AMPLITUDE CALIBRATOR FOR OSCILLOSCOPES

James R. Andrews
Eugene E. Baldwin

Electromagnetic Technology Division
National Engineering Laboratory
National Bureau of Standards
Boulder, Colorado 80303

AMPLITUDE CALIBRATOR FOR OSCILLOSCOPES

James R. Andrews

Eugene E. Baldwin

Electromagnetic Technology Division National Engineering Laboratory National Bureau of Standards
 Boulder, Colorado 80303

April 1981

Page
Abstract 1

1. Introduction. 1
2. Specifications and Features. 2
3. Circuit Description and Schematics 2
4. Parts List 10
5. Construction. 15
6. Alignment Procedure 21
7. Performance Check and Calibration 23

DISCLAIMER: Certain commercial equipment, instruments, or materials are identified in order to adequately specify the experimental procedure. Such identification does not imply recommendation or endorsement by the National Bureau of Standards, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

List of Figures

Page
Figure 1．NBS amplitude calibrator 1
Figure 2．Block diagram of amplitude calibrator 5
Figure 3．Schematic（1 of 4） 6
Figure 4．Schematic（2 of 4） 7
Figure 5．Schematic（3 of 4） 8
Figure 6．Schematic（4 of 4） 9
Figure 7．Photo of assembled instrument（cover plates removed） 16
Figure 8．Rear view．（Partially disassembled） 16
Figure 9．P．C．Board 非1 17
Figure 10．P．C．Board 非 2. 17
Figure 11．P．C．Board 非3 17
Figure 12．P．C．Board 非l art work 18
Figure 13．P．C．Board 非2 art work 19
Figure 14．P．C．Board 非3 art work 20

AMPLITUDE CALIBRATOR FOR OSCILLOSCOPES

James R. Andrews and Eugene E. Baldwin
National Bureau of Standards
Boulder, Colorado 80303

The amplitude calibrator is designed to provide known dc voltage levels or 1 kHz square waves from $\pm 1 \mathrm{mV}$ to $\pm 5 \mathrm{~V}$. It features selectable output impedances of $<0.1 \Omega$, 50Ω, and $1 \mathrm{M} \Omega$. The instrument is designed with sufficient current capability to deliver its indicated voltage into a 50 termination. To protect delicate sampling oscilloscopes, a limiter circuit can also be activated to limit the output voltage to $\pm 1.8 \mathrm{~V}$.

Key words: Calibration; calibrators; instrumentation; oscilloscope calibrator; oscilloscopes

1. Introduction

This report describes equipment developed by NBS for calibration of the vertical axis of an oscilloscope. The amplitude calibrator (fig. l) provides voltages from $\pm 1 \mathrm{mV}$ to $\pm 5 \mathrm{~V}$ with $\Delta \mathrm{V}$ steps of 1 mV to 500 mV in a 1,2 , 5 sequence and a 0 to 10 multiplier in unit steps with a source impedance of $<0.1 \Omega, 50 \Omega$, or $1 \mathrm{M} \Omega$. It produces either dc or a 1 kHz square wave.

This report describes in detail the circuit design. Schematic diagrams, parts list, and p.c. artwork are included. A complete alignment and calibration procedure is provided.

Figure 1. NBS amplitude calibrator.

2. Specifications and Features

```
NBS Amplitude Calibrator Mode1 - 72404-2
```

I. Output voltages:
a. $\pm 1 \mathrm{mV}$ to $\pm 5 \mathrm{~V}$
b. ΔV steps -1 mV to 500 mV in a 1,2 , 5 sequence.
c. multiplier -0 to 10 in unit steps.
d. open circuit output voltage is 2 X the indicated value when the output impedance switch is in the 50Ω or $1 M \Omega$ positions.
II. Voltage accuracy: within $\pm 0.25 \%$ (typically $<0.1 \%$) except $\pm 0.4 \%$ at 2 mV and $\pm 0.7 \% \mathrm{at} 1 \mathrm{mV}$.
III. Output impedance: adjustable with 3 position switch to (a) $<0.1 \Omega$, (b) 50Ω, $\pm 0.1 \%$ and (c) $1.0 \mathrm{M} \Omega, \pm 0.1 \%$.
IV. Operating modes: (a) DC or (b) 1 kHz square wave. Square wave baseline is 0 volts. Frequency accuracy is $\pm 0.01 \%$.
V. Sampler protection: switch selectable internal circuit limits output voltage to a maximum of ± 1.8 volts nominal.
VI. Overload protection: overload lamp lights if output current exceeds $\pm 225 \mathrm{~mA}$, nominal, and the maximum output current is limited to $\pm 275 \mathrm{~mA}$. The lamp also lights if the multiplier and ΔV switches would create an output in excess of ± 1.2 volts when the sampler protection circuit is on.
VII. Output connector: BNC
VIII. Controls: (a) ΔV in $m V$, (b) multiplier, (c) polarity (+ or -), (d) mode (dc or 1 kHz), (e) sampler protection (on or off) and (f) output impedance.
IX. Construction: the unit is a double-wide, plug-in module designed to be operated in a Tektronix TM-500 mainframe.

