A New Method of Assigning Uncertainty in Volume Calibration

James A. Lechner, Charles P. Reeve, Clifford H. Spiegelman

S. DEPARTMENT OF COMMERCE

A NEW METHOD OF ASSIGNING UNCERTAINTY IN VOLUME CALIBRATION

usb
no.80-2151

James A.Lechner, Charles P. Reeve, Clifford H. SpiegeIman

Issued December 1980
U.S. DEPARTMENT OF COMMERCE, Philip M. Klutznick, Secretary Jordan J. Baruch, Assistant Secretary for Productivity, Technology, and Innovation NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

$$
\because
$$

*A NEW METHOD OF ASSIGNING UNCERTAINTY IN VOLUME CALIBRATION

 byJames A. Lechner
Charles P. Reeve
Clifford H. Spiegelman

with programming assistance from Martin Ross Cordes and Janice M. Knapp

[^0]

ABSTRACT

This paper presents a practical statistical overview of the pressurevolume calibration curve for large nuclear materials processing tanks. It explains the appropriateness of applying splines (piecewise polynomials) to this curve, and it presents an overview of the associated statistical uncertainties. In order to implement these procedures a practical and portable FORTRAN IV program is provided along with its users' manual. Finally, the recommended procedure is demonstrated on actual tank data collected by NBS.

[^1]
TABLE OF CONTENTS

Page
Abstract 1

1. Introduction 1
2. The Scientific Basis for, and Interpretation of, a Calibration Curve 2
3. An Example 7
4. User's Manual 11
5. Summary and Discussion 14
Appendix 1 Scheffe's constant c 18
Appendix 2 Program Listing 19
References 91
Figures 92
6. Introduction.

The direct measurement of liquid volume in large processing tanks, especially with internal structure, is impractical at best. Measuring (differential) pressure is simple and quick. However, in order to estimate the volume indirectly by observing pressure, it is necessary to use the relationship between volume and pressure. This relationship is known as a calibration curve; its estimation is the process known as calibration.

Fitting a calibration curve is much like regression, in that for "known" values v_{i} of volume, one obtains one or more observations $\mathrm{P}_{1 j}$ of the differential pressure $p_{i}=p\left(v_{1}\right)$, and "fits" a response function $p(v)$, by statistical methods - usually by least squares. At this point, the correspondence stops. Whereas regression is used to predict values of the dependent variable (p) for given values of the independent variable (v) or to test a proposed relationship between the variables, a calibration curve is used to estimate values of the independent variable v corresponding to new measured values of the dependent variable p. Furthermore, the confidence interval (or uncertainty measure) which is desired is not for p, but rather for v. And finally, systematic error is introduced by lack of fit of the calibration curve, and in a materials accounting situation this may be crucial.

This paper presents a method for producing valid uncertainty limits for the pressure-volume tank calibration curve by using calibration functions which are smooth, piecewise polynomial functions called "splines." Taking advantage of an approach to calibration originated by Scheffé [1] and furthex elucidated by Scheffé, Rosenblatt and

Spiegelman [2], it provides statistically sound uncertainty limits, not just for a single estimated value of volume, but for all volumes estimated by use of the fitted curve. This approach overcomes a major theoretical problem with earlier methods: it makes proper allowance for the contribution to the overall uncertainty of errors in fitting the curve.

The procedure presented herein has been implemented, based upon a spline-fitting program due to deBoor [3]. The resulting FORTRAN program has been tested on various sets of data, including actual tank data.

The remainder of this paper is organized as follows. Section 2 contains a discussion of the pressure-volume model, and the statistics of calibration. Section 3 contains a discussion of an example, and of the printout produced by the program. Section 4 is essentially a users' manual for the program. : In Section 5 will be found a discussion of open questions, work in progress, cautions, and possible extensions of this technique. Finally, Appendix 1 contains a discussion of Scheffe's constant c, used as an input to the program, and Appendix 2 contains a listing of the program.
2. The Scientific Basis for, and Interpretation of, a Calibration Curve.

In order to provide statistically valid uncertainty limits for the volume estimates obtained through the use of a calibration curve, it is necessary to have a prior model for the pressure-volume relationship. That is, while the constants in the model for the relationship may be determined from the data, the form of the model must not depend on the data to be used in fitting the relationship. In addition, the less accurately the hypothesized model describes this relationship, the less
valid will be the resulting uncertainty statements. That is, inaccuracies in the hypothesized model will lead to systematic differences between true and fitted curves. In order to obtain valid uncertainty statements, bounds for such differences must be determined, and added to the statistical uncertainty as systematic error limits.

The interiors of large processing tanks do not generally conform to idealized geometrical shapes, such as cylinders. Often, however, the tank can be considered to be composed only of segments for which an idealized model is a good representation. In this paper it is assumed that the tank is composed of a finite number, $k+1$, of distinct and known regions where the idealized relationship between the two variables pressure, p, and volume, v, is given by

$$
\begin{array}{rlrl}
p & =f(v) & \\
& =g_{1}(v) & & \\
& =g_{2}(v) & & \\
& & \\
& & \\
& =g_{k}<v<\xi_{1}(v) & & \xi_{k}<v<\xi_{k+1} .
\end{array}
$$

In addition, continuity of the relationship at the interior "knots" ξ_{i}, $1=1, \ldots, k$ is required.

In all that follows, volume and height refer to the portion of the tank above the bottom of the diptube used to measure pressure. The portion of the tank below that point is known as the heel, and is not treated in this paper. The pressure measured is the difference in
pressure between the bottom of the diptube and a reference point at the top of the tank.

The pressure-volume relationship can be ascertained from the following two equations. At height h the volume in the container is

$$
v=\int_{0}^{h} A(x) d x
$$

where $A(x)$ is the cross-sectional area at height x. Also, when the liquid height is $h, p=h \rho g$, where ρ is the density of the homogeneous liquid and g is the acceleration due to gravity. Using these two equations one easily obtains

$$
v=\int_{0}^{p / \rho g} A(x) d x
$$

Thus $\frac{\partial v}{\partial p}=\frac{1}{\rho g} A(p / \rho g)$ and hence in areas of the tank where $A(x)$ is constant the volume-pressure relationship is a straight line.

If $A(x)$ is constant* in region 1 , as it obviously is for at least some regions of the tank shown in Figure 1, then

$$
\begin{equation*}
p=g_{i}(v)=\gamma_{i}+\beta_{i} v \text { for } \xi_{i-1}<v<\xi_{i}, i=1, \ldots, k+1 \tag{1}
\end{equation*}
$$

We assume that each pressure measurement has a random error associated with it, and that these errors are independent and

[^2]normally-distributed, with mean zero and constant variance σ^{2}. (Recall that volume is assumed to be measured with no significant error.) Because of these errors, only estimates of the coefficients γ_{i} and β_{i} are obtained during the calibration process (experiment). These coefficient estimates are then used during plant operation to obtain estimates of the volume in the tank, utilizing the inverse of the relationship (1).

Determination of uncertainty limits on these estimates is not trivial. There are two sources of random error: estimation of the coefficients γ and β in the calibration experiment, and measurement of p during operational use of the tank. The familiar linear regression model has properties, such as the nonexistence of means and variances of reciprocals, which make the analysis difficult. Special justification involving asymptotic (large sample-size) behavior is thus required in order to use a propagation-of-error approach to obtain appropriate approximate uncertainty limits on the estimated volumes. Furthermore, unless the p^{-v} relationship is linear, normally distributed errors in the p-measurements during operation produce non-normal errors in the resulting estimates of v. The usual propagation-of-error technique does not take into account the differing characteristics of these errors. The new technique presented in this paper, in contrast to the propagation-of-error approach just mentioned, does allow a correct accounting for both.

The calibration chart (i.e., the table of uncertainty limits) is produced after choosing two probabilities, α and δ. An exact statement giving the interpretation of these probabilities may be found in Scheffé
[1] and in Scheffé, Rosenblatt, and Spiegelman [2]. However, an expanded, more heuristic explanation is given here. First, we require bounds for the calibration curve which will contain the entire curve with a prechosen probability 1- δ. (Thus, δ can be thought of as describing the uncertainty level to be associated with the outcome of the initial calibration experiment.) These bounds guarantee, with probability $1-\delta$, that for any and every future volume v within the range of calibration of the tank, the v-interval (see Figure 2) that would be obtained by projection of the value $f(v)$ through the curves to \underline{v} and \bar{v} would contain v. The second probability level to be chosen is α. (Here α can be thought of as describing the uncertainty level to be attributed to errors in future individual pressure measurements.) If o were known, we could state that the true pressure $f(v)$ at the unknown volume v lies within the $1-\alpha$ confidence interval $\left(p^{-z} 1-\alpha / 2 \sigma, p+z_{1-\alpha / 2} \sigma\right)$ with probability $1-\alpha$, where p is the observed pressure and $z_{1-\alpha / 2}$ is the two-sided $1-\alpha$ value for a normal distribution. The Scheffé procedure expands this interval appropriately, to account for the facts that σ is estimated and that this estimate is used for the $1-\delta$ bound on the curve and for bounds on many different $f(v)$. It then combines the $1-\alpha$ confidence interval for $f(v)$ with the $l-\delta$ bounds on the calibration curve to produce calibration intervals $I(p)$ for v. Construction of the calibration intervals is shown schematically in Figure 3. A set of intervals $I\left(p_{i}\right)$ for p_{i} in the range of values obtained during the calibration experiment is called a calibration chart (see Figure 4).

In the discussion of the example presented in the next section, more detail on the nature of the steps that make up a calibration run will be found.
3. An Example.

This example relates to a processing tank, roughly circular in cross section, but with internal structure consisting of cooling coils, stirrers, braces, etc. [5]. This tank is pictured in Figure 1. The data from calibration runs on this tank have graciously been made available by the author of reference [5].

There were five calibration runs for which the data were useful for this analysis. One run was done in the canyon where the tank is to be used. The other four, done in a mock-up area, used smaller tubing in the pressure-measuring system. This smaller tubing was known to cause systematic differences in the pressure measurement, which were expected to be linearly related to pressure for each run. Since the tubing in the canyon was sufficiently large to render the pressure drop insignificant, the systematic exror was estimated for each of the other four runs, and a correction made by applying a linear transformation to the measured pressure. It should be noted that these corrections, made to four of the five runs, effectively decrease the degrees of freedom for the error sum of squares by eight (two correction parameters times four runs corrected).

The calibration program was applied to these data, as were various other techniques available on the laxge central computer at NBS. The results will now be presented and their use described.

In the version of the program described here, the knot locations are input by the analyst. It is presumed that the knot locations can be adequately prescribed from the blueprints and other knowledge about the tank. (A refinement which allows the automatic determination of the
number and location of knots is being investigated.) The program displays the given knot locations and other input data, as shown in Figure 5. Next come the results of the fitting operation, as shown in part in Figure 6. Note that the fit here is a fit of observed pressure (y) as a function of the accurately-dispensed volume (x); it is pressure which is subject to errors of observation, and volume which is essentially known. The residual standard deviation, an estimate of the standard deviation of the pressure measurements, is derived from the residuals or deviations of the measured pressures from the fitted curve. In this case, its value is 1.49 pascals. This value, the corresponding degrees of freedom, and the coefficients (which are in general not immediately interpretable, since they refer to the so-called B-splines, a representation chosen for computational stability), are part of these results. The calibration intervals for estimation of volume from measured pressure are printed next (see Figure 4). An ordinary polynomial representation and a residual plot are also printed as shown in Figures 7 and 8.

It will be instructive to examine the printout and discuss the approach in more detail, and this will now be done.

As can be seen from Figure 5, the program duplicates the end knots. This is just a simple way to define the B-spline basis functions which are used to perform the fit, and need not concern the analyst. The input values for knot locations, degree of fit, and other miscellaneous parameters are printed out for verification.

At this point, the program does a linear least squares fit of the specified model to the (v, p) data, and prints out a reasonably standard summary (Figure 6). The column labels are self-explanatory. At the bottom of this summary are found the residual standard deviation and its associated degrees of freedom, and the estimated coefficients with the corresponding estimated standard deviations.

The program next computes some intermediate results which generally are of no interest to the analyst, and therefore are only printed out if requested. These are confidence intervals for p, at 300 evenly-spaced points covering the range of v between the extreme knots. Input values of α, δ, and c are used in this procedure, so these values are printed.

