

# NBSIR 80-2099-4

NBS

**Testing Geothermal-Well Cements: Strength Measurements Following Exposures to Simulated Geothermal Fluids** 

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Center for Materials Science Fracture and Deformation Division Washington, DC 20234

July 1980

Interim Report **Issued December 1981** 



**Division of Geothermal Energy U.S. Department of Energy** Washington, DC

NBSIR 80-2099-4

TESTING GEOTHERMAL-WELL CEMENTS: STRENGTH MEASUREMENTS FOLLOWING EXPOSURES TO SIMULATED GEOTHERMAL FLUIDS

Ralph F. Krause, Jr. Edwin R. Fuller, Jr.

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Center for Materials Science Fracture and Deformation Division Washington, DC 20234

July 1980

Interim Report Issued December 1981

Prepared for: Division of Geothermal Energy U.S. Department of Energy Washington, DC



U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

MAYIONAL BUBBAU OF STANDARDS LIBBARY JAN 25 1982 Mot acc - Carc QC100 LI56 Mo, 80-3099-4 1981 C.2  $\begin{array}{ccc} \mathcal{J} & \mathcal{J} & & \alpha + \alpha (1-\chi_{1}) \\ & & (1-\chi_{1}) \\ & & (1-\chi_{1}) \\ & & (1-\chi_{1}) \end{array}$ 

28- 91 Mer

# Abstract

Compressive and splitting tensile strengths were measured for several set cements at room temperature after they had been exposed for periods of 1 week and 1 month to a 20 wt percent salt solution pressurized to 20 MPa and heated to 300 °C. The compressive strength was also measured following exposures for identical periods to distilled water pressurized to 20 MPa and heated to 200 °C. Prior to the exposures, the cements had been set-cured for 2 days in molds immersed in water under the same pressure and temperature as the distilled water exposure. These measurements are part of a project being carried out to evaluate certain physical properties of cements which are candidates for use in finishing geothermal wells.

### Introduction

In response to the U. S. Department of Energy (DOE) program to develop improved cements for use in geothermal wells, nine different laboratories submitted cementing materials between January and March 1980 to the National Bureau of Standards (NBS) for property verification tests. An invitation [10] to laboratories interested in participating in the NBS testing program had been issued June 1979 through the American Petroleum Institute (API) Task Group on Geothermal Well Cements, which is serving as a review group for the DOE program. Table 1 gives the 21 cement formulations that were received and subsequently assigned letters for ease of identification. The chemical composition of some of the cement components are given in table 2.

A standard practice [10] for testing geothermal well cements was generally applied in the present work except that the measurements proposed for water permeability and for shear-bond strength to steel were deferred. Only specimens that were destined for compressive or splitting tensile strength measurements were first set-cured in molds and then exposed to simulated geothermal fluids at elevated temperature and pressure. While a first series of tests, conducted between January and March 1980, involved only compressive strength measurements on cement specimens that had been exposed only to distilled water, a second series of tests, subsequently conducted between April and June 1980, also included compressive and splitting tensile strength measurements on cement specimens that had been exposed to 20 weight percent salt water. The practice was modified because the API Task Group had requested at its December 1979 meeting that as many of the candidate cements as possible be partially examined prior to its March 1980 meeting. We believe that the revised schedule of tests best utilized the limited pressure vessel space in the time available.

As of June 1980, 15 cement formulations, which include the first and second choice of each participating laboratory, were partially examined. In regard to the first series of tests, seven of the twelve cements tested had been prepared without their specified retarders because the retarder for some of them had not been submitted initially. Upon the advice of the API Task Group, the tests were repeated on most of these cements along with their retarders as part of the second series of tests. Also, two new cements (M and N), which were not received until March 1980, were included in the second series of tests. The results of the two series of tests had been presented at the March and June 1980 meetings, respectively, of the API Task Group.

## Specimen Preparation

Using a truncated version of the proposed schedule of tests [10], the preparation of a cement slurry was initiated on separate occasions, usually twice, but as many as four times, instead of once weekly as originally proposed. On each occasion the weighed components of a given cement being prepared were mixed to form 600 mL slurry. After the dry ingredients were hand-blended, their mix was added during a period of about 15 s to the liquid in a two speed propeller blender (2 L capacity) operating at the lower speed; next the slurry was blended for 35 s at the higher speed. The slurry was then poured into as many as 18 glass tube molds (20 mm o.d., 150 mm length, 1.5 mm wall) that had been coated lightly inside with silicone grease beforehand. After the slurry in each tube was puddled to remove trapped air bubbles, each of the filled tubes was capped with a Teflon stopper (10 mm length, 1 mm hole); and the capped tubes were secured together in a stainless steel basket.

