MULTIPRECISION COMPUTING AT NBS:
YESTERDAY, TODAY, AND TOMORROW

Daniel W. Lozier

Mathematical Analysis Division Center for Applied Mathematics National Bureau of Standards U.S. Department of Commerce Washington, D.C. 20234

October 1980

U.S. DEPARTMENT OF COMMERCE, Philip M. Klutznick, Secretary

Luther H. Hodges, Jr., Deputy Secretary

Jordan J. Baruch, Assistant Secretary for Productivity, Technology, and Innovation
NATIONAL BUREAU OF STANDARDS. Ernest Ambler, Director
*) *Ex

TABLE OF CONTENTS

I. Introduction 1
II. The Four Basic Arithmetic Operations in Multiprecision. 5
III. Some Representative Examples of Software for Multiprecision Computation. 9
IV. Use of Brent's MP Package with Crary's Augment Precompiler on the NBS Univac 1108 Interactive System. 19
V. Summary and Conclusions. 26
References. 28
Appendix A
Appendix B
Appendix C

ABSTRACT

Multiprecision computing is a technique by which arithmetic operations may be performed on a computer to precision levels that are higher than the directly supported single and double precisions. The last ten years have seen the development of portable Fortran software of very high quality that essentially duplicates all the capabilities of standard Fortran, so that an existing standard Fortran program can be re-executed to arbitrarily high precision. In this paper some of the design techniques for such software, which have evolved at NBS and elsewhere, will be discussed. Methods for using the software presently available at NBS will be described, and a complete example will be given. Directions for further extensions and improvements will be indicated.

I. INTRODUCTION

When setting out to perform a calculation on a computer, a person is faced with a very limited set of possible arithmetic capabilities. - One has to choose between single precision, which represents numbers on various computers to a significance in the approximate range from 6 to 15 figures, or double precision, which gives up to approximately 30 significant figures. Even on computers with quadruple precision, about 35 significant figures is the upper limit. The situation with regard to the range of numbers representable in a computer is similar. It varies from approximately 75 orders of magnitude up to several thousand orders of magnitude (nearly 10000 in the new VAX-11 architecture of the Digital Equipment Corporation). Much intellectual and engineering effort has gone into optimizing, according to greatly different criteria by different groups and organizations, the final choice of what arithmetic capabilities will be implemented in hardware. Still, the result is a limited set of possibilities that does not provide the means to do every calculation that we would like to do. Perhaps the people who have a genuine need for more extensive arithmetic capabilities should make a greater effort to influence the computer designers.

If the hardware, or more correctly the computer environment presented to the user, fails to provide for a computational need then our recourse is to programs. This is true, in particular, if the arithmetic capabilities provided by the computer environment are not sufficient for a particular computational task. The relative simplicity of algorithms for the four basic multiprecision operations of addition, subtraction, multiplication and division has undoubtedly led to many undocumented programs as well as to programs that were constructed for use in specific applications. Our interest here is in software, which is distinguished for our purposes from the more general
term "programs" by the criteria of reliability, robustness, correctness, portability, maintainability, availability of documentation, ease of use, completeness, and other desirable qualities. Completeness, in particular, is important since a moment's reflection brings to mind the necessity of having available all of the peripheral functions, such as input-output, type conversion, the mathematical functions, and so on. This leads to a software package of considerable size, and not one that the casual programmer with only a limited commitment is likely to produce.

Fortunately, software possessing most of the desirable properties listed above has been developed during the past decade. A later section of this report will describe some representative contributions that have been made to this development. The MP package of R. P. Brent [l] emerges as the most advanced product.

As in the case of other packages, every arithmetic or other operation performed by Brent's package requires a subroutine call (the package is written in FORTRAN and is intended for use only in the FORTRAN environment). Thus, the function

$$
F(x)=\sqrt{2} x+\cos x^{2}-e^{x}
$$

could be evaluated by the FORTRAN statement

$$
F=\operatorname{SQRT}(2.0) * X+\operatorname{COS}(X * * 2)-\operatorname{EXP}(X)
$$

whereas the code

| CALL | MPCRM $(2.0$, TWO $)$ | Convert 2 to MP form |
| :--- | :--- | :---: | :--- |
| CALL | MPSQRT(TWO, TEMP) | Compute $\sqrt{2}$ |
| CALL $\operatorname{MPMUL}(T E M P, X, F)$ | $"$ | $\sqrt{2} x$ |
| CALL $\operatorname{MPMUL}(X, X, T E M P)$ | $"$ | x^{2} |
| CALL $\operatorname{MPCOS}(T E M P, T E M P)$ | .$"$ | $\cos x^{2}$ |
| CALL $\operatorname{MPADD}(F, T E M P, F)$ | $"$ | $\sqrt{2} x+\cos x^{2}$ |

CALL $\operatorname{MPEXP}(X, T E M P)$
CALL $\operatorname{MPSUB}(F, T E M P, F)$

Compure e^{x}
. $\quad \mathrm{F}(\mathrm{x})$
or something similar would be required to use Brent's package. Here TWO, TEMP, X and F are the names of FORTRAN arrays in which multiprecision numbers are stored. It was to avoid such lists of operations, reminiscent of assembly language code, that FORTRAN was developed in the early days of computers. But FORTRAN was not designed to process MP variables*, which are not accommodated by any standard data type of FORTRAN.

The solution that has evolved for this problem is to extend FORTRAN in such a way as to introduce a new data type for MP numbers. This involves writing a FORTRAN-like compiler, an activity of a completely different kind than writing the MP package itself. Two such compilers have emerged: the FORPAK compiler of D. J. Orser [9] and the AUGMENT compiler of F. D. Crary [4]. Both are written in FORTRAN and produce FORTRAN object code, which is subsequently processed by an ordinary FORTRAN compiler. For this reason the special compilers are known as precompilers. In each case the precompiler is informed about all necessary details of the implementing package for the special computer arithmetic by means of an input "description deck." Thus, they can be used to facilitate the use of any special arithmetic for which a valid description deck can be written.

The precompilers are capable of "parsing" general FORTRAN-like expressions. For example, precompilation of the type declaration
MULTIPLE TWO,X,F
and the statements

```
\(\mathrm{TWO}=2.0\)
\(F=\operatorname{SQRT}(T W O) * X+\operatorname{COS}(X * * 2)-\operatorname{EXP}(X)\)
```

[^0]would result in automatic generation of the temporary variable and 8 lines of code given above. One of the precompilers, AUGMENT, is being used widely with Brent's MP package. An example of the use of Crary's precompiler with Brent's package on the NBS central computer will be given in this report. The use of Orser's precompiler with another multiprecision package, the Super Precision Package of Wyatt [9], will be discussed briefly.
II. THE FOUR BASIC ARITHMETIC OPERATIONS IN MULTIPRECISION

We have already remarked that the basic algorithms for addition, subtraction, multiplication and division are simple. They are straightforward implementations of the elementary arithmetic methods taught by the school system, easily done in FORTRAN using integer arithmetic.