The calibration chart comes next, giving the predicted value of v and the corresponding lower and upper limits for each of the specified set of p-values (see Figure 4). It is obtained by inverse interpolation from the confidence intervals for p discussed in the preceding paragraph. Usually, the extreme values of p will be at least partially outside the range of at least one of the curves. When this happens, the intervals should extend either to zero volume or to full volume. This is indicated by "<" and ">" respectively on the printout.

Since the coefficients actually fitted are the B-spline coefficients,
 representation. The printout shows the endpoints and the coefficients of the fitted polynomial for each of the specified intervals (see Fig. 7). Finally, the residuals from the fitted model are plotted in order of increasing volume to allow a visual check of the adequacy of the chosen model [6] (see Fig. 8).

At NBS, with the aid of the central computex and the OMNITAB system [7], a number of other things were tried which strengthen the conviction that this program does indeed work well. These will now be discussed.

Various subsets of the data were fitted to the same model. No inconsistencies were found.

The sensitivity to position and presence of the different knots was checked. The results were rather sensitive to the knot locations, which implies that good estimates of the locations are required for good fits. It should also be noted that where a knot bounds a short segment, the removal of that knot might make very little difference in any global measure of fit quality, unless there are many data points in that short stretch. Nevertheless, the systematic error introduced by deleting that knot can be a consistent source of inventory losses or gains, apparent or real. Thus it is important to include all real segments in the model to be fitted.

A separate program was written to perform linear spline fitting, while the main package was being put together. The answers did not differ between the two programs, providing a partial check that no programming exrors were committed.

Smooth higher-order spline fits were tried (quadratic and cubic). There was no improvement in fit. The linear spline appears to provide an adequate representation of the pressure/volume relationship.

Probability plots were done in various ways, looking for possible troubles with the data or the method. Nothing suspicious was found.
4. User's Manual.

This fixed-knot spline package for calibration consists of a "main" subroutine SPLEEN and 29 additional subroutines. The manner in which they interact is diagrammed in Figure 9. All programs are written in FORTRAN and have been checked for portability by the Bell Laboratories PFORT verifier [8]. It was decided that SPLEEN should be a subroutine rather than a main program so that the user could enter the parameter values in the way most convenient for him. The user then must write a main program which sets up the required dimensioned variables and assigns values to the necessary parameters (those with asterisks in the list which follows). These parameters are passed to subroutine SPLEEN via the statement

> CALL SPLEEN(H,X,Y,W,R1, R2, RES ,N,NX,NKX,T,BCOEF,XXI $, Q, D I A G, K$, $K X, Y Y, N Y, N Y X, M D, S C R T C H, J X, A L, D L, C, I P)$
where

```
* H(80) = Up to 80 characters in 80Al format identifying the
    data
* X(NX) = Vector (length N) of X-values where observations were
    made (independent variable)
* Y(NX) = Vector (length N) of observations
* W(NX) = Vector (length N) of weights for observations
Rl(NKX) = Vector (length N+K) for scratch area
R2(NKX) = Vector (length N+K) for scratch area
RES(NKX) = Vector (length N+K) of residuals from spline fit
            * N= Number of observations
        * NX = Dimension ( }>N\mathrm{ ) of vectors X,Y,W
        * NKX = Dimension (>N+K) of vectors R1,R2,RES
    * T(KX) = Vector (length K+2*MD) of knot locations
```

Variables which appear with an asterisk (*) require input values
from the main program. The subscripts on vectors and matrices
indicate the dimensions which must be assigned in the main program.

Variable names which begin with the letters I, J, K, L, M, or N are of the INTEGER type. The remaining variable names are of the REAL single precision type.

The print parameter IP gives the user a certain amount of control over the amount of information to be printed out. Normally the most suitable value is $I P=1$. A value of $I P=0$ suppresses the printout of the weights, independent variable, observations, predicted values, and residuals. This option may save quite a bit of paper in case there are several hundred observations, but it deprives the user of the chance to visually examine the residuals. A value of IP=2 causes a listing of certain intermediate vectors which are somewhat lengthy and would not normally be of use to the user.

In the interest of minimizing the number of variables needed in the CALL statement, not all of the printed information can be recovered through the passed parameters. Furthermore, three of the variables (X, K, and T) return values different from their input values.

The data points $\left(X_{1}, Y_{1}, W_{1}\right)$ may be input in arbitrary order, as may the knot locations T_{i} and the vector of $Y Y_{i}$ specifying the y-values on the calibration chart.

There are two subroutines which check for consistency among the input parameters. Each inconsistency causes a diagnostic message to be printed. If one or more inconsistencies is detected then the program execution is terminated. Observations outside the knot span are flagged and weighted zero. The number of observations is then reduced by one for each flagged point and a diagnostic is printed. This is not a fatal error unless it reduces the number of degrees of freedom to zero or less.

Although this package can handle splines of any degree up to 19 it was primarily intended for splines of lower degree, i.e., linear, quadratic, or cubic. Test runs on sets of both real and axtificial data have given valid results up to about degree 9. Beyond that the limitation of single precision arithmetic on the 36-bit NBS central computer begins to cause roundoff errors that invalidate the results. The user should exercise caution when fitting the higher degree splines. If the user wants to change some of the continuity conditions at a given knot he may do so by duplicating that knot in the knot vector which is passed to subroutine SPLEEN. If a knot appears M times in the fitting of a spline of degree N then the functional value and the first $\mathrm{N}-\mathrm{M}$ dexivatives of the function will be continuous at that knot. If $M=N+1$, neither the function nor its derivatives are required to be continuous.

The package may be applied to both monotone increasing and decreasing calibration curves.
5. Summary and Discussion.

An approach to calibration curves and their uncertainty bands has been presented, complete with a FORTRAN program to perform the required calculations. An example involving a large process tank has been used to illustrate the approach and the program. The results include not only the curve for estimating volume from measured pressure, but also valid uncertainty limits for repeated applications of the calibration curve obtained.

The interval estimates of volume comprise two parts: a long-term component which changes only at recalibration, and a random component.

The contribution due to the long-term component may be estimated in large scale calibration experiments by the volume interval estimate obtained when $\alpha=1$. Similarly, the contribution due to the random component may be estimated by the volume interval estimate obtained when $\delta=1$. When the calibration experiment is of a more modest size involving less than 100 data points the above component estimates may not be realistic. However a more comprehensive treatment for combining interval estimates (and hence their components) obtained from a calibration curve is under development by C. Spiegelman and K. Eberhardt [9]. The results of a calibration will be used repeatedly, usually without any further opportunity to verify their correctness, until the next calibration. Therefore it is important that the measurement system be under control. In the work reported here, the run-to-run differences observed in the mock-up area were due to a known source (the small diameter of the tubing), and could be corrected. If any anomalous behavior is observed which cannot be satisfactorily explained, then of course the entire statistical analysis must be approached with caution.

Little has been written about the design of calibration experiments - i.e., the selection of volumes at which pressure is to be measured, the number of measurements to be taken at each volume, and the arrangement of these measurement points into a sequence of runs. One solution to this question has been achieved by Spiegelman and Studden, and will be published in the NBS Journal of Research [10]. In general, later runs will concentrate on certain sections of a tank, but it is good practice to ensure that at least two runs cover each section, and that several runs cover the whole tank. If this precaution is not taken, there might
be very little cross-validation between runs.

Certain caveats ought to be mentioned here. The program under discussion assumes that the knot locations are known, and that the model is correct. Consequences of fallure of these assumptions could be severe. With respect to the knot locations, careful inspection of the residual plots will sometimes indicate discrepancies. These may be small; however, it is important to realize that such regions represent systematic deviations, and could be used (at least in theory) to cover the diversion of material. An approach to the problem involving unknown knot locations is being pursued at this writing.

Unlike a simple linear regression, where the inclusion of a superfluous higher-order term generally causes no major trouble (the fitted coefficient turns out insignificantly small, and the residual mean square increases minimally), choosing a higher-order model when fitting smooth splines can result in a very much worse fit. This is because of the smoothing restrictions, which greatly limit the freedom of the fitting procedure. (Imagine that the true model consists of two stralght lines meeting at a point. If one chooses to fit a quadratic spline, then one is insisting on having two quadratic curves which meet at the proper x-value, and which have the same slope at that point. Thus the slope at that point is probably going to be some value between the two straight-line slopes, and the fit cannot be accurate.) One way around this difficulty is to fit piecewise polynomials (i.e., do not require smoothness), and investigate the appropriate degree from these fits. However, it is much better to know the situation well enough to choose the correct model from physical considerations.

A technique that the authors have found useful is to run the program described here with the degree of the fit set equal to zero. The result is to fit a step function to the data, and to produce a plot of the residuals from that fit; for the Example of this paper, that plot is reproduced as Figure 10 . It can be seen that the residuals look as linear as a printer plot can look. Therefore, a first-degree (linear) spline fit is the proper choice. If in some segment the relationship were not linear, this plot should show it. The plot also gives some idea of the spread of points across the intervals, though of course nearduplicate points will plot as one because it is a discrete printer plot.

Note that the continuity restrictions can be relaxed when using the program under consideration, by simply duplicating the knots. See Section 4 for details.

As stated in Section 4, a constant c must be input by the user. In order to obtain this constant from tables 1 and 2 in Scheffé (1973) for $1 \leqslant p \leqslant 10$ the user must have calculated the standard deviation, SD, for $p(v)$ in the complete region of calibration. The smallest and largest values the $S D(p(v)) / \sigma$ over the complete calibration region are used as input for the Scheffé tables. For $k>10$ Scheffé gives a mathematical algorithm for finding c, and states that for very large (asymptotic) values of $n-k, c=1$. (Here n is the number of observations, and k is the number of B-spline coefficients.) If the reader does not wish to do a Scheffé table 1 or table 2 lookup, the following table gives approximate and generally larger values for this constant.

Approximate c values for $1 \leqslant k \leqslant 10$			
$\mathrm{n}-\mathrm{k}$	$60-119$	$120-149$	$150+$
c	1.10	1.05	1.00

Appendix 2.

Program Listing.

The subroutines which make up the spline-fitting package follow, in alphabetical order.

CPR*NS (1). BCHFAC(2)

CPR＊NS（1）．BCHSLV（1）

， N ©0nTSHO日G 90n TSHンg BCBSLV07
BCESLVOB O 오웅 N 2萢嘏臭分
x W FOR X
HE BANDED（SYM
THE SUBROUTIN

$$
\begin{aligned}
& \text { 3NDMX, NBANDS, NROW, B) } \\
& \text { TO SPLINES BY C. DE BOOR }
\end{aligned}
$$

CONTAINING THE SOLUTION

B．．．．．THE VECTOR OF LENGTH N R O O W CONTAINING THE RIGHT SIDE．
W．．．．．CONTAINS THE CHOLESKY FACTORIZATION FOR C ，AS OUTPUT FROM
SUBROUTINE BCHFAC（QUO VIDE）． CONTAINING THE RIGHT SIDE．

BCHSL2
BCHSL29
BCESLV30
品品

$$
x
$$ CTED IJUZZ N N

2ZスATSHD
N
No
N

INTEGER NBNDMX，NBANDS，NROW，J，JMAX，N，NBNDM1 REAL W（NBNDMX，NROW），B（NROW）	B
	BC
IF（NROW．GT．1）GO TO 10	BC
$\mathrm{B}(1)=\mathrm{B}(1) * \mathrm{~W}(1,1)$	BC
RETURN	

000
ผิตึบ๐
8

$$
\begin{aligned}
& \text { N R } \\
& \text { FOR }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{L}=\mathrm{J}+\mathrm{N} \\
& \mathrm{~B}(\mathrm{~N})=\mathrm{B}(\mathrm{~N})-\mathrm{W}(\mathrm{~J}+1, \mathrm{~N}) * \mathrm{~B}(\mathrm{~L})
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{N}=\mathrm{N}-1 \\
& \text { IF (N.GT.0) CO TO } 40 \\
& \text { RETURN }
\end{aligned}
$$

$$
\underset{6}{9}
$$ BSPLP00 1 サ12 N

0
0
A
0
0 0
0
0
\square
\square
\square 0
0
0
0
0
0 8
0
日
i
© -0
00
0
$\square=1$
60