3. Circuit Description and Schematics

The block diagram of the amplitude calibrator is shown in figure 2. Detailed schematic diagrams are found in figures 3 through 7.

The internal voltage standard for the unit is $\pm 10.000 \mathrm{~V}$ found at TP7. An LM399H, IC-10, is used as a precision voltage reference. It is a temperature stabilized, active reference zener. It features a typical temperature coefficient of $0.00003 \% /{ }^{\circ} \mathrm{C}\left(0.0002 \% /{ }^{\circ} \mathrm{C}\right.$ max.). The actual reference voltage is a nominal $6.95 \mathrm{~V}(\pm 0.35 \mathrm{~V})$. The $\pm 10.000 \mathrm{~V}$ internal standard voltage is obtained from the 6.95 V reference using the $I C-1$ and the resistors R_{a}, R_{b}, and R_{c}. The reference voltage is very stable with time and temperature but it is not well known (i.e., large variation in actual voltage from one unit to the next.) Thus it is necessary to provide a means of varying the gain of $I C-1$ to accurately set the internal standard at precisely $\pm 10.000 \mathrm{~V}$. Resistor R_{c} is used for this function.

Switch Sl provides the polarity function by alternately grounding either the positive or negative terminal of the 6.95 V reference. The 1 kHz square wave function is obtained using the integrated analog switch, $I C-4$. It grounds at a 1 kHz rate the center point of resistors R_{a} and R_{b}, thus forcing the input to $\mathrm{IC}-1$ to zero. As a result the voltage at TP7 switches from $\pm 10.000 \mathrm{~V}$ to 0.00 V .

The Δ f function (1 mV to 500 my in a $1-2-5$ sequence) is providec by the variable gain amplifier used as an active attenuator IC-2. The gain of this stage is set by the input and feedback resistor ratio

$$
V(T P 8)=V(T P 7) \times R_{e} / R_{d}
$$

Resistors R_{e} and R_{d} are precision, 0.1%, resistors and are switched by a common switch to give TP8 voltages ranging from +10 mV to +5.000 V .

Following IC-2 is the multiplier attenuator, R_{f}. This is a passive voltage divider made up of ten, $1 \mathrm{k} \Omega, 0.1 \%$ resistors. This provides the unit step multiplier function ($0,1,2$, etc.
up to 10). To avoid upsetting the accuracy of R_{f} it is followed by a very high input impedance voltage follower, IC-3.

Also following the multiplier attenuator is the sampler protection circuit. Most sampling oscilloscopes have a dynamic range of $\pm 1 \mathrm{~V}$ and burnout limits of $\pm 3 \mathrm{~V}$. Thus the maximum output from this amplitude calibrator could easily destroy a sampling oscilloscope input circuit. To protect against this a limiter circuit can be switched in to 1 imit the output voltage to a nominal $\pm 1.5 \mathrm{~V}$.

The next circuit is a hybrid power amplifier consisting of IC-3 and complementary NPN-PNP Darlington amplifier pairs. This power amplifier is capable of delivering up to $\pm 10 \mathrm{~V}$ at 200 mA . The voltage gain of this stage is unity. The circuit includes short circuit protection.

Beyond the power amplifier is an additional switch to determine the output impedance. The output impedance of the power amplifier is typically 0.1Ω. Higher impedances are obtained by inserting a series 50Ω or $1 \mathrm{M} \Omega$ resistor. The output voltage in the 50Ω and $1 \mathrm{M} \Omega$ position is calibrated in terms of the voltage delivered to a load resistance matched to the source resistance. Thus it is necessary to double the open circuit source voltage. For example when the ΔV is 500 mV , the multiplier is 10 and the Z Out is 50Ω or $1 \mathrm{M} \Omega$, then the open circuit output voltage is $\pm 10.000 \mathrm{~V}$ instead of $\pm 5.000 \mathrm{~V}$. This is accomplished by an additional switch section of the Z Out switch changing resistor R_{d} in the ΔV active attenuator.

The calibrator also includes an overload lamp. It lights whenever there is an overload or fault condition such as a short circuit on the output. It also lights if the sampler protection circuit is enabled and an output voltage is selected which exceeds the limiter voltage. The remainder of this section deals with particular comments related to the actual circuits.

In the $\pm 10 \mathrm{~V}$ standard circuit, IC-1, in figure 3 , the resistors R_{a} and R_{b} and the switch IC-4 are actually five resistors and four CMOS switches. Each CMOS switch has a finite on resistance of the order of 100Ω. A single section switch will not give a perfect 0 V input to $\mathrm{IC}-1$. It was necessary to use multiple sections as a ladder attenuator to achieve the desired accuracy.

The 1 kHz square wave drive signal for $\mathrm{IC}-4$ is derived from a 1 MHz crystal oscillator, IC-5a, and three $\div 10$ dividers, IC-6, 7 and 8 . IC-9 is an additiona1 $\div 10$ which provides a 100 Hz drive signal for the external, companion, plug-in, mercury switch pulse generator.

The active ΔV attenuator, $I C-2$, is seen to have nine ($R 33-R 41$) additional resistors in the + input. These are chosen to approximate the parallel combination of Rd and Re to provide offset current compensation for IC-2. Likewise the extra resistors (R54-R65) in the multiplier attenuator, figure 4, provide the same function for $\mathrm{IC}-3$ in conjunction with R66.