Many details on multiprecision arithmetic are given in Knuth [6] and references listed there. We give only a brief overview here. The most common approach, and the one used in Brent's MP package, is the following. Some number of consecutive integer storage locations (or words), say $n+2$, is decided upon for the representation of MP numbers. A real number to be represented in MP form is first expressed in a notation like scientific notation:

$$
a= \pm\left(0 . a_{1} a_{2} a_{3} \ldots\right) b e
$$

Here $b>0$ is an integer (the base or radix) whose optimal value depends on the computer wordlength, and the a_{i} are the (unique) digits of a to the base b. That is, $0 \leq a_{i}<b$ for each i. The representation is made unique by requiring the first digit to be nonzero so that we have $1 \leq a_{1}<b$. The representation is then said to be normalized; $0 . a_{1} a_{2} a_{3} . .$. is called the (normalized) fraction of a and e is called the exponent of a. The MP form of a is stored by placing the sign (equal to -1 or +1) in word 1 , the exponent in word 2 , and the first n digits of the normalized fraction in words 3 through $n+2$. The final digit may be modified according to some rounding rule. The representation of zero in MP form is nonunique; word 1 is set equal to zero and words 2 through $n+2$ are undetermined.

Now it becomes clear how the basic arithmetic operations can be coded using FORTRAN integer arithmetic. After taking into account any necessary shifting of the fractions, the sum of two fractions is obtained by ordinary
digit-by-digit "add and carry" operations. The difference of two fractions is obtained by ordinary digit-by-digit "borrow and subtract" operations. These operations are $O(n)$ in number and this order cannot be improved.

The full multiplication of two fractions requires each digit of one fraction to be multiplied by every digit of the other, together with appropriate shifting and scaling operations, in order to produce the 2 -digit product. Some practical savings can be obtained by not computing all of this, since only n digits of the result are to be stored, but this procedure still requires $O\left(n^{2}\right)$ operations. Multiplication algorithms of lower order exist but have not found their way into general purpose multiprecision packages, for the reason that excessively large values of n are required before actual savings in execution time can be achieved [1,9]. The "fast" algorithms require more "overhead" which tends to dominate the multiplication process for moderate values of n. As an indication of the execution times that can be expected, for Brent's package on the UNIVAC 1108 the multiply time with $\mathrm{n}=10$ is approximately 2 msec and with $\mathrm{n}=14$ it is approximately 2.8 msec . These values of n correspond approximately to 43 and 62 decimal places of precision. For comparison, the hardware double precision (18 decimals) multiply time is $5 \mu \mathrm{sec}$.

However, one special multiplication algorithm is often implemented. It is found, for example, in Brent's package. When one of the operands is a FORTRAN integer then multiplication requires only $O(n)$ operations. But it is interesting to note that this capability cannot be fully exploited by the precompiler. If the FORTRAN statement is

$$
X=A * I
$$

where X, A are multiprecision variables and I is a FORTRAN integer variable, then the desired $O(n)$ multiplication is performed. Alternatively, suppose I
is a multiprecision variable with every digit of its fraction equal to zero after the first digit. Then I is representable as a FORTRAN integer but the precompiler cannot know to use the $O(n)$ multiplication. We conclude that, in this case, writing FORTRAN code with mixed mode expressions is preferable to the common programming practice of matching the types of all elements in a FORTRAN expression.

Division is also an $O\left(n^{2}\right)$ operation, whether it is done by (i) reciprocating the denominator by use of Newton's method followed by multiplication by the numerator or (ii) the school, or divide-and-correct, method. Brent's package uses method (i) but other programs, such as Wyatt's, use method (ii). As in the case of multiplication, "fast" division methods have not been used in general-purpose multiprecision software, except for the special case when the divisor is typed as a FORTRAN integer. This special case has order n and is exploitable by the precompiler only when the FORTRAN source statement mixes multiprecision and integer types of variables.

We conclude this section with remarks on the optimal value of the base b of representation of $M P$ numbers. When two fractions are multiplied, each digit of one is multiplied by every digit of the other. Since the largest value of a digit is $b-1$, it is clear that $(b-1)^{2}$ must not overflow a FORTRAN integer storage location. Thus, there is an upper limit on the allowable bitlength of digits equal to approximately a half-wordlength. The actual upper limit for b in Brent's software is specified by the condition that $8 b^{2}-1$ may not exceed the largest machine-representable integer.

For storage reasons we want b to be as large as possible. This suggests that b should be a power of 2 . However, if a great deal of input and output is to be done, then a power of 10 might be preferable because of the cost of conversion between binary and decimal representations. The following table,
taken from Brent's documentation [2] of the MP package, shows optimal power-of-2 and power-of-10 choices for b as a function of wordlength:

Wordlength	Power-of-2 Choice	$\overbrace{\text { Power-of-10 Choice }}$
48 bits	4194304	1000000
36 bits	65536	100000
32 bits	16384	100000
24 bits	1024	1000
18 bits	128	100
16 bits	64	10
12 bits	16	10

III. SOME REPRESENTATIVE EXAMPLES OF SOFTWARE FOR : MULTIPRECISION COMPUTATION

Multiprecision computing can be viewed as having reached a fairly advanced level of development in Brent's package, particularly when used in combination with a precompiler such as Crary's. Other forms of special computer arithmetic, less related to floating-point computation and to the FORTRAN language, have also evolved but will not concern us here. In this section we will describe briefly several representative examples of earlier multiprecision work. Then we will describe Brent's package in somewhat more detail.

Lawson's Q-Precision Package

Development of this package was begun in 1964 or even earlier by C. L. Lawson at Jet Propulsion Laboratories. Originally for the IBM 7094 and later for the UNIVAC 1108, early versions were written mostly in assembly language. These evolved into the present version in which FORTRAN is used extensively, but the core of the program remains in assembly language. The package is limited to triple and quintuple precision with no extension of the exponent range. It includes many elementary mathematical functions, since it was used to test the accuracy of the FORTRAN function library, as well as a Gauss elimination subroutine for solving linear systems. Its limited design goals per mitted the use of function approximations that have an intrinsic precision limit associated with them (Chebyshev and minimax approximations). Such approximations are favored for efficiency but are not suitable for a general multiple-precision capability. The FORTRAN that was used contains nonstandard expressions. The Q-precision package suffers badly from lack of portability but was never viewed as general-purpose software. It was never published in
the open literature. Nevertheless, it serves as an excellent early example because of its successful applications on two different computers.

