Sheet, annealed	A B C D E G	N IP T,P,IP IP H P,T(E),IP	IP RS H,P(F,E),IP IP H,P,T,IP T,P,A+Et(sev),IP	N DS(sli) H,P,T(E,AE) RS+DS(sli) H,P+T H,P,RS,IP	N N H,P,T(AE,E)RS N H,T,P(AE,E,F)RS,IF H,P,T(E,AE,F)
53	Туре 301	Sheet, sensitized	A B C D E G	IP,Et IP(E) P,Et IP(E) A(E),P(E,AE),IP,Et Et(mod-sev),P,IP	Et(E),P,IP P(Sli),IP Et(sev),P(F,E),IP P,B1,IP Et(sev),B1,A(E),P,IP H,A+Et(sev),P,IP	P(sli), IP,RS,DS,B1 RS,DS H,P,A(sev-mod) B1,P,IP,Et,A(E) P(AE,F),B1,Ck,RS,IF P+DS,IP	P(S11),B1,RS P(S11),B1,RS H,P(E,AE,F)Et,Ck P,B1,(F,AE,E)RS,Ck P(F,AE,E)RS,IF,Ck H,P(F),A(sev),DS,Ck
55	Туре 304	Sheet, annealed	A B C D E G	N N H,T,IP IF H,P,IP H(E),P,IP,Et(sev)	IP RS T,P,IP N H,T,P,IP A(sev),P,IP	DS N H,P+T(E,AE),Et DS H,T+P" P,Et,DS,RS	N H,T,P(AE,F) P,T(E,AE) H,T,P(E,AE,F)IF,RS H,T,P(E,AE,F)Et,A(sev)
56	Туре 304	Sheet, sensitized	A B C D E G	Et[E(s]i)],IP Et(s]i),IP H,T(E),P IF H,P,IP H(E),P,IP	P(sli),IP N H,P(E,AE),T,A(E),IP T,P(E,AE),IP,Bl H,T,P,IP H,A,P,IP,Et(sev)	Et(\$1i),IP Et(mod) H,P,A(sev),IP `Et,P(AE),T(E,AE),B1 H,T,P,Et,RS A(sev),P+Et(s1i),IP,Et	P,RS N H,T,P(E,AE,F),Ck H,T,P(E,AE,F) H,T,P(E,AE,F)IF,Ck H,T,P(F,AE,E)Et(sev),C
58	Type 316	Sheet, annealed	A B C D E G	N N Et,IP N A+T(E),P(E,F) IP	IP N IP N H,T,P,IP IP	RS(sli) DS(sli) P(E),RS N H,P(E,AE) N	N N P(E)RS N H,T,P(AE,E,F) H,T,P(AE,E)
59	Туре 316	Sheet, sensitized	A B C D E G	IP(E) N P(E,F),H(E) IP P(E) P(E)	P(sli),IP DS A+P(E),T,Et(sli) N P,A(E),Et(sli) P,IP,Et(sli)	P(s1i),IP,RS,Et Et,RS P,A(E),Et Et,P,DS A(E),T(E,F),RS,IF IP,P,RS	P(S]i)(F) P(S]i) P(E)Et,RS,A N A(E)T,P(AE,E,F)IF,RS H,T,P(E,AE),A(E)IF
60	Туре 409	Sheet, annealed	A B C D E G	IP N P,H(E),Et(sev) IF,RS H,T(E,F),P H,Et(sev),P,IP	N P(sli) H,P,Et(sev),T,IP P,T H,T(AE,F),P,IP,Et(sti H,P,A(sev),Et,IP	H,P(E,AE,F),DS DS,RS H,P(E,AE,F),A,RS,IP H,P(E,AE,F),T,Et)H,T(E,AE,F),RS,IF H,P(E,AE,F),A(sev)	P(AE,E,F)RS P(F) H,P(E',AE,F)A(sev)Et,IF H,T,P(F,AE,E) H,T,P(E,AE,F)IF,RS H,P,(F,AE,E)IF,A(sev)

System	Stainless	Specimen Type T and Treatment S	Test	Results of Visual Examination of Specimens (e)						
	steel	and Ireatment	(c)	Exposed 1 year	Exposed 2 years	Exposed 3 years	Exposed 7 years			
8	18 Cr-8 Ni(N)	Sheet, annealed	A B C D E(d) G	IP N IP P <u>(</u> E) P(E,F),IP	N RS P,IP,RS Et(sli) P(E) H,P,T(E,AE),Et,IP	N DS,IF P(E),RS,IF DS H,P(E,AE),RS,IF A(mod),Et(sli),IP	RS(S11) N P(E)RS,IF N RS(AE,E) A(S11)(F)RS(E)			
10	26 Cr-6.5 Ni	Sheet, annealed	A B C D E(a) G	P(sli),IP N H,T,P,IP N H,P,IP H,P,A+Et(sev),IP	P[sli(AE)] RS H,T(E),P,IP IP H,P,T(E,AE,F),IP H,P,T(E,AE),IP	DS DS H,P(E,AE,F),Et(S1i) N H,P(E,AE,F),IP P,IP,DS,RS	P(Sli)(F,AE) N H,T,P(AE,E,F)IF H,P(F) N P(E,F)			
14	Composite A	Sheet, hot rolled and pickled	A B C D E(ci) G	Et(sev),P Et(sev),P,IP Et(sev),P Et(sev),P Et[E+F(sev)] Et(sev),B1,P(AE)	P,Et[(sev)AE,F] P,Et[(sev),AE,F],A(E) P,Et(AE,F),A(E) P,Et(AE,F) P,Et(AE,F) P,Et(AE,F) P,Et(AE,F),A(E)	P(E,AE,F),Et P(E,AE,F),Et P(E,AE,F),Et RS,P(E,AE,F),Et RS,P(E,AE,F),Et P(E,AE,F),Et	P(E,AE,F),A,(sev)Et P(E,AE,F),A,(sev)Et P,(E,AE,F),A,(sev)Et P(E,AE,F)A,(sev)Et P(E,AE,F)A,(sev)Et P(E,AE,F)A,(sev)Et P(E,AE,F)A,(sev)Et			
15	Composite B	Sheet, hot- dip zinc coated (4.5 oz/sq. ft Zn)	A B C D E(d) G	N N N A[F(s1i)] P(F),F1(E,AE)	N,c N N N P[F(sli)]	N N A[F(s1i)] A[F(s1i)]	N A(Sli)(E,AE) A(Sli)(F,E,AE) N N(E,AE,F) A(Mod),P,Et			
16	Composite C	Sheet, hot rolled and pickled	A B C D E(d) G	Et(sev),P(AE,F) Et(sev),P Et(sev),P Et(sev),P Et(sev),P Et(sev),P Et(sev),P	P,Et(AE,F) P,Et(AE,F),A(E) P,Et(AE,F) P,Et(AE,F) P,Et(AE,F) P,Et(AE,F) P,Et(AE,F)	P(E,AE,F),Et P(E,AE,F),Et P(E,AE,F),Et,RS RS,P(E,AE,F)Et RS,P(E,AE,F)Et P(E,AE,F),Et	P(E,AE,F)A(sev)Et P(E,AE,F)A(sev)Et P(E,AE,F)A(sev)Et P(E,AE,F)A(sev)Et P(E,AE,F)A(sev)Et P(E,AE,F)A(sev)Et			
Exposed	in 1972 _			Exposed 1 year	Exposed 2 years		Exposed 6 years			
7	18 Cr-2 Mo(Nb)	Sheet, annealed	A B C D E G	N N N P,IP N	P,DS DS P(E,AE),RS,IF N P(AE,F),RS P(E,F)		N P(E,AE,F) RS,DS IF H,T,P(AE,E,F)			

Table 5 (Cont'd)

- ----

(a) Results given for each system at each of the six soil test sites are a summary tabulation for four individual specimens.

(b) Specimen dimensions and treatment for each system are given in Table 2.

(c) Properties of the soils for each of the test sites are given in Table 1.

(d) Specimens removed from site "E" in 1979 after 8 years exposure.