The molded slurry of each cement was set-cured nominally two days (42 h actually) at elevated temperature and pressure. Immediately upon

completion of the slurry preparation, the basket of molds of a given cement was immersed in distilled water at room temperature and sealed in an internally stirred autoclave of stainless steel (4 L capacity). The water level was adjusted so that the water occupied about 78 percent of the available fluid space (autoclave capacity less volume of specimens), and the autoclave was next pressurized to about 7 MPa with nitrogen gas. Curing was considered to commence when the contents of the autoclave began being heated at the rate of about 2.4 °C/min. In about 75 min the temperature of the contents increased to 200 °C, and the autoclave became pressurized to about and eventually adjusted to 20 MPa, mainly due to expansion of the water and compression of the gas. The initial charge of water was deliberately chosen so that the volume ratio of final gas phase to available fluid space would be about 10 percent. These conditions were maintained throughout the remainder of the curing period by automatic temperature control, using a sheathed thermocouple inside the autoclave. The cure was considered to terminate when cold water began to circulate through internal coils of the autoclave, cooling the contents at a rate about the same in magnitude as the heating rate. When the temperature of the contents decreased to about 50 °C, thermal contraction had reduced the pressure again to 7 MPa; and the autoclave was further depressurized slowly and dismantled.

Following the two day set-cure of a given cement, the glass tubes were carefully broken away from the rods of set cement; and each rod was diamond sawed into three specimens, the length being twice the nominally 17.5 mm rod diameter. The specimens were immediately immersed in room temperature water and maintained wet. At this stage six specimens of each set-cured batch of cement were subjected to strength tests to provide a data base, to which the results of testing the other specimens of the batch could be compared, following their exposures as described later.

Because the prescribed method of slurry preparation was not appropriate with some cements, special care was exercised as follows:

1. Cements F and G: The water/solid weight ratio of 0.50 given in table 1 produced a paste slurry. In consultation with reference [5] a weight ratio of 0.60 was used in the present work, giving a more pourable slurry. Cement H: As reference [1] specified, water was added to the solid 2. and they were mixed in a low-speed paddle mixer for about 5 min until the slurry became pourable. Following the two day set-cure, the rods of set cement tended to stick to the silicone greased glass tubes and were so friable that many rods did not withstand removal of the glass molds. In a search to produce sound specimens, other batches of this cement were set-cured alternatively either in glass tubes on whose inside surface a Teflon spray release agent had been baked, or in thin-walled Teflon tubes which were held in split tubes of stainless steel with Teflon-lined copper caps. In addition several specimens (15 mm square, 30 mm length) were diamond sawed from three rods (50 mm diameter, 50 mm length) that reference [1] had set-cured reportedly in saturated steam at about 200 °C.

3. Cement P: As reference [7] specified, this cement was set-cured at 240 °C instead of the customary 200 °C. Since the first shipment of liquid siloxane monomer failed to set, a second shipment of the liquid to which a catalyst had been added was used, resulting in set specimens.

4. Cement Q: As reference [3] specified, this cement was set-cured while the molds of slurry were immersed in diesel fuel oil. Although the autoclave was controlled at the specified temperature of 115 °C, the exothermic polymerization reaction of the cement occurred so suddenly that the temperature increased to about 170 °C. The resulting specimens were foam-like, having

expanded out of the molds to be twice their length; and they possessed about one-tenth the roughly 60 MPa strength of specimens that were cured successfully. A few specimens of this cement were set-cured successfully in another batch when the proportion of slurry being cured in the fuel oil was reduced to about one-tenth that ordinarily used, thus limiting the rise in temperature during the set-cure. In consultation with reference [3] further examination of this cement was deferred at this time because the preparation of set specimens proved too difficult.

### Exposures

Two separate treatments were used to expose specimens of the cements at elevated temperature and pressure. Simulating light and heavy geothermal fluids, distilled water heated to 200 °C and 20 weight percent salt water heated to 300 °C constituted the two treatments, both being confined under 20 MPa pressure of nitrogen gas. While only distilled water was used in the first series of tests, a batch of freshly set-cured specimens of a given cement was usually divided into two separate groups of twelve specimens each for exposure in the two fluids, respectively, usually along with specimens of one to three other cements that had already been exposed for some time.