Peavy's Package

Like Lawson, B. A. Peavy of NBS began to develop a multiprecision package in the 1960's. But Peavy's package is coded entirely in FORTRAN. However, it lacks portability because it uses nonstandard FORTRAN expressions and was designed with only the UNIVAC 1108 in mind. It includes addition, subtraction, multiplication and division; square root, sine, cosine, arctangent, exponential and logarithm; double precision to multiple precision conversion and the reverse conversion; comparison and printing capabilities. The package uses from 3 to 20 words per multiprecision variable, the precise number being set by the statement CALL ISTART(N). The package stores 10 decimal digits per word, with the final 5 digits of the last word representing the exponent. Thus precisions from 25 to 195 in steps of 10 are provided, with the exponent (to the base 10) ranging from -4999 to 4999. Changing from one precision to another is not facilitated by this choice of representation, which can be a drawback for the use of the package. The package has been used by I. A. Stegun and R. Zucker of the Center for Applied Mathematics of NBS to test subroutines for the sine, cosine, exponential, hyperbolic cosine integrals, and to provide check values to 35 significant figures for these functions. Unfor tunately, no publication describing Peavy's package was ever prepared. An informal write-up does exist, however.

Maximon's Package [8]
The motivation for development of this package, which appeared in 1971, was somewhat different from Lawson's and Peavy's. L. C. Maximon, an NBS
physicist, needed higher precision than was available on the UNIVAC 1108 in order to compute "cross sections for the scattering of high energy electrons and ... protons from nuclei." [8, p2]. The theoretical physicist/applied mathematician's point of view is well stated by Maximon: "Although analytical methods may be developed for a particular problem, the most direct and gener ally applicable technique is simply to perform the pertinent part of the calculation (that part involving the cancellation with resultant loss of significant figures) with however many significant figures are needed in order that the final result have the desired number of significant figures." [8, pp2,3]. Maximon also recognized two other important applications of multiprecision arithmetic, namely the construction of multiprecision function routines for the purpose of testing single, double or other fixed precision library routines, and the computation of the special functions of mathematical physics to arbitrary precision.

Maximon's package is written entirely in FORTRAN with a view toward portability. It provides for addition, subtraction, multiplication, division, and division by an integer; conversion from integer, single or double precision variables to extended precision and the reverse conversions to double precision; and output printing. The working precision, number of base digits per word, and the base $(2,8,10$ or 16) are specified by the user by calling an initialization routine, PRM(NDG,NDW,NBRT). Parameters derived from these inputs are communicated to the working subroutines via COMMON. Appropriate values for NDG, NDW and NBRT depend on the wordlength of the computer and the declared DIMENSION lengths of the multiprecision number arrays. The ability to change these values at any time during the execution of the user's program, within the operable limits, is a notable feature. It was absent in Lawson's and Peavy's packages but is present in the packages of Wyatt and Brent. The
change is made by calling the initialization subroutine with the desired new parameter values.

Subroutines to evaluate selected mathematical functions were added later to the package. These were used to test the accuracy of the UNIVAC 1108 Fortran Library [7].

A major design problem for any multiprecision package is how to handle input and output. The problem does not stem from the requirement for base conversion between incommensurate number bases, although accurate and fast algorithms are not completely straightforward when numbers of all sizes are to be accommodated. The problem is how to manage the physical arrangement of numbers to be read in or printed out. In FORTRAN the FORMAT statement exists for this purpose. FORMAT statements require interpretive processing at runtime, a task of greater magnitude in its full generality than any multiprecision package designer has yet undertaken, as far as this author is aware. Consequently, simplified forms are found in all of the multiprecision packages considered here.

Input is relatively simple; some form of free-form input format is the usual solution. This, of course, requires character processing as well as numerical processing. Maximon does not provide for number input except by way of conventional FORTRAN variables which can be converted (in their restricted precision) to multipleprecision form. This was reasonable for the types of applications he had in mind. The output of a single multiprecision number is usually done by encoding a character string which then is printed using a FORTRAN format of the form nal. This may have to be continued on several lines if the precision is very high. Maximon considered the output problem with some care and came essentially to this solution. Annoyingly, the exponent, although printed in decimal form, refers to the internal number base
which could be other than 10 . He provided for grouping the digits to improve readability and for specifying the number of digits to print before the decimal point. Changing these specifications is cumbersome and may require recompilation of one subroutine. The packages of Wyatt and Brent are more flexible in this regard.

Finally, we note that Maximon's package includes no detection of under flow or overflow. The handling of errors in general is another difficult design question which has received much attention from later multiprecision software designers.

Wyatt's Package [9]

W. T. Wyatt, Jr. of Harry Diamond Laboratories is a physicist. Like Maximon, he needed higher precision than was (or is now) available on conventional computers. In an ambitious undertaking he produced portable FORTRAN software for "Super Precison" computing that essentially duplicated all of the capabilities of the FORTRAN language. An unpublished document describing his package is dated March 21, 1973. In addition to the four basic arithmetic operations for Super Precision operands, and Super Precision mixed with integer operands, he provided for complex arithmetic with Super Precision real and im aginary parts. Both the real and the complex mathematical functions found in the 1966 FORTRAN standard language* were included, as were the so-called "intrinsic functions" --MOD, ABS, INT, MIN, MAX, etc. Wyatt's motivation was his conviction that every existing FORTRAN program should be convertible for use with Super Precision arithmetic. This inevitably led to the idea of a precompiler, for the reasons we have already discussed. Without a precompiler,

[^1]every arithmetic expression would have to be "parsed" by a programmer and recoded, operation after operation. A fruitful collaboration with D. J. Orser of the Applied Mathematics Division of NBS (now the Center for Applied Mathematics) resulted in Orser's FORPAK precompiler [9].

Before discussing FORPAK, we describe some of the design features of the Super Precision Package. By means of a call on the initializing subroutine, $\operatorname{ZSETUP}(I, J, K)$, the user selects the number of digits I for the representation of multiprecision numbers; the number base J from the set $2,3, \ldots, 16$; and specifies the number of bits K in the computer integer word. The software determines the minimum number of words, NF, needed to meet or exceed the reques ted number of digits. The number of digits per word is determined so as to minimize the amount of storage used. Accordingly, Wyatt's package incurs the overhead of unpacking and repacking operations for every multiplication so as to avoid the necessity of wasting more than half of every word. After the call to ZSETUP, computation proceeds using approximately rounded arithmetic, "approximately" meaning that something less than the full double length product of two multiprecision fractions is formed during multiplication.

Wyatt's package permits the user to exercise additional control over its operation by means of global variables in labelled COMMON blocks. For example, alternative rounding strategies can be selected. Another example is "clip mode". In clip mode the excess digits, beyond digit I, are set to zero after every arithmetic operation and rounding takes place in digit I instead of in the final digit of word NF. This gives the user maximum control over the precision. The desirability of this feature for error analysis has been emphasized by T. E. Hull [5].

Wyatt's package includes an error handling and traceback capability, in contrast to the previous packages considered here. When an error is detected, such as an attempted division by zero or a negative argument for the square root function, the subroutine that detected the error prints a message and calls the traceback subroutine. The traceback subroutine prints the chain of subroutine calls through the Super Precision Package that led to the error. Execution is then terminated, but the user can easily modify the traceback subroutine to perform a "standard fixup and return".