(e) Abbreviations used:

A- Metal attackIF- Iridescent filmAE- Adjacent to edgeIP- Incipient pittingB1- Blistersmod- ModerateBS- Black stainN- No apparent attackc- Coating chippedP- PittingCk - Specimen crackedRS- Rust stainDS- Dark stains- Scored areaE- Edgesev- SevereEt- Etchedsli- SlightF- FaceT- TunnelingF1- Coating flakedU- Undercutting

System	Stainless	Specimen Type	Test	Resu	lts of Visual Examinati	on of Specimens (e)	
			(c)	Exposed 1 year	Exposed 2 years	Exposed 4 years	Exposed 8 years
61	Туре 409	Sheet, painted	A B C D E G	N N N N N	N N N N N	N N N RS(c) N	N N N RS(E),B1 N
61	Туре 409	Sheet, painted and scored	A B C D E G	RS(s) RS(s) RS(s,c) c,RS(s) c,RS(s) RS(s)	N RS[s(s) RS[s(s1i)],U RS[s(s1i)] P+RS(s),U,B1 P+RS(s),U,B1	RS(s) N RS(s) B1+U(s) RS(s) RS(s)	N N RS(s),B1,U(s) RS(s) RS(s)U(s) A(s)B1(s)U(s),RS(S)
64	· Type 410	Sheet, annealed	A B C D E G	P+IP(E,F) IP H,P,IP H,P,T,IP H(E)T Et(Sev),H,P,IP	T,P,A(E) N H,P,Et(sev),A,IP H,T,P,A(E),Et(sev),IF H,T,P,IP H,A+Et(sev),P,IP	H,P(E,AE,F),DS,IP P,IP,RS H,P(E,AE,F),Et+A(sli) P H,T(E,AE,F),P(E,F),A(E) H,T(E,AE,F),P,RS,DS H,P(E,AE,F),A(sev)	P,T(F,AE,E)RS P(F),RS(E) H,P(E,AE,F),A(sev) H,T,P(F,E,AE) H,T,P(E,AE,F)RS H,P(F,E,AE),A(sev),IF,RS
65	Туре 430	Sheet, annealed	A B C D E G	Et(sli), {P N H(E) IF H,T,IP H,Et(sev), P,IP	IP N H,P,T,Et T(F) H,T,P,IP H,P,A+Et(sev),IP	P,T,IP IF H,P(E,AE,F),Et(s1i),A(sev) H,T(E,AE,F),P H,P+T(E,AE,F),IP,RS H,P(E,AE,F),A(sev),IP	N N H,T,P(F,E,AE)Et,DS H,P,T(F,E,AE) H,T,P(E,AE,F) H,P(F,AE,E),A(sev)RS,DS
66	Туре 434	Sheet, annealed	A B C D E G	N IP H(E) N H,P,IP H(E),P,IP	IP N H,P,T,IP P(F),IP(E) H,T,P,IP H,P,A+Et(sev),IP	N N H,P(E,AE,F),T(E,AE),Et,IP H,T(AE),P(AE,F) H,P,T(E,AE,F),RS P(E,AE),Et(Sli),RS	N N H,T,P(F,E,AE) H,P,T(F,AE,E) H,T,P(E,AE,F)IF,RS H,P,T(E,AE,F)
<u>Exposed</u>	in 1971			Exposed 1 year	Exposed 2 years	Exposed 3 years	Exposed 7 years
1	26 Cr-1 Mo	Sheet, annealed	A B C D E(d) G	IP N IP(E) IP Et(sli),IP	N RS IP,RS Et(sl1) N N	DS DS P,RS,IP,IF RS IF,RS N	N N RS(sev),DS N N N
2	18 Cr(Ti)	Sheet, annealed	A B C D E(d) G	P(sli),IP N H,P,Et,IP P(AE),T,IP H,P,T H,P,A+Et(sev),IP	N Et(sli),RS Et,P(E,F),IP,RS N H,P(E,AE,F),T H,P(E,AE,F),Et,IP	Et(sli),P,RS DS H,P(E,F),Et(sli),IP RS H,P(E,AE,F),IP P,A(sev),IP,RS	P(Sli)AE N H,P(F,AE),A,RS H,T,P(F,AE) H,T,P(E,AE,F) H,P(E,AE,F)Et,A(sev)
4	20 Cr-24 Ni- 6.5 Mo	Sheet, annealed	A B C D E(d) G	IP N IP(E) N N N	N Et(sli),RS N Et(sli),RS [.] N	DS N RS N RS	N N N N N
5	20 Cr-24 Ni- 6.5 Mo	Sheet, sensitized	A B C D E(d) G	IP N IP A(E) P(E),Et(sli),IP	N N Et(sli),IP,RS Et(sli) Et(sli) Et(sli)	DS DS Et(sli),P(E),RS IF,DS DS Et(sli),DS	N N RS,DS N N N
6	18 Cr-2 Mo	Sheet, annealed	A B C D E(d) G	IP IP T,P(E,F),IP N H,P,IP H,T,A,P,IP	N N RS Et(sli) H,P(E,AE,F),RS H,P(E,AE,F),Et	DS DS,IF P(AE),RS,DS RS,IF H,P(E,AE,F) P(E),RS,DS	N N H,T,P(AE,E,F)RS P,T(F) N H,P(E,F,AE)

6

Taple 5 (Cont'd.)

Table 6. Summary of results^(a) obtained from visual examination of welded stainless steel sitest and tube specimens buried in the soils at six NBS soil corrosion test sites for up to 8 years.

Weld (e)		IF(M,AW) P,T,H(AW)IF P,T(AW) H,P,T(AM,W) H,P,T(AM,W)	RS(AW,W) Et(W,AW) P(W,AW)	RS.DS(W.AW) N HP(W.AW)Et P(W.AW) H.P(W.AW) Y.A(sev)	N N H,P(W,AW) H,P(W,AW) H,P(W) H,A(sev)		и Н_Р(W) Н_Р(W.AW) Н_Р(W.AW)		*****
End or Edge	years	к N P,T(AE,E) H,P,T(AE) H,P(E,AE)	******	*****	*****	7 years	N H.P.T(AE.E) H.P(E) H.P(E)	DS IF(AE) H,P N N	*****
đ	Exposure Time, 8		RS (AC, UC) P.Et (AC, UC) Et (UC) P.Et.A(AC, UC) P.Et (AC, UC)	RS, DS(UC) DS (UC, AC) H, P (UC, AC) T, P (UC, AC) H, A (sev)	и N H.P(VC.AC) H.P.T(AC) H.A.(Sev)	Exposure Time.	N/N N/N N/N N/N N/N N/N		IF(AC) N P.Et(UC)IF Et(AC) N
Body or Face		05 8. 9.1 9.1 9.4	Et.RS Et.RS Et Et.RS,IF	P. Et DS. Et H. P. H. P. T. Et H. P. T H. A(sev)	P N H.P.T H.P.T H.P.T H.P.T H.A(sev)		и » Т Р.Т Н.Р(F) Н.Р.ЕС	R H H R R	L≖22××
Weld (e)		N N P+RS(M) RS(M) A(sev),P(M,AM)	P(AM) N N P(AM)	N Р(м, м) Н Р(м, м)	P (AW) R (W, W) P (W, W) P (W, W) P (W, W)		(m)d N (mv:m)d N	N N N N P(M, M) P(M, AU)	*****
End or Edge	4 Years	N P+T(E,AE) P+T(E,AE) A(sev)+P	*****	*****	*****	.3 Years	P(E,AE) P(E,AE) P(E,AE) P(E)	ZZZZ <z< td=""><td>P(E) NNNN NNNNN</td></z<>	P(E) NNNN NNNNN
Cap	xposure Time,	N N N N N N N N N N N N N N N N N N N	P(AC) N P(AC).Et(UC) RS(UC) P+Et(AC.UC)	P+T (AC) N P (AC,UC) P+T (AC,UC) P+T (AC,UC)	P(AC) N P(AC,UC) P(AC) P(AC) P(AC)	Exposure Time,		NN NN NN NN NN NN NN NN NN NN NN NN NN	N P+Et[(sev)UC P+Et[(sev)UC
Body or Face		N DS,IF H,P H,P.T,RS A(sev),P	P.Et(s11) Et(s11),RS P.RS P.RS	H.P.T.Et Et.IF H.P.Et.IP H.P.T.IP H.P.T.IP H.P.IP	H,P,T H,P,Et H,P,IP H,P,IP		P.RS.DS DS H.P.Et.IP DS H.P.DS.IF RS	N DS H,Et(sev) RS H,RS Et(sìi),RS	DS Et(s11),DS RS,IP N P,IF P
(e) Weld		P(AM) RS(M,AM) P(BVAM) P(AM) P(AM) P+A(M,AM)	н (м. м) н р(м)	IP(AW) P(W) P(W) H+P(W_AW)	IP(AW) EP(M_AW) H(W), P(M_AW) H+P(W_AW) H+P(W_AW) H+P(W,AW)		N N N N N N N N N N N N N N N N N N N	RS(W) P(W,AW) "Et(AW) P(W,AW) Et(W,AW)	*****
End or Edge	me, 2 Years	PPR PR	NNNN ()	*****		He, 2 Years	N N P AE,E P(AE,E)	N Et(AE) N P(AE,E)	ин (ЭС
Cap	Exposure Ti		Et(UC) P(UC,AC),A(U P(AC,UC) P(AC,UC)	N H+P(Ac.uc) H+P(Ac.uc) H+P(Ac.uc)	H(AC) H+P(AC) H+P(AC) H+P(AC)	Exposure T1			P(AC,UC),RS() P+Et(UC) P(UC)
Body or Face		<pre>&P</pre>	Et(sii) Et(sii) Et(sii) Et(sev),P,IP P,Et(sii),IP	Et(s]+),IP P,IP H,P,Et,IP P,Et(s]+),IP H,P,Et(s]+),IP H,P,Et(s]+),IP H,P,A(sev),Et,I	IP P.IP H.P.Et.IP H.P.Et(\$11),IF H.T.P.IP H.P.A(sev),Et		P,Et(s]1),IP N,P,Et(s]1),IP H,P,Et,IP P,Et,T	RS Et.IP Et(s11) Et(s11)	*****
Weld ^(e)	-i	н Р(ЛИ) Р(М, АИ)	*****	(M) N N N N N N N N N N N N N N N N N N N	IP(W) N H,P(AW) N N	EI	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Et(M), IP(AW) Et(W) EtP(W), IP(AW) Et(W), IP(AW) P(W,AW), H(AW) P+Et(W), IP(AW)	*****
end	e, 1 Ye		*****		*****	a, 1 Yed	×× ⁺ × ⁺ **	******	*****
Cap	xposure Tim	NN NN NN NN NN NN NN NN NN NN NN NN NN		P+IP(UC	IP(AC) N N N P(AC)	posure Time			N N P(UC) RS(AC)
Body or Face			Et(s)) Et(s)) Et(s)) Et(s)) Et(mod to s Et(mod to s	r P. 3P N H H, P H, Et+A(sev)	Et.P N H.P.IP H.A(sev).P	۹	IP.Et P.T.IP P.T.IP P.IP	IP RS A,P P,T,Et P,Et,IP	*****
Test Site		< ສບດພ ຫ	≪ສບດພຜ	< തറ ഠ ന വ	▲ほじりどは		G E C B A	C E C B A	A C C E (f)
Material and Treatment		Sheet with cross-bead weld	Tube with heliarc weld- ed seam (2-in 00)	Tube with heliarc weld- ed seam (1-1/8-in 0D)	Tube with high frequency webded-seam (7/8-in 0D)		Sheet with cross-bead weld	Sheet with cross-bead weld	Tube with heliarc weld- ed seam (0-in 00)
Stainless Steel	in 1970	Type 301	Type 304	Type 409	Type 409	fn 1971	18 cr(Ti)	18 Cr-8 N1(N)	26 Cr-1 No
System	Exposed	z	57	62	63	Exposed	m	ch.	2