The chemical composition of the 20 weight percent salt solution was formulated to represent Salton Sea fluids, a somewhat arbitrary task since their salt content varies considerably. The salt solution consisted of 2.3 molal NaCl, 0.36 molal KCl, and 0.66 molal  $CaCl_2$  (1 molal = 1 mol solute per kg water); also, it was equilibrated with 0.2 MPa partial pressure of CO<sub>2</sub>, giving a pH of about 4.4 at 25 °C in a closed vessel.

The exposures were conducted in a recently constructed high pressure, high temperature fluid handling facility [11], which included a series of four Hastelloy alloy C-276 pressure vessels (5.1 cm i.d., 26 cm inside length). Demolded specimens of cement were installed within a given pressure vessel along with stainless steel blanks as necessary to keep constant the space that was occupied by as many as thirty specimens. The vessel was charged initially with a specified quantity of room temperature liquid and pressurized to 7 MPa with nitrogen gas so that the volume ratio of final gas phase to available fluid space be about ten percent, the same criterion as used in the set-cure. This corresponds either to filling 78 percent of the available fluid space of a vessel with distilled water that is eventually heated to 200 °C and pressurized to 20 MPa or to filling 64 percent, with 20 weight percent salt water that is eventually heated to 300 °C and also pressurized to 20 MPa (for example, about 220 or 180 mL, respectively).

Each pressure vessel with its contents was completely enclosed within a wire coil resistance, split tube furnace whose operation was automatically controlled by a thermocouple attached at the middle of the vessel exterior. A second thermocouple in a Hastelloy alloy sheath was used to indicate the temperature at the inside center of the pressure vessel. About 90 min was required from the time heating commenced for this internal temperature to attain 80 percent of its ultimate level. Weekly, the specimens of cement were cooled to about 50 °C in 2 h by directing compressed air on the pressure vessels in the furnace cavity. After the vessels were depressurized and dismantled, some specimens of cement were withdrawn and other specimens deposited as necessary to fulfill 7 or 28 day periods of exposure. Freshly made fluid was again installed in the pressure vessels and the cycle of operations was repeated. Meanwhile, the withdrawn specimens of cement were immersed in room temperature water until their strengths were measured.

The detailed procedure for testing the compressive strength ( $\sigma_c$ ) and the splitting tensile strength ( $\sigma_{+}$ ) of the set cements is described elsewhere [10]. In brief, the load bearing faces of the testing machine and of a test specimen were wiped clean. The length (L) and the diameter (D) of the specimen were measured within an accuracy of  $\pm$  0.05 mm. Using a wooden guide, the specimen was centered directly under a freely rotatable, spherically seated compression tool which was suspended on a gear driven crosshead. In the diametral splitting tests, unused cardboard strips (0.3 mm thick) were placed between the specimen and the load bearing faces to distribute the applied force smoothly. A compression force was applied at a constant displacement rate (0.5 mm/min) until the maximum force (F) necessary to cause failure of the specimen was recorded. The values of F were observed in lbf units (1 lbf =  $0.45359 \cdot 9.80665$  N) within an accuracy of  $\pm 0.3$  percent according to a recent calibration of the testing machine. Values of  $\sigma_{c}$  and  $\sigma_{t}$  were calculated from 4 F/ $\pi D^{2}$  and 2 F/ $\pi DL$ , respectively, in tests on separate specimens.

The results of compressive strength measurements that followed the initial set-cure and the distilled water exposures at 200 °C are given in Table 3 and Figures 1a, 1b, and 1c. The results of compressive strength measurements that followed the initial set-cure and the 20 weight percent salt water exposures at 300 °C are given in Table 4 and Figures 2a and 2b. Finally, the results of splitting tensile strength measurements that followed the initial set-cure and the same salt water exposures are given in Table 5 and Figures 3a and 3b. Line entries in the tables which show the same set-cure values for a given cement indicate specimens that originated from the same batch.

