NBSIR 80-2155

Single-Family Residential Fire and Live Loads Survey

Lionel A. Issen

Center for Fire Research
National Engineering Laboratory
U.S. Department of Commerce

National Bureau of Standards
Washington, DC 20234

December 1980
Report
(FAA-H-37-72, Task 200)

Prepared for:
Division of Energy, Building Technology and Standards
-ffice of Policy, Development and Research - QC - zpartment of Housing and Urban Development

100 ashington, DC 20410
.450
80-2155
1980

SINGLE-FAMILY RESIDENTIAL FIRE AND LIVE LOADS SURVEY

Lionel A. Issen

Center for Fire Research
National Engineering Laboratory
U.S. Department of Commerce

National Bureau of Standards
Washington, DC 20234

December 1980
Report
(FAA-H-37-72, Task 200)

Prepared for:
Division of Energy, Building Technology and Standards
Office of Policy, Development and Research
Department of Housing and Urban Development
Washington, DC 20410

U.S. DEPARTMENT OF COMMERCE, Philip M. Klutznick, Secretary

$14+2+2$
$1+$ \qquad $1+$
\qquad \square
\qquad
\qquad

Page
LIST OF FIGURES iv
LIST OF TABLES vi
Abstract. 1

1. INTRODUCTION 2
1.1 Background 2
1.2 Survey Overview 3
1.3 Differences Between Different Housing Classes 3
2. SURVEY METHODOLOGY 4
2.1 The Inventory Method for Load Surveys. 4
2.2 Survey Tasks 4
2.3 Sources for Furnishings Data 4
2.4 Development of Transfer Functions 5
2.5 Selection of Target Residences 6
3. FIELD SURVEY FORMS 7
3.1 General Concept 7
3.2 Room Classifications 8
3.3 General Description of Forms 8
4. CALCULATION OF LIVE AND FIRE LOADS 11
4.1 Definitions of Live and Fire Loads 11
4.2 Live Load Transfer Function 12
4.3 Fire Load Transfer Function 13
4.4 Computation of Equivalent Fire Load 14
5. SINGLE FAMILY HOUSING 15
5.1 General Factors 15
5.2 Live and Fire Loads 17
5.2.1 Room Loads. 17
5.2.2 Composition of Fire Load. 18
5.2.3 Loads Close to Walls 19
5.2.4 Percent of Floor Covered 19
6. MOBILE HOMES 19
6.1 General Characteristics of Mobile Homes 19
6.2 Live and Fire Loads 20
7. SPECIAL SURVEY 21
7.1 Error Due to Differences Between Survey Teams 21
7.2 Estimate of Error Due to Inventorying 22
8. DISCUSSION OF SURVEY RESULTS 23
9. ACKNOWLEDGEMENTS 24
10. REFERENCES 24
APPENDIX A A-1
APPENDIX B Instructions and Survey Forms B-1
APPENDIX C Example of Use of Transfer Functions C-1
Page
Figure 4-1. Transfer function for mirrors (wall form) 26
4-2. Transfer function for kitchen tables (tables form) 27
4-3. Transfer function for upright pianos (case goods form) 28
4-4. Transfer function for wood kitchen base cabinets (kitchen cabinets form) 29
4-5. Transfer function for box springs (beds form) 30
4-6. Transfer function for sofas (upholstered...form) 31
4-7. Transfer function for portable televisions (appliances form) 32
B-l. Survey form - general description B-12
B-2. Survey form - rooms B-14
B-3. Survey form - walls B-16
B-4. Survey form - tables B-17
B-5. Survey form - case goods B-18
B-6. Survey form - beds B-19
B-7. Survey form - upholstered furniture B-20
B-8. Survey form - Chairs B-21
B-9. Survey form - kitchen cabinets and built-ins B-22
B-l0. Survey form - contents B-23
B-ll. Survey form - appliances B-24
B-12. Survey form - plumbing and heating B-25
B-13. Survey form - miscellaneous items B-26
B-14. Survey report B-27
B-15. House types B-28
B-16. House shapes B-29
B-17. Method for numbering floors B-30
B-18. Method for numbering walls and sectors B-31
C-l. Rooms form example C-11
C-2. Rooms form continuation example C-12
C-3. Walls form example C-13
C-4. Tables form example C-14

Figure C-5. Case goods form example C-15
C-6. Chairs form example C-16
C-7. Drawer, shelf, cabinet or closet contents example . . . C-17
Page
Table 1-1. Loss comparison for fires in the United States 33
1-2. Geographic distribution of surveyed residences and mobile homes 33
4-1. Load transfer functions for form R for calculation of interior finish fire load only 34
4-2. Load transfer function for walls form W for calculation of interior finish fire load only 36
4-3. Load transfer function for tables - form 01 37
4-4. Load transfer function for case goods - form 02 38
4-5. Load transfer function for kitchen cabinets and built-ins - form 03 40
4-6. Load transfer function for beds - form 04 41
4-7. Load transfer functions for upholstered furniture - form 05 44
4-8. Load transfer function for chairs (other than upholstered) - form 06 45
4-9. Load transfer function for drawer, shelf, cabinet or closet contents - form 07 46
4-10. Load transfer function for appliances - form 08 50
4-11. Load transfer function for plumbing and heating - form 09 52
4-12. Fire load transfer function - form R 53
4-13. Fire load transfer function for walls - form W 54
4-14. Fire load transfer function for tables - form 01 55
4-15. Fire load transfer function for case goods - form 02 57
4-16. Fire load transfer function for kitchen cabinets and built-ins - form 03 60
4-17. Fire load transfer function for beds - form 04 61
4-18. Fire load transfer function for upholstered furniture - form 05 63
4-19. Fire load transfer function for chairs - form 06 65
4-20. Fire load transfer function for drawer, shelf, cabinet or closet contents - form 07 66
4-21. Fire load transfer function for appliances - form 08 68
4-22. Fire load transfer function for plumbing and heating - form 09 69
Table 5-1. Age distribution of surveyed houses 70
5-2. Number of years occupied by current resident 71
5-3. Distribution of number of rooms 71
5-4. Distribution of garages 72
5-5. Room frequency distribution of room area (sq. ft.) SFA 73
5-6. Room frequency distribution of room area (sq. ft.) SFD 74
5-7. Exterior finish single family housing 75
5-8. Roofing materials in single family housing 75
5-9. Distribution of basements and their finish 76
5-10. Distribution of utility rooms and their finish 76
5-11. Distribution of attic spaces 77
5-12. Room frequency distribution of live load (lb/sq. ft.) SFA 78
5-13. Room frequency distribution of live load (lb/sq. ft.) SFD 79
5-14. Room frequency distribution of movable contents fire load (lb/sq. ft.) SFA 80
5-15. Room frequency distribution of interior finish fire load (lb/sq. ft.) SFA 81
5-16. Room frequency distribution of room total fire load (lb/sq. ft.) SFA 82
5-17. Room frequency distribution of interior finish fire load/total fire load SFA 83
5-18. Room frequency distribution of movable load (lb/sq. ft.) SFD 84
5-19. Room frequency distribution of interior finish fire load (lb/sq. ft.) SFD 85
5-20. Room frequency distribution of room total equivalent fire load (lb/sq. ft.) SFD 86
5-21. Room frequency distribution of interior finish fire load/total fire load SFD 87
5-22. Average movable contents fire load (lbs/sq. ft.) SFA 88
5-23. Average interior finish fire load (lb/sq. ft.) SFA 89
5-24. Average room total fire load (lbs/sq. ft.) SFA 90
5-25. Average movable contents fire load (lbs/sq. ft.) SFD 91
Table 5-26. Average interior finish fire load (lbs/sq. ft.) SFD 92
5-27. Average room total fire load (lbs/sq. ft.) SFD 93
5-28. Room frequency distribution of percent live load within two feet of wall SFA 94
5-29. Room frequency distribution of percent movable fire load within two feet of wall SFA 95
5-30. Room frequency distribution of percent live load within two feet of wall SFD 96
5-31. Room frequency distribution of percent movable fire load within two feet of wall SFD 97
5-32. Room frequency distribution of percent floor area covered SFA 98
5-33. Room frequency distribution of percent floor area covered SFD 99
6-1. Age distribution of mobile homes 100
6-2. Comparison of number of years occupied by current resident for three types of housing 100
6-3. Comparison of occupant density in surveyed housing 101
6-4. Number of rooms by numbers of dwelling units MH 102
6-5. Room frequency distribution of room area (sq. ft.) MH 103
6-6. Room frequency distribution of live load (lb/sq. ft.) MH 104
6-7. Room frequency distribution of percent moveable fire load within two feet of wall MH. 105
6-8. Room frequency distribution of percent floor area covered MH 106
6-9. Room frequency distribution of movable contents equivalent fire load (lb/sq. ft.) MH 107
6-10. Room frequency distribution of interior finish equivalent fire load (lb/sq. ft.) MH 108
6-11. Room frequency distribution of room total equivalent fire load (lb/sq. ft.) MH 109
6-12. Room frequency distribution of interior finish fire load/total fire load MH 110
7-1. Comparison of mean room area (sq. ft.) 111
7-2. Comparison of live load (lb/sq. ft.) 112
7-3. Estimate of surveyors error, teams 1 and 2 113

Table 7-4. Estimate of surveyors error, teams 3 and 4........ 114
8-1. Room and closet total live load (lb/sq. ft.) 115
8-2. Room and closet total fire load (lb/sq. ft.) 116
8-3. Average fire load of contents and its distribution with respect to materials (lb/sq. ft.). 117

8-4. Average fire load of interior finish and its distribution with respect to materials (lb/sq. ft.) . . . 118

8-5. Average room and closet total fire load and its distribution with respect to materials (lb/sq. ft.) . . . 119

In recognition of the position of the U.S.A. as a signatory to the General Conference of Weights and Measures, which gave official status to the metric SI system of units in 1960 , the author assists readers interested in making use of the coherent system of $S I$ units by giving conversion factors applicable to U.S. units used in this paper.

Length
1 in. $=0.0254^{*}$ meter
$1 \mathrm{ft} .=0.3048 *$ meter

Area
1 in. ${ }^{2}=6.4516 * \times 10^{-4}$ meter 2
1 ft. ${ }^{2}=0.09290$ meter 2

Force

1 lb. $($ lbf $)=4.448$ newton

Pressure, Stress
1 psf $=47.88$ pascal

Thermal
1 Btu $=1.054 \times 10^{3}$ joule

[^0]Lionel A. Issen

ABSTRACT

A fire and live load survey of 359 residences, consisting of 61 single family attached (SFA), 200 single family detached (SFD), and 98 mobile homes (MH), was made in the metropolitan Washington, D. C. area using an inventory technique rather than actual weighing of the room contents. The survey was performed to gain information on live and fire loads which would be used to develop a realistic fire test exposure curve for single family homes (SFA, SFD, and MH), and to gain experience in household surveys that would be useful in a similar nationwide survey. The fire load is reported in terms of composition and of an equivalent $8000 \mathrm{Btu} / \mathrm{lb}$ fuel. The live loads and movable contents fire loads were similar for the three occupancies, but the room finish fire load was higher in mobile homes due to the more extensive use of plywood in the interior wall finish. The weighted mean (according to floor area) of the live load observed in the survey for each of the three classes of housing was approximately $10 \mathrm{lb} / \mathrm{sq}$. ft. The corresponding weighted mean movable contents fire loads were approximately: SFA, $7 \mathrm{lb} / \mathrm{sq} . \mathrm{ft.;} \mathrm{SFD} 7 \mathrm{lb} / ,\mathrm{sq} . \mathrm{ft.;}$ $\mathrm{MH}, 6 \mathrm{lb} / \mathrm{sq}$. ft. The total weighted mean fire loads (contents and finish) were approximately: SFA, $13 \mathrm{lb} / \mathrm{sq}$. ft.; SFD, $13 \mathrm{lb} / \mathrm{sq}$. ft.; $\mathrm{MH}, 18 \mathrm{lb} / \mathrm{sq}$. ft. The nominal 0.95 fractile live and fire loads were also calculated.

Key words: Field surveys; fire; fire loads; furnishings; household surveys; live loads; mobile homes; residential surveys; transfer functions.

1. INTRODUCTION

1.1 Background

In the United States, residential fire losses are a continuing severe problem. The data in table l-l by Klem [l] show that during the reporting period only about 28% of the reported fires occurred in residences and mobile homes, but these fires included 78% of the deaths and 58% of the dollar fire losses. Thus there is a need to understand the residential (and mobile home) fire problem so that steps may be taken to reduce these losses.

In 1976 a survey of fire and live loads in single-family residences and mobile homes was made in the greater Washington, D.C. metropolitan area. The data from the survey are intended to provide current information ${ }^{2}$, which could be used to develop more valid fire exposure curves for use in standard fire tests [3] of residential and mobile home building components.

In order to develop fire exposure curve or curves which would simulate the growth and development of fires in single-family residences and mobile homes, information on (a) the combustible contents, and (b) room geometries and thermal properties are required. This information would allow different scenarios to be investigated for the development of fire exposure curves for single-family residences and mobile homes. This information can only be obtained by a survey of the actual fire loads in the pertinent occupancies. During the course of this survey Fang [4] has used some of this data to develop a realistic fire exposure curve for residential occupancies.

A literature review of fire and live load surveys by the author $[5,6]$ indicated that very little fire load data existed for residences. Since its publication Ingbergs's survey [2] has continued to be of interest, and in 1973 was reprinted to meet continuing demand and made available through the National Technical Information Service. Ingberg surveyed 13 apartments and single-family occupancies in which all live and fire load items were weighed or measured. However, since the l930s, life styles, furnishings, and our understanding of fire growth have changed.

[^1]The survey of residences included 61 single-family attached (SFA), 200 single-family detached (SFD), and 98 mobile homes (MH) for a total of 359 units. A geographic distribution of the surveyed units is shown in table l-2.

The residential survey was made using an inventory technique similar to the one developed by Culver [7] for his survey of office buildings. This technique requires information on the size, composition, and weights of furnishings. This information was collected from the furnishing industry, and internal NBS sources $[7,8,9]$. The survey was performed by students attending George Washington University with a total of 62 students participating. At any time there were usually about five to seven teams of two students each.

1.3 Differences Between Different Housing Classes

In the model building codes little distinction in terms of fire resistance requirements is made between single-family attached and singlefamily detached housing. The only distinction in the fire requirement is that the party wall between attached housing must be fire rated. The results of this survey for single-family attached and single-detached residences are separated so that any differences between the observed loading in these two types of housing may be examined. The data for mobile homes is treated separately because their construction is significantly different from most single-family residences, and they come under different code requirements [10].

Additional data, other than the fire and live loads, on the surveyed housing is included in this report as it may bear on related decision-making by users of this survey.

There may be regional and socio-economic factors that influence the live and fire loading which could be uncovered in a more extensive and detailed survey in several different geographical areas.

Summaries of the live loads, fire loads, and components of the fire load are discussed in section 8 below.

2. SURVEY METHODOLOGY

2.1 The Inventory Method for Load Surveys

Most previous surveys appear to have used direct weighing techniques [6]. Though some attempts have been made to use inventory survey methods, the first comprehensive application of inventory survey methods was made by Culver $[7,11]$ in a survey of fire and live loads in U.S. office buildings.

In an inventory survey method, a set of descriptors is used to identify the location, class, material and characteristics of the furnishing items. By visual examination and selected length measurements, a trained surveyor records information on each item of furnishings in each room of a building. Information on the room size and the interior finish material is also recorded. When compared to actual weighing methods this reduces the disruption of normal activities in the homes being surveyed, and requires much less training effort for the survey crews. This also enables a larger number of units to be surveyed with the same resources and eliminates the need for direct weighing of each furnishing object. The disadvantages of an inventory method are the difficulty in describing the expected furnishing items by a limited set of descriptors, and the need to keep the size and number of the forms within manageable limits. An inventory method is of course less precise than actual weighing.

2.2 Survey Tasks

The survey activities were separated into five broad task areas: (1) collection of information on the size, weights, and composition of furnishings; (2) determining a set of descriptors that could be incorporated into a relatively simple mathematical equation or set of equations to give the weight, composition and fire load of each item ${ }^{3}$, (3) preparing a set of survey forms which embody the transfer functions in the descriptors; (4) selecting and surveying the target residences; and (5) processing the data.

2.3 Sources for Furnishings Data

The main sources for furnishings data were manufacturers, retailers and data developed at NBS $[7,8,9]$.

[^2]The procedure for selecting the furniture companies from whom data would be requested was to first select several companies on the basis of size or representative features of their product line. Next, a representative selection of furniture, millwork, electronic, piano, plumbing, bedding and other manufacturers was made from the trade association membership lists and other source data. Altogether over 130 manufacturers, publishers, government agencies and trade associations were contacted for information on furnishings.

In his survey Culver $[7,11]$ was concerned with office furnishings. Because these occur in a relatively limited number of office furniture types, sizes and weights, he was able to use a detailed classification of the office furniture components. For residential furnishings there exists a great variety of furniture types, sizes, weights, and materials and such a breakdown would be inefficient. Fortunately, the information that was gathered on residential furnishings from U.S. manufacturers and retailers tended to show that the furnishing type, size, and material would provide enough information to identify the weight of most items adequately for the needs of this survey. Culver's data [7] was used as an additional source of data particularly for metal furnishings. Data from the NBS Center for Fire Research [8,9] and engineering analysis and judgment were also used to complete the basic data. The combustible weight fractions of the fire load were converted to equivalent weights of combustibles having a calorific value of $8000 \mathrm{Btu} / \mathrm{lb}$, i.e. equivalent weight of wood.

2.4 Development of Transfer Functions

A transfer function, as used in this survey, is a mathematical function that relates the descriptors on the survey form to a live load and a fire load. The descriptors may include, but are not limited to, such factors as dimensions, materials, construction, and compaction. ${ }^{4}$

The concept of a transfer function implies that the items being surveyed are in standard sizes, materials, and weights. Though no such industry-wide standards exist, the requirements of the marketplace and the available technology produce furniture types that appear to be consistent in their weight characteristics. This relationship may not hold for the future since the increasing use of foamed plastics will probably lead to lighter weight

[^3]furniture, which may have a higher rate of heat contribution and heat content per unit weight than similar conventional furniture [12].

The transfer functions provide for a representative mean of a range of values. For example, the weights of all upholstered chairs of a size group are not the same, but identifying the pertinent weight factors will minimize the range over which weights of a given size vary. Although the surveyors could not open drawers and cabinets ${ }^{5}$, in a related Swedish household survey [13] it was noted that in most cases drawers and cabinets were filled tightly, so that if the main class of item in the drawers of a bureau or cabinet can be identified (by query), a reasonable estimate of the weights of the contents may be made.

The fire load data should be used with caution. Though these figures are based on engineering estimates of the combustible load of the various furnishing and interior finish items, they do not indicate rate of combustion. Different materials burn at different ra'tes, and even a particular material will burn at different rates depending on its form. For example a solid block of wood or plastic and the same weight of shredded material will burn at distinctly different rates under the same exposure.

2.5 Selection of Target Residences

The target SFA and SFD residences were identified by a random selection in the Haynes Criss-Cross Directories for Washington, D.C., and the neighboring suburban areas of Maryland and Northern Virginia. A computer program that was developed for another program at NBS was used [14]. This computer program uses a psuedo-random number generator to select a sample of specified size from the directory. The sample is identified by page, column, and line, listed in directory order. After the names and addresses were identified a form letter was sent with a return postcard. The postcard allowed the recipient to indicate whether or not they would allow their home to be surveyed and the most convenient times for this survey. On receipt of the postcard the surveyors then set up appointments by telephone.

The mobile home parks were identified from telephone directories, from commercial mobile home guides, and from contact with local government authorities. With the cooperation of the parks' management, a blanket mailing was made to a number of the larger mobile home parks in the Maryland and Virginia suburban areas (there are no mobile home parks in Washington,

[^4]D.C.). The park managers either provided the mailing list, or provided the street names and numbers that applied (most of the larger local parks use regular street addresses), or in one case these letters were distributed to the residents when they paid their monthly rent. The last was as successful in terms of responses as mailing the letters with a return postcard. After trial, it was found that the response rate for mobile homes was improved by mailing the letter without a return postcard, and then phoning the resident to further explain the purpose of the survey and to answer any questions. This procedure had been tried, unsuccessfully, with the survey of single family attached and single family detached residences.

The response from residents for permission to survey their houses was lower than expected. The response from each mailing of solicitations varied from about 3% to 5%. This low response was probably due to a sense of invasion of privacy, a lack of commitment to participate in a project aimed at improving fire standards and the time it took to complete a survey (average time 2 hours). In middle and upper income neighborhoods in conventional housing, the response appeared to be somewhat higher than in lower income neighborhoods. Among families living in mobile homes the response was higher than from families living in conventional housing, the response appeared to be somewhat higher among middle income families than from lower income families.

3. FIELD SURVEY FORMS

3.1 General Concepts

The survey forms are arranged so that the housing unit (SFA, SFD, or MH) is first described, followed by a description of each room and its contents. That is, a complete set of forms for a survey consists of one form that describes the house and the number of occupants, followed by 2 forms that describe each room and up to 10 forms that describe the furnishing items in each room. The survey for a particular room includes only those forms that are necessary to describe the furnishings in that particular room. The field survey forms together with the instructions manual are shown in Appendix B.

The furnishings are grouped into a number of generic classes; such as tables, chairs, case goods, etc. For each generic class of furnishing there is a survey form on which the size, material and other pertinent factors are categorized by a group of descriptions. The location was given by identifying in which of 5 room sectors the item was located. Four sectors were adjacent to the walls and were 2 ft . wide. The fifth sector was the remaining middle
portion of the room. The arrangement of the sectors is shown in figure B-18 in Appendix B. The surveyor entered the appropriate descriptor and the size of the furnishing on the form. These descriptors were then used in transfer functions to determine the live load and fire load. In order to measure the variability between surveyors one residence was surveyed by four teams. This is described in section 7 .

3.2 Room Classification

There were 14 types of rooms listed in the survey forms. These included: hallway/foyer, bathroom/powder room, kitchen, dining room, living room, family/recreation, study/office, bedroom, basement, garage, utility, attic, storage, and other (unclassified). The attics and garages frequently could not be surveyed and so the data from these rooms are not included in the report. Thus in this report the contents of 12 of the 14 room types are described. The term "room" in this report means any identifiable enclosed space.

3.3 General Description of Forms

A detailed set of instructions for completing the survey forms together with copies of the forms is given in Appendix B. This section provides a supplemental overview of these forms.

General House Description and Demographic Factors - Form G

This form provides a general description of the house and some demographic factors. The name and address of the resident which appears on this form was not included in the data base since this exclusion was a privacy act requirement. The first 6 blocks on form G were used as a house identification number that appears on all the forms for the particular house.

Rooms -- Form R

Each form starts with a room identifier. The room identifier includes the house, or form number so that if the forms or the punched cards are inadvertantly mixed the data can be identified and put in the correct file. The next questions identify the form, class type, size, material and location in the room, the number of identical items in the same sector and whether or not the object is on the floor. The last question permits calculating the area of the floor that is actually covered with furnishings.

Properly speaking, the weights of the walls and finish should only be included in the structural dead load. On the other hand the surface finish of a room contributes to the overall fire load of the room. For this reason the wall, floor and ceiling finish is included in the fire load but not in the live load for a particular room. The weight conversion data is partly from Culver [7] and partly from published and unpublished data from the NBS center for Fire Research $[8,9]$. The room form includes details of the surface finish, and the sizes of doors and windows. The first ll blocks on the room form are used as an identifier on all the subsequent forms for a particular room.

Walls -- Form W

This form is basically a continuation of the Rooms Form. It identifies such items as number of closets and those fire and live loads that are usually attached to or hang from the walls of the room. The definition of a closet used in the survey generally follows the definition in the proposed revisions to the Life Safety Code that any compartment greater than 24 square feet in area is a room, but a room 24 square feet and less is a closet [16].

Tables -- Form 01

This form lists the major table types found in residences. Though it is difficult to identify all of the table types that are available to the consumer, an attempt was made to group the major types into a list of manageable length.