₩e1d(e)	н И И И Н,Р,(М,АМ)	IF (AH.) N N N		P(W)KS H.P.T. (AW.W) P(W,AW) H.P(W) H.T(W,AW)	N P(M) P(AW) P(W,AW) N
Erid or Ecige	ZZ Z Z Z Z	Z Z Z Z Z Z	:	и и и Т,н(ае)	ZZZZZZ
Cap	H,P(AC,UC) H,P(AC,UC) Et(AC)	IF RS,EE(AC,UC) IF IF	ime, 6 years	N/N N/N N/N N/N N/N N/N	*****
Body or Face	н, Р, Еф	Et, RS R RS R RS R RS R RS R RS R RS R RS	Exposure 1	zz ⁺ zzz	ZZAZZZ
Weld(e)	N (MA, M) (MA, M) N . N . N .	*****			
End or Edge		IZZIŻŻ			
Cap	P(AC) P(AC) P(AC)	*****			
Body or Face	R Et(s11) H,P N H,P,IP H,P,IP	Z Z Z Z Z Z			÷
NeId ^(e)	P(W_AW)	2 2 2 2 2 2 2 2		P (M. AW) P (M. AW) P (W. AW)	(MA) N N N N N N N N N N
End or Edge	ZZZZZZ	******		N P(E) P(E)	*****
Cap	N H+P(AC) P(UC) H,P+Et(AC)	N N N RS(AC)	years	A N N N N N N N N N N N N N N N N N N N	N N P(AC,UC) IP(AC,UC)
Body or Face	н. Р. Екинани Н.	ᆂᅇᄵᇗᇎᆂᆂ	xposure Time, 2	DS N H,P,Et(sev) RS,IF H,P,IF P,RS	a N a SS A SC
Meld ^(e)	N N N N H+P(M,AW)	*****		P(W),Et(W,AW) N P(W,AW) N	
End or Edge	*****	****		Z Z Z Y Y Z	
Cap	N N H+P (AC) H(AC) N		me, 1 year	NN NN NN NN NN NN NN NN NN NN NN NN NN	NUC)
Body or Face	P.IP.Et P.IP.Et P.IP. H.P.Et.IP	TESSEE	Exposure T1	Et(s11) P N	*****
Test Site (c)	KBCOMG	4800mg		《日じりをは	< muo muo
and	tith c weld - in DD	tth c weld		with bead d	1th a weld
Material Treatme	Tube w heliar ed sea (1-1/8	Tube w heliar ed sea) Sheet cross- well) Tube w heltar ed sea
iless	÷	4 N1-	N	Mo(Nb	Mo (Nb
Stail Ste	8 Cr(T	6.5	tn 197	8 Cr-2	8 Cr-2
System	8	2 61	Exposed	=	12

Table 6 (Con't).

(a) Results given for each system exposed at the six soil test sites are a summary tabulation for 4 individual specimens.
(b) Specimen dimensions and treatment for each system are given in Table II.
(c) Properties of the soils are given in Table I.
(d) Abbreviations used:

Ametal attack mod-moderate UC-undercap Ametal attack mod-moderate UC-undercap Ac-adjacent to cap Nu-no apparent attack W-weld Ac-adjacent to weld Nu-not applicable Mu-adjacent to weld P-pitting Au-adjacent to weld P-pitting E-ecode Servast stain E-ecode Servast stain E-ecode Servast stain F-Acriptent pitting T-tunneling (e) M or AM do not necessarily signify that more severe attack occurred in the weld than in the parent metal.

(f) Specimens at site "E" removed in 1979 after 3 years exposure."

Table 7. Average Weight Loss (mg/dm²) and Pit Depth (mils) for Stainless Steel Sheet and Tube Specimens Buried in Sagemoor Sandy Loam (Site A) for up to EightYears

				Avera	age ^(b)			
System*	Material	Treat-	Exposure,	Weig	t Loss	Pit	Depth, mils ^(d)	
		(a)	Days	mg	mg/dm ²	Maximum	Average of 5	Deepest ^(e)
· Exposed	in 1970							
50	Type 201	· A	. 413					
			791					
			1442					
•			2303	•	~1			
· 51	Туре 202	A	413					
		•	791			IP		
			1442					
			2303					
52	Type 301	Α	413					
			791			<5		
			1442					
			. 2.303					
53	Type 301	S	413	50	4	IP		
		•	791	180	14	< 5		
		*	1442	124/	99	<5		
		:	2909	/4	0			
54	Type 301	XBW	413					
			791			<5		
			1442				-	
	•		2909					
55	Туре 304	A	413		'			
	-		791 ·					
			1442					
			2909	90	0			
.56	Type 304	S	413	256	20			
			791	227	18	<5	. ==	
			1442	614 959	49 68			
			2909	000	UO	12		
57	Type 304	HW	413					
			791	~ =				
			1442	70	17	18	~5	
			2000	10	17	~5		

Table 7 (Con't.)

				Avera	age ^(D) .			
System*	Material	Treat- ment (a)	Exposure, Time, Days	<u>Wei</u> mg	ght Loss mg/dm ²	<u>Pit</u> Maximum	<u>)epth, mils</u> (d) Average of 5	Deepest ^(e)
58	Туре 316	A	413 791 1442			- . +-		
59	Type 316	S	2989 413 791 1442 2989	 58 384 145	 5 31 12	IP <5 7 6	 <5	
60	Туре 409	A	413 791 1442 2989	3 1 150 12	<1 <1 12 <1	29 . <5 H 31	 H 3	
62	Туре 409	HW	413 791 1442 2989	176 91 32	70 36 13	ір Н <5		
63	Type 409	HFW	413 791 1442 2989	167 139 210 <1	86 71 108 <1	IP <5 H 19	H	
64	Type 410	A	413 791 1442 2989	3495 68 8843 1354	278 5 704 109	48 20 H 28	 7 H 8	
65	Туре 430	A	413 791 1442 2989	 66 66	 5 - 5	IP 22		
66	Туре 434	A	413 791 1442 2989	 13	 1	IP		

.