 CONVERTS THE B－REPRESENTATION T，BCOEF，N，K OF SOME SPLINE INTO ITS C PP－REPRESENTATION BREAK，COEF，L，K C BCOEF．．．．．．B－SPLINE COEFFICIENT SEQUENCE，OF LENGTH N C B．．．．．LENGTH OF BCOEF AND DIMENSION OF SPLINE SPACE SPLINE（K，T） KMX．．．．．．ROW DIMENSION OF ARRAYS COEF AND SCRTCH

$$
\text { C } * * * * * * \text { I N P U T } * * * * * * \quad N+K
$$
 \mathbf{C} PP－REPRESENTATION BREAK，COEF，L，K． \mathbf{C} ．$+* * * * *$ I N P U T

WARNING＿THE RESTRICTION K．LE．
2N
No 웅 추N N 꿍 L N N No 붕 ．罂资 º n年为
 テ留管
发高荡告等 N．算 M

 DERIVATIVES

C
C
C
C
C
C
ahl do Sanodea dnvatar

 LNIOd GNA LAHT THL LV GHLVOTVAG NGHL TYY SIAILVAIHGG I－X LSEIS SLI OF B－SPLINES OF THE APPROPRIATE ORDER AT THAT POINT． PARAMETER KMAX $=20$ modification by．
MARTIN CORDES VERSION
MAR 1980
INTEGER K，L，N，I，J，JP 1，KMJ，LEFT，LSOFAR
BREAK（L＋1），COEF（K，L），T（N＋K） ADDITIONAL ARGUNENTS． RENT FORTRAN
BREAK COEF
SUPERFLUOUS 000 C SUPERFLUOUS ADDITIONAL ARGUNEMTS． $\underset{J=J P 1-1}{\text { DO }} 30$ JP $1=2, K$

FKMUJ＝FLOAT（ KMJ ）
FKMJ $30 \quad \mathrm{I}=1$ ，KMJ
M2 $=M 1-K M J$
$D I F F=T(M 1)-T(M 2)$
DIFF＝T（M1）－T（M2）
IF（DIFF．GT．0．）
 0
0
0
0
0
0
0
0
 Q
Q
a
a
品品

 2
年 190 dTdS 꿍 テ
0
0
0
0
0
0
0号
 ∞
0
0
0
0
0

FOR $\mathrm{J}=\mathrm{O}^{0}$ ，$\ldots \mathrm{K}-1$, FIND THE VALUES AT T（LEFT）OF THE J＋1 B－SPLINES OF ORDER J＋1 WHOSE SUPPORT CONTAINS THE CURRE
KNOT INTERVAL FROM THOSE OF ORDER J（IN BIATX），THEN TO COMPUTE THE（K－J－1）ST DERIVATIVE AT T LLEFT）OF THE GIVE ofort To THOUGHT
 CALL BSPLVB（T， 1,1, T（LEFT），LEFT，BIATX）
COEF（K，LSOFAR）$=\operatorname{SCRTCH}(1, K)$

 $\operatorname{COEF}($ KMJ ，LSOFAR $)=$ SUM

98
CPR*NS(1). BSPLVB(1) E0GATdSG
Z0GATdSa
IOGATdSG

110
D0 120 JC= JCMIN, JCMAX
$L=I M K+J C$

	SUBROUTINE CHECK1 (W, N, NX, K, KX, NKX, NY, NYX, JX, MO, AL, DL, C, NZ)	CHECK101
C	CHECK1 WRITTEN BY CHARLES P. REEVE, STATISTICAL ENGINEERING	CHECK102
C	DIVISION, NATIONAL BUREAU OF STANDARDS, WASHINGTON, D.C.	CHECK104
C	AS PART OF THE FIXED-KNOT SPLINE PACKAGE FOR CALIBRATION	CHECK 105
C	FOR: CHECKING WHETHER INPUT VALUES FALL WITHIN THEIR ALLOWABLE	CHECK106
C	LIMITS	CHECK107
C	SUBPROGRAMS CALLED: -NONE-	CHECK108
C	CURRENT VERSION COMPLETED JUNE 20, 1980	CHECK109
C	DIMENSION W(NX)	CHECK 110
	WRITE FORMATS	CHECK1 12
10	FORMAT ($/ 1 \mathrm{X}, 21 \mathrm{*} * *$ VECTOR LENGTH $\mathrm{N}=, 14,2 \mathrm{X}, 20 \mathrm{HEXCEEDS}$ DIMENS IONED	CHECK1 13
	2,10HVALUE NX =, 14)	CHECK 114
20	FORMAT ($/ 1 \mathrm{X}, 18 \mathrm{H} * * *$ DIMENSION KX $=$, I4, $2 \mathrm{X}, 20 \mathrm{HMUST}$ BE AT LEAST AS	CHECK 115
	2 8HLARGE AS/5X,26HK + $2 *$ (DEGREE OF SPLINE) $=$, 14)	CHECK 116
30	FORMAT ($/ 1 \mathrm{X}, 22 \mathrm{H} * * *$ VECTOR LENGTH NY $=, 14,2 \mathrm{X}$,	CHECK 117
	2 20HEXCEEDS DIMENS IONED, 11 HVALUE NYX = , 14)	CHECK118
40	FORMAT ($/ 1 \mathrm{X}, 17 \mathrm{H} * * *$ WEIGHT NUMBER, I5, $1 \mathrm{X}, 13 \mathrm{IS}$ IS NEGATIVE (, G10.5, 1H)	CHECK119
50	FORMAT (/1X,22H*** DEGREE OF SPLINE (, 13, 12H) EXCEEDS 19)	CHECK 120
60	FORMAT ($/ 1 \mathrm{X}, 28 \mathrm{H} * * *$ NUMBER OF OBSERVATIONS (, I4, 13H) MUST EXCEED,	CHECK 121
	2 15)	CHECK 122
70	FORMAT ($/ 1 \mathrm{X}, 33 \mathrm{H} * * *$ ALPHA LEVEL OF SIGN IF ICANCE (, F6.3,	CHECK123
	2 10H) MUST BE, 21HIN THE INTERVAL (0,11)	CHECK124
80	FORNAT ($/ 1 \mathrm{X}, 33 \mathrm{H} * * *$ DELTA LEVEL OF SIGNIFICANCE (, F6.3,	CHECK 125
	2 10H) MUST BE, $21 H$ IN THE INTERVAL $(0,1])$	CHECK 126
90	FORMAT (/1X, 16H*** CONSTANT C (,F6.3,26H) MUST BE IN THE INTERVAL	CHECK127
	2,11H[0.85, 1.25])	CHECK128
100	FORMAT (//1X, $14,1 \mathrm{X}, 40 \mathrm{HERROR}$ COND ITIONS DETECTED BY SUBROUTINE	CHECK 129
	$28 \mathrm{H} * \mathrm{CHECK} 1 * / 6 \mathrm{X}, 38 \mathrm{H} * * * * *$ PROGRAM EXECUTION TERMINATED $* * * * / /)$	CHECK130
110	FORMAT (/1X,47H*** MAXIMUM ORDER OF SPLINES JX MUST BE 20 (NOT, I3,	CHECK131
	2 1H))	CHECK 132
120	FORMAT (/5X, 42HSEE APPENDIX 1 OF THE FOLLOWING NBS PAPER://5X,	CEECK133
	2 36HA NEW APPROACH TO VOLUME CALIBRATION/5X,	CHECK134
	351 HBY J. A. LECHNER, C. P. REEVE, AND C. H. SPIEGELMAN/)	CHECK135
130	FORMAT ($/ 1 \mathrm{X}, 23 \mathrm{H} * * *$ VECTOR LENGTH $\mathrm{N}+\mathrm{K}=$, I4, 2X,	CHECK 136
	2 20HEXCEEDS DIMENS IONED, 11 HVALUE NKX =, 14)	CHECK 137
	INITIALIZE COUNT FOR ERROR CONDITIONS	CHECK 138
	KOUNT=0	CHECK 139
C-	INITIALIZE NUMBER OF ZERO NEIGHTS	CHECK 140
	$\mathrm{NZ}=0$	CHECK141
C---	CHECK FOR VECTOR LENGTHS EXCEEDING DIMENSIONED VALUES	CHECK 142
	IF (N.LE.NX) GO TO 140	CHECK143
	KOUNT $=$ KOUNT+1	CHECK144
	WRITE (6,10) N, NX	CHECK 145
140	NK= $\mathrm{N}+\mathrm{K}$	CHECK 146
	IF (NK. LE. NKX) GO TO 150	CHECK 147
	KOUNT $=$ ROUNT+1	CHECK148
	WRITE (6,130$)$ NK, NKX	CHECK 149
150	$\mathrm{K} 2=\mathrm{K}+2 *$ ($\mathrm{MO}-1)$	CHECK 150
	IF (K2.LE. KX) CO TO 160	CHECK 151
	KOUNT= KOUNT+1	CHECK 152
	WRITE $(6,20) \mathrm{KX}, \mathrm{K} 2$	CHECK 153
160	IF (NY.LE.NYX) GO TO 170	CHECK154
	KOUNT=KOUNT+1	CHECK 155
	WRITE (6,30) NY, NYX	CHECK 156
C---	CHECK FOR NEGATIVE AND ZERO WEIGHTS	CHECK 157

[^3]| SUBROUTINE CHECK2 ($\mathrm{T}, \mathrm{K}, \mathrm{KX}, \mathrm{X}, \mathrm{W}, \mathrm{N}, \mathrm{NX}, \mathrm{NZ}, \mathrm{MO}$) | | CHECK2O |
| :---: | :---: | :---: |
| | CHECK2 WRITTEN BY Charles P. REEVE, STATISTICAL ENG INEERIN | CHECK203 |
| c | division, national bureau of standards, washington, d.c. | CHECK204 |
| C | as part of the fixed-knot spline package for calibration | CHECK205 |
| C | FOR: CHECKING FOR OBSERVATIONS WHICH LIE OUTSIDE THE SEQUENCE OF | CHECK206 |
| c | KNOTS. THE WEIGHTS OF SUCH OBSERVATIONS ARE SET TO ZERO. | CHECK207 |
| c | | CHECK208 |
| | | CHECK209 |
| 10 | | CHECK |
| | | CHECK2 12 |
| | | |
| 20 | | |
| | 2,32HDEGREES OF FREEDOM FOR RESIDUALS//6X, 13H*****PROGRAM | CHECK215 |
| | 3 3 25 HEXECUTION TERMINATED*****//) | Checke 1 |
| 30 | FORMAT ($/ 1 \mathrm{X}, 15 \mathrm{H} * * *$ VALUE OF X ($14,14 \mathrm{H}$) CHANGED FROM, G14.8, | |
| | 2 c14.8/5X,45HSO that it will be less than the largest knot) | CHECK21 |
| | D0 $60 \mathrm{I}=1, \mathrm{~N}$ | CHECK |
| | IF ($\mathrm{N}(\mathrm{I}$).EQ.0.0) CO T0 60 | CHECK220 |
| | IF (X (I).LT. T(1)) G0 T0 50 | CHECK221 |
| | IF ($\mathrm{X}(\mathrm{I})-\mathrm{T}(\mathrm{K})$) 60,40,50 | CHECK222 |
| 40 | $\mathrm{XOLD}=\mathrm{X}(\mathrm{I})$ | CHECK223 |
| | X (I) = XOLD-ABS (XOLD $) * 0.0000001$ | CHECK224 |
| | WRITE (6,30) I, XOLD, X ($)$ | CHECK225 |
| | G0 T0 60 | CHECK226 |
| 50 | W (I$)=0.0$ | CHECK227 |
| | $\mathrm{NZ}=\mathrm{NZ}+1$ | CHECK228 |
| | WRITE (6,10) I, X ($)$, I | CHECK229 |
| 60 | CONTINUE | CHECK230 |
| | K2 $=\mathrm{K}+\mathrm{MO}-2+\mathrm{NZ}$ | CHECK231 |
| | IF (N.GT. K2) RETURN | CHECK232 |
| | WRITE (6,20) | CHECK233 |
| | STOP | CHECK234 CHECK235 |