Case Goods -- Form 02

This form includes all case good items except kitchen cabinets, which are listed in Form 03. Subsequent to the development of this form it was noted that the weights and materials of case goods items that are not specifically idertified on this form did correlate satisfactorily with similar items. An example of this is enclosed cocktail tables, which correlate closely with case goods -- "chest/dresser/bureau/desk."

$$
\text { Kitchen Cabinets and Built-ins -- Form } 03
$$

rhis form includes kitchen cabinets which properly speaking might be included under case goods. Since this class is an important one it was decided that it should be listed separately.

On the survey form the beds are classified by standard sizes. The transfer function for cribs includes the crib, rails, mattress, and bumper pad.

Upholstered Furniture -- Form 05

This form includes all upholstered furniture. During the preparation of this form it was noted that the transfer functions for trundle beds and day beds correlate with medium weight sofas. Wicker sofas are very light and require a separate transfer function.

Chairs -- Form 06

This form includes chairs other than upholstered chairs. It includes padded chairs such as many types of kitchen and dining room chairs, but excludes the completely upholstered chairs which are included in Form 05.

Drawer, Shelf, Cabinet or Closet Contents -- Form 07

This form includes the general classes of room contents other than furnishings such as books, clothing, dishes, etc. The transfer functions were developed by using a combination of engineering analysis, moving companies' data and selected weighing of household items.

$$
\text { Appliances -- Form } 08
$$

The wide variety of both large and small domestic appliances make it difficult to design a simple form that would meet all the anticipated load items that might be found in an average residence or mobile home. The form was specialized for large appliances as these are more significant load items than are the small appliances. Small appliances were reported on the "Miscellaneous" form.

$$
\text { Plumbing and Heating -- Form } 09
$$

This form identifies the major plumbing and heating items that are found in residences. Most of these items are largely noncombustible. The few exceptions include tubs and shower stalls made of glass reinforced plastic and toilet seat-cover assemblies which are usually made of wood or plastic materials.

This form is used to cover all items that do not fit into the other forms. The information was manually processed to provide live and fire load data.

Survey Report -- Form 11

This last report is used as a management tool to determine statistics on the time taken by the survey teams to complete the survey. The data are not included in the data base.

4. CALCULATION OF LIVE AND FIRE LOADS

4.1 Definitions of Live and Fire Loads

The live load is expressed in lbs/sq. ft. of floor area and as defined in this report includes movable furnishings and contencs, and semi-permanent furnishings such as kitcher cabinets, room dividers, built-in bookcases and shelving. It does not include the permanent structure, or the surface finish materials attached to walls, ceiling or floors, the weight of people, or the exterior loads due to wind or snow accumulation.

The fire load is defined as the total heat that could potentially be released per square foot of floor area divided by the heat of combustion of wood which is taken to be $8000 \mathrm{Btu} / \mathrm{lb}$. Thus a wooden table in a given room would have the same fire and live loads whereas the fire load for plastic furniture generally would exceed its live load. The room contents movable fire load includes the combustible portion of the room contents and furnishings. For built-in cabinets this includes the shelving, cabinet doors, contents and frame. The room finish fire load includes the surface finish on gypsumboard (usually paper or plastic), wall paper, paint on surfaces, combustible wall panels, wood floor, combustible floor and wall tile, wall to wall rugs and pad, exposed framing, doors and door frames, windows and window frames. Where the flcor was covered by a wall to wall rug, only the rug and pad were included. The same rule was used for combustible floor tile. If the rug or combustible tile covered only part of the floor in a room, then both the floor and the rug or tile were included in the fire load.

The transfer functions which relate the survey descriptors to the total weight and the weight fractions of each material were calculated from the information that was obtained from manufacturers, trade associations, catalogues, and published information within the Center for Fire Research $[8,9]$. The data for each load class item were summarized in tables, and the data were analyzed to find the most suitable factor or factors that correlated with weight. In most cases it was found that volume correlated with weight, but in some cases other factors were used: these included cubic foot capacity for refrigerator/freezers, screen size for console television sets, and Btu capacity for window air conditioners.

The computational process was done in two steps: the first step was to calculate the live load; the second step was to separate the live load into material types such as wood, paper, plastic, metal, ceramic, etc.

The live load transfer functions were calculated using an available programmable magnetic card desk calculator with an attached line plotter. In all cases a linear regression relationship using the method of least squares was satisfactory over the range of furnishings sizes of interest. For some items the mean and standard deviation were sufficient for the live load transfer functions and in some cases simple engineering analyses were adequate (such as for the weight of wood shelving). The linear regression curves were used to provide a measure of the range of weights and sizes of the load items and the mathematical equation that relates weight to survey descriptors. Examples of these linear regression curves are shown in figures 4-1 through 4-7 inclusive. An example is shown for each form except for the Rooms form, Chairs form, and Drawer, Shelf ... Contents form where the transfer functions were based on engineering analysis or mean values. For some of the furnishings, only the gross shipping weight was directly available--as shown, for example, in figures $4-2,-4$, and -7 . In these cases, the manufacturers or the retailers were able to provide estimates or exact weights of the packaging for many of the furnishings in the class. Using this data, the transfer function based on shipping weight was adjusted to provide the transfer function for the net weight.

Figure 4-l shows the transfer functions for Mirrors (Walls form). Most of the transfer functions on this form were derived in part or in whole by engineering analysis and judgment. Figure 4-2 shows the transfer functions for kitchen table (Tables form). Figure 4-3 shows the transfer functions for upright pianos (Case Goods form). Upright and spinet pianos are classed
as "medium" weight on the survey form to distinguish them from grand pianos which are classed as "heavy." Figure 4-4 shows the transfer function for wood kitchen base cabinets (Kitchen Cabinets, etc. form). In the calculations for live and fire loads the counter top material was added to their weight. Figure $4-5$ shows the transfer function for box springs (Beds form). For standaid beds in this classification the weight of the mattress, box spring, head and foot board, and frame was assumed to give a total weight for the furnishing item. It was also assumed that a standard bed, water and storage bed, was covered by 2 sheets, 2 blankets and 2 or 4 pillows depending on its size. Figure $4-6$ shows the transfer functions for a variety of sofas (Upholstered Furniture form). During this analysis, it was noted that trundle and day beds correlated with medium weight sofas. For the items on the Chairs form, mean weights from manufacturers data and Culver's [7] data were used. For the Drawer, Shelf, Cabinet or Closet contents form a variety of methods was used to determine transfer functions for this broad class of load items. For papers and books Culver's data [7] was combined with CFR data $[8,9]$, engineering analysis and actual weighing of several different kinds of papers and books to give reasonable average weights. For textile items, weighing of several classes of textiles and clothes led to the use of an average set of weights, depending on degree of compaction (see table 4-9). Figure 4-7 shows the transfer functions for TV sets (Appliances form).

The transfer functions for live loads are summarized in tables 4-1 to 4-11. In the last column in tables 4-1 to 4-11 entitled "No. of sources (No. in sample)," the first number means the number of pieces of data that were used to provide the information. For example in $3(10)$, the 3 means that there were three different sources for the data and the "(10)" in the parentheses means that ten different types of furnishings of the generic type were used to develop the particular transfer function. Some items that are listed on the survey forms are not listed on either the load transfer tables or the fire load transfer tables. The reason for this is that the design of the survey forms and the calculation of the transfer functions were dovetailed with the preparation of the computer program for reducing the raw data. These items are therefore to be considered as being "not applicable".

4.3 Fire Load Transfer Functions

The fire load transfer functions, which are summarized in tables 4-12 to 4-22 were derived from the live load transfer functions using available information on the heats of combustion of generic material commonly used for residential furnishings. For combinations of materials where the top legs,
sides etc. are made of different materials, engineering judgments were used inasmuch as furnishings information was frequently too limited to use directly.

4.4 Computation of Equivalent Fire Load

Historically all the available combustible material is included in the fire load, and this practice is continued in this report. It is apparent that some of the combustible material in a room may not be immediately available for contributing to the growth of a fire. Such materials could include door and window frames, drawer contents and the contents of built-in storage. Future analyses of fire growth in rooms should take into account the lesser contribution of certain portions of the fire load.

The basic method for computing the equivalent fire load is as follows: Consider that the load item is composed of n materials and that each material has weight W_{i} and produces a heat output of $Q_{i} B t u$ per $l b$. Then the total load in pounds is

$$
W_{T}=\sum_{1}^{n} w_{i}
$$

and the equivalent fire loading in pounds is given by

$$
\frac{\sum_{1}^{n} W_{i} Q_{i}}{8000}
$$

where
$8000=$ Btu content of 1 lb of combustibles, such as wood [2].

The equivalent fire loading is summed for each load item, in each sector of a room, and summed for the room as a whole to give the total fire loading in each room.

An example of the use of transfer functions to estimate the live and fire loads is given in Appendix C.

5.1 General Factors

A rumber of general descriptors of the single-family housing units were recorded during the survey. These included age of the unit, number of years occupied by the residents, number of rooms, garages, attics, and basements.

The age distribution of the surveyed housing is shown in table 5-1. The data indicates that approximately half the houses were less than 20 years old. The number of years occupied by the current resident is shown in table 5-2. The data indicates that about 40% of the residents have occupied their house for less than 5 years and about 60% less than 10 years.

The SFD homes in the survey were found to have a greater number of rooms than the SFA. The data shown in table $5-3$ show that 13% of the attached homes have 15 or more rooms, while 35% of the detached homes have 15 or more rooms with a combined total of 30% of all the houses in the survey having at least 15 rooms. The number of homes with garages is shown in table 5-4. Note that for purposes of this survey "room" includes hallways, storage areas, basements, Dathrooms, utility rooms, etc.

Originally the fire load for each housing type was listed under three headings: (1) "Room," (2) "Closet," and (3) "Room and Closet." Examination of the data showed only small differences in intensity of movable and total fire load between that for "Room" and that for "Room and Closet." For this reason and to keep the number of tables and figures manageable, the data are reported only for the "Room" summaries unless otherwise noted. The distribution of room areas are shown in tables 5-5 and 5-6 for SFA and SFD, respectively.

In general the rooms in the detached houses tended to be larger than those in attached houses even though the largest rooms in attached housing were comparable in size with the largest rooms in detached housing. The data for attics and garages are incomplete since the surveyors could not get access to most of these rooms and so these data are excluded. There were a total of 23 "other" rooms (6 in SFA, 17 in SFD). These are rooms that had mixed functions or were being renovated or remodeled so that their main function was not apparent.

For exterior finish, only the major (more than 50\%) surfacing material was reported. Masonry was the most common exterior finish in single-family
housing. The data in table 5-7 shows that among the surveyed residences, 70\% had masonry exterior finish and that wood siding and aluminum siding combined was used in 25% of the surveyed houses. The remaining houses had asphalt or asbestos shingles, stucco and mixed exterior finishes. The high percentage of SFA houses that have masonry exterior may be due to the fact that most of these units are older houses located inside the District of Columbia where masonry exteriors predominate ${ }^{6}$.

The two most common roof materials were asphalt shingle and tar and gravel. A few houses, mostly single-family detached, had clay tile or slate roofs. This is not surprising as clay tile or slate is more expensive than other kinds of roofing material that are currently used. The distribution of roofing materials for the houses surveyed is shown in table 5-8.

Because of the importance of room finish on the growth and development of fires--particularly in rooms containing heat sources, such as furnaces, water heaters, and clothes driers--this information is summarized for basements and utility rooms in tables 5-9 and 5-10. The information for utility rooms was not structured to provide the information in the same form as that for the basement. In table 5-10, utility rooms are classed as unfinished if either the walls or ceiling were described as unfinished or having a wood finish. This sorting was made after examining the original survey forms and discussion with the surveyors.

From the data 212 or 81% of the surveyed houses had basements; of this number 109 or 51% were either semi-finished or unfinished. The data also showed that 46% of the observed utility rooms were unfinished (or were reported as having a wood finish). Thus approximately one-half of these potentially high fire risk areas had a room finish that could contribute to the rapid growth and development of a fire.

Of the surveyed residences 59% had unfinished attics, 10% had finished attics and 31% had either inaccessible attics or no attics. The distribution of attic spaces in the houses surveyed is shown in table 5-1l.

[^5]
5.2.1 Room Loads

The room live load is shown in table 5-12, for SFA and in table 5-13, for SFD residences. The statistic (mean +1.64 SD), where $\mathrm{SD}=$ standard deviation, has been included in these tables. A discussion of the use of this statistic for these data is given in Appendix A. The average live load in SFA residences was generally a little higher than in SFD residences, except for the dining room, study, and other rooms. This can be partially explained on the basis that heavier furniture was found in dining rooms, and more books were found in the studies of SFD homes than in SFA. Examination of the data indicates that these differences are not significant. A weighted mean according to area of the live load for the whole house and the range of the average live load for all of the rooms was

House Type

SFA
SFD

Live Load lbs/sq. ft. Mean Range

Because of different uses, the room loads tended to fall into two ranges; a high range for kitchens, dining rooms, studies, and storage rooms, and a low range for the remaining rooms. The high range tended to be in excess of $12 \mathrm{lbs} / \mathrm{sq}$. ft., the low range was less than $8 \mathrm{lbs} / \mathrm{sq}$. ft. In kitchens, some or all of the cabinets may be hung from load-bearing partitions. In such cases these loads are not applied to the joists and would not be part of the normal floor load. These live loads were calculated in order to determine the fire loads in the kitchens.

The fire load consists of two parts, one part from the movable contents and the second part from the room finish. The distribution of movable contents fire load, interior finish fire load, total fire load and the ratio of finish fire load to total fire load is shown in tables 5-14 to 5-17 for SFA and in tables 5-18 to 5-2l for SFD.

A weighted mean of the equivalent movable contents fire load and the range of the average values for the whole house were

House Type

SFA
SFD

Movable Contents Mean

Fire Load lbs/sq. ft. Range

SFA	6.7	$1.4-16.8$
SFD	6.8	$1.3-17.8$

A similar weighted mean and range of total fire load was

House Type	Total Fire Load lbs/sq. ft. Mean Range	
SFA	12.1	$6.9-25.7$
SFD	12.7	$6.0-24.2$

The room finish is of the order of one-half the total fire load.

As shown above the observed mean and range of live load, movable contents fire load and total fire load were similar for SFA and SFD residences.

5.2.2 Composition of Fire Load

The composition of the fire load is an important parameter in evaluating fire risk and for understanding the growth and development of fires in rooms and residences. To meet these needs the fire load is separated into its component materials, i.e. wood, paper, plastic, fabric, and other. Rugs are included with fabric. The average movable fire load, interior finish fire load, and room total fire load is shown in figures 5-22, 23, 24 for $S F A$ and in figures $5-25,26,27$ for SFD.

The observed range of average weights of the component materials of the movable contents fire load in all the rooms was as follows:

House Type	Movable Fire Load lb/sq. ft. Range of Component Materials				
	Wood	Paper	Plastic	Fabric	Other
SFA	$0.4-4.0$	$0.4-9.0$	$0.1-4.0$	$0.06-1.8$	$0-0.5$
SFD	$0.4-4.0$	$0.4-10.0$	$0.1-0.8$	$0.04-1.0$	$0.02-0.5$

The classification of "other" material includes paints, cleaners, chemicals, and petroleum products.

5.2.3 Loads Close to Walls

Experimental studies at NBS and elsewhere have shown that in terms of flame height and fire growth, fires that originate close to a wall are generally more serious than those that originate in the middle of a room [17]. To provide information for future fire studies the live load and the fire load within 2 feet of the room wall were identified in this survey. The live load and the fire load located within 2 feet of the wall are shown in tables 5-28 and 5-29 for SFA and in tables 5-30 and 5-31 for SFD. A weighted mean of the percent movable live load within 2 feet of the wall was 71% for both SFA and SFD with a standard deviation of 14% for SFD and 15% for SFA, indicating no significant difference. This is not surprising since heavy furniture pieces and case goods are usually placed against the walls of a room. These data are similar to that from a recent survey of office buildings [ll] where it was also found that most of the movable live load was located within 2 feet of the wall.

5.2.4 Percent of Floor Covered

To assist in planning scenarios for fire tests and in developing a model of fire growth and spread, the percentage of the floor area covered by movable fire load was derived from the survey data. This information is shown in table 5-32 for SFA and 5-33 for SFD. A weighted mean value of all room types of the average for each room gave 32% covered for SFA and 30% covered for SFD with a standard deviation of 13% and 11%, respectively.

6: MOBILE HOMES

6.1 General Characteristics of Mobile Homes

In this survey the exteriors of the 98 observed mobile homes ${ }^{7}$ were quite uniform: 98 had metal roofs, 96 had metal sides, 2 had masonry sides ${ }^{8}$, and 2 units had attached garages (96 units had no garages). Garages, attics, basements and "other" rooms were excluded from the data lists. The first three were eliminated for the obvious reason that they generally do not

[^6]apply to mobile homes, and the fourth was eliminated because no rooms were reported as "other" in this part of the survey. Thus the data for mobile homes are reported under 10 room types.

The room listing for mobile homes includes family rooms, study, utility room and storage room. It is probable that the surveyors selected the room description according to the apparent use of the particular space. In a survey of this kind, the surveyors were required to exercise some judgment in applying descriptors to the observations.

As shown in table 6-2, the mean number of years that each class of housing has been occupied is considerably less for mobile homes (3.5 years) than for the other two classes of single-family homes (l0 years).

Though the number of occupants per unit is similar to those for single family residences, because of the smaller area, the occupants of the mobile homes tend to be more crowded than those in single-family homes. This is indicated in table 6-3 which shows that the observed available area per person in mobile homes is about one-half that found in other types of single-family homes.

The number of rooms in the mobile homes surveyed was smaller than the number in SFA and SFD residences. It should also be noted that the mobile home rooms are also generally smaller in area than the rooms in the single-family residences surveyed.

The distribution of the number of rooms is shown in table 6-4 and the area of the rooms is shown in table 6-5.

6.2 Live and Fire Loads

The definition of live and fire loads is the same as that for single-family residences, refer to Section 5.2 above.

The transfer functions for the interior finish fire load in mobile homes are the same as those used for conventional housing.

The room live load is given in table 6-6. A weighted mean and range of the average live load for all the rooms was: mean $-9.6 \mathrm{lbs} / \mathrm{sq}$. ft., range -5.4 to 22.7 lbs/sq. ft. This mean should be compared to the corresponding weighted mean live load of $10.1 \mathrm{lbs} / \mathrm{sq}$. ft. for SFA and $9.9 \mathrm{lbs} / \mathrm{sq}$. ft . for SFD.

The distribution of percent movable load with 2 feet of wall is shown in table $6-7$ and the percent of floor covered by movable live load is shown in table 6-8. The weighted mean of all the rooms for each room class gave a mean value of 78.0% of the movable load within 2 feet of the wall and a standard deviation of 8.3%. Though this is higher than the 71.2% for both SFA and SFD it is not surprising since rooms are smaller in mobile homes than in single-family residences. A similar calculation for percent floor covered gave 32.1% of the floor covered with a standard deviation of 9.7%. This compares with 32.0% for SFA and 30.2% for SFD.

For the rooms in the mobile homes the movable fire load, the interior finish fire load and the total fire load are shown in table 6-9, 6-10 and 6-11. The ratio of finish fire load to total fire load is shown in table 6-12. A weighted mean of the average movable contents equivalent fire load and the range of average values gave the following: mean. - $5.6 \mathrm{lbs} / \mathrm{sq}$. ft., range - 1.2 to $20.1 \mathrm{lbs} / \mathrm{sq}$. ft. A similar calculation for total equivalent fire load gave the following: mean $-17.7 \mathrm{lb} / \mathrm{sq}$. ft., range 14.9 to 38.5 lb/sq. ft.

The observed range of average weights of the component materials of the movable contents fire load in the surveyed mobile homes were as follows: wood - 0.3 to $4.6 \mathrm{lbs} / \mathrm{sq}$. ft., paper - 0.1 to $14.4 \mathrm{lbs} / \mathrm{sq}$. ft., plastic - 0.1 to $0.9 \mathrm{lbs} / \mathrm{sq}$. ft., fabric - 0.1 to $0.9 \mathrm{lbs} / \mathrm{sq}$. ft., and "other" - 0 to 0.5 lbs/sq. ft.

Most of the room finish fire load in mobile homes consists of wood and paper with plastic generally third place. It is likely that the finishes that were reported as being plastic consisted of vinyl coated plywood or plasticized finish on plywood.

7. SPECIAL SURVEY

7.1 Error Due to Differences Between Survey Teams

To provide a measure of the differences between survey teams, a single family detached home was surveyed by four survey teams. Originally it was planned to also weigh the contents, but this was not possible because of funding limitations.

This special survey was scheduled at the end of the mobile home survey. The time coincided with the end of the school year when the normal complement of surveyors was no longer available. The four available survey teams
included two experienced teams and two inexperienced teams. A second difficulty, which was discussed only after the event, was that between the second and third survey the owner was redecorating and refinishing his house, so that the furnishings were somewhat different both in quantity and kind, between the first, two and last two surveys.

The results of the special survey show that on room areas, shown in table $7-1$, there was reasonable agreement except that team 3 reported two family rooms totaling 324 sq . ft. and team 4 missed a storage room and a utility room. The owner of the house indicated that the basement area was divided and finished in a manner that could make it difficult for a surveyor to identify some of the spaces by unique room descriptors.

The results of the live load measurements are shown in table 7-2. The results for teams 1 and 2 are comparable with each other and those for teams 3 and 4 are comparable with each other. Part of the differences may be due to teams 3 and 4 being inexperienced and part may be due to the redecorations and refurnishings that occurred. Taking the special surveys in pairs, i.e. survey l with 2 , and 3 with 4 , the standard error of the mean [15] for two surveys is equal to one-half the range. This comparison is shown in table 7-3 and 7-4. Based on this analysis the error between surveyors is of the order of 15% to 20%.

7.2 Estimate of Error Due to Inventorying

In the absence of actual weighing of house contents, it is not possible to estimate the overall error due to using an inventory procedure. For the special survey, the weighted average (according to area) movable live load for all the rooms was $8.4 \mathrm{lb} / \mathrm{sq}$. ft. with a standard deviation of $7.1 \mathrm{lb} / \mathrm{sq}$. ft. Culver [ll] was able to physically weigh the contents of a selected office. He then used this data to estimate errors among surveyors and due to inventorying. Having this data he estimated that the overall error due to "surveyor" error and "measurement" error to be of the order of 10%. It should be noted that office contents and furnishings are far more standardized as to styles, shapes and weights than are household furnishings and so it would be expected that the survey error for the residential survey would be higher than in Culver's office loads survey. This could be confirmed by actual weighing of contents in a future survey of this kind.

The total live load and the total fire load for rooms and closets for the three types of occupancy are compared in tables 8-1 and 8-2. In addition to the rnean load, these tables also list the live loads corresponding to the (mean +1.64 SD). A discussion of the significance of this statistic is given in Appendix A. The fire load statistics should be applied with care. The reasons for this may be explained by analogy with design for live load effects. When designing for live load effects, the designer includes the effects of dead loads, movable loads, impact loads, periodic loads, and any unusual loads $[5,13]$. When considering fire loads the corresponding factors that effect the duration and intensity of a fire include among others: the magnitude of the fire load, the physical and chemical composition of the combustibles, the form and the compaction of the combustibles, the rate of heat release and the amount of ventilation.

At this time there is a project at NBS to develop experimental fire exposure curves for residences using average fire loads derived from the data from this survey [4]. A future specification for a desj.gn fire load should be based on this and related work.

The breakdown of the fire load by actual observed weights of materiais is shown in table 8-3 for room contents, table 8-4 for interior finish, and tabie 8-5 for room and closet total fire load. Table 8-4, Interior Finish Fire Load, shows that for mobile homes this fire load is higher than for single-family housing. This is due to the extensive use of wood paneling in mobile homes. Carpeting accounts for most of the contribution of the fabric while the source of the paper is mainly the covering of the gypsum wallboard and wallpaper.

On the average, about one third of the floor area is covered with furniture and about three fourths of the fire load is located within 2 feet of the walls (for all three classifications--SFA, SFD and MH). The variation of the fire and live loads among rooms of a given type are best seen by referring to the tables in this report and by noting the standard deviation reported in the tables. Wood was the predominant component of the movable contents. Gypsum board was the most frequent interior wall surface material for SFA and SFD. The exterior surfaces of the SFA and SFD residences were mostly masonry and asphalt shingles accounted for most of the roofing materials. For mobile homes the interior finish was predominantly wood while the exterior finish of the walls and roofs were usually metal.