Table 7 (Con't.)

Average(b)

•.

				•			
System*	Material	Treat-	Exposure,	Wei	ght Loss	Pit Dept	h, mils (d)
	-	(a)	Days	mg	mg/dm ²	Naximum Av	erage of 5 Deepest ^(e)
Exposed	in 1971		•				:
1	26Cr-1110	Ϋ́Α	496 860 1147 2574	<1 <1	<] <]	IP 	
[.] 2	18Cr(Ti)	A	496 860 1147 2574	1 3 1 	< <] <] 	IP <5 <5	·
3	18Cr(Ti)	XBW	496 860 1147 2574	4 4	<1 <]	<5 <5 	
4	20Cr-24Ni- 6.5Mo	Α	496 860 1147 2574	<] <]	ন ব ন	IP 	
5	20Cr-24Ni- 6.5Mo	S	496 860 1147 2574		 		
6	18Cr-2No	A	496 860 1147 2574	 <1 	ं। रो रो	IP 	
8	18Cr-8Ni (N) A	496 860 1147 2574	 		IP 	
9	18Cr-8Ni(N) XBW	496 860 1147 2574	2	ন ব	IP 	
10	26Cr-6.5Ni	A	496 860 1147 2574		ন বা	<5 <5 <5	

.

•

Table 7 (Con't.)

System*	Material	Treat-	Exposure,	Weig	ht Loss	Pit [Depth, mils(d)	
	·.	ment (a)	Time, Days	nıg	mg/dm ²	Maximum	Average of 5	Deepest ^(e)
14	Composite A ^(c))	496 860 1 1147 1 2574 1	80800 16350 65175 78675	6357 9153 12995 14057	N/A N/A N/A N/A		
.15	Composite B ^(c)) _{HDZ}	496 860 1147 2574	1150 21975 27875 28425	90 1729 2193 2236	N/A N/A N/A N/A		
16	Composite C ^{(c})	496 860 1147 1 2574 1	83275 12175 149075 185850	6551 8825 11728 14621	N/A N/A N/A N/A		
17	26Cr-1Mo	HW .	496 860 1147 2574	<1	 <1 +-	<5		
18	18Cr(Ti)	HW	496 860 1174 2574	 4 5	 2 2			
19	20Cr-24Ni- 6.5Mo	HW	496 860 1147 2574	2	 1	 		
Expos	ed in 1972							
7	18Cr-2Mo (Nb)	A .	364 651 2173	 5	 <1	 <5 		
11	18Cr-2Mo (Nb)	XBW	364, 651 2178	 2	 <1	 <5		
12	18Cr-2Mo (Nb)	HW	364 651 2178			<5 <5		

Table 7 (Con't)

*Systems 12, 17, 18, 19, 57, 62 and 63 were tube specimens fabricated from sheet material, welded at the seams and then plugged and capped at each end to minimize internal corrosion. Specimens of all other systems were flat sheet material.

(a) Abbreviations used:

A-annealed S-sensitized XBW-cross-bead weld HW-heliarc weld HF!!-high frequency weld HDZ-hot-dip zinc coated (galvanized, 4.5 oz/ft²) after bonding. See footnote (c).

- (b) Average for four specimens. -- indicates negligible or none.
- (c) All composites were metallurgically bonded. Composite A-Carbon steel/Type 430/Carbon steel. Composite B-Carbon steel/Type 430/Carbon steel. Composite C-Carbon steel/Type 304/Carbon steel.
- (d) 1 mil=0.025 mm. IP-incipient pitting. H-perforated. N/A- not applicable. W-weld.
- (e) Average of five deepest pits on each of four individual specimens unless noted otherwise.
- (f) Average of ten deepest pits on each of four individual specimens.

Table 8. Average Weight Loss (mg/dm²) and Pit Depth (mils) for Stainless Steel Sheet and Tube Specimens Buried in Hagerstown Loam (Site B) for up to Eight Years.

				Aver	age ^(b)		
System*	Material	Treat-	Exposure,	Wei	ight Loss	Pit	Depth, mils ^(d)
	·	ment (a)	Time, Days	mg	mg/dm ²	Maximum	Average of 5 Deepest (e
Exposed	in 1970						
50	Туре 201	A	371 736 1513 2988			 	
51	Туре 202	A	371 736 1513 2988				
52	Туре 301	A	371 736 1516 2988				
53	Туре 301	S	371 736 1513 2988	10 22 204 56	<1 2 16 4	IP <5	
54	Type 301	XBW	371 736 1513 2988				
55	Туре 304	A	371 736 1513 2988				
56	Туре 304	S	371 736 1513 2988	785 660 707 102	62 53 56 8		
- 57	Туре 304	HW	371 736 1513 2988				·

Table 8 (Con't,)

Average	;(b)
• •	

System*	Material	Treat-	Exposure	Wei	ight Loss	Pit	Depth, mils ^(d)	
		(a)	Days	mg	mg/dm ²	Maximum	Average of 5	Deepest ^(e)
58	Type 316	A	371 736 1513 2988					
59	Type 316	S	371 738 1513 2988	25 261 138	2 21 11	 <5		
60	Type 409	A 	371 736 1513 2988	 <1 <1 6	<1 <1 <1	 14		
62	Туре 409	HW	371 736 1513 2988			· IP		
63	Туре 409	HFW	371 736 1513 2988			IP 		
64	Type 410	A	371 736 1513 2988	1458 1207 72 48	116 96 6 4	 <5		
65	Type 430	A	371 736 1513 2988	 < 	<1 <1 			
66	Type 434	A	371 736 1513 2988					

Average	(b)
---------	-----

	Depth, mils ^(d)	Pit [ght Loss	Wei	Exposure,	Treat- ment (a)	Material	System*
Deepest ^(e)	Average of 5	Maximum	mg/dm ²	mg	Time, Days			
			,		1		in 1971	Exposed
			 <1 <1 	<1 	394 777 1170	A	26Cr-1Mo	1
			<1	3	2617 394 777	A	18Cr-Ti	2
			<1	2	1170 2617			
		 ,	 <1	2	394 777 1170 2617	XBW	18Cr(Ti)	3
			 <] <] <]	2 <1 4	394 777 1170 2617	A	20Cr-24Ni- 6.5Mo	4
		- - - 		-	394 777 1170 2617	S	20Cr-24Ni- 6.5Mo	5
			<] <] <]	1 6 2	394 777 1170 2617	A	18Cr-2Mo	6
	 	 	<1	2	394 777 1170 2617) A	18Cr-8Ni(N)	8
					394 777 1170 2617) XBW	18Cr-8Ni(N	9
			 <]		394 777 1170 2617	A	26Cr-6.5Ni	10

Table 8	(Con't,	
---------	---------	--

				Avera	ge			
System*	Material	Treat-	Exposure,	Weig	ht Loss	Pit (Depth, mils ^(d)	
		ment (a)	Time, Days	mg	mg/dm ²	Maximum	Average of 5	Deepest (e)
14	Composite A(c)	 -	394 777 1170 2617	65925 87425 100400 150675	5186 6878 7899 11854	N/A N/A N/A N/A		
15	Composite B ^(c)	HDZ	394 777 1170 2617	5875 4275 21125	462 336 1662	N/A N/A N/A N/A		
16	Composite C ^(c)		394 777 1170 2617	77833 107350 110900 161250	6123 8445 8724 12685	N/A N/A N/A N/A		
17	26Cr-1Mo	ΗW	397 777 1170 2617					
18	18Cr-Ti	HW ~	394 777 1170 2617	1 2 3	<1 <1 1			
19	20Cr-24Ni- 6.5Mo	HW	394 777 1170 2617	 <1	 <1		 	
Expo	sed in 1972							
7	18Cr-2Mo (Nb)	A	395 801 2232	· 			, <u></u>	
11	18Cr-2Mo (Nb)	ХВ₩	395 801 2232					
12	18Cr-2Mo (Nb)	ΗW	395 801 2232			 7		

Table 8 (Con't)

*Systems 12, 17, 18, 19, 57, 62 and 63 were tube specimens fabricated from sheet material, welded at the seams and then plugged and capped at each end to minimize internal corrosion. Specimens of all other systems were flat sheet material.

(a) Abbreviations used:

A-annealedHFU-high frequency weldS-sensitizedHDZ-hot-dip zinc coated (galvanized,XBW-cross-bead weld4.5 oz/ft²) after bonding. SeeHV-heliarc weld.footnote (c).