X SHOULD BE NON-NEGATIVE.
THE INTEGER NUMBER OF DEGREES

> OUTPUT--THE SINGLE PREC ISION CUMULATIVE D ISTRIBUTION FUNCTION VALUE CDF FOR THE CHI-SQUARED DISTRIBUTION WITH DEGREES OF FREEDOM PARAMETER = NU. PRINTING--NONE UNLESS AN INPUT ARGUNENT ERROR CONDITION EXISTS. RESTRICTIONS--X SHOULD BE NON-NEGATIVE. OTHER DATAPAC SU SHOULD BE A POSITIVE INTEGER VARIABLE. FORTRAN LIBRARY SUBROUTINES NEEDED--NORCDF. MODE OF INTERNAL OPERATINES NEEDED--DSQRT, DEXP. LANGUAGE--ANSI FORTRAN. REFERENCES--NOUBLE PRECIS ION. SERIONAL BUREAU OF STANDARDS APPLIED MATHEMATICS SE, 1964, PAGE 941, FORMULAE 26.4.4 AND 26.4 .5.
--NU

OUTPUT ARGUMENTS--CDF

4
SUBROUTINE CHSCDF (X, NU, CDF)
PURPOSE--THIS SUBROUTINE COMPUTES THE CUMULATIVE DISTRIBUTION

6
8
®ロuvuvou
$\stackrel{\ominus}{-}$
000000 \qquad - $\stackrel{\oplus}{9}$

- +

150

$\stackrel{\otimes}{-}$

> DFACT $=4.5$ D $0 *$ DNU
> $\mathrm{U}=(($ (DX $/ \mathrm{DNU}) * * \mathrm{DPOWER})-1.0 \mathrm{D} 0+(1.0 \mathrm{D} 0 / \mathrm{DFACT})) * \mathrm{DSQRT}($ DFACT) CALL NOR

> CDF $=$ CDF
RETURN

CONTINUE
DW= DSQRT(DX-DNU-DNU*DLOG(DX/DNU))

 Q日
CPR*NS(1).CESSPPF(1)
PURPOSE--THIS SUBROUTINE COMPUTES THE PERCENT POINT
FUNCTION VALUE FOR THE CHI-SQUARED DISTRIBUTION
WITH INTEGER DEGREES OF FREEDOM PARAMETER = NU.
THE CHI-SQUARED DISTRIBUTION USED
HEREIN IS DEF INED FOR ALL NON-NEGATIVE X,
AND ITS PROBABILITY DENS ITY FUNCTION IS GIVEN
IN REFERENCES 2, 3, AND 4 BELOW.
NOTE THAT THE PERCENT POINT FUNCTION OF A DISTRIBUTION
IS IDENTICALIY THE SAME AS THE INVERSE CUMULATIVE
PURPOSE--THIS SUBROUTINE COMPUTES THE PERCENT POINT
FUNCTION VALUE FOR THE CHI-SQUARED DISTRIBUTION
WITH INTEGER DEGREES OF FREEDOM PARAMETER = NU.
THE CHI-SQUARED DISTRIBUTION USED
HEREIN IS DEF INED FOR ALL NON-NEGATIVE X,
AND ITS PROBABILITY DENSITY FUNCTION IS GIVEN
IN REFERENCES 2, 3, AND 4 BELOW.
NOTE THAT THE PERCENT POINT FUNGTION OF A DISTRIBUTION
IS IDENTICALLY THE SAME AS THE INVERSE CUMULATIVE
PURPOSE--THIS SUBROUTINE COMPUTES THE PERCENT POINT
FUNCTION VALUE FOR THE CHI-SQUARED DISTRIBUTION
WITH INTEGER DEGREES OF FREEDOM PARAMETER = NU.
THE CHI-SQUARED DISTRIBUTION USED
HEREIN IS DEF INED FOR ALL NON-NEGATIVE X,
AND ITS PROBABILITY DENSITY FUNCTION IS GIVEN
IN REFERENCES 2, 3, AND 4 BELOW.
NOTE THAT THE PERCENT POINT FUNGTION OF A DISTRIBUTION
IS IDENTICALLY THE SAME AS THE INVERSE CUMULATIVE
PURPOSE--THIS SUBROUTINE COMPUTES THE PERCENT POINT
FUNCTION VALUE FOR THE CHI-SQUARED DISTRIBUTION
WITH INTEGER DEGREES OF FREEDOM PARAMETER = NU.
THE CHI-SQUARED DISTRIBUTION USED
HEREIN IS DEF INED FOR ALL NON-NEGATIVE X,
AND ITS PROBABILITY DENSITY FUNCTION IS GIVEN
IN REFERENCES 2, 3, AND 4 BELOW.
NOTE THAT THE PERCENT POINT FUNGTION OF A DISTRIBUTION
IS IDENTICALLY THE SAME AS THE INVERSE CUMULATIVE
PURPOSE--THIS SUBROUTINE COMPUTES THE PERCENT POINT
FUNCTION VALUE FOR THE CHI-SQUARED DISTRIBUTION
WITH INTEGER DEGREES OF FREEDOM PARAMETER = NU.
THE CHI-SQUARED DISTRIBUTION USED
HEREIN IS DEF INED FOR ALL NON-NEGATIVE X,
AND ITS PROBABILITY DENSITY FUNCTION IS GIVEN
IN REFERENCES 2, 3, AND 4 BELOW.
NOTE THAT THE PERCENT POINT FUNGTION OF A DISTRIBUTION
IS IDENTICALLY THE SAME AS THE INVERSE CUMULATIVE
PURPOSE--THIS SUBROUTINE COMPUTES THE PERCENT POINT
FUNCTION VALUE FOR THE CHI-SQUARED DISTRIBUTION
WITH INTEGER DEGREES OF FREEDOM PARAMETER = NU.
THE CHI-SQUARED DISTRIBUTION USED
HEREIN IS DEF INED FOR ALL NON-NEGATIVE X,
AND ITS PROBABILITY DENSITY FUNCTION IS GIVEN
IN REFERENCES 2, 3, AND 4 BELOW.
NOTE THAT THE PERCENT POINT FUNGTION OF A DISTRIBUTION
IS IDENTICALLY THE SAME AS THE INVERSE CUMULATIVE
NOTE THAT THE PERCENT POINT FUNCTION OF A DISTRIBUTION
IS IDENTICALLY THE SAME AS THE INVERSE CUMULATIVE
DISTRIBUTION FUNCTION OF THE DISTRIBUTION.
ARGUMENTS--P $=$ THE SINGLE PRECISION VALUE
PURPOSE--THIS SUBROUTINE COMPUTES THE PERCENT POINT
FUNCTION VALUE FOR THE CHI-SQUARED DISTRIBUTION
WITH INTEGER DEGREES OF FREEDOM PARAMETER = NU.
THE CHI-SQUARED DISTRIBUTION USED
HEREIN IS DEF INED FOR ALL NON-NEGATIVE X,
AND ITS PROBABILITY DENSITY FUNCTION IS GIVEN
IN REFERENCES 2, 3, AND 4 BELOW.
NOTE THAT THE PERCENT POINT FUNGTION OF A DISTRIBUTION
IS IDENTICALLY THE SAME AS THE INVERSE CUMULATIVE
(BETWEEN 0.0 (INCLUS I VELY)
AND 1.0 (EXCLUSIVELY))
AND 1.6 (EXCLUSIVELY))
AT WHICH THE PERCENT PO
AT WHICH THE PERCENT POINT
FUNCTION IS TO BE EVALUATED.
$=$ FUNCTION INTEGER
OF FREEDOM.
= THE SINGLE PRECISION PERCENT
= THE SINGLE PRECISION.
OUTPUT--THE SINGLE PRECISION PERCENT POINT FUNCTION
OUTPUT ARGUNENTS--PPF
--NU
WITH DEGREES OF FREEDOM PARAMETER = NU.
PRINTING--NONE UNLESS AN INPUT ARGUNENT ERROR CONDITION EXISTS.
PESTRICTIONS--NU SHOULD BE A POSITIVE INTEGER VARIABLE. ARD 1.0 (EXCLUS IVELY).

> OTHER DATAPAC SUBROUTINES NEEDED--NONE. FORTR LAN LIBRARY SUBROUTINES NEEDED--DEXP, DLOG. MODE OF IFTERNAL OPERATIONS--DOUBLE PRECISION. LANGUAGE--ANSI FORTRAN. ACCURACY--(ON THE UNIVAC 1108 , EXEC 8 SYSTEM AT IBS) COMPARED TO THE KNOWN NU $=2$ (EXPONENTIAL) RESULTS, AGREEMENT WAS HAD OUT TO 6 SIGNIFICANT $P=.999$. FOR $P=.95$ AND SMALLER, THE AGREEMENT WAS (NOTE THAT THE TABULATED VALUES GIVEN IN THE WILK, ARE IN ERROR FOR AT LEAST THE GAMMA $=1$ CASE-THE WORST DETECTED ERROR WAS AGREEMENT TO ONLY 3
TABLE)
ron $=.999$.
PLOTS FOR THE GAMMA DISTRIBUTION',
ESPECIALLY PAGES 3-5.
Especially pages 3-5
-NATIONAL BUREAU OF STANDARDS APPLIED MATHEMATICS
AND PAGES' 940-943
--JOHNSON AND KOTZ, CONTINUOUS UNIVARIATE
-HASTINGS AND PEACOCK, STATISTICAL
DISTRIBUTIONS--A HANDBOOK FOR
REFERENCES

\square
DP=P
DNU = NU
DGAMMA= DNU/2.0DO
 NBS APPLIED HATHENATICS SERIDS RUNGRANCD. GAMMA FUNCTON NEED BE CALCULATMD ONLY ONCE. IT IS USED IN THE CALCULATION OF THIS CDY BASED ON TEE TENTATIVE VALUE DF TEE PPF IN IHE THERATION

NOW ITPRATE BY BISDCTION UNTIL THE DESIPM AOMDENT IS ABEINTEX. ILOOP=2
ILOOP=2 XUPPER = XMAX
ICOUNT =
$\begin{array}{lllll}\text { GO TO } 180 & & \\ \text { IF (PCALC. EQ. DP) } & \text { GO TO } 170 \\ \text { IF (PCALC.GT.DP) } & \text { GO TO } & 150\end{array}$

-
$\theta^{\circ} \quad \stackrel{ }{-}$
©
$\stackrel{\theta}{\infty}$
$\stackrel{18}{2}$

160	```XDEL= XMID-XLOWER IF (XDEL.LT.0.0D0) XDEL=-XDEL ICOUNT= ICOUNT+1 IF (XDEL.LT.0.0000000001D0.OR. ICOUNT.GT.100) GO TO 170 GO TO 130```
170	PPF=2.0D0*XMID
	RETURN
$\stackrel{\mathrm{C}}{\mathrm{C} * ~}$	
	THIS SECTION BELIOW IS LOGICALLY SEPARATE FROM THE ABOVE.
c	this section computes a cdi value for any given tentative
C	PERCENT POINT X VALUE AS defined in either of the 2
c	ItERATION LOOPS IN THE ABOVE CODE.
C	
$\stackrel{\mathbf{c}}{\mathbf{C}}$	COMPUTE T-SUB-Q as defined on page 4 of the wilk, gnanadesikan, and huyett reference
$\begin{aligned} & \mathrm{C} \\ & 180 \end{aligned}$	
	SUM $=1.0 \mathrm{DO}$ /DGAMMA
	TERM $=1.0 \mathrm{D} 0 /$ DGAMMA
	CUT1= DX-DGAMMA
	CUT2=DX*10000000000.0D0
	D0 $190 \mathrm{~J}=1, \mathrm{MAXIT}$
	A $\mathrm{J}=\mathrm{J}$
	TERM $=$ DX $*$ TERM (${ }^{\text {dGAMMA }}$ (AJ)
	SUM=SUM+TERM
	CUTOFF $=$ CUT1+(CUT2*TERM SUM
	IF (AJ.GT.CUTOFF) G0 T0 200
190	CONTINUE
	WRITE (IPR,210) MAXIT
	WRITE (IPR, 220) P
	WRITE (IPR, 230) NU
	WRITE (IPR, 240)
	PPF=0.0
	RETURN
$\begin{aligned} & \mathrm{C} \\ & 200 \end{aligned}$	T=SUM
	PCALC $=($ DX**DGAMMA $) *($ DEXP $(-D X)) * T / G$
	IF (ILOOP.EQ.1) GO T0 110
	co TO 140
${ }_{210}$	
	FORMAT ($1 \mathrm{H}, 48 \mathrm{H} * * * * *$ ERROR IN INTERNAL OPERATIONS IN THE CESPPF 245 HSUBROUTINE--THE NUMBER OF ITERATIONS EXCEEDS , I7)
220	FORMAT ($1 \mathrm{H}, 33 \mathrm{H}$ THE INPUT VALUE OF P IS , E15.8)
230	FORMAT ($1 \mathrm{H}, 33 \mathrm{H}$ THE INPUT VALUE OF NU IS , 18)
${ }_{\mathrm{C}}^{240}$	FORMAT (1H,48H THE OUTPUT VALUE OF PPF HAS BEEN SET TO 0.0)
	End

SUBROUTINE CIYFIN (XF, YF , YFSD, NF, RSD , AL, DL, C, NRSD, NB, YFL, YFU, IP)

CPR*NS(1). $\operatorname{FCDF}(1)$
NOILAGIYLSIG GAILF'TNKOD GHL SHLODWOD TNILAOYGOS SIHL--GSOdHOd FUNCTION VALUE FOR THE F DISTM
 FREEDOM

PRINTING--NONE UNLESS AN INPUT ARGUMENT ERROR CONDITION EXISTS. RESTRICTIONS--X SHOULD BE NON-NEGATIVE. --NU1 SHOULD BE A POSITIVE INTEGER VARIABLE.
--NU2 SHOULD BE A POSITIVE INTEGER VARIABLE.

