EFFICIENT COMPUTATION OF THE FAR FIELD radiated by an arbitrary rectangular－ APERTURE DISTRIBUTION

COMPUTER PROGRAM DOCUMENTATION

Richard Lewis

Electromagnetic Fields Division
National Engineering Laboratory
National Bureau of Standards
Boulder，Colorado 80303

[^0]
EFFICIENT COMPUTATION OF THE FAR FIELD radiated by an arbitrair rectangularAPERTURE DISTRIBUTION

COMPUTER PROGRAM DOCUMENTATION

Richard Lewis

Electromagnetic Fields Division National Engineering Laboratory National Bureau of Standards
Boulder, Colorado 80303

March 1981

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary
Page
List of Figures iii
I, INTRODUCTION. 1
II. PROBLEM DESCRIPTION. 1
III. USER INPUT TO THE PROGRAM. 3
IV. PROGRAM OUTPUT. 6
V. PLOTTING SUBROUTINES 8
VI. DIMENSION STATEMENT SPECIFICATIONS 9
VII. PROGRAM VERIFICATION. 9
APPENDIX A. Computation of the Far Field due to a
Tangential Electric-Field Distribution over an Aperture Plane using Fast Fourier Transform Processing; Theoretical Analysis 11
Appendix A. 1 Far-Zone Electric-Field Components Expressed in Terms of Plane-Wave Spectrum Components 11
Appendix A. 2 Finite Fourier Transform Representation of the Plane-Wave Spectrum Integral 14
REFERENCES 18
APPENDIX B Computer Program Listing for Computing Azimuth
and Elevation Vector Components Along User-Specified X- and Y-Plane Cuts in the Far Field Arising from a Prescribed Rectangular-Aperture Field Distribution. 26
APPENDIX C. .Computer Program Modifications to obtain Theta and
Phi Vector-Component Output Instead of Azimuth and Elevation Vector-Component Output 36
APPENDIX D. .Computer Program for Computing
Principal-Plane-Cut Far Fields 37
LIST OF FIGURES
Figure 1. Antenna coordinate system using A and E spherical angles with y as the polar axis 19
Figure 2. Antenna coordinate system using a and e spherical angles with x as the polar axis 20

Figure 3. Problem geometry, showing the rectangular aperture within an aperture plane and the far-zone position coordinates............. 21

Figure 4. The principal plane cut $\phi=\frac{\pi}{2}$. PHI-component amplitude plot for a 5-wavelength-wide slit aperture (varied data-point-spacing increments)22

Figure 5. The principal plane cut $\phi=\frac{\pi}{2}$. PHI-component amplitude plot for a 5-wavelength-wide slit aperture (varied Fourier integration ranges)23

Figure 6. Antenna pattern magnitude for a uniformly excited circular aperture. Y-plane cut with constant elevation angle $E=10^{\circ} \ldots 24$

Figure 7. Antenna pattern magnitude for a uniformly excited circular aperture. Y-plane cut with constant elevation angle $E=30^{\circ} \ldots 25$

Efficient Computation of the Far Field Radiated by an Arbitrary Rectangular-Aperture Distribution

Computer Program Documentation

Richard Lewis

This report contains the computer documentation for calculating the far-zone electric field due to a user-prescribed electricfield distribution within a rectangular aperture. The far-field output is computed along two arbitrarily selected, perpendicular, spatial-frequency plane cuts. Program execution time is minimized by the use of fast Fourier transform (FFT) processing. The program was designed so that the required far-field output is obtained by processing only two, vector, one-dimensional FFTs. The far-field results are obtained in the form of elevation and azimuth vector components and electric-field-vector magnitude. A complete analytical discussion of the problem is presented, along with sample graphical output to illustrate how aliasing and output resolution limitations effect the graphical results.

Key words: Algorithm; antenna; aperture; computer program; electromagnetic; far-field; FFT; Fourier transform.

I. INTRODUCTION

This report constitutes the computer-program documentation for calculating the far-zone electric field, due to a prescribed electric-field distribution within a rectangular aperture, along two perpendicular spatialfrequency plane cuts. Program execution time is minimized by use of fast Fourier transform processing. The analytical basis for the computations is presented in Appendix A. The following text describes the computer program, listed in Appendix B, that has been developed for implementing these computations. The same nomenclature is used by the text as in the program listing for the variable parameters; consequently, reader familiarity with the input parameter list, as specified by the program comment cards, should prove beneficial.

II. PROBLEM DESCRIPTION

We divide space into two regions by an infinite plane surface (the aperture plane) containing the rectangular-aperture surface. The region in which the far-field computation is desired is assumed to be homogeneous and
source free. The theoretical basis for calculating the far field due to a tangential electric-field distribution over an aperture plane is well known $[1,2,3]$. For physical antenna apertures that are large compared with a wavelength, the electromagnetic field amplitude will be small everywhere on the aperture plane except on the aperture surface. As a first approximation the far-zone radiation field may be found from the field on the aperture surface alone [1]. The aperture field may be determined either through direct near-field measurements or by suitable approximate analytical methods, such as ray tracing. It is presumed that the computer-program user can specify the tangential, aperture, electric-field vector (both amplitude and phase) at equidistant points on a rectangular grid over the aperture surface, while the field elsewhere on the aperture plane is assumed to be zero. The far-field output is obtained as a function of the spatial-frequency components k_{x} and k_{y}. Here, we compute the far-field output along user-chosen k_{x} - and k_{y}-plane cuts using fast Fourier transform (FFT) processing. We will refer to the $k_{x}=0$ and $k_{y}=0$ plane cuts as the principal-plane cuts. With just one k_{x}-plane cut and one k_{y}-plane cut far-field computation, the computer program herein described was designed so that the input data set would only be read in once while the far-field output would be obtained by just carrying out two vector one-dimensional FFTs. The result is an extremely efficient program, in terms of computation time and computer storage, for computing the far fields arising from a rectangular-grid aperture distribution along two perpendicular plane cuts.

The x-dimension of the rectangular aperture over which the user specifies the tangential electric-field vector is a; the y-dimension is b. The aperture plane is given by $z=0$, while the assumed aperture radiation travels in the positive z-direction. The number of data points within the aperture along the x-direction is $N X$, while the number of data points along the y-direction is NY. Let us presume that a matrix of x-component data and a matrix of y-component data is available for specifying the aperture field, and that each component value at a given data point is specified as a complex number,

$$
|E| e^{i \psi}=|E| \cos \psi+i|E| \sin \psi,
$$

$|E|$ being the amplitude and ψ being the phase of a particular datum. The dimensions of these two vector-component matrices would each be given by

NY x NX, so that each matrix row corresponds to a constant value of the y-coordinate, while each matrix column corresponds to a constant value of the x-coordinate. Thus, the row index r of the data matrix is proportional to the y-coordinate, while the column index c of the data matrix is proportional to the x-coordinate. For each row or column, a data point at the center of the respective x-dimension or y-dimension of the aperture shall be specified, along with an equal number of data points on each side of the midpoint. Consequently, NX and NY are both odd numbers. The spacing between adjacent data points in the x-direction is $\delta_{x}=a / N X$, while the spacing in the y-direction is $\delta_{y}=b / N Y$. It is presumed, by these equalities, that the edges of the rectangular aperture are located half a data-point spacing beyond the farthest data points within the aperture.

III. USER INPUT TO THE PROGRAM

The program user provides a subroutine, GETARAY, that obtains or calculates one row of x-coordinate aperture-field data, corresponding to a particular value of the y-coordinate and to a particular vector component, each time it is called. The subroutine arguments are NX and STOR, where NX is the number of data points in the row and STOR is a complex array of dimension NX for storing the aperture-field data. The value of NX may not be changed by the user's subroutine, GETARAY. This subroutine is called NY times for the x-component data, followed by another NY times for the y-component data. Each successive call represents a lower row (greater row-index number) in the data matrix of each vector component, or a larger value of the y-coordinate. Within the row of data supplied by GETARAY, each successive datum represents a larger value of the x-coordinate. In those regions of the rectangular aperture that are beyond the boundary of the user's physical aperture, the user is expected to provide zero-fill via subroutine GETARAY.

It may be observed that spatial integration of a physical electric field over the aperture plane will give rise to a function of spatial frequency k_{x} and k_{y} that is virtually bandlimited [2]. According to the sampling theorem [4], a band-limited two-dimensional function with bandlimits K_{x} and K_{y} may be completely recovered using sampling intervals δ_{x} and δ_{y} that satisfy the relations,

$$
K_{x}=\frac{\pi}{\delta_{x}} \text { and } K_{y}=\frac{\pi}{\delta_{y}} \text {. }
$$

A virtual bandlimit only slightly greater than the spatial propagation constant $k=2 \pi / \lambda$ ordinarily prevails, where λ is the wavelength in the medium, so that an aperture data-point spacing of $\delta_{x} \simeq \delta_{y}<\lambda / 2$ generally is adequate. However, in order to minimize aliasing errors in the far-sidelobe region, closer data-point spacings may be required (cf. Appendix A, eq. (16) and the preceding discussion, for analytical details.) Consequently, computer-program flexibility is maintained with the specification

$$
\delta_{x} \equiv \frac{\lambda}{S_{x}} \text { and } \delta_{y} \equiv \frac{\lambda}{S_{y}}
$$

Here, $S_{X} \simeq S X$ and $S_{y} \simeq S Y$, where $S X$ and $S Y$ are dimensionless numbers specified by the program user. There is only a small difference between S_{x} and $S X$ and between S_{y} and $S Y$, which the computer program can automatically compute. Thus, the user need only be concerned with the order of magnitude of SX and SY. With a uniformly-excited-aperture test case, highly accurate comparisons with theoretical results required values of $S X, S Y>9$ due to the presence of evanescent modes. If evanescent modes are not present, values of $S X, S Y \simeq 2$ should suffice for most applications. Values of $S X, S Y<2$ should be used cautiously. In addition to SX and SY, the user must specify the variables ALPHA $=\alpha$ and BETA $=\beta$, where α and β serve to specify the aperture dimensions normalized to the wavelength. Thus,

$$
\alpha \equiv \frac{a}{\lambda} \quad \text { and } \quad \beta \equiv \frac{b}{\lambda} .
$$

As a consequence of these definitions, the values of the aperture-spacing normalization constants, S_{x} and S_{y}, are given by

$$
S_{x}=\frac{N X}{\alpha} \quad \text { and } \quad S_{y}=\frac{N Y}{\beta} .
$$

In practice, the computer program makes the initial computations, $N X=\alpha * S X$ and $N Y=\beta * S Y$, and then checks to see if the values of $N X$ and $N Y$ so computed are odd. If not, then unity is added to the result so that the final values of $N X$ and $N Y$ will be odd. Then, the exact values of S_{X} and S_{y} are computed. Although only the field within the aperture region will contribute to the
integrand, with FFT processing the resolution of the far-field output will depend on the size of the area of integration. As an example, if a uniform aperture excitation is specified, and if the area of integration just equals the aperture area, then the program would produce far-field output at the points $k_{x}=0, \pm 2 \pi / a, \pm 4 \pi / a, \pm 6 \pi / a$, etc., corresponding to the exact (elevation-plane) far-field pattern function,

$$
E \propto \frac{\sin \left(k_{x} \frac{a}{2}\right)}{k_{x} \frac{a}{2}}
$$

In other words, except for one point, one would just obtain output values at the nulls of the far-field pattern function, which would provide extremely limited information. A more detailed picture would be obtained by increasing the output resolution so as to produce output values at intermediate points between the pattern-function nulls. By extending the area of integration and adding zero-fill to the FFT data input, one can increase the output resolution.

The extent of the area of integration is increased by increasing the number of data points supplied to the FFT processing routine. The data amplitude values at each additional data point are automatically set equal to zero by the computer program. The number of data points supplied to the FFT processor is designated NNX in the case of x-direction FFT processing and NNY in the case of y-direction FFT processing, where NNX > NX and NNY > NY. In the case of the FFT processor used by the computer program, the number of input data points must equal a power of two. Thus, $N N X=2 * * M M X$ and NNY $=2 * *$ MMY. The program automatically chooses NNX to be twice the largest power of two that is just greater than NX, and similarly for NNY and NY. However, these automatically generated values may not suffice for all applications; consequently, the automatically generated values of NNX and NNY are multiplied by $2^{* * N Z X}$ and $2^{* *} N Z Y$, respectively, to produce updated values of NNX and NNY. The two constants NZX and NZY are specified by the user, where NZX, NZY ≥-1. The recommended specification is $N Z X=N Z Y=1$ or greater, although specifying NZX or NZY equal to zero may be adequate if the aperture field tapers to near zero at the aperture boundaries. With a uniformly-excited-aperture test case, the values $N Z X=N Z Y=2$ gave smooth plotting resolution with a microfilm plotter subroutine. It is not recommended that
the -1 specification for NZX or NZY be used unless NX or NY is just slightly larger than some power of 2 , as otherwise there will not be adequate zero-fill added to the input data. It should be recognized that the larger that NNX and NAY become, the longer the FFT computation time becomes and the larger the computer-storage requirement becomes.

