NBSIR 81-1650

NBS PUBLICATIONS

WR-10 SINGLE SIX-PORT MEASUREMENT SYSTEM

M. Weidman

Electromognetic Technology Division National Engineering Laboratory National Bureau of Standards Boulder, Colorado 80303

QC 100 .U56 81-1650 1981 c.2

September 1981

NBSIR 81-1650

NATIONAL BURBAU OF STANDARDS LIBRARY NOV 1 6 1981

4:1

WR-10 SINGLE SIX-PORT MEASUREMENT SYSTEM

M. Weidman

Electromagnetic Technology Division National Engineering Laborotory Notional Bureou of Stondards Boulder, Colorado 80303

September 1981

WR-10 SINGLE SIX-PORT MEASUREMENT SYSTEM

M. Weidman Electromagnetic Technology Division National Bureau of Standards Boulder, Colorado 80303

A six-port system has been developed and used to measure effective efficiency (η_e) and complex reflection coefficient (Γ) in WR-10 (75-110 GHz) waveguide at frequencies in the 93.5-96.5 GHz range. The system is automated except for the control of the mm-wave klystron source. This report includes a brief description and background of the measurement system and a preliminary analysis of uncertainties.

1.0 Introduction

The design of the WR-10 single six-port system is based on a previous system in WR-15 waveguide [1] and the work of C. Hoer and G. Engen [2, 3]. The WR-10 system utilizes a commercially built, integrated, dielectric waveguide circuit as part of the six-port network. In the WR-15 system the six-port network was built up from discrete commercial, metallic waveguide components (directional couplers). The integrated dielectric waveguide circuit appears to give better performance, although over a limited bandwidth--approximately 10 percent. The remainder of the system (source type, instrumentation, and software) is the same as the WR-15 system. Thermistor mounts are used as detectors along with NBS Type IV power meters. Sliding and fixed terminations together with calibrated (microcalorimeter) thermistor mounts are used to calibrate the six-port for measurement of reflection coefficient, $\Gamma_{\text{,}}$ and effective efficiency, $\eta_{\text{,}}$, of thermistor mounts. Figure 1 is a block diagram of the measurement system, and Figure 2 is a schematic of the six-port network.

2.0 Measurement Results and Error Analysis

2.1 Random Errors

A series of nine separate, complete calibrations were performed on the system at 94.5 GHz with one of the working standard thermistor mounts (measured in microcalorimeter) used as a standard for effective efficiency and a quarter-wave short as the standard for reflection coefficient. A second working standard thermistor mount, which had also been measured in the microcalorimeter, was treated as an unknown.

The unknown was reconnected and measured three times on each of nine occasions over a period of two weeks. Estimates of the between-occasion and within occasion standard deviations were obtained from a one way random effects model. The estimated standard deviations for η_e are 0.00124 within occasions and 0.00192 between occasions. The respective values for Γ magnitude are 0.00105 and 0.00296. The estimated standard deviation of a single measurement is obtained by adding the component standard deviations in quadrature. These estimates are 0.00229 with approximately 12 degrees of freedom for η_e and 0.00314 with approximately nine degrees of freedom for Γ magnitude. Using Student's t value with a conservative eight degrees of freedom at the 99% confidence level times the single measurement standard deviations yields the reported limits to random error. These limits are 0.00768 for η_e and 0.01053 for Γ magnitude.

The random uncertainties are reported in Table I along with the systematic uncertainties.

The estimated offset between the mean value of η_e as measured on the six-port for the thermistor mount used as the unknown and the mean value from the microcalorimeter is 0.002%. The estimated systematic uncertainty for the possible offset based on 2 times the standard error of the difference between the two mean values is 0.25%. (Therefore, the estimated offset is not statistically significant).

2

2.2 Systematic Errors

For η_e measurements using the six-port system, the systematic error results from the error in the microcalorimeter measurement of η_e for the two working standards and a mismatch loss uncertainty resulting from a systematic error in Γ . The ±1.2% error from the microcalorimeter in Table I includes both random and systematic components (see WR-10 microcalorimeter paper). The two components have been added algebraically here and are treated as a systematic uncertainty for the six-port system. (The conservative approach has been used since the random errors are based on limited sample size).