As previously mentioned, Orser's precompiler was developed with Wyatt's package in mind. Nevertheless, it is, like Crary's precompiler, a general precompiler suitable for use with any new data type for FORTRAN which has a suitable supporting software package. Orser and Wyatt had as a goal to minimize the number of changes necessary to transform an existing conventional FORTRAN program into a program making valid use of the new SUPER PRECISION data type. This goal implied that multiprecision variables appearing in input/output statements should be treated automatically. Accordingly, a method was developed to analyze the original FORMAT statements. Let us con sider only the more interesting case of output formats. If no Super Precision variable appeared in an output list, the corresponding FORMAT statement was not altered and the output operations proceeded identically in both the original and transformed programs. On the other hand, suppose a Super Precision variable does appear. Then the FORMAT statement is divided into substatements by means of the numeric designators which correspond to Super Precision variables in the transformed program. These substatements are processed like or dinary FORMAT statements (they involve no nonstandard FORTRAN variables), with a special fixed form of numerical output of the Super Precision variables in between the output they generate. Thus, all output headings from the original
program are preserved. Each Super Precision number is printed starting on a new line and continuing onto additional lines as necessary. In contrast to the current arrangement with the Brent-Crary software, no programmer intervention is required.

Details of usage of the Wyatt-Orser software will not be given here. The ease of its usage is comparable to the Brent-Crary software which is described in detail in the next section of this report. Interested individuals are invited to contact either this author or D. J. Orser.

Brent's Package [1]
The design of Brent's package has already been discussed in some detail. It includes most features of Wyatt's package with some exceptions such as "clip mode". It has quite a few more functions and fundamental constants. From a computer programming point of view, it is more cleanly designed and im plemented. This has important implications for the future maintenance and modification of the package. Unlike Maximon and Wyatt, Brent is a numerical analyst with strong interest in complexity theory and algorithm construction. This has not resulted, in many cases, in very much different algorithms for arithmetic and function procedures but Brent states his algorithms more explicitly. This also contributes to the maintainability of the MP package.

The MP User's Guide [2] provides complete documentation of Brent's MP package, including its usage with Crary's AUGMENT precompiler. AUGMENT and MP, as well as the MP User's Guide itself, are resident in the NBS UNIVAC 1108 Interactive System, hereafter called System I. Current information for accessing this documentation and for using the software will be given in the next section.

We have already introduced the (unpacked) representation of numbers and the four basic arithmetic operations in MP. In addition to the unpacked representation, there exists a packed representation in which two digits, instead of only one, are stored in each word. The use of the packed representation saves storage at the expense of time.

The range of MP numbers is limited by the integer wordlength, since only one word is used for the range. This is also true of Wyatt's and Maximon's packages. On System I this translates into an exponent range of approximately $10^{ \pm 20686623784}$ (i.e., B^{M} with $B=2^{16}, M=2^{32}$). Underflow in an arithmetic operation results in the storing of zero; overflow causes termination with an error message. For the arithmetic operations the user has the choice of truncation (the default choice), proper rounding, or directed rounding. The directed roundings (round up and round down) are intended for an interval arithmetic extension of MP that Brent is planning to implement.

Another useful extension of the package would be to allow a variable number of words to store the exponent instead of just one. This extension of range is needed now in order to test Clenshaw and Olver's "unrestricted" exponential algorithm [3]. This algorithm produces values of e^{X} guaranteed correct to any relative precision α, for any input argument x. The algorithm is self-adaptive, i.e., it selects parameters so that an estimate of the running time is minimized asymptotically for large values of x and/or small values of a. Brent's package suffices to test the algorithm for small values of α but not for sufficiently large values of x. Although Brent acknowledges the need for a multiword range, he presently plans generalizations of the package in other directions. Consequently, it appears to be necessary to undertake the multiword range extension of MP here at NBS.

Appendix A is taken from the MP User's Guide [2]. It gives the names of all MP subroutines that are likely to be called from a user's program. Most of the names are suggestive of their functions. Every name has the prefix $\mathbb{M P}$. The suffix I indicates an arithmetic operation involving a multiprecision operand with a FORTAN integer operand. The suffix Q indicates an arithmetic operation involving a multiprecision operand with a rational operand, represented by two FORTRAN integers (the numerator and denominator). As an example of usage typical of all MP subroutines, CALL MPADDQ (X,I,J,Y) adds the rational number I / J to the multiprecision number X, giving the multiprecision number Y. Full details on the direct usage as well as the preferred usage via AUGMENT of all MP subroutines may be found in the MP User's Guide.

IV. USE OF BRENT'S MP PACKAGE WITH CRARY'S AUGMENT PRECOMPILER ON THE NBS UNIVAC 1108 INTERACTIVE SYSTEM

Files* exist in the NBS Univac 1108 Interactive System, also referred to as System I, which facilitate the use of Brent's MP package with Crary's AUGMENT precompiler. Although many possibilities exist, we restrict ourselves here to consideration of only one type of usage with a choice of two different precisions: 43 and 62 decimal places of precision. First we present the suggested EXEC 8 runstream. Then we discuss typical aspects of preparing the individual program units for precompilation. The detailed user's guide to the use of Brent's package resides in AMDAI*MP.USERSGUIDE. This guide includes pertinent information on the use of AUGMENT as well as the MP package.

The type of usage we consider is the conversion of a user-written FORTRAN program to multiprecision from ordinary FORTRAN precision. The FORTRAN program consists of one or more program units (the main program plus FUNCTION and SUBROUTINE subprograms), let us say MAIN, FUN1, FUN2, SUB1, SUB2. It may be that not every program unit requires multiprecision, and therefore precompilation, but let us assume that they all do. If any do not then they would be handled according to the usual rules of EXEC 8. The following runstream is prepared:

1. @ASG, A	AMDAI*AUGMENT.
2. @ASG, A	AMDAI*MP.
3. @XQT	AMDAI*AUGMENT. AUGMENT
4. @ADD	AMDAI*MP.DESCRIPTION/MP 12

[^2]5. *BEGIN
6. :FOR,IS MAIN
7. Source deck for MAIN
8. :FOR,IS FUN1
9. Source deck for FUN1
10. :FOR,IS FUN2
11. Source deck for FUN2
12. :FOR,IS SUBI
13. Source deck for SUBI
14. :FOR,IS SUB2
15. Source deck for SUB2
16. *END
17. @ADD 20.
18. @MAP,IS ,MAIN
19. IN MAIN, FUN1, FUN2, SUB1, SUB2
20. IN AMDAI*MP.MPINIT/MP12
21. LIB AMDAI*MP.
22. END
23. @XQT MAIN
24. Input data, if any

The result of this runstream will be the multiprecision execution of the user's FORTRAN program to the equivalent of 43 significant figures. If 62 significant figures are required, the number 12 in items 4 and 20 must be changed to 16 (the numbers 12 and 16 indicate the number of FORTRAN integer storage locations used to represent each MP number). We remark that (i) at present only the FORTRAN V compiler can be used, which means : FTN cannot be substituted for : FOR in items $6,8,10,12,14$; (ii) the non-EXEC 8 symbol :
is changed to during processing by AUGMENT; and (iii) the output of AUGMENT is a legitimate system runstream stored in File 20 and initiated by line 17 of the runstream.