In addition to the input variables already described, the user must specify the azimuth angle A_{0} and the elevation angle E_{0} corresponding to the particular plane cuts desired. These input quantities are best discussed within the context of the next section.

IV. PROGRAM OUTPUT

The program computes the azimuth (E_{A}) and elevation (E_{E}) vectorcomponents of the far field, along with the antenna pattern or electric-vector magnitude (the program listing for azimuth and elevation vector-component output is as given in appendix B, while a listing of substitute cards for use when theta and phi vector-component output is preferred may be found in appendix C_{0}). The program computes both output vector components along a constant k_{x}-coordinate plane cut and along a constant k_{y}-coordinate plane cut as respective functions of elevation (e) and azimuth (A). That is, the spatial-frequency component that is not held constant becomes the sole outputfunction variable. Note that both the elevation (e) and azimuth (A) angles become equal to the polar angle theta in the event that principal-plane cuts are selected (users who only require principal-plane-cut computations may wish to utilize the simpler version of the program given in appendix D). The relationships between the various spherical-coordinate-system angles that have been mentioned are shown in figures 1 and 2, with supplementary discussion found in [5] ${ }^{\dagger}$.

At this point it would be appropriate to note that the final compured values of the far-zone electric fields are renormalized, such that the factor
${ }^{\dagger}$ The notation used here to designate the alternative azimuth and elevation angles is "a" and "e", whereas in [5] these alternative angles are designated α and B. The notation A and E normally is used with az/el antenna mounts, while the a and e designations apply to el/az antenna mounts. Our A and E angle designations agree with the notation used in [5] for these quantities.
$\frac{\lambda}{r} e^{i k r}$ is divided out.
Corresponding to each start-up of the program, a complete set of input x-component and y-component aperture data is requested from GETARAY by the program, and one $k_{x}-p l a n e$ cut and one k_{y}-plane cut far-field computation is carried out. The particular $k_{x}-$ plane cut generated is selected by specifying the azimuthal angle A_{0}, at an elevation angle of zero degrees, that corresponds to the particular value of k_{x} desired. Similarly, the particular $k_{y}-p l a n e$ cut generated is selected by specifying the elevation angle E_{0} corresponding to the particular value of k_{y} desired (the "o" subscripts are used here to distinguish the user-specified azimuth and elevation angles that define the plane cuts, whereas the omission of this subscript implies the general angular-coordinate variables). The relationships between the farfield spatial-frequency variables, k_{x} and k_{y}, and the spherical-coordinate angles, depicted in figures 1 and 2, are given by,

$$
\begin{aligned}
& k_{x}=k \cos E \sin A=k \sin \theta \cos \phi=k \sin a \\
& k_{y}=k \sin E=k \sin \theta \sin \phi=k \cos a \sin e
\end{aligned}
$$

From the preceding, we see that the desired k_{x} - and $k_{y}-p l a n e$ cuts are given by $k_{x} / k=\sin A_{0}$ and $k_{y} / k=\sin E_{0}$, respectively, where the angles A_{0} and E_{0} are specified by the user.

Upon completing the far-field computations, the azimuth and elevation vector-components and the antenna pattern are plotted as a function of elevation (e) and azimuth (A), respectively, for the k_{x}-plane cut and the $k_{y}-p l a n e$ cut. The plotting is limited to angles in the visible range (i.e., real angles within the spherical spatial-frequency region of radius k, such that $k_{z}=\sqrt{k^{2}-k_{x}^{2}-k_{y}^{2}}$ is real). This visible range not only excludes complex evanescent angles, but also limits the range on k_{y} and k_{x} to $k_{y} \leq k \operatorname{Cos} A_{0}$ and $k_{x} \leq k \operatorname{Cos} E_{0}$, respectively, in the case of the k_{x} - and $k_{y}-p l a n e$ cuts. Since the $k_{x}-p l a n e$ cut is plotted versus elevation (e), while the k_{y}-plane cut is plotted versus azimuth (A), one obtains a full $\pm 90^{\circ}$ plotting range. However, it must be recognized that rapid variations, as respective functions of k_{y} or k_{x}, will appear greatly expanded when A_{0} or E_{0} do not equal zero.

V. PLOTTING SUBROUTINES

The subroutine PAMPLOT that is supplied with the program for setting up the plotting arrays permits the user to restrict the plotting range through the specification of maximum and minimum abscissa values. Both relative amplitude in dB and phase in degrees are plotted for each vector-component, with just relative amplitude in dB plotted for the antenna pattern. This routine labels each plot with the peak amplitude level in dBL^{\dagger} and with a self-generated caption that automatically indicates the vector-component plotted; phase, amplitude, or magnitude plot; and the value of either the azimuthal angle (A_{0}) or the elevation angle (E_{0}) corresponding to the particular k_{x} - or k_{y}-plane cut that has been generated. Also, a userspecified 40 -character graph legend is placed on each plot. In addition to plotting far-field output, subroutine PAMPLOT allows the user to obtain a printout of every j th data point, $j=1,2, \ldots$, etc. (Note that the reciprocal of j times 100 gives the percentage of output points to be printed.) If $j=0$, printout is suppressed. This printout gives the abscissa point, absolute amplitude, and phase in degrees.

The actual plotting routine supplied with the program is limited to point plotting on the user's printout. The user can elect either to point-plot the amplitude and phase of each vector component separately, or else the amplitude and phase curves can both be point-plotted on the same graph. The latter plotting mode has the advantage of placing two closely related curves in proximity to each other. The disadvantage is that ordinate-axis labeling of the phase plot will be suppressed by ordinate-axis labeling of the amplitude plot. A microfilm plotting routine is highly desirable. Subroutine PAMPLOT contains an illustrative calling statement to the dummy routine CRTPLOT, which may be replaced by the user's own plotting-routine call. The dummy subroutine that is called here is SUBROUTINE CRTPLOT (XARRAY, YARRAY, XMAX, XMIN, YMAX, YMIN, N, LABEL, NO, NOMAX), where XARRAY contains the N abscissa points, YARRAY contains the N ordinate points, XMAX is the greatest abscissa value plotted, XMIN is the least abscissa value, YMAX is the greatest ordinate

[^1]value, YMIN is the least ordinate value, N equals the number of data points per curve, LABEL is a nine-word graph legend, NO is the number of the curve being plotted, and NOMAX is the number of curves per graph ($1 \leq N O \leq N O M A X \leq 2$).

VI. DIMENSION STATEMENT SPECIFICATIONS

The program comment cards supplied with each routine should enable the user to specify the correct input to run the program. Particular attention is called to the array-dimension specifications in the main program. Insufficient dimensions (as specified by the user's data statement) will cause the program to abort. Note that the dimensions of arrays THETA and DATA are based on the final computed value of NNX, while the dimension of array EI equals twice the sum of the final computed values of NNX and NNY. The dimensions of arrays EXPX and STOR are equal to NX, while the dimension of array EXPY is equal to NY.

VII. PROGRAM VERIFICATION

In order to verify that the computer program was working properly, it was tested to see how accurately it could compute the far fields of uniformly excited apertures, for which exact formulas are available [7, pp. 332-336]. Good agreement was obtained between the theoretical results and the computer program output, particularly as the data-sampling interval was decreased. As mentioned earlier, very short data-point spacings were required due to the presence of evanescent modes in these hypothetical aperture distributions. Tests were carried out both for a rectangular aperture and for a circular aperture with zero fill to the boundary of the enclosing square aperture. In order to facilitate numerical comparisons, computations with the exact formulas were carried out at the same far-field coordinates that the computer program used to calculate the far-zone fields.

In figure 4 we show some principal-plane-cut results for a uniformlyilluminated slit aperture five wavelengths wide, in which we compare results from computations with a data-point spacing of $\lambda / 5$ and $\lambda / 3$ to the corresponding exact theoretical curve. The solid-line curve in figure 4 corresponds to the $\lambda / 5$ data-point spacing curve, while the dots and crosses, respectively, correspond to the theoretical curve and to the $\lambda / 3$ data-point
spacing curve. Just those portions of the latter two curves which do not overlap the solid line curve are shown in the figure. Thus, the only differences shown are in the far side-lobe region where the overlapping ends of the replicated far-field function contribute the most to the aliasing error (refer to Appendix A, eq. (15) for analytical details). As may be anticipated from this figure, we have verified that the computed curve does get closer and closer to the theoretical curve as the data-point spacing gets smaller and smaller.

To illustrate the effect of adding zero fill to the FFT to increase the output resolution, in figure 5 we show a comparison between two curves having the same data-point spacing but different specified values of NZY. Here, the solid line curve corresponds to $N Z Y=0$ while the dotted line curve corresponds to NZY $=3$. Adjacent points on each curve are connected by a straight line with no curve fitting between points. Both figures 4 and 5 correspond to the same plane cut and the same aperture excitation, but the solid line curve of figure 4 was generated with NZY $=4$; consequently, the nulls shown in figure 4 are uniformly deeper than the nulls shown in the dotted line curve of figure 5. However, the computed values of figure 5 are the more accurate, as they were obtained using a data point spacing of $\lambda / 7$.

Finally, in figures 6 and 7 we show some antenna pattern magnitudes for a uniformly excited circular aperture three wavelengths in diameter. Here, we were interested in comparing the computer program output against the theoretical model for some arbitrarly selected plane cuts. Consequently, we show two k_{y}-plane-cut antenna-pattern curves plotted versus azimuth, in figures 6 and 7, corresponding respectively to a 10° elevation angle and a 30° elevation angle. The peak amplitude in figure 7 , incidently, is about 15 dB below the peak amplitude in figure 6. In order to achieve highly accurate program output, a data point spacing of $\frac{\lambda}{21}$ was used, which resulted in the generation of numerical $d B$ values for the furthest side lobes that agreed with the theoretical results within eight-tenths of one percent. This compares to just five or ten percent agreement between the furthest side lobes of the theoretical model and the far side lobes of the computed curves plotted in figure 4. A value of $N Z X=$ NZY $=2$ was selected for our circular aperture computations, resulting in just moderately smooth plotting resolution. It might be remarked that the aperture excitation was assumed to be diagonal to the cartesian coordinates of the aperture, resulting in the asymetrical k_{y} -plane-cut patterns shown.

Computation of the Far Field due to a Tangential Electric-Field Distribution over an Aperture Plane using Fast Fourier Transform Processing; Theoretical Analysis

A. 1 Far-Zone Electric-Field Components Expressed in Terms of Plane-Wave Spectrum Components

An expression for the far-zone electric-field vector transverse to the z-direction is readily obtained by integrating the near-zone tangential field over an aperture plane [1], [2]. Thus, we have the far-zone electric field transverse to the z-direction expressed as

$$
\begin{equation*}
\underline{E}_{t}(\underline{r}) \sim \frac{-i k \cos \theta}{2 \pi} \frac{e^{i k r}}{r} \underline{B}\left(\frac{k}{r} \underline{R}\right) \tag{1}
\end{equation*}
$$

where the aperture-plane integral is defined as

$$
\begin{equation*}
\underline{B}\left(\frac{k}{r} \underline{R}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \underline{E}_{t}\left(\underline{P}^{\prime}\right) e^{-i \frac{k}{r} \underline{R} \cdot \underline{P}^{\prime}} d x^{\prime} d y^{\prime} \tag{2}
\end{equation*}
$$