- (b) Average for four specimens. -- indicates negligible or none.
- (c) All composites were metallurgically bonded. Composite A-Carbon steel/Type 430/Carbon steel. Composite B-Carbon steel/Type 430/Carbon steel. Composite C-Carbon steel/Type 304/Carbon steel.
- (d) 1 mil=0.025 mm. IP-incipient pitting. H-perforated. N/A- not applicable. W-weld.
- (e) Average of five deepest pits on each of four individual specimens unless noted otherwise.
- (f) Average of ten deepest pits on each of four individual specimens.

Table 9. Average Weight Loss (mg/dm²) and Pit Depth (mils) for Stainless Steel Sheet and Tube Specimens Buried in Clay (Site C) for up to Eight Years.

				•	- 3 -	•		
System*	Material	Treat-	Exposure,	Wei	ght Loss	Pit	Depth, mils ^(d)	
		(a)	Days	mg	mg/dm ²	Maximum	Average of 5	Deepest ^(e)
Exposed .	in 1970							
50	Туре 201	A	377 727 1463 2926	767 872 1242 4222	61 69 99 336	Н Н Н	 H	
51	Type 202	Ä	377 727 1463 2926	504 680 435 1073	40 54 35 85	н Н Н	 Н Н Н	
52	Type 301	A	377 727 1463 2926	169 505 406 549	13 40 32 44	20 ``H H H	 Н Н Н	
53	Type 301	S	377 727 1463 2926	3651 12930 14163 43237	291 1030 1128 3444	48 19 H H	15 14 Н	
54	Type 301	XBW	377 727 1463 2926	368 379 524 694	29 30 42 55	63 16 H H	 6 H 	
55	Type 304	A	377. 727 1463 2926	300 609 4268 2410	24 48 340 192	Н Н Н	 н н	
56	Type 304	S	377 727 1463 2926	1491 1745 8022 5778	119 139 639 460	H H H	 H H	

Average(b)

Table 9 (Con't.)

	Average ^(b)											
System*	Material	Treat- ment (a)	Exposure Tíme, Days	, <u>Wei</u> mg	<u>ght Loss</u> mg/dm ²	<u>Pit D</u> Maximum	Depth, mils ^(d) Average of 5 Deepest ^(e)					
57	Type 304	нм	377 727 1463 2926	74 74 494	 18 18 121	16 7 11	 5 6 6					
58	Туре 316	A	377 727 1463 2926	 6 5	 <] <]	 63 						
59	Туре 316	S	377 727 146 3 2926	568 707 988 1000	45 56 79. 80	H T 120(T)						
60	Туре 409	A	377 727 14 5 3 2926	6329 5462 10349 16821	504 435 824 1340	н . н н н	 Н Н					
62	Туре 409	HW	377 727 1463 2926	822 2842 3947 10357	328 1133 1574 4130	. Н . Н . Н	H(f) H H					
63	Туре 409	HFW	377 727 1463 2926	1245 2166 4407 2389	638 1110 2259 1224	18 H H H	 Н Н Н					
64	Туре 410	A	377 727 1463 2926	7053 15999 30574 71198	562 1274 2436 5672	30 H H H	 Н Н					
65	Туре 430	A	377 727 1463 2926	4741 5088 8978 6007	- 405 715 478	Н Н Н Н	 Н Н					
66	Туре 434	A	377 727 1463 2926	513 927 1619 2015	41 74 129 160	н н н	 H(f) H H					

•

.

.

Table 9 (Con't,)

	Material							
System*		Treat- ment (a)	• Exposure,	Wei	ght Loss	Pit	Depth, mils (d)	
			Days	mg	mg/dm ²	Maximum	Average of 5	Deepest(e
							•	
Exposed	in 1971							•
1	26Cr-1Mo	А	· 350	9	<1	IP		
			730			IP <5		
			2549		•-			•
2	180r(Ti)	Á	350	1008	80	Н		
	1001 (117)	, A	730	628	50	42		
			1086	227	18	H		
			2549	1399	111	n	10	
3	18Cr (Ti)	XBW	350	569	45	Н		
			730	163	13	24		
•		•	2549	160	13	n H	- R	
4	20Cr-24Ni-	A	350	2	. <1	IP		
	OMC.O		1086					
			2549					
5	20Cr-24Ni-	S	350	11	<]	IP		
·	6.5Mo		730		••	· IP		
			1086	14	1	22		
			2549					
6	18Cr-2Mo	A	350	26	2	<5 ·		
			730	ь 1	<1	7		
			2549	103	8	Ĥ		
8	180r-8Ni(N) A	350			ΙP	ca 🚥	
°,			730		••	<5		
			1086	5	<1	50		
			2549	. 12	<1	<5		
9	18Cr-8Ni(N) XBW	350	462	37	141		
			/30	552	44 44			
			2549	90	7	H H	н	
10	260r-6 5Ni	Δ	350	423	34	н		
10	2001-0.3141	Λ	730	80	6	H	Н	
			1086	132	11	Н	Н	
			2549	284	23	Н	Н	

Table 9 (Con't.)

Average	(b)
---------	----	---

System*	Material	Treat-	Exposure, <u>Weight Loss</u>			Pit I	Pit Depth, mils (d)		
		ment (a)	Time, Days	mg	mg/dm ²	Maximum	Average of 5 Deepest(e)		
14	Composite A ^(c)		⁻³⁵⁰ 730 1086 2549	38500 60975 133000 320325	3029 4797 10463 25201	N/A N/A N/A N/A			
15	Composite B ^(c)	HD Z	350 730 1086 2549	43025 57950 80600 77450	3385 4559 6341 6093	N/A N/A N/A N/A			
16	Composite ^(c)		350 730 1086 2549	40500 59175 126100 379850	3186 4655 9921 29883	N/A N/A N/A N/A			
17	26Cr-1Mo	ΗW	350 730 1086 2549		 14 <1	 <5 35 41	 7 6		
18	18Cr(Ti)	ΗW	350 730 1086 2549	120 50 81 46	48 20 32 18	. Н Н Н Н	 Н Н Н		
19	20Cr-24Ni 6.5Mo	ΗW	350 730 1086 2549	<1 	<1 				
Expos	ed in 1972								
7	18Cr-2Mo (Nb)	А	380 736 2199	 6 59	 <1 5	<5 <5 55			
11	18Cr-2Mo (Nb)	XBW	380 736 2199	60 136 408	5 11 33	<5 H(T) H	 30		
12	18Cr-2Mo (Nb)	HW	380 ⁻ 736 2199	160	39	 7 43			

.

٠

*Systems 12, 17, 18, 19, 57, 62 and 63 were tube specimens fabricated from sheet material, welded at the seams and then plugged and capped at each end to minimize internal corrosion. Specimens of all other systems were flat sheet material.

(a) Abbreviations used:

A-annealed S-sensitized XBW-cross-bead weld HW-heliarc weld HFU-high frequency weld
 HDZ-hot-dip zinc coated (galvanized,
 4.5 oz/ft²) after bonding. See footnote (c).

- (b) Average for four specimens. -- indicates negligible or none.
- (c) All composites were metallurgically bonded. Composite A-Carbon steel/Type 430/Carbon steel. Composite B-Carbon steel/Type 430/Carbon steel. Composite C-Carbon steel/Type 304/Carbon steel.
- (e) Average of five deepest pits on each of four individual specimens unless noted otherwise.
- (f) Average of ten deepest pits on each of four individual specimens.

Table 10. Average Weight Loss (mg/dm²) and Pit Depth (mils) for Stainless Steel Sheet and Tube Specimens Buried in Lakewood Sand (Site D) for up to Eight Years.

System*	Material	Treat-	Exposure,	Wei	ght Loss	Pit 1	Depth, mils(d)
		ment (a)	Time, Days	mg	mg/dm ²	Maximum	Average of 5 Deepest (e
Exposed	in 1970						
50	Type 201	A	377 727 1463 2 926	364	29	1P 40 H	
51 .	Туре 202	A	.377 727 1463 2926	 9 100	<1 8	8 8 8 8 8 9 8 9	00 00 8 00
52	Туре 301	A	377 727 1463 2926	•••	 	IP IP	
53	Туре 301	S	377 727 1463 2926	714 1100 1499 4815	57 88 119 384	30 58	7 31
54	Туре 301	XBW	377 727 1463 2926	31		IP <5 40	••• •• 8
55	Type 304	A	377 727. 1463 2926	11	<1 17	IP H	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
56	Туре 304	S	377 727 1463 2926	268 711 1243 7944	21 57 99 633	H 57 H	H #
57	Туре 304	н	377 727 1463 2926	181		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00 00 00 00 00 00 00 00

Average(b)

Table 10 (Con't.)