Just prior to this report being printed the results of a recent Canadian survey of live loads in residences [18] became available. The results of the Canadian survey while different are in general agreement with the live loads reported in this survey. The Canadian survey also used an inventory technique for determining the live loads in residences.

9. ACKNOWLEDGMENTS

The completion of a project of this kind is the result of the cooperation and assistance of many people. William Douglas Walton of the Center for Fire Research wrote the computer program for producing the graphs and tables in this report; Robert M. McCabe and Jack Gorman of the Center for Consumer Product Technology wrote the computer program that converted the survey data into live and fire loads. Ms. Carol Harrison of NBS assisted in the preliminary design of the survey forms. Irving Silver, Peter Davidoff and John Pressley led the George Washington University Residential Survey Team. Charles Culver of the Center for Building Technology shared his experience with a related survey of office buildings. Dan Gross and William J. Parker of the Center for Fire Research thoroughly and patiently reviewed early drafts of this paper and many others who provided assistance and comments during the course of this survey. Bruce Ellingwood of the Center for Building Technology reviewed the final draft and brought to my attention the recent Canadian residential survey by Madsen and Turkstra [18].

10. REFERENCES

[l] Klem, T. J., (Draft) Interim Report Mobile Home Fire Problem in the United States. National Fire Protection and Control Administration (now Federal Emergency Management Administration), Washington, D.C., (1978). An updated version is scheduled for publication in 1980.
[2] Fire Resistance Classifications of Building Constructions, from Building Materials and Structures Report, Nat. Bur. Stand. (U.S.) BMS 92 (1942). Available from NTIS, Springfield, Virginia, Order No. COM 73-10974.
[3] Standard Methods of Fire Tests of Building Construction and Materials ANSI/ASTM E 1l9-78. American Society for Testing and Materials, Philadelphia, PA, 1978.
[4] Fang, J. B. and Breese, J. N., Fire Development in Residential Basement Rooms, Interim Report. In process, National Bureau of Standards. Washington, D.C. 1980.
[5] Issen, L. A., A Literature Review of Fire and Live Load Surveys in Residences, Nat. Bur. Stand. (U.S.) NBSIR 78-1440 (1978).
[6] Heany, A. C., A Reliability-Based Study Concerning Live Loads and Modified Structural Design, Thesis presented to the University of Waterloo, Waterloo, Ontario, Canada, in partial fulfillment of the requirements for the degree of Doctor of Philosophy (1971).
[7] Cuiver, C. and Kushner, J.: A Program for Survey of Fire Loads and Live Loads in Office Buildings, Nat. Bur. Stand. (U.S.), NBS TN-858 (May 1975).
[8] Babrauskas, V. Full-Scale Burning Behavjor of Upholstered Chairs, Ni3S rN-1103, Nat. Bur. Stand. (U.S.), Washington, D.C. 20234, 1979.
[9] Schmulling, D. W., A Materials Survey of the Furniture Industry unpublished report (1974).
[10] Federal Mobile Home Construction and Safety standard, Department of Housing anc Urban Development, Washington, D.C., June 1976.
[11] Culver, C., Survey Results for Fire Loads and Live Loads in Office Buildings, Nat. Bur. Stand. (U.S.), NBS Building Science Series 85 (May 1976).
[12] Klitgaard, P. S. and Williamson, R. B. . The Impact of Contents on Suilaing Fires, JFF/Consumer Product Flamability, Vol. 2, pp. 84-113 (March 1975).
[13] Sentler, I., A Live Load Survey in Domestic Houses, Report 47, Division of Building Technology, Lund Institute of Technology, Lund, Sweden (I974).
[14] Hall, W., Ayers, T. and Doxey, D. Survey Plans and Data Collection and Analysis Methodologies: Results of a Pre-Survey for the Magnitude and Extent of the Lead Based Paint Hazard in Housing, Nat. Bur. Stand. (U.S.). NBSIR 74-426 (January 1974).
[15] Huntsberger, D. V., and Billingsley, D., Elements of Statistical Inference, 3rd Edition, Allyn and Bacon Inc., Boston, Mass.. 1973.
[16] NFPA Life Safety Code, Revised 1976 National Fire Procection Asscciation, Boston, Massachusetts (1976).
[17] Tu, K. M., and Babrauskas, V., The Calibration of a Burn Room for Fire Tests on Furnishings, NBS TN-981, Nat. Bur. Stand. (U.S.), Washington, D.C., 1978.
[18] Madsen, H. O., and Turkstra, C. J., Residential Floor Loads-Theoretical and Field Study, Report ST.79-9, Department of Civil Engineering, McGill University, Montreal, Canada (1979).
[19] Basic Notes on Actions (third draft), CEB-CECM-CIB-FIP-AIBSE-RILEM, LNEC, Lisbon, Portugal 1976.
[20] Karman, T., Statistical Investigations on Live Loads on Floors, Committee W23, International Council for Building Research and Documentation, presented at the Session in Madrid, Spain, 1969.

FIGURE 4-2 TRANSFER FUNCTION FOR KITCHEN TABLES (TABLES FORM)

FIGURE 4-3 TRANSFER FUNCTIONS FOR UPRIGHT PIANOS (CASE GOODS FORM)

FIGURE 4-5 TRANSFER FUNCTION FOR BOX SPRINGS (BEDS FORM)

FIGURE 4-6 TRANSFER FUNCTION FOR SOFAS (UPHOLSTERED.....FORM)

FIGURE 4-7 TRANSFER FUNCTION FOR PORTABLE TELEVISIONS (APPLIANCES FORM)
Table 1-1. Loss comparison for fires in the United States [1]

	Fires		Deaths		Injuries		Dollar Loss	
	Number	Rate	Number	$\begin{gathered} \text { Rate } / \text { Million } \\ \text { Persons } \end{gathered}$	Number	$\begin{aligned} & \text { Rate/ } \\ & \text { Million } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Dollars } \\ & \text { (million) } \end{aligned}$	$\begin{aligned} & \text { Dollar/ } \\ & \text { Fire } \end{aligned}$
$\begin{aligned} & \text { All Fires } \\ & \text { (1975) } \end{aligned}$	2,600,000	$\begin{aligned} & 1,200 / \\ & 100,000 \\ & \text { people } \end{aligned}$	7,500	35.2	106,500	500	4,150	N.A.
$\begin{array}{\|l} \hline \text { Residential } \\ \text { Fires (1975) } \end{array}$	700,000	$\begin{aligned} & 9.9 / \\ & 1,000 \\ & \text { house- } \\ & \text { holds } \end{aligned}$	5,100	23.9	60,705	285	1,785	2,550
Mobile Home Fires	15,000	$\begin{aligned} & \hline 3.5 / \\ & 1,000 \\ & \text { house- } \\ & \text { holds } \end{aligned}$	439	44.3	825	83	60	4,000

Table 1-2. Geographic distribution of surveyed residences añ mobile homes

	Detached	Mobile Home	Totals	
District of Columbia	39	28	-	67
Maryland	6	99	42	147
Virginia	16	73	56	145
Total	61	200	98	359

Table 4-1. Load Transfer Function for Rooms Form R for Calculation of

Class	Type	Material	Function (weight, 1bs)	Coefficient of Correlation	No , of Sources, No. in Sample
Floor Finish	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \times \text { Area }\left(f t^{2}\right) \\ & 1 \times \text { Area }\left(f t^{2}\right) \end{aligned}$	n.a.	n.a.
		4	$1 \times \text { Area }\left(f t^{2}\right)$ Note: If items 2, 3, 4 less than 100% assume remaining area is type 1 (wood)		
Trim		1 3 4	$\begin{aligned} & 2.5 \mathrm{x} \text { (Length }(\mathrm{ft})+\text { width }(\mathrm{ft})) \\ & 1.6 \mathrm{x} \text { (Length }(\mathrm{ft})+\text { width }(\mathrm{ft})) \\ & 2.5 \mathrm{x} \text { (Length }(\mathrm{ft})+\text { width }(\mathrm{ft})) \end{aligned}$	n.a.	n.a.
Ceiling Finish		0	$4 \times \text { Area }\left(f t^{2}\right)$	n.a.	n.a.
		2	$.2 \times$ Area (ft ${ }^{2}$)		
		3	$.1 \times \text { Area }\left(\mathrm{ft}^{2}\right)$		
		5	2. x Area (ft ${ }^{2}$) 1. x Area ($f t^{2}$)		
Wa11 Construction		0	4. x Area ($f t^{2}$)	n.a.	n.a.
		1	. $2 \times$ Area ($\mathrm{ft}{ }^{2}$)		
		3	2. x Area (ft ${ }^{2}$)		
		4	1. x Area ($f t^{2}$)		
		5	1. x Area ($f t^{2}$)		

Table 4-1 (continued)

Table 4-2. Load Transfer Function for Walls Form W for

Class	Material	$\begin{gathered} \text { Function } \\ \text { (weight, lbs) } \end{gathered}$	Coefficient of Correlation	Number of Sources (Numberin Sample)
Pictures	$\begin{gathered} \hline 1 \\ 2,3 \\ 4 \\ 5 \\ 6 \end{gathered}$	$.021 \times$ Area $\left(i n^{2}\right)$ $.001 \times$ Area $\left(n^{2}\right)$ $.05 \times$ Area $\left(n^{2}\right)$ $.002 \times$ Area $\left(n^{2}\right)$ $.003 \times$ Area $\left(i n^{2}\right)$	n.a.	n.a.
Mirrors	7	. $01 \times$ Area (in^{2})	n.a.	8(25)
Mirror Tile		n.a.		
Curtains	4	. $001 \times$ Area (in^{2})	n.a.	3(20)
Drapes	4	. $007 \times$ Area (in^{2})	. 7	3(37)
Notice Board	$\underset{6}{2,4,5}$	$\begin{aligned} & .0057 \times \text { Area }\left(\mathrm{in}^{2}\right)-1.56 \\ & .0086 \times \text { Area }\left(\mathrm{in}^{2}\right)-1.56 \end{aligned}$	$\begin{aligned} & \text { n.a. } \\ & .96 \end{aligned}$	$\begin{aligned} & \text { n.a. } \\ & 2(10) \end{aligned}$
Plaques	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & .002 \times \text { Area }\left(\text { in }^{2}\right) \\ & .003 \times \text { Area }\left(\mathrm{in}^{2}\right) \end{aligned}$	n.a.	n.a.
Shelves	5,6	. $023 \times$ Area (in^{2})	n.a.	n.a.
Brackets		n.a.		
Lights/Lamp	5,6	15 lbs	S.D. 4.2	3(135)
Clocks	5,6	. $017 \times$ Area $\left(\mathrm{in}^{2}\right)+.64$. 88	i (9)
Rugs	4	. $9 \times$ Area (in^{2})	n.a.	n.a.
Fireplace				

Table 4－3．Load Transfer Function for Tables－Form 01

	을 H － N	$\begin{aligned} & 88 \\ & \text { O } \\ & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \sim \\ & \underset{\sim}{1} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & n \\ & \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 8 \\ & 7 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 88 \\ & 08 \\ & 10 \\ & 18 \\ & -18 \\ & 1 \end{aligned}$	$\begin{aligned} & 80 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$
	$\stackrel{\text { ñ }}{\text { ¢ }}$	${\underset{\infty}{\infty}}_{\underset{\sim}{\text { A. }}}^{6}$	$\underset{\infty}{\underset{\sim}{\sim}}$	$\begin{aligned} & \text { 긍 } \\ & \text { S } \\ & 0.0 \end{aligned}$	$\begin{aligned} & \underset{\sim}{\underset{V}{2}} \\ & \stackrel{-}{-1} \end{aligned}$	$\underbrace{\sim}_{N}$	¢ ${ }_{\sim}^{\infty}$
$\begin{aligned} & u_{1} \\ & 0 \\ & 0 \\ & 4 \\ & 4 \\ & 4 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	の－	N	앙	¢	$\stackrel{-}{\infty}$	กัّ	
	$\begin{aligned} & \underset{\pi}{7} \end{aligned}$	$\underset{\sim}{\text {－}}$	न	귱	－	ন্ণ ন	국
$\begin{gathered} \text { dol } \\ \text { [ETIOךeW } \end{gathered}$	न	－	－		－	न－न－	－min
	$\underset{\pi}{\underset{\sim}{7}}$	$\underset{\sim}{\text { F }}$	－	－	－	\hat{i}^{m}	－
$\begin{aligned} & \text { n } \\ & \text { N } \\ & \text { ت̈j } \end{aligned}$		7xes sutnxas	$\begin{aligned} & \text { Hy } \\ & \text { g } \\ & \text { む } \\ & \text { む } \\ & 0 \end{aligned}$	$\stackrel{\square}{\square}$		$\begin{aligned} & \text { ra } \\ & 0 \\ & 0 \end{aligned}$	

Table 4-4. Load Transfer Function for Case Goods Form 02

Class		$$			Function (Weight, lbs)	Coeff. of Correl.	$\begin{aligned} & \text { No. of } \\ & \text { Sources } \\ & \text { (No. in } \\ & \text { Sample) } \end{aligned}$	Range (lbs)
Buffet/etc.	all	all	all	n.a.	. 0063 x Vol $\left(\mathrm{in}^{3}\right)-53.7$. 91	8(23)	25-350
Hutch	all	all	all	n.a.	. $00396 \mathrm{x} \mathrm{Vol}\left(\ln ^{3}\right)-18.0$. 95	10(23)	15-275
Bar	a11	al1	al1	n.a.	. $00302 \times \operatorname{Vol}\left(\ln ^{3}\right)-9.8$. 96	5(14)	15-200
China Cabinets/ etc.	all	all	a11	n.a.	. $00442 \times$ Vol $\left(\mathrm{in}^{3}\right)-54.5$. 88	8(23)	50-550
Chest/etc.	all	all	all	n.a.	$.0041 \times \operatorname{Vol}\left(\mathrm{in}^{3}\right)-7.3$. 88	11 (83)	10-350
Room Divider	all	n.a.	1 2 $3,4,5$	n.a. n.a. n.a.	```. 394 x Length (in) - 1.4 . 30 x Length (in) .594 x Length (in) + 1.78```	$\begin{aligned} & .84 \\ & \text { n.a. } \\ & .86 \end{aligned}$	1 (12) n.a. 3 (14)	$\begin{aligned} & 10-100 \\ & 10-100 \\ & 10-100 \end{aligned}$
Bookcase	a11	a11	all	$\begin{gathered} 1 \\ 2 \\ 3,4,5 \end{gathered}$.00339 x Vol $\left(\mathrm{in}^{3}\right)-1.5$ $.000466 \times$ Vol $\left(\mathrm{in}^{3}\right)+6.1$ $.003 \times \operatorname{Vol}\left(\mathrm{in}^{3}\right)-1.5$	$\begin{array}{r} .95 \\ .95 \\ \mathrm{n} . \mathrm{a} \end{array}$	$\begin{aligned} & 8(37) \\ & 8(37) \\ & \text { n.a. } \end{aligned}$	$\begin{array}{\|l\|} 10-300 \\ 10-100 \\ 10-300 \end{array}$
Piano	1,2 3	all all	a11 al1	n.a.	```All except grand .0035 x Vol (in }\mp@subsup{}{}{3})+15 Grand .00447 x Vol (in }\mp@subsup{}{}{3})-6.```	.98 .99	$2(26)$ $1(6)$	$\begin{aligned} & 200-1400 \\ & 400-1500 \end{aligned}$

Table 4-4. (continued)

Table 4-5. Load Transfer Function for Kitchen

Class					Function (Weight, lbs)	Coeff. of Correl.	No. of Sources (No. in Sample)	Range (1bs)
Upper	all	n.a.	1	all	. 00345 x Vol $\left(\mathrm{in}^{3}\right)+4.0$. 92	7 (97)	10-250
			2	all	. $0023 \times \mathrm{Vol}\left(\mathrm{in}^{3}\right)+3.0$	n.a.	$\mathrm{n} . \mathrm{a}$.	10-250
			3	all	. $00194 \times \mathrm{Vol}\left(\mathrm{in}^{3}\right)+17.7$. 90	8 (23)	10-250
			4,5	all	. $0038 \times$ Vol (in^{3}) +4.0	n.a.	n.a.	10-250
Lower (excluding tops)	all	n.a.						
			1	al1	. $00114 \times \operatorname{Vol}\left(\mathrm{in}^{3}\right)+27.7$. 85	6 (66)	10-250
			2	a11	. $0008 \times \mathrm{Vol}\left(\mathrm{in}^{3}\right)+27.7$	n.a.	n.a.	10-250
			3	all	. $00274 \times \mathrm{Vol}\left(\mathrm{in}^{3}\right)-1.3$. 98	3 (21)	10-250
			4,5	all	. $0013 \times \mathrm{Vo1}\left(\mathrm{in}^{3}\right)+27.7$	n.a.		10-250
Lower Counter Tops*	a11	1	n.a.	n.a.	. 040 x Area (in ${ }^{2}$)	n.a.	3(9)	0-120
		2	n.a.	n.a.	. $027 \times$ Area (in ${ }^{2}$)	n.a.	3 (22)	0-120
		3,4,5	n.a.	n.a.	. $045 \times$ Area (in ${ }^{2}$)	n.a.	n.a.	0-120
Floor to ceiling	all	n.a.	1	n.a.	. $00084 \times \operatorname{Vol}\left(\right.$ in $\left.^{3}\right)+50.6$			
			2	n.a.	. 00056 x Vol $\left(\mathrm{in}^{3}\right)+34.0$	n.a.	n.a.	
			3	n.a.	. $00116 \times \mathrm{Vol}\left(\mathrm{in}^{3}\right)+20.6$. 92	$3(23)$	
			4,5	n.a.	. $001 \times \mathrm{Vol}\left(\mathrm{in}^{3}\right)+50.6$	n.a.		

* Counter area is computed from lower cabinet (length x width)
Table 4-6. Load Transfer Function for Beds - Form 04

[^7]
Table 4-6 (continued)

		-	¢
		$\begin{aligned} & \dot{\sim} \\ & \dot{c} \\ & ~ \\ & 3 \\ & 3 \end{aligned}$	$\dot{\sim}$
	억걱악	preoqpeaч x s.	
		न	
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	न	-	
	m	No	
$\begin{gathered} \square \\ \text { ®i } \\ \text { Nu } \\ \text { Nu } \end{gathered}$		-	
$\begin{aligned} & \text { ® } \\ & \text { N } \\ & \text { N } \end{aligned}$		$\underset{\sim}{-1}$	$\stackrel{\sim}{\sim}$
$\begin{aligned} & \text { 罢 } \\ & \text { H } \end{aligned}$		Bu on 0 0 0 0 0 0	$\begin{aligned} & 02 \\ & 0 \\ & 0 \\ & -1 \\ & -1 \\ & 201 \end{aligned}$

Table 4-7. Load Transfer Functions for Upholstered Furniture - Form 05

Class						Function (Weight, 1bs)	Coeff. of Coerre1.	No. of Sources No. in Sample	Range (1bs)
Chair	1,2	a11	a11	a11	a11	. $00116 \times \operatorname{Vol}\left(\mathrm{in}^{3}\right)-4.2$. 93	5 (16)	15-100
	3	a11	a11	a11	a11	$.00141 \times \operatorname{Vo1}\left(\mathrm{in}^{3}\right)+10.7$. 84	6 (36)	20-150
Recliner	a11	all	a11	a11	all	. $00170 \times \operatorname{Vol}\left(\mathrm{in}^{3}\right)+18.2$. 70	4 (29)	30-150
Rocker/Swivel	a11	all	a11	a11	a11	. $00153 \times \operatorname{lol}\left(\right.$ in $\left.^{3}\right)+15.9$. 73	8 (19)	20-150
Sofa	1	a11	a11	$\begin{gathered} 1,2,3 \\ 4,5 \end{gathered}$	a11	$1.31 \times$ Length (in) +13.1	. 63	6 (32)	20-150
	2	a11	a11	$\begin{gathered} 1,2,3 \\ 4,5 \end{gathered}$	a11	$1.98 \times$ Length (in) +31.6	. 85	2 (26)	30-300
	3	a11	a11	$\begin{gathered} 1,2,3 \\ 4,5 \end{gathered}$	a11	2.42 x Length (in) +113.4	. 94	1 (4)	100-400
	a11	all	a11	6	a11	1.02 x Length (in) - 7.0	. 57	2 (8)	20-150
Hide-a-bed	all	all	al1	a11	a11	$4.35 \times$ Length (in) - 28.6	. 90	2(8)	150-600
Day Bed	a11	al1	a11	all	all	$1.98 \times$ Length (in) +31.6	n.a.	n.a.	40-300
Trundle Bed	a11	a11	a11	all	a11	$1.98 \times$ Length (in) +31.6	n.a.	n.a.	40-300
Ottoman/etc	a11	a11	a11	a11	all	. $00179 \times$ Vol $\left(\mathrm{in}^{3}\right)+7.6$. 50	5 (23)	5-60
Bean Bag	a11	a11	a11	a11	a11	. $00152 \times \mathrm{Vol}\left(\mathrm{in}^{3}\right)-1.8$. 90	1 (4)	5-40

Table 4-8. Load Transfer Function for Chairs (other than upholstered) - Form 06

Class	Weight Class	Material Seat	$\begin{gathered} \text { Material } \\ \text { Legs } \end{gathered}$	Material Back	Function (Weight, lbs)	Coeff. of Cirrel.	No. of Sources (No. in Sample)
Kitchen	all	a11	a11	all	14.3	S.D. 3.4	3 (25)
Dining	1,2	all	all	$\begin{gathered} 1,2,3, \\ 4,5 \end{gathered}$	17.3	S.D. 4.5	3(27)
	3	a11	all	$\begin{gathered} 1,2,3 \\ 4,5 \end{gathered}$	25.5	S.D. 5.0	3(11)
	a11	all	a11	6	20.0	n.a.	n.a.
Office	a11	all	1	all	44.0	S.D. 10.9	4(126)
			2	all	25.0	S.D. 9.0	4 (87)
			$\begin{gathered} 3,4,5, \\ 6 \end{gathered}$	all	16.0	S.D. 4.0	3(75)
Rocker/Swivel	all	al1	all	all	35.1	S.D. 23.4	4(15)
Stool	1,2	all	a11	a11	12.6	S.D. 4.4	2 (8)
	3	al1	a11	a11	24.4	S.D. 4.8	2 (16)
Folding	a11	all	a11	a11	11.3	S.D. 1.2	3(3)

Table 4-9. Load Transfer Function for Drawer, Shelf,

Class	Weight Class	Material	Compaction	Function (Weight, lbs)	Coeff. of Correl.	No. of Sources (No. in Sample)
Papers/Books	1	a11	$\begin{gathered} 0,1 \\ 2 \\ 3 \\ 4 \end{gathered}$	$\begin{aligned} & .005 \times \operatorname{Vol}\left(\operatorname{in}^{3}\right) \\ & .010 \times \operatorname{Vo}\left(n^{3}\right) \\ & .015 \times \operatorname{Vo}\left(n^{3}\right) \\ & .020 \times \operatorname{Vo}\left(n^{3}\right) \end{aligned}$	n.a.	n.a.
	2	all	0,1 2 3 4	$\begin{aligned} & .005 \times \operatorname{Vo1}\left(\operatorname{in}^{3}\right) \\ & .011 \times \operatorname{Vo1}\left(\operatorname{in}^{3}\right) \\ & .016 \times \operatorname{Vo1}\left(\operatorname{in}^{3}\right) \\ & .022 \times \operatorname{Vol}\left(n^{3}\right) \end{aligned}$	n.a.	n.a.
	3	a11	0,1 2 3 4	$\begin{aligned} & .007 \times \operatorname{Vol}\left(\text { in }^{3}\right) \\ & .014 \times \operatorname{Vol}\left(\text { in }^{3}\right) \\ & .022 \times \operatorname{Vol}\left(\text { in }^{3}\right) \\ & .029 \times \operatorname{Vol}\left(\text { in }^{3}\right) \end{aligned}$	n.a.	n.a.
Photographs/etc	1,2	a11	$\begin{array}{r} 0,1,2 \\ 3,4 \end{array}$	$\begin{aligned} & .008 \times \operatorname{Vol}\left(\text { in }^{3}\right) \\ & .013 \times \operatorname{Vol}\left(\text { in }^{3}\right) \end{aligned}$	n.a.	n.a.
	3	all	$\begin{gathered} 0,1,2 \\ 3,4 \end{gathered}$	$\begin{aligned} & .019 \times \operatorname{Vol}\left(\text { in }^{3}\right) \\ & .029 \times \operatorname{Vol}\left(\text { in }^{3}\right) \end{aligned}$	n.a.	n.a.
Phonograph records	al1	a11	$\begin{gathered} 0,1,2 \\ 3,4 \end{gathered}$	$\begin{aligned} & .037 \times \operatorname{Vol}\left(\operatorname{in}^{3}\right) \\ & .041 \times \operatorname{Vol}\left(\operatorname{in}^{3}\right) \end{aligned}$	n.a.	n.a.
Cassette/magn. tapes	al1	all	$\begin{gathered} 0,1,2 \\ 3,4 \end{gathered}$	$\begin{aligned} & .0010 \times \operatorname{Vol}\left(\operatorname{in}^{3}\right) \\ & .0019 \times \operatorname{Vol}\left(\operatorname{in}^{3}\right) \end{aligned}$	n.a.	n.a.