Since the present work, which was designed as part of a preliminary screening effort, involved a limited number of tests per event, any trends that the strength data portray with time of exposure should be considered as approximate. The mean values that are tabulated in Tables 3, 4, and 5 are not based evenly among the 686 specimens tested. Excluding duplicate entries, 85 of the mean values were based on 6 tests each (2 rods of set cement sawed into 3 specimens each), 5 of the mean values were based on 4 tests each, and 52 of the mean values were based on 3 tests each (3 specimens sawed from the same rod of set cement). Statistically meaningful trends would be based on larger populations than used here. One trend, however, was confirmed manyfold; the compressive strength of a rod of set cement, especially a lightweight cement, was found generally to increase with the depth that specimens were extracted from the rod, no doubt due to segregation of water from the heavier components prior to setting of the cement. The standard deviation of a mean value which is based on 3 tests generally reflects this trend for a given cement.

Very little distinction between the presence or absence of a retarder in cements A, B, D, F, K, and L is apparent within the precision of measurements. The presence of a retarder perhaps has made these cements slightly stronger immediately following their set-cure, but the differences could easily be due as much to the separate batches of set-curing.

The cements varied in their response to being exposed in distilled water at 200 °C. The high strength of cement P tended to increase with exposure time, the high strength of cement D held fairly steady within wide bounds, and the high strength of cements C and N began to decline somewhat following the four week period of exposure. Although cements A and B were

initially very strong at the one-day set-cure, their strengths retrogressed to lower levels upon exposure. The same held true to a lesser extent for the moderately strong cements F and M. The moderate strengths of cements E, J, K, and L held generally steady. Cements G and H were the weakest. Although the glass-molded specimens of cement H were moderately strong at the one-day set-cure, their strength retrogressed severely upon exposure.

The moderately strong cement L appears to have become slightly stronger in salt water at 300 °C than in distilled water at 200 °C. The respective strength trends of cements B, D, K, and P appear about the same with time of exposure in either fluid. Although the glass-molded specimens of cement H showed about the same strength retrogression in either fluid, the cement H specimens which were set-cured by reference [1] gave an increase in strength upon 4 week exposure to salt water at 300 °C; this inconsistency might possibly be due to the position these latter specimens occupied in the original stock material. The strengths of cements A, F, and M appear to have retrogressed slightly more when these cements were exposed to the salt water at 300 °C than to the distilled water at 200 °C. Drastic reductions in strength of cements C, E, J, and N were observed when these cements were exposed to the salt water at 300 °C. A reduction in strength was expected for cement C, for as reference [7] advised, it is useful at temperatures up to about 250 °C, above which the organic polymers decompose appreciably.

While the splitting tensile strength has about one-tenth the value of the compressive strength, both properties yielded parallel trends with time of exposure of the respective cements to the salt water at 300 °C.

| Identity | Parts by Weight                   | <u>Components</u>                                                                            | Reference |
|----------|-----------------------------------|----------------------------------------------------------------------------------------------|-----------|
| A        | 100<br>35<br>54<br>1              | API <sup>a</sup> class G cement<br>silica flour<br>water<br>lignin/sugar retarder            | 9         |
| В        | 100<br>44<br>0.4                  | API class J cement<br>water<br>lignin/sugar retarder                                         | 9         |
| С        | 100<br>22                         | solid aggregate<br>liquid organic monomers                                                   | 7         |
| D        | 100<br>45<br>0.7                  | cement<br>water<br>retarder                                                                  | 2         |
| E        | 100<br>4.5<br>1.1<br>85           | modified <sub>B</sub> -C <sub>2</sub> S cement<br>perlite<br>bentonite<br>water              | 4         |
| F        | 30<br>40<br>30<br>50<br>0.5       | API class J cement<br>pozzolan<br>blast furnace slag<br>water<br>carboxy methyl cellulose    | 5         |
| G        | 30<br>40<br>30<br>50<br>0.5       | API class J cement<br>silica flour<br>pozzolan<br>water<br>carboxy methyl cellulose          | 5         |
| Н        | 100<br>20.8                       | hydrothermal cement (250 °F)<br>water                                                        | 1         |
| J        | 100<br>50                         | ordinary Portland cement<br>water                                                            | б         |
| К        | 100<br>35<br>2<br>8.5<br>116<br>1 | API class G cement<br>silica flour<br>bentonite<br>perlite<br>water<br>lignin/sugar retarder | 9         |
| L        | 100<br>35<br>10<br>91<br>1        | API class G cement<br>silica flour<br>diatomaceous earth<br>water<br>lignin/sugar retarder   | 9         |