OTHER DATAPAC SUBROUTINES NEEDED--NORCDF, CHSCDF. FORTRAN LIBRARY SUBROUTINES NEEDED--DSQRT, DATAN.

[^4]SUBROUTINE FCDF (X,NU1, NU2, CDF) \begin{tabular}{l}
90

0.

8

0

\hline 1

9

N

0

0

0

\hline \multirow{2}{2}{}

N

0

0

0

5

\hline

N

N

8

0

\hline 1
\end{tabular}

 \begin{tabular}{l}
0

0

8

9

\hline 1

 1800 aIG 8800 40 8800 HaO

10

90

98

$=1$

\hline 10
\end{tabular} 9800 ajo 8800 － 280

2800 IID DOUBLE PRECISION DX，PI，ANU1，ANU2，Z，SUM，TERM，AI，COEF1，COEF2，ARG DOUBLE PRECISION COEF DOUBLE PRECISION THETA，S SINTH，COSTH，A，B DOUBLE PRECISION DSQRT，DATAN
DOUBLE PRECISION DFACT1，DFACT2，DNUM，DDEN DOUBLE PRECISION DPOW1，DPOW2 DOUBLE PRECISION DNU1，DNU2

9265358979D0／ T2 $/ 100,1000 /$
DATA DPOW1，DPOW2 $10.33333333333333 \mathrm{D} 0,0.66666666666667 \mathrm{D} 0 /$

IPR＝6

 FORMAT（1H ，96H＊＊＊＊＊NON－FATAL DIAGNOSTIC CDF $=0.0$
RETURN
WRITE（IPR，70）NU2
$\begin{array}{lllll}\text { IF（NU1．LE．0）} & \text { GO } & \text { TO } & 10 \\ \text { IF } & \text {（NU2．LE．0）} & \text { GO } & \text { TO } & 20 \\ \text {（NF }\end{array}$
$\begin{array}{lll}\text { IF（NU2．LE．0）} & \text { GO TO } \\ \text { IF（X．LT．0．0）} & \text { GO TO }\end{array}$
GO TO 40
NRITE（IPR，60）
WRITE（IPR，90）NU1
CDF $=0.0$
WRITE（IPR，50）
WRITE（IPR，80）
CDF＝0．0
6600．403
-0
8
0
H
0

FORMAT（1H，91H＊＊＊＊＊FATAL ERROR－－THE SECOND INPUT ARGUMENT TO THEFCDF0094
2 FCDF SUBROUTINE IS NON－POSITIVE＊＊＊＊＊）
FCDF0095

98
9
8
1
0

8
-1
90
0
0
0
0
 20
0
0
0
0
0

∞
90
0
0
1
0

0
0
0
0
0 0
0
0
0
0
0 こ
 $\stackrel{15}{=}$ FORMAT（ $1 \mathrm{H}, 35 \mathrm{H} * * * * *$ THE VALUE OF THE ARGUMENT IS ，E15．8，6H $* * * * *)$
FORMAT（ $1 \mathrm{H}, 35 \mathrm{H} * * * * *$ THE VALUE OF THE ARGUMENT IS $, \mathrm{IB}, 6 \mathrm{H}$＊＊＊＊＊） 9 수 8

8
i
88

IF X IS NON－POSITIVE，SET CDF $=0.0$ AND RETURN．
IF NU2 IS 5 THROUGH 9 AND X IS MOPE THAN 3000 IF NU2 IS 5 THROUGH 9 AND X IS MORE THAN 3000
STANDARD DEVIATIONS BELOW THE MEAN，
IF NU2 IS 10 OR LARGER AND X IS MORE THAN 150
STANDARD DEVIATIONS BELOW THE MEAN,
SET CDF $=0.0$ AND RETURN. IFTANDARD DEVIATIONS ABOVE THE MEAN, SET CDF $=1.0$ AND RETURN. X IS MORE STANDARD DEVIATIONS ABOVE THE MEAN, SET CDF $=1.0$ AND RETURN.
$\begin{array}{lllll}\text { IF (X.LE.0.0) } & \text { GO TO } & 100 \\ \text { IF (NU2.LE.4) } & \text { GO TO } & 120\end{array}$
IF (X.LE.0.0) G0
IF (NU2. LE.4.) G0
T1=2.0/ANU1
T2=ANU2/(ANU2-2.0)
AMEAN=T2... AMEAN $=T 2$
SD $=$ SORT
ZRATIO $=(X-A M E A N) / S D$
IF (NU2.LT. 10.AND.ZRATIO.LT. -3000.0) GO TO 100 $\begin{array}{lll}\text { IF } \\ \text { IF (NU2.GE. 10. AND. ZRATIO.LT. }-150.0 \text {) GO TO } & 100 \\ \text { IF (NU2.LTT. 10. AND. ZRATIO.GT. } 3000.0 \text {) GO TO } 110\end{array}$ IF (NU2.LT, 10. AND. ZRATIO. GT. 3000.0) GO TO 110
IF (INU2.GE. 10.AND. ZRATIO.GT. 150.0) GO TO 110 GO TO 120
RDF $=0.0$
RETURN
$\mathrm{CDF}=1.0$
RETURN
CONTINUE

DISTINGUISH BETWEEN 6 SEPARATE REGIONS
 OF THE (NU1, NU2) SPACE. BRANCH TO THE PROPER CO DEPENDING ON THE REGION.
 NUCUT1 HAS THE VALUE 100. NUCUT2 HAS THE VALUE 1000

IBRAN=
FORMAT (1H,42H*****INTERNAL ERROR IN FCDF SUBROUTINE--,
2 46HIMPOSSIBLE BRANCH CONDITION AT BRANCH POINT $=$, I8) RETURN
TREAT THE CASE WHEN NU 1 AND NU2
TREAT THE CASE WHEN NU 1 AND
ARE BOTH SMALL OR MODERATE
ARE BOTH SMALL OR MODERATE
(THAT IS, BOTH ARE SMALLER THAN 1000)
METHOD UTILIZED--EXACT FINITE SUM
(SEE AMS 55, PAGE 946, FORMULAE 26
(SEE AMS 55, PAGE 946, FORMULAE 26.6.4, 26.6.5,
AND 26.6.8).
-
CONTINUE
$\mathrm{Z}=$ ANU2 $/$ (ANU2+ANU $1 * \mathrm{DX})$
IFLAG $=$ NU $1-2 *($ NU $1 / 2)$
IFLAG2 $=$ NU2-2*
IF (IFLAG1.EQ.0)
IF
IF
GO TO
(IFLAG2.EQ.0)
GO
TO
DO THE NU1 EVEN AND NU2 EVEN OR ODD CASE

9
ค)
ค
ำ 웅

- คั゚

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
$\mathbf{3 1 0}$

DNUM $=((1.0 \mathrm{DO} 0-$ DFACT2 $) *($ DX**DPOW1) $)-(1.0 \mathrm{D0} 0-$ DFACT1)
DDEN $=\mathrm{DSQRT}(($ DFACT2*(DX**DPOW2)) +DFACT1) DDEN = DSQRT (DFACT2* (DX**DPOW2)) +DFACT1) $\mathrm{U}=\mathrm{DNUM}$ DDDEN
CALL NORCDF CDF = GCDF
RETURN TREAT THE CASE WHEN NU1 IS SMALL
AND NU2 IS LARGE
(THAT IS, WHEN NU 1 IS SMALLER THAN 100,
AND NU2 IS EQUAL TO OR LARGER THAN 1000).
METHOD UTILIZED--SHEFFE-TUKEY APPROXIMATION
(SEE JOHNSON AND KOTZ, VOLUME 2, PAGE 84, THIRD FORMULA).

FPPF0001

都

- No

N
钲

10

 N NMボ

感

告
 范 N 690ddVZ N N N

 additional routines required.
BSPLVB BCHFAC BCHSLV MODIFICATION BY.

> MARTIN CORDES CENTER FOR APLIED MATHEMATICS, NBS VERS ION 1 OCT 1979
REAL BIATX(20)
REAL DW INTEGER I, J, JJ, LEFT, LEFTMK, LL, MM
FORMAT

$(5 \mathrm{X}, 5 \mathrm{H} \lll \lll 14,1 \mathrm{~K}, 22 \mathrm{HB}-$ SPLINE COEFFICIENTS D0 $20 \mathrm{~J}=1, \mathrm{~N}$ D0 $20 \mathrm{I}=1, \mathrm{~K}$ $\mathrm{Q}(\mathrm{I}, \mathrm{J})=0$. DO $50 \mathrm{LL}=1$, NTAU | M1 |
| :--- |
| 1 | 0

[^5]

NORCDF 01
NORCDF02
NORCDF03 410
0
5
0
0
0
0
0 NORCDF06 NORCDF06
 0
2
2
2
0 ＝ Nの
 19

 の으N N N

No
FW

品

28
96
5
0
0
0
0
0
0
0
0
10
0
0
0
0
0
0
0
0
0
0
M

CPR＊NS（1）．NORCDF（1）

（HOJ＇X）HODYON GNIJnOYGOS

PURPOSE－－THIS SUBROUTINE COMPUTES THE CUMULATIVE DISTRIBUTION FUNCTION VALUE FOR THE NORMAL（GAUSSIAN） FUNCTION VALUE FOR THE NORMAL（GAUSSIAN）
DISTRIBUTION WITH MEAN $=0$ AND STANDARD DEVIATION＝
THIS DISTRIBUTION IS DEFINED FOR ALL X AND HAS THE PROBABILITY DENSITY FUNCTION $\underset{\operatorname{FL}(X)}{ }=(1 / \operatorname{SQRT}(2 * P I)) * E X P(-X * X / 2)$. THE SINGLE PRECISION VALUE AT
WHICH THE CUMULATIVE DISTRIBUTION FUNCTION IS TO BE EVALUATED． THE SINGLE PRECISION CUMULATIVE
DISTRIBUTION FUNCTION VALUE． ON CUMULATIVE DISTRIBUTION

$$
\begin{aligned}
& \text { INPUT ARGUMENTS--X } \\
& \text { OUTPUT ARGUMENTS--CDF } \\
& \text { OUTPUT--THE SINGLE PRECISIC } \\
& \text { FRINTING-NONE, } \\
& \text { PRINTRICTIONS--NONE. } \\
& \text { OTHER DATAPAC SUBROUTINES } \\
& \text { FORTRAN LIBRARY SUBROUTINES } \\
& \text { MODE OF INTERNAL OPERATIONS } \\
& \text { LANGUAGE--ANSI FORTRAN. }
\end{aligned}
$$

RESTRICTIONS－－NONE．
FORTRAN LIBRARY SUBROUTINES NEEDED－－EXP．
REFERENCES－－NATIONAL BUREAU OF STANDARDS APPLIED MATHEMATICS