Here, $\underline{P}^{\prime}=x^{\prime} \underline{a}_{x^{\prime}}+y^{\prime} \underline{a}_{y}$, and $\underline{R}=\underline{x} \underline{a} x+y \underline{a} y$, where $\underline{a} \underline{x}=\underline{a}_{x}$, and $\underline{a}_{y}=\underline{a}_{y} y^{\prime}$ are unit vectors along the x and y coordinate-system axes, and where x and y denote far-zone position coordinates while x^{\prime} and y^{\prime} denote aperture-plane position coordinates. The far-zone radial coordinate is $r=\sqrt{x^{2}+y^{2}+z^{2}}$. These geometrical relationships are depicted in figure 3. The propagation constant is $k=2 \pi / \lambda$, where λ is the wavelength. An $e^{-i \omega t}$ time dependence is implicitly assumed by (1); thus $k=\frac{\omega}{c}$ where c is the velocity of light. The spatial-frequency components k_{x} and k_{y} are related to the far-zone position coordinates by the relations, $k_{x}=k \frac{x}{r}$ and $k_{y}=k \frac{y}{r} . \quad E_{t}\left(P^{\prime}\right)$ is the tangential electric-field vector in the aperture plane. The z-component of the far-zone electric field is also required, but it can be obtained from the expression

$$
\begin{equation*}
B_{z}\left(\frac{k}{r} \underline{R}\right)=-\frac{1}{r \operatorname{Cos} \theta} \underline{R} \cdot \underline{B}\left(\frac{k}{r} \underline{R}\right) \text {, } \tag{3}
\end{equation*}
$$

which results from the fact that each plane-wave spectrum vector, $\underline{B}\left(\frac{k}{r} \underline{R}\right)+\underline{a}_{z} B_{z}\left(\frac{k}{r} \underline{R}\right)$, must be orthogonal to the corresponding propagation
direction $\underline{k}=\frac{k}{r}\left(\underline{R}+\underline{z a}_{z}\right)$.
Consequently, it readily follows from (1) and (3) that the theta and phi components of the far field can be expressed as [1]

$$
\begin{align*}
& E_{\theta}(\underline{r}) \sim-\frac{i k}{2 \pi} \frac{e^{i k r}}{r}\left[B_{x}\left(\frac{k}{r} \underline{R}\right) \cos \phi+B_{y}\left(\frac{k}{r} \underline{R}\right) \sin \phi\right] \tag{4a}\\
& E_{\phi}(\underline{r}) \sim-\frac{i k}{2 \pi} \frac{e^{i k r}}{r}\left[-B_{x}\left(\frac{k}{r} \underline{R}\right) \sin \phi+B_{y}\left(\frac{k}{r} \underline{R}\right) \cos \phi\right] \cos \theta \tag{4b}
\end{align*}
$$

In place of the theta-phi component description of the far field, the alternative elevation and azimuth component description is frequently chosen (cf. figure 1). These far-field components are given by

$$
\begin{align*}
& E_{E}(\underline{r}) \sim \frac{-i k}{2 \pi} \frac{e^{i k r}}{r} B_{y}\left(\frac{k}{r} \underline{R}\right) \cos A \tag{5a}\\
& E_{A}(\underline{r}) \sim \frac{-i k}{2 \pi} \frac{e^{i k r}}{r}\left[B_{x}\left(\frac{k}{r} \underline{R}\right) \cos E+B_{y}\left(\frac{k}{r} \underline{R}\right) \sin E \sin A\right] \tag{5b}
\end{align*}
$$

The radial component of the far field, which is perpendicular to each of the components in equations (4) and (5), is equal to zero.

The elevation (E) and azimuth (A) angles, shown in figure 1 , are obtained from

$$
\begin{equation*}
\operatorname{Sin} E=\operatorname{Sin} \theta \operatorname{Sin} \phi, \quad \operatorname{Tan} A=\operatorname{Tan} \theta \operatorname{Cos} \phi \tag{6}
\end{equation*}
$$

whereas the usual spherical-coordinate angles theta (θ) and phi (ϕ) may be expressed in terms of the far-field spatial-frequency components k_{x} and k_{y} using

$$
\begin{equation*}
\operatorname{Tan} \phi=\frac{k_{y}}{k_{x}}, \quad \sin \theta=\frac{\sqrt{k_{x}^{2}+k_{y}^{2}}}{k} . \tag{7}
\end{equation*}
$$

The alternative azimuth (a) and elevation (e) angles, depicted in figure 2, are obtained from the expressions

$$
\begin{equation*}
\sin a=\sin \theta \cos \phi=\cos E \sin A \tag{8a}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Tan} e=\operatorname{Tan} \theta \operatorname{Sin} \phi=\operatorname{Tan} E \operatorname{Sec} A \tag{8b}
\end{equation*}
$$

We can express the magnitude of the far-zone electric-field vector, $|\underline{E}|^{2}=\underline{E} \underline{E}^{*}$, where * implies the complex conjugate, as

$$
|\underline{E}|^{2}=\left|E_{\theta}\right|^{2}+\left|E_{\phi}\right|^{2}=\left|E_{E}\right|^{2}+\left|E_{A}\right|^{2} .
$$

Substituting from either (4) or (5) into the above expression results in

$$
\begin{equation*}
\left.\underline{\mid E}\right|^{2} \sim \frac{k^{2}}{4 \pi^{2} r^{2}}\left\{\left|B_{x}\right|^{2} \cos ^{2} E+\left|B_{y}\right|^{2} \cos ^{2} a+\left(B_{x} B_{y}^{*}+B_{x}^{*} B_{y}\right) \sin E \sin a\right\} \tag{9}
\end{equation*}
$$

where the argument, $\frac{k}{r} \underline{R}$, of $B_{x}\left(\frac{k}{r} \underline{R}\right)$ and $B_{y}\left(\frac{k}{r} \underline{R}\right)$ is understood.
Finally, we give some explicit relations between the vector-components which hold on the principal-plane cuts. Thus, for the principal plane $\phi=0$ we have:

$$
\begin{aligned}
& E=e=0, \quad A=a=\theta \\
& \underline{R}=r \sin \theta \underline{a} x
\end{aligned}
$$

and

$$
\begin{gather*}
E_{A}(\underline{r})=E_{\theta}(\underline{r}) \sim-\frac{i k}{2 \pi} \frac{e^{i k r}}{r} B_{x}\left(\frac{k}{r} \underline{R}\right) \\
E_{E}(\underline{r})=E_{\phi}(\underline{r}) \sim-\frac{i k}{2 \pi} \frac{e^{i k r}}{r} B_{y}\left(\frac{k}{r} \underline{R}\right) \cos \theta . \tag{10}
\end{gather*}
$$

On the principal plane $\phi=\frac{\pi}{2}$ the relationships become:

$$
\begin{aligned}
& A=a=0, \quad E=e=\theta \\
& \underline{R}=r \sin \theta \underline{a}_{y}
\end{aligned}
$$

and

$$
E_{A}(\underline{r})=-E_{\phi}(\underline{r}) \sim-\frac{i k}{2 \pi} \frac{e^{i k r}}{r} B_{x}\left(\frac{k}{r} \underline{R}\right) \cos \theta
$$

$$
\begin{equation*}
E_{E}(\underline{r})=E_{\theta}(\underline{r}) \sim-\frac{i k}{2 \pi} \frac{e^{i k r}}{r} B_{y}\left(\frac{k}{r} \underline{R}\right) \tag{11}
\end{equation*}
$$

It may be noted that a jump change in sign of the θ and ϕ components, due to the jump change in ϕ by π radians upon passing through the coordinate-system origin, has been suppressed in writing expressions (10) and (11).

A. 2 Finite Fourier Transform Representation of the Plane-Wave Spectrum Integral

We next require computational expressions for evaluating the apertureplane integral defined by (2). If we presume that $B\left(\frac{k}{r} \underline{R}\right)$ is a bandimited function of the spatial-frequency components k_{x} and k_{y}, having bandimits $-K_{x} \leq k_{x} \leq K_{x}$ and $-K_{y} \leq k_{y} \leq K_{y}$, then the aperture-plane integral (2) can be expressed as [2]

$$
\begin{equation*}
\underline{B}\left(\frac{k}{r} \underline{R}\right)=\delta_{x} \delta_{y} \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \underline{E}_{t}\left(\underline{P}_{m n}\right) e^{-i \frac{k}{r} \underline{R} \cdot P_{m n}} ;\left|k_{x}\right| \leq k_{x^{2}}\left|k_{y}\right| \leq k_{y} . \tag{12}
\end{equation*}
$$

Here, $P_{-m n}=m \delta_{x-x}^{a}+n \delta_{y-y}^{a}$, where $\delta_{x}=\frac{\pi}{K_{x}}$, and $\delta_{y}=\frac{\pi}{K_{y}}$.
Furthermore, if the aperture-plane tangential electric-field vector is restricted to a rectangular aperture of dimensions $a=N X \delta_{x}$ and $b=N Y \delta_{y}$, then the aperture electric field will be non-trivial only over the range $\frac{1-N X}{2} \leq m \leq \frac{N X-1}{2}, \frac{1-N Y}{2} \leq n \leq \frac{N Y-1}{2}$, so that the doubiy infinite series in (12) may be replaced by two finite sums. Moreover, we can sample the transverse plane-wave spectrum vector $B\left(\frac{k}{r} \underline{R}\right)$ at the equally spaced points $k_{x}=j \frac{k}{r} \Delta_{x}$ and $k_{y}=\ell \frac{k}{r} \Delta_{y}$, where $\frac{k}{r} \Delta_{x}$ and $\frac{k}{r} \Delta_{y}$ are the spatialfrequency sampling intervals, and where j and ℓ are integers. The total number of x-coordinate spatial-frequency sampling points is N_{x}, and the total number of y-coordinate spatial-frequency sampling points is N_{y}, where $N_{x}>N X$ and $N_{y}>N Y$. The range on the integers j and ℓ is

$$
\begin{equation*}
-\frac{N_{x}}{2} \leq j \leq \frac{N_{x}}{2}-1 \quad \text { and } \quad-\frac{N_{y}}{2} \leq 2 \leq \frac{N_{y}}{2}-1 \tag{13}
\end{equation*}
$$

so that the bandlimits are

$$
\begin{equation*}
K_{x}=\frac{k}{2 r} \Delta_{x} N_{x} \quad \text { and } \quad K_{y}=\frac{k}{2 r} \Delta_{y} N_{y} \text {. } \tag{14}
\end{equation*}
$$

The numbers N_{x} and N_{y} respectively correspond to the quantities NNX and NNY described in the computer-program documentation. For the sake of computer program compatability with existing software, the number of input data points should equal the number of output data points. This may be accomplished by zero-filling the input data array corresponding to data points outside the rectangular-aperture boundaries.

Although (12) is an exact expression if the aperture-field integration results in a bandlimited function, our restriction of the input data to a rectangular aperture is not compatable with this condition. Consequently, there will result an aliasing error with the finite-Fourier-transform relation, so that the actual finite-Fourier-transform relation becomes [6]

$$
\begin{align*}
& \underline{B}_{j \ell} \equiv \sum_{p=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} B\left(\frac{k}{r} \underline{R}_{j}+p N_{x}, \ell+q N_{y}\right) \\
&=\delta_{x} \delta_{y} \sum^{\frac{N_{x}}{2}-1} \sum_{m=-\frac{N_{x}}{2}} \quad \frac{N_{y}}{2}-1 \tag{15}\\
& \sum=-\frac{N_{y}}{2} \quad E_{m n} e^{-i \frac{k}{r} \frac{R}{-j \ell} \cdot P_{m n}},
\end{align*}
$$

where the range on the integers j, ℓ is given by (13), and where we have written $\underline{E}_{m n}$ for $\underline{E}_{t}\left(\underline{P}_{m n}\right)$. Also, $\underline{R}_{s, t}=s \Delta_{x} \underline{a} x+t \Delta_{y} \underline{a}$, , where s, t take on the values indicated in (15). From (15), we see that $\underline{B}\left(\frac{k}{r} \underline{R}_{j \ell}\right)$ is replicated as B $\left(\frac{k}{r} \underline{R}_{j}+p N_{x}, \ell+q N_{y}\right)$ for $p, q=0, \pm 1, \pm 2$, etc.; thus $\underline{B}_{j \ell}$ is formed, within the range on j and $\&$ given in (13), by summing contributions from the primitive function $B\left(\frac{k}{r} \underline{R}_{j \ell}\right)$ to those non-negligible contributions, from the overlapping ends of these replicated functions, that arise from spatial-frequency values outside the assumed bandlimits K_{x} and K_{y}. Here, of course, K_{x} and K_{y} simply correspond to the quantities π / δ_{x} and π / δ_{y}, rather than to actual bandimits. It should be noted that an analytical transition from the right-hand side of (12) to the right-hand side of (15) also involves a replication of $E_{t}\left(P_{m n}\right)$, so that both the input and output functions in the finite Fourier transform relation (15) are doubly periodic with periods N_{x} and N_{y}. However, there is no overlap of the replicated input functions within the integration interval.

Although the finite-Fourier-transform relation (15) does not give a perfect evaluation of the aperture integral (2), it can be recognized that aperture-plane integration of a physical electric field will produce a virtually bandlimited function. This implies that the approximation

$$
\begin{equation*}
\underline{B}\left(\frac{k}{r} \underline{R}_{j \ell}\right) \simeq \underline{B}_{j \ell} ; \frac{-N_{x}}{2}<j<\frac{N_{x}}{2} \quad, \frac{-N_{y}}{2}<\ell<\frac{N_{y}}{2} \tag{16}
\end{equation*}
$$

will be valid provided K_{x} and K_{y} are large enough. This in turn implies that δ_{x} and δ_{y} must be sufficiently small.