Although no definite offset showed up in the mean of the nine measurement occasions for η_e on the six-port, compared to measurements on the microcalorimeter, there could be an uncertainty, for other Γ 's, caused by the fact that there is a systematic error in the measurement of Γ . This error in Γ reflects itself through the measurement of mismatch loss ($M_{\sigma \ell}$) in determining η_e . The mismatch loss in terms of Γ is

$$\Pi_{g\ell} = \frac{\left(1 - |\Gamma_g|^2\right) \left(1 - |\Gamma_{\ell}|^2\right)}{|1 - \Gamma_g \Gamma_{\ell}|^2}, \qquad (1)$$

where g and l denote generator and load respectively.

N

The effective efficiency for a device under test is calculated using the equation

$$\eta_{eu} = \frac{M_{gs}}{M_{gu}} \cdot K = \frac{(1 - |\Gamma_g|^2) (1 - |\Gamma_s|^2 / |1 - \Gamma_g \Gamma_s|^2}{(1 - |\Gamma_g|^2) (1 - |\Gamma_u|^2) / |1 - \Gamma_g \Gamma_u|^2} \cdot K$$
(2)

In eq (2), η_{eu} is the effective efficiency of the device under test, M_{gu} and M_{gs} are the respective mismatch losses for device under test and standard, and K is a function of the substituted dc powers and the value of η_{e} for the standard.

Using the values from Table I for Γ magnitude systematic error, it can be shown that for typical Γ_g and Γ_k , this results in a ± 0.16 percent uncertainty in M_{gl} and also in η_e , since η_e is directly affected by M_{gl} . This uncertainty was calculated using worst case phase conditions for Γ_g and Γ_l and with $|\Gamma_g| = 0.07$ and $|\Gamma_l| = 0.25$. The systematic error in η_e for a device under test caused by a systematic error in M_{gl} shows up in the ratio of M_{gl} 's for standard and device under test. The numerators of the two M_{gl} 's ratios in eq (2) (ℓ is u or s) will go in the same direction (high or low), whereas the denominators can go either direction. To be on the safe side and include all possibilities, the value for estimated systematic error in M_{gl} in Table I is double the ± 0.16 percent value for one determination of $M_{\sigma l}$.

The primary source of systematic error in the measurement of reflection coefficient (Γ) is caused by the fact that the section of waveguide used for the sliding termination does not have perfect WR-10 dimensions. Using the dimensional tolerances for the mandrel on which this precision waveguide section was electroformed and eq (14) from [4],

$$\Delta \Gamma = 2 \left[\left(\frac{\lambda_g^2}{\lambda_c} \right) \frac{|\Delta a|}{4a} + \frac{\sigma}{(1+\sigma)^2} \frac{|\Delta_b|}{b} \right]$$
(3)

where $\Delta_{a} = \Delta_{b} = \pm 2.5 \ \mu m$, $a = 2.54 \ m m$, $b = 1.27 \ m m$, $\sigma = VSWR = \frac{1 + \Gamma}{1 - \Gamma}$.

In this case, $\Delta\Gamma$ is approximately ±0.0013 for $|\Gamma|$ near zero. The uncertainty decreases for higher reflection coefficients. Another source of uncertainty is the fact that the quarter-wave short is not perfect. If $|\Gamma|$ for the quarter-wave short is assumed to be 0.998 ±0.002 (conservative assumption), the uncertainty in $|\Gamma|$ would be ±0.002 times $|\Gamma|$. No claim for Γ phase (systematic uncertainty) is made here, but dimensional considerations again apply. Phase of Γ is not normally used in single six-port applications.

Conclusion

The WR-10 single six-port system appears to be in a satisfactory operating state, and ongoing measurements with both working standards and two check standards will be used to obtain more long-term data for the system, for purposes of establishing statistical control.

References

- Weidman, M. P., A Semiautomated Six-Port for Measuring Power and Complex Reflection Coefficient, IEEE Trans. Microwave Theory Tech., vol. MTT-25, No. 12, Dec. 1977.
- [2] Engen, G. F., An Improved Circuit for Implementing the Six-port Technique of Microwave Measurements, ibid.
- [3] Engen, G. F., Calibrating the Six-Port Reflectometer by Means of Sliding Terminations, IEEE Trans. Microwave Theory Tech., vol. MTT-26, No. 12, Dec. 1978.
- [4] Yates, B. C. and Larson, W., Millimeter Attenuation and Reflection Coefficient Measurement System, NBS Tech Note 619, July 1972.