WRITTEN BY－－JANES J．FILLIBEN
STATISTICAL ENG INEERING LABORATORY（205．03）
NATIONAL BUREAU OF STANDARDS
WASHINGTON，D．C． 20234
PHONE： $301-921-2315$.
ORIGINAL VERSION－－JUNE 1972.
UPDATED
UPDATED
DATA B1，B2，B3，B4，B5 ，P $/ \underset{2}{ } \quad .319381530,-0.356563782,1.781477937$,
$2-1.821255978,1.330274429, .2316419 /$
IPR＝6
CHECK THE INPUT ARGUMENTS FOR ERRORS． NO INPUT ARGUNENT ERRORS POSSIBLE FOR THIS DISTRIBUTION．
$\mathrm{Z}=\mathrm{X}$
IF
（X．LT．0．0） $\mathrm{Z}=-\mathrm{Z}$ $\mathrm{T}=1.0 /(1.0+\mathrm{P} * \mathrm{Z})$ $24 * \mathrm{~T} * * 4+\mathrm{B} 5 * \mathrm{~T} * * 5) \mathrm{t} 28040143$
IF（X．LT．0．0）CDF $=1.0-\mathrm{CDF}$ $\underset{\text { END }}{\text { RETURN }}$
0

 , IPLOTC(30)
$1 \mathrm{HB}, 1 \mathrm{HC}$,
$\mathrm{HR}, 1 \mathrm{HS}$,

- -

$\left.\begin{array}{l}\text { IPR=6 } \\ \text { CUTOFF } \\ \text { (} \\ \text { (10.0 }\end{array}\right)$
CHECK THE INPUT ARGUMICNTS FOR ERRORS

© IF (ITYPE.EQ. 1) WRITE (IPR,520) IF (N.LT.1) GO
G0 TO 20 GRITE (IPR, 200)
WRITE (IPR,210) WRITE (IPR,260) WRITE (IPR, 200) RETURN CONTINUE

GRITE 40
(IPR, 200)
WRITE (IPR, 200) WRITE (IPR, 210) WRITE (IPR,230)
> $(A L P H A 1(L), L=1,6),(S B N A M E(L), L=1,6)$
HOLD
HOLD $=Y(1)$
$D O 50 \quad I=2, N$ ONTINUE WRITE (IPR, 200)
滣 WRITE (IPR, 200)

RETURN CONTINUE
HOLD=X (1)
DO 70 I=2,N
IF (X(I). NE. HOLD) GO TO 80
CONTINUE
WRITE (IPR,200) CONTINUE
HOLD=X (1)
DO 70 I=2,N
IF (X(I). NE. HOLD) GO TO 80
CONTINUE
WRITE (IPR,200) CONTINUE
HOLD=X (1)
DO 70 I=2,N
IF (X(I). NE. HOLD) GO TO 80
CONTINUE
WRITE (IPR,200) WRITE (IPR,230) (ALPHA2(L), L= 1, 6), (SBNAME(L) , $\mathrm{L}=1,6$) HOLD WRITE (IPR, 200) RETURN

HOLD=CHAR (1)
HOLD= CHAR (1)
DO $90 \quad \mathrm{I}=2, \mathrm{~N}$
IF (CEAR (I).NE.HOLD) GO TO 100 CONTINUE
t2I0LOTa

ต็"

40 FORMAT ($/ 1 \mathrm{X}, 48 \mathrm{H} * * * * * * *$ PRINTOUT OF RESIDUALS SUPPRESSED $* * * * * * *)$ INITIALIZE SUMMING VARIABLE

SUM $=0.0$
IF (IP.EQ.0)
IF (IP.NE.0) WRITE $(6,40)$
$(6,10)$
COMPUTE PREDICTED VALUES AND RESIDUALS
DO $50 I=1, N$
$X X=X(I)$
YHAT (I) = BVALUE (T, BCOEF , NB, MO, XX, 0)
$\operatorname{RES}(\mathrm{I})=\mathrm{Y}(\mathrm{I})-$ YHAT (I)
$\operatorname{SUM}=\mathrm{SUM}+\mathrm{W}(\mathrm{I}) * \operatorname{RES}(\mathrm{I}) * * 2$
CONTINUE
COMPUTE RES IDUAL STANDARD DEVIATION
RSD = SQRT (SUM FLOAT (NRSD)
50
C---
C--
C---

C---
C---
\cdots
d

$+B 1$
+82
+82＋ E른붕붕会家兒UTE

\qquad
DeVIATION
T（ Q1）
0 T0 90
$W(L), X(L)$
ON
AR
II asuols STO ard deviation of each residual and 뜬虍 붑
：\＆！！：

CPR*NS(1).RSQ(3)


```
SUBROUTINE RSQ (RSD, NRSD, Y, W, N, NX, NNZ)
``` rSQ Written by cearles p. reeve, statistical engineering DIVISION, NATIONAL BUREAU OF STANDARDS, WASHINGTON, D.C. ACKAGE FOR CALIBRATE
COEFFICIENT R SQUARE
DIMENS ION Y(NX), W(NX) -

\(\therefore 8 \quad 9 \quad \stackrel{9}{-}\)

* \(T(K X)=\) VECTOR (LENGTH K+2*MD) OF KNOT LOCATIONS
BCOEF \((\mathrm{KX}\)) \(=\) VECTOR (LENGTH \(\mathrm{K}+\mathrm{MD}-1\)) OF B-SPLINE COEFFICIENTS

* NY = NUMBER OF Y-VALUES FOR WHICH PRECICTED X-VALUES ARE TO BE COMPUTED
* NYX = DIMENSION (\()=\) NY) OF VECTOR YY

SCRTCH \((J X, J X)=\operatorname{MATRIX}(S I Z E[M D+1] X I M D+1])\) FOR SCRATCH AREA * JX \(=\begin{aligned} & \text { DIMENSION OF SQUARE MATRIX SCRTCH AND ROW } \\ & \\ & \text { DIMENSION OF MATRIX } Q=20\end{aligned}\) LPEA LEVEL OF SIGNIFICANCE
 (MOTGG GDNAHGATH TAS) TDNVDIAINDIS SO TANTT VLTGU \(=\) TU *
* \(\mathrm{C}=\) CONSTANT IN THE INTERVAL (0.85,1.25) ASSOCIATED
\begin{tabular}{l}
* \(\begin{array}{l}\text { FOR ABBREVIATED PRINTOUT (NO RES IDUALS) } \\
\text { * } \\
1\end{array}\) FOR FULL PRINTOUT (RESIDUALS, PP REPRESENTATION) \\
\hline
\end{tabular}

* indicates that an input value is required for this variable
NOTE: THE USER IS NOT REQUIRED TO ORDER THE ELEMENTS OF ANY INPUT

REFERENCE: SCHEFFE, HENRY, 'A STATISTICAL THEORY OF CALIBRATION',
THE ANNALS OF STATISTICS, VOLUME 1, NUMBER 1 ,
JANUARY 1973, PP. \(1-37\)
SUBPROGRAMS CALLED: ADKNTS, CHECK1, CHECK2, CIYFIN, COVAR, L2APPY,
SPLEE 116

\begin{tabular}{|c|c|}
\hline C
C
C & PLOTSR, PPREP, RESSD, RSQ, SDYFIN, SORT1,
SORT2, XYFINE, YTOXCI \\
\hline \multirow[t]{4}{*}{} & SET DIMENSIONS OF VECTORS AND MATRIX \\
\hline & DIMENS ION X (NX), Y(NX), W(NX) , R1 (NKX), R2(NKX), RES (NKX) \\
\hline & DIMENS ION T(KX), Q(JX, KX), DIAG(KX), BCOEF (KX), XXI (\(K X, K X\)) \\
\hline & DIMENS ION YY(NYX), SCRTCH (JX, JX) , BIATX (20) , H(80) \\
\hline \multirow[t]{2}{*}{C} & PARAMETER NF=300 \\
\hline & DIMENS ION XF(300) , YF (300), YFL(300), YFU(300), YFSD (300) \\
\hline \multirow[t]{2}{*}{10} & FORMAT (\(1 \mathrm{H} 1 / 1 \mathrm{X}, 45\) (\(1 \mathrm{H} *\)) \(/ 1 \mathrm{X}, 32 \mathrm{H} *\) FIXED-KNOT SPLINE PACKAGE FOR \\
\hline & 2 13HCALIBRATION */1X,45(1H*)) \\
\hline \multirow[t]{2}{*}{20} & FORMAT (\(/ / 1 \mathrm{X}, 39(1 \mathrm{H}-) / 1 \mathrm{X}, 25 \mathrm{H} *\) ESTIMATION OF B-SPLINE \\
\hline & 2 14HCOEFFICIENTS */1X,39(1H-)) \\
\hline 30 & FORMAT (/9X, 8HB-SPLINE/4X, 1 HI, 5X, 4HCOEF, 10X, 7 HSTD DEV/) \\
\hline 40 & FORMAT (1X, I4, 2G15.8) \\
\hline \multirow[t]{2}{*}{50} & FORMAT (\(/ 1 \mathrm{X}, 42 \mathrm{H} * * * * * *\) PRINTOUT OF B-SPLINE COEFFICIENTS \\
\hline & 2 18HSUPPRESSED *******) \\
\hline \multirow[t]{8}{*}{60} & FORMAT (\(/ / 1 \mathrm{X}, 42(1 \mathrm{H}-) / 1 \mathrm{X}, 37 \mathrm{H} *\) PARAMETERS OF LEAST SQUARES SPLINE \\
\hline & \(25 \mathrm{HFIT} * / 1 \mathrm{X}, 42(1 \mathrm{H}-) / / 13 \mathrm{X}, 18 \mathrm{HDEGREE}\) OF SPLINE \(=, 14 / / 3 \mathrm{X}\), \\
\hline & 3 28HNUMBER OF OBSERVATIONS \(=, 14 / 3 \mathrm{X}\), \\
\hline & 4 28HNUMBER OF ZERO WEIGHTS \(=\), I4/3X, 19HNUMBER OF NON-ZERO \\
\hline & 5 9HWEIGHTS \(=, 14 / 3 \mathrm{X}, 28 \mathrm{HNUMBER}\) OF \({ }^{\text {a }}\) (KNOTS \(=, 14 / 3 \mathrm{X}\), \\
\hline & 6 28HNUMBER OF B-SPLINES \(=\), I4//11X, 18HNUMBER OF Y-VALUES/7X \\
\hline & 7,24HFOR WHICH X CONFIDENCE =, I4/3X,18HINTERVAL IS TO BE \\
\hline & 8 8HCOMPUTED) \\
\hline 70 & FORMAT (//5X, 25H----- FULL PRINTOUT -----/) \\
\hline 80 & FORMAT (//5X, 32H----- ABBREVIATED PRINTOUT -----/) \\
\hline 90 & FORMAT (\(/ / 1 \mathrm{X}, 80 \mathrm{Al}\)) \\
\hline 100 & FORMAT (//1X, 8(\(1 \mathrm{H} *) / 1 \mathrm{X}, 8 \mathrm{H} *\) STOP */1X,8(1H*)/) \\
\hline C--- & define number of points in fine mesh NF \(=300\) \\
\hline \multirow[t]{2}{*}{} & WRITE HEADING FOR HARDCOPY OUTPUT \\
\hline & WRITE \((6,10)\) \\
\hline \multirow[t]{4}{*}{C---} & WRITE RUN IDENTIFICATION \\
\hline & WRITE (6,90) (\(\mathrm{H}(\mathrm{I}\)), \(\mathrm{I}=1,80)\) \\
\hline & IF (IP.GE.1) WRITE \((6,70)\) \\
\hline & IF (IP.EQ.0) WRITE (6,80) \\
\hline \multirow[t]{2}{*}{C---} & COMPUTE ORDER OF SPLINE \\
\hline & \(\mathrm{MO}=\mathrm{MD}+1\) \\
\hline \multirow[t]{2}{*}{C} & CHECK THAT INPUT PARAMETERS FALL WITHIN ALLOWABLE RANGES \\
\hline & CALL CHECK1 (W, N, NX, K, KX, NKX, NY, NYX, JX, MO, AL, DL, C, NZ) \\
\hline C & \\
\hline C- & SORT THE VECTOR OF KNOT LOCATIONS FROM LEAST TO GREATEST \\
\hline C & CALL SORT1 (T, 1, K, KX) \\
\hline C & \\
\hline C--- & SORT THE VECTOR OF X-VALUES FROM LEAST TO GREATEST AND CARRY \\
\hline C--- & ALONG THE CORRESPONDING Y-VALUES \\
\hline C & CALL SORT2 (X, Y, 1, N, NX) \\
\hline C & \\
\hline C--- & CHECK FOR OBSERVATIONS OUTSIDE KNOT SEQUENCE \\
\hline C & CALL CHECK2 (T, K, KX, X, W, N, NX, NZ, MO) \\
\hline C & \\
\hline C--- & COMPUTE NUMBER OF NON-ZERO WEIGHTS \\
\hline
\end{tabular}