One difficulty that arises with utilizing (15) is that fast Fourier transform (FFT) subroutines require non-negative integer values for the indices j, ℓ, m, and n. Fortunately, this difficulty is readily resolved using the periodic character of ${\underset{B}{j} \ell}^{\text {and }} \underline{E}_{m n}$. Thus we have

$$
\begin{aligned}
\frac{1}{\delta_{x}^{\delta_{y}}-B_{j \ell}} & =\sum_{m=-\frac{N_{x}}{2}-1}^{N_{x}} \sum_{n=-\frac{N_{y}}{2}}^{N_{y}} \sum_{-m n} e^{-i 2 \pi\left(j m / N_{x}+\ell n / N_{y}\right)} \\
& =\sum_{m=0}^{N_{x}-1} \sum_{n=0}^{N_{y}-1} \frac{E}{m-\frac{N_{x}}{2}, n-\frac{N_{y}}{2}} e^{i \pi(j+\ell)} e^{-i 2 \pi\left(j m / N_{x}+\ell n / N_{y}\right)} .
\end{aligned}
$$

Finally, we obtain

$$
\begin{equation*}
\frac{1}{\delta_{x}^{\delta} y} \frac{B}{j+\frac{N_{x}}{2}, \ell+\frac{N_{y}}{2}}=e^{i \pi(j+\ell)} \sum_{m=0}^{N_{x}-1} \sum_{n=0}^{N_{y}-1} e^{-i \pi(m+\ell)} E_{m-\frac{N_{x}}{2}, n-\frac{N_{y}}{2}} e^{-i 2 \pi\left(j m / N_{x}+\ell n / N_{y}\right)} \tag{17}
\end{equation*}
$$

This result enables us to integrate over the aperture surface, $-T_{x} \leq x^{\prime} \leq T_{x} ;-T_{y} \leq y^{\prime} \leq T_{y}$, where $T_{x}=\frac{1}{2} N_{x} \delta_{x}$ and $T_{y}=\frac{1}{2} N_{y} \delta_{y}$, using standard FFT-program format. The output of the FFT routine is a function of j and ℓ, which range over the values

$$
0 \leq j \leq N_{x}-1, \quad 0 \leq \ell \leq N_{y}-1 .
$$

Consequently, since $\underline{B}_{j, \ell}$ is periodic in j and ℓ with periods N_{x} and N_{y}, respectively, by using (17) the FFT output can be plotted directly as though the range on j and ℓ were as given in (16).

Finally, we write down expressions that are compatible with the problem of computing the far field on the plane cuts. Thus, for the plane $k_{y}=$ const. we have

$$
\begin{equation*}
\ell+\frac{1}{2} N_{y}=\frac{N_{y}}{S_{y}} \sin E, \tag{18}
\end{equation*}
$$

where $S_{y}=\frac{\lambda}{\delta_{y}}$ and E assumes a fixed value. We can now collapse the summation over y (i.e., reformulate the problem so as to just carry out an FFT on data formed by summing the input-matrix columns) to obtain

$$
\begin{gather*}
\frac{1}{\delta_{x^{\delta} y}^{\delta}} \underline{B}+\frac{N_{x}}{2}, \ell+\frac{N_{y}}{2}=e^{i \pi j} \sum_{m=0}^{N_{x}-1} e^{-i \pi m} \sum_{n=0}^{N_{y}-1} \\
 \tag{19}\\
\left\{\begin{array}{l}
m-\frac{N_{x}}{2}, n-\frac{N_{y}}{2}
\end{array} e^{-i\left(\frac{2 \pi}{S_{y}} \sin E\right)\left(n-\frac{N_{y}}{2}\right)}\right\} e^{-i 2 \pi j m / N_{x}} .
\end{gather*}
$$

Similarly, for the plane $k_{x}=$ const. we have

$$
\begin{equation*}
j+\frac{1}{2} N_{x}=\frac{N_{x}}{S_{x}} \sin a \tag{20}
\end{equation*}
$$

where $S_{x}=\frac{\lambda}{\delta_{x}}$ and a assumes a fixed value. We now collapse the summation over x (i.e., reformulate the problem so as to just carry out an FFT on data formed by summing the input-matrix rows) to obtain

$$
\begin{aligned}
\frac{1}{\delta x^{\delta} y} \underline{B}{ }_{j+\frac{N_{x}}{2}, \ell+\frac{N_{y}}{2}}= & e^{i \pi \ell} \sum_{n=0}^{N_{y}-1} e^{-i \pi n} \sum_{m=0}^{N_{x}-1} \\
& \left\{\underline{E} \sum_{m-\frac{N_{x}}{n}, n-\frac{N_{y}}{n}} e^{-i\left(\frac{2 \pi}{S_{x}} \sin a\right)\left(m-\frac{N_{x}}{2}\right)}\right\} e^{-i 2 \pi \ell n / N_{y}}
\end{aligned}
$$

REFERENCES

[1] Collin, R. E., Zucker, F. J., Antenna Theory Part I, McGraw Hill (1969).
[2] (a) Kerns, D. M. Correction of near-field antenna measurements made with an arbitrary but known measuring antenna, Electronics Letters 6, pp. 346-347 (1970).
(b) Kerns, D. M. Plane wave scattering matrix theory of antennas and antenna-antenna interactions, NBSIR 78-890 (June 1978) (forthcoming as NBS Monograph 162).
[3] Yaghjian, A. D. Upper-bound errors in far-field parameters determined from planar near-field measurement, Part I: Analysis, NBS Tech Note 667 (Oct. 1975).
[4] Landau, H. J. Sampling, data transmission, and the nyquist rate, Proc. IEEE 55, \#10, 1701-1706 (Oct. 1967).
[5] Newel1, A. C. Planar near-field measurement techniques, (lecture notes for the NBS short course, Antenna Parameter Measurement by Near-Field Techniques, 7-11 July 1975).
[6] Cooley, J. W., Lewis, P. A. W., Welch, P. D. The fast Fourier transform algorithm and its applications, IBM Research Paper RC-1743, (Feb. 9, 1967).
[7] Johnson, C.C., Field and Wave Electrodynamics, McGraw Hill, 1965.

Figure 1. Antenna coordinate system using A and E spherical angles with y as the polar axis.

Figure 2. Antenna coordinate system using a and e spherical angles
with x as the polar axis.

Figure 3. Problem geometry, showing the rectangular aperture within an aperture plane and the far-zone position coordinates.

Figure 4. The principal plane cut $\phi=\frac{\pi}{2}$. PHI-component amplitude plot for a 5-wavelength-wide slit aperture (varied data-point-spacing increments).

Figure 5. The principal plane cut $\phi=\frac{\pi}{2}$. PHI-component amplitude plot for a 5-wavelength-wide slit aperture (varied Fourier integration ranges).

Figure 6. Antenna pattern magnitude for a uniformly excited circular aperture. Y-plane cut with constant elevation angle $E=10^{\circ}$.

Figure 7. Antenna pattern magnitude for a uniformly excited circular aperture. Y-plane cut with constant elevation angle $E=30^{\circ}$.

Computer Program Listing for Computing Azimuth and Elevation Vector Components Along User－Specified $X-$ and $Y-P l a n e ~ C u t s ~ i n ~ t h e ~ F a r ~ F i e l d ~$ Arising from a Prescribed Rectangular－Aperture Field Distribution

```
PROGRAM FAREA(INPUT,OUTPUT,FAPE1=INPUT)
DIMENSION STOP(1024), EXPX(1:2L), EXPY(1024), EI(4096)
DIMENSION THETA(1こ24),DATA(2349)
COMPLEX STOR,EXPX,EXPY,EI,ZZ
EQUIVALENCE (THETA,STOP), (EXPX,OATA)
CATA (NMAX=4D24), (N)TMEN=4095)
```

94 FORMAT $4-F 7,1 \times 2 I 3,2 F 5 \cdot J, 5 \times A 1$ ：
 OHS， 9×1 HBETA $=Y$－COORJTNATE $\triangle P E$ PTURE OIMENSION IN WAVELENGTHS／ $3 \times 57 H S$ $P X=R A T I O$ OF WAVELENG：H TO X COORDINATE DATA＝POINY SPACING， $4 X 57 H 5 Y=R$ QAFIO JF WAVELENGTH TO YOCOORDINATE DATA－POTNT SPACING／ZX\＆9HNZX＝X－C FOCRDINATE ZERO－FILL－₹EGION CJIIRLING FACTOR， $12 \times 49 H N 7 Y=Y-C O O R O I N A T E ~$
 TREES ELEVATION OF $A T I M U T H-P L A N E ~ S U T, ~ 14 \times 4 O H E=E L E V A T I O N ~ A N G L E O=E L$ UEVAFION－PLANE CUT／3X39HBANNE२＝10－CHARACTER PLOT IDENTIFICATION， $4 X$ V $45 H N N X, N N Y=N U M B E F O F$ TERMS IN X OR IN Y FFF SUMS． $6 \times 25 H N N X=2 * * M 4 X$ W，$\quad N N Y=2^{*} * M M Y / / / / 3 H \quad \Delta L P H A=, F 8,3,4 X E H B E F A=9 F 9,3,4 X 4 H S X=, F 7.3,4 X$ $X 4 H S Y=, F 7.3,4 \times 5 H N Z X=, T 3,4 X 5 H M Y=, I 3,4 X 3 H A=, F 5.1,4 X 3 H E=, F 5,1,4 X$ YTHBANNER，A10， $1 H, / / 2 L X 5 H N N X=, 15,10 \times 5 H M M X=, I 3,32 X 5$ HNNY $=, I 5,10 X$ 75HMMY $=$ H $53 / 1 / 1$
96 FCRMAF（1H－， 25×7 IHAFFAY DIMENSIONS TOO SHALL OR ILLEGAL OR ELSE E O $1 R$ A EOUALS 90 DEG天EES／ $11 \times 5 H N N X=, I 5,5 \times 5 H M M X=, I 4,10 \times 5 H N N Y=, I 5,5 \times 5$ 2H：NY $=, I 4,13 \times 23 H C O Y P U T E D E I$ JIMENSION $=, I 6,1: X 3+E=, F 5,1,5 \times 3 H A=$ ， 3FE．1）

COMPUTATION OF THE FA？FIELO ALONG SPECIFIED PERPENDIGULAR AZIMUTH－AND ELEVATIOH－PLANE CUTS，WHERE THE FAROFIELD EXCITATION SORRESPONJS TO A GIVEN NEAR－FTELD OISTRIBUTION IN A EPECIFIED APERTUEE．IN ADOITION，THE FAR－FIELD ANTENNA PATPERN ALONG THESE SPESIFIED CUTS IS ALSO SOMOUTEO．

THE DATA SPACING BETWEEN X－OR Y－COOFOINATE ELEMENTS IS ASSUMED TO BE FIX
NHAX＝DIMEMSION OF APRAYS STOF AND FHETA．DIMENSION OE ARRAY DATA SHOULD EQUAL 2 ＊NAAX．NCIMEN IS THE DIMENSION OF GRRAY EI． NOIMEN SHOU．E EQUAL TWTCE THE SUM O THE X ANO YOEF ITMENSTOYS THE MAXIMUM USEFUL VALUE OF NOIMEN IS 4 ＊NMAX．

INPUT PARAMETEPS．。 ALPHA＝APEFTURE WIOTH IN WAVELENGTHS（X COOROINATE
AETA＝APERTJEE LENGTH IN WAVELENGTHS PY－COORDTNATE） EX＝スATIO OF WAVELENGTH TO X－COJRDINATE DATA－SJINT SPROI SY＝EATIO OF WAVELENGTH TO Y－COJROINATE TATA－POINT SPEOT NZX＝NUMBER TF EXTRA DOUBLINGS OF THE ZERO－FIG．REGION

FOR THF X－FAR－FIELD－COOROINATE FFT．（NORMALLY＝11
NZY＝NUMBER OF EXTRA DOUBLINGS OF THE ZERO－FI＇．REGION
FOR THE Y－FAR－FIELD－JOORJINATE FFT．（VOJMALLY＝1）
$A=A 7$ ．IMUTH ANGLE（AT ZEDO DEGRESS ELEVATION）．
IN CEGरEES，OF AIIMUTH－PLANE GUT．
E＝FLEVATION ANGLE，IN DEGREES，CF ELEVATION－2LANE CUT． EANNER＝IO－RHARACTER GRADH IDENTIFICATION