Average(b)

System*	Material	Treat-	Exposure,	Wei	ight Loss	. <u>.</u>	Depth, mils(d)
•		(a)	Days	mg	mg/dm ²	Maximum	Average of 5 Deepest ^(e)
58	Type 316	A	377 727 1463 2926				
59	Туре 316	S	377 727 1463 2926	99 144 179 132	8 11 14 10	< 5	
60	Туре 409	A	377 727 1463 2926	258 620 2166	20 49 172	54 • H H	 Н Н
62	Туре 409	HW	377 727 1463 2926	83 705	<1 33 281	21 H H	 -H H
6 3	Туре 409	HFW	377 727 1463 2926	7 34 108 860	4 18 55 441	H H H	
64	Type 410	A	377 727 1 1463 2926 7	146 157 920 7578	12 92 73 604	н н н	 H H
65	Туре 430	A	377 727 1463 2926 1	0 22 186 638	0 2 15 130	18 H H	 H H
66	Type 434	A	377 727 1463 2926 1	<1 56 123	<1 4 89	56 H H	 H H

.

•

Table 10 (Con't.)

Average(b)

System*	Material	Treat- ment (a)	reat- Exposure,		ght Loss	Pit Depth, mils(d)			
			Time, Days	mg	mg/dm ²	Maximum	Average of 5	Deepest ^(e)	
Exposed	in 1971								
1	26Cr-1Mo	A	350 727 1086 2549	< < 3 3	বা বা বা	IP	ć- 		
2	18Cr(Ti)	A	350 727 1086 2549	8 109	<1 9	23 T			
3	18Cr(Ti)	XBW	350 727 1086 2549	3 <1 28	ব ব হ	26 61	14 8		
4.	20Cr-24Ni- 6.5Mo	A	350 727 1086 2549	2 1 <1 21	ব ব ব ব 2		41 42 44		
5	20Cr-24Ni- 6,5Ma	S	350 727 1086 2549		••	IP 			
6	18Cr-2Mo	A	350 727 1086 2549	<1 1 <1 40	<1 <1 <1 3				
8	18Cr-8Ni(N	A ()	350 727 1086 2549		-	IP	·. •••		
9	18Cr-8Ni (†	v) XBM	350 727 1086 2549	132	10	IP 30	19		
10	26Cr+6,5H	i A	350 727 1086 2549	121	10	 			

Table 10 (Con't.)

۰.

Average^(b)

System*	Material	Treat-	Exposure	- <u>Weig</u>	ht Loss	<u>Pit D</u>	lepth, mils(d)
		(a)	lime, Days	mg	mg/dm ²	Maximum	Average of 5 Deepest ^(e)
14	Composite A(c)		350 727 1086 2549	26300 32075 45100 130175	2069 2523 3548 10241	N/A N/A N/A N/A	•
15	Composite B.) HDZ	350 727 1086 2549	 1200 26575	 94 2091	N/A N/A N/A N/A	
16	Composite C ^{(c})	350 727 1086 2549	26250 38900 48000 130100	2065 3060 3776 10235	N/A N/A N/A N/A	
17	26Cr-1Mo	HW	350 727 1086 2549			 	
18	18Cr(Ti)	HW	350 727 1086 2549	<1 3 1	<1 1 <1		
19	20Cr-24Ni 6.5Mo	HW	350 727 1086 2549	2			
Expo	sed in 1972	2					•
7	18Cr-2Mo (Nb)	A	380 736 2199				
11	18Cr-2Mo (Nb)	XBW	38C 73€ 219£	4 15 110	<1 1 9	41	
12	18Cr-2Mo (Nb)	нพ	38(73(2199			 10	

•

Table 11. Average Weight Loss (mg/dm²) and Pit Depth (mils) for Stainless Steel Sheet and Tube Specimens Buried in Coastal Sand (Site E) for up to Eight Years.

. .

System*	Material	Treat- ment (a)	Exposure,	Weight Loss		Pit Depth, mils(d)	
			Time, Days	mg	mg/dm ²	Maximum	Average of 5 Deepest ^(e)
Exposed	in 1970						
50	Type 201	A	377 727 1463 2926	1272 3294 5705 5721	101 262 454 456	н Н Н Н	 H(f) H
51	Туре 202	A	· 377 727 1463 2926	774 1943 1939 585	62 155 15 4 47	н Н Н Н	(f) H H
52	Туре 301	A	377 727 1463 2926	1315 2713 2320 898	105 216 185 72	н н н	(f) H H H
53	Туре 301	S	377 727 1463 2926	1375 3723 4873 26427	110 296 388 2105	<5 8 28 40	 14 24
54	Type 301	XBW	377 727 1463 2926	1052 2542 2828 1110	84 202 225 88	н н н	(f) H H H
55	Туре 304	A	377 727 1463 2926	1399 3386 4564 2273	111 270 364 181	H H H H	` H
56	Type 304	S	377 727 1463 2926	2391 5883 11088 8078	190 469 883 644	н н н	н Н Н
57	Type 304	HW	377 727 1463 2926	62 3 1414 1352 696	152 345 330 170	38 26 53 30	21 23

Average(b)

Table 11 (Con't.)

Average ⁽	b)	
----------------------	----	--

System*	Material	Treat-	Exposure,	Weight Loss		Pit Depth, mils(d)		
		ment (a)	Days	mg	mg/dm ²	Maximum	Average of 5 Deepest ^(e)	
58	Туре 316	Α.	377 727 1463 2926	156 515 83 80	12 41 7 6	Н Н Н Н		
59	Type 316	S	377 727 1463 2926	1322 3274 3306 1760	105 261 263 140	62 < 5 H		
60	Туре 409	A	377 727 1463 2926	3303 3947 5235 2868	263 314 417 228	H H H. H	H H H H H	
62	Туре 409	HW	377 727 1463 2926	742 1260 2417 1348	296 502 964 537	н н н	н н н	
63	Туре 409	HFW	377 727 1463 2926	753 1023 1702 790	386 524 872 405	H H H H	Н Н Н	
64	Туре 410	A	377 727 1463 2926	3990 4012 8477 10912	318 320 675 869	н н н	н Н Н(f) Н	
65	Type 430	A	377 727 1463 2926	1434 3160 5084 2627	114 252 403 209	н н н	Н Н(f) Н Н	
66	Туре 434	A	377 727 1463 2926	1575 3085 5174 3564	125 246 412 284	н н н	H H(f) H H	
Expose	d in 1 971							
1	26Cr-1Mo	۸	350 728 1087 2904	4 <1 <1 8	<1 <1 <1 <1	IP 		

				Avera	ge ^(b)		
System*	Material	Treat-	Exposure,	Weig	<u>ht Loss</u>	Pit D	epth, mils ^(d)
		(a)	lime, Days	mg	mg/dm ²	Maximum	Average of 5 Deepest ⁽
2	18Cr(Ti)	A	350 728 1087 2904	542 464 250 218	43 37 20 17	Н Н Н	וּ(ָּדָ) H H H H
3	18Cr(Ti)	XBW	350 728 1087 2904	538 688 350 15 6	43 55 28 12	Н Н Н	н Н Н
4	20Cr-24Ni- 6.5Mo	A	350 728 1087 2904	1 2 15	ন ব 1		
5	20Cr-24Hi- 6,5Mo	S	350 728 1087	110 65 90	9 5 7	· · · · · · · · · · · · · · · · · · ·	
6	18Cr-2Mo	A	2904 350 728 1087	6 610 534 224	<1 49 42 18	 H H H	 H H
8	18Cr-8Ni(N)	A	2904 350 728 1087	13 17 12 56	1 1 <1 4	 24 H	
9	18Cr-8Ni(N)	XBW	350 728 1087 2904	867 1536 1776 394	69 122 141 31	H H H 95(W)
10	26Cr-6.5Ni	A	350 728 1087 2904	389 1082 1343 2	31 86 107 <1	Н Н Н	 H H
14	Composite A ^{(c} -)	350 728 1087 2904	23500 27125 39100 221950	1849 2134 3076 17461	N/A N/A N/A N/A	
15	Composite B(c) _{HDZ}	350 728 1087 2904	1325 1350 12575 4475	104 106 989 352	N/A N/A N/A N/A	

Table 11 (Con't.)

				Avera	ge				
System*	Material	Treat-	Exposure	, <u>Weig</u>	ht Loss	Pit	Depth, mils(d)		
		(a)	Days	mg	mg/dm ²	Maximum	Average of 5	Deepest ^(e)	
16	Composite C ^(c)		350 728 1087 2904	19775 17750 38450 247700	1556 1396 3025 19487	N/A N/A N/A N/A			
17	26Cr-1Mo	HW	350 728 1087 2904	4 160	<1 39	13 5 50	16		
18	18 Cr(Ti)	Η₩	350 728 1087 2904	<1 <1 3 <1	2 <1 1 <1				
19	20Cr -24Ni- 6.5Mo	HW .	350 728 1087 2094		 <1	·			
Expos	ed in 1972						• -0-		
7	18Cr-2Mo (Nb)	A	380 736 2199	 		< 5 < 5 			
11	18Cr -2 Mo (Nb)	XBW	380 736 2199	515 486 283	41 39 22	́н н н	 - H		
12	18Cr-2Mo (Nb)	HW	380 736 2199	162 340	40 83 	Н Н	H 		

*Systems 12, 17, 18, 19, 57, 62 and 63 were tube specimens fabricated from sheet material, welded at the seams and then plugged and capped at each end to minimize internal corrosion. Specimens of all other systems were flat sheet material.