\footnotetext{

}

\begin{tabular}{|c|c|}
\hline & \(\mathrm{NNZ}=\mathrm{N}-\mathrm{NZ}\) \\
\hline C & DEFINE NEW VECTOR OF KNOTS WITH END POINTS DUPLICATED \\
\hline C-- & (MD) TIMES \\
\hline \multicolumn{2}{|l|}{CALL ADKNTS (T, K, KX, MO)} \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C--- & COMPUTE NUNBER OF B-SPLINES
\[
\mathrm{NB}=\mathrm{K}-\mathrm{MO}
\] \\
\hline \multirow[t]{2}{*}{C---} & COMPUTE NUMBER OF DEGREES OF FREEDOM FOR RESIDUALS
\[
\text { NRSD }=N N Z-N B
\] \\
\hline & WRITE (6,60) MD, N, NZ, NNZ, K, NB, NY \\
\hline \multicolumn{2}{|l|}{C--- COMPUTE ESTIMATES OF B-SPLINE COEFFICIENTS} \\
\hline \multicolumn{2}{|l|}{CALL L2APPR (T, NB, MO, Q, DIAG, BCOEF , JX, K, N, X, Y, W)} \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & COMPUTE UNSCALED VARIANCE-COVARIANCE MATRIX OF \\
\hline C- & B-SPLINE COEFFICIENTS \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{CALL COVAR (KX, NB, JX, MO, Q, XXI)}} \\
\hline & \\
\hline C--- & COMPUTE (PREDICTED Y-VALUES AND) RESIDUAL STANDARD DEVIATION \\
\hline C & CALL RESSD (X, Y, W, N, NX, NKX, NRSD , T, BCOEF , XXI , K, KX, NB, MO, R1 , RES , RSD, 2BIATX, JX, IP) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{C IF (IP.EQ.0) WRITE \((6,50)\)}} \\
\hline & \\
\hline C & WRITE B-SPLINE COEFFICIENTS AND THEIR STANDARD DEVIATIONS \\
\hline \multicolumn{2}{|l|}{WRITE \((6,20)\)} \\
\hline \multicolumn{2}{|l|}{WRITE \((6,30)\)} \\
\hline \multicolumn{2}{|l|}{D0 \(110 \mathrm{I}=1\), NB} \\
\hline \multicolumn{2}{|l|}{S=RSD*SQRT (XXI (I , I)} \\
\hline \multicolumn{2}{|l|}{WRITE (6,40) I, BCOEF (I), S} \\
\hline 110 & CONTINUE \\
\hline C- & COMPUTE MULTIPLE CORRELATION COEFFICIENT R-SQUARED (THIS VALUE IS \\
\hline C--- & NOT PRINTED. TO PRINT R-SQUARED MAKE A CHANGE IN SUBROUTINE RSQ.) \\
\hline C & \\
\hline 120 & CALL RSQ (RSD, NRSD, Y, W, N, NX, NNZ) \\
\hline C & \\
\hline C--- & CREATE FINE MESH OF EVENLY SPACED X-VALUES BETWEEN END KNOTS \\
\hline C--- & AND COMPUTE PREDICTED Y-VALUES THERE \\
\hline C & CALL XYFINE (NF, T, BCOEF, K, KX, NB, MO, XF, YF) \\
\hline \multicolumn{2}{|l|}{C CALL XYF} \\
\hline C--- & COMPUTE STANDARD DEVIATION OF PREDICTED Y-VALUES \\
\hline C & CALL SDYFIN (XF, YFSD, NF, T, K, MO, XXI, KX, RSD , BIATX, JX) \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C--- & COMPUTE CONF IDENCE INTERVALS FOR PREDICTED Y-VALUES USING \\
\hline C--- & SCHEFFE'S TECHNIQUE (SEE REFERENCE IN SUBROUTINE CIYFIN) \\
\hline C & \multirow[t]{2}{*}{CALL CIYFIN (XF, YF, YFSD, NF, RSD, AL, DL, C, NRSD, NB, YFL, YFU, IP)} \\
\hline C & \\
\hline C--- & COMPUTE X CONFIDENCE INTERVALS FOR SPECIFIED Y-VALUES \\
\hline C & CALL YTOXCI (XF, YFL, YF, YFU, NF, YY, NY, NYX) \\
\hline C & \\
\hline C--- & COMPUTE PIECEWISE POLYNOMIAL REPRESENTATION OF SPLINE \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { CALL PPREP (T, BCOEF, SCRTCH, DIAG, Q, KX, JX, NB, MO, IP) } \\
& \text { PLOT KNOT LOCATIONS AND RES IDUALS VS. INDEPENDENT VARIABLE } \\
& \text { CALL PLOTSR (X,N,NX, R1, RES, R2, NKX, T, K, KX) } \\
& \text { WRITE (} 6,100 \text {) } \\
& \text { RETVRN } \\
& \text { END }
\end{aligned}
\]
\[
\begin{array}{lll}
\text { i } \\
\text { íco } & \\
0 & 0 & 0
\end{array}
\]

8）
ттохс001
8000X0
Z000X0LX
I000x0LI
 YT0XC006 YT0XC006
YTOXC007 YT0XC008 YT0XC009 YTOXC0 10 YT0XC0 11 YTOXC0 13
YT0XC0 14 \(4 に\)
8
0
0
0
0
0 ．
 a
 N عzojxoux YT0XC024
Ytoxco25 YT0XC026 N N No
© \(\begin{gathered}\text { © } \\ \text { on } \\ \text { ond }\end{gathered}\) ？ － º

 N荡星

莃
 च
 9couxold
gcoux
icoux
end

\author{
2 c 00 x
}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{CPR＊NS（1）．YTOXCI（8）} \\
\hline 1 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{SUBROUTINE YTOXCI（ XF，YFL，YF，YFU，NF，YY，NY，NYX）}} \\
\hline 2 & & \\
\hline 3 & C & YTOXCI WRITTEN BY CHARLES P．REEVE，STATISTICAL ENGINEERING \\
\hline 4 & C & DIVISION，NATIONAL BUREAU OF STANDARDS，WASHINGTON，D．C． \\
\hline 5 & C & as Part of THE FIXED－KNOT SPLINE PACKAGE FOR CALIBRATION \\
\hline 6 & C & FOR：COMPUTING X CONFIDENCE INTERVALS FOR GIVEN Y－VALUES BY \\
\hline 7 & C & INVERSE INTERPOLATION ON THE CALIBRATION CURVE AND ITS \\
\hline 8 & C & UPPER AND LOWER BOUNDS \\
\hline 9 & C & SUBPROGRAMS CALLED：GETX，SORT1 \\
\hline 10 & C & CURRENT VERSION COMPLETED SEPTEMBER 3， 1980 \\
\hline 11 & & \\
\hline 12 & & DIMENSION XF（ NF），YFL（ NF），YF（NF），YFU（ NF），YY（ NYX），IND（6） \\
\hline 13 & & DATA IND（1），IND（ 2 ），IND（3），IND（4），IND（5），IND（6）\(/ 1 \mathrm{H}, 1 \mathrm{HS}, 1 \mathrm{HL}, 1 \mathrm{H} *\) ， \\
\hline 14 & & 2 1H＜，1H＞／ \\
\hline 15 & 10 & FORMAT（ \(/ 5 \mathrm{X}, 40 \mathrm{H} \lll \ll\) NO Y－VALUES SPECIFIED FOR INVERSE \\
\hline 16 & & 2 19HINTERPOLATION \(\ggg \ggg)\) \\
\hline 17 & 20 & FORMAT（／1X， 47 H＊＊＊LOWER CONFIDENCE CURVE IS NOT MONOTONIC AT \\
\hline 18 & & \(24 \mathrm{HYFL}(, 14,3 \mathrm{H})=, \mathrm{G} 12.7 / 5 \mathrm{X}, 21 \mathrm{HNO}\) INTERPOLATION DONE） \\
\hline 19 & 30 & FORMAT（／1X，45H＊＊＊CALIBRATION CURVE IS NOT MONOTONIC AT YF¢，I4， \\
\hline 20 & & \(23 \mathrm{H})=, \mathrm{G12.7} / 5 \mathrm{X}, 21 \mathrm{HNO}\) INTERPOLATION DONE） \\
\hline 21 & 40 & FORMAT（ \(/ 1 \mathrm{X}, 47 \mathrm{H} * * *\) UPPER CONFIDENCE CURVE IS NOT MONOTONIC AT \\
\hline 22 & & \(24 \mathrm{HYFU}(, 14,3 \mathrm{H})=, \mathrm{G12.7/5X}, 21 \mathrm{HNO}\) INTERPOLATION DONE） \\
\hline 23 & 50 & FORMAT（／／1X，65（1H－）／1X，29H＊COMPUTATION OF CALIBRATION， \\
\hline 24 & & 2 36HINTERVALS BY INVERSE INTERPOLATION＊／1X，65（1H－）／／24X， \\
\hline 25 & & \(311 \mathrm{HLOWER} \mathrm{LIMIT} 7 \mathrm{X},, 9 \mathrm{HPREDICTED}\) ，7X， 11 HUPPER LIMIT／4X， \(1 \mathrm{HI}, 6 \mathrm{X}, 4 \mathrm{HY}(\mathrm{I})\) \\
\hline 26 & & 4 12X， 5 HFOR X，14X， 1 HX，14X， 5 HFOR X／） \\
\hline 27 & 60 & FORMAT（ \(1 \mathrm{X}, \mathrm{I} 4, \mathrm{G15} .7,3(3 \mathrm{X}, \mathrm{A1,G13.7})\) ） \\
\hline 28 & 70 & FORMAT（ \(/ / 1 \mathrm{X}, 46 \mathrm{H} * * *\) AT LEAST ONE Y－VALUE IS OUTS IDE THE RANGE ， \\
\hline 29 & & \\
\hline 30 & 80 & FORMAT（ \(/ 5 \mathrm{X}, 40 \mathrm{HS}\) DENOTES THE VALUE OF THE SMALLEST KNOT） \\
\hline 31 & 90 & FORMAT（ \(/ 5 \mathrm{X}, 40 \mathrm{HL}\) DENOTES THE VALUE OF THE LARGEST KNOT） \\
\hline 32 & 100 & FORMAT（／5X，41H＊DENOTES VALUES OUTS IDE THE RANGE OF THE， \\
\hline 33 & & 2 22H CALIBRATION DATA－NO／7X，29HVALID PREDICTION IS AVAILABLE） \\
\hline 34 & 110 & FORMAT（ \(/ 5 \mathrm{X}, 49 \mathrm{H}\)－INDICATES THAT NO VALID LOWER CALIBRATION LIMIT／ \\
\hline 35 & & 2 7X，55HGREATER THAN THE MINIMUM POSS IBLE X－VALUE IS AVAILABLE．） \\
\hline 36 & 120 & FORMAT（／5X，49H＞INDICATES THAT NO VALID UPPER CALIBRATION LIMIT／ \\
\hline 37 & & 2 7X，55HSMALLER THAN THE MAXIMUM POSSIBLE X－VALUE IS AVAILABLE．） \\
\hline 38 & & WRITE \((6,50)\) \\
\hline 39 & & IF（NY．LT．1）GO TO 230 \\
\hline 40 & & \(\mathrm{M}=1\) \\
\hline 41 & & IF（YF（1）．GT．YF（NF））M＝－1 \\
\hline 42 & & NF \(1=\mathrm{NF}-1\) \\
\hline 43 & C－－－ & CIECK WHETHER CALIBRATION CURVE AND BOUNDS ARE MONOTONIC \\
\hline 44 & & D0 \(150 \mathrm{~J}=1\) ，NF 1 \\
\hline 45 & & \(\mathrm{D}=(\mathrm{YFL}(\mathrm{J}+1)-\mathrm{YFL}(\mathrm{J}))\)＊FLOAT（ M） \\
\hline 46 & & IF（D．GT．0．0）GO TO 130 \\
\hline 47 & & \(\mathrm{J} 1=\mathrm{J}+1\) \\
\hline 43 & & WRITE（6，20）J 1，YFL（J1） \\
\hline 49 & & RETURN \\
\hline 50 & 130 & \(\mathrm{D}=(\mathrm{YF}(\mathrm{J}+1)-\mathrm{YF}(\mathrm{J}) \mathrm{)}\)＊FLOAT（ M） \\
\hline 51 & & IF（D．GT．0．0）GO TO 140 \\
\hline 52 & & \(\boldsymbol{J} 1=\mathrm{J}+1\) \\
\hline 53 & & WRITE（6，30） \(\mathrm{J} 1, \mathrm{YF}(\mathrm{J} 1)\) \\
\hline 54 & & RETURN \\
\hline 55 & 140 & \(\mathrm{D}=(\mathrm{YFU}(\mathrm{J}+1)-\mathrm{YFU}(\mathrm{J})) * \mathrm{FLOAT}(\mathrm{M})\) \\
\hline 56 & & IF（D．GT．0．0）GO TO 150 \\
\hline 57 & & \(\mathrm{J} 1=\mathrm{J}+1\) \\
\hline
\end{tabular}