THE INPUT DATA IS ASSUMED TO EE SUODLTEO AS ROWS OF X－OCROINATE DATA，EACH FOW CCREESPDNDTNG TO A FIXEN VALUE OF THE Y－COOROINA－＝． ALL OF THE E－SUB－X CA－\triangle IS TO BE SUPDLIE？FIRST，$\triangle N D ~ T H E N ~ T H I S ~$ INPUT OATA IS TD BE FOLLOWED PY ALL OE THE E－SUQ－Y JATA． THE PFOGRムM OBTAINS THE INPUT OATA THDOUGH REPEATET CA：LS TO THE USEF－JUPDLIEE SUBPRUTINE GE－ARAY．

EACH CALL TO SUAPCLTINE GFTARAY RFSULTS IN A ROW OF NX ROMPLEX DATA POINTS，＝ACH SICCESSIVE CALL COPRESPONOING TO A RON SUCCESSIVELY FURTHER RELOW THE TOP OF THE ADERTUFE．HE—E，NX IS ENUAL TO THE FFOOUC SX＊ALPHA．THE NUMBEF OF ROWS．OR THE NUMBER OF CALLS TO GETARAY，IS GIVEN TY NY＝SY＊B＝TA．

NUMRE OF DATA CAFOS IISED BY PROGRAM＋CURROUTINFS $=3$.
FOLLOWING THE COMPLETECN OF A GIVEN TAR－FIELD GOMPUTATTON $\triangle L O V G$ SPERIFIED PEDPENCICULAF ATIMUTH AND ELEVATIDN PLANES，－HE PROGR：M RETURNS TO THE BEGINING TO READ A NFW DATA CAEO ANT ST：RT ALL OVE AGAIN ON A NEW FAO－FIELD COMPUTATION．THIS TIME，HOWEVED， THE PLOTTING FOUTINE PAPANETESS ANE L GGEND THA ${ }^{\top}$ WERE REAN IN，ON THE FIPST TIME THFOUGH THAT SUROCUTINF，ADE SIMPLY RECALLED AND USE ？OVE LGAIN．THE USEF MUST MAK＝SURS SURROUTINE GتTADCY CAN SUPPLY A NEW EET OF N二AF－FTELD DATA IIONN

PARAMETER DEAD IM
1 READ $3+, A L P H A, B E T B, S X, C Y, N Z X, H 7 Y, A, E$ ，FANNE IF（EOF（1），NE．－G G ？ O ？

CALCULATION OF NX AND MY
 $S X=N X / A L P H A \neq S Y=M Y / B E T A$

CIALCULATION OF NNX DNE HMY，ALONT WITH MMX AN MMY $M M X=M M Y=N N X=N N Y=1$
$2 M^{M} X=M^{\prime \prime} X+1$ B $N N_{H} X=2 \times N N X$ a $I F(N N X, G T, N X) 3,2$
3 NNX $=2^{*} N N X$ IF $\operatorname{IF}(N Z X)-4, \varepsilon, 4$
44 NNX＝NNX／2 \＆MMX＝M：4X－1 3 GO TO 5
4 Er $5: 1=1, N 7 X$＊$M M X=A \cdot M X+1$
5 NNX $=2 * V$ ！ $1 \times$
6 MMY＝M：Y +1 \＆NH：Y＝2＊NNY 3 IF（NNY，GT，NY）7， F
7 NAY $=2^{*}$ NNY $\&$ IF（NZY）$-5,18$ ，${ }^{\circ}$
45 NNY＝NNY／2 \＄MMY＝MNY－1＊GO＋\quad O 10
8 DD $9 \quad M= \pm, N Z Y$ \＆$M M Y=M M Y+1$
9 NNY＝2＊NNY
 IF（J．G ${ }^{r} \cdot N D I M E N \cdot C P \cdot N N \cdot G T \cdot N M A X \cdot \cap=, M M \cdot G \cdot 141: 1,12$
11 Pi二 INT 96，NNX，MMX，MNY，MMY，J，E，A \＆CALL EXIT
C INPUT PA＝AMETED FRIAIT－OUT
12 DEINT $35, A L O H A, B E T A, S X, S Y, N Z X, N Z Y, A, E, B 2 N N=R$, NNX，MMX，NNY，MMY
C COMFUTATION CF $\triangle F E F T U R E-\cap A^{*} A$ FOSTTTON WITHEN H－IN－EGRATION INTEZVAL
F\＆CTOR＝1．：（SY＊5Y）\＆$I C X=(N N X-N X+1) / 2$ \＆$I J Y=(N N Y-N Y+1) / 2+N N X$

C COMPUTATION OF AFEOTUFF DATA－FCIV SDACTNGS

C RE-RERDING OF INTEGRAL FIELC
OC $13 \mathrm{M}=1, \mathrm{~J}$
1才EI(M)=(0.,0.)
C COMPLTATION OF CONSTANT EXFONENTIAL MULTIDLICATION EACTOF - Y-PLAYE CUT $Z Z=C E X P(C M P L X(0 ., 6 \cdot 2: 3: 853071796 * S I N E / S Y))$ $J=(N Y-1) / 2$ \& $K=J+1$ \& EXPY(K) $=(1,0,3$.
DO $14 \quad M=1, J \$ L=K-M$ \$ $L L=K+M$ $\operatorname{EXPY}(L)=Z Z^{*} \operatorname{EXPY}(L+1)$
14 EXPY(LL) $=$ CONJG(EXPY(L))
C COMPUTATION OF CONSTANT EXPONENTIAL MULTIPLICATION FACTDF - X DLAVE CUT $Z Z=C E X P(C M P L X(0 ., 6.2931853371 \rightarrow 9$ TSINA/SX))
$J=(N X-1) / 2$ \& $K=J+1$ \& $E \times P(k)=(1,0,0$.
DO $15 \mathrm{M}=1, \mathrm{~J}$ \$ $L=K-M$ क $L L=K+M$
$\operatorname{EXPX}(L)=2 Z * 5 \times P \times(L+1)$
15 EXPX(LLI=CONJG(EXPX(L))
C DO LOOP TO COMPUTE TWO PLANE-GUT INTEGRALS OVER APERTURE-FIELD VECTOP DO $21 I=1,2$ क $M X=N O^{*}(I-1)$ \& $I X=M X+I I X$ \& $I Y=4 X+I \cap Y$

C SET-UP OF INTEGPAND - COLLAFSE DH X - ANO Y-PLAN $=$ CUTS
$0016 \mathrm{~K}=1$, NY $J=K+I Y$
CALL GETARAY(STOF,NX)
$0016 \mathrm{~L}=1$, $N X$ \& $\mathrm{M}=\mathrm{L}+I X$
$E I(M)=E T(M)+E X P Y(K)+5 T O F(L)$
16 EI(J)=EI(J)+EXPX(L)*CTOR(L)
C INITIALIZE X-COMPONENT PARAMEPERS FOF FFT INTEGOATON $N X Y=N X$ \$ $M M=M P X X \quad N N=N N X$ \& $J=?$
$17 I 2=I X+N X Y \$ I I=I X+1$ \& $I F(N O \cap(N X Y / 2,2) \cdot E \cap .0) \quad I 1=I 1+1$
C PRE-FFT MULTIPLICATION $\because Y(-1) * A M$
OD $18 \mathrm{M}=\mathrm{I} 1, I 2,2$
$18 E I(M)=-E I(M)$
C FFT COMPUTITION
COLL CCFFT2(EI (MX+1), MM,-FACTOD,-1)
$I 1=M X+2$ * $I 2=M X+N N$
C POSY $-F F T$ MULTIPLICATION BY $(-1) * * J$
$0019 \mathrm{M}=\mathrm{I} 1, I 2,2$
$19 E I(M)=-E I(M)$
IF(J. $20.0120,21$
C INITIALIZE YOCOMPONENT PARAMETER FOR FFT INTFSQATION
20 NXY=NY \& MM=MMY \& NN=NNY \& $M X=M X+N N X \& I X=I Y \& J=1 \& G 0$ TO 17
21 CCNTINUE
INITIALITE Y-PLANE-CUT FARAMETFRS FOR VECTDP-COMPONENT AND PATTERN COMP. $N N=N N X$ \& $L L=L L X$ \& $D E L=D E L X$ \& $\quad 4 X=J=0$ \& $A N G L E=?$ $V=S I N E$ Q $V V=V * * 2$, $C \cap D E=S \operatorname{CO}(1.2-V V)$

C RESTEICT COMFUTATIONS TO DOLAR SPATIAL-FREQUENCY ANGLES IN VISIDLE DANGE

$23 I 1=M X+1$ \$ $I 2=M X+N^{4}$ \& GO TO 25
24 $I \pm=N X Y-L L+M X * I 2=I 1+2 * L L$
$25 K=I 1-1$ \& $N X Y=N X Y+N X$

C VECTCF－COMDONENT COMPUTATION
 IF（J．ER．0）26，27

27 IF（U．二0．1．0）28．20

30 THETA（L）$=57.295779513082 * \Delta S I N(U / C O P F)$
$E I(M)=(C ., 1.01 *(E I(M) * \operatorname{COSE}+E I(L L) * S I N T)$
$33 E I(L L)=C M P L X(\cdots, C O S T) * E I(L L)$ क $L L=I 1+N O$
C VECTCG－COMPONENT PLOTTING
CALL PAYPLOT（L，EI（II），THETA，DATA，2＊NN，BANN＝？，？，CNGLE）
CALL PA：1DLOT（L，EI（LL），TFFTA，DATA， $2 * N N, ~ B A N N F E, ?, ~ A N G L=1$
C ANTENNA－PATTERN COMPIJTA TON
DO $34 \quad 1=I 1, ~ I 2$ \＆$L=M-K ~ \& ~ L L=M+11 C$
34 DATA（L）＝SOCT（FEAL（EI（M）＊CCNJT（ET（M））＋ET（LL）＊CONJG（ET（LL）い）
C ANTENNA－PATTEFN PLOT－ING
CALL PAMPLOTIL，E．，THETA，CATA，L，BANNEF，I，ANGLE）
IF（J．E日．こ）35，1
INITIALITE X－PLANE－CUT FARAME－ERT FOR VECTOF－COMPONENT AND PATTERN COMP．
35 NA＝NNY $\$ L L=L L Y \$ D E L=n=L Y \& \quad 4 X=N N X \& J=1$ \＄$A N G L 5=A$

36 CONTINUE
END

SUBROIJTINE PAMPLOT M．二マ，XVALUE，DATA，N2，BANNEF，MODE，ANGLEI
O：MENSION EF（N），XVALUE（N），CLTA（N？）
CCMPLEX ER
DIMENSION HEAD（9），YMAX（2），YMIN（2），AMP（4），CAM（？）
DIMENSION BR（L），ELAZ（2），CCMP（F）

 R／FHASE，1？H YAGNITUCE／，（ELAT（M），$\because=1,2) / 1$ OHELEVATION＝．1こH $\triangle Z I M U T H=/$ OATA（CAM（1）＝1：H RELL CA），（CAM（2）＝1OHCOMPLEX DA）
DFTA $(K=0),(I A=1),(I Q=1)$
99 FORMA ${ }^{-}(2 X I 1$, ？F7．1，IT）
100 FCFMA $(15 H A M P=, G 8,2, A 12, F 3 \cdot \cap, A: 2, A 5)$
101 FCRMAT（－A10）
102 FOFMAT（ $1 \mathrm{H}_{2}, 10 \times 1 \mathrm{H}^{*}, 9 \mathrm{~A}, \mathrm{n}, 1 \mathrm{H}^{*}$ ）
103 FORMA $11 H 1,15 \times 2$ SHPLO ROUTINE JOB COMPL $-T E, 1$ XZ2HNUMBEF OF NON－TRI ZVIAL GATA PTS＝，I\＆／／26X31HNUMD＝2 CF DATA POINTS PDINTED＝，IF／／l
104 FCRMA $11 H 1,10 \times 25 H F F P O R$ EXIT－PAMPLOT／／）
1U5 FCRMA－（1H3， $3 \times$ SHNO $=, I ?$ ， $2 \times 5 H X M I N=, F 7, Z, ~ Z X=H X \cdot 9 X=, F 7,3,3 \times 8 H Y M I N(1)=$

2PGINT SPACING＝，I？／1）
106 FCRMAT（1H：／／2EXLLHALL INFLT ПATA VALUFS TO PAMPLCT ARF TRIVIAL／／）
107 FORMAT（E F1U．4，GiJ．4，F7．Z））
108 FCFMA－ 1 1HU， $25 \times 24 H M A X$ MIM CATA $\operatorname{ANPLITUNE~}=, G 1$ F．E／／$/$
109 FCRMAT（EJX，A1E，15HTA PLCTTING NODE／l）
116 FCRMAT（3（F\＆．2，GG．Z））

PHASE OF ARRAY ER IS PLOTTED IN DEGEEER DETNEEN YMAX(2) AN YMINI21

BOTH PHAS: ANO AMP FLOTTED ON SANE PLOT IF NO $=2$. PHASE AND AMF PLCTPED SEPERATELY IE ND=1.