# Table 1. Formulations of geothermal-well cements submitted for testing at the National Bureau of Standards

Table 1. Continued.

| Identity | Parts by Weight                  | Components                                                                                                  | Reference |
|----------|----------------------------------|-------------------------------------------------------------------------------------------------------------|-----------|
| М        | 80<br>20<br>47.5<br>0.25         | API class J cement<br>calcined chrysotile (M <sub>3</sub> S <sub>2</sub> )<br>water<br>D-28 Dowell retarder | 8         |
| N        | 100<br>100<br>89.1<br>0.9        | system CA-CA <sub>2</sub> cement<br>5 µm quartz<br>water<br>100XR Pozzolithe                                | 8         |
| 0        | 60<br>40<br>47.5<br>0.375        | API class J cement<br>calcined chrysotile (M <sub>3</sub> S <sub>2</sub> )<br>water<br>D-28 Dowell retarder | 8         |
| Ρ        | 1 00<br>50                       | solid aggregate<br>liquid siloxane monomer                                                                  | 7         |
| Q        | 110<br>1                         | mixture containing furfuryl<br>alcohol resin<br>catalyst                                                    | 3         |
| R        | 100<br>35<br>20<br>54<br>1       | API class B cement<br>silica flour<br>NaCl<br>water<br>lignin/sugar retarder                                | 9         |
| S        | 100<br>100<br>2<br>1<br>135<br>1 | API class G cement<br>silica flour<br>sodium silicate extender<br>NaOH<br>water<br>lignin/sugar retarder    | 9         |
| Т        | 30<br>30<br>40<br>50<br>0.5      | API class J cement<br>silica flour<br>blast furnace slag<br>water<br>carboxy methyl cellulose               | 5         |
| U        | 30<br>30<br>40<br>50<br>0.5      | API class J cement<br>pozzolan<br>blast furnace slag<br>water<br>carboxy methyl cellulose                   | 5         |
| V        | 30<br>30<br>35<br>5<br>50<br>0.5 | API class J cement<br>silica flour<br>blast furnace slag<br>bentonite<br>water<br>carboxy methyl cellulose  | 5         |

•

----

| Identity | Component                                                       | Composition (parts by wt)                                                                                                                                                                      | Reference |
|----------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| A,K,L,S  | API class G cement                                              | By analysis:<br>64.2 CaO, 21.5 SiO <sub>2</sub> ,<br>3.9 Al <sub>2</sub> O <sub>3</sub> , 3.8 Fe <sub>2</sub> O <sub>3</sub> ,<br>1.3 MgO, 2.1 SO <sub>3</sub> ,<br>0.7 alkalies, 0.6 free CaO | 9         |
|          |                                                                 | By calculation:<br>60.3 $C_3S$ , 16.2 $C_2S$ ,<br>11.5 $C_4AF$ , 3.9 $C_3A$ ,<br>3.5 $CaSO_4$                                                                                                  |           |
| В        | API class J cement<br>(system β-C <sub>2</sub> S and<br>silica) | By analysis:<br>37.3 CaO, 54.2 SiO <sub>2</sub> ,<br>1.1 Al <sub>2</sub> O <sub>3</sub> , 1.0 $Fe_2O_3$ ,<br>0.3 SO <sub>3</sub> , 4.6 loss on<br>ignition                                     | 9         |
| C        | solid aggregate                                                 | 30 API class C cement,<br>70 sand (50 mesh no. 16,<br>25 mesh no. 30, 25 mesh no.<br>100)                                                                                                      | 7         |
| С        | liquid organic<br>monomers                                      | 50 styrene, 35 acrylonitrile,<br>5 acrylamide, 10 divinylbenzene,<br>1 silane A-174                                                                                                            | 7         |
| Ε        | modified β-C <sub>2</sub> S<br>cement                           | 100 (β-C <sub>2</sub> S + silica with<br>0.65 mol ratio CaO/SiO <sub>2</sub> ),<br>3 Al <sub>2</sub> O <sub>3</sub> ,<br>2.25 CaSO <sub>4</sub> ·2 H <sub>2</sub> O                            | 4         |
| Н        | hydrothermal cement<br>(250 °F)                                 | 7 Al(OH) <sub>3</sub> , 10 Britesil,<br>10 anhydrous sodium silicate,<br>25 silica flour, 50 sand,<br>0.5 bentonite                                                                            | I         |
| Μ        | API class J cement<br>(system β-C <sub>2</sub> S and<br>silica) | By analysis:<br>43.79 CaO, 49.25 SiO <sub>2</sub> ,<br>0.76 Al <sub>2</sub> O <sub>3</sub> , 0.59 $Fe_2O_3$ ,<br>0.29 MgO, 0.27 SO <sub>3</sub> , 0.46 alkalies,<br>3.50 loss on ignition      | 8         |

Table 2. Composition of cement components as given by sources

Table 2. Continued.

| Identity | Component                           | Composition (parts by wt)                                                                                                                                                                                    | Reference |
|----------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| N        | system CA-CA <sub>2</sub><br>cement | By analysis:<br>28.4 CaO, 0.35 SiO <sub>2</sub> ,<br>70.5 Al <sub>2</sub> O <sub>3</sub> , 0.10 Fe <sub>2</sub> O <sub>3</sub> , 0.43 MgO,<br>0.32 SO <sub>3</sub> , 0.27 alkalies, 0.38 loss<br>on ignition | 8         |
| Ρ        | solid aggregate                     | 10 API class C cement,<br>90 silica flour                                                                                                                                                                    | 7         |
| Ρ        | liquid siloxane<br>monomer          | 97 tetramethyltet <b>ravinyl-</b><br>cyclotetrasiloxane, 3 polydimethyl-<br>siloxane, 0.5 di-tert-butyl<br>peroxide                                                                                          | 7         |

Cement abbreviations:  $A = Al_20_3$ , C = Ca0,  $F = Fe_20_3$ , M = Mg0,  $S = Si0_2$ 

| Table 3. | Compressive strength $(\sigma_c)$ of set cements at 25°C, following |
|----------|---------------------------------------------------------------------|
|          | the set-cure and subsequent exposures to distilled water,           |
|          | pressurized to 20 MPa and heated to 200°C. Except as noted,         |
|          | entries give the mean and standard deviation of 6 tests.            |

| Cement              |                                                      | σ <sub>c</sub> /MPa                                  |                                                                                 |  |
|---------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------|--|
|                     | 2 da set-cure                                        | 7 da exposure                                        | 28 da exposure                                                                  |  |
| A <sup>a</sup><br>A | 67.8 + 6.4<br>77.1 + 10.2                            | 34.0 + 7.8<br>31.3 + 3.6                             | $\begin{array}{r} 36.3 \pm 4.2 \\ 24.4 \pm 4.1 \end{array}$                     |  |
| B <sup>a</sup><br>B | $54.0 + 7.9 \\ 62.1 + 4.1$                           | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | $\begin{array}{r} 32.8 + 2.5 \\ 30.1 + 2.6 \end{array}$                         |  |
| С                   | 155.1 <u>+</u> 9.9                                   | 175.8 <u>+</u> 13.4                                  | 133.6 <u>+</u> 7.7                                                              |  |
| D <sup>a</sup><br>D | $58.3 \pm 7.8$<br>57.9 $\pm 18.7$                    | 52.4 + 12.552.0 + 7.7                                | $\begin{array}{r} 63.9 + 15.8 \\ 59.1 + 7.2 \end{array}$                        |  |
| E                   | 21.3 <u>+</u> 2.8                                    | 25.4 <u>+</u> 2.0                                    | 24.5 <u>+</u> 3.5                                                               |  |
| F <sup>a</sup><br>F | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | $15.5 \pm 0.5$<br>$14.4 \pm 1.2$                                                |  |
| G <sup>õ</sup>      | 1.6 <u>+</u> 0.3                                     | 5.6 <u>+</u> 0.4                                     | 3.6 <u>+</u> 0.2                                                                |  |
| H H H H H H H       | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | 5.6 + 0.4 $4.6 + 1.7$ $6.1 + 1.5$ $3.2 + 0.4$        | $\begin{array}{r} 4.4 + 1.6 \\ 2.2 + 1.4 \\ 8.3 + 1.6 \\ 2.4 + 0.5 \end{array}$ |  |
| J                   | 16.1 <u>+</u> 1.9                                    | 14.2 <u>+</u> 2.1                                    | 17.9 <u>+</u> 2.2                                                               |  |
| к <sup>а</sup><br>К | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | 16.2 + 1.9<br>14.1 + 4.0                                                        |  |
| L <sup>a</sup><br>L | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | $26.9 + 1.6 \\ 25.0 + 2.1$                                                      |  |
| М                   | 37.6 <u>+</u> 5.1                                    | 26.9 <u>+</u> 0.8                                    | 25.0 <u>+</u> 2.1                                                               |  |
| N                   | 88.9 <u>+</u> 11.3                                   | 99.4 <u>+</u> 10.4                                   | 58.2 <u>+</u> 6.9                                                               |  |
| Р                   | 60.7 <u>+</u> 2.1                                    | 73.4 <u>+</u> 9.1                                    | 76.2 <u>+</u> 3.4                                                               |  |