The sampler protection limiter consists of diodes CR1 and 2 and transistors Q1-Q4. The forward diode drops of CR1, Q1 and Q2 in series provide the equivalent of $\mathrm{a}+1.5 \mathrm{~V}$ clamp. Diode CR2, Q3, and $Q 4$ provide the same function for negative voltages. The transitors are connected as high β Darlington amplifiers. When they start to conduct they turn on Q14 which in turn lights the overload lamp.

The power amplifier is also shown in figure 4. IC-3 provides a high impedance load for the multiplier attenuator and also drives the output power transistors, Q5-Q8. To avoid "cross-over" distortion and non-1inearities at low output levels the bias is arranged such that the output transistors are always conducting. The bias network is made up of diodes CR3-CR6 and resistors R69, 70, 71, 73, and R5. The diodes provide temperature compensation for the temperature characteristic of the transistors' base-emitter junction voltage. The JFET transistors Q15a and b are used as constant current sources to force the output transistors to always conduct a few mA of current. The actual idling current can be adjusted with R5. The actual output current is monitored by sensing the voltage drop across the 3.3Ω resistors, $R 72$ and $R 74$. If the current exceeds 250 mA , then the voltage drop is sufficient to turn on transistor $Q 9$ (or Q10) which in turn kills the base drive at $Q 5$ (or 07) and very effectively limits the output current. At a slightly lower current of 225 mA , Q11 (or Q12) starts to conduct which in turn turns on Q13 and Q14 thereby lighting the overload lamp.

Each op-amp in the calibrator is equipped with a null adjustment pot. It is quite important, especially for the $m V$ output levels, that each op-amp be precisely nulled to 0 . To facilitate these adjustments, slide switches have been provided on the circuit boards.

It is important that the spurious noise output of this calibrator be kept to an absolute minimum. The major internal source of EMI is the 1 MHz crystal oscillator and the divider chain. To insure a quiet output signal, line filters consisting of C12, C13, C16, C19, R65 and C20 are used. The power supply lines on each card are filtered with tantalum and ceramic capacitors and RF chokes are used in the wiring between cards. In addition RC filters are used in the $V+$ and $V-1 i n e s$ for each op-amp.

Figure 5 shows the wiring between the various $p c$ cards and the front panel controls. Figure 6 shows the power supply card. Main dc power is derived from the TM-500 main-frame through the plug-in connector. The $\pm 33.5 \mathrm{~V}$ supply is pre-regulated to $\pm 20 \mathrm{~V}$ using CR9, CR11, Q16, Q18 and power transistors in the main-frame. Integrated circuit voltage regulators, $I C 11$ and 12 , are then used to obtain the required $\pm 15 \mathrm{~V}$. These voltages are further dropped to $\pm 7.5 \mathrm{~V}$ for the CMOS ICs using CR10, CR12, Q17 and Q19.
cole
Power
Amplifier
Attenuator Protection

Figure 2. Block diagram of amplitude calibrator.

R54 $\xrightarrow{2.7+k s}$

Figure 5. Schematic (3 of 4)

Figure 6. Schematic (4 of 4)

R1
R2
R3
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39
R40
R41
R42
R43
R100

Resistor, trimmer, 10 turn	10
Resistor, trimmer, 10 turn	$20 \mathrm{k} \Omega$
Resistor, trimmer, 10 turn	$20 \mathrm{k} \Omega$
Resistor, composition $1 / 4 \mathrm{~W}, 5 \%$	$\mathrm{k} \Omega$
Resistor, composition $1 / 4 \mathrm{~W}, 5 \%$	k ת
Resistor, metal film, 1/8W, 1\%	$10 \mathrm{k} \Omega$
Resistor, metal film, $1 / 8 \mathrm{~W}, 1 \%$	$10 \mathrm{k} \Omega$
Resistor, metal film, $1 / 8 \mathrm{~W}, 1 \%$	$10 \mathrm{k} \Omega$
Resistor, metal film, $1 / 8 \mathrm{~W}, 1 \%$	$10 \mathrm{k} \Omega$
Resistor, metal film, $1 / 8 \mathrm{~W}, 1 \%$	$33.3 \mathrm{k} \Omega$
Resistor, metal film, $1 / 8 \mathrm{~W}, 1 \%$	$43.2 \mathrm{k} \Omega$
Resistor, metal film, $1 / 8 \mathrm{~W}, 1 \%$	$100 \mathrm{k} \Omega$
Resistor, composition 1/4W, 5\%	100Ω
Resistor, composition 1/4W, 5\%	100Ω
Resistor, composition, 1/4W, 5\%	10 MEG Ω
Resistor, precision, $1 / 2 \mathrm{~W}, 0.1 \%$	$100 \mathrm{k} \Omega$
Resistor, precision, 1/2W, 0.1\%	$100 \mathrm{k} \Omega$
Resistor, precision, 1/2W, 0.1\%	$10 \mathrm{k} \Omega$
Resistor, precision, 1/2W, 0.1\%	$10 \mathrm{k} \Omega$
Resistor, precision, 1/2W, 0.1\%	$10 \mathrm{k} \Omega$
Resistor, precision, 1/2W, 0.1\%	$2 k \Omega$
Resistor, precision, 1/2W, 0.1\%	$2 \mathrm{k} \Omega$
Resistor, precision, $1 / 2 \mathrm{~W}, 0.1 \%$	$1 \mathrm{k} \Omega$
Resistor, precision, $1 / 2 \mathrm{~W}, 0.1 \%$	100
Resistor, precision, $1 / 2 \mathrm{~W}, 0.1 \%$	200Ω
Resistor, precision, $1 / 2 \mathrm{~W}, 0.1 \%$	200Ω
Resistor, metal film, 1/8W, 1%	200
Resistor, metal film, $1 / 8 \mathrm{~W}, 1 \%$	402Ω
Resistor, metal film, $1 / 8 \mathrm{~W}, 1 \%$	100
Resistor, metal film, $1 / 8 \mathrm{~W}, 1 \%$	196
Resistor, metal film, $1 / 8 \mathrm{~W}, 1 \%$	383Ω
Resistor, metal film, $1 / 8 \mathrm{~W}, 1 \%$	909
Resistor, metal film, $1 / 8 \mathrm{~W}, 1 \%$	$1.65 \mathrm{k} \Omega$
Resistor, metal film, $1 / 8 \mathrm{~W}, 1 \%$	$2.87 \mathrm{k} \Omega$
Resistor, metal film, $1 / 8 \mathrm{~W}, 1 \%$	$4.99 \mathrm{k} \Omega$
Resistor, composition, 1/4W, 5\%	100 ת
Resistor, composition, 1/4W, 5\%	100Ω
Resistor, composition, 1/4W, 5\%	1M