A USEC-SUPPLIEG 3-CHREACTEP GRADH LAPEL IS PEINTEO ON EACH PLOT. THIS CAPTION IS OQTAINED EY READING ONE CAPTION CARD THE EIRST TIME THE SURPOUTINE IS CALLED, WHILE THE SAME $30-C H A R A C T E R ~ L E G E N T ~$ WILL SIMPLY BE USEC OVFR AGAIN ON SUESEQUENT CALLS TC THE ROUTINE ALSO, A TEN-CHARACTER USE MESSAGE -FANNER- IS PDINTED ON EACH GRAPH, ALONG WITH THE MAXIMUM DB-LEVEL OF THE OATA ANS A LOO GHARACTE DESCRIFTION OF WHAT TYPE OF GRAPH IS BEING PIOTTED. THIS LATTER OISCRIDTION IS ORTAINEO FQOM THE PRESUHED TALLING SEQUENCE OF THE MAIN PROGEAM, FAEEA. THE VALUE OF THE CONSTANT AZIMUTH O ELEVATION ANGLE -ANGLE FOE THE GRAPH IS ALSO PRINTEO. A TOTAL LEGEND OF CO GHARACTEFS IS DFTNTED ON EACH GFADH.

USER SUFPLIES DUMMY ADZAY OATA FOF INTEFMEDIATE STORAGE WHEN MODE=2. TN THIS CAEE, THE DIMENSION OF ARFAY RATA EQUALS NR=2*N. WHEN MOCE=1, THE INPU IS ASSUMED -D EE IN AREAY TATA AND ITS DIMENSION IS $N 2=N$.

DATA CAROS READ ON FIRST CALL TO SUREDUTINE ONLY.
FIRST INPU: CART.. NOD=NUMBEF DF CUOVES FFR GOADH (1 OF 21
$\begin{aligned} & \text { XMTN,XMAX = SMALLEST AND GE-SATEST ABSCISSA POINT } \\ & \text { YMIN(1)=AMDLIPUCE FLOT LOW ST OR VALUE }\end{aligned}$
$\begin{aligned} & \text { XMTN,XMAX = SMALLEST AND GREATEST ARSCISSA POINT } \\ & \text { YMIN(1)=AMDLIPUSEFLOT LOW=ST DR VALUE }\end{aligned}$

Abstract

^[ROUTINE TO SET UP AFRAYS FOO PLOTTING AMPLITUOE ANB PHASE OF THE CONPLEX AFFAY ER. DIMENSION OF ADRAY E EQUALS N. DATA PLOTTEO VERSUS ABSCISSA ARRAY XVALUE.]

COMPLEX IHPUT DATA ASSUMED IF MOCE=?. IF MODE=1, HOWEVEZ, IT IS ASSUMED THAT ONLY REAL-AMPLYUNE JATA IS TO BE PLOTFED. THIS FEAL-AMPLITUDE DATA WILL BE ASSUMED TO GE IN ARFAY DATA. ARFAY DATA IS ALWAYS SHANGED BY THE PSOFRAM, WHILS AFRAY EP IS LEFT AS IT WAS ON ENTRY TO THE PROGRAM. IF MODE=1, ARPAY ER IS IGNORED.

ROUTINE ALSO DRINTS OUT THE AMPLITUYE, PHASE, ANO ABSCISSA VALUE AT A SELECTET NUMEER OF DATA POINTS. USER SOECIFIES THE POINT SPACING BETWEEN THE DA.A POINTS TO BE PRINTE? AND THEN DATA POINTS WTLL BE SELECTEO FOR PRINTING UNIFOFMLY DISTRIBUTE OVER THE AESCISSA RANGE XMTN TO XMAX JONSISTENT WITH THE DATA-PCINT SDACTNG SELECTED. NOTE THAT THE DECIPROCAL DF THE DATA-POINT SPACIMG PARAMETEO ENUALS THE PERCENTAGE OF DATA FOINTS TO EE PLOTTED.

AMPLITUEE OF ARFAY EE COATA) IS FLOTTE IN DB BELOW MAYIMUM ARRAY VALUE. THE DR RANGE IS SPECIFIEO TY YMINIII (MUST RE NEGATIVEI保

 A TOTAL EGEND OF CHARACTEFS TS DFTNTED ON EACH GFADH.$$
\begin{aligned}
& \text { J=OOTNT SPACTNG BETWEEN AJJACENT PRINTED OATG VALUES. } \\
& \text { OIF J= NONE OF THE DATA VALUES ARE DRINTEDI } \\
& \text { SUBROUTINE ALSO FEADS A } 30-C H A R A C T E P ~ L E G E N D ~ C A R D . ~
\end{aligned}
$$

IF (K. $\left.\mathrm{K}_{0} .3\right) 13,14$
13 REAJ 99, NOO, XMIN, XMAX,YMIN(1), J
$14 \operatorname{YMIN}(2)=2 . \operatorname{YMAX}(2)=350$ 。

$$
\begin{aligned}
& \text { YMTN(2)=PHASE DLOT SMALLFST NUMEED OF DEGPEES (C.) } \\
& \text { YMAX(2) =PHASE PLOT LAFGEST NUMRER OF DEGREES (36?.) }
\end{aligned}
$$

1 PFINT 134 \& CALL EXIT

```
2 IF(XMAX,LE.XMIN.OO.YMTN(1), RE,`,OOR,YMAX(2),LE,YMIN(2)) 1,3
3 H:\triangleD(\exists)=RANNEO $ YMAX(1)=? & I=0 $ KL=KI=1 * ANOFM=?, ND=0
    PEINT 1C5,NOO,XMIN,XMAX,YMTN(1),YMAX(1),YMTN(?),YMAX(?),.1
    PFINT 1:9,CAM(MODE゙)
    IF(MOSEEC.1) GC TO 22 S IF(MDDE,NE.2) FO TO 1 NO=NOO & LL=0
    OD ó M=1,N
    IF(XVALUE(M).LE,XMIN) KI=M S IF(XVALUE(M).LE.XMAX) KL=M
    OATA(M)=CABS(ER(M))
    IF(OATA(M).EQ.O.1 4,5
    OATA(M+N)=YMIN(2) $ 00 TO 6
    5 I=I+1
    IF(DATA(M),GT.ANOCM) ANCRM=DATA(M)
    Q=ATAM2(AIMAG(EF(M)),REALIEF(M)))
    IF(B.LT.」.) B=E+6.2831853J7170=
    DATA(M+N)=57.295779513082*?
    E CONT IMUE
    IFII.EQ.01 7,6
    .7 PFINT 1:6 GO TO 21
    B P=INT 1:&,ANOFM
    IF(1.LE.O) 29.25
25 IF(J.ミワ.1) 26,27
26 I:=KI & I2=KL $ NP=KL-KI+1 $ GO TO 28
27M=KL-KI+1 L=(M-i)/?
    NP=L/J & L=J*NP & I2=M/2+KI & II=I2-L & I2=I? +L & NP=?*NP+1
28 IF(MOCE.EQ.1) 3C,31
30 PFINT 11:,(XVALUE(M),DATA(M),H=I1,I2,J) & 50 -n 2G
31 PEINT 107, (XVALUE(M), DATA(M),DATA(M+N),M=I1,J2,J)
29 ANORM=2%.O*ALOG1: (ANODM)
    ENCODE(4?,1CR,BB) ANOPM,ELAZ(TQ), ANGLE,COMD(TA), COMP(IA &1)
    OFCOOE(LJ,IL1,BE) (H?AD(M),M={,L)
    DO 11 M=KI,KL
    IF(OATA(Y), EO.C.1 9, 土!
    9 DLTA(M)=YMIN({) $ GO TO 11
10 DATA(H)=2ミ.*ALOG1C(OATA(目))-AMDFM
11 CRNTINUE
    IF(K.EQ.:') 15,16
15 K=1 REAC 1, (HEAD(H1), M=6,9)
16 H=AD(Z)=AMF(?) $ L=1 & ?=1H. & IF(NO-2) 19,1?,1
17 P=INT 172,(HEAC(M),M=1,?)
18 HEAD(5)=AMP(L+LL) $ B=1H+
19JL=(L-1)*N+KI $ M=L $ IF(NO.E\cap.Z) M=MOn(L,2)+1 & T2=(M-1)*N+KI
    CALL SETPLO`(XVALUE(KI),CATA(J),XNOX,XNIN,Y'AX,YMIN,KL-KI+1,HEAD,
    * L,VOI
    CILL PLT12GP(XVALUC(KI),CATA&I2), X!AX,XMIN,YNAX(M),YMIM(M),KL-KI+1
    Y ,B,L,NO) & IF(L.EO.2.0=.NODE.FO.11 21,2?
20 L=2 % B=1H+ IF (NO-i) 1,17,13
21 FFINT 1:2,(HEAD(M),M=1,\exists)
    PEINT 133,I.ND
    GO TO 32
22 E0 24 M=1,M
    IF(XVALUE(M).LE.XMIN) KI=N & IF(XVALUE('A).LF. XMAX) KL=M
    IF(DATA(M).EQ.E.) 24.23
23 I=I +1
    IF(CATA(M).ET.ANORM) ANCFM=OATA(M)
24 CONTINUE
    Nr=1 $ LL=3 $ IF(T.EN.?) 7,8
32 IF(HODE,EO.:1) 33, マ&
33 IF=MOO(IS,2)+1 F IA=1 $ GO TO ?F
34 IA=IA +2
35 FETURN
    Ef:D
```

```
    SUBROUTINE PL-1ZSF(X, Y, XNAX, XMIN, YMAX, YNTN, LAST, ISYMBOL, NOPLTI
    1. MOSTI
    MODIFIEO 11/4/68
        DIMENGION X(1), Y(1), ZX(13), GRAFH(121, 51)
        INTEGER GRAPH. COLUPNS, ELANK, BORDFF
        DATA (LINES = 5&), (COLUNNS = 121)
        YLAR = YMAX
        YSMA = YMIN
        YSCALE = PYLAE - YSMA) / (LINES - 1.)
        IF (NO NE. 1) GO TO 19G
        K*AX = COLUMNS / 10 + 1
        XLAQ = XMAX
        XSMA = XMIN
        RCFOET = 2HI
        BLANK = 1H
        METPIX = COLUNNS * LINES
    IF (MATFIX .L*. 1) GO TO 12!
    OO 1こ: I = 1, MAT IX
I:O GOAPHII) = BLANK
:20 contINUE
    IF (LINES .LT. 1) GO TO 1LG
    OO 13. : = 1, LIN=S
130 GFAPH(1, I) = GFAPHCOOLUMNS, I) = BORDEP
:-0 CONTINU:
    IF (COLUMNS .LT. 1) GO TO 1E0
    [C 15? I = 1, COLUMNS
    GCAOH(I, 26) = 1H.
    :O CONTINUE
    XSCALE = (XLAF = XSMA) / (COLUMNNS = 1.)
    IF (KMAX .L`. 1) ro -0 180
    OO 17: K = 1, KMAX
    170 7X(K) = 1%. * FLOST(K - 1) * XSCALE + XCMA
    &B CONTINUE
    190 IF (LAST .LT. 1) 50 0 0 250
    ON 24% I = 1, LAST
```



```
    IF PY(I) .GT, YLA: OF. Y(I) .LT, YSMA) GO-0 ?&a
    IX = (X(I) - XSNA) / XSCALE + 1.5
    IY = (Y(I) - YSMA) / YSCALE + .5
    IY = LIHES - TY
    GFAPH(IX, IY) = IFYMROL
2->0 CONTINUS
250 CONTINU:
    IF (NO .NE. MOSTI DETURN
    PFINT 150E
    YES = YLAF + YSCALE
    IF (LINES .LT. 1) GO *n 27?
    OD 26, I = 1, LIN:S
    YES = YES - YSCAL E
    PEINT 131D, YES, (GRAPH(J, I), J = 1, SOLUNNE)
    250 CONTINUE
    ZY CONTINUE
        P&INT 1E2:
        PEINT 153?, 7x
        RETURN
15:0 FCPMAT (1H1,9X,2-(5HI....)1HT)
1510 FCRMAT (1H,ER,2,1X,121A1)
1520 FCRMA+ (1H,ax, 24 (5H......) 1H+
1:3G FCDMAT ({H, 2X,: Z(1X,FG.3))
    ENO
```

```
SUPROUTENE CCFFTZ(C,M,SC,NX)
        DISCRETE COMPLEX FAST FOURIFR TRANSFORM.
        L. OAVIO LEWIS, NOAA-SEL, ?30315
        CALL CCFFT2(C,N,SC,NX)
        SOMPLEX INPUT C(J) IN NOFMAL SEQUENCE.
        COMPLEX OUTPUT C(K) IA NODMAL SEQUENCE.
    SEOUENCE LENGTH IS N=2**M
        SC IS PEAL SCALING MULTIPLIEO.
        NX IS THE SIGN OF THS EXPONENT IN THE TVANSFOZM IEFINITION.
        USES CFFTPCD AND DEVSIND, N. V.
DIMENSION C(2)
CALL EEVBINO(C(1),C(?),M,2)
CALL CFFTRCC(C(1),C(2),M,SC,NX,2)
RETUFil
ENO
SUPPOUTINE =EVEINT (A,R,NM,NOEL)
    CALL FEVPIND(A,F,M,NO)
    REVEFSIBLE PEOYUTATICN OF JFRAYS A ANC 口
    FPGM NORNAL SEDUENCE TO PEVEFSE BINARY SEOUENCE,
    OR VICE VEESA.
    ND IS SURSCRIP INCFEMEN' FOP A, R.
    SEQUENCE LFNGTHIS N=2***
    WOITTEN EY L. OAVID LFWIS AND MARIE WEST, ESSA.
    MONIFIED FDOM, OR INSPIEEO FY THE LLGCL PENCERUEE
        REVEFSEEINAEY, GY P.C.CTNGLETON, CRI.
    DIMENSIDN A (153E4),B(15384)
COMMON/FFTCC/ M,JD(15),ST(1E)
OIMENSION JC(15)
CALL OOLLCALL(48HE/L/7:
M=MM F CALL FFTC F IF(V.LE.1) E=TUQN
NO=NOEL
OC 1J, LC=1,15
JC(LC)=JD (LC)*NO
N=JC(N+1)-ND+1 क N NP=N+1
K=1 $ I=NO+1 $ J=U-NO
LC=M
K=K+JC(LC)*JC(LC)=-JC(LC)
IF(JC(LC).LT.こ) GOTO 4
IF(LC.EQ.2) FETUFN
LC=LC-1 & GO O 3
IF(K.LE.I.OF.J.LT.K) GO TCS
T=A(I) & A(I)=A(K) & A (K)=T
Y=E(I) B(I)=B(K) B(K)=T
IF(J.ミQ.K) GO TO=
KK=NP-K
T=A(KK) & A(KK)=A(J) & A(J)=:
T=B(KK) & B(KK)=B(J)&B(J)=?
I=I+ND & J=J=N:D $ GC TO 2
ENO
SURROUTINE CFFTRCD(A,B,MM,SCALE,NEXF,NDEL)
        DISCDETE COMPLEX FAST FCURIER TRANSFOFM.
        CALL CFFTPCD(A,E,M,SC,NX,N7)
        OU-PUT A(K) & I*B(K) IN NO?MAL SEOUENCE.
        ND IS SURSGRIFT INCFEMENT ECO A, R.
        SE\capUENCE LFNGTH IS N = 2***
        SC IS PEAL SCALING MULTTPLT=F. THE SIGN OF THE EXPONENT IN THE TFANSFOFM OEFINITION.
        INNER LOOP SINES ANO COSINER CCMPUTEJ
        RECUPSIVELY RY SINGLETOMAS 2NL-DIFFEF=NC= ALG\capRITHY,
        IHITIALIZED FPCM A CATA TABLE.
42
```

```
        WRITTEN BY L. DAVID LEWIS ANO MARIE WEST, FSSA.
```