The best way of illustrating the typical aspects of preparing an individual program unit for pre-compilation is by means of an actual example. Figure 1 shows an ordinary EXEC 8 runstream of the most common type: a program is read in, compiled and executed using every available system default. This is an example of the runstream created when a naive user of System I submits a card deck over the counter for processing.

Figure 2 shows the modified runstream ready for precompilation and execution. It is easily verified that all of the EXEC 8 and AUGMENT control cards are in place according to the suggested runstream presented above. We now focus attention on the actual FORTRAN code in Figure 1 and its transformation for multiprecision processing in Figure 2, referring to individual lines of the codes by their line numbers. The transformation process*, which must be carried out by the programmer, is analogous to transforming a singleprecision program into double precision. Type declarations, constants, and input/output statements must all be reviewed and modified appropriately.

Figure 1 , Line 2 is replaced by Figure 2, Lines $8,9,10$. This changes every floating-point variable from double precision to multiple precision, which in this example is the equivalent of 62 decimal places as specified by the number 16 appearing in Figure 2, Lines 4 and 78.

Figure 1, Line 4 is replaced by Figure 2, Line 14 . This replaces the double-precision value of the constant π by its 62-place multiprecision

[^3]
FIGURE 2. The runstream modified for multiprecision

36

atI
-IN

20.
IS
ORM1
MDA
AMDA

AMDAIIMP.MPINIT/MP16
 FORM16
 .5D8 1.0D0

execution.

value. If this were not done, then errors in the 18 th decimal place would enter the multiprecision calculation, thereby invalidating it. The effect is the same when a single-precision constant inadvertently enters a doubleprecision calculation.

Figure 1 , Lines $5,6,7$ and 8 read input values and print them out. The values used in the multiprecision calculation should be identical. The transformed code appearing in Figure 2, Line 7, 15-20 accomplishes this. The technique simply introduces new double-precision variable names for the input variables and establishes the multiprecision equivalents by means of the assignment statements in Figure 2, Lines 16 and 17. The input and output conversion is done by System I identically in Figures 1 and 2. The establishment of multiprecision equivalents by assignment is done exactly if the MP package is working in a base that is a power of two (which it is if the techniques presented here are used).

Output of numbers which will be represented in multiple precision is indicated in Figure 1, Lines 22,31 and 48 according to the format of Line 53. The transformed code appearing in Figure 2, Lines $12,34,35,44,45,62,63,68$ accomplishes the corresponding multiprecision output. The technique introduces a new storage vector of length 64 , equal to one storage location for each of the 62 decimal digits plus one for the sign and one for the decimal point. See Figure 2, Line 12. The MP subroutine MPOUTE encodes the fraction part of a single multiprecision number by storing these 64 symbols into the storage vector, and the exponent part of the multiprecision number into an integer storage location. Output of the resulting decimal-encoded number is controlled by the transformed FORMAT statement appearing in Figure 2, Line 68. Minor variations on this technique will permit some degree of flexibility, such as the printing of two columns of numbers instead of one. It should be
noted that the role of the number 64 would be played by 45 if we were working to 43 decimal places.

One final modification of the original code must always be done. It is the insertion of the statement INITIALIZE MP as the first executable statement of the transformed program; see Figure 2, Line 13.

The result of processing the transformed runstream of Figure 2 using System I is shown in Appendix B. We see that the printed output of the AUGMENT precompiler consists of the listing of the "description deck" for the MP package (introduced by Figure 2, Line 4) followed by a commented version of the original FORTRAN source. In our example the only comments are indications of occurrences of mixed-mode operations. If there were any errors detected by AUGMENT, they would be identified here by comments. As stated earlier, the legitimate FORTRAN code produced by AUGMENT is stored as part of a system runstream in File 20. This runstream is initiated in Figure 2, Line 75, and it results in the invocation of the FORTRAN V compiler. The compiler output clearly shows the expansion of FORTRAN expressions into lists of subroutine calls on the MP package. Following this is the output listing of the MAP processor and, finally, the multiprecision results of execution of the program.

Appendix C shows the computer-generated accounting information for the original runstream of Figure 1 and the transformed runstream of Figure 2. We observe factors of 7.66 in Total Time, 24.76 in CPU Time, 7.98 in Core Block Seconds, and 2.74 in Total Run Cost.

V. SUMMARY AND CONCLUSIONS

Interest in multiprecision computing has existed since the earliest days of modern computing. This interest has led to many implementations of multiprecision programs. But only recently have truly general-purpose software packages of high quality been developed. We have seen three representative examples of earlier attempts to produce software of high quality, namely the packages of Lawson, Peavy and Maximon. Then we considered the package of Wyatt, important for its thoroughness and completeness as well as its stimulation of the precompiler of Orser. The close connection between compilation processes and multiple-precision computation was joined in actual software. Finally, we considered the package of Brent, the most advanced multiple-precision package known to this author. Not only is it built on a firm theoretical foundation, it also employs disciplined coding techniques that ease the burden of making additions, corrections and modifications. Furthermore, it is distributed with a user's guide, installation instructions, test programs, and an interface which enables the use of the precompiler of Crary, all on the same source magnetic tape. For these reasons and the fact that it is actively supported by its author, the use of Brent's package with Crary's precompiler is to be recommended for most applications of multiple-precision arithmetic. However, the use of Brent's package with Orser's precompiler is an alternative that should be investigated.

It should not be considered, however, that Brent's package leaves nothing to be done. Additional mathematical functions could be added to the present repertory, which includes in addition to the FORTRAN library functions a limited complement of special functions (Bessel's function of the first kind, Dawson's integral, exponential integral, error function, complementary error function, gamma function, logarithmic integral, log gamma function). Improved
algorithms for these functions could be implemented. A more fundamental modification of Brent's package would be to extend the MP number representation so that an arbitrary number of words could be used for the exponent part as well as the fraction part. Presently, only one word is used for this purpose. Such an extension would make it possible to design algorithms in which under flow and overflow can always be avoided. Although exponents of one word are satisfactory for many applications, current research in algorithms at NBS and elsewhere is being hampered right now by this limitation. Finally, we note that Brent's own future development of the $\mathbb{M P}$ package seems to be centering on the provision of an interval arithmetic capability.

Another important activity for the future would be to develop micro-coded "instructions" for multiprecision operations on a micro-codable computer. This would speed up multiprecision computations on that computer but the major purpose would be to gain additional knowledge about arithmetic processes in general. For example, one could attempt to build an efficient system for com puting with base, precision, and range completely under the control of the programmer. The system would be a prototype for future developments in the design of arithmetic units for general-purpose computers. It also would have an influence on future compiler requirements. The resulting freedom from unnatural restrictions on the precision and range of floating point numbers would be a real benefit for designers of numerical algorithms and subroutines.

1. Brent, R. P. A FORTRAN Multiple Precision Package, ACM Transactions on Mathematical Software, Vol. 4, No. 1, March 1978, Pages 57-70.
2. Brent, R. P. MP User's Guide (Third Edition), Technical Report TR-CS-7908, Department of Computer Science, Australian National University, Box 4, Camberra, ACT 2000, Australia (December 1979).
3. Clenshaw, C. W. and Olver, F. W. J. An Unrestricted Algorithm for the Exponential Function, SIAM J. Numer. Anal., Vol. 17, No. 2, April 1980.
4. Crary, F. D. A Versatile Precompiler for Nonstandard Arithmetics, ACM Transactions on Mathematical Software, Vol. 5, No. 2, June 1979, Pages 204-217.
5. Hull, T. E. Desirable Floating-Point Arithmetic and Elementary Functions for Numerical Computation, Proceedings of the 4 th Symposium on Computer Arithmetic, October 25-27, 1978, Santa Monica, Calif., sponsored by the IEEE Computer Society in cooperation with the UCLA Computer Science Department.
6. Knuth, D. E. The Art of Computer Programming, Vol. 2/Seminumerical Algorithms. Addison-Wesley Publishing Co., Reading, Massachusetts, 1969.
7. Lozier, D. W.; Maximon, L. C.; and Sadowski, W. L. Peformance Testing of a FORTRAN Library of Mathematical Function Routines--A Case Study in the Application of Testing Techniques, J. Res. NBS, Vol. 77B, Nos. 3/4, JulyDec. 1973.
8. Maximon, L. C. Fortran Program for Arbitrary Precision Arithmetic, NBS Report 10563, April 1, 1971.
9. Wyatt, W. T., Jr.; Lozier, D. W.; and Orser, D. J. A Portable Extended Precision Arithmetic Package and Library with Fortran Precompiler, ACM Transactions on Mathematical Software, Vol. 2, No. 3, Sept. 1976, Pages 209-231.

APPENDIX A

Summary of useful MP routines, taken from the MP User's Guide (Third Edition), R. P. Brent, The Australian National University.

1.5 Summary of useful MP routines

We mention here the names of those MP routines which are likely to be of interest to someone using the MP package without the aid of the Augment interface. Routines which are called by other MP routines but are unlikely to be called directly by a user of the package are omitted. For the user of Augment, the summary given in Section 5.2 will be more useful. Details of all MP routines may be found in Section 6.

Basic arithmetic
MPADD, MPADDI, MPADDQ, MPDIV, MPDIVI, MPMUL, MPMULI, MPMULQ, MPREC, MPSUB

Powers and roots
MPPWR, MPPWR2, MPQPWR, MPROOT, MPSQRT

Elementary functions

MPASIN, MPATAN, MPATN2, MPCIS, MPCOS, MPCOSH, MPEXP, MPEXPY, MPLG10, MPLN, MPLNI, MPLNS, MPSIN, MPSINH, MPTAN, MPTANH

Special functions

MPBESJ, MPDAW, MPEI, MPERF, MPERFC, MPGAM, MPGAMQ, MPLI, MPINGM

Constants

MPBERN, MPEPS, MPEUL, MPMAXR, MPMINR, MPPI, MPZETA
Input and output
MPFIN, MPFOUT, MPIN, MPOUT, MPUNFR, MPUNFW
Conversion
MPCAM, MPCDM, MPCIM, MPCMD, MPCMDE, MPCMI, MPCMR, MPCMRE, MPCQM, MPCRM

Comparison
MPCMPA, MPCMPD, MPCMPI, MPCMPQ, MPCMPR, MPCOMP, MPEQ, MPGE, MPGT, MPLE, MPLT, MPNE

General utility routines
MPABS, MPCEIL, MPCHEB, MPCHEV, MPCMF, MFCMIM, MPDIGS, MPDIM, MPFLOR, MPGCDA, MPGCDB, MPINIT, MPMAX, MPMIN, MPMOD, MPNEG, MPPACK, MPPARA, MPPARB, MPPOLY, MPSETR, MPSET2, MPSIGN, MPSTR, MPUNPK

Example and test programs
EXAMPLE, JACOBI, TEST, TEST2

APPENDIX B

The result of processing the runstream shown in Figure 2 on System I.

01000 Vdd

 0
9
8
8
4
4
 0
0
8
8
4
4 0
8
8
4

4 | 9 |
| :--- |
| 8 |
| 0 |
| 4 |
| 4 | 0

0
8
8.
B

ì | -8 |
| :--- |
| 8 |
| 8 |
| 8 |
| 4 |
| 2 |

 08100 VdJ 0
\pm
0
0
0 8
8
8
8
8 20
9.8
8.8
6
 NPAOO 190

MPA00200
MPA002 10
$06 \pi 00 \mathrm{~V}$ d
08.600 V dل

0
${ }_{1}^{2}$
0
0
0
4 9
0
0
0
0
0
6 8
0
8
8

6 | C |
| :--- |
| N |
| 운 |
| 0 | 0

6
0
6
4

4 | 0 |
| :--- |
| 0 |
| 8 |
| 8 |
| 8 | MPA00300

 OEcOOV JN

*DESCRIBE MULTIPAK

COMRIENT AUGMENT DESCRIPTION DECK FOR THE NULTIPLE-PRECISION
IN 'TEE MAIIF PROGRAM. ASSURTEG TBAT NULTIPLE PRTCISION NUMBERS INITIALIZE MP
IN THE NAII PROGRAM.
THIS DEGCRIP'TION DECK PRECISIGN NOT EXECEDING ABOUT 43 DECIMAL PLACES. FOR THIS, GEE COMHENTG IN ROUTINE NPINIT FOR THE PTETLOD OF CHANGING THE PRECISION OR ADAPTING TO A MACHINE WITII WORDLENGTH OTHER THAN 36 BITG, AND ALSO REGARDING DECLARATION OF BLANK CORIMON DECLARE INTEGER(6), KIND SAFE SUBROUTINE, PREFIX AIPK SERVICE COPY(STR) شDEGCRIBE HULTIPLE DRCLARE INTEGER(16), KIND GAFE SUBROUTINE, PREFIX NP OPERATOR + (, FULL UNARY, PHV, 8), - (NEG, UNARY), (NUL)
 . EQ. (EQ, BINAITY, PRV, B, LOGICAL, CONM), .NE. (NE), .GE. (CE, , , , HONCOHM), .GT. (GT), .LE. (LE), .LT. (LT) MPSIGA (SIGA, INTEGER) EXPON (EXPA, EXPB), BASE (BASA, BASB), NUPIDIG (DIGA, DIGB), NASUSXP (NCKA, NEXB), DICIT (DGA, DGB, (\$, INCEGER))
©XQT AMDAI*AUGIENT. AUGMENT
 MPA00550
MPA00560

9
©
8
©
定

NPA00610
IIPA00620 0E900V dN MPA00640 MPAOO650
NPAQ0660

CONVEPSION CTM (CDM, DOUBLE PRECISION, I, UPWARD),

*DESCRIBE INITIALIZE
DECLAIE INTEGER(1), KIND SAFE SUBROUTINE, PREFIX MPI

SERVICE COPY (STR), INITIAL (NIT)

COMNENT END OF AUGMENT DESCRIPTION DECK FOR IIP PAGKAGE
*BEGIN
111 READ (5,666, END $=4000)$ RALPHA, RR ALLPIA $=\mathrm{RAL}, \mathrm{PHA}$
MIITE (6,777) RALPHA, RR
777 FOHPIAT (1X, 6 MALPHA $=, 58.4,10 \mathrm{X}, 2 \mathrm{FR}=, \mathrm{FB} .4$)

FLK $K=K$ ($2, D \neq F L K+1, D 0-2, D 0 * A R) * F(K+1)-F L K * F(K)) /(F L K+1, D 0)$

D0
 D0-2. D0*AR
 $$
\begin{aligned} & == \\ & == \\ & \mathrm{K}= \end{aligned}
$$
 $K=1, \mathrm{NMI}$

$D 0 \% A R+2 . D 0 \% A R * A R$
ε
$=====$ MUXED MODE OPERANDS ACCEPTED
$=====$ HXED
D0 $20 \quad K=2, I V M 1$
G(IK+1)=F
CON'IIVUE
20 LON N N
CALL MPOU'EE(C ($K K)$, MPFRA, MPCIR, 64)
WRITE(6,
WRITE(6,2000)
$W(1)=0 . \mathrm{D} 0$
$W(1)=0 . D 0$
$D O \quad 100 \quad I=0$
FLI $=1$
$13=1 \mathrm{FLI}$ 水 P / $/ \mathrm{FLN}$
CGIS= PHCOS (B)
$W(2)=2 . D 0 \%(1 . D O+C S B-A R)$
$=====$
$=====$
HKED HODE OUETANDS ACCEPTMED $==::=$
no $30 \mathrm{~K}=1, \mathrm{NH}$

\qquad 000001 000001 ㅂ
B
0.
0.8
8. 7.6
9.8
9.8
888 2.
88
88
88 000001 -8
8.8
98
9.8
9 000004 0
38
8.
8
8 000017
 000036 000336
 000047 060057 11
90
0.8
8.8
8.8 N1
0.
0.
0.8
8. 18
8
8
8
8 29
3
3
3 $=15$
8.8
8.8 8 4
9
9
8
8
8
8 9
9
8
8

㟥 $\begin{array}{lll}0001 & 000177 \\ 0001 & & 000513 \\ 0000 & & 004336 \\ 0000 & 1 & 000253 \\ 0000 & 1 & 001573 \\ 0000 & 1 & 000042 \\ 0000 & 1 & 000144 \\ 0000 & \mathrm{D} & 000147\end{array}$

000010111 L

 000415 223G \qquad 000333 F00004.4 MPFRA PI
0001
\square

魚

 z

总

กิลิิลิ
ลู่ $\widehat{6}$

等手泉

012071	012436
012437	012555

014051014246
014247014371
gevtio＝2eflo
014436014501
014502014631
014632014660
Itzalo 199010

FORCOHS／FORFTN S－I KWUOU／ELNNON NFMTB／FOR－E3 NBDCVE／FORSRI－E NOUTO／FORAR1－E NIOERS／FOR＋AI－E NOBUFS／FUR62
SINCOSO／FOll－E3 NEXP 1 S／FOŔ8
 NERR3／FOR4R1－E

 IPADDQ IIPSIIN IIPCMI IIPMLY MPCMI MPCOITP MPADDI MPCLR

08 NOV $78 \quad 19: 50: 55$ SE：28：0G 82 AON 80 6\％：91：0Z 82 10 N 80 08 NOV 78 19：59：40 | N |
| :--- |
| $\ddot{\sim}$ |
| $\ddot{\circ}$ |
| $\ddot{0}$ |
| | 19

$\ddot{+}$
0
$\ddot{0}$
©
 I G：88：07
 03
0
$\ddot{6}$
$\ddot{4}$
$\ddot{0}$
$\underset{N}{1}$ \ddot{i}
$\ddot{\theta}$
\ddot{i}
$\ddot{\theta}$
\ddot{n}
 oे
$\ddot{0}$
in
$\ddot{0}$
$\dot{0}$ 6
19
\ddot{O}
0
$\ddot{9}$
0 0
0
0
0
\vdots
\ddot{i}
0
0 $\underset{~}{4}$
$\ddot{~}$
$\ddot{0}$
Q Q
N
$\ddot{9}$
ị
$\ddot{\theta}$
\square 0
$i \theta$
0
0
0
$\ddot{9}$

0 | 69 |
| :--- |
| 10 |
| \ddot{n} |
| 0 |
| $\ddot{\theta}$ | 19

$\ddot{-1}$
0
$\ddot{0}$
0 $\dot{\square}$
$\ddot{+}$
$\ddot{0}$
© 9
\dot{N}
$\ddot{0}$
0
$\ddot{0}$
$\ddot{0}$
0 19
17
$\ddot{6}$
$\ddot{0}$
$\ddot{0}$ $\stackrel{0}{-}$
$\ddot{0}$
$\ddot{0}$
$\ddot{6}$ $\ddot{19}$
$\ddot{0}$
$i g$
\ddot{a}
i 9
6
$\ddot{0}$
\square
\ddot{a}
\ddot{a} 30：88：07
 82 MON 80
08 日GJ GG $82 \Lambda 0 N 80$ 08 NOV 78 08 NOV 73 08 NOV 78 08 NOV 73 08 NOV 78 08 NOV 78 08 NOV 78 08 NOV 78 044662 O4．4667

冬

 290S\％8009\％0

 0
4
6
40
0
0
0
0
0
0 2SZSb0 I SGSG0
NOUNODSTNFTG NONIVODSANVTG N
0
6
0
0
0
2
1
6
19
10
0

 न
N
0
0
0
9
9
0
0
0
0

 19
0
0
0
0
0
0
0
12
4
6
6 0
30
0
0
0
0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
6
9
0
0
0
0 0
0
0
0
0
$=$
10
0
0
0
0 BLANKSCONINON 19
0
0
0
0
5
0
0
0
0
0 19
2
0
0
0
0
0
0
0
0
0
0
0
0
 6
6
0
0
0
0
0
0
6
0
 9
0
0
0
0
0
0
0
3

 697，9\％0 86．69\％0

 $01 \% 662029763$ | $\overrightarrow{0}$ |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 | 021062021641 021642022223 022224022453 023454022635 022636023332 023333023452 023453023522 023523023553 023534023645 623646023734 023735621216 $024217 \quad 024334$ 024335024367 $8 \% 0260098 \% \%$