Card 3

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18

Y1

IC1
IC2
IC4
IC5
IC6
IC7
IC8
IC9
IC10

S5
S6
S7

Capacitor, trimmer
Capacitor, silver mica
Capacitor, silver mica
Capacitor, tantalum
Capacitor, disc ceramic
Capacitor, disc ceramic
Capacitor, tantalum
Capacitor, tantalum
Capacitor, disc ceramic
Capacitor, tantalum
Capacitor, disc ceramic
Capacitor, silver mica
Capacitor, silver mica
Capacitor, plastic
Omitted
Omitted
Capacitor, plastic
Capacitor, plastic

Crystal, $1.0 \mathrm{MHz} ., .001 \%$

Operational amplifier
OP-05C
Operational amplifier
$0 \mathrm{P}-05 \mathrm{C}$
Integrated circuit, CMOS
CD4066A
CD4001AE
CD4017E
CD4017E
CD4017E
CD4017E
LM-399H

1 pole, 2 position
1 pole, 2 position
1 pole, 2 position

Card 2

R44
R45
R46
R47
R48

Card 2

R89
R90
R91
R92
R93

R4
R5
R6

C19
C20
C21
C22
C23
C24
C25
C26
C27
C28

IC3

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
Q12
Q13
Q14
Q15

CR1
CR2
CR3
CR4
CR5
CR6

Resistor, Precision, $1 / 8 \mathrm{~W} ., 0.1 \%$
Resistor, Precision, $1 / 8 \mathrm{~W} ., 1 \%$
Resistor, Power, 3 Watt, 5\%, Selected
Resistor, Power, 3 Watt, 5\%, Selected
Selected

Resistor, Trimmer, 10 turn
Resistor, Trimmer, 10 turn
Selected

Capacitor, Disc Ceramic
Capacitor, Disc Ceramic
Capacitor, Plastic
Capacitor, Plastic
Capacitor, Disc Ceramic
Capacitor, Tantalum
Capacitor, Disc Ceramic
Capacitor, Tantalum
Capacitor, Plastic
Capacitor, Tantalum

Operational Amplifier, Precision

Transistor, Si, NPN
Transistor, Si, NPN
Transistor, Si, PNP
Transistor, Si, PNP
Transistor, Si, NPN
Transistor, Si, NPN, Power
Transistor, Si, PNP
Transistor, Si, PNP, Power
Transistor, Si, NPN
Transistor, Si, PNP
Transistor, Si, NPN
Transistor, Si, PNP
Transistor, Si, PNP
Transistor, Si, NPN
Transistor, Si, Dual J-F.E.T.

Diode, Signal, Ge
Diode, Signal, Ge
Diode, Signal, Ge
Diode, Signal, Si
Diode, Signal, Ge
Diode, Signal, Si

1N270 1N270

1N270
$1 \mathrm{M} \Omega$
$100 \mathrm{k} \Omega$
100Ω
100Ω
$20 \mathrm{~K} \Omega$
$2 \mathrm{~K} \Omega$
$0.001 \mu \mathrm{~F}$
$0.001 \mu \mathrm{~F}$
$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}$
$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}$
$.01 \mu \mathrm{~F}, 50 \mathrm{~V}$
$4.7 \mu \mathrm{~F}, 25 \mathrm{~V}$
$.01 \mu \mathrm{~F}, 50 \mathrm{~V}$
$4.7 \mu \mathrm{~F}, 25 \mathrm{~V}$
$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}$
$4.7 \mu \mathrm{~F}, 25 \mathrm{~V}$

OP-05C

2N3904
2N3904
2N3906
2N3906
2N3904
2N4922
2N3906
2N4919
2N3904
2N3906
2N3904
2N3906
2N3906
2N3904
2N5454

1N4153

Diode, Signal, Ge
Diode, Signal, Ge

Card 1

R94
R95
R96
R97
R98
R99

C29
C30
C31
C32
C33
C34
C35
C36

Front Panel

Resistor, Composition, $1 / 4 \mathrm{~W}, 5 \%$

Capacitor, Disc Ceramic
Capacitor, Tantalum
Capacitor, Electrolytic
Capacitor, Disc Ceramic
Capacitor, Tantalum
Capacitor, Disc Ceramic
Capacitor, Disc Ceramic
Capacitor, Tantalum
Capacitor, Electrolytic
Capacitor, Disc Ceramic
Capacitor, Tantalum
Capacitor, Disc Ceramic

Transistor, Si, NPN
Transistor, Si, NPN
Transistor, Si, PNP
Transistor, Si, PNP

Integrated Circuit, Regulator, +15 V
Integrated Circuit, Regulator, -15 V

Diode, Zener, 20V
Diode, Zener, 8.2 V
Diode, Zener, 20V
Diode, Zener, 8.2V

2N3904
2N697
2N3906

IN5250
$2.2 \mathrm{k} \Omega$
680Ω
$2 \mathrm{~K} \Omega$
$2.2 \mathrm{~K} \Omega$
680Ω
$2 \mathrm{~K} \Omega$
$0.1 \mu \mathrm{~F}, \quad 100 \mathrm{~V}$
$4.7 \mu \mathrm{~F}, \quad 25 \mathrm{~V}$
$100 \mu \mathrm{~F}, \quad 25 \mathrm{~V}$
$0.01 \mu \mathrm{~F}, ~ 50 \mathrm{~V}$
$10 \mu \mathrm{~F}, \quad 25 \mathrm{~V}$
$0.01 \mu \mathrm{~F}, \quad 50 \mathrm{~V}$
$0.1 \mu \mathrm{~F}, \quad 100 \mathrm{~V}$
$4.7 \mu \mathrm{~F}, \quad 25 \mathrm{~V}$
$100 \mu \mathrm{~F}, \quad 25 \mathrm{~V}$
$0.01 \mu \mathrm{~F}, \quad 50 \mathrm{~V}$
$10 \mu \mathrm{~F}, \quad 25 \mathrm{~V}$
$0.01 \mu \mathrm{~F}, \quad 50 \mathrm{~V}$

2N3638

7815
7915

IN5 237
IN5250
IN5237

Switch, Toggle, 2 pole, 2 position miniature Switch, Rotary, 3 Section, 1 Pole, 9 Position, Shorting. Centralab PSA208 or Equiv. Switch, Rotary, 2 Section, 1 Pole, 11 Position, Shorting, Centralab PSA204 or Equiv.

Front Panel

L.E.D.

J-4
S4
S8
S9

Diode, Light-emitting, Red
Connector, B.N.C., Female Panel Mount
Switch, Rotary, Miniature, 2 Pole, 2 Position
Switch, Togg1e, Miniature, 1 Pole, 2 Position
Switch, Toggle, Miniature, 1 Pole, 2 Position
Front Panel - special built by NBS shops per attached drawing, figure 2-7.

Misce11aneous

5. Construction

This instrument is designed to be operated in and powered by a Tektronix TM-500 mainframe. It is built in a double-wide, blank, plug-in kit. There are three printed circuit boards. Figures 7-11 are photographs of the assembled instrument and the separate p.c. boards. Figures $12-14$ are the art work for the p.c. boards.

Figure 7. Photo of assembled instrument (cover plates removed).

Figure 8. Rear view. (Partially disassembled)

Figure 9. P.C. Board 非.

Figure 10. P.C. Board \#2.

Figure 11. P.C. Board 非3.

Figure 12. P.C. Board \#1 art work.

Figure 13. P.C. Board \#2 art work.

8 5/32"
Parts Side

Figure 14. P.C. Board 非3 art work.

