
NAT'L INST. OF STAND & TECH R.I.C.

AlllDS

. NBS

Publications

NBSIR 80-2182

M7: A General Pattern Matching
Facility Users Manual

A. R. Marriott

G. H. Skillman

S. B. Salazar

W. T. Hardgrave

Application System Division

Center for Programming Science and Technology
Institute for Computer Sciences and Technology

U.S. Department of Commerce
National Bureau of Standards

Washington, DC 20234

January 1981

C - DEPARTMENT OF COMMERCE

100 iTIONAL BUREAU OF STANDARDS

.056

80-2182

1981

NBSIR 80-2182

M7: A GENERAL PATTERN MATCHING
FACILITY USERS MANUAL

ATlOJfAL BCBBAU
or aTAMDABUB

LUBABT

MAY 2 2 1981

IQ o

/
'

A. R. Marriott

G. H. Skillman

S. B. Salazar

W. T. Hardgrave

Application System Division

Center for Programming Science and Technology

Institute for Computer Sciences and Technology

U.S. Department of Commerce
National Bureau of Standards

Washington, DC 20234

January 1981

U.S. DEPARTMENT OF COMMERCE, Philip M. Klutznick, Secretary

Jordan J. Baruch, Assistant Secretary for Productivity. Technoiogy, and Innovation

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

'_**yAU* jA9UirrA»

I
ntAittt

S S

..l-v.w ;^: JAW3VI30 A :tM

mm JAUVI^ 8R38U YTUIOA’I

fe'.* :

’"

•
'

.

»
,

; Y,„ i:
;

'5?

' ’ygoioarfe^t bo« t»3(rt«*o8
""

;.^
r'"»3iamiT«0''te> .:-'-

A General
M7:

Pattern Matching Facility
Users Manual

A. R. Marriott
G. H. Skillman
S. 6. Salazar

W. T. Hardgrave

November 1980

Version 3-0

Application Systems Division
Center for Programming Science and Technology
Institute for Computer Sciences and Technology

National Bureau of Standards
Washington, D,C.

M7 is a pattern matching and replacement fa-
cility developed as a UNIX tool for translating
and reformatting queries, languages, and data. M7
operates by first preprocessing a set of user de-
fined macros, then using these macros to match and
replace the text in an input string. The enabling
of the rescan option directs M7 to match and
rematch the macro patterns against the input
string until all possible replacements have been
made. Three construct ions--tags

,
stacks, and

count ers--allow communication between different
macros and different input strings, to permit such
functions as line numbering, labeling, and argu-
ment passing. This paper includes a tutorial
which shows how to construct a set of macros to
solve a typical problem using, as an example, a
piece of a FORTRAN to C translator.

*4j

J tN '
^

t^illtttt tftS43i'^*H XH4«9»0 A

Ri
^ -

'

™<-^
--i-* -^.

"%a »<^''"^i-'‘

.ir ^’ XHMUft. .,
. J»S«])G».

^T*'
,.

?l:

na«XiX3l8^^^H,, :©'.
,, jrl'pi

‘

! ’*2

|»y»4§ik'T4t

.^r—

W *. cr-W^
'

<-0»£, aot«'^«f
' ^ .;'.V ; .;*:« ly

m..

-.. . . i-r™iJb-.^' i 1

fra* menii^7 0'& '*•1443^
X«oi4atfOft^btf* aafr««X'i« 4*i'tt«ifo.O 0;tpJJi:i a nl

^

_
'.id̂

-
' ' "

efrt'afra* 4£ !»!*4*14 ai&™mi ^

'

fL

Wl-

i‘

’

-.

’'4 > .y

,
V^< V

—
-v>^"

'?».
. '^T’ "its

tH’ "^4j8fr :fr<t,» ji4i4'4*mdiai''fraaii^^f
'44i«ft' A 4o4-^%t4s «a4«n»<t4 "

'j

t>n,8 4aJ'&a fff{f^-%mo^&4k^t>0 it:il; ' .

3^0-lX tf'T'^'-: ^'141
'

'rt'ji' -ai'iiA x» 4gfr tl 4

i)fl«' fr ft4'0«'i'',I^Tfr^i.;fl 01444^' '0*oeaf®'»44 lo

ioQi»x"^$4:4''''"^-'44^1A^^ on.AiMI ,i!fr'44 4fr4»^'»t '^lii

nit^aej ». V n,rf ’iti '
©-414

A'f'
^*('4'

:

'''''fr-i;*^!A» 44
' X
i

'i

X

4 na
•
8«:'i t,4 fr

frn«’ ;j^Ji3(^«i;«.
,

«>frAr'

J na‘1^5'1 X <1 :©, X^t%ci4,o,^ '

woXXa-*’i^

d o*»
r

’’4 Xia4a4 ' ’s>Jpr.:a'j^'^© o,a^'l", 4is:i^^llfr': ,frfl*:»ao"s©*•
•u$'ta;4fr(5« «dpl4fraat
laiToxa'a . a

.

"

M
, © X««,fl T® "'n«.' 6,«*

,

, ao»i4 - o «,

'
•• V ':^»'

' .J: (-
^'

'

-9

FEDERAL INFORMATION PROCESSING STANDARD SOFTWARE SUMMARY

01. Summary date

Yr. Mo. Day

fL n 2 n. 2.
04. Software date

Yr. Mo. Day

.a.SLXLS. 1.X

02. Summary prepared by (Name and Phone)

Sandra B. Salazar X3491
05. Software title

M7: A String Pattern Matching Facility

06. Short title ML

03. Summary action

New Replacement Deletion

B
Previous Internal Software ID

07. Internal Software ID

08. Software type

Automated Data
[~~) System

Computer Program

|~| Subroutine/Module

09. Processing mode

[~] Interactive

Batch

[~^ Combination

10 .

General

Application area

Computer Systems
Support/Utility

[~| Scientific/Engineering

Bibliographic/Textual

Management/
[~| Business

Process Control

Q Other

Specific

Pattern Matcher

11. Submitting organization and address

Application Systems Division,
National Bureau of Standards
Department of Commerce
Washington, DC 20234

642

12. Technical contact(s) and phone

S. B. Salazar
W. T. Hardgrave

921-3491

13. Narrative

M7 is a pattern matching and replacement facility developed as a UNIX

tool for translating and reformatting queries, languages, and data. M7

operates by first preprocessing a set of user defined macros, then using

these macros to match and replace the text in an input string. The

enabling of the rescan option directs M7 to match and rematch the macro

patterns against the input string until all possible replacements have

been made. Three constructions -- tagSi stacks, and counters -- allow

communication between different macros and different input strings, to

permit such functions as line numbering, labeling, and argument passing.

14. Keywords

macroprocessor; pattern matching; query processor; software tool

;

text processor; translation; UNIX.

15. Computer manuf'r and model

PDP-11

16. Computer operating system

UNIX

17. Programing language(s)

c

18. Number of source program state-

ments _
3K

19. Computer memory requirements 20. Tape drives 21. Disk/Drum units 22. Terminals

64K NA 1 1

23. Other operational requirements

I

24. Software availability

Available Limited

26. FOR SUBMITTING ORGANIZATION USE

25. Documentation availability

In-house only Available Inadequate

0
In-house only

185-101 Standard Form 185
1974 July

U.S. Dept, of Commerce—NBS
(FIPS. Pub. 30)

99^-^SS - O H6I : OdO

'uo!)ej3do |BUia)Uj jo^ |ti^n paiuaap

uoi^eujjopjj Aue uie^uoa Aeiu)| 'Ajeiuujns S|M) 8u|U!Uiqns uoi^ezmeaio aq) >o asn aq) Mt papjAOJd s| eaje s|qi *8sn uonaziuaSiO Su|U|Uiqns Joj '9^

*a)ep A^jiiqeijeAe papadxa aq) Moqs ‘„a)enbapeu|„ Xijuasaxl Sj uojte^uauinaop ‘aiqjssod ‘aiqeijeAe Sj uoqetuauinaop aq) qaiqM u| uiJO|

pue aajjd aq^ se naM se ‘)u|od ;at)uo9 auoqd jo ||eui a apn|ou| '„aiqe|jaAv„ si uoi)e)uauin3op *X|uo asn asnoq-u| joj pua ‘uonnqiJ|sia Jo^ atanbapa
•u| “oiiqiid aq) O) aiqaiiaAV :8uouia umj^ ^jnqaiiBAa uo|)a)uaiunoop aq; saqjjosap)saq qaiqM xoq a^ajjdojdda aq) qjayy 'X)|||qa||BAV uonatuauinooQ *sz

'aiqissod ‘aiqaneAa S| ajaMi^os aq) qafqM u| ujjo| pue
33ud aq; se naM sa ‘)UjOd pa)uo3 auoqd jo |jauj a apnpu) ‘..aiqaijeAv,, S| ajeM^os aq) || 'Aiuo asn asnoq*u|-Joj pue ‘(A|uo asn)uaujujaAo8 jo| :'8*a)

X;i|!qe|jeAv pa)iuin ‘aiiqnd aq) oi siqa||aAV :8uouie ujoj| AtniqeiiaAe ajeM^os aq; saqpasap paq qoiqM xoq apiJdojdde aq;)peM ’XmiqeiieAV ajBM)^ ’pz

'Sjauo|d 0!qdej8 ‘uimoJO|ui)nd;no-ja)ndujo3 'aijuijsae^

‘saajAap japejeqa |eoj)do “8'a 'aAoqa papoipuj ;ou tuauid|nba papiaj jo ‘ajeM^os poddns ‘saaiAap lejaqduad Aiquapi *s)uaujaj|nba)j lauonejadQ jaqio CZ

-op ‘az|s au||/uaajos *ps japejeqo ‘paads ‘adA) ‘leojtijo /i ‘^joads ‘pajjnbaj S|eu|uua) jo jaqujnu A^i^api ’S|au|uijai ‘zz

•0i» ‘lapoiu

‘jajnpe^nueiu ‘lesquo >| ‘^pads 'ajeMUOS a^ado o) papaau (6l UJ8)|—..Ajoiuayv,, se s}jun aujes u|) azis pue jaquinu Aji^uapi t)|un uinja/qsia 'iz

‘o;a 'A)|suap 8ujpjoaaj 'sqosj} 'ppoui ‘jajnpainueuj ‘paquo ‘^toads 'ajemuos apjado o; papaau jaqujnu ^j;uap| 'saAiJQ adei *oz

'(CI u<a)!) aAjpjjeN aq) uj s)uaiuaj|nbaj Aioujauj lenvijA Aiipapi 'tfun jad s)iq p jaqiunu pue *-op ‘sjapejeqo ‘sa^q ‘spjOM A^jaads 'uiapAs
8u;;ejado aq) jo^ pajmbaj Ajouiaui p aApnpxa ‘ajeM^os a^naaxa o) Aiessaaau Ajoujauj pujapj luniujujiu Jap3 *s)uauiaj)nba)| Ajouiay^ ja^iduioo *61

-ap ‘sauqnojqns pauea ‘sojaeiu apjedas ‘ajeM^^os Sjqt ui spaiuapp apnpu| -stuauiate^ uiej8oJd aajnos to jaquinN '81

•ii Hinais
‘911 IdldOSV^IS ‘A NVdlHOd ‘10803 ISNV “8‘a iuojSJOA 8ujpnpui ‘uaujjM s| ajeM^os aq; qaiqM uj (s)a8an8ue| aq) A^jpapi -(s)a8en8uai SujUjej8oi(| *^i

'(El uia)!) aAitejjeN aq^ ui spauiaauequa A|j;uap| ‘8uqejado sj ajeM^os qajqM japun aseapj pue 'jaqiunu 'auieu japa -uiatsAs 8u.qejado J8)nduio3 ‘9T

‘leuojpjado st ajeNq^os qajqM uo (s)jatndujoa auiej^ujeuj A^quapi ‘lapow pue jajnpepiueM japduioo 'sx

'suopajoias q;|M sajjpa apjedas 'ajeM^^os aq) p sajnpa^ pue suo|xeai|dde ‘suo|pun| aqx paqaj qajqM sasejqd jo spjoM xueaj^ju8js pj-j 'spjoMAa)| '^x

'axejjdojdde ^j ‘saauajapj ajjQ

sajnpa^ ajoMpjeq anbjun pue ‘sxuauiajjnbaj Ajouiauj fenvijA ‘ejpauj jndxno pue xnduj 'ajeM^^os jaqp o; sdjqsuojpjaj ‘sujaauoa Aijjnaas ‘suoj^ea

-qipouj luapAs Sujpjado jejoads se qans sjope/)ueauju8js apnjaui ‘uojxnjos p spoqpui pue passajppe luajqojd aqi Ajasjauoa aqjjassQ *aAjiejjeN 'EX

‘XX ujaxj uj pqx ujoj^ xuaja^jp |j ‘ssajppe 8uj|jeiu pue ameu uojpzjue8jo apjAOJj ‘apoa eaje auoqdaja; apnjauj -ajeM)^os p
spadse leuojpjado jo/pue jaueui pafqns uo uojxeuuopi pajuqaax jo^ papepoa aq o) (s)aajj^o jo (s)uosjad japa :auoqd pue (s)pepoo jeajuqaax ‘ZI

‘apoa dIZ pue 'app ‘Axja ‘ssajppe pajp ‘apoa ijeui

Sujpnpuj ‘ssajppe 8uj|jeuj apjduioa uj iijj ‘jjaunoo jo ‘uojssjuiuioo ‘uojpjodjOQ ‘aajAjas ‘(uojpjpjujujpy/neajng) paujviedea ‘Aaua8v 8ujpn|auj)nq

‘laAaj uojSjAjQ JO qauejg aq; O) ‘aiqjssod se Ajspidujoa se sjeM^os aqx jo; sjqjsuodsaj uojpzjueSjo aq; A;j;uapi ‘ssajppy pue uo|;ezjueSJO 8ujpjiuqns ‘XX

„‘j8qK}„ Sj eaje jejauaS aq; ;j ajaq a;ejoqeia ‘3;a :„ss8Ujsng/;uauja8eueM„ sj eaje lejauaS

eq; t\ ..llojAed,, :„A;!|j;n/vioddns suja;sAs ja;nduj03„ sj eaje |ejaua8 aq; ;j „jazjUJj;do 10803m "S'e :uoj;eaj|dde ;o eaje-qns aq; A;j38ds :a|;j38ds

jaqx) 8ujjaau|8ua/3|;i;ua|3S

|enpax/3|qdej8o||qjg ssaujsng/pauj88eueiq
pjpoQ ssaaojd Apiui/Vioddns suiai^s Japduioo

:8uouie poj; uO|;eaj|dde ;o eaje |ejaua8 aq; saqjjasap ;saq qajqM xoq o;ejjdojdde aq; MJe^ qejauac)

‘eajy uojxeajjddy *ox

-8jeM;;os aq; saqjjasap ;saq jaAaqaiqM ‘apouj uogeuiquioo jo *qa;e8 *aA|pej8}U| ue jo; xoq a;ejjdojdde aq; qje^ ‘apopi 8ujss8aoJd ‘60

‘ajBMUos aq; saqjjasap ;saq jaAaqajqM

‘a|npoM/auj;nojqns JO ‘ujej8oJd japdujoQ ‘(sujej8ojd ja;nduioa ;o ;as) uiapAs e;ea pa;euiopy ue jo; xoq a;ejjdojdde aq; >|jeM ‘adAi ajeM;ps ‘80

‘apoa JO jaquinu uoj;eaj;j;u8pj anbjun e J8;ug 'ai ueMxps leujapi *xo

‘ajeMUOS aq; S8j;j;uapj qajqM pAuoJae jo uoj;ejAajqqe pasn ApoujUiOa ja;ug (|euoj;do) ‘8|;ji p>qs ‘90

-aiqjssod se aAjyljjasap se ai;j; atje^ *a|;ji. ajeMUOs ‘SO

‘OOMNAA :;eujJo; Aea ‘qpoM 'Jeax asn ‘pa;epdn ;se| jo po;a|duJ03 seM ojeMuos a;ep J8;ug -apo ajeMyos ‘tO

•ujjo; sjq; uo xx Pue eo ‘20 ‘TO
siua;i A|uo a;a|dujoa :Ajeiuujns |eu!8 jJ0 aq; p /o uja;j uj paviodaj se uoj;eayj;u8pj ajeMuos |euja;uj aq; „ai ajeMuos |euja;u| snojAaJd,, japun ja;ua

‘pa;8|ap aq o; sj Ajeujujns ajeM^os e ;i Ajeuauns Mau e jo; se suj8;j jaq;o qe 8;a|diuoa :uuo; sjq; ;o /o uja;j uj uoj;eaj;j;uapj ajeM^os jeuja;uj Mau
aq; ja;u3 pue ‘Ajeuiujns jeujSjJO aq; ;o iQ uia;j uj pauodaj se uoj;eay!;uapj ajeMuos |euja;uj aq; ,.qi ajeM^og |euja;u| snojAaJd,, Japun ja;ua ‘;uaui

aaejdaj e si Ajeujujns ajej^ps sjq; ;| Ajeuiiuns p uojpiap jo Ajeiumns ;ueuioaepaj ‘Ajeumins Mau jo; xoq a;ejjdojdde aq; qje^ ‘uojpy Aieuiuins ‘EO

‘Aieujujns sjq; pajedajd oqM lenpjAjpuj p (apoa eaje 8ujpn|auj) jaqiunu auoqd pue aiueu Ja;u3 ‘Ag pojedajd Ajeuiuins ‘ZO

‘aONNAA :;eujJo; Aea ‘q;uo^ ‘jeax asn ‘pajedajd Ajeujiuns a;ep J8;ug ‘a;ea Ajeuiuing ‘XO

SNOIlOnHlSNI

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

1 . 1 BACKGROUND 1

1.2

DOCUMENT OVERVIEW 1

2. MACRO FILE 3

2.1 MACRO DEFINITION 3

2.2 FILE FORMAT 3

3. PATTERNS ; . . 5

3.1 GENERAL PATTERN MATCHING 5

3.2 SPECIAL CHARACTERS 5

3.3 TAGS, STACKS AND COUNTERS 11

4. REPLACEMENT DEFINITION 13

5. STACKS 15

6. COUNTERS 17

7. RESCAN FEATURE 19

8. CONTROL COMMANDS 21

9. EXECUTION OPTIONS 23

10. USING M7 25

11. FATAL ERROR MESSAGES 29

12. CONSTRAINTS AND LIMITATIONS 31

y ''if/UU'

mg^'/
|^vi-«- 0$^

,
»'^jiNi*.''#'ii

«wi '%gin

• » * <' •' *%,- - -IT • t' ,"•!
• :<•

'*' *

‘nj’ 4'. '4^
'
*** It# ml ;|[;^ #g4.> ii l iwtpiii* -<1

fT^4 •*•€ f^ *1 1 V A.W«HaI«^V\4 f >•
.'i

"t .>•*•« • • • • *' «

,

* «;»‘J-fi •.'*'< • • •.'«>|i!''»

•

» « 4'* •:,
^

vllJAH i

»^ •
. > »' f W ^tm0, Jr

’

"aa f' J T»
,

:SA!it„:.
**

' "" *"'"*
'f

* ” * '
-^5,

^**|i»r5fW 5^, ,.; S

.
, M

''
'v!^'' It . Sit ''•j-.f'’'

- '
'^i. *.rt'«*l A

n."'*

U'P«4 •«"

‘f\
.

•flj

er

v'.'- %.« >.'«*% • •.*• •• J'i-v. 2aiiAMM<iWa®Bwfi«;

£i ,. . ^.,y. . •

.

. * .•'i.i 'V'V^V
'

,' '> •• ' - '

' li^ iM
« » 4#»#^

i'f £ i .r * *^ • f'* • • « *' ' iP'»'W'7^*Si^V^^WT WUX l v3 2ny^|jJL '#>)l>*'gdM
—^

,
,

•'
'

.

"
„.. ^ _ A,'

^-•'
'^'Ak.V '.. «

’

'

^-r^^lb'' T«.«H ®Mt y»'js#';f^

--» v’iiiaww «;’

«•<!'«"
‘1 ',^1 '^M‘‘-^^' *^*'

lW*v *'«

»V-

'»: 'TtiV""-
'
'

M.’’ ''

,iH

rK: "I

+»r I o*j

1. INTRODUCTION

M7 is a general pattern matching filter designed and
implemented at the National Bureau of Standards (NBS). It
is a useful tool for translating or reformatting queries,
languages, and data. M7 is particularly useful and cost-
effective for one-time' translations from one format to
another or in a research environment to demonstrate the
feasibility of a transformation.

M7 repetitively matches and replaces the text on an in-
put string under the control of a set of user defined mac-
ros. The process consists of two stages: (a) preprocessing
the macro file, and (b) matching and replacing the input
string. In the first phase, macros are read from the user’s
file, preprocessed, and stored on a second file. In stage
two, the patterns are compared, in a line-by-line manner,
against input strings read from standard input. Matching
and replacing continues until all of the patterns fail to
match the input. The final version of the altered input
string is sent to standard output. Figure 1.1 shows the M7
information flow.

Complete examples of the use of M7-”-macros
,

input strings,
output text--are available on-line from the authors.

1 . 1 BACKGROUND

M7 is written entirely in the programming language C

and consists of more than 40 modular subroutines and func-
tions. Several routines are C versions of programs con-
tained in Software Tools [KERN76] which have been modified
to support the more powerful features of M7 . M7 is an ex-
tension of M6 [HALL71] and MORTRAN [COOK733 and has also
been influenced by ML/1 [BR0W7 4 , COLE? 6] and STAGE2 [WAIT70].
For more information about the internals of M? see the MX
Software Internals Manual [SKIL80].

1.2 DOCUMENT OVERVIEW

This doc
using M?

.

and 4 discuss
emphasiz ing
cial meanings
matching and
6 deals with

ument presents t he informa t ion ne ce ss ary for
Sect io n 2 desc r i be s the mac ro f ile

.

Se ct ion s 3

the p attern a nd th e repl acem ent d ef init i on

,

the charact ers a nd c on s true t ion s that h ave s pe-
. The use of St ac ks t o save text fo r la ter
r eplac ement is d es cr ib ed in sec t ion 5 • Sect ion
count

e

rs which c an b e used for tas ks such as

1 -

line numbering. Section 7 discusses how M7 uses the macro
file to repetitively match the text on an Input string.
Section 6 describes how to generate new macros from other
macros and section 9 lists the calling options for M7 . A de-
tailed example which shows how to create and arrange macros
to solve a specific problem Is provided In section 10. Error
messages and constraints are the topics of the closing sec-
tions .

I I

I PREPROCESSED I

I MACRO I

I FILE I

I I

I

I

I I

I V

1

1

USER’S!
MACRO ! >

FILE !

1
1

1

{MACRO
{FILE
IPRE-
{PROCESSOR
1

1

1

1

{PATTERN
{MATCHING
{ AND
{REPLACING
{HANDLER

ALTERED
_ _ _ „ s STANDARD

OUTPUTINPUT
STRINGS

I

1

1

1

1

M7

USER’S
INPUT
STRINGS

STANDARD
INPUT

Figure 1.1 - M7 Information Flow

2. MACRO FILE

M7 is called from the UNIX shell level in the following
manner:

M7 <options> <macro file>

The macro file contains the pattern matching and replacement
Information which M7 evaluates when processing input text.
It consists of macro definitions which have two main parts:
a pattern which is matched against an input string, and a
replacement definition which is substituted for the matched
substring. The options specify execution alternatives.

This section will explain how to set up the macro file.

2. 1 MACRO DEFINITION

The macro file consists of macro
basic form of a macro definition is:

definitions

.

The

* <pattern> ' <replacement
symbol>

* <replacement
definition>

'

<stack/counter
commands>

The symbols surrounded by angle brackets (<>) are meta-
symbols; however, single quotation marks must surround both
the pattern and the replacement
ition must terminate with a

symbol can be either tt _ ti or

definition. The macro defin-
semi-colon. The replacement
as discussed in section 7.

Stack and counter commands are usually placed after the
replacement definition. These constructions are identified
by a leading or "A".

2.2 FILE FORMAT

The use of delimiting characters for the pattern, re-
placement definition, and the entire macro definition pro-
vides flexibility in formatting the macro file. The user
may insert spaces and comments freely to make the file more
readable

.

- 3 -

Arbitrary spacing Is allowed. For example:

A =

A=’B*
•A*= ’B»;

all function Identically.

All characters outside of the pattern and the replace-
ment definition, other than the replacement symbol and the
stack and counter commands, are Ignored. Thus, no special
delimiter Is needed for most comments. An example of a com-
mented macro file Is:

'girl'; this macro changes boy to girl
'

'
; this macro shrinks spacing

'
' ; this macro deletes the character a

'boy' =
' ' r

«a' =

(end)

.

'B'

;

Any text surrounded by slashes Is Ignored. This
feature allows comments to be Inserted within a pattern or
replacement definition. It also permits arbitrary splitting
of a macro definition across line boundaries. For example:

'FIND THIS TEXT' = 'AND REPLACE IT /

/ WITH THIS TEXT'

;

A macro definition may also be continued by placing the
pattern and Its replacement definition on separate lines.
An example of this is:

'Replace this very long line' =

'with this very long line';

More than one macro definition can be placed on a line.
For example:

'A'='B'

;

'C ' r *D '
;

can be written as:

'A'r'B'
; 'C'='D'

;

(end)

.

- 4 -

3. PATTERNS

The pdti:ern matching facility ia the heart of M7 • Sec-
tions 3*2 and 3>3 will discuss the important features: the
special control characters, tags, stacks, and counters. The
algorithm for matching a pattern with an input string will
be presented in section 3.t.

3.1 GENERAL PATTERN MATCHING

The algorithm for pattern matching is as follows:

1 . Get the first character of the input string
and set N : s 1

.

2. Get the first character of the pattern.
3. Do the current pair of characters match?

If not, go to step 5.
M. Get next pair of characters.

If end of pattern, return MATCH.
Otherwise, go to step. 3*

5. Backup to beginning of input string + N.
If N = lengthCinput string), return FAIL.
Otherwise, set N := N+1;

get Nth character of input string
go to step 2.

3.2 SPECIAL CHARACTERS

Table 3.1 lists the characters which have special mean-
ing in patterns. These characters and their associated con-
cepts will be described below.

Delimiting characters

A matches the null character at the end of a line.
For example, the pattern:

The back$

will match:

The back

but not:

(end)

.

The back end

A '** matches the null character at the beginning of a
line. For example, the pattern:

'‘front part

will match:

front part

but not:

the front part
(end)

.

- 6 -

CHARACTER
1

1 FUNCTION OF THE CHARACTER
1

$

1

1

i Matches the null character at the end
1 of the line.
I

A
1

1 Matches the null character at the beginning
1 of the line.

i Matches one or more characters of the
1 preceding type of character. (Closure 1)
1

1 Matches zero or more characters of the
1 preceding type of character. (Closure 2)
!

[]
1

! Matches any of the characters listed in
1 the brackets. (Character class)
1

-
1

! Indicates a range of characters in a
! character class.
1

! Matches anything not listed in a
1 character class. (Complement)

' ?n ! Matches a character that is in special
! character class n. 1 <= n <= 6

& 1 Refers to an entry on one of 26 stacks.
1

1

! Refers to a counter or its increment.

•{} ^
1 Tags or refers to a portion of input text.
1

/

1

! Skips to the next slash. (Line continuation)
1

\ 1 Escapes any of the special characters.
1

Table 3-1 - TABLE OF SPECIAL CHARACTERS

Character class

The construction " [c1 c2c3 • • • cn] " , termed a character
class . tells M7 to match one of the characters specified
between the brackets (i.e. cl, or, c2, or, ... cn). For ex-
ample, the pattern:

[abcdef

]

will match one of the first six letters of the alphabet.

A range of letters or digits can be specified using a
dash. For example, the pattern:

[a-c]

will match 'a', *b', or 'c*. Also, the pattern:

[0-3]

will match *0’, *1*, *2», or *3*.

The use of ' "

*

as the first character in the character
class reverses the meaning of the construction, so that a
match will occur only if the input character is not found
between the brackets (complement). For example, the pattern:

[“a-z]

would match any character that is not a lower case letter.

Several frequently used character classes can be abbre-
viated by using the construction "?n", where n is a digit
between one and six. These are:

?1

?2

?3
?M
?5
?6

matches any
matches any
matches any
matches any
matches any
matches any

character

.

alpha-numeri
alphabetic c

upper case 1

lower case 1

digit

.

c character,
haracter

.

etter

.

etter

.

Escape character

A backslash *\' escapes the special meaning of the
character which follows it. For example, the pattern:

\«

matches the character The escape character can be es-
caped by typing "\\". Two alphabetic characters have

- 8 -

special meaning when they are escaped. "\n" matches a line
feed and "\t" matches a tab.

The following characters lose their special meanings
under these conditions:

Character Cgadit.lOD

- At the end of a character class construction
or outside of a character class construction.

* Not at the beginning of a character class
construction or outside of a character class
construction.

? Not followed by a digit between 1 and 6.
Any special character Within a character class,
other than or

Closure

Closure is an important concept in M7 . The closure
character matches one or more additional characters that
meet the same specifications required of the preceding char-
acter. For instance, the pattern;

[ab]

will match a character if it is an ”a” or "b". Thus, the
pattern:

[ab]*

will match a string of "a”’s and "b”*s. Also, the pattern:

a*

will match a string of "a”'s, the pattern:

[~a-zA-Z]*

will match a string of non-alphabet ic characters and the
pattern

:

71*

will match any text.

The closure character repeats the previous pattern con-
struction and therefore a pattern cannot begin with "*",
"{*}", or since there is no previous pattern with
which to check succeeding characters in the input. The clo-
sure construction may only follow stack and counter calls
that refer to the input string (namely, type 1 - refer to

-9

chapters 5 and 6). The construction *>•«" is meaningless
since the second closure has no pattern preceding It.

Cloatir.c alRQ-cLUm

M7*s closure feature uses the following algorithm:

1. Match the longest string possible.
2. Does the rest of the pattern match?

If yes, Indicate success and terminate.
3> Did the previous character match this closure?

If yes, back up one character and
go to step 2.

4. Was there a previous closure?
If yes, back up one character from the
last character matched In the previous
closure and go to step 2.

5. Indicate failure and stop.

An Illustration of multiple closure patterns, which are han-
dled by the fourth step In the algorithm. Is the pattern:

?1»[0-9]»

with the Input text:

Mozart's 38th symphony

M7 will decrease the number of characters matched by the
first closure until the second closure Is able to match the
'8' upon which the pattern succeeds.

Z?X9 closure

The zero closure matches zero or more characters
that meet the same specifications required of the preceding
character. It can be used In the same manner as the regular
closure.

Example

Here are a few additional sample patterns and some of
the Input texts that would match:

t

PATTERN TEXT

would match
or

TAB
JB

'‘[1-3][ABC]?3$ would match 1BE
3ATor

??3« would match
but not

Tslngleword
??333

3.3 TAGS, STACKS AND COUNTERS

Tags, stacks and counters are three features that dis-
tinguish M7 from other pattern matching and replacement pro-
grams. These structures allow communication between:

The usage and form of a tag, stack, or counter construction
depends on whether it appears on the pattern or the replace-
ment side of the macro definition. Basically, on the pat-
tern side, the current value of a tag, stack, or counter is
matched against the input string, whereas on the replacement
side, the current value of the tag, stack, or counter is
used to alter the input string. The applicability of these
constructions to the pattern will be discussed in this sec-
tion, while their relevance to the replacement definition
will be presented in section Sections 5 and 6 will dis-
cuss stacks and counters in detail.

The construction ” { <pat tern> } " tells M7 to remember the
text which matches the pattern between the braces for use in
later processing. The occurrences of these "tags" in a pat-
tern are numbered; the first is numbered 1 and so forth with
up to 99 tags per macro. For example, if the pattern is:

then M7 will remember "ea". Tagged text can be used in the

a. the pattern and replacement definitions
of a macro,

b. independent macros, and
c. different input strings.

Tags

h{ [aeiou] • }d

and the input text is:

head

11-

replacement definition or stored on a stack. 1

Tags can be nested in the pattern. For instance, the I

pattern: I

{ab{cd)e{ f {ghi} } } {J)
|

will remember "abcdefghi" as tag #1, *cd” as tag #2, "fghi”
{

as tag #3t "ghi" as tag #4, and "J” as tag #5. That is, the
left brace determines the ordering.

|

I

Stacks '

The construction "&(i)", where "i" is any lower case
letter, causes M7 to match what is currently being refer-

j

enced in the stack identified by "i”. For example, if stack
l

"a” contained the text "tony" then the pattern:
|

He is &(a)
I

i

would match:
j

I

He is tony
I

and the pattern:
I

the world needs more &(a)*s !

I

would match:
i

I

I

the world needs more tonytony tony tony s |

(end).
i

^

li

Counters * |i

The construction "#(i)", where "i" is any lower case
letter, matches the current value of the counter Identified

i

by "i". For example, if counter "b" were "20" then the pat-
tern:

j

go to #(b)*

would match:

go to 2020
(end)

.

- 12 -

M. REPLACEMENT DEFINITION

Nhen a portion of the input string matches a pattern,
It Is replaced by text as specified by the replacement de-
finition. The replacement definition can consist of any se-
quence of characters. As In pattern matching, certain char-
acters have special meaning.

T.a«g

The construction "{n}** is replaced by the text matched
by tag number n where n is from 1 to 99> This tag number
refers to an occurrence of a tag In the corresponding pat-
tern (see section 3>3)> The first tag would be tag number
1, the second tag would be tag number 2 and so forth. The
construction Is useful for such tasks as passing arguments
from the matched text. For example, suppose there Is a' pat-
tern :

ADD, {[A-Z]») ,{[0-9]»} ,{[0-9]«}

with replacement definition:

n} = {2} + {3)

Then, the input string:

ADD, A, 24, 100:

would be replaced by:

A=24+100
(end)

.

Stacks

The construction "&(!)" is replaced by the text
currently referenced in stack "i". For example if stack "a"
contained "car", then the replacement definition:

my & (a

)

would cause M7 to replace some matched string with:

my car

A detailed discussion of stacks can be found in section 5.

- 13 -

Counters

The construction "#(1)" is replaced by the current
value of the counter "i". For example, if counter "b** were
100 then the replacement definition:

go to #(b)

would cause M7 to replace some matched string with:

go to 100

Refer to section 6 for a detailed discussion of counter oon*
structions.

- 14 -

5. STACKS

M7 supports 26 user stacks. Each stack Is Identified by
a lower case letter, called the stack Identifier . and has
its own stack pointer . In the current version, a stack has
at most twenty entries, each of which may have fifty charac-
ters. The purpose of the stacks Is to save text for later
use In the matching and replacement parts of other macro de-
finitions. The stacks may also be used as simple variables.

constructions

There are four basic stack call constructions. All of
these may appear in the replacement definition. Types 2, 3i
and 4 may be used in the stack command. Only type 1 may ap-
pear in the pattern. The stack call constructions are:

1. "&(!)" is replaced by what is currently being point-
ed to in the stack identified by *1*.

2. "&(n,i)" puts the text matched by tag number n onto
stack 'i* where n is from 1 to 99.

3. "&(i=n)" sets the stack pointer for stack ’i’ to n
where 1 <= n <= 20.

4. "& (i : <text> :
)
" puts the text onto stack 'i'. (<text>

is a meta-symbol.)

Spaces are ignored in stack calls.

Stack pointer

An optional feature of types 1, 2, and 4 stack calls
are the two stack operators . "+” and which respectively
increment and decrement the stack pointer by 1 . As in the
language C, placement of the operators before or after the
stack identifier indicates whether the operation is per-
formed before or after the stack is accessed. For example:

&(+e)

would first increment the stack pointer and then be replaced
by what is currently being pointed to in the stack ”e". The
stack operators should not be used on stack calls which ap-
pear in the pattern. If the stack operators are not used, a
stack can be viewed as a simple variable.

- 15 -

The stack pointer is always initialized to point at po-
sition 1 and cannot be decremented below this position. If
the stack pointer points at position 1 and a decrement is
indicated, the stack pointer will continue to point at posi-
tion 1. Before text is placed onto a stack position, that
position contains the null string.

- 16 -

6 . COUNTERS

M7 allows the user to have 26 general purpose counters
each of which has its own counter incremen t . The counters
are physically stored as integers, but they are used in the
pattern and the replacement definition in their character
string form. Conversion is done automatically. Bach
counter is identified by a lower case letter called the
counter identifier . These counters are useful for tasks
such as manipulating line numbers and counting bow many
times a pattern is matched. 4-rv

-Qojinter c.all constructions

There
all types
type 1 may
applicable
structions

are three basic counter call constructions. Vhile
may be used in the replacement definition, only
appear in the pattern and only types 2 and 3 are
to the counter command. The counter call con-

are :

1
1 • "#(i)" is replaced in

value of the counter
the string by

identified by "i".
the current

2. "#(i=n)" sets the counter to n where n

integer greater than 0.

can be any

3. "#(i,n)" sets counter
a positive integer.

i's increment to n where n is

Spaces ignored in counter calls.

Counter increment

The two counter operators
^

” and are similar to
the stack operators except that stack pointers are incre-
mented or decremented by 1 whereas a counter is changed by
the value of its increment. These operators can be placed
before or after the counter identifier to indicate that the
counter should be incremented or decremented before or after
the particular function is performed. For example:

(y+

)

would be replaced by the current value of the
after which the counter would be incremented.

counter .y.

Counters and increments are always initialized to 1 and
cannot be set to a value less than 1. As with stacks, the
operators should not be used in the pattern part of a macro.

- 17 -

£3C.amB 3l.^. slL l£l££> Stacks . sJiA C.Qttn^fita.

For an example of how tags and stacks should be used,
j

consider the macro: i

* avg({ [0-9]* } , { [0-9]*))

*

= / notice the
comment / * ({ 1 }+{2))\/2 * &(1 , a) &(2 ,b)

|

This would match the input:

avg(26,42)

and replace it with:

(26+i»2)/2

and then save the arguments "26" and "42" on stacks "a" and
"b", respectively. An example of the use of a counter would
be the macro:

•reset a' = ' done • # (as 1)

;

This would match the input:

reset a
‘

i

and replace it with:

done

and set counter "a" to "1".

!

i

I

I

!

- 18 -

7. RESCAN FEATURE

M7 will repetitively match and rematch the text on an
input atrlng according to the macro definitions until no
more matches can be found. The algorithm for the matching
and replacement of input strings is as follows:

1 .

2 .

3.
4 .

5.

6 .

7.

Bead the next input string from the standard input.
If it is the end of the file then stop.
Get the first pattern.
Beplace all occurrenoes of the pattern in the
input with the replacement definition.
Did the current pattern occur in the input
at least once?

If yes, go to step 3*
Is there another pattern?

If yes, get the next pattern and go to
step 4.

Write out the new line and go to step 1

.

The "first pattern” refers to the most recent macro de-
finition entered onto the macro file. Thus the first pattern
attempted to be matched would be taken from the last macro
definition in the macro file. The next pattern attempted to
be matched would be from the next to the last entry and so
on. Since the user can emit macros from other macros, as
discussed in section 8, these later generated macros will
always be scanned first.

The user should be careful not to cause M7 to go into
an infinite matching loop. A very simple example of this
would be the macro:

' int * = ' integer
'

;

The pattern "int" would mate
it with "printeger". M7 w
tinuously march "int" and re
user should use the trace f

sure this type of replacemen

h the input "print" and replace
ill again use this macro to con-
place it with "integer". The
eature (see section 9.0) to make
t does not occur.

The r«

macro by u

M7 w ill a V

the input
t ion . If s

til the a
t ion can 0

escan feature can
sing "<" as the r

texpt to change a
string to what is
uccessful, the pa
ext input string
e used to avoid i

be turned off for
epl acement symbol
11 occurrences of
fo und in the repl

t te rn will not be
is read in . Thus,
nfinite matching 1

a particular
instead of "=".
the pattern in
acement defini-
used again un-
this construc-

oops

.

- 19 -

For example, the macro definition:

• ah' <
' abc *

;

and the input:

ababab

will result in:

abcabcabc

(end).

- 20 -

8. CONTROL COMMANDS

Any Input string which begins with the character "S" Is
considered a control command . The line will not be output
nor will an attempt be made to match any other patterns
against 1^. The legal commands and their uses are:

%MACRO - generates a new macro definition
](TRACE > enables/disables the trace (-t) option
IlNFLAG - enables/disables the print (-n) option

The format for the "^MACRO" command is:

JlMACRO *<macro deflnltlon>* ;

This control command construction enables generation of
macros from other macros. The new macros are placed at the
end of the macro file, so that they will be scanned first.
For example, consider the macro:

#deflne, { [a-z]} , { [a-z]*} * = /
/ *%HkCH0 *{1}\'=\M2)*\; *1

The pattern of this macro would match the Input
"#define , cat , dog" and replace it with "%MACRO ’ cat '

=
' dog' ; "

.

The modified input string would be evaluated as a control
command structure and placed onto the preprocessed macro
file. The new macro would be the first macro to be scanned.
If the next input were "cat" it would be replaced by "dog".

Program flags can be set by typing:

5Kflagname> l(or 0)

where flagname can be "TRACE" or "NFLAG". The numbers 1 and
0 stand for ON and OFF respectively. For example, the in-
put :

%TRACE 1

will turn the trace option (the "t" option) on and the in-
put :

$NFLAG 1

will turn the n option on. These options are discussed
below. This construction can also be generated from a macro
as described above.

- 21 -

A command is not successful If an error occurs in the
macro of a macro generation command or if a symbol other
than *0* or *1* is the eighth character of the '^TRACE* or
*j(NFLAG' command. If an illegal macro is given, the same
error messages are displayed as when M7 is preprocessing the
input macro file; if an illegal value for a program flag is
given, an error message is displayed but execution does not
terminate.

- 22 -

9. EXECUTION OPTIONS

M7 has several calling options any one or all of which
may be specified using the standard UNIX calling procedure:

H7 C-p] [-t]
[-f ”<preprocessed file>" "<macro count>"]
[-a "<maoro definition>"] <maoro file>

The following is a list of the options and their functions.

1. The -t option will print a trace of the pattern
matching and replacement on the standard output.
This is very useful for "debugging" macro files. The
trace is of the form

oldline: <text before replacement>
macro #:n
newline : <text after replacement>

where n is the macro number, .(Numbers start with the
first entry in the preprocessed macro file.)

2. The -n option prints only the input strings which
were matched by at least one macro definition.

3. The -p option provides a prompt for initial input.
After M7 has preprocessed the macro file, "ready"
will be printed to inform the user that he can start
typing in input strings.

4. The -f option specifies a file which contains macros
that are already preprocessed. With this feature,
the user need not wait for M7 to repreprocess a com-
monly used macro file. The format for this option
is

:

-f "preprocessed file" "macro count"

where the prenrocessed file is the file of prepro-
cessed macros and macro count is a count of the
number of macros in the file. A typical example
would be:

M7 -f "M7_WKS.tmp" "23"

The "f" option must be placed before any occurrence
of the "a" option and before the names of any files
which contain non-preprocessed macros. If the "f"
option is used, M7 will work with the specified file

-23

.

*'

•

: r-ryl

'

instead of creating the new file ”M7_WKS . tmp" . The
user should refer to section 12 for information per-
taining to the limitations of the 'f option.

5. The -a option Calces the following character string,
surrounded by. double quotes, as a macro definition.
This option may be repeated several times to put
several macros on the file. These macros will be the
first macros preprocessed and consequently will be
used after any macros in an unprocessed macro file.

6. More than one macro file may be specified in the ar-
gument list, ^he effect will be as though the files
were concatenated into a single file, with the mac-
ros in the latter files at the end.

- 24 -

10. USING M7

This section demonstrates a practical application of
M7. A systematic procedure for source translations using
pattern matching macros will be presented along with tips
and cautions on how to set up a macro file.

The first step in using M7 is to define what the input
and the output should look like. If the input and output
are well defined, fewer problems will be encountered while
writing the macros. Restrictions will usually have to be
put on the initial specifications because of implementation
limitations. The user should be aware of all the possible
combinations of input and be willing to change the specifi-
cations as necessary. The example below translates from a
FORTRAN-like DO statement to a C-llke ”for” statement.

FROM:

do <label> <index>=<init value> , <fInal value>,<inc>
<stmt1

>

<stmt2>

<stmtn>
<label> continue

TO:

for (<index> = <init val> ; <indexX = <f inal value>;
<index>=<index>+<inc>){

<stmt 1 >

;

<stmt2>

;

<s tmtn>

;

}

A pictorial representation of this type is one way to
specify input and output. Another way is to set up a table
of possible inputs and the corresponding outputs. Do not
forget details. For example, the specifications of this ex-
ample failed to show that the increment need not be speci-
fied in FORTRAN; it defaults to 1. Details such as these
should be included in the input and output specifications.

- 25 -

The next step would be to design a pattern matching al>
gorithB for the translation. This can be written out as a
step by step word description of the pattern matching and
replaeeaent. For this example, the algorithm is:

1. Shrink the spacing (i.e. replace tabs and double
spacing with a single apace)

2. Match a FORTRAN "do” string and replace it with a C
programming language "for” string and store the la-
bel on a stack.

3. Hatch a statement which does not have a semicolon or
a brace at the end and replace it with a statement
with a semicolon at the end.

4. Natch the label stack at the beginning of a continue
statement and replace it with a right brace.

5. Strip off the label field.

The idea of shrinking spaces is an Important utility and is
used often.

The next step after the algorithm is written out is to
create a set of macros which will perform each step of the
algorithm. As they are written, each set should be tested
separately for correct output.

Precedence is important at this point. The ordering of
the macros in the macro file has a significant influence on
the output because of the rescanning algorithm. The macros
of higher precedence or ones that other macros depend on
should be placed closer to the end of the macro file so that
they are applied first. Space shrinking macros are usually
placed near the end of the macro file. The trace feature
can be used to see how the steps in the translation algo-
rithm interact with each other. The following set of macros
perform the translation which was described previously:

1. ' step 3

2. ’do {?6«} {?2»}={?6«},{?6»}$'= step 2

’for({2}={3}\;{2}<={4}\;{2}++)\{’,&(1,a);
3. 'do {?6*} {?2«}=/ step 2

/{?6«},{?6«},{?6*}’ =

’for({2}={3}\; {2}<={4}\; {2}={2}+{5})\{
' ,&(1 ,a);

4

.

'

"[0 - 91 *' = '

'

;

step 5

5. '‘“&(a) "continue' = '\}'; step 4

6. '* &(a) "continue' = '\}'; step 4

7. ' ’ = '
'

;
step 1

8. '\t' = ' '; step 1

- 26 -

The step numbers correspond to the step numbers of the word
description of the translation algorithm given above.

The first macro places the semicolon at the end of a
statement. This macro is at the beginning of the file be-
cause it is the last macro to be matched. Otherwise, M7
would put a semicolon at the end of the "do” statement be-
fore translating it which is not what is desired. Note that
all semicolons which appear in the macro file which do not
terminate a maoro definition must be escaped.

The macros numbered 2 and 3 translate the FORTRAN "do”
statement into a C programming language "for” statement.
The ordering of these two macros in the macro file is signi-
ficant. The third macro matches the optional increment
specification. The second macro will also match this struc-
ture. If the second macro were placed in front of the third
macro (i.e. further down in the file) the output would be
Incorrect.

The fourth macro removes numbers and spaces which occur
at the beginning of a line (i.e. removes the line numbers).

The patterns of the fifth and the sixth macros match
the end of the "do” loop (i.e. the label indicated on the
"do" statement, which was stored on a stack, is matched to
the beginning of a continue statement). Note, that this pat-
tern is matched before the pattern of the macro that removes
the line numbers.

The seventh and eighth macros shrink the spacing; dou-
ble spaces and tabs are replaced with single spaces. This is
done so that the patterns of macros 2 and 3 will match arbi-
trary spacing of the "do" statement.

The next step after the macros have been
checked for precedence is to test them on a

input. Usually errors or limitations in the o
rithm can be found at this step. For example,
this set of macros one would find that neste
would not work. This can be corrected by cha
ros so that the label indicated in the "do"
pushed onto the stack and then popped
corresponding "continue" statement is found.

written and
wide range of
riginal algo-
after testing

d "do" loops
nging the mac-
statement is

off when the

Creating a set of macros to perform a desired transla-
tion is often as complex as writing a computer program; as
with a computer program the more time spent on the input and
output specifications and the matching algorithms the less
time spent on trial and error writing of macros.

- 27 -

Consider the matching process when using stacks or
counters. Macros should be written so their contents can be
dumped. For example:

'dump a* = *&(a)*;

would dump the contents of stack a. One should be careful
about pointing to the right position In a stack or using the
right value of a counter. Remember that the Increment and
the decrement operators have different meanings when placed
before or after a stack identifier.

It Is very easy to confuse M7. The user should check
the following things when problems occur:

1. that single quotes occur around the pattern and re-
placement definition.

2. that a semicolon occurs at the end of every 'macro
definition.

3. that special characters which are to be used as text
are escaped.

4. that semicolons which do not occur at the end of a
macro definition are escaped.

A

- 28 -

11. FATAL ERROR MESSAGES

All errors detected by M7 (except Illegal values for
the t and n options) result In termination of execution.
This is done because execution after fatal errors is mean-
ingless. The error messages that are generated are of the
form:

<routlne name> : <reason for termination>
The error occurred on macro # <macro number>

where the routine name is the name of the M7 subroutine
where the error was detected. (See the HI. Software Internals
Manual)

The error messages which occur during the preprocessing
of the macro file usually occur because of things like
missing quotes or unescaped special characters. The 'macro
file should be thoroughly checked when an error occurs in
preprocessing. The following is a list of the error mes-
sages which are generated during preprocessing and their
possible causes:

1

.

"M7 : cannot open pattern file" indicates
could not open the specified macro file,
should check the calling arguments used.

that M7
The user

2. "M7: cannot open ’f’ option file" indicates that M7
could not find the already existing preprocessed
macro file.

3. "M7

:

n f «

the

Illegal placement o

option was used a
name of a user macro

f "f" option" indicates the
fter the "a" option or after
file was given.

4.

"PROCCALLS: error in macro definitions" indicates
that M7 reached the terminating character ’

;
' before

it had finished processing the macro definition.

5.

"MAKPAT: pattern terminated early" indicates that M7
found the end of string character, EOS, in the pat-
tern .

6. "MAKPAT: unbalanced tag braces" indicates M7 found
an unequal number of left and right braces in the
pattern

.

7. "MAKSUB: substitution text terminated early" indi-
cates the end of string character, EOS, was found
before the terminating semicolon.

-29

8. "MAKSUB: preprocessed macro too large” Indicates a
macro was entered which when preprocessed, expanded
beyond the 512 character limit.

9. "PROCCNTR: UNRECOGNIZEABLE CHAR" indicates that a
symbol other than *=* or was found in the
counter call. Thus, M7 could not recognize the type
of counter call it was.

10. "PROCSTCK: ILLEGAL CHARACTER” same as above except
for stacks. A symbol other than *=*, or *:* was
found.

11. "PROCCNTR: ILLEGAL USE OF *,*" and "PROCCNTR: ILLE-
GAL USE OF *s*” means that N7 found more than one of
the special symbols of a stack call and therefore
could not determine the type. Again, this is a syn-
tax error.

12. "PROCSTCK: ILLEGAL USE OF *,*"» "PROCSTCK: ILLEGAL
USE OF '=*" and "PROCSTCK: ILLEGAL USE OF same
as above except for stacks.

13. "ESC: END OF STRING ENCOUNTERED TOO SOON" The end of
string character, EOS, was found before the delimit-
ing quote or semicolon.

1M. "GETLINE: input string too long" indicates an input
string or an input macro was entered which was
longer than 1054 characters.

The error messages which occur after the preprocessing
of the macro definitions (i.e. after M7 prints "ready") usu-
ally occur because of internal confusion. This may be
caused by errors in the macro file which were not detected
during preprocessing. The following is a list of the error
messages which are generated after preprocessing.

1. "OMATCH: illegal pattern construction" indicates
that M7 expected to find one of the internally coded
commands but found gibberish instead. This usually
occurs when the user has an illegal construction
such as "•»" in the pattern.

2. "DOSTCK : error in
an invalid stack

stack call" indicates
call construction.

that M7 found

3. "DOCNTR : error in
found an invalid

counter call" indie
counter call construe

ates
t ion

.

that M7

-30

12. CONSTRAINTS AND LIMITATIONS

M7 has aone program limitations which may be changed in
future versions of H7. The following is a list of the known
limitations and constraints in M7

:

1. M7 does not indicate when it is in an indefinite
matching loop. If M7 does not seem to be responding
with any output, use the trace feature (see section
9*0) to see what is happening.

. -f
"’

v,

2. The use of stack and counter constructions, other
than type 1, can lead to peculiar results if placed
in the pattern. ' This is because M7 executes such
constructions as it is scanning the macro and the
input string. M7 actually makes several attempts to
match a pattern before being successful and with
each new attempt all the stack and counter calls are
executed again. If, during the course of trying to
match a pattern, M7 scans the pattern ten different
times, then the stack and counter calls in the pat-
tern will be executed ten times. The stack and
counter calls placed before a macro’s pattern will
only be executed the first time M7 attempts to find
an occurrence of the pattern in a particular input
string while calls placed after a pattern will only
be executed if the pattern matches. This is why the
use of incrementation in a call within or before a

pattern will almost certainly have disastrous
results. For this reason only type 1 stack and
counter calls should be used (and without any incre-
mentation) in the pattern of a macro.

3. One possible reason for wanting to place such con-
structions in the pattern despite this warning would
be to use this powerful macro:

'{?2}&(1,a) &(a)*-’ < /delete reoccurrences/ '{1}';

This macro will tag alpha-numeric characters which
might be delimited by a space. The text that is
tagged is immediately placed on a stack so that oth-
er occurrences of the text in the same input string
may be deleted.

M. A preprocessed macro entry is restricted to 512
characters. This number can be changed by updating
the source code and recompiling the new version.

- 31 -

5. An input string or input macro is limited to 105M
characters which is the size of eight lines of
printer paper. This allows the user to put seven
lines of header on his macro file to improve the
looks of the file.

6. A stack entry is limited to 50 characters and each
stack has space allocated for 20 entries (i.e. the
stack pointer can legally be set to point at entries
at positions 1 to 20 on a stack). This can also be
changed by recompiling the source code.

7. Semicolons used for any reason other than terminat-
ing a macro definition must be escaped. This also
applies to double and single quotation marks which
do not delimit comments or sections of a macro.

8. File headers should be restricted to about 800 char-
acters. If commentary text is too large a memory
fault will occur.

9. Care should be taken in using stacks and counters.
Although M7 checks for extraneous symbols

,
it does

not check for out of place letters, digits and plus
and minus characters

.

10. The 1 imitat ion on the number of macros with the • <*

feature has been set to 100 in this version of M7

.

However, the number can be changed by updating the
source code and then recompiling the entire program.

1

1

. The macros in the file given with
treated as though they all had "=

ment symbol. If the user needs to
scan feature of any macros in h

through the preprocessing stage e

cutes M7

.

the ’f’ option are
" as their replace-
turn off the re-

is file, he must go
ach time he exe-

12. The name of
characters

.

the ’f option file is limited to ten

- 32 -

REFERENCES

BROW74 Brown, Peter J., Mafiro Processors and Technlaue^a: toj^ Portable
Software . London, New York, Wiley, 1974.

COLE76 Cole, Alfred John^' Macro Proceaaora .

Cambridge, New York; Cambridge University Presm, 1976.

COOK73 Cook, A. James, "A User's Guide to CDC 7600/6600' HORTRAN ,

"

SLAC Computation Group, Stanford, California, 1973*

HALL71 Hall, Andrew 0.,j.^^he M6 Macro, Processor , ” Bell Telephone
Laboratories, Ino'i-$ Murray Hill, New Jersey, 1 9T1

.

KERN76 Kernlghan, Brian W» and P. J, Plauger, Software Tools .

Addlson-Hesley Publishing Company, 1976.

SKIL80 Sklllman, G. H., et al., "The M7 Internals Manual," National
Bureau of Standards, Washington, D. C., In preparation.

WAIT70 Waite, W. M., "The Mobile Programming System: STAGE2",
Communications of the ACM, 13, 7, 415-421.

ttrlnK ot 1

wbl<tb

^ iirt,ar*r tb.4»
tJJJtl.lftl a^AAUJi ^ .

'^ look* thk 'r'm .

*

to./ t05k
t|^t if«#» of

S«i-'
west

•l^iio1b%fr#*!.Jt

,©xoo driJ03

Inf* Vi
‘

'f*“' y^. p ,, ,^
• ' a

,

e. fix a 3k«^iixi \x. ^ ‘i--

* I4

1

t,»f:i y

!

'::3"

fi]

'm#;, :aai,kif fl'f-'mftofpi

%u tnti''''’Vlt-'j^'M, if
s^lA.

VI

1 ,^

. ‘ bbib f #4'' b ft
. »fM * $\

“^''
'

'

' • k#i-:- L r 0 9 j
>. 'n t i r• >fjB

-^1
:

- M:r

Ilf"' ••»!•..... tA . tw'f ij(,«ff v,;-'

it 'frlft ,f,41f -# 1^,

m

i-*k"

^ 'W
JLi V * .•

1' di Hv* '|;iiiS.'i#a tii«,
,!'i

‘Jif

/p..|

vi jik^il

"
.--t!

r

M

TJJ-;

.

•T ,*

•i„" '';*«

NBS«114A (REV. s-78)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET

1. PUBLICATION OR REPORT NO.

NBSIR 80-2182

4. TITLE AND SUBTITLE

M7: A General Pattern Matching Facility Users Manual

5. Publication Date

January 1981

7. AUTHOR(S)

A. R, Marriott, G. H. Skillman, S. B. Salazar, W. T. Hardgra
8. Performing Organ. Report No.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, DC 20234

11. Contract/Grant No.

12. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS fSfreer, cuy. state, zip) 13. Type of Report & Perio(J Covered

15. SUPPLEMENTARY NOTES

fu^ocument describes a computer program; SF-185, FIPS Software Summary, is attached.

16. ABSTRACT (A 200-word or leas tactual aummary ot moat aignilieant inlormation. If document includes a significant bibliography or

literature survey, mention it here.)

M7 is a general pattern matching and replacement facility. It is based on
such macroprocessors as M6, MORTRAN, and STAGE 2, and has been implemented in the
language C on UNIX. By incorporating such features as stacks, counters, and tags,
M7 is particularly useful for translating or reformatting queries, languages
and data.

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name;
separated by aemicotons)

Macroprocessor; pattern matching; query processor; software tool; text processor;
translation; UNIX.

18. AVAILABILITY m Unlimited

I I
For Official Distribution. Do Hot Release to NTIS

I I
Order From Sup. of Doc., U.S. Government Printing Office, Washington, DC
20402, SD Stock No. SN003-003-

[X~l Order From National Technical Information Service (NTIS), Springfield,

VA. 22161

19. SECURITY CLASS
(THIS REPORT)

UNCLASSIFIED

20. SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

21. NO. OF
PRINTED PAGES

38

22. Price

$6.00

USCOMM-DC

^ oti to ^v|». w «iw«.<*.i«tq.cr^toi [*—“

v-»»Ud«i vRt^a^ »<> tfimUoxtoQ »k

’

m;

g^., ,if/— :i- ; _ ^