 MOTIFIED FFOR, OR INSFIDED TY THF ALGOL POOCENURE
 OEVERSEFOURIEPC, BYP.C.SINRLETON, SRI.
 DIMENSION A \((16384), 9(15384)\)
 CCMMON /FFTCC/ M, JO (15), S(15)
 CALL ROLLCALL(48H\%/4/71
 \(M=M M\) \& \(\quad\) BALL FFTC
 \(N C=N O C L\)
 \(N=J D(M+1)\)
 \(K=N /=\)
 \(N O=K\)
 JSP \(A N=N D\)
 NO2 \(=2 * N D\)
 NLIM \(=1+(N-1) * N D\) \& \(N N=N L I N-1\)
 \(S C=S C A L E\)
 IF (ABS(SC-1.).LT.1.E-1) GCTO \(\rightarrow\)
 \(D D う J C=1, M L I M, N D\)
 \(A(J C)=S C \quad * A(J C)\)
 \(E(J C)=S C * B(J O)\)
 CONTINUE
 IFPM.EO. O DTUFN
 GO \(1 \mathrm{O} K K=4\), NLIM, Nr2
 \(K 5=K K+N O\)
 \(\begin{array}{ll}F E=A(K K)-A(K S) \\ A(K K)= & A(K K)+A(K S) \\ A(K S)= & P E \\ F I M-B(K K)- & \\ Q(K K)= & \\ B(K S)=F I M & \end{array}\)
 CONTIVUE
 IF(M. -Q. 1) FETUFN
 EXDS \(=\operatorname{ISIGN(1,N:ZXP)~}\)
 [r. 90 10 \(=2, \mathrm{M}\)
 \(E \Gamma=-5(J D-1)\)
 \(\Gamma n=2 . * S(J ワ) *<(19)\)
 \(\Delta=-2 . * C D\)
 \(C N=1\).
 \(C^{M}=\therefore\) 。
 \(S N=\cdots\) 。
 J. \(3=\) ?
 \(K K=1\)
 \(S M=+E X P S\)
 12
 JSDANH \(=\) JSDAN
 JSPAN \(=\) JSPAN + JSPAN
 20
$K S=K K+J S P A N$
$\overline{Z E}=C N * A(K S)-S N * 3(K S)$
FIM $=S H+4(K)+C H * a(K S)$
$A(K S)=A(K K)-2 E$
$\Delta(K K)=A(K K)+2 E$
$B(K \subseteq)=B(K K) \cdot F I N$
$B(K K)=B(K K)+F I M$
$K K=K K+J S P A N H$
$K S=K S+J P A M H$
FIM $=S: A * A(K S) * C M * \nabla(K S)$
$R E=C M * A(K S)-S N * Q(K S)$
$A(K S)=A(K K)-R E$
$A(K K)=A(K K)+2 E$
$B(K S)=B\left(K_{K}\right)-F I N$
$B(K K)=E(K K)+F E N$
$K K=K S+J S P A N H$IF (KK.LT.NLIM) GO TO 2?
30
$K K=K K-N A$
$K K=K K-N A$
$J J=J J+K$
$J J=J J+K$IF(JJ.GE.NO) GOTC :
$C D=P * C N+C D$
IF(JJ.GE.NO) GOTOR:

$$
70
$$

$$
C N=C D+C N \quad-9
$$

$$
S N=C N * E P S
$$

$$
S D=2 * C M+S D
$$

$$
\Gamma M=S D+C M
$$

$S N=-C M * \leq X P S$
GO TO 2:
$8 \mathrm{C}=\mathrm{K}=\mathrm{K} / 2$
90 CONTINUE
ENC
SUBROUTINE FFTC
COMMON SUBPOUTINE FOP FFT GUQRCUTINES.
JC IS POWEFS-OF=TWO AFFAY.. JC(M)=2**(M-1)
ST IS SINE ADFAY. $S T(M)=S J A_{i}\left(P T /\left(2^{* * M))}\right.\right.$
4 IS TESTEN FOR PFODER INPUT PANGE, ? LF.ME. 1\&.
CCMMON /FFTCC/ M,JC(15),Si(15)

IF(M.LT.J.OF.M.GT.14) CALL OBO=RFCF(O,1•HM TLLYGAL.)
RETURN
END
ว. 9?17140? 296E-U2, $4.0 ? 576743 ? 4 E-372$,
2.53399:186205-: 3, -.5590 3 319743E-204,

Computer Program Modifications to obtain Theta and Phi Vector－Component Output Instead of Azimuth and Elevation Vector－Component Output

I．Required changes to VECTOR－COMPONENT－COMPUTATION section of program FAREA； replace DO loop，DO $33 \mathrm{M}-\mathrm{I} 1$ ，I2 thru statement 33 ，with the following：

```
VECTOF=COMPONENT COMDUTATION
    DC 33 M=I:I2 $L=M-K LLL=M+NO *U=(M-NXY)*OFL FTF(VV.EO.N.) & 6, 4.7
46 CCST=U**2 $ SINTH=U $ IF(SINTH.EN. S.) 2E,??
26 IF(J.EQ.ड) 27,2&
27 COSP=1.: SINF=C. * GO T0 32
28 SINP=1.! & COSP=%. & GO TC 32
47 COST=U**?+VV SIHTH=SONTROOS*)
29 IF(J.ごQ.j) 36,31
30 CCSD=U/SINTH $ STMD=V/CIN-H $ GO TO 32
31 SINP=U/SINTH * COOP=V/SIMTH
32 THETA(L)=5`.255-7シ5 133+2*ASIN(U/RCPE)
    ZZ=(6.,1.二)*{EI(M)*COSP+EI(LL)*SIND)
```



```
33 5I(M)=Z7. LL=I1+ND
```

II．Subroutine PAMPLOT DATA－statement change；replace the first DATA statement card with the following：

Computer Program for Computing Principal-Plane-Cut Far Fields
(This program ignores the jump change in sign of the electric-field vector when passing through the coordinate-system origin. Refer to equations (10) and (11) of Appendix A for details).

PROGRAM FARE (INPUT, OUTPUT,TAPE1=INPUT)
OIMENSION STOR(1024), E(4096), THETA(1024), DATA(2048)
EQUIVALENCE (THETA,STOR)
COMPLEX STOR,E
DATA (NMAX=1024), (NDIMEN=4096)
94 FORMAT(4F7.0,2XA10,1X2I2)
95 FORMAT 1 1H1, $2 \times 52 H A L P H A=X$-COORDINATE APERTUFE DIMENSION IN WAVELENGT THS, 9×51 HBETA $=Y-C O O$ RDINATE APERTURE DIMENSION IN WAVELENGTHS/3X57HS UX=RATIO OF WAVELENGTH TO X-COORDINATE DATA-POINT SPACING,4XETHSY=R. VATIO OF WA VELENGTH TO Y-COORDINATE DATA-POINT SPACING/3X39HBANNER= W10-CHARACT ER PLOT IDENTIFICATION, $4 \times 39 H N Z X, N Z Y=Z E R O-F I L L ~ A R E A ~ D O U B L ~$ XING FACTORS, $4 \times 44 H N N X, N N Y=N U M B E R$ OF TERMS IN X - AND $Y-F F T$ SUMS///8H Y ALFrA $=, F 0.3,4 X \in H B E T A=, F 8.3,4 X 4 H S X=, F 7.3,4 X 4 H S Y=, F 7.3,4 X 7 H B A N N$ ZER., A10, $1 \mathrm{H}, 4 \times 4 \mathrm{HNZX}=, \mathrm{I} 2,3 \times 4 \mathrm{HNZY}=, I 2,7 \times 5 \mathrm{HNNX}=, I 5,4 \times 5 \mathrm{HNNY}=, I 5111$
96 FORMAT 1 1HO, $25 \times 37 H A R F A Y ~ O I M E N S I O N S ~ T O O ~ S M A L L ~ O R ~ I L L E G A L / / 1 X 5 H N N X ~=, ~$ $A I 5,3 \times 20 H N N X=2 * * M M X, ~ M M X=, I 3,15 X 5 H N N Y=, I 5,3 \times 20 H N N Y=2 * * M M Y$, BMMY $=, I 3,15 \times 22$ HCOMP UTED E-UIMENSICN $=, I 6)$
97 FORMAT(25×5 HMMX $=, I 3,25 \times 5$ HMMY $=, I 3 / /)$

CONPUTATION OF THE FAR-FIELD PRINCIPAL-PLANE CUTS OF THE THETA- AND PHI-COMPONENTS OF THE ELECTRIC-FIELD VECTOR OUE TO A GIVEN NEAR-ZONE ELECTRIC-FIELD DISTRIBUTION IN A SPECIFIED AFEPTURE, ALONG WITH COMPUTATION OF THE FAR-FIELD PATTERNS FOR THESE PRINCIFAL-PLANE GUTS.

THE DATA SPACING BETWEEN X - OR Y-COORDINATE ELEMENTS IS ASSUMED TO BE FIXED NMAX $=$ QIMENSION OF AREAYS STOR AND THETA. DIMENSION OF ARRAY DATA SHCULD EQUAL $2 *$ NMAX. NDIMEN IS THE CIMENSION OF ARRAY E. NDIMEN SHOULD EQUAL TWICE THE SUM OF THE X-AND Y-FFT DIMENSIONS. the maximum useful value of noimen is 4^{*} nmax.