(a) Abbreviations used:

1

A-annealed S-sensitized XBW-cross-bead weld HW-heliarc weld HFU-high frequency weld HDZ-hot-dip-zinc coated (galvanized, 4.5 oz/ft²) after bonding. See footnote (c).

- (b) Average for four specimens. -- indicates negligible or none.
- (c) All composites were metallurgically bonded. Composite A-Carbon steel/Type 430/Carbon steel. Composite B-Carbon steel/Type 430/Carbon steel. Composite C-Carbon steel/Type 304/Carbon steel.
- (d) 1 mil=0.025 mm. IP-incipient pitting. H-perforated. N/A- not applicable. W=weld.
- (e) Average of five deepest pits on each of four individual specimens unless noted otherwise.
- (f) Average of ten deepest pits on each of four individual specimens.

Table 12. Average Weight Loss (mg/dm²) and Pit Depth (mils) for Stainless Steel Sheet and Tube Specimens Buried in Tidal Marsh (Site G) for up to Eight Years.

System*	Material	Treat-	Exposure,	Weight Loss		Pit Depth, mils ^{(d})	
		ment (a)	Time, Days	mg	mg/dm ²	Maximum	Average of 5	Deepest ^(e)	
Exposed	in 1970							an a	
50	Type 201	A	356 719 1355 2897	3728 1179 78 3260	297 94 6 260	45 H 35 H	 H		
51 <i>'</i>	Type 202	A	356 719 1355 2897	55 14 86 1173	4 1 7 93	40 33 H . H	 7 H H		
52	Туре 301	A	356 719 1355 2897	146 1105 218 1046	12 88 17 83	40 30 H . H	 H H		
53	Type 301	S	356 719 1355 2897	4995 13103 2185 53517	398 1044 174 4263	25 H 36 H	 13 29		
54	Type 301	XBW	356 719 1355 2897	33 1565 1400 536	3 125 112 43	13 62 12 H	9 . H		
55	Туре 304	A	365 719 1355 2897	904 1803 304 16803	72 144 24 1338	Н 36 37 Н	 11 6 H		
56	Туре 304	S	356 719 1355 2897	293 6162 5146 25905	23 491 410 2064	20 H 26 H	 8 H		
57	Туре 304	ΗW	356 719 1355 2897			. <u>1</u> 0 11			

Average(b) ·

Table 12 (Con't,)

				- Micre	ige .			
System*	Material	Treat-	Exposure	Weig	t Loss	Pit [Depth, mils ^(d)	
		ment (a)	Days	mg	mg/dm ²	Maximum	Average of 5 Deepest	(e
58	Туре 316	A	356			< 5		
			1355 2897	 86	7	 H		
59	Туре 316	S	356		 .c	< 5		
			1355 2897	1136	 90	< 5 H		
60	Type 409	A	356	31401	2501 5283	Н	(f) H(f) H(f)	
			1355 2897	23206 208593	1849. 16617	H H	Н(f) Н	
62	Туре 409	HW	356	8438	3364	Н	(f) H(f) H(f)	
			1355 2897	4218 46694	1682 18618	. н н н	н н н	
63	Type 409	HFW	356	4681	2399	Н	- H ^(f)	
	•		1355 2897	10214 47111	5236 24147	. Н Н	H H	
64	Type 41 0	A	356	31982	2548	· H	H(f) H(f)	
			1355 2897	105184 287184	8379 22878	H H	H H	
65	Туре 430	A	356	44270	3527	Н	(f) H(f)	
			1355 2897	191351 399493	15243 31824	H	H H	
66	Type 434	A	356	74 7299	581	н		
			1355 2897	1754	140	6 H	 Н	
Expose	d in 1971						·	
1	26Cr-1Mo	A	362 755	3	 <1	IP 		
			1098 2539	. 3	~ <] ·			
Table 12 ([Con't.])						
------------	----------	---						
------------	----------	---						

				Avera	ige ^(b)			
System*	Material	Treat-	Exposure,	Weig	ht Loss	Pit C	Depth, mils ^(d))
		ment (a)	Time, Days	mg	mg/dm ²	Maximum	Average of S	5 Deepest ^(e)
2	18Cr(Ti)	A	362 755 1098 2539	11962 33777 5984 86077	953 2691 477 6857	Н Н 37 Н	 H 13 H	
3	18Cr(Ti)	XBW	362 755 1098 2539	3699 820 3 18255	295 65 <1 1454	Н 28 <5 Н	 H	
4	20Cr-24Ni- 6.5Mo	Α	362 755 1098 2539	<1 	<1 <1			
5	20Cr-24Ni- 6.5Mo	S	362 755 1098 2539	134 	11 	IP 		
6	18Cr-2Mo	A	362 755 1098 2539	528 630 <1 42	42 50 <1 3	H H <5 H	H 	
8	18Cr-8Ni(N)	A	362 755 1098 2539	50 159 2 1	4 13 <1 <1	5 H ~5	H	
9	18Cr-8Ni(N)	ХВ₩	362 755 1098 2539	646 3409 	51 272 	110 11 16		
10	26Cr-6.5Ni	A	362 755 1098 2539	4752 248 14 18	379 20 1 1	H H 7 47	H 6	
14	Composite A ^(c)		362 755 1098 2539	112575 380200 398800 654375	8857 29911 31374 51481	N/A N/A N/A . N/A		
15	Composite B ^(c)	HDZ	362 755 1098 2539	44025 66250 49300 139750	3464 5212 3879 10994	N/A N/A N/A N/A		

Table 12 (Con't.)

	•		•	Avera	ige ^(b)		
System*	Material	Treat-	Exposure	. <u>Weig</u>	ht Loss	<u>Pit</u> (Depth, mils ^(d)
		(a)	Days	mg .	mg/dm ²	Maximum	Average of 5 Deepest ^(e)
16	Composite ^(c)		362 755 1098 2539	104900 256400 358000 704350	8253 20172 28165 55413	N/A N/A N/A N/A	
17	26Cr-1Mo	ΗW	362 755 1098 2539	 57 4 	14 <1	<5 <5 	
18	18Cr(Ti)	HW	362 755 1098 2539	3466 24641 15115 2585	1382 9825 6027 1031	Н Н Н	H H H H
19	20Cr-24Ni 6.5Mo	HW	362 755 1098 2539	<1	<1		
Expos	ed in 1972						
7	18Cr-2Mo (Nb)	A	362 736 2156	 4 305	 <1 24	45 H	 H
11	18Cr-2Mo (Nb)	XBW	362 736 2156	 361	 29	 45 Н	 H
12	18Cr-2Mo (Nb)	HW	362 736 2156			IP	

•

-

Table 12 (Con't)

*Systems 12, 17, 18, 19, 57, 62 and 63 were tube specimens fabricated from sheet material, welded at the seams and then plugged and capped at each end to minimize internal corrosion. Specimens of all other systems were flat sheet material.

(a) Abbreviations used:

:

A-annealed S-sensitized XBW-cross-bead weld HW-heliarc weld HFW-high frequency weld HDZ-hot-dip zinc coated (galvanized, 4.5 oz/ft²) after bonding. See footnote (c).

- (b) Average for four specimens. -- indicates negligible or none.
- (c) All composites were metallurgically bonded. Composite A-Carbon steel/Type 430/Carbon steel. Composite B-Carbon steel/Type 430/Carbon steel. Composite C-Carbon steel/Type 304/Carbon steel.
- (d) 1 mil=0.025 mm. IP-incipient pitting. H-perforated. N/A- not applicable. W=weld.
- (e) Average of five deepest pits on each of four individual specimens unless noted otherwise.

14.

(f) Average of ten deepest pits on each of four individual specimens.