0
LONX

กั

\section*{References}
[1] Scheffé, H. (1973). A statistical theory of calibration. Annals of Statistics 1, 1-37.
[2] Scheffé, H., J. R. Rosenblatt, and C. H. Spiegelman (1980). Journal of Research of NBS, to appear.
[3] deBoor, Carl (1978). A practical guide to splines. New York: Springer-Verlag.
[4] Smith, Patricia L. (1979). Splines as a useful and convenient statistical tool. The American Statistician 33, 57-62.
[5] Jones, Frank E. (1979). Application of an improved volume calibration system to the calibration of accountability tanks. Nuclear Safeguards Technology 1978, Vol. II, 653-659. International Atomic Energy Agency, Vienna.
[6] Tukey, John W. (1977). Exploratory Data Analysis; Addison-Wesley, London.
[7] Hogben, David, Sally T. Peavy and Ruth N. Varner (1971). OMNITAB II User's Reference Manual. NBS Technical Note 552
[8] Ryder, B. G. (1974). The PFORT Verifier. Software Practice and Experience 4, 359-377.
[9] Spiegelman, C. and K. Eberhardt (1980). Journal of Research of NBS, to appear.
[10] Spiegelman, C. and W. Studden (1980). Journal of Research of NBS, to appear.


```

COMPUTATION OF CALIBRATION INTERyALS BY INVERSE INTERPOLATION *
Y(I)
3713.000
3823.000
3933.000
4043.000
4153.000
4263.000
4373.000
4483.000
4593.000
4703.000

164	
165	21643.00
166	21753.00
167	21863.00
168	21973.00
169	22083.00
170	22193.00
171	22303.00
172	22513.60
173	22633.00

```

LOWER LIMIT FOR X
< 1.705250
1.749691
1.797422
1.844952
1.892090
1.939002
1.985893
2.032783
2.079673
2. 126563
9.704492
9.755669
9.806846
9.858023
9.909199
9.960375
10.01155
10.06267
10.11361
10.16435
3.28631
13.33740
13.38949
13. 43957 13.49066 13.54174 13.59281

L 13.64334
L 13.64334
\(\mathrm{PREDICTED}_{\mathrm{X}}\)
1.70589
1.753002
1.800113
1.847225
1.894297
1.941202
1.988067
2.034931
2.081796
2.128660
\begin{tabular}{ll}
9.706814 & 9.709139 \\
9.753022 & 9.760378 \\
9.809230 & 9.811617 \\
9.860439 & 9.862857 \\
9.911647 & 9.914998 \\
9.962355 & 9.965338 \\
10.01406 & 10.01656 \\
10.06506 & 10.06742 \\
10.11578 & 10.11793 \\
10.16651 & 10.16866
\end{tabular}
\begin{tabular}{lr}
13.28856 & 13.29082 \\
13.33771 & 13.34263 \\
13.39087 & 13.39325 \\
13.44202 & 13.44447 \\
13.49317 & 13.49570 \\
13.54433 & 13.54692 \\
13.59548 & 13.59815 \\
.0000003 & 13.64334 \\
.0002000 & \(>\)
\end{tabular}

UPPER LIMIT FOR X
1.709779
1.756223
1.802745
1.849473
1.896511
1.943401
1.990239
2.037077
2.083916
2. 130755
9.709139
9.760378
9.811617
9.862857
.914098
0.01656
10.0674.2
10.11793
10.16966
13.29082
13. 34263
13. \(4.444,7\)
13.49570
13.54 .692
13.64334,
13.64334

```

*** GF AT LEAST ONE GALIBRATION CURVE ***
S DENOTES THE VALUE OF THE SMALLEST KNOT
L denotes the value of the largest kiot

* denotes values outside the rance of tee calibration data - no valid prediction is avarlable
< indicates that no valid loner calibration limit greater than the minipium possible x-value is available.
> Indicates that no valid upper calibration limit smaller than the mayimum possible x-value is available.

```

Figure 4. Calibration chart. \(Y\) is pressure in pascals; \(X\) is volume in \(M^{3}\).
 * FIXLDD-IGIOT SPLINE PACICAGE FOR CALIBRATION *

real data fron a tarik calidiution (data in file cprwis.96)
----- FULL PRIHTOUT -----
<<<<< EACH END IGOT DUPLICATED 1 TINES >>>>>
* Surimary of chot locations *

Figure 5. Preliminaries.
```

* analysis of residuals *

```
\begin{tabular}{cccc}
& WE I GFT & & OBSERVED \\
I & W(I) & X(I) & \begin{tabular}{c}
Y(I)
\end{tabular} \\
& & & \\
1 & 1.0000 & 1.705250 & 3711.640 \\
2 & 1.0000 & 1.705270 & 3711.420 \\
3 & 1.0000 & 1.894010 & 4152.240 \\
4 & 1.0000 & 1.894140 & 4152.130 \\
5 & 1.0000 & 1.894580 & 4151.050 \\
6 & 1.0000 & 1.894650 & 4151.910 \\
7 & 1.0000 & 1.894660 & 4153.400 \\
8 & 1.0000 & 2.084060 & 4599.320 \\
9 & 1.0000 & 2.084110 & 4600.090 \\
10 & 1.0000 & 2.272720 & 5044.100 \\
11 & 1.0000 & 2.273020 & 5042.730
\end{tabular}
PRED ICTED
Y(I)
3711.505 3711.552 4152.238 4152.542 4153.569 4153.782 4153.756 4598.315 4598.432 5041.136 5041.841
28884.68 29282.92 29285. 71 29284.50 29695.29 29699.14 30096.50 30099.62 30098.26 30102.36 30105.91
28383.46
29282.06
29284.98
29286.57
29694.42
29698.44
30096.89
30099.86
30101.60
30101.81
30105.90
13.07486
13.26022
13.26158
13.26232
13.45198
13.45385
13.63914
13.64052
13.64133
13.64143
13.64333

\section*{RESIDUAL D.F. 161}
\begin{tabular}{rr}
1.2214 & .2921614 \\
.86230 & .3425575 \\
.72754 & .3430482 \\
-2.0735 & .3433159 \\
.87061 & .4235761 \\
.69897 & .4244610 \\
-.38940 & .5180907 \\
-.23706 & .5188241 \\
-3.3391 & .5192548 \\
.54614 & .5193080 \\
\(.10254-01\) & .5203189
\end{tabular}

RES I DUAL(I)

> .13455
> -.13223
> \(.18311-02\)
> -.41168
> -2.5190
> -1.8225
> -.35577
> 1.0954
> 1.6581
> 2.9636
> .88947

\section*{STD DEV OF} PREDICTED Y(I)
1.052565
1.052453
.4110981
.4113765
.4123280
.4124807
.4125026
.3729185
.3729083
.3359134
. 3358569
. 2921614
.3425575
.3430482
.3433159
.4235761
5100907
.5188241
5192548
.5203189
\begin{tabular}{ccc}
& B-GPLINE & \\
I & COEF & STD DEV \\
1 & 3711.5053 & 1.0525651 \\
2 & 4153.7559 & .41250259 \\
3 & 10378.705 & .41074148 \\
4 & 12579.214 & .57466792 \\
5 & 13403.155 & .74306913 \\
6 & 14630.621 & .62254084 \\
7 & 16236.443 & .41161732 \\
8 & 22364.084 & .44698178 \\
9 & \(22774.5,15\) & .43252287 \\
10 & 27656.846 & .39959609 \\
11 & 30105.922 & .52032419
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{I} & \multicolumn{2}{|l|}{. INTERVAL.} & \multicolumn{3}{|r|}{COEFFICIEITS OF (X} \\
\hline & X (I) & X(I+1) & \(\mathbf{P}=\) & 0 & 1 \\
\hline 1 & 1.7052 & 1.8947 & & 3711.5 & 2334.9 \\
\hline 2 & 1.8947 & 4.5467 & & 4152.8 & 2 C 47.2 \\
\hline 3 & 4.5467 & 5.4948 & & 10379. & 2321.0 \\
\hline 4 & 5.4948 & 5.8738 & & 12379. & 2174.0 \\
\hline 5 & 5.8738 & 6.4416 & & 13403. & 2161.5 \\
\hline 6 & 6.4416 & 7.1899 & & 11639. & 2146.2 \\
\hline 7 & 7. 1399 & 10.043 & & 16236. & 2148.1 \\
\hline 8 & 10.043 & 10.232 & & 22364. & 2168.6 \\
\hline 9 & 10.232 & 12.504 & & 23775. & 2143.3 \\
\hline 10 & 12.504 & 13.643 & & 27657. & 2150.4 \\
\hline
\end{tabular}

Figure 7. Ordinary polynomial representation of the fitted spline.

Figure 8. Residual plot.

Figure 9. Diagram of subroutine interactions.

Figure 10: Diagnostic plot of residuals from a zero-legrèe spline fit (i.e., "a step function).
\begin{tabular}{|l|l|}
\hline 1. PUBLICATION OR \\
REPORTNO. \\
NBS \(80-2151\)
\end{tabular}\(\quad\) 2. Performing Organ. Report No. \(\quad\).
4. TITLE AND SUBTITLE

A NEW METHOD OF ASSIGNING UNCERTAINTY IN VOLUME CALIBRATION
5. AUTHOR(S)

James A. Lechner, Charles P. Reeve, Clifford H. Spiegelman
6.-PERFORMING ORGANIZATION (If joint or other than NBS, see in structions)

MATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)
U.S. Nuclear Regulatory Commission
10. SUPPLEMENTARY NOTES
\(\square\) Document describes a computer program; SF-185, FIPS Software Summary, is attached.
11. ABSTRACT (A 200-word or less factual summary of most signlficant information. If document includes a significant bibliography or literature survey, mention it here)
This paper presents a practical statistical overview of the pressure volume calibration curve for large nuclear materials processing tanks. It explains the appropriateness of applying splines (piecewise polynomials) to this curve, and it presents an overview of the associated statistical uncertainties. In order to implement these procedures a practical and portable FORTRAN IV program is provided along;with its users' manual. Finally, the recommended procedure is demonstrated on actual tank data collected by NBS.
12. KEY WORDS (Six to twelve entries; olphabetical order; copltollze only proper names; and separate key words by semicolons) Volume calibration; differential pressure; splines; accountability; statistics.
13. AVAILABILITYUnlimitedFor Official Distribution. Do Not Release to NTISOrder From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

X Order From National Technical Information Service (NTIS), Springfleld, VA. 22161
14. NO. OF PRINTED PAGES

113
15. Price
\(\$ 9.00\)```

[^0]: *Work supported (in part) by the U. S. Nuclear Regulatory Commission.

[^1]: Key Words: Volume calibration; differential pressure; splines; accountability; statistics.

[^2]: * If $A(x)$ is not constant on an interval, then p is not a linear function of v on that interval. The program under discussion uses the B-spline basis when higher-order polynomial splines are required, because as pointed out in reference [4], the use of simpler representations of polynomial splines may lead to numerical instability.

[^3]:

[^4]: REFERENCES--NATIONAL BUREAU OF STANDARDS APPLIED MATHEMATICS 6.6.15. 947.

[^5]:

