NBSIR 80-2107

Mathematical Modeling of Fires

R. S. Levine

Center for Fire Research
National Engineering Laboratory
National Bureau of Standards
U.S. Department of Commerce
Washington, DC 20234

September 1980
Final Report

80-2107
1980
c. 2

MATHEMATICAL MODELING OF FIRES

R. S. Levine

Center for Fire Research
National Engineering Laboratory
National Bureau of Standards
U.S. Department of Commerce

Washington, DC 20234

September 1980

Final Report

U.S. DEPARTMENT OF COMMERCE, Philip M. Klutznick, Secretary

Luther H. Hodges, Jr., Deputy Secretary
Jordan J. Baruch, Assistant Secretary for Productivity, Technology, and Innovation
NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

TABLE OF CONTENTS

Page
LIST OF FIGURES iv
Abstract 1

1. PART I 1
2. PART II 3
3. PART III 5
4. REFERENCES 7
APPENDIX A 18
APPENDIX B 24
APPENDIX C 33

LIST OF FIGURES

Page
Figure 1. Schematic of the enclosure, showing mass fluxes in and radiative fluxes to the target from layer and flame 9
Figure 2. Computer fire code - main program 10
Figure 3. Subroutine vent 11
Figure 4. Path of flame spread 12
Figure 5. Diagram of a compartment fire 13
Figure 6. Typical wide-body transport aircraft cabin arrangement 14
Figure 7. Flame spread on seat group 1 at 100 seconds 15
Figure 8. Steering committee organization 16
Figure 9. Benefits - mathematical models of fire 17

MATHEMATICAL MODELING OF FIRES

R. S. Levine

Abstract

This presentation has three technical parts, and ends with audience participation and recommendations. First, a brief discussion of fire growth in a compartment is presented, showing why we need full scale tests, or a mathematical model adequately simulating such growth. The second part of the talk describes what several Federal agencies and their grantees are doing to bring about the necessary engineering and mathematical capability for this modeling. The third part illustrates some problems that may be of interest to fire protection engineers that can be solved relatively simply by using fragments of the modeling capability now available.

Then a discussion was held with the audience to determine modeling needs. Should we provide a series of simple models, each applicable to a limited range of problems, or a major comprehensive model, accessible from a computer terminal, that will solve a very wide range of problems? The audience decided both were needed.

Key words: Fire; fire engineering; fire safety; mathematical modeling; modeling application.

1. PART I.

Modeling and the Compartment Fire.
Figure 1 [1] ${ }^{1}$ is an illustration of the processes occuring in a fire in a compartment with an opening in it. The fire over the burning object generates a plume of hot gas that entrains air, M_{i}, from the lower layer, and adds a flux of hot, partly unburned gas, $\stackrel{M}{p}_{p}$, to the hot ceiling layer. Early in the fire, before the ceiling layer has grown below the doorway height, H_{i}, unburned air flows out the doorway to make room for the hot, lower density gas in the ceiling layer. Later, for a short time, both hot ceiling layer gas and unburned air flow out the doorway; then as the ceiling layer approaches the thickness h_{L}, ceiling layer gas flows out and outside air flows in. At the neutral axis, the pressure outside the room and inside are equal. Buoyancy forces cause the pressure above the neutral axis inside the room to be greater than the outside pressure, and lower than the outside pressure below the neutral axis.

The flow of the ceiling layer to the exterior is of key concern to the safety of the rest of the structure, since this is the source of smoke and toxic gases. The other rooms in the structure are generally made untenable by smoke obscuration or toxicity before they are untenable due to heat [2].

[^0]As figure 1 indicates, the processes within the room react on each other. Thermal radiation from the fire and the hot ceiling layer, and the upper walls and ceiling affect the burning rate (of the outside surfaces) [3] of the burning object, and also heat up other objects in the room, shown here as a "target", until they may eventually ignite. If the flame is spreading, the rate of flame spread, as well as the rate of burning of already ignited surfaces will be affected by the preheating due to this radiation [4].

The plume above the fire and its entrainment of lower layer air is, of course, affected by the burning rate of the fire, which in turn is affected by the thermal radiation, the vitiation of the oxygen content of the lower layer air caused by mixing between the two layers (not shown in figure 1), and drafts due to M_{i}. The upper layer gases are cooled by convective heat transfer to the ceiling and upper walls, and this cooling can have a significant influence on the temperature of the upper layer, hence its radiation, and hence the growth rate of the fire.

These interactive effects cannot all be scaled simultaneously in scale models. Particularly thermal radiation, which depends on the optical path length through the hot gases, and the plume entrainment, which depends on the size of the plume, its height, and combustion in it, are difficult to scale.

So the Fire Protection Engineering Fraternity is rightly skeptical of small scale tests, and has confidence only in realistic full scale tests. These, however, are expensive and difficult to carry out. Reliable, validated mathematical models would be valuable either to extend the results of full scale tests to see the effect of desired changes or to avoid the necessity of the test in the first place. Since the mathematical model must reproduce the interactions described above, where each process is affected by the other processes, it consists of a set of mathematical equations that must be solved simultaneously, and usually iteratively, and is only practically done on a computer.

There are two kinds of fire compartment models being developed today. The most useful currently are "control volume" models. In these the room and its contents are divided into lumped thermodynamic control volumes, with heat, mass, and momentum balance equations written for each. In figure 1, control volumes are: the burning object, the plume above it (up to the upper layer), the upper layer, the lower layer, the heated walls and ceiling, and the heated surface of the target. Of course, as these are further subdivided into control volumes, the program becomes more versatile and more complicated.

As previously mentioned, in practice these calculations must be done by computer. I shall illustrate the process with some slides from the Harvard Computer Fire Code II [5]. Two of the subprograms that are used with the overall major program are shown in figures 2 and 3. The main
program, figure 2, records the input data describing the room and the objects in it, physical constants, etc., and then, for a particular time, t , calculates the various flows, burning rates, radiation fluxes, etc., based on values extrapolated from the previous time step. Then it adjusts these values by an iterative (loop) process until they all balance properly (converge) for the time step. Then it moves ahead one time step and repeats the process. Figure 3 shows one of these subprograms which calculates the flow through the opening, which in turn calls whichever calculational method is needed for the state of the ceiling layer at that time.

The newer computer model [6] bears only an evolutionary resemblance to what I have just described. It is designed to make the convergence process more efficient in respect to computer time, so it scales all variables to within -1 and +1 , does the mathematics, and rescales them to real values. It is hoped that to the user the architecture of the program will be of little concern. He should be able to use the program by typing English words into a terminal.

For the control volume modeling to be accurate requires the wise selection of control volumes. If the air and ceiling layer flows are complex, involving mixing and recirculation in unpredictable ways, "Field Modeling" may be used. The compartment is divided into a rectangular grid, and the conservation equations are written for each grid cell. The resulting set of equations together with boundary conditions is solved, as a function of time, on a computer and the mathematics predicts the flow field as it varies with time. Combustion and radiation can be approximated, but the approximations required to obtain solutions in a reasonable amount of computer time are of doubtful validity. Three-dimensional effects can be calculated in only a few specialized cases with today's computer capability.

Flow from room to room (figure 4) is only beginning to be attacked [7,8]. The problem is not simple since varying amounts of entrainment and mixing between the ceiling layer and the lower layer occur, especially where the flow has to change direction, such as at a doorway. Also, the ceiling flow is cooled by heat transfer, both convective and radiative. The ceiling layer in the second room may well have substantially greater mass flow, but be cooler and more dilute in smoke and toxic gases than the flow leaving the room of origin.
2. PART II.

The Agency Role.
Several agencies are concerned with developing mathematical modeling capability for their responsibilities in fire safety. The Japanese Building Research Institute took an early lead in this [9,10]. They paid particular attention to the radiative ignition and spread of fire on walls and other surfaces, which reflects their concern with this problem in Japanese housing. Figure 5, from reference [9], shows this fire spread concept.

In this country, Professor Emmons and his co-workers at Harvard University [1,11] have generated the most comprehensive computer program. This work has been done in close collaboration with Factory Mutual Research Corporation (see for instance reference [12]), and is continuing under a research grant from the National Bureau of Standards (NBS).

NBS is carrying out other work, both in-house and by grant. Dr. James Quintiere $[3,13]$ has developed a series of quasi-steady state models, one of which will be used in part III of this paper. Research on the various processes important to these models is carried out both in-house and at universities and other research institutions funded by grants from the NBS Center for Fire Research. These processes include plume combustion and entrainment, thermal radiation from soot, convective heat transfer in the ceiling layer, flame spread and ignition as affected by thermal radiation, flow through openings and from room to room, and smoke toxicity. As better information from this research becomes available, it will be incorporated in new versions of the computer programs.

The Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA) are cooperating in a comprehensive program to use modeling to achieve aircraft fire safety. Both the effects of a fuel pool fire outside a crashed aircraft and fire within the cabin are subjects of mathematical modeling efforts. The major aircraft control volume modeling effort (figures 6 and 7) is being carried out by the University of Dayton Research Institute [14], with confirmatory fuselage fire testing done in-house by the FAA, by NASA, and their grantees. Field equation modeling is being applied to the pool fire problem and to the flow of gases down the long narrow fuselage (a mixed ceiling layer cannot be assumed). The Naval Research Laboratory is similarly concerned with modeling compartment fires.

Other work is being done at the Illinois Institute of Technology Research Institute [15,16] with special reference to the burning of furnishings in a compartment prior to flashover.

Obviously it is advantageous to all concerned to provide a vehicle for these various contributors to cooperate and benefit from each other's efforts. The Ad Hoc Group on Mathematical Fire Modeling has therefore been formed. Its composition is shown in figure 8. The Group is divided into three subcommittees.

The Synthesis, Models and Scenarios Committee is chaired by Professor Howard Emmons of Harvard University and is in turn divided into two subcommittees. The subcommittee on User's Needs is chaired by Mr. Irwin Benjamin. Its duties are to impact the development of the final program or programs so that they will be of maximum benefit to the users. This can be accomplished by advising the modelers what to calculate, and later to facilitate user adoption of the validated programs. The
subcommittee on Programs is chaired by Dr. James Quintiere of NBS. Its goal is to arrive at a program, or set of programs, that fit the most important fire scenarios.

The Committee on subprograms, under Dr. John deRis of Factory Mutual Research Corporation, is concerned with developing and validating subprograms, such as models of ignition, flame spread, air and product gas circulation, etc. These subprograms will be improved by using the results of research programs at various universities, government laboratories, and other organizations, when cast in mathematical form.

The Definition and Coding Committee, under Dr. John Rockett of NBS, selects standard computer nomenclature and standard formats for both the program and the subprograms, and for full scale testing. The latter will make it possible for all of the investigators to use data from full scale tests carried out at various institutions.

I am Chairman of the Steering Committee, which consists of representatives of the funding agencies and the three Chairmen. The funding agencies will cooperate as best they can to facilitate the most important portions of the work.

Berrefits expected from the validated programs are listed below and in figure 9 in the order of expected fulfillment.

The first benefit is to permit the results of full scale tests to be extended to other conditions, resulting in an increased body of knowledge of the importance of various parameters, especially early in the fire.

The second benefit is to allow us to direct our research resources to the most important research areas. Sensitivity analyses of the programs show which subprograms are really important, rather than merely technically interesting.

The third benefit will be to allow us to develop meaningful fire safety property tests. Those now in use are generally based on the intuition of practitioners, and their applicability is sometimes in doubt.

The fourth, and major benefit, is to provide a new quantitative tool for the development of design criteria applicable to fire safety in rooms, room-corridor combinations, and buildings, in both early and late stages of fire.

3. PART III.

This portion of the paper is intended to illustrate how some of the information developed to date in the mathematical modeling effort can be used, using nothing more complicated than algebra, to solve fire protection problems that would have been nearly impossible a few years ago. Presented as appendices to this paper are samples of the application of computer modeling to solve two problems.

Appendix A is an attempt to calculate the upper layer depth in a closed room (leak under the doorway) as a function of the amount of material burned. The actual complete calculation would have been quite complex, since the upper layer is formed by both the combustion products and the air they entrain in the plume. The entrainment, in turn, depends on the height of the plume between the burning material and the bottom of the upper layer. The correlations developed by Professor Edward Zukoski (on a grant from NBS) were used, and the calculation using his work is straightforward. Prof. Zukoski's publication on this part of his work is appended as Appendix B. In Appendix A, the gas temperature was calculated assuming there was no heat transfer to the walls of the room, and that the leak was in the lowest part of the room. Other assumptions are possible using Appendix B.

Appendix C is a rough estimation of the contribution of a "target" material to the toxicity of the gases leaving a room. The target material is heated by radiation from the hot gases in the ceiling layer. Its pyrolysis gases are assumed to be substantially more toxic than the combustion products of the room fire, but it doesn't decompose until it reaches a relatively high temperature. By that time, the gas flow out of the room from the primary fire is quite large, and only if the exposed area of the target material were large enough to create, say, $1 / 1000$ of this flow, would the target material be a factor in fire safety. The pyrolysis rate of the target material as a function of its temperature is not included in Appendix C, but provision is made for it. This would, of course, require a separate laboratory experiment on the material.

To solve this problem, Dr. Quintiere's relatively simple quasi-steady state "RUNF" computer program at NBS was used to calculate the upper layer height and flowrate and temperature. To the user this is no more difficult than typing the room dimensions, doorway size, and primary fire heat release rate into a terminal. Without the computer program, a great deal of work would be required to obtain these data, which are the basis of the rest of the calculation.

This paper was prepared for presentation to a Society of Fire Protection Engineers' symposium on Systems Methodologies and Some Applications. The audience was asked whether their goals were best met by relatively simple models like those used in the appendices, or a comprehensive model, requiring access to significant computer capability, that would provide answers directly. The consensus was that these practitioners needed both. A calculation that could be examined in detail, as found using a simpler model, would provide their clients more confidence than a number printed by a computer. On the other hand, the full computer model will provide answers that are more accurate and comprehensive than can be obtained practically by simpler models.
［1］Mitler，Henry E．，The Physical Basis for the Harvard Computer Fire Code，Home Fire Project Technical Report \＃34，Harvard Univ．，Division of Engineering and Applied Science，Oct． 1978.
［2］Friedman，R．，Quantification of Threat from a Rapidly Growing Fire in Terms of Relative Material Properties，Fire and Materials，Vol．2， No． 1 （1978）．
［3］Quintiere，J．and McCaffrey，B．，Assessing the Hazard of Cellular Plastic Fires in a Room，June 1979.
［4］Benjamin，I．A．and Adams，C．H．，Proposed Criteria for Use of the Critical Radiant Flux Test Method，Nat．Bur．Stand．（U．S．），NBSIR 75－950 （Dec．1975）．
［5］Emmons，H．W．，Computer Fire Code（II），Home Fire Project Technical Report No．20，Harvard Univ．，Division of Engineering and Applied Physics，Jan． 1977.
［6］Mitler，Henry E．，Users Guide to Computer Fire Code III，Home Fire Project Technical Report No．37，Harvard Univ．，Division of Engineering and Applied Physics，Apr． 1979.
［7］Emmons，H．D．，report to Ad Hoc Committee，Jan． 1979.
［8］Tanaka，T．，A Model on Fire Spread in Small Scale Buildings，in Fire Research and Safety，Nat．Bur．Stand．（U．S．），Spec．Pub1．540， p． 264 （Nov．1979）．
［9］Tanaka，T．，A Mathematical Model of a Compartment Fire，BRI Research Paper 非70，Feb． 1977.
［10］Hasemi，Yuji，Numerical Simulation of Fire Phenomena and Its Application，BRI Research Paper $⿰ ⿰ 三 丨 ⿰ 丨 三 66, ~ J u n e ~ 1976 . ~$
［11］Emmons，H．D．，The Prediction of Fires in Buildings，Seventeenth Symposium on Combustion，p．1101，The Combustion Institute， Pittsburgh，PA（1979）．
［12］Modak，A．T．，The Third Full Scale Bedroom Fire Test of the Home Fire Project，Factory Mutual Research，Nov． 1976.
［13］Quintiere，J．，Growth of Fire in Building Compartments，ASTM Special Publication 614，A．F．Robertson，editor，pp．131－167（1977）．
[14] MacArthur, C. D. and Reeves, J. S., Dayton Aircraft Cabin Fire Mode1, Report No. FAA-RD-76-120,1, June 1976.
[15] Pape, R. and Waterman, T., Modifications to the RFIRES Preflashover Room Fire Computer Model, Final Report IITRI Project J6400, March 1977.
[16] Report of the Ad Hoc Mathematical Fire Modeling Committee, Nov. 1979.

Figure 1. Schematic of the enclosure, showing mass fluxes in

Input Data

——Geometric Constants

- Time Variables
-Call Radiation-RADN
-Call Burn-BURN
-Call Vent—VENT
-Ca!! Plume —PLUM
-Call Layer - LAYR
Call Room—ROOM
Has the time step converged? $\xrightarrow{\mathrm{no}}$ - Criteria for end of calculation $\frac{\mathrm{no}}{\mathrm{n}} \mathrm{t}=\mathrm{t}+\delta \mathrm{t}+$ yes End

```
Figure 2. Computer fire code - main program
```


Figure 6. Typical wide-body transport aircraft cabin arrangement
URFACES
䍘
FLAMING

$$
\begin{aligned}
& \text { BACKREST UPPER } \\
& \text { PORTION } \\
& \text { BOTTOM }
\end{aligned}
$$

BACK AND BOTTOM SEAT SURFACES

STEERING COMMITTEE

\square Fxtend Full Scale Test Results to Different Conditions \square Delineate Important Research Areas
 \square Define Meaningful Fire Tests
 O Generate Design Data

Figure 9. Benefits"- mathematical models of fire

UNITED STATES DEPARTMENT OF COMMERCE National Bureau of Standards Washington, D.C. 20234

APPENDIX A
MEMORANDUM FOR Those Listed
$\begin{aligned} \text { From: } & \text { R. S. Levine, Chief } \\ & \text { Fire Science Division }\end{aligned}$
Subject: Math Analysis of the "Closed Room" Toxicity Test
1.0 Problem Statement

The problem is to estimate whether the final toxic gas in a full scale room test will correspond to the gases in a smaller scale apparatus with the same "loading" (weight of original material per m^{3} of gas volume). We will calculate only the likely results of the full scale room burn.

So: Find the level of the ceiling layer in a room (door closed, leak under the door) as a function of amount of fuel burned (assume wood) at $10,20,30,40 \mathrm{gm} / \mathrm{m}^{3}$ loading, and the gas composition and temperature of that layer. Room $=10^{\prime} \times 10^{\prime} \times 8^{\prime} \mathrm{high}=3 \times 3 \times 2.44 \mathrm{~m}=22 \mathrm{~m}^{3}$. The source is localized, but the products form a ceiling layer that is toxic.

Reference: Zukoski, E. F., "Development of a Stratified Ceiling Layer in the Early Stages of a Closed-Room Fire", Fire \& Materials, Vo1. 2, No. 2, 1978 (R7800406 in FRIS).

Zukoski gives the results of an analysis of the height of the hot gas layer in a room, where the plume below the layer entrains fresh air. The results of the analysis require only arithmetic to use. He shows (part 7 of above) that the rate of heat addition has only a small effect on the layer level when the same total heat addition has been reached. Therefore, we arbitrarily set a burning rate of $0.1 \mathrm{gm} / \mathrm{sec} / \mathrm{m}^{3}$. The results will be applicable to any situation where a major part of the thermal energy is not lost as heat transfer to the walls. This latter problem will be calculated in a future memo.

Let us assume the fuel is wood, $\left(\mathrm{C}_{1} .{ }_{1} \mathrm{H}_{2} \mathrm{O}\right)_{x}$ burned at 80% combustion efficiency. Heat of combustion is about $5300 \mathrm{cal} / \mathrm{gm}$. Fire size per m^{3} is then $5300 \mathrm{cal} / \mathrm{sec}$ at a burning rate of $1 \mathrm{gm} / \mathrm{sec} / \mathrm{m}^{3}$ or ($5300 \mathrm{cal} / \mathrm{sec}$) $(4.187$ watts $/ \mathrm{cal} / \mathrm{sec})\left(22 \mathrm{~m}^{3}\right)=490 \mathrm{Kw}$. So burn at $0.1 \mathrm{gm} / \mathrm{sec} / \mathrm{m}^{3}=$ $49 \mathrm{Kw}=2.2 \mathrm{gm} / \mathrm{sec}=11,700 \mathrm{cal} / \mathrm{sec}$. (Zukowski did most of his work at about $100 \mathrm{Kw)}$. of wood per m^{3}, corresponds to burning $22 \times 10=220$ gms of wood (without loss of product).
2.0 In Zukoski's paper, figure 2, plots $\left(Q^{*}\right)^{1 / 3} \tau=$ vs y
where $Q^{*}=Q / \rho_{c} C_{\rho} T c \quad \sqrt{g H} H^{2}$

$$
\tau=t(\sqrt{\mathrm{~g} / \mathrm{H}})\left(\mathrm{H}^{2} / \mathrm{S}\right)
$$

Height of ceiling layer $=\mathrm{Y}=\mathrm{yH}$
t is time, seconds, for layer to descend to y
H is room Height, meters
S is room area, m^{2}
g is gravitational constant $9.8 \mathrm{~m} / \mathrm{sec}^{2}$

```
Q is heat addition rate from fire, cal/sec
C = original (lower layer) room air specific heat
    = 0.24 cal/gm }\mp@subsup{}{}{\circ}\textrm{K
\rho}\mp@subsup{c}{c}{}=\mathrm{ density of original room air (1.3 x 10 % gm/m
T = temperature of original room air, ( }\mp@subsup{}{}{\circ}\textrm{K
```

Let the room be $10^{\prime} \times 10^{\prime} \mathrm{x} 8^{\prime}$ high

$$
=3.05 \times 3.05 \times 2.44 \mathrm{~m}
$$

Calculation Method - find where layer is in a time corresponding to the burning time of the fuel at $2.2 \mathrm{gm} / \mathrm{sec}$

$$
\begin{aligned}
& Q^{*}=\frac{2.2 \times 5300 \mathrm{cal} \frac{\mathrm{~m}^{3}}{\mathrm{sec}} \frac{\mathrm{gm}^{\circ} \mathrm{K}}{1300 \mathrm{gm}} 0.24 \mathrm{cal} \quad 275{ }^{\circ} \mathrm{K}}{0.86 \mathrm{~m}} 4.84 \mathrm{~m}^{2} \\
& \sqrt{\mathrm{gH}}=9.8(2.44)=4.88 \mathrm{~m} / \mathrm{sec} \\
& Q^{*}=2.6 \times 10^{-3}(2.2)=\underline{0.0058} \\
& \left(Q^{*}\right)^{1 / 3}=0.18
\end{aligned}
$$

| gm fuel | $\mathrm{T}_{\mathrm{sec}} \quad \tau \quad \mathrm{Q} \star^{1 / 3} \tau$ | ceiling layer
 height $=\mathrm{YH}$ |
| :--- | :--- | :--- | :--- |

220	100	1.28	23	0 at $Q^{*}{ }^{1 / 3} \tau=14$	$0 \leftarrow$gas exits before 220 gm total fuel 440
200	256	40.5		or time $=60 \mathrm{sec}$.	These discharge some combustion products
660	300	385	61	$(t=14 / .18=77.8)$	through the floor leak.
880	400	505	80		

[^1]If the initial temperature is $20^{\circ} \mathrm{C}=293 \mathrm{~K}$, final is $1 / .55$ (293) $=$ $533^{\circ} \mathrm{K}=\underline{260^{\circ} \mathrm{C}} \mathrm{T}$ final (after 124 gm fuel burned and ceiling layer has reached the floor).

This part of the calculation shows that, if the fuel burns at 80% comb. efficiency, the lightest dose ($10 \mathrm{gm} / \mathrm{m}^{3}$ or 220 gm total fuel) will start to spill combustion products out of the room in 60 seconds (or at 132 gm). Higher doses will lose even more products, so we will not calculate them further without making other provision.

Two solutions to the problem of retaining the products in the room:
(1) Transfer heat out of the room. It will make a major difference whether this is done in the early plume or at the boundaries of the room.
(2) Make the fire some distance above the floor (shorter plume-less entrainment).

Let's try solution (2) and see what height the fire should be so that the ceiling layer hits the floor at the end of burning.
3.0 Calculate the effect of putting the fire at various heights above the floor--this will increase the room filling time. Assume the burning rate remains at $2.2 \mathrm{gm} / \mathrm{sec}$. Then the longer filling time allows more fuel to be used.

Method: Assume various values of the fire height, ΔH, calculate total filling time from $\tau+\Delta \tau$ (Zukoski, section 6). Interpolate for $20,30,40 \mathrm{gm} / \mathrm{m}^{3}(440,660,880 \mathrm{gm}$ fuel) to find necessary ΔH so as not to drive combustion products out of the floor vent.

Table 3.1

Table 3.2: Calculations for Table 3.1
$\sqrt{H / H} \underset{\text { meters }}{H} \sqrt{H} \quad \sqrt{H} H^{2} \quad Q^{*} * \quad Q^{1 / 3} \quad Q^{\star^{1 / 3}} \tau \quad \tau / T \quad T_{\text {sec }} \quad \Delta t_{f} \quad \Delta T_{f} \quad T_{\text {Total }}$ meters
at $y=0$
sec sec

0.1	2.2	1.48	7.16	0.006	.182	14	1.09	70.6	16.6	15.3	85.9
0.2	1.95	1.40	5.32	0.008	.200	12.5	0.91	68.7	25	27.4	96.2
0.3	1.57	1.26	3.11	0.014	.240	10	0.65	64.1	21.4	32.9	97.1
0.4	1.46	1.21	2.58	0.017	.256	9	0.57	61.7	23.5	41.3	103
0.5	1.22	1.105	1.64	0.027	.300	7.2	0.45	53.3	18.5	41.1	94.5
0.6	0.97	0.982	0.92	0.048	.364	5.4	0.32	46.4	12.5	39.1	85

$$
\begin{aligned}
& \tau / T=\frac{\sqrt{g}}{\sqrt{H}} \frac{\mathrm{H}^{2}}{\mathrm{~S}}=\frac{\sqrt{9.8}}{\sqrt{11}} \cdot \frac{\mathrm{H}^{2}}{(3.05)^{2}}=\frac{3.13}{9.3} \frac{\mathrm{H}^{2}}{\sqrt{H}}=0.335 \frac{\mathrm{H}^{2}}{\sqrt{\mathrm{H}}} \\
& T_{\mathrm{y}=0}=\left(\mathrm{Q}^{*^{1 / 3}} \tau\right) \frac{1}{\mathrm{Q}^{*^{1 / 3}}} \frac{1}{\tau / T}=\frac{\left(\mathrm{Q}^{1 / 3} \tau\right)}{\mathrm{Q}^{1 / 3}(\tau / \mathrm{T})} \\
& \Delta \tau_{\mathrm{f}}=\frac{\Delta H}{\mathrm{H}} \cdot \frac{1}{Q^{*}}(\mathrm{H})
\end{aligned}
$$

4.0 Summary

From table 3.1, to burn 220 gm without losing products out the floor leak, place the fire about 0.98 meters off the floor.

Table 3.1 shows that we cannot burn much more and not lose products unless, of course, the combustion efficiency is lower than 80%, or heat is lost to the walls, or both.

 Development of a Stratified Ceiling Laver in the Early Stages of a Closed－room Fire

F… Fi．Zukoski

Abstract

A simple analytical model has been developed to determine the time required lor at rome to till with pronduct of combustion from a amall lire．The rom is assumed to be elosed excepp for sumall openines at ciller the thenr or ceiline prediets the qrowth of the thickness and the meand density of this layer as al function of time．The anallow bhems lire in several minutes．The time reguired to lill a room and the mean demsity of ceiline bayer are determened in terms of lire siac，room geometry，leak position，fire elevation and peonetry．

1．N゙TR（）DIC＂ION

When hear is added to an ideal gins in a fixed volume， the pressure must increase in response to the temperathere rice since the average density must remain fixed．In a houlding lite situation，the rate of pressure rise is often hept sey small by gas leaks through openings in the ＂illh ol the building such as cracks around windows and downs．

Under circumstances for which leaks do keep the rate of prentre rixe to a neglighle value．we are interented II the tume requirad for the gis ienaining in the volume （1）he combaminated and healted by mixing with the produch of combusion lrom al lire．In the following paldä゙aphs，we will exammene this problem low a very vomple example．The lire will be treated as a point soure of heall with a specilied strength．We will restrict our evammation to a dolume composed of a single room with a horisomtal ceiling layer of hol gas formed mader the collung．This lager may contain a nonunilorm temperature distrabution but we will be concerned only whth 小 aterage kempurature or densty．During the miogten of the lire the thichnew of this layer will grow II line and we will be interested in predicting when the lower boundary will reath the lloor level．We are also metconed in the average densty in this layer als a function of 1 เルじ

The two layer model is appropriate for a lire of small geomenroal alca which is burning in a room of much barper lleor atea prior to lashover of the room．
（）ur purpore is to illustate the general order of mandule of the time involved and the manner in wheh dontors parameters influence this time by leohing at （anco wheh alle mathematically very simple．The complece probem is a special case of a room fire and numerical meveration lechnigucs ate available if more acturacy and detall n reyuird．

In order to juntify the comstant paroure antamporn
 increase produced hy a lire in at chaced wimbic I w

 with the time ceale of ofter imtercitl！exent fo illustrate this concluvion combider the mernai encte？
 ideal gan wheh かheated al a ratco ！

$$
\frac{d}{d t}\left(\int_{1}^{\infty}\left(i x^{\prime}\right) d r\right) \cdot(!t
$$

The mans bilamee

$$
\begin{equation*}
d /\left(\int_{0}^{0}(,,) d r\right) 0 \tag{こ}
\end{equation*}
$$

$$
\begin{equation*}
r \cdot r_{i} \quad \stackrel{(11}{r} \tag{3}
\end{equation*}
$$

 before the heat addtion virls．A mumbutal wample is of interes．Consider a mom wiha womme of 2n 1 － m^{3} which contans a lime of low h．W heal mput salle then

 enough to destroy the whdow and（0）will pane：ce a velocily of about 1.20 ml ， 111 1mona ：cmplat．1．An

 rase fiom secumber：

Than example sugests that quasi－steady pressure within a hurning room is a reasonable assumption．A qumtitane meanure of leak areas needed for a given room and lite is given in Section 10.

3．HEAT ADDITION TO A IIXEID VOLUME WITH IEAKS

Consider a fixed volume in space containing an ideal gas 10 which heat is added．Note，that here the fire is considered to be a soute of heat alone and the mass of fued is negleted．Man is allowed lo hate the volume such that the work done by the rate of change of pressure within the volume absorbs a negligible fraction of the heat ：nput．

We will vow here that under these circumstances the embalpy hux produced by this mass hux is equal to the heat addition rate and that the enthalpy of the gas remaming in the volume is constant regardless of the distribution of temperature within the volume．

The energy equation for the mass within the volume V＇and le written as
whote a is the internal energy．V is a volume lised in space．S is the surlace of the volume，predS is local mass flux through an element of surfice area due to vector velocity r, h is enthalpy of gas crossing S, Q is rate of heat addition by the＂lire＂and the last term $\dot{Q}_{\text {es }}$ is the rate of heat conduction across the boundary into the room．

If we now combine Eqn（4）with Eyn（2）for continuity and the defintitions of internal energy and enthalpy for an deal giハ：

$$
\begin{equation*}
r=C_{v}\left(T-T_{r}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{1}=C_{n}\left(T-T_{r}\right) \tag{6}
\end{equation*}
$$

We call rewrite liqu（4）an

$$
\begin{equation*}
C_{k}^{\prime}\binom{d \prime}{d \prime}+\int_{N}\left(C_{1} r\right) p w^{\prime} d S=O+Q_{1} \tag{7}
\end{equation*}
$$

Here T_{r} is a referenee temperature，and C_{p} and C_{v} are suitably chowen values of specitic heats of the gas at constant presure and constant volume．We have also mate we of the approximation that the specitic heats of the gin are comstant and that the eas follows the state equation for the ideal gas．

$$
\begin{equation*}
P=\mu R T \tag{8}
\end{equation*}
$$

When the tramsent pressure term in（7）is small compared with the heal term．we can neglect the eflect of pressure transiem．Further discussion of the conditions under which this prenture term must be included in the equation is given in Section 10 of this paper．

When the first term of（7）can be neglected．we get

$$
\begin{equation*}
\int_{\Omega}(\operatorname{pr} \cdot d S)\left(C_{11} \Gamma\right)=\dot{Q}+\dot{Q} . \tag{25}
\end{equation*}
$$

If we restrict tic outhow to a angle peint where comphtm． are uniform in space，then

$$
\int_{n}(, w e \cdot u, S) C_{1} r==u_{1}, C_{1}, I_{1}
$$

where die is mans llow an the exit（e）and $C_{1} \%$ local gas enthalpy．Thus（9）may be writcoi an

$$
\dot{m}_{n} C_{1} T_{n}=\dot{Q}+\dot{Q}_{n}
$$

or，il there are a number of leah．

$$
\because m_{i} C_{1}, T_{i}=\dot{Q}: \dot{Q}
$$

will hodd．When comatuction in ignomed．（1．will 1 人 and we get the partuculaty simple rexult that the emaner： Hux from the volume equals the hean atdhtwn mentato． of temperature distribution whin the volume

$$
\because \operatorname{mi}_{i} C_{1, \ldots} T ; \dot{O}
$$

4．ROOM PROBILEM

 fill a room with products of combunton fom a tite We wam to make a smple catculatlon ：mill wotman． the elleets of leaks on this procen．
 the luel llow rate is negletcol and the plume ，小hat ：he
 layer is taken as an adiabatio remon．Beallue an ats interested in predicting the ked of the cellan！la ： （ Y in Fig．1），we need not mathe ansumprions conticerman－ the degree of mixing in this region．Symboin alle delmad in Fig．I．The lower boundary of the wellme baed in assumed to be horiontal．We wime lo predme 16 downward motion of this boundary．

In the following analysis，the solume or the plume ：and fuel mass how rate are ignored．

Filour leak case

In this first example tet the leat be at the flan io：a ．
 for the cold repion is given by

$$
d_{d}\left(p_{c} Y S\right)+m_{1}+m_{1}=0
$$

－Here S is the area of floor of the reom：p, is in the man
 Hows out of the cold region due to cmatamem into いた

Figure 1．Room fire model．floor level nent．
phame：and in，is the mass lost through leaks from the cold regon．If we choose $1 \equiv Y_{i}^{\prime} \|$ ．（13）becomes

$$
\begin{equation*}
\left(\rho_{c} / / S\right)\binom{d_{1}}{d_{l}}+i_{1}+m_{1}=0 \tag{14}
\end{equation*}
$$

The mass fow rate at the leak，which is the only leak，is siven hy（12）as

$$
m_{c}=Q / C_{11} T_{n}=Q_{i} C_{11} T_{c}
$$

or

$$
i_{c}=\left(\dot{Q} / \rho_{c} C_{1} \cdot r_{c} \cdot \sqrt{g}\| \|=\right)\left(\rho_{c} \cdot \sqrt{g}\| \|=\right)
$$

$$
Q^{*} \equiv Q_{i p} r_{1} \cdot T_{1 \cdot} g\|/\|^{2}
$$

｜hじ

$$
\begin{equation*}
m_{1}=Q^{*} \rho_{1} \cdot \backslash x / / 1 /: \tag{15}
\end{equation*}
$$

Previous analysis has piven a reasonable estimate of plume mans llua is
 problect is about $(1,5.4)^{\prime}$ ．This result is also discosseed hricll！in the Apremtix．（ollecting these items，（15）and （16）．WC Ën rewrite（lf）as

$$
\begin{equation*}
d_{\tau}+\left(l^{*}+\cdots\left(\varrho^{*}\right)^{1 / 1} \theta_{1}=1=0\right. \tag{17}
\end{equation*}
$$

Whers $\boldsymbol{\tau}$ is a nondimensional time delined as

$$
\begin{equation*}
r \equiv 1(1 \times s / 11)(11 \because / 5) \tag{18}
\end{equation*}
$$

Here S in alle of the flow of the room and $/ /$ is the height of the rexill．The second term in（17）is the contribution of the le：ak and the thirl．is dac lo platie entrainment．

The intentation ol（｜x）is easily accomplished by numcriall ccomicucs whon ℓ^{*} is a constant．Thus

$$
\begin{equation*}
T=\int_{4}^{1}\left[\left(10^{\prime}\left(\Omega^{*}+\sqrt{1}\left(\Omega^{*}\right)^{1: 1} 11^{0 \cdot /: 1}\right)\right]\right. \tag{19}
\end{equation*}
$$

Valuen of r versus． $1 \times$ are given in Table 1 and also in l：ig． 2 for the three＂lires＂．The parameter $\left(\tau\left(Q^{*}\right)^{1,:=1}\right)$ is used in presenting these resulds tecause of its convenience
 example，if our roenm is $2.44 \mathrm{~m}(8 \mathrm{li})$ wide by 2.44 m high hy 9.75 m long allal il（） 95 kW ，then（ ${ }^{*}-(0.0)$ ： $1 / \tau: 2 \therefore: \tau_{1}, 1=0 ;=51$ and the corresponding time 1 is 102 5 ．Thu the ceiling layser would reach the floor kevel （1）L゙い Han 2 min．Dependence on Q^{*} is strong when （1）in larger thin 0．0）．

Tuble 1．Depondence of times required to fill upper half of a ronm tหi fire sife and ，com area for $H_{1}=\mathbf{2 . 4 4} \mathbf{m}$

S	$\int_{0}^{H} S$		0°	Flocr	Ceiling
		0		$t: y=1 / 2:$	$1: y=1 / 2 i$
8.9 m	0.75 s	100 kW	0.010	115	16.58
36	3	100	0.010	45	66
143	12	100	0.010	178	264
36	3	20	0.002	97	117
36	3	100	0.01	45	66
31	3	500	0.05	16.5	40

Figure 2．Dependence of celling layer heignt on lime and hedt input rate．

Ceiling exil case

 simpler．I or thas ciace，mo mian leath fiom the whd
 fluil． $1:(1117$ ）．reduco 10

$$
\begin{aligned}
& \begin{array}{ll}
41 \\
4 & 9!2) 12
\end{array} \\
& \text { 1.11 }
\end{aligned}
$$

Which can be immediancly inceralcol worse

$$
\begin{equation*}
\because \quad 1+\binom{2}{3}(2,1:=1:= \tag{2?}
\end{equation*}
$$

Values of x required for the ceiling liter to reath at specified θ are given in Table ？and Fig．2．Nole that ［ $\left.\left(Q^{*}\right)^{1: 3} \tau\right]$ is clearly the appopriate scialin：：patameter for this calse．

Consider the room disemsed abowe wilh（！ 11.11 and $1 / \tau=2$ s．$\wedge 1,1 \cdots, 1 / 2 . \quad \tau=22$ and $1+4$ ．and whon $1=0.1 . \tau=136$ and $1=272$ ，Nose that 1 appromber Acro anymptolically and that lor all $1 \times$ ．allas on ：alc farger for the ceiling leak than for the llow leah．Itom－ ever．as Q^{*} approaches cto．Eyns（ 17 and 21 ）h＂

 an incompressible flow in which the ellew ai ke：h， could be ignomed．The resules alte smalat bec：alse in both ealculations the density of the cold later hetose
 only the plame entainment enters the prohlem．I vpert－ ments of Batins amd Tarners witical the atcuras of the equation lor valles of heall aktilion thunstate flas in their case）corresponding in $2 \cdot 10^{i} \cdot 3$／10 ．
 which is lixed by the beat infolt ralle and $1 /$ Thus－is a function of lire heat inpul ratc and rowm lews but is
 the time $/$ will saale lincally wish foor atera S．Seseral examples ate shown for both cerlang and hour leath calse in Table 1.

Scaling with roon heght is mote connjole if ite

Floor leak

and change foom height. then both ()* and the 1 gill (Sill:) parameter will change. The clled of changing $1 /$ an $1: 1$ lor a lixed $\dot{\varrho}$ is shown in 7 Fable 3 for the llaor leak calse and lor $\quad 1=1 / 2$ and 0 . Note than increasing $1 /$. decreaser Q**. increasen τ. has a mixed elleet on 1 1/2; and increase 1 ! 0 !. Thus, a room with a high ceiling lills up only slightly sower than a room with a lower ceiling but the same lloor area.

flo)OR I.1:オK

Cgnsater the ciace lor which the leah is at the foor level. An coner! babance lor an atiathatic coiling layer gives

$$
\begin{equation*}
l_{11}^{\prime}\left(\dot{d} d /\left.\ldots\right|_{"} ^{1} p(s / h)\left(!\cdot\left(h-h_{n}\right)\right.\right. \tag{2.3}
\end{equation*}
$$

where his the enthalpy of the gis. Thus, if () is constant lle lind

$$
\dot{Q}=\int_{n}^{1} p(. S \|)(d!)\left(C_{11} r-C_{10} \Gamma_{1}\right)
$$

 of vialce. Ne lind that

$$
\begin{equation*}
\dot{(}_{1}=-p_{1} C_{1} F_{\cdot}(. S / I)(1-1)-\left.C_{11} F_{1}(S / I)\right|_{!1} ^{1} p d_{1} \tag{24}
\end{equation*}
$$

Whon we deline tac meron ceiling layer density as

$$
\bar{\rho}_{1} S / /(1-\underline{l}) \equiv p(S \|) d \underline{d}
$$

He call rearrange Egn (24) to give

$$
\begin{equation*}
\left(p_{11} / p_{1}\right)-\left(1-\left(\left(^{*} \tau\right)(1-1-1)\right)\right. \tag{25}
\end{equation*}
$$

 discossed there Note. that even lor the smallest tire demall difieremes are appreciable: certainly for the larew lan lires the Bomssincsy apponimation is not saliviclory.
 $\|=2.4 t \mathrm{~m}$. and $Q^{*}=0.0005$) the average density in the collon! later when $1=0$ is about 10° ". below that of the cool gas.

Table 3. Dependence of time reguired to till a room on room height for $Q \div 100 \mathrm{hW}^{\prime}$

H	Q	S	$T i y=1 / 2 ;$	$T i 1 / 2 ;$	$T i y=0:$	$1: 0:$
1.28 m	0.050	$143 \mathrm{~m}^{2}$	5.5	174 s	14.2	448 s
2.44	0.010	143	14.9	179	51	609
4.63	0.002	143	32.2	148	164	750

 relaliomship such :

$$
m_{1}, \ldots=C 1()\left(j_{1}, 1,\right)
$$

the mass fraction of impurity in the ceitne: hate wit be

$$
\text { (mins liation) }=C^{*}()^{*}-11 \quad .1
$$

Equation (25) hold for the How liat ratis that al

 some assumplion ahout the komperathe , vatike :athe ciling lisum.

6. FIRE: I.FWEL, ABOVE FIOOR

 not valid alto the interface reacher the lite lede liot that lime. plame entainment mo lober enter tie problem. Thus. I:yn (17) is reducel on

$$
\frac{d_{1}}{d_{T}}+\underline{U}^{0}=0
$$

We use the same motalion to deroribe the: tembll: in

Figure 3. Notalion for room wils flite ::tev.sl-f1 it .. 1

Tillile 4．Viffect of fire elevalion on time required to fill a room for $H+د H=2.44 \mathrm{~m}$

$\triangle \mathrm{H}$								
H	H	S	0	O： $\mathrm{H}:$	Tiy $=0 ;$	1－1	$1 .=$	1
0	2.44 m	$36 \mathrm{~m}=$	100 kW	0.01	51	0	3 s	19% s
025	1.83	36	100	0.02	29	16.7	4.62	211

Jor in required to lill the beight below the lire level． fincegration of the above equation leads to

$$
\Delta_{T_{1}}=\begin{gathered}
\Delta / / \quad \mid \\
\|!(1 /)^{*}: 1
\end{gathered}
$$

Where（2＊${ }^{*}$ hased on $/ 1$ ．the distance from the lime to the coiling．

Fo illostrate the whtation compare the live examples dexcribed in Table 4 ．In the seeond，the lite is elevated （1） 61 ml （2 f ）above the floor and in this case the eflective value of ceiling height $/ /$ is $1.6 .3 \mathrm{~m}(6$ fi）rather thatn 2.44 m （ 8 fit．Hence．lor the same heat input rates．Q^{*} is larger for the second example and $\tau, y=0$ is smaller． However． 10 determine the value of T at which the intertate reaches the floor level we most add the J_{r} tern so that for the second example the value of t reguised lor the ceiling latyer interface to reach the foor is $29+17=46$ ．This is converted to the dimensional Hfice as wall but apain／／is used，not the room heipht which is $(1 /+\Delta / 1)$ ．The time for the elevated tire is about $40 "$ ，！reater than for the foor level calse．

Fanally，a leak at an intermediate level ean be studied as a combination of our two extreme calses．The motion of the merlide will be described by Eqn（17）until the interline reaches the level of the leak and by Eqn（21） thereatiter．

7．NON－CONSTANT IIEAT INPUT RATES；CEIL－ ING I．E．TK

If the le：at mput in 1 ot comatant．I：gn（21）lior the ceiling le：sh can still be integrated directly to give

$$
1^{\cdot 2} \cdot 3-1=\frac{1}{1} \int_{11}^{1} x Q^{*} \tau_{1}^{1} 1 /: 1 / \tau
$$

In water to examine the impact of nomunilorm heating ratc let $\varrho^{*}=\| \tau$ ，that is，consider a lincar increase in

Figure 4．Dependence of ceiling layer height on lime for lime dependent licill inpus．
 as

127
Comsider three numerical exampies．Fory anci econd． lives with comstam heat inmars given by（1）u．（1）．． 1
 up $10 \tau=160$ ．Note that $\tau=\mid(0)$ ．total heal added in cance two and three is equal，and that the bation of a reacined at this time are atmost equal．Thus．he total heat athettion

8．IIE：AT I．OSSE：TO IHI：W：AI．I．S：I IOOOR I．I：TK

Transter of heal on the wall from the ceflat：lane

 floor Ieak example cial be rearition as

$$
\begin{equation*}
\frac{d x}{d t}+(1-d) Q^{*}+1+\left(2^{*}\right)^{1}: \therefore=11 \tag{ii}
\end{equation*}
$$

where λ is the fraction of heat addlion hy the time whel is lost by conduction to the walls．Note that it i－ 1. the second term in the above egmation droph will atid the equation becomes identacal to that wad for the coting level leak．Hence，the elfeet of heal lows will he lo mate
 lic between the adiabatic Rowe leaci lean circ and the
 of heat loas will be lateer lor the later balue of（\％

To illustrate these ellects，valuen of ；are blow b Fiome

 for τ shows that when $\lambda=1 / 2$ values of τ ate metiond

 walls，a 50 ＂．or less increase will oecur in - ．The（）＊（1） 11.

 Similar results are lound by comparme（2． 11.11. $\lambda=0.8$ with $Q^{*}=0.002 . \lambda=0$ ．

For the eeiling leatk example．conducion lomes do not enter the problem all all sume the only mas ims mechanism for the uncontammatcol 关に か plume entrainment．

9．IINE FIRE EXAMIPIE：

A similar development can be carried oult lor a lab－ dimensional or line plame．＇Fix this comtigaral．．．il．

Foble 5．fiffeed of heat low，lire size and ceiting layer level on dinuensionless time

$0^{*}=$	0.01			0.005	0002	c） 05	
$\lambda=$	0	0.5	0.8	0	0	0	0 －
$y=1$	0	0	0	0	0	0	0
0.75	6	6.8	7.5	7.5	12.2	2.4	32
0.50	15	18	20	24	32.2	5.5	76
0.25	29	38	47	54	72	9.4	14
0.0	51	78	127	126	164	14	23

Cellunt luak			flonr level leak						
$0:=$	All $0:$	0.01				01		0	
γ		－	$\left(Q: 0^{\circ}\right)^{1::_{T}}$	T	$\left(0:^{\circ}\right)^{\prime}$	－	（F：F^{\prime} ）	（0．1）：－	：
1.00	0	0	0	0	0	0	0.92	0	0
0.75	0.57	2.7	0.555	4.4	0.514	2.4	091	1） 436	－9
0.50	1.37	6.4	1.33	10.6	1.21	5.6	0.90	1 \％	211
0.25	2.74	12.7	2.60	21	2.29	11	088	1 7e	433
0.10	4.55	21	4.12	33	3.46	16	085	＜ 4 ，	1． 1
0.05	5.99	28	5.07	40	4.07	19	083	$2.7!$	；：
00	＇	，	6.97	55	4.93	23	081	；1！	i： 4
γ						1			

above at plame of lengh $\%$ and total heat input \dot{F} is EM心．

いだ心

$$
\begin{aligned}
& \left(\sqrt{\prime} \pi C_{12}\left(C_{12}\right) \equiv 0 』=(0.51)\right.
\end{aligned}
$$

Note that here tions 1 ．
The mass balance for the cold air layer can be written a

$$
a_{1}^{l_{T}}+\gamma Q^{*}:+n!\left(Q^{*} \cdot 2\right)^{1 / 3} y^{1}=0
$$

＂here

$$
T==1 N^{\prime} 8 / I /(\prime \| / 1 / S)
$$

Here $\gamma=1$ lor lloor leak and $\gamma=0$ for ceiling lak． Integratton ol this equation leads to

$$
\left.(Q)_{2}^{*}|l|\right)^{\prime a} \tau-{ }_{x}^{1} \ln \left|\begin{array}{l}
\alpha+\gamma\left(Q e^{*}\right)^{2} a \\
\mid a+\gamma\left(Q 2^{*}\right)^{2}: 3
\end{array}\right|
$$

or ： 1 prosimatcly

$$
(1) n^{*}(11 i)^{1 / 3} \tau-2 \ln \left(\begin{array}{l}
1+2 \gamma\left(Q 2^{*}\right)^{2: 3} \\
\left.1.1+2 \gamma(Q)^{*}\right)^{2 / 3}
\end{array}\right.
$$

A number of examples are given in Table 6．Note What il the rowm insolved is 2.44 m high by 2.44 m wide by 9.75 lone and if $\boldsymbol{\prime}=2.44 \mathrm{~m}$ ．$(1 / \tau)=2 \mathrm{~s}$ ．

The demaly ratio can le calculatcol casily for the Hoor level leak case and the result is the same as Eqn（26） which was ohtained for the axisymmetric plume．The fallo bor $\tau=0$ and $1=1.0$ is the value obtained att the stant ol the gan llow，$t=0+$ ，when the plume lirst reaches the ceiling．The line and axisymmetric lires are compared in li！．S lor flow leat caser with $Q^{*}=0.01$ ．

The tome reguired for the interlate to reach a given keve is much shorter lor the line lire．Thus，tire geometry
can be a very important pormmeler．The d．fletome
 For the line plame and asisymmentic plames．

10．NONCONSTANF PRESSI RE：

We want to return now to catmme mone delati the
 assumption that the rate of change of pronte negligible．

Equation（ 8 ）can be wrillen is

Figure 5．Dependence of mean dencity ratio ane reat：；；wer heigh on dimensionless time for dal：ymmin tr．：．．．：ill it i．：：if $a^{\circ}=0.01$ ．

E．E．IUKOSKI

Lor a form＂ith a single exil．a lime dependent pressure． and no conduction：furtior let \dot{Q} be constant．For smpliliätlon，let the leath be at the floor level and ignore an！adiabalic heating of the uncontaminated gas by compresion．Then density and emperature at the leak are constant and hate the ambient values，fir，$T_{\text {re }}$ ． If the heat addition stats at $t=0$ ．the pressure within the room will rise until a stably state is reached．Steady state condition implies the pressure is constant so that （29）becomes

$$
\begin{equation*}
m_{1} C_{n} I_{r}=\dot{Q} \tag{30}
\end{equation*}
$$

where the subseript s designales the steady state．If the
 the velocity is is related to the pressurie dillerence acrom the leak（ 1 －－Pa）by
or

$$
r_{r}=V / 2 \Delta / / \rho_{r}
$$

and

$$
\begin{equation*}
r_{\infty}==i^{\prime} 2 \Delta P / P_{1} \tag{31}
\end{equation*}
$$

Here I^{\prime} a is the ambient pressure and pa is taken to be the cold air density pr．The corresponding mass fuxes alc

$$
\begin{align*}
& m_{1}=\backslash / 2 p_{1} . \Delta P_{1}=A_{1}=p_{1} \cdot A_{1} \\
& m_{1}=l_{1} / 2 p_{1} \Delta P_{n} A_{1}=p_{1} \cdot l_{n} A_{1} \tag{32}
\end{align*}
$$

where A_{1} is the ellective leak areat For the steady cance

が

We cill use this result，Eqn（30）and the definitions，

$$
\begin{aligned}
& 1 . J \mu / \Delta / \text {, }
\end{aligned}
$$

$$
\begin{align*}
& \theta=1!!! \tag{34}
\end{align*}
$$

alled $11,-2 \pi \%$.
（1）r゙いが心（2り）か

$$
\begin{equation*}
\frac{11}{11}+110=1 \tag{35}
\end{equation*}
$$

The aloleson for（35）is

$$
\begin{equation*}
0=2\left[111\left(1 / 1-\lambda^{1,2}\right)-x^{1 / 2}\right] \tag{30}
\end{equation*}
$$

The dmensionles lime required for the pressure 10 reach 川s cquilibrium value $\lambda^{\prime}=\Delta P / \Delta P$ s $=1$ is，of course， inlimite．Ifowever，if we pick a valuc chose to 1，saty
 （6）appowich the ecjullibrium value．From（36），

$$
11 i_{1} \quad 0.86!=\frac{1!0.86!}{11}=3.46
$$

Thas．ill a tome（3．46（．）the pressume will rise to $86 . .$.

W＇ate interesed in comparing this time with that

Table 7．Effect of leak and fire siac on pressure transienl，and gas velocity in the leak

0	Ae／H：${ }^{\text {a }}$	－iy $=0$ i	$\binom{\tau i X=0.86}{\tau i y=0}$	SPsipd	（．）
0.002	0.003	164	0.0006	6.6×10	11 fl s
0.01	0.003	51	0011	15.10	：2． 3
0.05	0.003	14.2	0.20	4．1．10＝	267
0.01	0.003	51	0.011	16.10	5%
0.01	0.002	51	0.025	37.10	B
0.01	0.001	51	010	$15 \cdot 10$	150

 small，the guasi－stcady stale solallon dinconce in per vious paragrapha wall be uctul．Ihe rata is
 appear cether explicitly or emplicnlle Hence the fomp

 below in Table 7 lor lloor leat ciace for whoh $/ 1,2$ 2．．． II．and（a， $3(x)$ m 11 ．
lour an 2.44 m high room a lal ace al $1.11: 1!101$ ：
 unteasonable value lor a 10 m lons hali wal lat： doors．If eath door is 1 m wale and han al 1 こ（lll uath the leak area wouk be list em－

 that gas density and presince ale villally unatlected．

The resuls presented abose allow at quallatabice determination to be made of the leat alle：rivuited in：
 stant pressure astumption be valid ille leith alle，
 addition parameter and säk in the fowill hersiat syuiloed．

11．SUNM，M，MKI

 other special conditions which vimplace the allat：l心 work and which were intecestm！hmitm！（：I 心以 Sinllic interesting results are as liollows：

1．The time depend on beatloni withe leath amd can be
 lak than a ceiling leak．
2．For a constant rate of heal inpul，bill up time s．aticy lineaty with roon lloor alc：a and rowe！！，al lice 0.4 power of room height．

 input ratco
＋1．a satme（）：values．the time seales ats the sybate root al tic room height．
5．Heat low worlls has an elleed on the time for Moor leak example，but none for the eceiling leak じいど。
6．A sheme is given to allow extimation of leah area reyuicel to make the（fuasi－steady pressure assump－ tion al lnefinl onc．
7．The ellectsof posilioninge the lite abowe the floor call be treated lor either leat position．Rabing the fire will increase the till up lime for the foor leak and will alas produce an mincolaminated layer below the lowe leve lion the collin！ke：ah case

 dence of he：t addilmo．but dee deperid ant tas wal encre！added．
9．Geometry of the lice bas atong intheme of ： density in the celling layer and on the thice revale to lill the room with products．

These result indicate that reasonable čumate ot lill up time can be make whoul requita：jas

Achnowledgement

 Eram from the 1 me Rexeanch 1 omen

REFHRENCHS

1．F．E．Zukoshı，Conveclivi：Fluws Associated with Room Fires． Cahforma Institute of Technology（June 1975）．
2．W．D．Bianes and J．S．Turner，J．Fluid．Mech．37， 51 （1969）．

Received 15 July 1977
c Heyden \＆Son Lid， 1978

APIPENDIX 1：NOMIENCLATURE

Live of wmbols

（ \because Specilic heal at combillt volume．
، laternal emergy．
9 （jantational comatant．
H I Inhial！
11 Kanm height
\％I conch ol line live
ii）Mas llus
iit．M：In llas at exit．
．1／Pewnte dillerence atross leak．
（）Ileat addition rate from lire

（！．｜leat conducted out of ceiling layer gats
り（1）
$R \quad$（ぶ八 combant
S Ac゙a が llow of room．
S．Aca of opening．
1 だmperalure．
1 lime．
1．Crlac：al time．
1．Volame はi rexm．
r．Velocity．
$r . d .5$ Volume llux at upemang．
$\therefore \quad \Delta P \Delta P$ ．．ne Eqn（34）．

1 lill．

 for ait．
（1） $1 / 1$. ．see E gn（34）
d Heat low liktor．Jite heat inpul losi b：conmers tion to walls．
ρ Density．

 lire level．

Subscripts

a Ambient conditan oulvide remm
－Cool gis properly mionom．
－lixt．
$i \quad i t h$ evit．
III Miximum valuc．
P）Plame property．
r Relerence valac．
s Stcaly state raluc．
2 S．inc tire parameler．

APIENDIX 2：PIUME PROPERJIES AND MASS BALANCE：

The turhulent lire plame can be chataterised by the followng eguations when density diflerences are small and when the cevalion above the lire，$\%$ is large com－

$$
1, C_{1}=1 i \quad \text { An }
$$ pared wath the lire diameter：

$$
\begin{array}{ll}
1 \% & c_{1} \\
\% & c_{1} \\
c_{1} & 1.15
\end{array} \quad 1.1=
$$ and

$$
\begin{aligned}
& \begin{array}{c}
I_{11} \\
I_{1} \\
J_{m} \\
M
\end{array}=C_{H}\left(Q^{*}\right)^{2}: \quad C_{r}=9.1 \quad \text { (A1) } \\
& \begin{aligned}
11 \% & C_{1}(2) 1: 3.8 \quad(A 2)
\end{aligned} \\
& 11 \%
\end{aligned}
$$

E. E. UKOSKI

$$
\left.W_{m}^{\prime \prime}=\exp \right) ;-(r / 4)=4
$$

Here, $\Delta \Gamma_{: m}$ and w_{m} are centerline cemperature difference and velocits, and

$$
Q^{*}=Q /\left(\rho, Q / C_{1} T_{1} \%^{2}\right)
$$

(A5) is a dmensionless buoyancy parameter bancal on Q. which is the heat addition: $\nu_{\rho} \equiv\left(\rho_{1}-\rho\right)$ is positive. and $/$ and $/$ are velocity and temperature scale lengths.

Given these approximations, we can show that the mass ateraged temperature and density in the plume are

$$
\begin{aligned}
& 5 \% \\
& \Gamma_{1}
\end{aligned}=\frac{5 \rho}{\rho_{1}}={ }_{n} C_{1} C_{1} 2^{\left.()^{*}\right)^{2}:}={ }_{m 1}^{2} C_{1} I_{1} \quad \text { (A1) }
$$

aind adass flow in the piume all a height Z is

$$
\dot{m}_{1}=\operatorname{pill}_{11} \pi l_{1}
$$

or

$$
m_{n} \cdot \mu \sqrt{\geqq}{\overline{J_{r}}}_{P_{1}}\left(\pi C_{1}\left(C_{1}\right)^{3}:(/)^{\prime}\right)
$$

 evaluated at $/$.

UNITED STATES DEPARTMENT OF COMMERCE National Bureau of Standards Washington, D.C. 20234

July 15, 1980
APPENDIX C

MEMORANDUM FOR Those Listed

From: Robert S. Levine, Chief Fire Science Division

Subject: A Preliminary Attempt to Assess a Material's Toxic Hazard from Toxicity Data

Any assessment of toxic hazard must be relative to some reasonable fire scenario. In this memo I have chosen as a scenario a fire in a small room the size of a bedroom with an open door. A fuel corresponding to wood is assumed to be burning at a steady, or very slowly increasing, rate. The target material, on a table 3 ft . above the floor, is heated by radiation from the hot gas layer in the upper part of the room, loses heat only by radiation, and so reaches an equilibrium temperature. It's decomposition products are mixed with the other gases (air and fuel products) leaving the room. For a given amount of the target material, the following "toxic hazard" statement is suggested.

Toxic Hazard $=\frac{\dot{\mathrm{W}}_{\mathrm{T}} \text { (TF.) }}{\dot{\mathrm{W}}_{\mathrm{f}}}$
where: $\dot{\mathrm{W}}_{\mathrm{T}}$ is the target material decomposition rate, $\mathrm{gm} / \mathrm{sec}$, at the temperature indicated
\dot{W}_{f} is the fuel burn rate to create the given gas flow and gas temperature condition
(T.F.) is the toxicity factor, relative to wood, as measured by an agreed-upon protocol.

The following pages show the calculation. Briefly:
1st Assuming the room geometry, the mathematical fire Model RUNF is run at several Fire Sizes on the $7 / 32$ computer. This calculates upper layer gas temperatures, flow rates, and layer depth.

2nd Assuming wood as a fuel, burning rates and gas compositions are estimated.

3rd The equilibrium temperature of the target material is estimated.

4th Given knowledge of the target material decomposition rate and toxicity relative to wood at the equilibrium temperature, toxic hazard is calculated. This will, of course, be a strong function of the assumed fire size. Alternately, a fire size can be calculated that will cause the material to reach a given temperature at which the toxicity data were obtained, and these data used to rate "Toxic Hazard".

Jim Quintiere's Program on 7/32 Computer -
Steady State Fire in a Room

> "RUNF"

W L H

H
Doorway $=2^{\prime} \times 6^{\prime}=0.61 \times 1.83 \mathrm{~m}$

Fire Size	Upper Gas Layer Temp.			Height	
100 KW.	$112^{\circ} \mathrm{C}-233 \mathrm{~F}$	$0.4 \mathrm{~m}(1.3 \mathrm{ft})$	$846 \mathrm{cfm}-0.48 \mathrm{Kg} / \mathrm{sec}$		
300	246	474	0.95	1.5	1215
500	386	727	0.46	1.5	1269
600	473	845	0.46	1.5	1293

Calculate Fire Gases

Assume - Combustion of cellulose - wood.
$\frac{\left(\mathrm{C}_{1.1} \mathrm{HOH}\right) \mathrm{n}}{31.2}+\frac{1.05 \mathrm{O}_{2}}{33.6} \rightarrow \frac{\mathrm{CO}_{2}}{44}+\frac{\mathrm{H}_{2} \mathrm{O}}{18}+\frac{0.1 \mathrm{CO}}{2.8}$

Assume CO is 10% of CO_{2}
$\left[\begin{array}{l}\text { Nike Site Mattress burns, } \mathrm{C} 0=0.1 \text { to } 0.2 \mathrm{CO}_{2} \\ \text { B1dg. } 205 \text { upholstered chair burns, } \mathrm{CO}=0.05 \text { to } 0.1 \mathrm{CO}_{2}\end{array}\right]$
heat of combustion $=12,000 \mathrm{Btu} / 1 \mathrm{~b}=6600 \mathrm{cal} / \mathrm{gm}$.
assume 80% combustion efficiency $\approx 5300 \mathrm{cal} / \mathrm{gm}$.
Now calculate burning rate for "Fire Size - KW" values on pg. 1.
conversion: $11 \mathrm{gm}-\mathrm{cal} / \mathrm{sec}=4.187$ watts
$1 \mathrm{KW}=\frac{1000}{4.187}=240 \mathrm{cal} / \mathrm{sec} \xlongequal[\sim]{\sim}=045 \frac{\mathrm{gm} \text { fuel }}{\mathrm{sec}}$

Then:		Gases		Products		
$\begin{aligned} & \text { Fire Size } \\ & \text { KW } \\ & \hline \end{aligned}$	Burn Rate $\mathrm{gm} / \mathrm{sec}$	Mol/Sec	$\begin{array}{r} \mathrm{O}_{2} \text { reqd. } \\ \mathrm{mol} / \mathrm{sec} \\ \hline \end{array}$	$\begin{gathered} \mathrm{C} 0 \\ \mathrm{~mol} / \mathrm{sec} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CO}_{2} \\ \mathrm{~mol} / \mathrm{sec} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{H}_{2} \mathrm{O} \\ \mathrm{~mol} / \mathrm{sec} \\ \hline \end{gathered}$
100	4.5	0.144	0.151	0.0144	. 144	. 144
300	13.5	0.43	0.45	0.043	0.43	0.43
500	22.5	0.72	0.76	0.072	0.72	0.72
600	27.0	0.86	0.90	0.086	0.86	0.86
700	31.5	1.01	1.06	0.101	1.01	1.01
800	36.0	1.16	1.22	0.116	1.16	1.16
900	40.5	1.30	1.36	0.130	1.30	1.36

RUNF gives doorway flow in $\mathrm{Kg} / \mathrm{sec}$.
1 gm mole air $=29 \mathrm{gms}, 1 \mathrm{Kg} / \mathrm{sec}=\frac{1000}{29}=34.5 \mathrm{gm} \mathrm{moles} / \mathrm{sec}$.
o_{2} concentration is 21%. Molar Flow Rate $=(\mathrm{Kg} / \mathrm{sec})(.21)$ (34.5)

$$
=(7.2 \mathrm{moles} / \mathrm{sec})(\mathrm{Kg} / \mathrm{sec})
$$

From Page 1 (RUNF) 0_{2} flow $=\begin{aligned} & 0.48 \times 7.2=3.5 \text { moles } / \mathrm{sec} \\ & 0.73 \times 7.2=5.3\end{aligned}$

So we are not O_{2} limited in this series, since a max of $1.36 \mathrm{~mol} / \mathrm{sec}$ is required.

Mol wt fuel $1.1 \times 12=13.2$
$\begin{array}{ll}31.2 \mathrm{gm} & +16 \\ + & \frac{2}{31.2}\end{array}$

Calculate equilibrium temperature of object at 3 ft level in the center of
 the room. - Ceiling gas of temperature and composition previously calculated, object is insulated - loses heat by radiation only $\varepsilon_{T}=1.0$. $\sigma\left[\varepsilon g F_{1-2} \mathrm{Tg}^{4}+(1-\varepsilon g) \mathrm{F}_{1-2} \mathrm{~T}_{\mathrm{W}}{ }^{4}\right]=\sigma \varepsilon_{\mathrm{T}} \mathrm{F}_{2-3}\left(\mathrm{~T}_{\mathrm{T}}\right)^{4}$

The view factor F_{1-2} for the target receiving radiation from the hot gas can be evaluated from Hottel ${ }^{(1)}$ Fig. 4.

Assume the target is the area, dA , and sees four rectangles as shown here: (1/4 the room area)
$\mathrm{L}_{1}=5 \mathrm{ft}$
$\mathrm{L}_{2}=6 \mathrm{ft}$

$$
\begin{aligned}
\mathrm{F} & =0.19 \text { for each of the four rectangles } \\
\text { then } \mathrm{F}_{1-2} & =4 \mathrm{~F}=\underline{.76}
\end{aligned}
$$

F_{2-3}, the view factor for radiation from the target is assumed to be 1.0 .
eg can be calculated from the gas composition already calculated, plus a soot correction. The higher εg, the larger the lst term and the smaller the 2 nd term in the equation above. If we take a worst case and assume the wall temperature, Tw , reaches the gas temperature Tg , this is equivalent to gas radiation alone with $\varepsilon g=1.0$. Making this assumption:

$$
\begin{aligned}
& \mathrm{F}_{1-2} \mathrm{Tg}^{4}= \mathrm{T}_{\mathrm{T}}^{4} \text {, or } \mathrm{T}_{\mathrm{T}}= \\
& \mathrm{Tg} \mathrm{~A}^{4} \sqrt{\mathrm{~F}_{1-2} \frac{\varepsilon g}{\varepsilon} \mathrm{~T}}=\mathrm{Tg}(0.76)^{1 / 4} \\
& \mathrm{~T}_{\mathrm{T}}=0.92 \mathrm{Tg} \quad \text { (both temperatures in }{ }^{\circ} \mathrm{K} \text {) }
\end{aligned}
$$

(1) McAdams, heat transmission - 3rd Ed (1954) pg. 68. Chapter written by H. C. Hottel.

If we want to evaluate the toxic hazard at a particular temperature as used in the protocol, then plot T_{T} vs. fire size in KW--and evaluate the flow rates, material and gas composition at this protocol temperature.

Summary

With this calculation, the contribution of the target material to the toxic hazard can be judged from the next table (where $\dot{W} g$ is the decomposition rate, $\mathrm{gm} / \mathrm{sec}$, of the target material at temp T_{T}). Obviously, $\dot{W} g$ and the "Toxic Factor" must be obtained by some means outside the scope of this calculation.
Summary of Calculated 'Data
$10^{\prime} \mathrm{x} 12^{\prime} \mathrm{x} 8^{\prime}$ Room with $2^{\prime} \times 6^{\prime}$

NBS-114A (REV. 0-78)

Њ. D. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. NBSIR 80-2107	2. Gov't. Accession No.	3. Peciment's Accessiout No.
4. TITLE AND SUBTITLE Mathematical Modeling of Fires			5. Pishlir atirin Date September 1980
			6. Performing Organization Cod
7. AUTHOR(S) Robert S. Levine			8. Performing Organ. Report iv
9. PERFORMING ORGANIZATION NAME AND ADDRESS NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, DC 20234			10. Project/Task/Work Unit No.
			11. Contract/Grant No.
12. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, city, state, ziP)			13. Type of Report \& Period Covered Final
			14. Sponsoring Agency Code
15. SUPPLEMENTARY NOTES\square Document describes a computer program; SF-185, FIPS Software Summary, is attached.			

16. ABSTRACT (A 200-word or iess factuai summary of most significant information. If documerit includes a significant bibliography or iiterature survey, mention it here.)

This presentation has three technical parts, and ends with audience participation and recommendations. First, a brief discussion of fire growth in a compartment is presented, showing why we need full scale tests, or a mathematical model adequately simulating such growth. The second part of the talk describes what several Federal agencies and their grantees are doing to bring about the necessary engineering and mathematical capability for this modeling. The third part illustrates some problems that may be of interest to fire protection engineers that can be solved relatively simply by using fragments of the modeling capability now available.

Then a discussion was held with the audience to determine modeling needs. Should we provide a series of simple models, each applicable to a limited range of problems, or a major comprehensive model, accessible from a computer terminal, that will solve a very wide range of problems? The audience decided both were needed.
17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word uniess a proper name; separated by semicoions)

Fire; fire engineering; fire safety; mathematical modeling; modeling application.
18. AVAILABILITY
\% Unlimited

19. SECURITY CLASS (THIS REPORT)	21. NO. OF PRINTED PAGES UNCLASSIFIED

[^0]: ${ }^{1}$ Numbers in brackets refer to literature references listed at the end of this paper.

[^1]: Layer hits $\mathrm{fl} . \mathrm{oor}$ at (220 gm) ($60 \mathrm{sec} / 100 \mathrm{sec}$) $=132 \mathrm{gm}$ of fuel burned.
 $\tau=t(\mathrm{~g} / \mathrm{M})^{1 / 2}\left(\mathrm{H}^{2} / \mathrm{S}^{2}\right)=\mathrm{t}(9.8 / 2.44)^{1 / 2}\left(2.44^{2} / 3.05^{2}\right)=\mathrm{t}(2.0)(0.64)=1.28 \mathrm{t}$ ceiling layer temperature
 eq (25) $\quad \rho_{h} / \rho_{c}=[(1-(Q * \tau) /(1-y)]=1-(0.0058)(77.8)=1-0.45=\underline{0.55}$