 $\mathrm{NH}^{3} \mathrm{CH} K$ HTYNEG MPEXP 1 4
8
8
2
2边家 ㄹ e気号
n
2号 MPERFL（
HPERA MPCHPI MROUT2 ITSTR M ${ }^{\prime}$ LXP MPCHEF MIPSET MIPCH： IPDIVI HPEST MPMAXK MPOVIL MPGCD $\mathrm{Ml}^{3} \mathrm{COM}$ M以 AITL HIPD
HPUMTL

2S：bE：60	08 घVW 91
EE： $6 \boldsymbol{7}$ ： 81	68 XVK 9I
91：9E：II	08 YVL 20
砢：17：61	82 $10 N 80$
8S：8E：06	82 $10 N 80$
29：87： 61	82 10 N 80
81： 60 ： 61	82 AON 80
S9：19：6I	82 MON 80
दZ：28：0\％	82 MON 80
	$82 \Lambda 0 N 80$
06： $28: 07$	82 10N 80

BLANKSCOMTHON
 BLANKSCOFPION
云 04631604.6463気 6
0
0
0
0
0
0
0
0
0
4
4
0
0

 $\stackrel{1}{4}$
0
0
0
0
0
12
0
0
0
0准 N
0
0
0
0
0
0
0
10
12
0
0
0 N 0
0
0
0
0
资 0292気 8899＊0

 054123054132
BLANKSCOMMON

ิิิิิิิ范

024544	024573
024574	024751
024752	025355
025356	025456
025457	026053
025054	026322
026323	026526
026527	026555
026556	027060
027061	030023
030024	030042

IPCDH

LLANKECOMMON（ COMMONBLOCK）	
FOMH16	$\$(1)$
IPINIT／MP16	

MPPKR
MPADD
MPCDM
MIPADIU
MPADD2
SYSO＊RLIBG LEVEL
EHD MAP．ERRORS ：NONE

[^4] 1－
 96

 Nิ
 3126 4731 3420 3720272

ล1 N W N N N N N N N

 599259210606I S180026 22 む O 69 Sis To N กํ ＋ 26も 6 인 N ต゙ロ

 4

 단

9902

 OO

APPENDIX C

Accounting information from actual execution of the runstream shown in Figure 1 on System I, and from actual execution of the runstream shown in Figure 2 on System I. The printed output of the latter execution appears in Appendix B.

RUNID: LOZIO1 ACCT: 35650-LOZIER
PROJECT: CNSLTT CBS: 00000430.844 I/0: 00:00:02.735 WAIT: 00:00:00.000 11
TINE: TOTAL: 00:00: 10.264
CPU: 00:00:02.610
CC/ER: 00:00:04.918
READ: 0 PAGES:
infaces read:
TAPE DRIVES: 0
MOURTS: 0
FIN:
18:39:39 MAY 16, 1980
***********U1108I******* APPROX. RUN COST $* *$ I/0:8 0.16 CC/ER:\$ 0.30 0.77 0.16
PRIORITY: N INPUT DEVICE: @@@@ST (DISCOUNT APPLIED)
SURCIARGRS: RUN: 80.25 PRINT: $\$ 0.25$
(PRINT/PUNGH CHARGES ASSURE PRINT/PUNCH IAS OCCURAED)
(30\% DISCOUNT ALL JODS THRU 09/30/30)
RUNID: LOZI03 ACCT: 35650-LOZIER PROJECT: CNSLT
CBS: 00003436.727 1/0: 00:00:05.692 WAIT: 00:00:00.000 18 TOTAL: 00:01:18.649 CPU: 00:01:04.635
CC/ER: 00:00:08.321
lHAGES READ: 0
TAPE DRIVES: 0
START: 18:49:02 MAY 16,1980

TIHE:

FIN: 18:51:11 MAY 16,1980

INAGES READ: © 0.00 Pageg: © 1.26 TAPES: § 0.00
INPUT DEVICE: ©@®@ST (DISCOUNT APPLIED)
SURCLIARGES: RUN: 80.25 PRINT: 50.25
(PRINT/PUNCH CHARGES ASSUHE PRINT/PUNCII HAS OCCURRED)
(00% DISCOUNT ALL JOBS THMU $09 / 30 / 80$)

U.S. DEPT. OF COMM. bibliographic data SHEET	1. PUBLICATION OR REPORT NO. NBSIR 80-2138	2. Gov'L Accession No	3. Recipentys Accession No.
4. TITLE AND SUBTITLE Multiprecision Computing at NBS: Yesterday, Today, and Tomorrow			5. Publication Date October 1980
			6. Perlorming Organization Code
7. AUTHOR(S) Daniel W. Lozier			8. Performing Organ. Report No.
9. PERFORMING ORGANIZATION NAME AND ADDRESS NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, DC 20234			10. Project/Task/Work Unit No.
			11. Contract/Grant No.
12. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (stroot, City, State, ZIP)			13. Type of Report \& Period Covered
			14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

\square Document describes a computer program; SF-185, FIPS Software Summary, is attached.
16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.)

Multiprecision computing is a technique by which arithmetic operations may be performed on a computer to precision levels that are higher than the directly supported single and double precisions. The last ten years have seen the development of portable Fortran software of very high quality that essentially duplicates all the capabilities of standard Fortran, so that an existing standard Fortran program can be re-executed to arbitrarily high precision. In this paper some of the design techniques for such software, which have evolved at NBS and elsewhere, will be discussed. Methods for using the software presently available at NBS will be described, and a complete example will be given. Directions for further extensions and improvements will be indicated.
17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolons)
AUGMENT and MP; Fortran arithmetic extensions; multiple precision; multiprecision Fortran software; multiprecision mathematical functions; precompilers for special arithmetic.
18. AVAILABILITY X UnlimitedFor Official Distribution. Do Not Release to NTISOrder From Sup. of Doc., U.S. Government Printing Office, Washington, DC 20402, SD Stock No. SNOO3-003-
X Order From National Technical Information Service (NTIS), Springfield, VA. 22161

19. SECURITY CLASS (THIS REPORT) UNCLASSIFIED	21. NO. OF PRINTED PAGES
20. SECURITY CLASS (THIS PAGE)	52
UNCLASSIFIED	$\$ 7.00$

[^0]: *The representation of $M \mathbb{P}$ numbers will be discussed in the next section of this report.

[^1]: See American Standard FORTRAN, X3.9-1966, published by American Standards Association, Inc., now superseded.

[^2]: *It is necessary to assume some familiarity with certain system aspects of UNIVAC 1100 Series computers. No attempt will be made here to define the many terms, such as "files", which have precise technical definitions peculiar to these computers. Reference: UNIVAC Series 1100 Executive System, Vol. 2, EXEC Level 36R2 Programmer Reference, UP-4144.23, 1979, or successor, published by Sperry Rand Corp.

[^3]: *The procedures to be described here are suitable for use with the 1978 version of Brent's package. In 1980 an updated version appeared in which more powerful input/output subroutines support noticeably simpler procedures. For further information, contact the author of this report.

[^4]: 0.000000000003050006200 E 0