Table 4-9. (continued)

Class	Weight Class	Material	Compaction	Function (Weight, 1bs)	Coeff. of Correl.	No. of Sources (No. in Sample)
Dishes/Trays	a11	1	$\begin{gathered} 0,1,2 \\ 3,4 \end{gathered}$	$\begin{aligned} & .010 \times \operatorname{VoL}\left(\text { in }^{3}\right) \\ & .020 \times \operatorname{Vol}\left(\text { in }^{3}\right) \end{aligned}$	n.a.	n.a.
		2,3	$\begin{gathered} 0,1,2 \\ 3,4 \end{gathered}$	$\begin{aligned} & .010 \times \operatorname{Vol}\left(\ln ^{3}\right) \\ & .020 \times \operatorname{Vol}\left(\ln ^{3}\right) \end{aligned}$	n.a.	n.a.
		4,5	$\begin{gathered} 0,1,2 \\ 3,4 \end{gathered}$	$\begin{aligned} & .028 \times \operatorname{Vol}\left(\mathrm{in}^{3}\right) \\ & .057 \times \operatorname{Vol}\left(\mathrm{in}^{3}\right) \end{aligned}$	n.a.	n.a.
		6	$\begin{gathered} 0,1,2 \\ 3,4 \end{gathered}$	$\begin{aligned} & .05 \times \operatorname{Vol}\left(\mathrm{in}^{3}\right) \\ & .10 \times \operatorname{Vol}\left(\mathrm{in}^{3}\right) \end{aligned}$	n.a.	n.a.
G1assware/ stemware	all	all	$\begin{gathered} 0,1,2 \\ 3,4 \end{gathered}$	$\begin{aligned} & .005 \times \operatorname{Vol}\left(\mathrm{in}^{3}\right) \\ & .01 \times \operatorname{Vol}\left(\mathrm{in}^{3}\right) \end{aligned}$	n.a.	n.a.
Cookware/pots/ pans	all	4,5	$\begin{gathered} 0,1,2 \\ 3,4 \end{gathered}$	$\begin{aligned} & .01 \times \operatorname{Vol}\left(\text { in }^{3}\right) \\ & .05 \times \operatorname{Vol}\left(\text { in }^{3}\right) \end{aligned}$	n.a.	n.a.
		6	$\begin{gathered} 0,1,2 \\ 3,4 \end{gathered}$	$\begin{aligned} & .02 \times \operatorname{Vol}\left(\text { in }^{3}\right) \\ & .05 \times \operatorname{Vol}\left(\mathrm{in}^{3}\right) \end{aligned}$	n.a.	n.a.
Cutlery/etc.	all	1,2,3	$\begin{gathered} 0,1,2 \\ 3,4 \end{gathered}$	$\begin{aligned} & .005 \times \operatorname{Vol}\left(\ln ^{3}\right) \\ & .010 \times \operatorname{Vol}\left(\ln ^{3}\right) \end{aligned}$	n.a.	n.a.

Table 4-9. (continued)