1. Using an extender cable, install the unit in a TM 500 mainframe (power off during insertion or removal). Turn on the power. Allow 30 minutes warm-up.
2. Power Supplies:
a. Check TP1 for $+15 \mathrm{~V} \mathrm{dc}, \pm 5 \%$ ($\pm 0.75 \mathrm{~V}$).
b. Check TP2 for $-15 \mathrm{~V} \mathrm{dc}, \pm 5 \%$.
c. Check TP3 for +7.5 V dc,$\pm 5 \%$. $(+0.4 \mathrm{~V})$
d. Check TP4 for -7.5 V dc, $\pm 5 \%$.
3. Frequency Calibration:
a. Connect an accurate digital counter to TP5.
b. Adjust Cl for a frequency of $1.000 \mathrm{MHz}, \pm 0.01 \%$. ($\pm 100 \mathrm{~Hz}$).
4. Voltage Reference:
a. Connect an accurate DVM (HP-3490 or equiv.) to TP6 (neg. lead to the ground TP).
b. Set 55 to normal.
c. Set the polarity switch, S1, to +.
d. TP6 voltage should read $6.95 \mathrm{~V} \pm 0.15 \mathrm{~V}$.
5. ± 10 Volt Standard:
a. Connect the DVM to TP7.
b. Set mode switch, S9, to DC.
c. Set S 5 to Null and S 7 to Normal.
d. Adjust R2 for 0 volts, $\pm 5 \mu \mathrm{~V}$, at TP 7 .
e. Set S5 to Normal.
f. Adjust R1 for -10.000 volts, $\pm 2 \mathrm{mV}$, at TP7.
g. Set the polarity switch, S1, to --.
h. Check that TP7 voltage is +10.000 volts, $\pm 2 \mathrm{mV}$.
i. Set 57 to baseline check.
j. Check that TP7 voltage is 0 volts, $\pm 20 \mu \mathrm{~V}$.
k. Repeat steps c through j until specs are met.
ℓ. Reset S5 and S7 to Normal.
6. $\Delta \mathrm{V}$ Attenuator:
a. Connect the DVM to TP8.
b. Set S6 to Null.
c. Set the ΔV switch, $S 2$, to 1 mV .
d. Set the Z Out switch, 54 , to $<0.1 \Omega$.
e. Adjust R3 for TP8 voltage of $0 \mu \mathrm{~V} \pm 0.5 \mu \mathrm{~V}$.
f. Set S2 and S4 to all possible combinations and check that TP8 voltage remains at $0 \mu V \pm 3-7 / 3 \mu V$.
g. Reset S 6 to Normal.
7. Power Amplifier:
a. Set the multiplier switch, S3, to 0 .
b. Set the sampler protection switch, S8, to Off.
c. Connect the DVM positive lead to TP11 and the negative lead to TP12.
d. Adjust the idle current pot, R5, for a DVM reading of $+20 \mathrm{mV}, \pm 20 \%$.
e. Connect the DVM to TP10 (negative lead to the ground TP).
£. Adjust R4 for TP10 voltage of $0 \mathrm{~V}, \pm 5 \mu \mathrm{~V}$.
g. Repeat steps c through f until both specs. are met.
8. Output Impedance:
a. Make up a nominal 50 ohm load using a wire wound, 50Ω resistor of at least a 20 watt rating. Solder a coaxial cable to the resistor. The other end of the coax should be terminated in a BNC plug which is connected to one arm of a BNC tee.
b. Using an accurately calibrated ohmmeter, measure the actual resistance of the 50Ω load as seen at the BNC tee. Record this value. $\mathrm{R}_{\text {load }}=\quad$ ohms.
c. Using the BNC tee connect both the 50Ω load and the DVM to the BNC output connector.
d. Set the ΔV switch to 500 mV , the multiplier to 10 , the Polarity to t, the mode to $D C$, the Sampler Protection to Off, and the Z Out to 50Ω.
e. Disconnect the 50Ω load from the BNC tee.
f. Measure and record the output voltage. $V_{\text {open ckt. }=1 \mathrm{mV} \text {. }}^{\text {. }}$
g. Compute the expected output voltage when the load is connected and the source resistance is precisely 50.00Ω.

$$
\begin{aligned}
& \mathrm{V}_{\text {load }}=\mathrm{V}_{\text {open ckt }} \mathrm{R}_{\text {1oad }} /\left(\mathrm{R}_{\text {load }}+50.00 \Omega\right) . \\
& \mathrm{V}_{\text {load }}=\mathrm{mV}=
\end{aligned}
$$

h. Select an appropriate combination of $R 6$ and $R 93$ to be used and solder them to the circuit board.
i. Adjust R6 until the output voltage is precisely that calculated in step g.
j. The output resistance is now precisely 50.00Ω.
9. The alignment is now complete.

1. Initial Set-Up
a. Check that all of the internal switches (S5, S 6 , and S 7) are set to the Normal position.
b. Install the plug-in in the mainframe. (Power off during insertion or removal).
c. Turn on the power.
d. Set the polarity switch, S1, to + .
e. Set the mode switch, S9, to DC.
f. Set the sampler protection switch, S 8 , to Off.
g. Set the Z Out switch, S 4 , to $<0.1 \Omega$.
h. Set the multiplier switch, S3, to 0 .
i. Set the ΔV switch, 52 , to 1 mV .
j. Connect a DVM (F1uke 8502A. or equiv.).
k. Allow 30 minutes warm-up.
2. DVM Zero Check

Check that the DVM reads 0 volts ($\pm 1 \mu \mathrm{~V}$) on all of its ranges.
3. Multiplier Attenuator Check
a. Set the DVM to the 10 V range.
b. Set the ΔV switch, $S 2$, to 500 mV .
c. Set the multiplier switch, S3, to its various positions and record the DVM readings. Change the DVM range as necessary. Compare the results to the specs. in the following table:

Multiplier Setting	Output Voltage	Limits	Measured Output Voltage
	0.500 V	$\pm 1.3 \mathrm{mV}$	-
2	1.000 V	$\pm 2.5 \mathrm{mV}$	-
3	1.500 V	$\pm 3.8 \mathrm{mV}$	-
4	2.000 V	$\pm 5.0 \mathrm{mV}$	-
5	2.500 V	$\pm 6.3 \mathrm{mV}$	-
6	3.000 V	$\pm 7.5 \mathrm{mV}$	
7	3.500 V	$\pm 8.8 \mathrm{mV}$	
8	4.000 V	$\pm 10.0 \mathrm{mV}$	
9	4.500 V	$\pm 11.3 \mathrm{mV}$	-
10	5.000 V	$\pm 12.5 \mathrm{mV}$	

4. Polarity Check
a. Set the ΔV switch to 500 mV .
b. Set the multiplier switch to 10 .
c. Switch the polarity switch, Sl, between + and -. Record the DVM readings. They must read $\pm 5.000 \mathrm{~V}(\pm 12.5 \mathrm{mV})$.
5. ΔV Attenuator Check
a. Set the multiplier switch to 10 .
b. Set the polarity switch to +.
c. Set the ΔV switch to its various positions and record the DVM readings. Change the DVM range as necessary. Compare the results to the specs. in the following table:

$\begin{gathered} \Delta V \\ \text { Setting } \end{gathered}$	Output Voltage	Limits	Measured Output Voltage
500	5.000 v	$\pm 12.5 \mathrm{mV}$	
200	2.000 V	$\pm 5.0 \mathrm{mV}$	
100	1.000 V	$\pm 2.5 \mathrm{mV}$	
50	500.0 mV	$\pm 1.25 \mathrm{mV}$	
20	200.0 mV	$\pm 500 \mu \mathrm{~V}$	
10	100.0 mV	$\pm 250 \mu \mathrm{~V}$	
5	50.0 mV	$\pm 125 \mu \mathrm{~V}$	
2	20.00 mV	$\pm 50 \mu \mathrm{~V}$	
1	10.00 mV	$\pm 25 \mu \mathrm{~V}$	

6. 2 Out Voltage Shift Check
a. Set the Z Out switch, S4, to 50Ω.
b. Set the ΔV switch to its various positions and record the DVM readings. Change the DVM range as necessary. Compare the results to the specs. in the following table:

$\begin{gathered} \Delta V \\ \text { Setting } \end{gathered}$	Output Voltage	Limits	Measured Output Voltage
500	10.000 V	$\pm 25 \mathrm{mV}$	
200	4.000 V	$\pm 10 \mathrm{mV}$	
100	2.000 V	$\pm 5 \mathrm{mV}$	
50	1.000 V	$\pm 2.5 \mathrm{mV}$	
20	400.0 mV	$\pm 1.0 \mathrm{mV}$	
10	200.0 mV	$\pm 500 \mu \mathrm{~V}$	
5	100.0 mV	$\pm 250 \mu \mathrm{~V}$	
2	40.00 mV	$\pm 100 \mu \mathrm{~V}$	
1	20.00 mV	$\pm 50 \mu \mathrm{~V}$	

7. Z Out Impedance Check
a. Make up a nominal 50Ω load using a wire wound, 50Ω resistor of at least a 20 watt rating. Solder a coaxial cable to the resistor. The other end of the coax should be terminated in a BNC plug which is connected to one arm of a BNC tee.
b. Using an accurately calibrated ohmmeter, measure the actual resistance of the 50Ω load as seen at the BNC tee. Record this value. $\mathrm{R}_{\text {load }}=$ ___ ohms.
c. Using the BNC tee connect both the 50Ω load and the DVM to the BNC output connector.
d. Set the ΔV, multiplier, and Z Out switches as shown in the table below. Record the DVM readings with the load attached ($\mathrm{V}_{\text {load }}$) and also with the load disconnected ($\mathrm{V}_{\text {open }} \mathrm{ckt}$.) Compute the output resistance, $\mathrm{R}_{\text {out }}$, using the following equation:

$$
\mathrm{R}_{\text {out }}=\mathrm{R}_{\text {load }}\left(\mathrm{V}_{\text {open ckt. }}-\mathrm{V}_{\text {load }}\right) / \mathrm{V}_{\text {load }} .
$$

In the < 0.1Ω position the output resistance must be no larger than 0.15Ω. In the 50Ω position the output resistance must be $50.00 \Omega, \pm 0.05 \Omega$.

Z Out Switch	ΔV Switch	Multiplier Switch	$\mathrm{V}_{\text {load }}$	$\mathrm{V}_{\text {open ckt }}$	$\mathrm{R}_{\text {out }}$
$<0.1 \Omega$	500 mV	10	$\ldots \mathrm{mV}$	$\ldots \mathrm{mV}$	Ω
50Ω	500 mV	10	mV	mV	Ω
$<0.1 \Omega$	20 mV	9	mV	_. mV	Ω
50Ω	20 mV	9	mV	_mV	Ω

e. Disconnect the BNC tee and 50Ω load from the output connector.
f. Set the multiplier switch to 0 .
g. Set the Z Out switch to $1 \mathrm{M} \Omega$.
h. Using the DVM as an ohmmeter, connect it to the BNC output connector and measure the resistance. Record this value. $\quad R_{\text {out }}(1 \mathrm{M} \Omega)=\ldots$ ohms. The output resistance must be $1.00 \mathrm{M} \Omega, \pm 1 \mathrm{k} \Omega$.
8. Overload Protection Check
a. Set the Z Out switch to $<0.1 \Omega$.
b. Set the ΔV switch to 50 mV and the multiplier switch to 0 .
c. Connect a milliampmeter (1A range) to the BNC output connector.
d. Increase the multiplier switch in steps and observe the Overload lamp. The output current threshold at which the lamp lights shall be at least 210 mA , but less than 240 mA .