ø

. Summary of Results Obtained from Non-Galvanically Coupled Stressed	1-in x 12-in Stainless Steel Specimens After Exposure for up to	8 vears at the six NBS Soil Corrosion Test Sites
2 13		
Tabl		

	te G	0000	0000		0000	(p) [0	0000
	Si'						NR* 0
	Site	0000	0000	~ ~ ~ ~ ~	0000	0000	0000
	Site D	0000	0000	~~~~	0000	0000	0000
	Site C	0010	0-NI	2 2 (d	0000	0000	0000
	Site B	0000	0000	(P)1	0000	0000	0 0 0 0 NF
	Site	0000	0000	1 (d) 2 0	0000	0000	0000
ens Failed	Exposure Time Years	- 0 4 0	⊢ 0 4 8	- 0 4 8	r 0 4 8	- 0 4 8	L 0 4 0
Number of Specim	<pre>(a) Stressed Specimen(b)</pre>	Ð	(nn)	n	D .	(nn)	∍
	Treatment	풒	王	НАВС	H	H	I
	Stainless Steel sed in 1970	Type 301	Type 301	Type 301	Type 301	Type 301	Type 304
	System Expo	67	68	69	70	۲۲	72

te Site Site Site Site A B C D E G		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 1-1(d)0 1 0 0 0-NR* 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Stressed Exposure Time Si Specimen(b) Years	(UU) 1 2 8	U L- 0 4 8	(UU) 2 8	UU - 2 4 8	⊐	(uu) - 2 - 4 - 8	UU - 2 4 0	D - 0 4	(IJU) 1 2
steel Treatment (a)	i	· 王	Ŧ	S	i	1	S	I	ł
em Stainless S Exposed in 1970	Type 304	Type 304	Type 304	Type 304	Type 316	Type 316	Type 316	Type 434	Type 434
yste	73	74	75	76	77	78	79	80	81

Table 13 (cont!d.)

Site G	0000	0000	0000	0000	0000	0000	0000	0000
Site E	0000	0000	0000	0000	0000	0000	0000	0000
Site D	0000	0000	0000	0000	0000	0000	0000	0000
Site C	0000	0000	0000	0000	0000	0000	0000	0000
Site B	0000	0000	0000	0000	0000	0000	0000	0000
Site A	0000	0000	0000	0000	0000	0000	0000	0000
Exposure Time Years	1 2 3(e)	1 2 3(e)	1 2 3(e)	1 2 3 7(e)	1 2 3(e)	1 2 3(e)	1 2 3(e)	1 2 3(e)
Stressed Specimen(b)	(nn)	∍	(nn)	∍	n	(nn)	-	(nn)
Treatment (a)	I	1	1	1	1	1	1	1
Stainless Steel oosed in 1971	26Cr-1Mo	26Cr-1Mo	20Cr-24Ni-6.5Mo	20Cr-24Ni-6.5Mo	20Cr-24Ni-6.5Mo	18Cr-2Mo	18Cr-2Mo	18Cr-8Ni (N)
System Exp	20	21	22	23	24	25	26	27

Table 13 (cont'd.)

Table 13 (cont'd.)

,

Site G	0000	0000
Site E	0 0 0 0 N-0	0000
Site D	0000	0000
Site C	0000	0000
Site B	0000	0000
Site A	0000	0000
Exposure Time Years	1 2 3(e)	1 2 3 7(e)
<pre> A) Stressed Specimen(b) </pre>	∍	∍
Treatment (a	1	1
Stainless Steel 1 in 1971 (e)	18Cr-8Ni (N)	26Cr-6.5Ni
System Exposed	28	30

*Specimen not retrieved

(a) All specimens in the annealed condition unless noted otherwise

S-sensitized FH-full hard HH-half hard

- U-single U-bend specimen UU-double U-bend specimen (UU)-double U-bend specimen, joined by a spot weld • (q) .
- Micro crack on face, specimen considered failed (c)
- Micro crack on edge, specimen considered failed (q) (e)
- For specimens buried at Site E, exposure time was 8 years.

Table 14. Average^(a) couple current vs. failure.

.

.

it j

	Constant	faind of	S1 Wash	te A ington	S11 Loch	te B Raven	Sit Cape	ce C May	Sit Wild (Dry	e D Wood Sand)	Sit Wild (Wet	te E Iwood Sand)	Site Patuy	e G cent
iiian sée	opeciment	to to	µA/cm ²	Failures	µA/cm ²	Failures	µA/cm ²	Fallures	µA/cm ²	Failures	uA/cm ²	Failures	μA/cm ²	Failure
82	301 HH ^b	Zn	2.58	0	1.43	2	20	2	0.94	2	1.14	2	10.3	. 2
83		Mg	17.2	-	4.81	2	122	2	3.95	2	34.7	2	237	2
84	2	Fe	0.06	0	0.48	0	1.45	2	0.17	0	0.48	0	4.08	0
85	301 FH ^b	Zn	4.17	0	1.51	2	20.5	2	1.23	2	0.98	2	14.7	5.
86	z	Mg	20.5	2	8.66	2	120	2	3.79	2	34.7	8	249	2
87		Fe	0.05	0	0.56	0	1.29	2	0.23	0	0.59	0	4.65	-
88	304p	Zn	2.57	0	1.86	0	26.3	0	96*0	0	0.71	0	11.5	0
89	=	Mg	25.3	0	6.38	0	117	0	5.25	0	30.2	0	258	0
96	z	Fe	0.09	0	0.45	0	66.0	0	0.06	0	0.59	0	8.27	0
33	260r=	Zn	7.75	0	1.49	0	33.8	0	1.39	0	2.47	0	18.5	0
34	<u>e</u> =	Мg	22.7	0	3.57	•.	133	0	3.77	0	24.0	0	3 53	0
35	=	Fe	4.73	0	0.54	0	0.87	0	0.25	0	2.4	0	-0.21	0
. 36	26Cr-	Zn	7.30	0	1.72	0	27.8	0	1.31	0	5.01	0	13.1	0
37	=	Мд	47.4	0	4.0	0	138	0	4.53	0	28.4	0	375	0
38	=	Fe	0.37	0	0.98	0	1.57	0	0.35	0	0.94	0	6.52	0

^aAverage of two specimens - 16 readings.

^bFour year exposure.

CThree year exposure.

Average^a Galvanic Current^b/Average^a Potential^c For Stainless Steels Connected To Copper. Table 15.

System	Material	Site A Toppenish, Washington (V)	Site B Loch Raven, Maryland (V)	Site C Cape May, New Jersey (V)	Site D Wildwood, New Jersey (Dry Sand) (V)	Site E Wildwood, New Jersey (Wet Sand) UA (V)	Site G Lexington Park Maryland (V)
42d	Allay 26 Cr-6.5 Nf	+0.92 (-0.078)	-2.27 (+0.001)	+7.91 (-0.114)	-7.45 (-0.111)	-80.42 (-0.001)	-2.85 (-0.427)
91e	AISI Type 304	+1.81 (-0.030)	-10.57 (+0.006)	-7114 (-0.132)	+7.36 (-0.188)	-9.78 (-0.124)	+13.02 (-0.443)
92 ^e	AISI Type 409	-3.08 (-0.041)	-9.21 (+0.002)	+13.74 (-0.281)	+6.68 (-0.164)	+5.65 (-0.116)	-6.16 (-0.462)
1.1 0.0		11 western	and ac door ac	and another of	4	the The	

Ine surtace area (a) Average of a minimum of 14 readings on each of two specimens per system at each site. of each electrode was 154.8 cm².
(b) Negative current indicates that the stainless steel was cathodic to copper.
(c) Potential vs Cu-CuSO₄.
(d) Exposure time - 9 years.
(e) Exposure time - 10 years.

No. 3. Recipient's Accession No.						
5. Publication Date						
February 1981						
6. Performing Organization Code						
8. Performing Organ. Report No.						
10. Project/Task/Work Unit No.						
5610362						
11. Contract/Grant No.						
13. Type of Report & Period Covered Final 1970-1978						
14. Sponsoring Agency Code						
15. SUPPLEMENTARY NOTES Document describes a computer program; SF-185, FIPS Software Summary, is attached.						
ludes a significant bibliography or						
ng the corrosion and NBS in cooperation with in 1970 a soil burial s included coated and dition, uncoated welded essed and unstressed n buried at six soil test						

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolons)

approximately eight years.

Coatings; corrosion behavior; field-tests; galvanic couples; soil environment, stainless steels; stress-corrosion behavior

18. AVAILABILITY	X Unlimited	19. SECURITY CLASS (THIS REPORT)	21. NO. OF PRINTED PAGES
For Official Distribu	tion. Do Not Release to NTIS	UNCLASSIFIED	80
Order From Sup. of D 20402, SD Stock No.	oc., U.S. Government Printing Office, Washington, DC SN003-003-	20. SECURITY CLASS (THIS PAGE)	22. Price
Order From National VA. 22161	Technical Information Service (NTIS), Springfield,	UNCLASSIFIED	¢7.50
	the second s		USCOMM-DC