1 MPa = 145 psi

<sup>a</sup>Retarder not added.

<sup>b</sup>Set-cured in teflon-coated glass tubes.

<sup>C</sup>Set-cured in teflon tubes.

<sup>d</sup>Set-cured by reference 1; 4 tests conducted per entry.

Table 4. Compressive strength ( $\sigma_c$ ) of set cements at 25°C, following the set-cure and subsequent exposures to 20 wt per cent salt water, pressurized to 20 MPa and heated to 300°C. Except as noted, entries for the set-cure and exposures give the mean and standard deviation of 6 and 3 tests, respectively.

| Cement <sup>a</sup>              |                                                      | σ <sub>c</sub> /MPa |                                       |
|----------------------------------|------------------------------------------------------|---------------------|---------------------------------------|
|                                  | 2 da set-cure                                        | 7 da exposure       | 28 da exposure                        |
| А                                | 77.1 <u>+</u> 10.2                                   | 21.6 <u>+</u> 1.0   | 19.9 <u>+</u> 2.3                     |
| В                                | 62.1 <u>+</u> 4.1                                    | 30.0 <u>+</u> 2.0   | 32.4 <u>+</u> 0.9                     |
| С                                | 141.8 <u>+</u> 7.0                                   | 80 <u>+</u> 28      | 6.8 <u>+</u> 2.1                      |
| D                                | 62.3 <u>+</u> 7.4                                    | 37.1 <u>+</u> 4.1   | 55.9 <u>+</u> 2.5                     |
| E                                | 20.0 <u>+</u> 3.0                                    | 11.4 <u>+</u> 1.6   | 1.0 <u>+</u> 0.2                      |
| F                                | 25.1 <u>+</u> 2.1                                    | 17.1 <u>+</u> 0.9   | 12.2 <u>+</u> 1.1                     |
| н <sup>b</sup><br>н <sup>d</sup> | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | 5.6 + 0.64.2 + 0.2  | 5.9 <u>+</u> 1.6<br>14.5 <u>+</u> 2.5 |
| J                                | 15.2 <u>+</u> 1.3                                    | 9.1 <u>+</u> 1.0    | 1.9 <u>+</u> 0.6                      |
| К                                | 20.1 <u>+</u> 5.0                                    | 12.1 <u>+</u> 3.9   | 11.4 <u>+</u> 6.1                     |
| L                                | 28.5 <u>+</u> 3.3                                    | 37 <u>+</u> 12      | 33 <u>+</u> 19                        |
| М                                | 34.6 <u>+</u> 5.5                                    | 18.7 <u>+</u> 1.6   | 19.2 <u>+</u> 1.1                     |
| N                                | 81.6 <u>+</u> 7.4                                    | 11.8 <u>+</u> 0.3   | 19.1 <u>+</u> 0.4                     |
| Р                                | 60.7 <u>+</u> 2.1                                    | 75.7 <u>+</u> 8.4   | 84.5 <u>+</u> 10.9                    |

1 MPa = 145 psi

<sup>b</sup>Set-cured in teflon-coated glass tubes.

<sup>d</sup>Set-cured by reference 1; 4 tests conducted per entry.