Class	Weight Class	Material	Compaction	Function (Weight, lbs)	Coeff. of Correl.	No. of Sources (No. in Sample)
		4,5	$\begin{gathered} 0,1,2 \\ 3,4 \end{gathered}$	$\begin{aligned} & .014 \times \operatorname{Vol}\left(\operatorname{in}^{3}\right) \\ & .028 \times \operatorname{Vol}\left(\mathrm{in}^{3}\right) \end{aligned}$	n.a.	n.a.
		6	$\begin{gathered} 0,1,2 \\ 3,4 \end{gathered}$	$\begin{aligned} & .025 \times \operatorname{Vol}\left(\mathrm{in}^{3}\right) \\ & .050 \times \operatorname{Vol}\left(\mathrm{in}^{3}\right) \end{aligned}$	n.a.	n.a.
```Cans/Jars/Food- stuffs```	all	all	$\begin{gathered} 0,1,2 \\ 3,4 \end{gathered}$	$\begin{aligned} & .015 \times \operatorname{Vol}\left(\text { in }^{3}\right) \\ & .030 \times \operatorname{Vol}\left(\mathrm{in}^{3}\right) \end{aligned}$	n.a.	n.a.
Dry Pack. Foods	all	al1	$\begin{gathered} 0,1,2 \\ 3,4 \end{gathered}$	$\begin{aligned} & .006 \times \operatorname{Vol}\left(\text { in }^{3}\right) \\ & .012 \times \operatorname{Vol}\left(\mathrm{in}^{3}\right) \end{aligned}$	n.a.	n.a.
Small Appliances	a11	all	$\begin{gathered} 0,1,2 \\ 3,4 \end{gathered}$	$\begin{aligned} & .003 \times \operatorname{Vol}\left(\text { in }^{3}\right) \\ & .008 \times \operatorname{Vol}\left(\text { in }^{3}\right) \end{aligned}$	n.a.	n.a.
Cothing, blankets sheets, towels	a11	all	$\begin{gathered} 0,1,2 \\ 3 \\ 4 \end{gathered}$	$\begin{aligned} & .002 \times \operatorname{Vol}\left(\mathrm{in}^{3}\right) \\ & .003 \times \operatorname{Vol}\left(\mathrm{in}^{3}\right) \\ & .004 \times \operatorname{Vol}\left(\mathrm{in}^{3}\right) \end{aligned}$	n.a.	n.a.
Guns/Pistols	1,2	all	$\begin{gathered} 0,1,2 \\ 3,4 \end{gathered}$	$\begin{aligned} & .015 \times \operatorname{Vol}\left(\operatorname{in}^{3}\right) \\ & .03 \times \operatorname{Vol}\left(\mathrm{in}^{3}\right) \end{aligned}$	n.a	n.a.
	3	all	$\begin{gathered} 0,1,2 \\ 3,4 \end{gathered}$	$\begin{aligned} & .015 \times \operatorname{Vol}(\operatorname{in}) \\ & .030 \times \operatorname{Vo1}\left(\text { in }^{3}\right) \end{aligned}$		

Table 4－9．（continued）

	¢ ¢ ¢ ¢ ¢	$\stackrel{\text { ¢゙ }}{\square}$
	¢்	$\stackrel{\text { ® }}{\text { ¢ }}$
$\begin{aligned} & \text { ह⿸厂 } \\ & \text { IU } \\ & \tilde{0} \\ & 0 \\ & \text { O} \\ & 0 \end{aligned}$		ONのさ
	－	$\underset{\sim}{\text { F̈ }}$
	नु न̈	न̈
$$		

Table 4-10. Load Transfer Function for Appliances - Form 08

Class	N $\sim$ - $\sim$					Function (Weight, 1bs)	Coeff. of Correl.	No. of Sources (No. in Sample)	Range   (1bs)
Stoves/Ranges	a11	all	all	all	all	. $00443 \times$ Vol $\left(\right.$ in $\left.^{3}\right)+60.1$	. 80	5(17)	0-500
Countertop Ranges	all	all	all	n.a.	n.a.	. $105 \times$ Area (in ${ }^{2}$ )-24.4	. 82	3(14)	0-500
Ovens/Wallovens	all	a11	all	all	all	. $209 \times$ Area (in ${ }^{2}$ )-15.7	. 81	4(19)	0-500
Refrigerator/   Freezer	a11	a11	al1	all	all	$9.78 \times$ Cap. (cu ft) +72.3	. 83	8(75)	0-500
TV - B\&W	a11	a11	all	all	all	```Portable 2.43 x Screen (in)-6.8```	. 97	4(36)	0-100
TV - Color	all	a11	a11	all	al1	```Portable 4.93 x Screen (in)-17.5```	. 95	4(36)	0-200
TV - Console	all	all	al1	a11	a11	$\begin{aligned} & \text { Color and B\&W } \\ & .0065 \times \text { Vol }\left(\text { in }^{3}\right)+22.5 \end{aligned}$	. 84	3(16)	0-400
Stereo	a11	a11	all	al1	all	.007 x Vol ( $\mathrm{in}^{3}$ )	n.a.	n.a.	0-300
Air Conditioner	a11	a11	a11	a11	a11	$8.23 \mathrm{x} \mathrm{Cap}(\mathrm{KBTU})+34.6$	. 97	5 (41)	0-300
Dehumidifier/ Humidifier	a11	a11	a11	all	a11	55	n.a.	n.a.	n.a.

Tab1e 4-10. (continued)

C1ass	$\begin{aligned} & \text { 01 } \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$					$\begin{aligned} & \text { Function } \\ & \text { (Weight, Lbs) } \end{aligned}$	Coeff. of Correl.	No. of Sources (No. in Sample)	Range (1bs)
Sewing Machine	all	a11	all	all	a11	31	S.D. 6.2	3(12)	n.a.
Washer	all	all	all	all	a11	. $0068 \times \mathrm{Vol}\left(\mathrm{in}^{3}\right)+13.2$	. 93	4(13)	0-300
Dryer	a11	a11	a11	all	al1	. $0033 \mathrm{x} \mathrm{Vol}\left(\mathrm{in}^{3}\right)+40.7$	. 89	5(26)	0-300
Dishwasher	211	a11	a11	al1	al1	$15.63 \times$ Height (in) -454.6	. 98	6(29)	0-300
Compactor	a11	al1	all	a11	all	. $0076 \times \mathrm{Vo} 1\left(\mathrm{in}^{3}\right)+83.4$	. 91	5(8)	0-300
Fish Tank*	al1	a11	all	all	a11	$\begin{aligned} & .036 \times \operatorname{Vo1}\left(\mathrm{in}^{3}\right)+ \\ & .012[\mathrm{~L}(\mathrm{in}) \times \mathrm{W}(\mathrm{in})+2 \mathrm{H}(\mathrm{in}) \\ & (\mathrm{L})+\mathrm{in})+\mathrm{W}(\mathrm{in}))] \end{aligned}$	n.a.	n.a.	0-1000

* Includes the weight of the water.
Table 4-11. Load Transfer Function for Plumbing and Heating - Form 09

Class			Function (Weight, 1bs)	Coeff. of Correl.	No. of Sources (No. in Sample)	Range   (lbs)
Sinks	a11	a11	```IF Cols 7 & 8 are 03 .019 x Area (in2) + 5.55 IF Cols 7 & 8 f=03 .11 x Area (in2) - 7.8```	.31 .91	$3(14)$ $3(15)$	$0-100$ $0-100$
Bath Tubs	a11	$\begin{aligned} & 1,3 \\ & 2,4 \end{aligned}$	$\begin{aligned} & .009 \times \operatorname{Vol}\left(\operatorname{in}^{3}\right)+18.8 \\ & .006 \times \operatorname{Vol}\left(\text { in }^{3}\right)+9.3 \end{aligned}$	. 98.	2(10) n.a.	$\begin{aligned} & 100-500 \\ & 100-500 \end{aligned}$
Toilets	a11	$\begin{aligned} & 1,3 \\ & 2,4 \end{aligned}$	$\begin{aligned} & 95.0 \\ & 63.0 \end{aligned}$	$\begin{gathered} \text { S.D. } 11.8 \\ \text { n.a. } \end{gathered}$	$\begin{aligned} & 4(19) \\ & \text { n.a. } \end{aligned}$	$\begin{aligned} & \text { n.a. } \\ & \text { n.a. } \end{aligned}$
Laundry Tubs	a11	1,3 2,4	$\begin{aligned} & .0014 \times \text { Vol }\left(\operatorname{in}^{3}\right)+6.56 \\ & .0021 \times \operatorname{Vol}\left(\operatorname{in}^{3}\right)+9.8 \end{aligned}$	.99 n .9.	2(4) n.a.	$\begin{aligned} & 20-150 \\ & 20-150 \end{aligned}$
Furnace	a11	a11	250.0	n.a.	n.a.	n.a.
Water Heater*	a11	a11	250.0	n.a.	n.a.	n.a.
Water Purifier*	a11	a11	250.0	S.D. 33.2	3(7)	n.a.
Water Pumps			52.9	S.D. 9.9	3(27)	n.a.
Shower Stall	a11	$\begin{aligned} & 1,3 \\ & 2,4 \end{aligned}$	$\begin{aligned} & 1.5 \times \text { Width }(\mathrm{in})+70.0 \\ & 1.04 \times \text { Width }(\mathrm{in})+46.7 \end{aligned}$	$\begin{aligned} & \text { n.a. } \\ & .99 \end{aligned}$	$\begin{aligned} & \mathrm{n} . \mathrm{a} \\ & 1(4) \end{aligned}$	$\begin{aligned} & 50-200 \\ & 50-200 \end{aligned}$

* Includes the weight of the water.
Table 4-12. Fire Load Transfer Function for Rooms - Form R

Table 4-13. Fire Load Transfer Function for Walls - Form W

Class		Fire Load (lbs)				
		Paper	Wood	Fabric	Plastic	Other
Pictures	$\begin{gathered} 1,2,3 \\ 6 \\ 4 \\ 5 \end{gathered}$	wt	wt	wt	wt	
Mirrors	7		wt			
Curtains	4			wt		
Drapes	4			wt		
Notice Board	$\begin{aligned} & 2 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	wt	wt	wt	wt	
Plaques	$\begin{aligned} & 5 \\ & 6 \end{aligned}$		wt		wt	
Shelves	$\begin{aligned} & 5 \\ & 6 \end{aligned}$		wt		wt	
Lights/Lamp	$\begin{aligned} & 5 \\ & 6 \end{aligned}$		. 2 x wt		. 2 x wt	
Clocks	$\begin{aligned} & 5 \\ & 6 \end{aligned}$		$.2 \mathrm{x} \mathrm{wt}$		. 2 x wt	
Rugs	all			wt		

Table 4-14. Fire Load Transfer Function for Tables - Form 01

Class	Weight   Class	Material Top	Material Legs	Fire Load (lbs)		
				Wood	Fabric	Plastic
Dining/kitchen	all	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	1	$.8 \mathrm{x} \text { wt }$   $.2 \mathrm{x} w t$		$.8 \text { x wt }$   . 2 x wt
Serving Cart	all	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$.8 \mathrm{x} w t$ $.2 \mathrm{x} \text { wt }$		$.8 \text { x wt }$ $.2 \text { x wt }$
Cocktail	all	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$.8 \mathrm{x} w t$   $.2 \mathrm{x} w t$		.8 x wt   .2 x wt
End	all	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$.8 \mathrm{x} w t$   .2 x wt		$\begin{aligned} & .8 \mathrm{x} w t \\ & .2 \mathrm{x} \mathrm{wt} \end{aligned}$
Commode/   Night Stand	all	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	1	.75 x wt   .25 x wt		$\begin{aligned} & .75 \times \mathrm{wt} \\ & .25 \mathrm{x} \mathrm{wt} \end{aligned}$

Table 4-14. (continued)

Class	Weight   Class	Material Top	Material   Legs	$\begin{aligned} & \text { Fire Load } \\ & \text { (lbs) } \end{aligned}$		
				Wood	Fabric	Plastic
Pool	1,2	$\begin{gathered} 1,4 \\ 2 \end{gathered}$		$.8 \mathrm{x} \mathrm{wt}$		. 8 x wt
			$\begin{aligned} & 1 \\ & 2 \end{aligned}$	. $2 \times \mathrm{wt}$		. 2 x wt
	3	$\underset{2}{1,4}$		. $7 \times \mathrm{wt}$		. $7 \times \mathrm{wt}$
			$\begin{aligned} & 1 \\ & 2 \end{aligned}$	. $2 \times \mathrm{wt}$		. 2 x wt
Folding	all	$\begin{aligned} & 1 \\ & 2 \end{aligned}$		$.8 \times w t$		. 8 x wt
			$\frac{1}{2}$	. 2 x wt		$.2 \times \mathrm{wt}$

Table 4-15. Fire Load Transfer Function for Case Goods - Form 02



Table 4-16. Fire Load Transfer Function for Kitchen Cabinets and Built-ins


[^8]Table 4-17. Fire Load Transfer Function for Beds - Form 04

Class	Size	Fire Load (lbs)		
		Wood	Fabric	Plastic
Standard*	$\underset{5}{1,2,3,4}$	. $25 \times \mathrm{wt}$	$\begin{aligned} & .13 \mathrm{xwt} \\ & .2 \mathrm{x} w t \end{aligned}$	$\begin{aligned} & .17 \mathrm{x} \mathrm{wt} \\ & .8 \mathrm{x} w t \end{aligned}$
Waterbed	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 90 \\ & 72 \\ & 54 \\ & 45 \end{aligned}$		$\begin{array}{r} 10 \\ 8 \\ 6 \\ 5 \end{array}$
Storage Bed*	all	. 83 x wt	. $06 \times \mathrm{wt}$	. $11 \times \mathrm{wt}$
Cot/Rollaway*	all		. 09 x wt	. $17 \times \mathrm{wt}$

* Assume in this survey that all beds have a foam mattress
Table 4-17 (continued)

Item	$\begin{aligned} & \text { Bed } \\ & \text { Size } \end{aligned}$	Bed Class				Fire Load (lbs)		
						Wood	Fabric	Plastic
Headboard	all	all	2,3,4	all	$1,2,5$ 3	wt		wt
Footboard	all	all	2,3,4	all	$\begin{gathered} 1,2,5 \\ 3 \end{gathered}$	wt		wt
Pillows   Sheet, Blankets,	$\begin{gathered} 1,2 \\ 3 \\ 4 \\ 5 \end{gathered}$	$\begin{aligned} & 1,2,3 \\ & 1,2,3 \\ & 1,2,3 \\ & 1,2,3 \end{aligned}$					wt   wt   wt   wt	

Table 4-18. Fire Load Transfer Function for Upholstered Furniture - Form 05

Table 4-18. (continued)

Class	$$					Fire Loads (lbs)		
						Wood	Fabric	Plastic
Hide-a-bed	all	$\begin{gathered} 1,4,5,6 \\ 3 \end{gathered}$	$1,4,5,6$	all	all	. 05 x wt	. 10 x wt	$\begin{aligned} & .05 \mathrm{x} \text { wt } \\ & .05 \mathrm{x} \text { wt } \\ & .35 \mathrm{x} \text { wt } \end{aligned}$
						$.05 \mathrm{x} w \mathrm{t}$ .40 x wt		
Day Bed	all		$1,4,5,6$	all	all	. 05 x wt	. 15 x wt	$\begin{aligned} & .05 \mathrm{x} \text { wt } \\ & .35 \mathrm{x} \text { wt } \end{aligned}$
						. 40 x wt		
Trundle Bed	all		$\underset{3}{1,4,5,6}$			. 05 x wt		. 05 x wt
				all	all	. $40 \times \mathrm{wt}$	. 15 x wt	. 35 x wt
Ottoman/etc	all		$1,4,5,6$			. 05 x wt		. 05 x wt
					all		. 15 x wt	. 80 x wt
Bean Bag	all				all			wt

Table 4-19. Fire Load Transfer Function for Chairs - Form 06

Table 4-20. Fire Load Transfer Function for Drawer, Shelf, Cabinet or Closet Contents - Form 07

Class			$\begin{aligned} & \text { Fire Load } \\ & \text { (lbs) } \end{aligned}$				
			Paper	Wood	Fabric	Plastic	Other
Paper/Books	all	all	wt				
Photographs/etc.	all	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	wt			. 60 x wt	
Phonograph Records	all	all	. 20 x wt			. 70 x wt	
Cassettes/etc	all	all				wt	
Dishes/Trays	all	1	wt				
		2 3		wt		wt	
Glassware/ stemware	all	1	wt				
		2 3		wt		wt	
Cutlery/etc	all	$\begin{aligned} & 2 \\ & 3 \end{aligned}$		wt		wt	
Dry Packaged Food	all	all		wt			
Small Appliances	all	all				. $35 \times \mathrm{wt}$	
Clothing, Blankets, Sheets, Towels	all	all			wt		
Guns/Pistols	all	all		.10 x wt			

Table 4-20. (continued)

Table 4-21. Fire Load Transfer Function for Appliances - Form 0४

Class	$\begin{aligned} & \stackrel{u}{\lambda} \\ & \underset{\sim}{山} \end{aligned}$						Fire Load (lbs)		
							Wood	Fabric	Plastic
Refrigerator/ Freezer	all	all	all	all	all	all			. 20 x wt
TV - all	all	all	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	all   all   all	$\begin{aligned} & \text { all } \\ & \text { all } \\ & \text { all } \end{aligned}$	$\begin{aligned} & \text { all } \\ & \text { all } \\ & \text { all } \end{aligned}$	. 20 x wt		$\begin{aligned} & .10 \mathrm{x} \text { wt } \\ & .30 \mathrm{x} \text { wt } \\ & .10 \mathrm{x} \text { wt } \end{aligned}$
Stereo	all	all	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	all   all   all	$\begin{aligned} & \text { all } \\ & \text { all } \\ & \text { all } \end{aligned}$	$\begin{aligned} & \text { all } \\ & \text { all } \\ & \text { all } \end{aligned}$	. 20 x wt		$\begin{aligned} & .10 \mathrm{x} \text { wt } \\ & .30 \mathrm{x} \text { wt } \\ & .10 \mathrm{x} \text { wt } \end{aligned}$

Table 4-22. Fire Load Transfer Function

	O	$\begin{aligned} & 4 \\ & 3 \\ & x \\ & 0 \\ & ? \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \\ & x \\ & 0 \\ & ? \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \\ & x \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \\ & \times \\ & 0 \\ & ? ~ \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \\ & x \\ & 0 \\ & 0 \end{aligned}$
	'0					
$\begin{aligned} & \text { H } \\ & \text { - } \\ & \text { H } \\ & 0 \\ & 0 \\ & \sum \\ & \end{aligned}$		$\stackrel{\pi}{\sim}$	$\stackrel{\rightharpoonup}{N}$	ij	$\begin{aligned} & \text { F } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \dot{N} \\ & \stackrel{y}{n} \end{aligned}$
$$		+	$\underset{\sim}{-1}$	-	$\underset{\sim}{\text { r }}$	$\stackrel{\underset{\sim}{\mathrm{H}}}{\substack{\text { r }}}$
$\begin{aligned} & \text { n } \\ & \text { n } \\ & 0 \\ & 0-1 \end{aligned}$		$\begin{aligned} & 0 \\ & \stackrel{x}{E} \\ & .-1 \\ & \omega \end{aligned}$		$\begin{gathered} 0 \\ + \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ E-1 \end{gathered}$	$\text { sqn山 } K \text { xpuner }$	

Table 5-1. Age Distribution of Surveyed Houses

Date Built	$\begin{gathered} \text { Age } \\ \text { Years } \\ \hline \end{gathered}$	Attached		Detached		Total	
		$\begin{aligned} & \text { No. } \\ & \text { Units } \end{aligned}$	\%	$\begin{aligned} & \text { No. } \\ & \text { Units } \end{aligned}$	\%	$\begin{aligned} & \text { No. } \\ & \text { Units } \end{aligned}$	\%
1970 -	1-6	13	21.3	28	14.0	41	15.7
1965-69	7-11	6	9.8	33	16.5	39	15.0
1960-64	12-16	1	1.6	26	13.0	27	10.3
1950-59	17-26	5	8.2	50	25.0	55	21.1
1940-49	27 -. 36	3	4.9	14	7.0	17	6.5
- 1939	37 or more	29	47.6	44	22.0	73	28.0
Not given		4	6.6	5	2.5	9	3.4
Total		61	100.0	200	100.0	261	100.0

Table 5-2. Number of Years Occupied by Current Resident

Years occupied	Attached		Detached		Total	
	No. Units	\%	$\begin{gathered} \text { No. } \\ \text { Units } \end{gathered}$	\%	No. Units	\%
0-4	31	50.8	66	33.0	97	37.2
5-9	12	19.7	45	22.5	57	21.8
10-19	5	8.2	54	27.0	59	22.6
20-29	10	16.4	24	12.0	34	13.0
$30-$	3	4.9	11	5.5	14	5.4
Total	61	100.0	200	100.0	261	100.0
liean	9.2		10.8			
Std. Dev.	11.1		10.0			

Table 5-3. Distribution of Numbers of Rooms

No. of Rooms	Attached		Detached		Total	
	$\begin{gathered} \text { No. } \\ \text { Units } \end{gathered}$		$\begin{aligned} & \text { No. } \\ & \text { Units } \\ & \hline \end{aligned}$	$\%$	$\begin{gathered} \text { No. } \\ \text { Units } \end{gathered}$	\%
0-4	-	-	-	-	-	-
5-9	22	36.1	18	9.0	40	15.3
10-14	31	50.8	112	56.0	143	54.8
15-19	7	11.5	60	30.0	67	25.7
20-24	1	1.6	9	4.5	10	3.8
25-29	-	-	1	. 5	1	. 4
30-34	-	-	-	-	-	-
Total	61	100.0	200	100.0	261	100.0
Mean No. Rooms	10.9		13.5			
Std. Dev.	3.4		3.4			

Table 5-4. Distribution of garages

House Type	Single Family   Attached		Single Family   Detached		Total	
	No.   Units	$\%$	No.   Units	$\%$	No.   Units	$\%$
Attached to   house						
Separated   from house   None	10	16.4	74	37.0	84	32.2
Total	10	16.4	18	9.0	28	10.7

SINGLE FANILY ATIACHEL hCMES

single fanily cetactec rcmes
FCCN TYPE OTHER $\begin{array}{ccc}10 & 1 & 2 \\ 22 \cdot 7 x & 11.8 x\end{array}$ $\begin{array}{ccc}-\infty & \text { I } & \text { I } \\ 27 \cdot 3 x & 1 & 11.8 x\end{array}$ $\begin{array}{cccc}10 & 1 & 5 & I \\ 22.7 \times & I & 29.4 \times & I\end{array}$ 1 I-M I 4 xs•ع2

 $\begin{array}{ccc}1--2-9 & 1 & 1 \\ 1 \times 0 \cdot- & 1 \\ 1 & 1 & 1\end{array}$



$1 \times 6 \cdot 5$	$1 \times 5 *$	$1 \times 6{ }^{\circ}$	
1	1	2	1


TABLE 5-6 RCCM FREQ. OIST. OF KOOM AREA ISGFTI

Table 5-7. Exterior finish single family housing

Finish	Attached		Detached		Total	
	No.   Units	$\%$	No.   Units	$\%$	No.   Units	$\%$
Masonry	52	85.2	132	66.0	184	70.5
Wood Siding	7	11.5	32	16.0	39	14.9
Aluminium Siding	0	0	25	12.5	25	9.6
Other	2	3.3	11	5.5	13	5.0
Total	61	100.0	200	100.0	261	100.0

Table 5-8. Roofing materials single family housing

Roofing   Material	Attached		Detached		Total	
	No.   Units	$\%$	No.   Units	$\%$	No.   Units	$\%$
Asphalt Shingle	31	50.8	161	80.5	192	73.7
Tile/Slate	2	3.3	20	10.0	22	8.4
Wood Shingle	1	1.6	2	1.0	3	1.1
Tar \& Gravel	20	32.8	14	7.0	34	13.0
Other	7	11.5	3	1.5	10	3.8
Total	61	100.0	200	100.0	261	100.0

Table 5-9. Distribution of basements and their finish

	Attached		Detached		Tota1	
	No.   Units	$\%$	No.   Units	$\%$	No.   Units	$\%$
Finished 1/	24	39.3	79	39.5	103	39.4
Semi-finished 2/	13	21.3	60	30.0	73	28.0
Unfinished	7	11.5	29	14.5	36	13.8
No Basement	17	27.9	32	16.0	49	18.8
Totals	61	100.0	200	100.0	261	100.0

l/ Finished - walls and ceilings covered with panelling, usually gypsumboard or plaster.

2/ Semi-finished - walls or ceilings are unfinished, or at least 1 wall is unfinished.

Table 5-10. Distribution of utility rooms and their finish

	Attached		Detached		Total	
	No.   Rooms	$\%$	No.   Fooms	$\%$	No.   Finished   Unfinished	30

1/ It is a coincidence that this number corresponds to the total number of single family residences in this survey.

Table 5-11. Distribution of attic spaces

	Attached		Detached		Total	
	$\begin{gathered} \text { No. } \\ \text { Units } \end{gathered}$	\%	$\begin{gathered} \text { No. } \\ \text { Units } \end{gathered}$	\%	No. Units	\%
Unfinished	31	50.8	123	61.5	154	59.0
Finished	4	6.6	22	11.0	26	10.0
Inaccessible	6	9.8	21	10.5	27	10.3
None	20	32.8	34	17.0	54	20.7
Totals	61	100.0	200	100.0	261	100.0

SINGLE FAMILY ATTACREC HOMES
RCCN TVFE

SINGLE FAMILY CETACTEC YONES

			$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	hall	1	EATHROCM	I	$\begin{aligned} & \text { KITCH- } \\ & \text { EN } \end{aligned}$	1	DINING RCOM	1	LIVENG ROOM	1	FAMILY ROOM	1	Stuoy	1	BEDROOM	1	BASEMENT	1	UTIL. ROOM	1	STORE RCOM	1	OTHER RODMS I
L.L.			I	357	1	74	1	6	I	51	1	106	1	108	1	19	1	258	1	33	I	43	1		1	
	$0-$	4.9	I	90.2\%	1	14.7x	1	2.9x	1	$30.4 x$	1	$52.0 \%$	5	$46.8 x$	I	17.8x	I	$40.6 \%$	1	$44.0 \%$	1	19.7\%	1	29.5\%	1	64.7\%
			I	18	I	168	I	12	I	37	I	56	1	77	1	23	1	247	1	21	1	79	1	9	I	31
	5.0-	9.9	1	4.5x	1	$33.3 x$	1	5.9x	1	19.4\%	I	27.5\%	1	33.3x	1	21.5x	I	38.8\%	1	28.0\%	I	36.2x	1	20.5\%	1	17.6\%
			-1	ع	I	123	I	ci	1	32	1	28	1	23	I	16	1	84	1	6	1	42	1	8	1	
	10.0-	14.9	1	2.0x	1	24.4x	1	10.3x	1	16.8\%	1	13.7\%	I	10.0x	1	15.0x	1	13.2x	1	8.0x	1	19.3x	1	18.2x	1	-0\% I
			-1	3	I	76	1	26	1	20	1	8	1	10	1	8	1	28	1	5	1	27	1	3	I	$0 \quad 1$
	15.C-	19.9	1	-8\%	I	15.0\%	1	12.7\%	I	10.5\%	I	3.9x	1	$4.3 x$	1	7.5\%	1	4.4\%	1	6.7\%	1	$12.4 \times$	1	$6.8 x$	1	-0x 1
			-1	4	1	42	8	27	1	11	1	5	1	10	1	10	1	8	1	4	1	9	1	2	1	
	20.0-	24.9	1	1.0\%	1	8.3\%	1	13.2\%	I	5.8x	1	2.5x	1	$4 \cdot 37$	1	9.3\%	1	I-3x	1	5.3x	1	4-1\%	1	$4.5 \times$	1	11.8\%
			-1-	----	1	8	1	81	I	6	1	1	1	0	1	6	I	8	1	2	1	8	1	3	1	$01$
	25.0-	29.5	1	-3x	1	1.6x	1	10.3x	1	3.1\%	I	-5\%	1	.0\%	1	5.6\%	1	I.3X	1	$2.7 x$	1	3-7X	1	6.8x	1	-0× 1
			-1	0	1	5	1	19	1	9	1	0	1	0	1	5	1	2	1	2	1	2	1	1	1	11
	30.0-	34.9	1	-0x	1	1.0\%	I	9.3\%	1	4.7x	1	-0x	1	-0x	1	4. $7 x$	1	-3x	1	2.7\%	1	.9\%	1	2.3x	1	5.9x
			-1	0	I	3	1	21	1	4	1	0	1	2	1	9	I	0	1	1	1	1	1	0	1	0
	35.0-	39.9	1	-0x	1	-6x	1	10.3x	1	2.1\%	1	- $0 \%$	1	-9\%	1	8.4x	I	-0\%	1	1.3x	1	-5\%	I	-0x	1	-0\%
			-1	----	1	1	I	$\theta$	1	$2$	8	0	1	0	I	4	1	0	1	0	I	1	1	1	1	$0 \quad 1$
	40.0-	44.9	1	. 3 \%	1	-2x	1	3.9x	1	I. $0 x$	I	-0x	1	.0x	1	3.7x	1	-0\%	1	-0\%	1	. $5 x$	1	2.3x	1	-0x I
			-1	---	I	3	I	$11$	1	$3$	I	0	1	0	1	2	1	0	1	0	1	0	1	0	I	$\begin{array}{lll} 1 \\ 0 & 1 \end{array}$
	45.0-	49.9	1	. 02	1	-6x	I	5.4x	1	1. $6 \times$	1	-0x	1	.0x	1	1.9x	1	-0x	1	-0x	1	-0x	1	- $0 x$	1	-0x I
			-I	0	1	2	1	$32$	1	9	1	0	1	1	1	5	1		1		1	$6$	1	4	1	01
	50.c-		1	.0\%	1	.4x	1	15.7\%	1	4.7x	1	.0\%	1	-4x	1	4.7x	1	$.2 x$	1	$1.3 x$	1	$2.8 x$	1	9.1\%	1	-0x
	MEAN		-1	c. 5	1	11.5	I	32.3	1	15.4	I	6.5	1	7.9	1	18.8	1	7-2	1	14.9	1	13.0	1	18.9	I	7.1 1
	SD		-1	10.6	I	$8 \cdot 3$	I	23.7	I	19.5	1	5.0	1	16.3	1	15.5	I	5.4	1	56.4	1	20.8	1	$30 \cdot 9$	1	9.0 1
	TOTAL	RCCNS	1	396	1	505	I	204	1	191	I	204	1	231	1	107	1	636	I	75	1	218	1	44	1	17
	MEAN +	1.64 SD		10.0		25.5		71.2		47.4		14.7		34.6		44.2		16.1		107.4		47.1		69.6		21.9
		ABLE 5	-13	RCCM		fea. 0	IS	T. OF LI		L LOAD	(LE	日/SQFT)														

SINGLF FAMILY ATTACFEC HONES
HCCN TVFE

-
E.F.L
SIHGLE FAMILY ATTACHEC HOMES

single fanily attachec fones
RLOM TYPE．
STORE OTHER
RCOM ROCMS
 $\begin{array}{ccc}3 & 1 & 0 \\ 27.3 x & 1 & .0 x\end{array}$ $\begin{array}{ccc}11 & 2 \\ 9.1 \times & 1 & 33.3 x\end{array}$ $\begin{array}{ccc}1-\cdots 0^{\circ} & 1 & x_{2} \cdot 81 \\ 0 & 1 & 2 \\ 1 & 1 \\ 1 & 1 & 1\end{array}$ $\begin{array}{cc}1------1 \\ x \varepsilon \cdot \varepsilon \varepsilon & 1 \\ z & 1\end{array}$
 $\begin{array}{cccc}1 & 1 & 1 & 0 \\ 1 & 9.1 \times & 1 & 00 x\end{array}$

 $|$| 1 |  |
| :---: | :---: |
| 0 | 0 |
| 1 | 1 |
| 1 | 1 |
| 1 | 1 | $x$

0
0
1
0
0
0
0

 $\underbrace{\infty}_{n}$

RUOM TYPE																							
I																							
		I HALL		HATH－		KITCH－			DINING		LIVING		FAMILY		stuor	BED－		BASE－		UTIL．		STORE	
		I		I	RUCM	！	EN	I	RCCM	I	RCOM	I	RCOM	！		1	ROOM	I	MENT	I	KOOM	1	RCOM
$0-$		I	73	1	42	I	11	I	4	I	4	I	2	1	0	I	5	I	7	I	12	I	2
	4．9	1	57．3x	I	39．7x	！	17．5x	I	7－4x	I	E．5\％	I	5．1\％	I	－ $0 \times$	I	3． $2 x$	I	38．5x		27．9x	I	18．2x
			－－－－－－									I	－－－－										
5．0－		1	32	I	39	I	21	I	2 \％	I	29	I	13	1	1	I	70	I	4	1	17	I	3
	9.9	I	20．0\％	1	32．2x	I	33．3\％	I	51．9\％	I	46．8\％	I	33．3\％	I	3．6x	I	45．5x	I	22．2x	1	39．5\％	I	27．3x
			－－－ー		－－－ー－		－－－－－－		－－－－－		－－－												
$10.0-$		I	9	1	12	I	13	I	13	1	18	I	7	1	12	1	50	I	4		2	I	1
	14．9	I	$7 \cdot 3 x$	I	S．9\％	I	20．6x	1	24．1\％	1	29．0x	I	17．9x	I	42．9x	I	32．5\％	1	22． 2 x		4．7x	1	9．1\％
			－		－ーーー－		－－－－－1		－－－－－－														－
$15.0-$		I	1	I	13	I	12	I	7	I	6	I	5	I	5	I	14	I	0		4	I	2
	19.9	I	－8\％	I	10．7x	1	19．0x	I	13．0x	1	9．7x	I	12．8x	I	17．9x	I	9．1\％	1	－0x	I	9－3x		18． $2 \%$
			－－		－－－－		－－－－－		－－－－－		－－－－－		－－－－－－		－－－－－								
20．0－		I	3	I	5	1	4	I	2	I	4	I	4	I	3	1	4	I	2		4	I	0
	$24 \cdot 9$	1	2．4\％	I	4．1\％	I	$6.3 \times$	1	3．7x	1	$6.5 \%$	I	10．3x	I	10．7x	1	2．6x	1	I1．IX	1	9．3x	1	－0\％
		－I	－		－－－－ー		－－－－－		－－－－		－－－												
25．0－		I	1	I	1	I	1	1		I		I				1		$\mathbf{I}$				1	0
	29.9	I	－8＊	I	－8\％	1	I． $6 \times$	I	－ $0 \times$	1	． $0 \%$	1	$10.3 x$	I	$10.7 \%$	1	$1 \cdot 3 x$		$5 \cdot 6 x$	1	-0x		－ $0 \times$
		$-I$					－－－		－－－－－－		－－－	I	－－－－－	1	－	I	，	I	5．		－		－－
30．0－		I	3	I	1	I	0	I	0	I	1	I	1	I	2	1	2	I	0		1	1	1
	34．9	1	2．4\％	I	－8x	I	－0\％	I	－ $0 \times$	I	I． 6 \％	I	2． $6 x$	I	7．1＊	1	1．3\％	1	－ $0 \times$	I	2． $3 x$	I	9．1x
		－I	－－－－－－		－－－	1	－－－－－－		－－－－－		－－－	I											
35．0－		1	0	I	0	I	1	I	0	I	0	I	1	I	0	1	1	1	0		0	I	0
	39．9	I	－ 0 \％	I	－0x	1	1．6x	I	－0x	1	－0x	I	2． $6 x$	I	－0x	I	－6\％	I	－0\％		． $0 x$	I	－0x
		－I	－－		－－－－																		
40•0－		I	0	1	0	I	0	I	0	I	0	I	0	I	0	I	0	1				I	
	44.9	I	－ $0 \%$	I	－0x	I	－ $0 x$		－ $0 \%$	1	－ 0 \％	1	－0x	1	－0\％	I	－0\％	1	． $0 \times$		2．3x		9．I $x$
		－I																					
45．0－		I	0	1	0	1	0	I	0	1	0	1	0	I	0	1	1	1	0		1	1	0
	49．9	I	． $0 \%$	I	－0x	I	－0x	1	－0x	1	． $0 \%$	1	－ $0 \times$	1	－0\％	I	－ $6 x$	1	－0x	1	2．3x	1	－0x
		－I	－－－ー－ー－ー			I																	
$50.0-$		I	1	1	2	I	0	1	0	I	0	I	2	I	2	I	－ 5	1	0			I	
		I	． 8 \％		1．7x	1	－ $0 \times$		－0\％	1	－ $0 \times$	I	5．I \％		7－1x	I	3．2x		－0x	1	2． $3 x$	I	9． 1 \％
MEAN		－I																					
		I	E． 9	I	9．C	I	11.3	1	10.1	I	10.8	1	16.5	I	21．2	1	12.8	I	S．e	1	12.0	1	23．3
SO		1$-1-7$		I	E．$\varepsilon$	I	6.4	I	4.8	I	5.2	I	11.7	1	15.5	I	10.3	1	7.4		12.1	I	30．3
TOTAL	RCCMS	I	123	I	181	I	E3	I	54	I	62	1	39	I	28	I	154	I	18	1	43	I	1 I

TABLE 5－16 RCCM FFEQ．oist．of room total equivalent fire load（lb／sofy）
SINGLE FAMILY ATTACREC HOMES

SINGLE FAMILY CETACFED HUMES
hCCN TYFE

OTHER
ROOMS STORE
ROOM $\stackrel{\text { rlio }}{ }$ MENT

47 I $\begin{gathered}139 \\ 63.0 x\end{gathered}$ 163. Iーーーーーーーー
$16.0 \%$
5． $7 x$
8
$10.7 x$
$\begin{array}{cc}I \\ I & 0 \\ I & 0 \times\end{array}$
$\begin{array}{lc}1 & 1 \\ I & 1 \cdot 3 x \\ I & 1 \\ I & - \\ l\end{array}$


FAMILY
RUOM
$\begin{array}{cc}1 & 7 I \\ I & 71 \\ I & 30 \cdot 7 x \\ I & \end{array}$

$$
\begin{array}{cc}
20 \\
8.7 \%
\end{array}
$$

13
$5.6 \%$
$2.2 x$ －－－－
$x 0$
0 $x \neq 0$
1
$x--\infty$


$$
x<-8
$$

$\begin{array}{l:l}\times & \\ + & \end{array}$
$->$
$\times 0^{\circ}$
0
$-\infty$

10 |  | 0 |
| :--- | :--- |
| $\mid$ |  |

0
$.0 x$
$?$
$\bullet$
IEZ $\quad$ I OZ
$\rightarrow 02$
DINING LIVING
RIOM I RUUM

2
$1 \cdot 0 x$

$$
\begin{gathered}
1 \\
-5 \%
\end{gathered}
$$

2
$.0 \times 1$

$\begin{array}{crc}\times 0^{\circ} & 1 & x 0^{\circ} \\ 0 & 1 & 0 \\ - & -- & 1\end{array}$
$10 \begin{array}{ll}1 & x \\ 1 & 0 \\ 1 & 0\end{array}$
$\times 0^{\circ}$
0
0
$0 \times 1$
$0 \times 1$
$\begin{array}{ll}1 & \\ 1 & 0 \\ 1 & 0\end{array}$

$\begin{array}{cc}1 & \times 0^{\circ} \\ 1 & 0\end{array}$
$16{ }^{\circ}$
$\frac{1}{1}=$
table 5－18 hocm faed．dist．of movable contents eguivalent fire loac（le／soft）
GINGLE FAMILY DETACHEC mONES

		$1$	hall	1	EATHhCOM		$\underset{\text { EN }}{\text { KITCH }}$	1	DINING ROUM		living ROUM		family ruom		studr	1	EEDROOM	1	$\begin{aligned} & \text { BASE- } \\ & \text { MEN T } \end{aligned}$	1	UTIL. reom	1	$\begin{aligned} & \text { STOKE } \\ & \text { ROOM } \end{aligned}$	$1$	OTHER RCOMS
- (Lb	SOFT		2	1	394	1	16	1	I		150	I	59	+	59	1	46	I	57						1
0-	4.9	1	72.7\%	1	65. $2 \%$	1	790.4\%	1	c6.0\%	1	73.5\%	1	42.9\%	1	55.1x	1	72.5\%	1	76.0x	1	62.8\%	1	34.1\%	1	$47.1 * 1$
		-1	74	1	106	1	37	1	54	1	42	1	97	1	28	1	141	1	10	1	60	1	20	1	---1
5.0-	9.9	1	18.7\%	1	21.0\%	1	18.1\%	1	28.3\%	1	20.6x	1	$42.0 x$	1	26.2\%	1	22.2x	1	13.3x	1	27.5\%	:	45.5 \%	1	35.3\%
		-1	żt	1	66	1	3	1	8	1	7	1	26	1	17	:	24	1	7	1	$1 \epsilon$	1	---	1	21
10.0-	14.9	1	c.0*	1	$13.1 \%$	1	1.5\%	1	4.2\%	1	$3.4 \%$	1	11.38	1	15.9x	1	$3.8 \%$	1	9.3x	1	7.3\%	1	13.6\%	1	11.8x 1
		1	E	1	21	1	1	1	2	1	1	1	3	1	1	1	4	1	1	1	4	1	2	1	1
15.0-	19.9	1	1.3*	1	4.2\%	1	.5\%	1	1.0x	1	-5\%	1	1.3x	1	.9x	1	.6\%	1	1.3x	1	1. 8 x	1	4.5\%	1	5.9\%
		1	1	1	5	1	0	1	0	1	3	1	1	1	2	1	2	1	0	I	1	1	1	1	0 I
20.0-	24.9	1	-3\%	I	1.0\%		.0x	I	.0x	1	1.5\%	1	. $4 x$	I	1.9x	1	-3x	1	.0x	1	. $5 \times$	1	2.3x	1	-0x
		1	2	1	1	1	0	1	0	1	0	1	2	1	0	1	2	1	0	1	0	I	0	1	0
25.0-	29.9	1	.5\%	1	. $2 \times$	1	.0\%	I	.0x	1	-0x	1	-9\%	1	-0x	1	-3\%	1	-0x	1	.0x	1	-0x	1	.0x
		1	0	1	0	1	0	1	0	1	1	1	1	1	0	1	1	1	0	1	0	1	0	1	0
30.0-	34.9	1	.0\%	1	.08	1	-.3\%	1	.0x	1	. $5 \%$	1	. $4 x$	:	-0\%	1	.2\%	1	. 0\%	1	.0x	1	-0x	I	.0× 1
		-	0	1	1	1	$\bigcirc$	1	1	1	0	1	0	1	0	I	1	1	0	1	0	1	0	1	
35.0-	39.9	1	. $0 \%$	1	- 2 x	1	-0\%	1	. $5 \times$	1	.0x	1	.0x	1	-0x	1	.2x	1	.0x	1	.0x	1	.0\%	,	.0x 1
		I	0	1	0	1	0	1	0	1	0	1	1	1	0	1	0	1	0		0		0	1	0
40.0-	44.9	1	.0\%	1	-0\%	1	-0x	1	-0x	1	.0\%	1	-4x	1	.0x	1	.0x	I	-0x	1	-0\%	I	- $0 x$	1	.0x
		1	0	1	c	1	0	1	0	1	0	1	1	1	0	1	0	1	0	1	0	1	0	1	0
45.0	49.9	1	-c*	1	-0\%		. $0 \%$	1	. $0 x$	1	. $0 \times$	1	.4\%	1	.0x	1	.0x	1	.0x	1	.0\%	1	.0x		.0x 1
		- 1	c	1	1	1	0	1	0	1	0	1	0	1	0	I	0	I	0	$1$	0	1	0	1	0
50.0-		1	.0\%	1	.2\%	1	.0x	1	-0\%	1	.0x	1	.0x	1	.0x	$1$	.0x	1	. $0 x$	I	.08	1	-0x	1	-0x
MEAN		-	4.7	1	6.0	1	3.6	1	5.0	1	4.9	1	6.9	1	6.4	1	5.0	1	4.5	1	5.2	1	7.0	1	3.1
SD		1	3.5	1	5.4	1	2.2	1	3.5	1	3.6	1	5.5	1	4.1	1	3.3	1	3.5	1	3.4	1	4.6	1	4.01
total.	ROOM 5	I	396	1	505	1	204	1	151	1	204	1	231	1	107	I	636	1	75	1	218	1	44	1	17



$0-$	4.9
5.0-	9.9
10.0-	14.9
15.0-	19.9
20.0-	$24 \cdot 9$
25.0-	29•9
30.0-	34.9
$35 \cdot 3-$	39.9
$40 \cdot 0-$	$44 \cdot 9$
45.0-	49.9
50.0-	
MEAN	
SD	
TOTAL	RCCMS

SINGLE FAMILY CETACHEC FGNES

		$\begin{aligned} & \mathbf{I} \\ & \mathbf{I} \\ & \mathbf{I} \end{aligned}$	hall	1	EATHRCCM	1	$\begin{aligned} & \text { KITCH- } \\ & \text { EN } \end{aligned}$	I	DINANG RCOM	1	LIVING ROOM	I	$\begin{aligned} & \text { FAMILV } \\ & \text { RGOM } \end{aligned}$		stuor	1	BEOREOM	1	BASEMENT	I	UTIL. RCOM	I	STORE RGOM	I	OTHER RODMS I
RAT IO		I	3	1	2	1	1	I	1	I	0	1	1	I	11	I	2	I	2	I		1	2	1	0
0-	.05s	1	-8×	1	-4x	1	-5\%	1	- $5 x$	1	-08	1	. $4 \%$	I	10.3\%	1	-3\%	1	2.7x	1	1.4x	1	4.5x	I	-0x
		-	E	1	3	I	28	I	1	I	9	1	11	I	20	I	41	I	7	1		1		I	
-100-	-199	1	1-3*	1	-6x	1	13.7x	1	-5\%	1	4.4x	1	4.8\%	1	18.7x	I	6.4x	1	9.3x	1	6.42	1	15.9\%	1	.0\%
		-	E	I	11	I	49	I	12	1	24	I	24	I	29	1	91	I	$\varepsilon$	1	11	1	2	I	$0 \text { I }$
.200-	.255	1	1-3x	1	2.2x	I	24.0\%	1	6.3\%	1	11.ex	1	$10.4 \%$	1	27-1\%	1	14.3x	1	10.7\%	1	5.0\%	1	4.5\%	I	-0\%
		-I	8	!	29	I	51	I	32	I	32	1	26	I	11	1	110	1	13	I	23	1	4	I	$1$
-300-	- 399	1	2.0\%	I	5.7\%	I	25.0\%	1	16.8\%	1	15.7x	I	$11.3 \%$	1	10.3\%	I	17.3x	I	17.3\%	I	10.6x	1	9.1\%	I	5.9\%
.400-	-499	-1 1 I	128)	I	$\begin{gathered} 25 \\ 5.0 x \end{gathered}$	I	$\begin{gathered} 25 \\ 12.3 x \end{gathered}$	I	$\begin{gathered} 39 \\ 20.4 x \end{gathered}$	1	$\begin{gathered} 43 \\ 21.12 \end{gathered}$	1	$\begin{gathered} 33 \\ 14 \cdot 3 x \end{gathered}$	I	$\begin{gathered} 12 \\ 11.2 x \end{gathered}$	I	$\begin{gathered} 143 \\ 22.5 x \end{gathered}$	I	$\begin{gathered} 10 \\ 13 \cdot 3 x \end{gathered}$	1	$\begin{gathered} 22 \\ 10.1 x \end{gathered}$	1	$18 \cdot{ }^{8}$	1	$\begin{array}{cc} 1 & 1 \\ 5098 & 1 \end{array}$
-500-	-599	I	E.3x	1	$\begin{gathered} 49 \\ 5.7 x \end{gathered}$	1	$\begin{gathered} 25 \\ 12 \cdot 3 \% \end{gathered}$	I	$\begin{gathered} 48 \\ 25.1 \% \end{gathered}$	I	$\begin{gathered} 37 \\ 18 \cdot 1 x \end{gathered}$	I	$\begin{gathered} 32 \\ 13.9 x \end{gathered}$	I	$\begin{gathered} 10 \\ 9.3 x \end{gathered}$	I	$\begin{gathered} 125 \\ 19.7 x \end{gathered}$	I	$\stackrel{3}{4.0 x}$	1	$\begin{gathered} 29 \\ 13.3 x \end{gathered}$	I	$9 .{ }_{1}^{4}$	I	$+\begin{gathered} 7 \\ 4 . x^{1} \end{gathered}$
. 600 -	.65s	I	c. 20	1	$\begin{gathered} 34 \\ 6.7 x \end{gathered}$	1	$\stackrel{8}{3.9 x}$	I	$\begin{gathered} 26 \\ 13.68 \end{gathered}$	I	$\begin{gathered} 29 \\ 14.2 \% \end{gathered}$	1	$\begin{gathered} 38 \\ 16.5 \% \end{gathered}$	I	$8.4 x$	I	$\begin{gathered} 61 \\ 9.6 \% \end{gathered}$	I	$6.7 x$	1	$\begin{gathered} 26 \\ 11.9 x \end{gathered}$	I	$4.5$	I	$\begin{gathered} 0 \\ 0 x \\ \hline \end{gathered}$
. $700-$	. 759	-	$\begin{gathered} 20 \\ £ .1 \pi \end{gathered}$	1	$\begin{gathered} 49 \\ 9.7 x \end{gathered}$	1	$\stackrel{8}{3.9 \%}$	I	$\begin{gathered} 15 \\ 7.9 \% \end{gathered}$	1	$\begin{gathered} 16 \\ 7.8 x \end{gathered}$	I	$\begin{gathered} 37 \\ 16.0 \% \end{gathered}$	I	$\stackrel{2}{1.9 x}$	I	$\begin{gathered} 37 \\ 5.8 \% \end{gathered}$	I	$\begin{gathered} 13 \\ 17.3 \% \end{gathered}$	$1$	$\begin{gathered} 27 \\ 12.4 x \end{gathered}$	I	$6 \cdot{ }^{3} 8 x$	I	$\begin{array}{r} 2 \\ 1.8 x \end{array}$
.800-	-895	I	$\begin{gathered} 27 \\ 6.8 x \end{gathered}$	1	$\begin{gathered} 64 \\ 12.7 \% \end{gathered}$	I	$2 .{ }^{4}$	1	$\begin{gathered} 13 \\ 6.8 \% \end{gathered}$	I	$\begin{gathered} 10 \\ 4.9 \% \end{gathered}$	$\begin{aligned} & \mathbf{I} \\ & \mathbf{I} \end{aligned}$	$\begin{gathered} 20 \\ 8.7 x \end{gathered}$	$\begin{aligned} & \mathbf{I} \\ & \mathbf{I} \end{aligned}$	$1.9 x^{2}$	1	$\begin{gathered} 17 \\ 2 \cdot 7 x \end{gathered}$	1	$8 .{ }_{8}^{6}$	-	$\begin{gathered} 29 \\ 12.8 \% \end{gathered}$	1	$\begin{gathered} 3 \\ 6.8 x \end{gathered}$	I	$17 \cdot{ }^{3} 1$
.900-	1.00	!	$\begin{gathered} 275 \\ 69.4 x \end{gathered}$	1	$\begin{gathered} 239 \\ 47 \cdot 3 x \end{gathered}$	1	$\begin{gathered} 5 \\ 2.5 \% \end{gathered}$	1	$2.1 \%$	1	$2.0 \%$	1	$\stackrel{9}{3.9 x}$	1	$\begin{gathered} 1 \\ .9 x \end{gathered}$	I	$1 \cdot{ }^{9}$	1	$\begin{gathered} 8 \\ 10=7 x \end{gathered}$	1	$\begin{gathered} 35 \\ 16.1 \% \end{gathered}$	1	$20 \cdot{ }^{9}$	I	$17 \cdot{ }^{3} 1$
MEAA		I	-9	I	- 8	1	-4	1	- 5	I	- 5	I	- 6	I	-3	I	- 5	I	- 5	I	- 6	1	. 5	1	.71
SO		1	- 2	1	- 2	I	. 2	I	- 2	1	- 2	1	- 2	1	- 2	1	- 2	1	- 3	1	- 3	1	- 3	1	- 2
TOTAL	ROCMS	I	396	1	505	I	204	I	191	1	204	I	231	1	107	I	636	1	75	I	218	1	44	I	17

single fanily attactec renes

table 5-22 average movarle contents fire loao (lbis cfis)
Single farily attactec rcmes

table 5-23 avefage intericr finish fire loac (lbisoft)
Single family attactec homes
F.L. (le/scFi)

table 5-24 avefage rocm total fire load (lb/scft)
single fanily cetactec mones

Single fanily cetactec rones
Fol. (leノscfi)

table 5-26 average interior finish fire load (lb/Soft)
single fanily cetactec rones

table 5-27 average rccm total fire load (lb/scfi)
single fanily attachec henes
ROOM TYPE

		$i$	hall	1	eathRCOM		$\begin{aligned} & \text { KITCH- } \\ & \text { EN } \end{aligned}$		DINING ROOM	1	LIVING RCCM		FAMILY ROOM	1	studr		BEDROOM		BASEMENT		UTIL. ROOM		STORE ROOM		THER ROOMS
		1	$\epsilon \epsilon$	1	0	1	0	1	3	1	1	1	0	I	0	1		1	0	1	0	1	3	1	
0	¢. 5	1	53.7x	1	.0x	1	-0x	I	5.63	1	1.6\%	I	.0x	I	-0x	1	.6\%	1	.0x	1	.0x	I	27.3x	1	16.7x
		1	1	I	0	1	.	1	0	I	3	1	0	1	I	1	0	1	1	1	0	1	0	1	0
10.0-	19.9	I	.8x	1	.0x	1	1 6 6x	1	-0x	1	4.83	1	.0x	1	3.6x	I	-0x	1	5.6\%	1	.0x	1	.0x	1	.0x
		1	0	1	0	I	1	1	0	I	0	1	0	I	0	1	3	1	1	1	2	1	2	1	0
20.0-	29.9	1	.0x	1	.0x	1	1.68	1	-0x	1	.0\%	1	-0x	1	- 0x	1	1.98	1	5.6x	1	4.7\%	1	18.2x	1	.0x
		I	1	I	1	1	0	1	2	1	1	1	1	1	0	1	2	1	0	1	2	1	0	1	2
30.0-	39.9	1	. $8 \times$	I	- $2 \times$	1	-0x	I	3.7x	1	1.6 \%		2.6x	1	-0x	1	1.3x	1	-0x	1	4.7x	1	-0x		33.3x
		1	3	1	2	1	2	1	3	1	4	1	1	1	1	I	8	I	1	1	2	1	-	1	0
40.0-	49.9	1	$2.4 \times$	1	1.7x		$3.2 x$	I	5.6x	1	6.5x		2.6x	1	3.68		5.2x		5.6x	1	4.7x	1	-0x	1	-0x
		1	3	1	31	1	2	I	3	1	5	1	5	1	1	I	16	1	1	1	6	1	0	1	0
50. C-	59.9	1	$2.4 x$	1	2.5\%	I	3.2x	1	5.6x	1	8.1\%		12.8x	1	3.6x		10.4x		5.6\%	1	14.0x	1	-0z		-0x
		1	3	I	8	1	2	1	5	1	61	1	4	1	3		23	1	3	1		1		1	1
60.c-	69.9	1	2.4x	1	6.6x	1	3.2x	1	9.38	$i$	9.78	1	10.3x	1	10.7x	1	14.9\%	1	16.7x	1	16.3x	$\mathbf{i}$	-0x		16.7\%
		1	3	1	15	I	7	I	9	1	15	1	11	1	4	1	43	1	5	1	8	1		1	0
70.0-	79.9	1	$2.4 x$	1	12.4x	1	11.1x	1	16.7x	1	24.2x	1	28.2x	1	14.3x	1	27.9x	1	27.8x	1	18.6\%	1	9.17	1	-0x
		1	0	I	27	1	14	1	14	1	15	1	5	1	9	1	26	1	2	1	6	1	1	1	0
$80.0-$	89.9	1	. $0 \times$	1	22.3x	1	22.2x	1	25.9x	1	24.2x	,	12.8x	1	32.1 x	1	16.9x	1	11.1x	1	14.0x	1	9.12	1	-0x
		1	43	1	65	1	34	1	15		121	1	12	I	${ }^{9}$	1	32	1	,	1	10	1	4	1	2
90.0-	100.0	1	$35.0 x$	I	53.7x	1	54.0x	I	27.8x	1	19.4×	1	$30.8 \times$	1	32.1\%	1	20.8x	1	22.2x	1	23.3 x	1	36.4x	1	33.3x
mean		1	41.2	1	87.8	1	85.0	1	73.6	1	72.4	1	76.2	1	80.6	1	74.0	1	70.4	1	71.6	1	54.5	1	56.5
SD		-1	46.7	1	14.5	1	18.2	1	24.6	1	22.1	1	17.1	1	18.9		17.8	1	22.5	1	21.9	1	43.4	1	39.8
total	rooms	1	123	I	121	I	63	1	54	1	62	I	39	I	28	1	154	1	18	1	43	1	11	1	6


SINGLE FAMILV ATTACHED ROMES

		$\mathbf{I}$	HALL	1	EATHRCOM	I	$\begin{aligned} & \text { KITCH- } \\ & \text { EN } \end{aligned}$	1	DINING ROOM	1	LIVING ROOM	I	FAMILY RUOM		Study	1	BEDROOM	1	BASEMENT	1	UTIC. ROOM	1	$\begin{aligned} & \text { STORE } \\ & \text { ROOM } \end{aligned}$	$\mathbf{I}$	TMER ROOMS
PERCENT																									
		1	73	I	34	I	0	I	3	I	1	1	1	1	0	I		1	2	1	2	E		I	11
$0-$	9.9	1	59.3x	I	28.1\%	I	-0x	1	5.6\%	1	1-6\%	1	2.6\%	1	-0\%	I	1.9x	1	II-1\%	!	4.7x	1	27-3x	1	16.7\%
		I	0	I	0	I	0	I	1	1	2	I	0	1	0	1	0	1	0	1	1	1	1	1	0 I
10.0-	19.9	1	-0x	1	.0x	1	-0\%	1	1.9x	I	3.2X	1	-0x	I	-0x	1	. $0 \times$	I	- 0\%	1	2.3x	1	9.12	1	-08
		I	0	1	0	1	0	I	3	1	4	1	0	1	1	1	3	1	0	1	2	I	1	1	1 I
20.0-	29.9		.0x	1	-0\%	1	.0\%	1	5.6\%	1	6.5\%	1	-0x	1	3.6\%	1	1.9x	I	-0x	1	4.78	I	9.18	I	16.7\%
		I	3	1	0	i	3	I	5	1	3	1	2	1	0	$I$	1	I	1	I	5	I	0	1	11
$30.0-$	39.9	1	2.4x	1	-0x	1	4.8x	1	9.3x	1	4.8\%	I	5.1\%	1	-0x	1	-6\%	1	5.6\%	1	11.6\%	1	-0\%	1	16.7x
			2	1	2	1	0	I	5	1	0	1	3	I	1	1	7	1	2	1	1	1	0	1	01
$40 \cdot 0-$	49.9	1	1.6\%	1	1.7x	1	-0\%	1	9.3\%	I	-0\%	1	7.7\%	1	3.6\%	1	4.57	1	11.12	1	2•3x	1	-0x	1	-08 1
		$I$	2	1	1	1	1	1	8	I	6	1	5	1	${ }^{1}$	1	13	1		,	4		0	1	1 I
50.0-	59.9	1	1.6\%	I	-8\%	I	I. 6\%	I	14.8x	1	9.7\%	I	$12.8 x$	I	3.6x	1	8.4X	1	5.6x	,	9.3x	1	- 08	1	16.7x
		1	0	t	0	$I$	$5$	I	$8$	1	$7$	1	$3$	,	$4$	1	$21$	1	$2$	1		1		1	$0$
60.C-	69.9	1	. $0 \times$	1	. $0 \times$	1	7.98	1	14.8x	1	$11 \cdot 3 x$	I	$7 \cdot 7 x$	1	$14 \cdot 3 x$	1	$13.6 x$	I	$1 \mathrm{I} \cdot \mathrm{IX}$	I	$9 \cdot 38$	I	- 0x		$.081$
		1	$3$	I	$3$	1	$11$	I	$9$	1	$15$	1	$10$	$\boldsymbol{I}$	3	$\mathbf{I}$	$39$	1	$3$	1		1	I	1	$0 \quad 1$
70. $\mathrm{C}-$	79.9	1	2.4x	I	2.5x	I	$17.5 \%$	1	$1607 x$	1	$24.2 \pi$	1	$25.6 \%$	$I$	$10.7 x$	1	$25 \cdot 3 x$	1	$16.7 \pi$	1	$2.3 \%$	1	9. IX		-0r I
		I	$2$	1		1		I		1		1				$\mathbf{I}$		1		1		I		1	
$80.0-$	89.9	I	1.6\%	1	2.5x	1	$23.8 x$	1	$14.8 x$	I	$19.4 x$	1	$7.7 \%$	$I$	$17.9 x$	1	$22 \cdot 7 x$	I	$22.2 x$	1	$9.3 x$	1	$\text { 9. } 1 \text { I }$	I	.0x
		1	$38$	I	$78$	1		1		1		1						1		1		1		$I$	
90.0-	100.0	1	30.9x	1	$64.5 \%$	1	44.4x	1	$7.4 \%$	I	$19.4 x$	1	$30.8 x$	1	$46.4 \times$	1	$20 \cdot 8 x$	I	$16.3 x$	1	$44 \cdot 2 x$	1	$36 \cdot 4 x$		$33.3 \% 1$
MEAN		1	36.5	1	69.3	I	84.6	1	58.5	1	69.6	1	73.2	I	81.1	I	75.1	I	64.5	I	71.1	1	53.7	1	53-2
SD		1	46.1	1	44.5	1	15.5	1	24.2	1	23.7	1	21.8	I	19.0	1	19.4	1	29.8	I	30.8	t	44.8	1	39.8 1
TOTAL	ROOMS	I	123	I	121	1	63	1	54	1	62	1	39	1	28	1	154	1	18	1	43	1	11	1	6 I

single fanily cetactec tones
FCCN IVPE

TABLE 5-30 RCCM FFEQ. Dist. OF PERCENT LIVE LOAD WITHIN TwO FEET OF WALL
SINGLE FAMILY CETACtEC HCNE

		$\begin{aligned} & \text { I } \\ & \text { I } \\ & \text { I } \end{aligned}$	Hall	1	EATHRCCM	1	$\begin{gathered} \mathrm{K} \& \mathrm{TCH}- \\ \text { EN } \end{gathered}$	1	DINING RCOM	1	LIVING RCOM	1	FAMBLY RCOM	1	stuor	1	AEDROOM	1	BASEMENT	I	UYIL. RCOM	1	STORE RCOM	1	OTHER ROOMS 1
PERCENT		I																							
		1	246	I	137	I	2	$\underline{1}$	10	I	3	I	2	I	1	1	7	1	4	1	18	1	7	1	5
0-	S. 9	1	CE.IX	1	27.1*	I	1.0\%	1	5.2x	1	1.5*	1	-9x	1	-9x	1	1.1\%	1	5.3x	1	8.3x	1	15.9x	1	29.*x
10.0-		-1	0	1	2	1	2	1	7	1	1	1	1	I	1	I	1	1	3	1	2	\%	1	1	01
	19.9	I	. $0 x$	1	- $4 x$	1	1.0x	1	3.7x	1	-5\%	1	-4\%	I	-9\%	1	-2x	1	4.0x	1	-9x	1	2.3x	1	-0x
		-1	0	1	3	1	0	1	10	1	5	1	9	1	3	1	7	1	3	8	3	1	0	8	11
20.C-	29.5	1	-0\%	I	-6*	I	-0\%	I	S.2\%	1	2.5x	1	3.9X	1	2.8x	1	2.1x	1	C. 0x	I	1.4x	1	-0x	1	5.9x 1
$30.0-$		-1	I	I	5	1	5	1	12	1	5	1	5	1	1	1	7	1	5	I	3	1	0	1	$0 \quad 1$
	39.9	1	-3*	I	I. $0 \times$	1	2.5x	1	c. $3 x$	1	2.5\%	1	2.2x	I	-9x	I	1.1\%	1	6.7x	1	1.4x	1	-0x	1	-0\%
$40.0-$		-1	0	1	I	1	5	1	16	1	22	1	14	I	4	1	33	1	${ }_{-}^{6}$	1	8	1	1	1	1 - 1
	49.9	1	-0\%	1	-2x	1	2.5\%	1	8.4\%	1	10.8*	1	$6.1 \times$	I	3.7x	1	5.2x	1	8.0x	1	4.1x	1	2.3x	1	5.9\%
		-1 1	----	1	6	1	10	1	31	1	34	1	24	1	4	1	31	,		1	19	I	1	1	21
$50.0-$	59.9	1	-5\%	1		1	$409 \%$	1		1		1		1		1	4.9\%	1		1	B.7x	I	2.3x	1	11.8x
		$-1-$										1				2		1							
60.c-	69.9	1	I. 5 \%	1	1. ${ }^{2} \times$	1	8.37	1	$\begin{gathered} 35 \\ 18 \cdot 3 \% \end{gathered}$	1	$\begin{gathered} 36 \\ 17.6 x \end{gathered}$	1	13.41	1	10.31	1	11.32	1	17.3	1		1		1	
		$-1$																							1
70.c-		I	5	1	25	1	34	1	37	1	36	1	38	1	13	1	131	1	14	1	29	1	12	1	2
	79.9	1	1.3\%	1	5.0x	1	16.7x	1	19.4x	1	17.6\%	1	16.5\%	1	12018	I	20.6x	1	18.7x	1	13.3x	1	25.0x	1	11.8x
		-1	8	1	13	1	55	I	25	1	40	1	55	1	28	1	189	1	9	1	35	1	6	1	0 - 1
$80.0-$	89.5	I	2.0\%	1	2.6x	1	27.0x	1	13.2\%	1	19.6\%	1	23.8x	1	26.2x	1	29.7x	1	12.0x	1	16.1\%	1	13.6\%	1	-0x
		-1-	128	I	307	1	74	1	$\theta$	1	22	1	$52$	1	$41$	1	158	1	17	1	87	1	15	1	$51$
90.C-	100.0		32.3\%	1	60.8x	I	36.3x	1	4.2x	1	10.8\%	1	22.5\%	1	38.3\%	1	24.8x	,	22.7x	1		1			
MEAN		-I																							1
		1	36.2	1	68.7	1	80.5	1	58.1	1	67.0	1	72.9	1	80.7	1	77,5	1	66.1	1	74.2	1	69.6	1	52.71
SD		-1	4E.S	1	43.8	I	18.5	1	23.7	1	19.5	1	20.6	1	20.4	1	18.0	1	28.4		29.3	1	34.2	1	39.5
TOTAL	RCCMS	1	356	I	505	1	204	1	191	1	204	1	231	1	107	1	636	1	75	1	218	1	44	1	17

SINGLE FAMILY ATYACHEC FOMES
RCCN TYFE

TARLE 5-32 RCCM FGEG. DIST. OF PERCENT FLOOR AREA COVERED
GINGLE FANILY CETACtEC rG\&ES


Table 6-1. Age distribution of mobile homes

Year Built	Age Year	No. of Units	$\%$ of Total
1970	up to 6	76	77.5
$1965-69$	$7-11$	21	21.5
$1960-64$	$12-16$	1	1.0
Total		98	100.0

Table 6-2. Comparison of number of years occupied by current resident for three types of housing

Years Occupied	Number of Units		
	MH	SFA	SFD
0-1	18	7	21
	18.4\%	11.5\%	10.5\%
2-4	56	24	45
	57.1\%	39.3\%	22.5\%
5-9	21	12	45
	21.9\%	19.7\%	22.5\%
10-19	2	5	54
	2.0\%	8.2\%	27.0\%
20-29	1	10	24
	1.0\%	16.4\%	12.0\%
$30-$	0	3.	11
		4.9\%	5.5\%
Mean	3.5	9.2	10.8
SD	3.3	11.1	10.0

Table 6-3. Comparison of occupant density in surveyed housing


1/ 6 units in size range $400-799 \mathrm{sq}$. ft., Lower limit taken at middle of range.

2/ 2 units in size range $0-399 \mathrm{sq}$. ft., lower limit taken at middle of range.
mubile homes

TABLE 6-4 NUMEER OF ROCMS BY NUMBER OF DWELLING UNITS

$$
\begin{array}{r}
19 \\
9.6 x \\
\hline
\end{array}
$$

$$
\begin{array}{r}
3 \\
1.5 x \\
\hline 1 \\
\hline .5 x \\
\hline
\end{array}
$$

$$
\begin{array}{r}
0 \\
0 \\
\hline 0
\end{array}
$$

$$
\begin{array}{rrrrr}
1 & 0 & 1 & 0 & 1 \\
1 & -0 \times 1 & 0 \times 1 \\
1 & 1 & 1 & 1
\end{array}
$$

$$
\begin{array}{rccc}
1 & 0 & 1 & 0 \\
1 & 0 \times 1 \\
1 & 0 \times & 0 \times 1 \\
\hline
\end{array}
$$

$\stackrel{\square}{8}$	8	$\stackrel{\square}{\square}$	$\stackrel{\square}{\square}$	$\stackrel{\otimes}{\underset{N}{N}}$	$\begin{aligned} & \text { の } \\ & \stackrel{N}{N} \end{aligned}$	$\stackrel{\varrho}{\mathrm{m}}$	$\begin{aligned} & \text { a } \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{9}{8}$	$\stackrel{\text { a }}{\text { o }}$			
-	\%	$\begin{aligned} & \text { ! } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 1 } \\ & \text { in } \end{aligned}$	$\begin{aligned} & 1 \\ & \vdots \\ & \stackrel{\circ}{\sim} \end{aligned}$	$\begin{aligned} & 1 \\ & \vdots \\ & \text { in } \end{aligned}$	$\begin{aligned} & 1 \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \dot{1} \\ & \text { in } \end{aligned}$	$\begin{aligned} & 1 \\ & \vdots \\ & \hline 8 \end{aligned}$	$\begin{aligned} & 1 \\ & \text { i } \\ & \text { n } \end{aligned}$	$\begin{aligned} & 1 \\ & \vdots \\ & \text { b } \end{aligned}$		尔


roum trpe


60．c－69．9
$20 \cdot 0-29 \cdot 9$
$40 \cdot 0-49 \cdot 9$

## $50 \cdot 0-59.9$

$80.0-89 \cdot 9$
$90 \cdot 0-100.0$ HEAN

$$
\begin{gathered}
1 \\
.7 x \\
\hline
\end{gathered}
$$

$$
305 x
$$


 1－0－ー－ $1--0^{\circ}$ $\begin{array}{ccccc}1 & 16 & 1 & 3 & 1 \\ I & 80.0 \% & 1 & 60.0 \% & I\end{array}$ 1 く・シ 1 $\vdots$
$\vdots$
$\vdots$
$\vdots$
$\vdots$
$\vdots$ $15 \quad 102$ I $\frac{78.7}{14.0}$
 98

MUBILE HCNES
Room trpe

TABLE 6-8 RCCN FGEG. uISt. of percent flodr area covered