INPUT PARAMETERS.. ALPHA=APERTURE WIDTH IN WAVELENGTHS (X-COOROINATE) BETA=APERTURE LENGTH IN WAJELENGTHS (Y-COORDINATE) SX=RATIO OF WAVELENGTH TO X-COOROINATE UATA-POINT SPACING SY=RATIC OF WAVELENGTH TO Y-COUREINATE DATA-POINT SPACING BANNER $=10$-CHAFACTER GFAPH IOENTIFICATION NZX=NUMBER CF EXTRA OOUBLINGS OF THE ZERO-FILL REGION FOR THE X-FAR-FIELD-CCORDINATE FFT. (NORMALLY=1) NZY=NUMBER OF EXTKA DOUBLINGS OF THE ZERO-FILL REGION FOR THE Y-FAF-FIELD-COOROINATE FFT. (NORMALLY=1)

THE INPUT DATA IS ASSUMED TO BE SUPPLIED AS FOWS OF X-COORDINATE DATA, EACH EOW CORRESFONDING TO A FIXED VALUE OF THE Y-COORDINATE. ALL OF THE E-SUB-X DATA IS TO BE SUPPLIED FIRST, AND THEN THIS INFUT DATA IS TO BE FOLLOWEC BY ALL OF THE E-SUB-Y DATA. THE PROGRAM OBTAINS THE INPUT DATA THROUGH FEPEATEO CALLS TO THE USER-SUFPLIED SUBROUTINE GETAFAY.

EACH CALL TO EUBROUTIN GFPARAY RESUL-S IN A ROW OF NX OMPLEX OATA POINTS = CCH SLCOESSIVE CALL COPROSOONOING TO A ROW SUCCESCIVELY FURTHEF SELOW THE TOP NE THE APEQTURE. HEE, NX IS EOUAL TO THE FFODUC SX * ALPHA. THF NUMGE OF QOWS. OO THE NUMBEF OF CALLS TO GETARAY, IC CIYEA BY NY = SY * EETA.

NUMREP OF DATA CAFRS USEO BY PROGRAM+SURFOUTINES $=3$.
UPON COMPLETTNG A GTVEN SET OF FAR-FIFLS ORINCIPAL-PLANE COMPUTATIONS, THE COMOUTER PFOGPAN WTLL THEN PETUON TC THE BEGINING DF THE FRCGRAN TO PFAC A HEW OATA CAFT AND ST:RT ALL OVEP AGAIN ON A NEW FAF-FIELO COMOUTATION. THTS TIME, HOWFVER, THE DLOT- ING ROUTINE PADANETEES AN LEGENC THAT WERE F=AD IN, OY THE FIRST TIME THFOUGH THAT SURROU-INF, ARE SIMPLY RECGLLFO ANT USED NVER AGAIN. THF USFR MUST MAKE SURE SUBROUTINE GZTARAY CAY SUPPLY A NEW SET CF N:AF-FIELC DATA IIPON FESTARTING TH O DSOGGAM.

C PAFANETED DEAD-IU

```
1 PEA\cap QL, ALOHA,BETA, SX,SY, GANNER,NTX,NTY
        IF(EOF(:),NE,C) GOTO 23
```

CALCULATTON CF NX LNO NY $N X=1$. * S X F ALPHA $\quad N X=2 * N X+1$ \& $N Y=-5 * S Y * 2=-A * N Y=2 * N Y+1$ $S X=V X /$ ALPHA \& SY=NY/OETA

```
CALCULATION OF NMX APO PINY, LLCNG WITH NMX ANT WAY
        MYX=MMY =NNX=NN:Y=1
    2 M:4X=MNX+1 & NNX=2*NNX क IF(NNX.ET.NX) 3.2
    3 NNX=2*NNX * IF (N? P) - & F, &
4L NNX=NMX/2 & MMX=M\X-1 ; 60 +0 =
    4 DO = M=1,N7X + MNX=NMX+1
    5 NMX=2*NNX
    E MNYY=NMY+1 N MNY=2*NNY & IF(NNY.C.ONY) ?, E
    7 N:YY=2NHNY & IE (NTY) - - 1.%,R
    45 N:Y=NNY/2 & M*Y=M:Y-1 क GO TO 1.
    & Dr 9 M=1,NZY * MMY=MMY +1
    9 NNYY =2* NMY
```



```
    IF(J.GT,NOINEN,OR,NN,GT,NMAX,OJ,MM, RT,1, N:1,12
11 PEJMT GF,,lINX,HMX,WNY, NWY, * O, &L EXIT
```

C INFUT PASASTEF FRTN-OUT

DEINT 9^{7},MMX, MMY
COMPUTATEON OF AFEFTUE 二 CATA-DOIHT SPAOTNGO

COMFUTATIDM OF ACER URE-OATA POETTON WTTHTN -HE TV EGOATIDN INTEEVAL
FLCTO? $=1.6 /(S X * S Y) \& I 3 X=(N N X-N X+1) / 2$ \& $I ? Y=(N N Y-N Y+1) / 2+N N X$
PPE-ZEROING CF INTEGZAL FIELE
[C $13 \quad M=1, \mathrm{~J}$
$13 \equiv(\%)=(E .[)$.

DO LOCP - O COMPUTE TWO PLANE-RUT INTESOALS CVEG AOE TURE-FIELO VETOR On $25 I=1,2$ a $M X=110 *(I-1)$ \& $I X=P X+I ; X$ \& $I Y=4 X+T: Y$

SET-UP DF INTEGEAN: - COLLAFEE OM X - ANC Y=FLQH SUOC $D C: 4 K=1$, NY \& $J=K+I Y$

CLLL CIETAPAY（ETCPNXI
00 1－$L=1, N X \quad N=L+I X$
$E(M)=E(M)+C^{\top} O+(L)$
$14 E(J) \div=(J)+S T O R(L)$
INITIALIZE Y－PLANE－CUT DAOANET＝OC
$N X Y=N X \quad M M=M N X$ \＆$N N=N N X$ \＆$\quad \cap L=$ OFLX \＆$L L=L!X$
FACTO $==-F A C T O F \quad \& \quad J=!$
15．NMID＝NN／2＋1 \＆I2＝IX＋NXY $\quad T 1= \pm X+1$ \＆IF（MOD（NXY／2，2）．E0． 0 ）I $1=I:+1$
PRE－FFT HULIIPLICATION $\because Y(-1) * * M$
DC $16 M=I 1, T 2,2$
$16 E(M)=-E(M)$
FFT COMPUTLTION
CALL CCFFT2（E $(M X+1), H M, F A C+\cap D,-1)$ $I:=1 X+2$＊$I 2={ }^{M} X+N N$ \＆$J J=M C \cap(J+T-1,2)$

POST－FFT MリLIPLICGTION AY $(-1) * * J$
$0017 \mathrm{M}=I \pm, T 2,2$
$17 E(M)=-5(M)$
FESTEICT OOMPUTATIONS TO Z 二AL POLAO SPATIAL－FEENUMRY ANOLES
IF（LL．G $\left.{ }^{+} \cdot N M \leq D-2\right) ~ 18,19$
$18 \quad I 1=M X+1$＊$I ?=M X+N A$ \＆$K K=C$ \＆\quad ，$\cap 2^{\text {？}}$
$19 K K=N M I J-L \quad$ \＆$I=K K+M X$ क $I ?=I 1+? * L L$ \＆$K K=K K-1$
20 NMID $=N M I ?+N X * K=K K+!X$
VECTCF－COMPONENT COMFUTATION
DO $23 \mathrm{M}=\mathrm{I}$ A，I2 \＄L＝MーK \＄LL＝M－KK
CTNTHTA＝（M－NMTD）FПEL \＆－HETA（L）＝5？．2957705：？＊02＊ロSIN（STNTHTA）
IF（JJ。ER． $121,2 ?$
$21 E(L L)=(\ldots 1.01 * c(\cdots) * 60-0 \geq$ ？

23 CENTINUE
VECTOF－COMFONENT PLO－TING
CALL PAPLOT（L，E（MX＋1），THFTA，$\triangle T A, ? * N N, B A N N=0, ?)$
IF（J．
INITIALIZE X－PLANE－C！T PADANEOSO

$25 L Y=L$
$I:=N N X+: \quad T 2=N R X+L Y$
ANTENNA－PAT－EON COMPIITATION
DR $26 \quad M=I 1, I 2$ \＆$J=M+M!$
26 ULTA（•1）＝SQFT（FEAL（E（N）＊CCNJG（－（M））＋E（J）＊CONJ「（＝（J）））
ANTEPNA－PATTERH PLO ${ }^{+- \text {ITNG }}(X-F L A N E ~ C U *)$
CALL PAPLOT（LY，$\because ., T H=T A, C A T A(I 1), L Y, E A N N E R .1)$
$O C 27 M=1, L X \quad J=1+N O$

C ANTENNA－DAT＋EFN FLOT－INS（Y－FLAN＝C，IT）
CALL DAPLOT（LX，こ．，THETA，OATA，LX，PANNEF，I）
GCTO ：
28 CCNTIMU＝
ENC

I．SUBROUTINE name change and SUBROUTINE argument－list change：

SURZOUTINE PAFLOT（N，ED，XVALUE，2ATA，N2，EANNE＝，MOn三）

II．Subroutine DATA－statement change：

III．FORMAT－statement change and change in ENCODE statement（the latter statement is located just following statement 29）：


```
ENCDO:(~2,1こ0,BE) ANOFM,ELAT(IP),GONP(IA),COMP(IE 1)
```

IV．Replace statements 32 thru 35 （located at end of subroutine）with the following six statements：

```
32 IF(IA.En.1) 3.3,36
33 IF(I3.Eロ.1) 34,35
34 IA=3 * I 9=2 & GO T0 37
35 I&=j $ GO TO ?7
36 It=402(IB,2)+1 % IF(IP.EO.2) IA=1 吉 IF(NODE.Eク.1) In=1
37 RETURN
```

U.S. DEPT. OF COMM. bIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. NBSIR 81-1643	2.Cov't Accesstion No		
4. TITLE AND SUBTITLE Efficient Computation of the Far Field Radiated by an Arbitrary Rectangular-Aperture Distribution			5. Publication Date March 1981	
			6. Pertorming Organization Code	
7. AUTHOR(S) Richard Lewis			8. Performing Organ. Report No.	
9. PERFORMING ORGANIZATION NAME AND ADDRESS NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, DC 20234			20. Project/Task/Nork Hit No.	
			11. Contract/Grant No.	
12. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, zIP) Electromagnetic Compatability Analysis Center Annapolis, Maryland 21402			13. Type of Report \& Period Covered	
			14. Sponsoring Agency Code	
15. SUPPLEMENTARY NOTESDocument describes a computer program; SF-185, FIPS Software Summary, is attached.				
16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey. mention it here.) This report contains the computer documentation for calculating the far-zone electric field due to a user-prescribed electric-field distribution within a rectangular aperture The far-field output is computed along two arbitrarily selected, perpendicular, spatial frequency plane cuts. Program execution time is minimized by the use of fast Fourier transform (FFT) processing. The program was designed so that the required far-field output is obtained by processing only two, vector, one-dimensional FFTs. The far-field results are obtained in the form of elevation and azimuth vector components and electric field-vector magnitude. A complete analytical discussion of the problem is presented, along with sample graphical output to illustrate how aliasing and output resolution limitations effect the graphical results.				

17. KEY WORDS (six to twelve entries; alphabetical ordor; capitalize only the firat letter of the firat key word unless a proper name;
separated by semicolons)
Algorithm; antenna; aperture; computer program; electromagnetic; far-field; FFT; Fourier transform.
18. AVAILABILITY [X] Unlimited
\square For Official Distribution. Do Not Release to NTIS
\square Order From Sup. of Doc., U.S. Government Printing Office, Washington, DC 20402,
[XXOrder From National Technical Information Service (NTIS), Springfield, VA. 22161

19. SECURITY CLASS (THIS REPORT) UNCLASSIFIED	21. NO. OF PRINTED PAGES 45
20. SECURITY CLASS (THIS PAGE) UNCLASSIFIED	$\begin{aligned} & \text { 22. Price } \\ & \$ 6.50 \end{aligned}$

[^0]: © $Q C$ 100
 .456
 81－1643
 1981
 C． 2

[^1]: ${ }^{\dagger}$ Here, $d B L$ is taken to mean $20 \log _{0}(E)$, where E designates the quantity whose amplitude level is desired. (cf. IEEE Standard Dictionary of Electrical \& Electronics Terms under "level".)