Overload Lamp Threshold $=\quad$ ma
e. Set the ΔV switch to 500 mV and the multiplier switch to 10 .
f. Measure and record the maximum output current. It shall be at least 250 mA but less than 300 mA .
$I_{\text {max }}$. \qquad mA.
g. Set the mode switch to 1 kHz and verify that the overload lamp is on. Return the switch to DC.
h. Set the Z Out switch to 50Ω and verify that the overload lamp remains off.
i. Set the polarity switch to - and repeat steps b through h.
j. Remove the milliammeter from the output connector.
9. Sampler Protection Check
a. Connect the DVM to the BNC output connector.
b. Set the polarity switch to + .
c. Set the ΔV switch to 200 mV , the multiplier to 0 and the Z 0 ut to $<0.1 \Omega$.
d. Increase the Multiplier setting one unit at a time. Note the output voltage. Then set the Sampler Protection switch to on and note the output voltage. The protection threshold is the first level at which a difference is noted in the two DVM readings. Record this level. This threshold shall be at least 1.1 V but less than 1.5 V . The Overload lamp must also light when the threshold is reached.

Protection Threshold = \qquad mV.
e. Set the ΔV switch to 500 mV , the Multiplier to 10 , and the Z Out to 50Ω.
f. Measure and then record the output voltage. It must be less than 2.0 V .

Protection Threshold $=$ \qquad mV.
g. Set the polarity switch to - and repeat steps c through f .
0. Square Wave Operation Check
a. Set the ΔV switch to 500 mV , the Multiplier to 10 , the Z Out to $<0.1 \Omega$, and the polarity to + .
b. Connect an oscilloscope to the output.
c. A 5 volt square wave with a baseline of 0 volts should be observed.
d. Measure and record the rising and falling transition durations ($10 \%-90 \%$). They must be less than $40 \mu \mathrm{~s}$. The waveform must be clean with no perturbations such as overshoot or undershoot.

Transition Duration $=$ us.
e. Remove the oscilloscope.
f. Connect a frequency counter to the output.
g. Measure and record the square wave repetition rate. It must be $1.0 \mathrm{kHz} \pm 0.01 \%$.

Frequency $=$ \qquad kHz 。

1. Noise Output Check
a. Using a BNC cable connect the output to the input of an AC VTVM (HP-400 or equiv.) through a 50Ω BNC feed-thru termination.
b. Set the ΔV to 500 mV , Multiplier to 10 , Z Out to 50Ω, mode to DC , and Sampler Protection to Off.
c. Measure and record the ac noise voltage. It must be less than $200 \mu \mathrm{~V}$ rms.

Noise Voltage (high level) = \qquad μV rms.
d. Set the ΔV to 1 mV and the Multiplier to 1 .
e. Measure and record the ac noise voltage. It must be less than $25 \mu \mathrm{Vms}$.

Noise Voltage (low level) = \qquad $\mu \mathrm{V}$ rms.
2. The performance check and calibration is now complete.

NBS.114A (REV. 9-78)

U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. NBSIR 87-1646	2. Gov't. Accession No.	3. Fecuiterts Accesshn No.
4. TITLE AND SUBTITLE Amplitude Calibrator for Oscilloscopes			5. Publication Date April 1981
			6. Performing Organization Code
7. AUTHOR(S) James R. Andrew	Eugene E. Baldwin		8. Performing Organ. Report No.
9. PERFORMING ORGANIZATION NAME AND ADDRESS			10. Project/Task/Work Unit No.
NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, DC 20234			11. Contract/Grant No.
12. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)			13. Type of Report \& Period Covered
			14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES
\square Document describes a computer program; SF-185, FIPS Software Summary, is attached.
 literature survey, mention it here.)
The amplitude calibrator is designed to provide known dc voltage levels or 1 kHz square waves from $\pm 1 \mathrm{mV}$ to $\pm 5 \mathrm{~V}$. It features selectable output impedances of $<0.1 \Omega, 50 \Omega$, and $1 \mathrm{M} \Omega$. The instrument is designed with sufficient current capability to deliver its indicated voltage into a 50Ω termination. To protect delicate sampling oscilloscopes, a limiter circuit can also be activated to limit the output voltage to $\pm 1.8 \mathrm{~V}$.
16. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolons)

Calibration; calibrators; instrumentation; oscilloscope calibrator; oscilloscopes
18. AVAILABILITY
[X] Unlimited

For Official Distribution. Do Hot Release to NTIS

Order From Sup. of Doc., U.S. Government Printing Office, Wasinngton, DC 20402, SD Stock No. SN003-003-
XXOrder From National Technical Information Service (NTIS), SpringfieId, VA, 22161

19. SECURITY CLASS (THIS REPORT)	21. NO. OF PRINTED PAGES UNCLASSIFIED