table 6-9 rocm freq. dist. of movable contents eguivalent fire load (lbesoft)
mbille hines
ROOM TYPE
MLGBLE HCNES E.F•L. (LB/SGFT)

## 9 $-\quad a$ <br> $\begin{array}{cc} & 1 \\ 1 & 0 \\ 0 & 0\end{array}$ <br> $10 \cdot 0-14.9$

$15 \cdot 0-19.9$
20.0-24.9
$25 \cdot 0-29 \cdot 9$ $30 \cdot 0-34 \cdot 9$
$35 \cdot 0-39.9$ $40.0-44.9$
(1)
morile mones

TABLE 6-12 RCCM FREG. DISt. OF INTERIOR FINISM FIRE LOAD/TOTAL fire LOAD

> Table 7-1. Comparison of mean room area (sq. ft.)

Room Type	Special Survey Number				Mean	Std Dev	\% of mean
	1	2	3	4			
Hallway	66.	58.	51.	50.	56.	7.4	13.
Bathroom	31.	28.	32.	30.	30.	1.7	6.
Kitchen	120.	120.	117.	96.	113.	11.6	10.
Dining Room	108.	140.	117.	120.	121.	13.5	11.
Living Room	216.	252.	216.	204.	222.	20.8	9.
Family Room	216.	216.	162.1	168.	190.	29.5	16.
Study	168.	99.	180.	144.	148.	35.8	24.
Bedroom	128.	145.	124.	112.	127.	13.6	11.
Utility Room	144.	144.	130.	2/	139.	8.1	6.
Storage Room	184.	144.	144.	$2 /$	157.	23.1	15.
Column Mean	138	135	127	116	130	16.6	13

1/ Mean of 2 family room areas
2/ Not surveyed

Table 7-2. Comparison of live load (1b/sq ft)

Room Type	Special Survey Number				Mean	Std Dev	\% of mean
	1	2	3	4			
Hallway	1.	. 4	10.	. 7	3.0	4.7	157.
Bathroom	9.	12.	12.	21.	13.5	5.2	38.
Kitchen	22. ${ }^{1 /}$	16.1/	40.	43.	30.2	13.3	44.
Dining Room	4.	2.2/	10.	7.	5.8	3.5	60.
Living Room	4.	2.	4.	4.	3.5	1.0	29.
Family Room	7.	6.	12.	12.	9.2	3.2	35.
Study	6.	5.	7.	8.	6.5	1.3	20.
Bedroom	3.	5.	5.	6.	4.8	1.3	27.
Utility Room	4.	9.	11.	3/	8.0	3.6	45.
Storage Room	5.	6.	10.	3/	7.0	2.6	37.
Column Mean	6.	6.	12.	13.	9.45	3.97	43.

1/ Low estimate of cabinet size
2/ Buffet not in survey
3/ Not surveyed

## Table 7-3. Estimate of Surveyors Error

 Teams 1 and 2| Room Type | Special Survey Number |  |  | Std Error of Mean |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | Mean |  |
| Hallway | 1. | . 4 | . 7 | . 3 |
| Bathroom | 9. | 12. | 10.5 | 1.5 |
| Kitchen | 22. | 16. | 19. | 3. |
| Dining Room | 4. | 2. | 3. | 1. |
| Living Room | 4. | 2. | 3. | 1. |
| Family Room | 7. | 6. | 6.5 | . 5 |
| Study | 6. | 5. | 5.5 | 1. |
| Bedroom | 3. | 5. | 4. | 1. |
| Utility Room | 4. | 9. | 6.5 | 2.5 |
| Storage Room | 5. | 6. | 5.5 | . 5 |
|  |  |  | 6.4 | 1.2 |
|  |  |  |  | 19\% |

Table 7-4. Estimate of Surveyors Error Teams 3 and 4


Table 8-1. Room and closet total live load (lb/sq. ft.)

Room Type	Mean	SD	Mean +1.64 SD
Hallway			
SFA	3.1	4.4	10.3
SFD	4.7	14.2	28.0
MH	5.7	6.0	15.5
Bathroom			
SFA	12.7	8.9	27.3
SFD	12.0	8.2	25.4
MH	12.9	6.7	23.9
Kitchen			
SFA	37.7	29.0	85.3
SFD	33.0	23.8	72.0
MH	23.4	12.6	44.1
Dining Room			
SFA	11.6	9.5	27.2
SFD	15.9	19.3	31.2
MH	11.5	9.8	27.6
Living Room			
SFA	6.6	4.4	13.8
SFD	6.6	5.0	14.8
MH	5.4	3.1	10.5
Family Room			
SFA	11.8	12.8	32.8
SED	8.2	16.2	34.8
MH	8.4	8.2	21.8
Study			
SFA	15.0	11.5	33.9
SFD	18.8	14.9	43.2
MH	10.0	6.2	20.2
Bedroom			
SFA	8.3	9.1	23.2
SFD	8.1	5.6	17.3
MH	6.5	3.0	11.4
Basement			
SFA	7.4	8.4	21.2
SFD	14.9	56.41/	107.41/
MH	-	-	-
Utility Room			
SFA	15.4	14.0	38.4
SFD	13.4	20.7	47.3
MH	13.9	10.4	31.0
Storage Room			
SFA	14.8	20.9	49.1
SFD	20.1	32.1	72.7
MH	19.4	16.6	46.6
Other Rooms			
SFA	32.9	52.2	118.5
SFD	8.5	8.9	23.1
MH	-	-	-

1/ There was a single, very highly loaded basement in this survey that produced this high SD. If this outlier is neglected, the statistics would be approximately mean 10.7 , $S D 10.6$, (mean +1.64 SD) 28.1.

Table 8-2. Room and closet total fire load (lb/sq ft)

Room Type	Mean	SD	Mean +1.64 SD
Hallway			
SFA	6.9	7.7	19.5
SFD	6.0	5.6	15.2
MH	14.9	9.1	29.9
Bathroom			
SFA	9.0	8.8	23.4
SFD	8.6	7.0	20.1
MH	20.6	7.3	32.6
Kitchen			
SFA	11.3	6.4	21.8
SFD	10.5	5.2	19.0
MH	18.1	5.3	26.8
Dining Room			
SFA	10.1	4.8	18.0
SFD	9.9	5.5	18.9
MH	18.1	8.2	31.5
Living Room			
SFA	10.8	5.2	19.3
SFD	11.0	6.4	21.5
MH	15.6	6.6	26.4
Family Room $\square^{\text {a }}$			
SFA	16.5	11.7	35.7
SFD	13.2	7.8	26.0
MH	16.6	5.0	24.8
Study			
SFA	21.2	15.5	46.6
SFD	24.2	15.7	49.9
MH	23.4	5.8	32.9
Bedroom			
SFA	12.8	10.3	29.7
SFD	12.2	6.7	23.2
MH	18.3	5.1	26.7
Basement			
SFA	9.8	7.4	21.9
SFD	17.0	60.3	115.9
MH	-	-	-
Utility Room			
SFA	12.0	12.1	31.8
SFD	11.1	11.4	29.8
MH	20.1	6.0	29.9
Storeroom			
SFA	23.3	30.3	73.0
SFD	22.6	33.0	76.7
MH	38.5	24.6	78.8
Other			
SFA	25.7	15.5	51.1
SFD	10.7	6.0	20.5
MH	-	-	-

Table 8-3. Average fire load of contents and its distribution with respect to materials ( $1 \mathrm{~b} / \mathrm{sq} \mathrm{ft}$ ) $1 /$

Room Type	Wood	Paper	Plastic	Fabric	Other	Total
Ha11way						
SFA	0.44	0.74	0.07	0.08	0.01	1.34
SFD	0.43	0.46	0.06	0.07	0.02	1.04
MH	0.28	0.19	0.20	0.06	0.05	. 68
Earthroom						
SFA	0.78	0.36	0.20	0.11	0.51	1.96
SFD	0.68	0.17	0.14	0.11	0.34	1.44
MH	1.90	0.13	0.50	0.22	0.51	3.26
Kitchen						
SFA	3.80	0.46	0.90	0.06	0.14	5.36
SFD	3.74	0.51	0.74	0.04	0.21	5.24
MH	4.63	0.43	0.93	0.04	0.20	6.03
SFA	2.75	0.92	0.45	0.16	0.06	4.34
SFD	2.87	0.43	0.32	0.29	0.01	3.92
MH	3.43	0.93	0.52	0.19	0.00	5.07
Living Room						
SFA	2.31	1.20	0.83	0.40	0.00	4.74
SFD	2.12	1.55	0.81	0.33	0.01	4.82
MH	1.95	0.75	0.83	0.36	0.00	3.89
SFA	2.15	4.45	1.22	0.31	0.04	8.17
SFD	1.80	2.15	0.52	0.27	0.03	4.77
MH	1.89	1.45	0.85	0.43	0.03	4.65
Study						
SFA	2.85	9.16	0.49	0.41	0.01	12.92
SFD	3.56	10.41	0.80	0.40	0.03	15.20
MH	3.09	5.63	0.28	0.43	0.03	9.43
SFA	2.47	1.36	0.35	1.06	0.02	4.26
SFD	2.68	1.43	0.33	1.09	0.03	5.56
M	2.50	0.74	0.40	0.94	0.02	4.60
Basement 0.50 0.09						
SFA	0.58	1.48	0.22	0.09	0.20	2.57
SFD	1.15	2.71	0.40	0.31	0.18	4.75
MH	-	-	-	-	-	-
Utility Room						
SFA	1.36	3.31	0.32	1.87	0.31	7.17
SFD	1.38	1.62	0.57	0.33	0.46	4.36
MH	2.41	0.11	0.18	0.50	0.38	3.58
Storage Room 0.00						
SFA	2.07	3.50	3.91	0.37	0.05	9.90
SFD	1.39	6.76	0.41	0.65	0.12	9.33
MH	1.36	14.41	0.13	0.10	0.00	16.00
Other Rooms 6.36						
SFA	6.92	2.30	2.75	1.52	0.11	13.60
SFD	1.69	0.87	0.33	0.28	0.03	3.20
MR	-	-	-	-	-	-

1/ Actual estimated weights of each material.

Table 8-4. Average fire load of interior finish and its distribution with respect to materials ( $1 \mathrm{~b} / \mathrm{sq} \mathrm{ft}$ ) $1 /$

Room Type	Wood	Paper	Plastic	Fabric	Other	Total
Hallway						
SFA	2.83	0.23	0.10	1.43	0.00	4.59
SFD	2.90	0.53	0.79	1.52	0.00	4.08
MH	9.83	0.10	0.79	1.52	0.00	12.24
Bathroom						
SFA	3.53	0.54	0.21	0.86	0.00	5.14
SFD	3.17	0.53	0.18	0.48	0.00	4.36
MH	11.21	0.23	1.34	0.44	0.00	13.22
Kitchen 0						
SFA	2.68	0.23	0.38	0.08	0.00	3.37
SFD	2.23	0.31	0.30	0.25	0.00	3.09
SFA	2.93	0.18	0.03	1.25	0.00	4.39
SFD	2.91	0.29	0.05	1.03	0.00	4.28
MH	8.36	0.13	0.72	1.11	0.00	10.32
Living Room						
SFA	2.53	0.18	0.01	0.98	0.00	3.70
SFD	2.57	0.23	0.01	1.23	0.00	4.04
MH	6.04	0.12	0.62	1.99	0.00	8.77
Family Room 0.00 0.00						
SFA	3.98	0.12	0.28	0.80	0.01	5.19
SFD	3.75	0.16	0.34	0.90	0.00	5.15
MH	6.76	0.09	0.75	1.04	0.00	8.64
Study ${ }^{\text {St }}$						
SFA	3.71	0.22	0.11	0.98	0.00	5.02
SFD	4.55	0.24	0.13	0.79	0.00	5.71
MH	10.32	0.11	0.85	0.95	0.00	12.23
SFA	3.39	0.20	0.03	0.85	0.00	
SFD	2.96	0.27	0.03	0.89	0.00	4.15
MH	8.51	0.10	0.72	1.23	0.00	10.56
SFA	3.52	0.05	0.15	0.18	0.00	3.90
SFD	2.84	0.05	0.18	0.14	0.00	3.21
Utility Room - - -						
SFA	2.65	0.09	0.30	0.06	0.00	3.10
SFD	3.71	0.11	0.24	0.11	0.08	4.25
MH	13.16	0.13	0.73	0.22	0.00	14.24
$\begin{array}{llllll}\text { Storage Room } & \text { l3.16 } & 0.13 & 0.22 & \\ & \end{array}$						
SFA	4.05	0.21	0.07	1.22	0.00	5.55
SFD	5.03	0.10	0.33	0.10	0.00	5.56
MH	9.71	0.07	0.80	2.09	0.00	12.67
SFA	7.96	0.17	0.18	0.57	0.00	8.88
SFD	4.66	0.20	0.22	0.47	0.00	5.55
MH	-		.	0.47	-	5.55

1/Actual estimated weights of each material.

Table 8.5. Average room and closet total fire load and distribution with respect to materials (lbs/sq ft) 1/

Room Type	Wood	Paper	Plastic	Fabric	Other
Hallway					
SFA	2.73	0.94	0.15	2.24	0.10
SFD	2.87	0.71	0.36	1.94	0.03
MH	9.11	0.40	0.95	1.77	0.05
Bathroom					
SFA	4.20	0.88	0.40	1.22	0.51
SFD	3.79	0.69	0.31	0.77	0.35
MH	12.62	0.35	1.77	1.07	0.51
Kitchen					
SFA	6.07	0.65	1.19	0.13	0.13
SFD	5.81	0.87	1.01	0.29	0.23
MH	11.64	0.54	1.92	0.31	0.19
Dining Room					
SFA	5.52	1.07	0.46	1.42	0.06
SFD	5.71	0.74	0.37	1.34	0.01
MH	11.67	1.05	1.24	1.39	0.02
Living Room					
SFA	4.61	1.33	0.79	1.48	0.00
SFD	4.63	1.77	0.81	1.63	0.01
MH	7.90	0.89	1.45	2.39	0.00
Family Room					
SFA	5.99	4.48	1.48	1.19	0.06
SFD	5.40	2.37	0.87	1.29	0.05
MH	8.13	1.45	1.56	2.16	0.03
Study					
SFA	5.74	8.63	0.52	2.25	0.01
SFD	7.27	9.97	0.90	1.82	0.03
M	11.50	5.27	0.99	2.32	0.05
Bedroom					
SFA	5.16	1.48	0.35	2.90	0.02
SFD	5.07	1.67	0.33	3.09	0.03
МН	9.89	0.82	1.02	3.12	0.02
Basement					
SFA	4.04	1.52	0.36	0.27	0.19
SFD	3.95	2.79	0.57	0.46	0.19
MH	-	-	-	-	-
Utility Room					
SFA	3.85	3.55	0.62	1.97	0.42
SFD	4.94	1.74	0.84	0.59	0.56
MH	14.91	0.23	0.91	0.85	0.36
Storage Room					
SFA	5.98	3.63	3.88	1.90	0.05
SFD	6.24	6.68	0.73	0.99	0.12
MH	9.84	12.87	0.82	3.08	0.00
Other Rooms					
SFA	13.86	2.30	2.73	2.26	0.10
SFD	6.14	1.03	0.56	1.18	0.09
MH	-	-	-	-	-

1/Actual estimated weights of each material.

## APPENDIX A

A useful statistic is the load that includes 0.95 or some other fractile level of the loads that may be expected if every house were surveyed. The usual procedure would be to fit a probability distribution function to the data and determine from the corresponding cumulative distribution function the 0.95 fractile loads. If the data were distributed according to the normal probability distribution the 0.95 fractile floor load would be given by (mean +1.64 SD).

The current recommendation of the International Council for Building Research (CIB) and others $[19,20]$ is to use the statistic (mean +1.64 SD) as an approximation to the 0.95 fractile load. This approximation is strictly correct only for a normal distribution. Sentler's [5,13] residential load survey data on live loads were better approximated by a log normal distribution than by a normal distribution. A check was made to find the corresponding fractile points for a presumed log normal distribution for a range of average loads of from 5 to $20 \mathrm{lbs} / \mathrm{sq}$. ft. and a range of coefficients of variations ranging from 0.5 to 2.0 . For these data the fractile points in the log normal distribution were calculated for the load values corresponding to (mean +1.64 SD ). For the (mean +1.64 SD ) the corresponding fractile points, assuming a log normal distribution, ranged from $93.3 \%$ to $96.3 \%$. Thus there is reasonable confidence for this engineering approximation to the . 95 fractile load.

APPENDIX B -- INSTRUCTIONS AND SURVEY FORMS

The form is based on the following sequence:

Initially list the house type and address of the occupant on the first page (G-1).
Questions 1 through 16 on the "HOUSE" form (G-2,3) list some characteristics of the house or mobile home.
On the "ROOM" form ( $\mathrm{R}-1,2,3,4$ ) questions 1 through 14 list specific room characteristics.
The balance of the forms list specific classes and items of loading that may be found in a particular room, together with descriptors that will enable the room loads to be estimated. These forms include tables, case goods, kitchen cabinets, beds, upholstered furniture, chairs, contents, appliances, plumbing and heating, miscellaneous and survey report.

On the first page of the survey form ( $G-1$ ), the first 6 squares identify the house. This I.D. is repeated on the "HOUSE" form (G-2) and is called "HOUSE I.D.". The same 6 blocks plus blocks 7, 8, 9 and 10 from the "ROOM" form are repeated at the top of each load item form in a particular room.

The survey for a house will include response to questions 1 through 16 . Note that a house is described as A - attached (town houses), D - detached/semidetached, M - mobile home. "A - Attached" means all row or town houses including the end unit of a row house. "D - Detached" means all detached and semi-detached houses. Semi-detached are two houses that share a common party wall. "M - Mobile" means any mobile home. Question 16 will be filled in from county records after the house is surveyed.

In questions 1 and 2 , blocks $7,8,9$ and $10,11,12$ respectively: the length of the house is the dimension from front to back of the house, the width of the house is the dimension parallel to the front of the house. For mobile homes the main entrance is on the front wall of the house. Note, by this definition the house may be wider than it is long.

Under question 3 "exterior finish" there are 2 blocks for the reply. If there is only one major exterior finish, put the appropriate number in block 13 and leave block 14 blank. If there are two exterior finishes match the more extensive in block 13 and the less extensive one in block 14.

On each floor of the house make a rough sketch to approximate scale showing the relationship of the rooms to each other. This sketch should not be a finished drawing as it will only be used to identify the house layout.

The method of numbering floors is to call the lowest accessible level of the house floor 1 and to number the floors sequentially upwards. This method is also used for split level houses. The details are shown on the attached sketch. ${ }^{1}$

Each room of the house will have one "ROOM" form, one or more sets of the "WALLS" form, and as many of the subsequent load item forms that are necessary to list the items in a particular room. For example, the survey report for a room that doesn't contain any beds should not include the form for beds (form 04). Use as many forms as necessary to report all the loads of a particular class in each room. All numbers should be right-justified in the blocks and leading zeros filled in; for example, the number 2 is entered as 02 or 0002 .

## Room Items

NOTE: The occupant may not want particular rooms surveyed. In this case, include the "ROOM" form but put "999" for the response to question 1 (columns $7,8,9$ ) and leave the rest of the form blank.

Method of numbering rooms - The "Room Number" is tied in to "Room Type." For example, the first "Hallway" surveyed should be numbered "l," the second should be numbered " 2 ," etc. Similarly for bedrooms, the first bedroom will be bedroom number 1 , the second will be bedroom number 2 , etc. It doesn't matter which room of a type is called room 1 or room 2 , etc., but don't give two rooms the same number, or one room two numbers.

In question 2 "Room Size:" the room length, blocks 12 and 13 , the length of the room is the dimension parallel to the length of the house; the room width, blocks 14 and 15 , is the dimension parallel to the width of the house. Note, by this definition the width of a room may be greater than its length.

Question 7 numbering walls. When numbering a room, the wall parallel to and closest to the front of the house is numbered 1 . The remaining walls are numbered clockwise $2,3,4$. Maintain this sequence of numbering the walls for each room. Show these numbers on the room sketch.
$\bar{I}_{\text {All }}$ sketches are at the back of this instruction sheet.

On question 10 a wall may be described as full, partial or open. A full wall is one that extends from floor to ceiling and may have doors and windows in it. A partial wall is an archway or a wall that extends only part way along the side of the room, other kinds of partial walls are called room dividers. An open wall means no wall, this condition exists in some room arrangements where the dining room and living room are adjoining or an L-shaped arrangement of adjoining rooms which generally will be classified as two rooms. In the case of an $L$-shaped room in which the " $L$ " is an alcove use your judgment; either class it as two rooms, or include the material in the main portion of the room, or report the room dimension as slightly larger than actual so as to include the area of the "L" or alcove.

Question 12 "Wall Finish." Note that there are 2 squares for the response. If there is only one wall finish, or if the second wall finish is less than about $10 \%$ of the wall area, fill in the first block called "Major" and leave the second called "minor" blank. If there is more than one finish on the wall, indicate the more extensive one in the first block and the next one in the second block. Note that wall finish is the surface treatment. Do not confuse this with construction which is described in question ll.

Question 13 "Number of windows." If adjacent windows of the same size share a frame, they are to be shown as one window. If they are separated by at least 12 inches of wall, they are to be shown as two or more windows. The height of the window is the bottom to top dimension, the width is the horizontal dimension of the window, the height above the floor is the distance from the floor to the bottom of the window. These measurements are to be made inside the frame.

Individual windows in a wall should be listed beginning with window No. 1 and continuing to window No. 3 as necessary. If two or more windows in the wall are similar the description should be listed under window No. l only. The number of similar windows that have been described under window No. 1 is placed in block 3l. Note that block 31 is used only if window No. 1 describes several similar windows. Block 31 is not the total number of windows unless all windows are similar and described under window No. 1 .

In the case where there are more than three different window sizes in one wall, group the windows that are closest in size under window No. l using average dimensions. Note that the space for window No. 1 may describe one or more windows but the spaces for windows No. 2 and No. 3 may only describe one window each. In no case should more than one form be used per room.

Question 14 "Doors." List as a door any door opening whether or not there is a door in the space provided for it in the wall. Indicate whether the door is hollow, solid or panelled. A hollow door will sound hollow when it is rapped lightly with your knuckles. See attached sketch showing door types. A sliding glass door is considered a "solid" type with material of "glass." Similar doors should be handled in the same manner as similar windows with block 56 used only if more than one similar door is described under door No. 1.

## Form Wl Walls

This form is a continuation of the "Room" form. It is divided into two parts, A and B. Part A deals with the closet size and locations. Part B deals with the wall ornamentation such as mirrors, pictures, paintings, drapes, etc. Unlike the room form where the order of the walls is fixed on the form, any of the four columns on the form may refer to the same wall.

On some wall forms blocks 12 and 13 may be blank. If this is the case place a "W" in block 12 and " 1 " in block 13.

## Load Items

A live load item is any object that is not part of the permanent structure. For each load item in a particular room the first group of questions that precede "item identifier" are the same on each form and must correspond to the first 10 blocks on the "Rooms" form for that particular room. This identifies the room and house where the item is located.

Item I.D., blocks 11 and 12 , will be printed on the form. Each load item form has three columns for listing up to three distinct load items of the same type in the same room. At the end of the form is a question "Number of identical units this sector." If there is only one item in a particular sector put a "l" in this block, if there are more than one identical items in a particular sector, put the number of such items in the block.

There is one set of questions for each load item classification. The first question is class type. If the class type does not exactly describe the item, ejther indicate the closest class type or indicate "other" and write in your descriptor.

Weight Class: Use your judgment to determine if the furniture is light, meãium, or heavy. Expensive furniture is usually heavier than lower priced
furniture. Though this requires a subjective opinion, some trials have shown that most people can estimate this fairly closely with some practice. Attached are photo copies of some furniture items in each weight class.

The subsequent entries describe the size, material and location of the item. On forms for tables, case goods, kitchen cabinets and built-ins, upholstered furniture, chairs and appliances there appears a "Material List." The numbers in this "Material List" apply to the next questions about materials that are on different parts of the load item. Please note that for "other" materials, write in the descriptor in the indicated places.

Proximity to wall. For the purposes of the survey the room is divided into 5 sectors. The first 4 sectors are the areas that include the wall and 24 inches in front of the wall; the 5 th sector is the middle of the room, that is, everything more than 24 inches from the walls. For materials that extend into corners, include this with the wall. Each wall sector is separated into two parts: $0-6$, "and 7" to 24 . This is to locate those items that are actually against the wall. The proximity to the wall is the distance from the wall to the closest side or edge of the load item. See attached sketch.

Percent within 24 inches of wall. Large pieces of furniture such as beds, sofas, tables, etc. may be partly in the wall sector and partly in the middle sector of a room. The question will allow the loads to be separated by sector.

For beds the following table of percentages within 24 inches of the wall may be used where one or top sides are directly against a wall. For beds that are not within a few inches of the wall the percentage should be calculated for the particular configuration.

Head Board Only Against the Wall

Side of Bed Only Against the Wall

Side Against the Wall (Bed in a corner)

Twin			
$39^{\prime \prime} \times 75^{\prime \prime}$	25\%	50\%	75\%
Full			
$54 " \times 75$ "	25\%	50\%	50\%
Queen			
$60^{\prime \prime} \times 80^{\prime \prime}$	25\%	25\%	50\%
King			
78" x 80"	25\%	25\%	50\%

Furniture Location. This identifies the part of the room the item is located. If any part of an item is within 24 inches of a wall, indicate the wall number. If an item is completely within the middle sector, indicate "5."

Number of identical units within this sector. Appears at the end of each group of questions that describe a load item. Its purpose is to reduce the amount of work to fill out the form. To use this simply put in the number of identical units that are in the same room sector. For example, if there are 2 identical tables against the same wall, mark 2 in this space; if only 1, mark 1 .

## Form 01 Tables

In question 1. Class Type "Pool." There are 2 types of pool tables, calibrated and regular. Calibrated pool tables have a slate top under the felt. Calibrated pool tables are to be marked "heavy"; regular pool tables are to be marked "medium." If you see a pool table, either ask the occupant if it is calibrated or knock on the surface.

Enclosed cocktail tables should be listed on form 02 "case goods" as chests and desks.

Case goods is a general trade term to describe any piece of furniture that resembles a case or box. This includes buffets, cabinets, pianos, bureaus, dressers, bars, wardrobes, etc. Trunks and boxes should be listed on form 10 "miscellaneous." In question 1 , Class Type, a "room divider" may be a fixed or movable item. This may also be partial wall that extends from the floor upwards for a height of only a few feet and may be topped by a wood, plastic, or screen. If the room divider serves the function of wall, mark it as a wall in question 19 through 33. If it has shelving for books, papers, bric-a-brac, etc., mark it as case goods.

Under questions 2, 3, and 4, the dimensions of the case good item include the overall size of the storage part, and should not include the space occupied by the legs or mirror. The remaining questions are similar to those on the previous form. Shelving comes in two main styles. The first is essentially a piece of case goods without a front. The second is a set of individual shelves that are hung from poles, a wall, or from a room divider. In the first case give the overall dimensions. In the second case give the dimensions of one shelf and mark the number of shelves in question 12 "number of identical units this sector."

Under question 5-weight class grand pianos are "heavy"; all other pianos are "medium." Organs and electric pianos should be placed on Form-10 "Miscellaneous."

## Form 03 Kitchen Cabinets and Built-ins

This item includes all beds except daybeds, hide-a-beds and trundle beds which are included with upholstered furniture. Occasionally you may come across an old fashioned trundle bed which is a slightly elevated double or single bed which also had a trundle bed of almost the same size; in this case report this as two beds but only report one headboard and footboard. If there is no headboard skip the questions on weight class and material of the headboard and footboard.

## Form 05 Upholstered Furniture

This classification includes most living room type furniture and benches. Individual chairs that are lightly cushioned or padded, such as most dining room chairs, should be listed with "Load item 06 Chairs." If they are heavily cushioned or padded on form 05. In each case the length is the
outside length of the chair, the width is the outside distance front to back and the height is the distance of the top of the back of the chair above the floor. Hide-a-beds and recliners are classed as heavy, wicker and light metal frames are classed as light, all other upholstered furniture are classed as medium.

Form 06 Chairs

This category includes plain and padded chairs but excludes upholstered chairs, footstools, ottomans, and bean bag chairs which are included in "Form 05 Upholstered Furniture."

## Form 07 Contents of Drawer, Shelf, Cabinet or Closet

This form is designed to list a wide variety of drawer, cabinet, shelf, and closet contents and miscellaneous clutter. For reporting the miscellaneous clutter may be grouped into several piles: one pile for each material in each of the room sectors. Use as many of these forms as are necessary to list the contents. For closed drawers, cabinets, and closets ask the resident what the contents are, and indicate on the form whether or not you have actually been able to examine the contents or have taken the data from the resident. Under question 6 -Weight class loose papers are "light," paperback books and board papers are "medium" and hardback books are "heavy." Also under question 6-Weight Class pistols are "light" and rifles and shotguns are "medium." For other types of guns give the estimated weight in "remarks." Under question 7 -Height the actual height of the pile should be used and not the size of the container.

For degree of compaction, $100 \%$ indicates filled or pressed tight, while $25 \%$ indicates a loose, or scattered pile.

## Form 08 Appliances

For countertop ranges; the class type is "1 - stoves and ranges," the style is "2 - built-in," the length and width will be the countertop dimensions and the height will be between 3 and 10 inches. Under questions 3 "Built-in but also free standing" this refers to appliances such as cabinets, ranges that may be built-in or free standing. Fish tanks are included with this form.

Under question $l$ "class type" for televisions use the following numbers 05 - black and white (portable)
25 - color (portable)
35 - console TV (all)

Under questions 3 and 4 give length and width of all appliances. Under question 5 "height" give height in inches for all appliances except those listed below. For the following appliances give the capacity as indicated instead of height. Note that height should be given for console TV's and screen size for portable TV's.

Refrigerator/Freezer - capacity in cu. ft.
Portable TV - screen size (diagonal measure) in.
Air conditioner - rating (Btu)
Dehumidifiers/Humidifiers - capacity in pints

Form 09 Plumbing, Heating and Related Items

This form includes sinks, bathroom fittings, furnaces, water heaters and purifiers, water pumps, etc. The form does not distinguish directly between gas, oil or coal furnaces, but note under "materials" gas furnaces will generally be made of sheet metal while other furnaces may be made of either steel or cast iron. In remarks, for items identifiers 5 through 8 (furnaces to water pumps) give the brand name, model and rating or capacity of the item.

Form 10 Miscellaneous

This form is for anything that cannot be included under any of the other load specifications. For this survey indicate the name, type, size, material, etc. of the item. Be clear and brief. Your answers will be used to redesign this load form. For a group of similar items, such as toys, give the total weight.

Under question 2 "material" construct a block and number it 58. Put a "l" in block 58 if the object is resting on the floor or a "2" if the object is resting on top of another object which is being listed separately. Blocks 45 to 57 should be left blank.

After the survey is finished, fill out the Survey Report. The question "Would the resident allow one more survey team to visit their house," should only be asked after the survey has been completed.

## Things to Watch Out for in Filling Out the Forms

1. Number outside walls on all floor plans.
2. Number rooms on floor plan corresponding to the room numbers on the forms.
3. Check that there is a set of forms for each room.
4. Check for partial wall correlation between adjacent rooms.
5. Check for door correlation between adjacent rooms.
6. Check wall numbering and the instructions for reporting doors and windows.
7. Check for closet doors.
8. Check for the existence of a contents form for each closet, desk, dresser, shelf, etc.
9. Check all dimensions for obvious errors.
1.0. Check that the item is specified when the category "other" is used.
10. Check that all necessary blocks are completed.
11. For shelves, drapes or other items on the walls form that are greater than 99 inches in length divide the length of the item in half (or as many pieces as necessary) and show two (or more) identical units.
12. Sliding glass doors are solid doors made of glass.



棓竞

$3$



ロ:ロ:
प: $\square:$

$\stackrel{7}{2}$


## Width (feet)

Room Number
Sketch of Room

$$
3 \begin{aligned}
& \text { Floor Finish__ } \\
& \text { 1 - Wood } \\
& \text { 2 - Asphalt/rubber/viny1 tile } \\
& \text { 3 - Ceramic tile/slate/stone/concrete/brick } \\
& \text { 4 - Carpet/rugs } \\
& 5 \text { - Other_ } \\
& 4 \\
& \text { Percent of floor covered by finish } \\
& 1 \text { - } 25 \% \\
& 2 \text { - } 50 \% \\
& 3-75 \% \\
& 4-100 \%
\end{aligned}
$$





$\frac{\mathrm{T}}{\mathrm{I}}$


궁


กี

$\stackrel{\pi}{8}$


กั


亏゙
Figure B-6 Bens


กิ


초


N
$\stackrel{1}{\circ}$


7
8
8

(

Figure B-10 draher, shelf, cabinet or closet contents



3 - Dresses
4 - Lingerie/Underwear/Nightwear/Stockings/Socks
5 - Shirts/Blouses
6 - Sweaters
7 - Other


$\stackrel{\rightharpoonup}{\mathbf{D}}$


or
$\stackrel{\rightharpoonup}{-}$

$\Xi$



Figure B-15 HOUSE TYPES


Figure b-16 HOUSE SHAPES

## METHOD FOR NUMBERING FLOORS

NOTES: I. THE LOWEST LEVEL OF THE hOUSE IS FLOOR I.
2. ONLY ACCESSABLE FLOORS ARE NUMBERED.



WALL I IS THE WALL CLOSEST AND
PARALLEL TO THE FRONT OF THE HOUSE.
THE SHADED AREAS CAN BE INCLUDED IN
ANY CONVENIENT AND APPROPRIATE SECTOR METHOD OF NUMBERING WALLS AND SECTORS

Figure B-18

## APPENDIX C

## Example of Use of Transfer Functions

The procedure for reducing the survey form descriptions to equivalent live loads and fire loads is straightforward. The partial live and fire loads corresponding to the descriptions for each finishing item are first calculated and summed for the individual items. Next, the live and fire loads for the individual items are applied to the appropriate room sector. Lastly, the live and fire loads for each sector and room are summed to give total sector and room live load and fire load. The fire load is divided into five material classifications: wood, paper, plastic, fabric, and other.

An example for a single room from a survey is given below to illustrate the procedure. The survey forms are shown on figures $\mathrm{C}-1$ to $\mathrm{C}-7$. The room is a dining room in a single-family residence in the Washington metropolitan area. The calculations shown below are a simplification of the actual calculations which were made by a computer program.

Room Finish and Trim

On the first page of the Rooms form, figure $C-1$, item 3, the floor finish is material "4". carpet/rugs, and the item 4 entry indicates it covers the entire floor. Item 5 shows the room trim is wood, and item 6 shows that the ceiling finish is paint.

The first step is to convert the room finish, carpet and trim materials into equivalent live loads. The second step converts these into equivalent fire loads. Note that the finish and trim are included with the fire load, but are not included with the live load.

## Floor finish

From table 4-1, material 4 weighs 1 lb per sq. ft. Table 4-12 indicates that all of this load is fire load and is classed as fabric. The fire load must now be distributed among the sectors.


Middle,
Sector 5

$$
(11-4) \times(14-4)=70 \times 1=70 \times 1.00=70
$$

All this weight of carpet is classed as fabric.

## Trim

Item 5 on the Rooms form figure 4-8 "trim" is material 1 (wood) from table 4-1, the load function for "trim, material 1 " gives the load in lbs per linear ft and from table 4-12 "trim, material $l^{\prime \prime}$ the equivalent fire load per lineal foot is the same as the load per lineal foot. In the calculation below, note that wall 1 is "open", i.e. there is no wall on that side of the room.


## Ceiling Finish

From table 4-1, "ceiling finish 2 - paint" has a fire load of 0.2 lbs per sq. ft. and table 4-12 classes this as wood/paper. This fire load must be distributed among the sectors.

	Dimension	Area		Load Transfer Function	Wt		Load sfer tion		Load
	$f t$	sq ft			lbs				1bs
Sectors 1 \& 3	$11 \times 2 \times 2=$	40	x	. $2=$	$=8.8$	X	1	=	8.8
Sectors $2 \& 4$	$(14-4) \times 2 \times 2=$	40	x	. $2=$	$=8.0$	x	1	$=$	8.0
Total wall	sectors	84			16.8				16.8
Middle									
Sector 5	$(11-4) \times(14-4)=$	70	X	. 2	14.0	x	1	$=$	14.0

## Walls Figures

The fire loads are obtained by first considering the wall materials and then considering the windows, doors and wall hangings. First the fire load from the wall materials listed in figures $\mathrm{C}-2$ and $\mathrm{C}-3$ is calculated.

Wall 1 is classed as "open" and so has no fire load.

Wall 2, 3 and 4 are full walls and are paint on gypsum board. Wall 3 has a large wood frame window, and so the area of the window is first subtracted from the area of the wall and the weight of the wood framing is added as fire load.

Dimension	Area	Load   Transfer   Function	Fire Load   Transfer   Function	Fire   Load
	sq ft			

Sector 1
Wall 1 None

Sector 2
Wall 2
$9 \times 10=90 \times 12 \times 18 \times 1=18.0$

Sector 3
Wall $3(14 \times 10)-(8 \times 10)=70 \mathrm{x} .2=14 \times 1 .=14.0$

Sector 4
Wall 4
$11 \times 10=110 \mathrm{x} .2=22 \times 1=22.0$

## Windows

The window on Wall 3 (Sector 3) is included in Sector 3, see figure 4-9. From tables 4-1 and 4-12, the applicable fire load is:

Dimension		Area	Load Transfer Function	Load		Fire Load Transfer Function	Load
in		sq in		lbs			lbs
$96 \times 120$	=	11520	. 03	345.6	x	1.0	345.6

## Doors

The doorway in wall 2 contains no door, therefore no fire load for this item.

Part B - Wall Hangings

The survey form indicates that there are wall hangings on walls 2,3 , and 4 that are to be included in the fire load for the room. Wall hangings are included with the appropriate wall sector loads.

Wall 2 has two pictures, Wall 3 has drapes and Wall 4 has one picture. From tables 2 and 13 the fire loads for these items are as follows:

Wall $2^{9}$

Dimensions	Area	Load Transfer Function	Load	Fire Load Transfer Function	Fire   Load
in	$s q$ in		lbs		lbs
$30 \times 40$	1200	. 021	25.2	1.0	25.2
$18 \times 14$	252	. 001	. 252	1.0	. 252

## Wall 3

Note that there are 2 drapes marked on the form.


## Wall 4

Dimensions	Area	Load Transfer Function		Load		Fire Load Transfer Function	Fire Load
in	sq in			lbs			lbs
$16 \times 28$	448	. 021	=	9.41	x	1	9.4

[^9]$$
c-5
$$

From tables 4-3 and 4-14, the weight and fire load of the dining room table listed in figure $C-4$ having wood top and legs is given by ${ }^{10}$ :



This load is applied to Sector 5 (middle sector).

## Case Goods

The Case Goods form, figure $\mathrm{C}-5$ indicates that there is a buffet in Sector 4. From tables $4-4$ and $4-15$ we have the following ${ }^{11}$ :

Dimensions		Volume	Transfer Function				$\underline{\text { Load }}$
in		cu. in					1 bs
$48 \times 24 \times 28$	=	32256	(32256	x.0063)	$-53.7$	$=$	149.5

The equivalent fire load for the top, sides ${ }^{l l}$, and shelves is distributed as follows:

[^10]$$
c-6
$$

	Load		Fire Load Transfer Function		Fire   Load
	Ibs				lbs
Top	149.5	X	. 1	=	15.0
Sides		X	. 75	$=$	112.1
Shelves		X	. 15	$=$	22.4
					149.5

This load and fire load are added to that in Sector 4.

## Chairs

The chairs form shown in figure $C-6$ indicates that there are 6 chairs in the dining room. From table $4-8$ we have the following:

For the five dining room chairs with wooden legs and back the weight is given by:
$17.3 \mathrm{lbs} \mathrm{x} 5=86.5 \mathrm{lbs}$

From table 4-19 the fire load for the different parts of the chair are:
$\underline{\text { Seat }}{ }^{12}$

Wood/paper	$.15 \times 86.5=13.0 \mathrm{lbs}$
Fabric	$.15 \times 86.5=13.0 \mathrm{lbs}$
Plastic	$.15 \times 86.5=\frac{13.0 \mathrm{lbs}}{39.0 \mathrm{lbs}}$

$\overline{12}$ This represents an estimation of the average range of materials to be
found.

$$
c-7
$$

Legs

$$
\text { Wood/paper } \quad .20 \times 86.5=17.3 \mathrm{lbs}
$$

## Back



Drawer, Shelf, Cabinet, or Closet Contents

The last items are the contents of the buffet, which are listed in figure $\mathrm{C}-7$. These are glassware/stemware, class type 6, material 5, compaction 2 (50\%).

From table 4-9 the live load for this is:

$\frac{\text { Dimensions }}{\text { in }}$	$\frac{\text { Volume }}{\text { cu in }}$	$\frac{\text { Transfer Function }}{\text { lbs }}$
$48 \times 29 \times 29=38976$	$(38976 \times .005)$	$=194.8$

Since this is noncombustible, there will be no fire load from this item. This weight will be applied to the live load in Sector 4.

The live loads and fire loads are next summed for each sector and for the whole room.
${ }^{13}$ The fire load may be different than the live load of a furnishing.

## Summary Live Loads (lbs)

Sector

1
2
3
4
5
Totals

## Item

Wall hangings

Table

Case Goods

Chairs

Buffet Contents

Totals
25.5
80.6
9.4
115.5
160.2160 .2
149.5
149.5
86.586 .5
194.8 194.8
25.5
$80.6 \quad 353.7$
$246.7 \quad 706.5$
unit live load $=8.4 \mathrm{lbs} / \mathrm{sq} . \mathrm{ft}$.

sector	1	2	3	4	5	Totals
Item						
Floor finish	22.0	20.0	22.0	20.0	70.0	154.0
Trim		22.5	35.0	27.5		85.0
Ceiling finish	4.4	4.0	4.4	4.0	14.0	30.8
Wall finish		18.0	14.0	22.0		54.0
Windows			345.6			345.6
Wall Hangings		25.5	80.6	9.4		115.5
Table					160.1	160.1
Case Goods				149.5		149.5
Chairs					86.5	86.5
Sub Totals lbs.	26.4	90.0	501.6	232.4	330.6	1181.0

That the room finish materials were slightly more than one-half the total fire load is not unusual. This is in agreement with Ingberg's survey 2 and the overall results of this survey which are discussed in Section 8. These unit live and fire loads would be part of the data used to compute mean and standard deviation of the live and fire loads (e.g. tables 5-13 and 5-18).

ะ

$\stackrel{\square}{\mathbf{a}}$



为 $\square_{0}^{n}$ $\square$ Nucber of Doors $\prod_{56} \quad \prod_{56} \quad \prod_{56}$

—品
1-Solid
2 - Pancled
3 - Holiow
4- Levvered
$\stackrel{\rightharpoonup}{4}$

Figure c-3 Walls form example


ั!

$\stackrel{7}{\square}$


ั


亏
Case goods form example

2 - पeséus
3 - Heary

1-SVod/Piswoed
2- Misstic
3- Metal
3 - Metal
6 - Clessfcerazic
5 - Siore
6 - Ozher
Matericil Top
Oeher

Figure $C-5$
\%

Figure C-6 Chairs form example

	046110771016
012	I




15. SUPPLEMENTARY NOTES

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

17. KEY WORDS (six to twelve entries; alphabotical order; capitalize only the first letter of the first key word unless a proper namo; separated by semicolons)
Field surveys; fire; fire loads; furnishings; household surveys; live loads; mobile homes; residential surveys; transfer functions.
18. AVAILABILITY Unlimited
$\square$ For Official Distribution. Do Not Release to NTIS

- Order From Sup. of Doc., U.S. Government Printing Office, Washington, DC 20402, SD Stock No. SNOO3-003-
T. Order From National Technical Information Service (NTIS), Springfield, ${ }^{n}$ VA. 22161

19. SECURITY CLASS   (THIS REPORT)   UNCLASSIFIED	21. NO. OF   PRINTED PAGES   176
20. SECURITY CLASS   (THIS PAGE)	22. PrICe   UNCLASSIFIED
USCOMM-DC	


[^0]:    * Exactly

[^1]:    ${ }^{1}$ Numbers in brackets refer to references listed at the end of this report.
    ${ }^{2}$ The last American fire load survey was made in the 1930's [2].

[^2]:    ${ }^{3}$ Culver [7] called these equations "transfer functions" and we will use the same terminology.

[^3]:    ${ }^{4}$ Compaction refers to the relative compaction of materials such as books, papers, phonograph records, clothing and so forth. One hundred per cent compaction is the greates density to which a material may normally be compressed in stacking or storing.

[^4]:    ${ }^{5}$ Office of Management and Budget (OMB) Privacy Requirement.

[^5]:    $\overline{{ }^{6} \text { In other geographical regions of the country, other exterior finishes may }}$ predominate.

[^6]:    7 Many mobile homes are frequently "mobile" only for the period of time spent in travel from the factory to the park site. The mobile home then usually stays permanently on the mobile home lot.
    ${ }^{8}$ Non structural shell.

[^7]:    Assume in this survey that all beds have a foam mattress.

[^8]:    Use material top from lower cabinet

[^9]:    In figure 4-10 the larger picture is described as "oil. painted canvas" and the smaller picture is described as "photograph". These two pictures have different load factors.

[^10]:    10 The fire load for the top and sides is separated as they may be made of different materials.
    ${ }^{11}$ Sides includes the vertical surfaces and bottom of the buffet. See also footnote 10 .