5

TABLE 1

Measurement Uncertainties for Single Six-Port

Uncertainty	n _e	[]
Systematic:		
Microcalorimeter	±1.20%	
M _{gl} (From Γ)	±0.32%	
Possible offset between		
mean of calorimeter		
and mean of 6-port	±0.25%	
Precision Section		±0.0013
$\lambda/4$ Short		±0.0020 x [
Total Systematic	±1.71%	$\pm (0.0013 + 0.0020 \times \Gamma)$
Random:		
(t ₀₀₅₈) vs		

For $\eta_e = \frac{\overline{(r_{.005,8}) \times s} \times 100}{\overline{\eta}_e}$		
and for $ \Gamma $ (t.005,8) x s		
Six-port	±0.86%	±0.0105
Total Random and Systematic	±2.63%	$\pm (0.0118 + 0.0020 \times \Gamma)$

Figure 1. Block diagram of single six-port system.

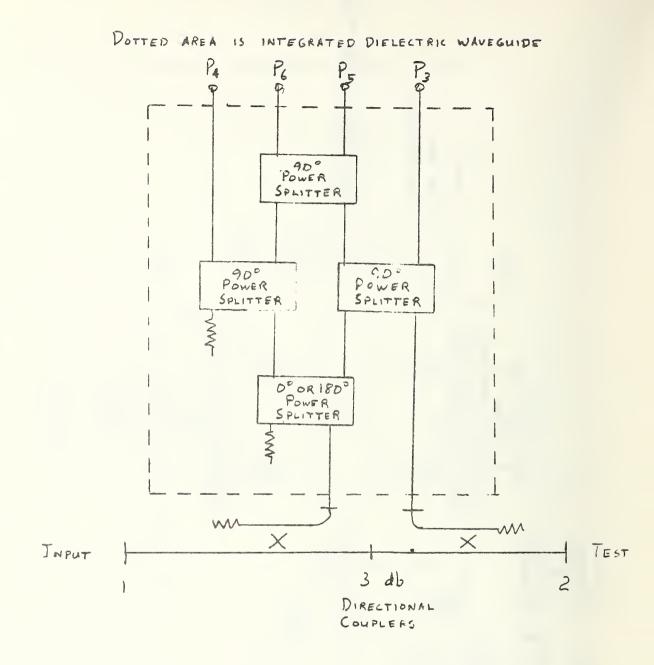


Figure 2. Schematic of six-port network.

NBS-114A (REV. 2-80)				
U.S. DEPT. OF COMM.	1. PUBLICATION OR	2. Performing Organ. Report No. 3. F	Publication Date	
BIBLIOGRAPHIC DATA	REPORT NO.		1 1001	
SHEET (See instructions)	NBSIR 81-1650	5	September 1981	
4. TITLE AND SUBTITLE				
WR-10 Single Six-	Port Measurement Syste	em		
5. AUTHOR(S)				
Manly P. Weidman				
6. PERFORMING ORGANIZA	TION (If joint or other than NBS	see instructions) 7. Co	ontract/Grant No.	
	CTANDARDS.			
DEPARTMENT OF COMM		8. TY	pe of Report & Period Covered	
WASHINGTON, D.C. 2023				
9. SPONSORING ORGANIZA	TION NAME AND COMPLETE A	DDRESS (Street, City, State, ZIP)		
			······································	
10. SUPPLEMENTARY NOTE	:5			
		S Software Summary, is attached.		
bibliography or literature	or less factual summary of most s survey, mention it here)	significant information. If document in	cludes a significant	
	·····,			
		1 1	ing afficiency (n)	
A six-port system	n has been developed a	nd used to measure effect	ive efficiency (n)	
The sup 10 (75 110 CM) as a frequence				
and complex reflection coefficient (Γ) in WR-10 (75-110 GHz) waveguide at frequen-				
		the subsystem is a second	t for the control of	
cies in the 93.5	-96.5 GHz range. Ine	system is automated excep	t for the control of	
.1	This was	ort includes a brief desc	rintion and back-	
the mm-wave klys	tron source. Ints rep	fort includes a biler desc	ription and back	
1 6 11		amoliminary analycic of	uncertainties	
ground of the me	asurement system and a	n preliminary analysis of	uncertainties.	
12. KEY WORDS (Six to twelv	e entries; alphabetical order; ca	pitalize only proper names; and separa	te key words by semicolons)	
mm wave measurements; reflection coefficient; six-port measurement system;				
thermistor mount calibration.				
Chermistor mount	caribración.			
13. AVAILABILITY			14. NO. OF	
			PRINTED PAGES	
Unlimited			10	
	ion. Do Not Release to NTIS		12	
Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.		15. Price		
		15 00		
Order From National	T Order From National Technical Information Service (NTIS), Springfield, VA. 22161 \$5.00			