Table 5. Splitting tensile strength  $(\sigma_t)$  of set cements at 25°C following the set-cure and subsequent exposures to 20 wt per cent salt water, pressurized to 20 MPa and heated to 300°C. Entries for the set-cure and exposures give the mean and standard deviation of 6 and 3 tests, respectively.

| Cement         | t | σ <sub>t</sub> /MPa |                    |                    |
|----------------|---|---------------------|--------------------|--------------------|
|                |   | 2 da set-cure       | 7 da exposure      | 28 da exposure     |
| А              |   | 7.00 <u>+</u> 1.68  | 2.72 <u>+</u> 0.24 | 2.74 <u>+</u> 0.20 |
| В              |   | 5.70 <u>+</u> 1.54  | 4.78 <u>+</u> 0.51 | 4.85 <u>+</u> 0.66 |
| С              |   | 18.0 <u>+</u> 2.4   | 8.3 <u>+</u> 2.4   | 1.41 <u>+</u> 0.39 |
| D              |   | 5.14 <u>+</u> 1.29  | 4.38 <u>+</u> 1.27 | 5.71 <u>+</u> 0.91 |
| Ε              |   | 2.30 <u>+</u> 0.36  | 2.26 <u>+</u> 0.14 | 0.28 <u>+</u> 0.08 |
| F              |   | 3.37 <u>+</u> 0.61  | 1.92 <u>+</u> 0.12 | 1.50 <u>+</u> 0.22 |
| н <sup>р</sup> |   | 3.00 <u>+</u> 0.99  | 0.76 <u>+</u> 0.37 | 0.66 <u>+</u> 0.09 |
| J              |   | 1.81 <u>+</u> 0.38  | 1.44 <u>+</u> 0.37 | 0.34 <u>+</u> 0.01 |
| К              |   | 2.55 <u>+</u> 0.36  | 2.31 <u>+</u> 0.68 | 1.70 <u>+</u> 0.46 |
| L              |   | 3.49 <u>+</u> 0.65  | 5.77 <u>+</u> 1.00 | 6.76 <u>+</u> 0.56 |
| М              |   | 4.69 <u>+</u> 0.57  | 3.23 <u>+</u> 0.25 | 2.46 <u>+</u> 0.18 |
| N              |   | 8.66 <u>+</u> 1.41  | 1.60 <u>+</u> 0.53 | 2.96 <u>+</u> 0.13 |
| Р              |   | 4.22 <u>+</u> 0.76  | 6.35 <u>+</u> 0.39 | 6.26 <u>+</u> 1.84 |

1 MPa = 145 psi.

<sup>b</sup>Set-cured in teflon-coated glass tubes.





entry.









the mean and standaru ueviation of in teflon-coated glass tubes.



### References

- 1. D. K. Curtice and W. A. Mallow, Southwest Research Institute, 6220 Culebra Road, Post Office Drawer 28510, San Antonio, Texas 78284.
- 2. F. Fabbri, Ente Nazionale per l'Energia Elettrica, Compartimento di Firenze, 56044 Larderello, Italy.
- C. E. Johnson, Jr., Chevron Oil Field Research Company, P.O. Box 446, LaHabra, California 90631.
- 4. G. L. Kalousek, Colorado School of Mines, Golden, Colorado 80401.
- 5. R. S. Kalyoncu, Battelle Columbus Laboratories, 505 King Avenue, Columbus, Ohio 43201.
- 6. R. A. Kennerley, Department of Scientific and Industrial Research, Chemistry Division, Petone, New Zealand.
- 7. L. E. Kukacka, A. N. Zeldin, and N. Carciello, Brookhaven National Laboratory, Upton, New York 11973.
- 8. D. Roy, E. White, and C. Langton, The Pennsylvania State University, Materials Research Laboratory, University Park, Pennsylvania 16802.
- 9. B. E. Simpson and L. H. Eilers, Dowell Division of Dow Chemical, P.O. Box 21, Tulsa, Oklahoma 74102.
- R. F. Krause, Jr. and E. R. Fuller, Jr., "Testing Geothermal-Well Cements: Standard Practice," NBSIR 80-2099-2, National Bureau of Standards, Washington, D.C., Interim Report, July 1979.
- R. F. Krause, Jr. and E. R. Fuller, Jr., "Testing Geothermal-Well Cements: High Temperature, High Pressure, and Fluid Handling Facility," NBSIR 80-2099-3, National Bureau of Standards, Washington, D.C., Interim Report, October 1979.

| us. oppr. or com.       I. PUBLICATION OR REPORT NO.       2. Govt A Accession No.       2. Respired: 2 Accession No.         BELIOGRAPHICE DATA<br>SHEET       NESTR 80-2009-4       2. Publication Date         A. TITLE AND SUBTILE       TESTING GEOTHERMAL-WELL CEMENTS: Strength Measurements<br>Following Exposures to Simulated Geothermal Fluids       5. Publication Date         7. AUTHOR(S)       A. Peterming Organ. Report No.       8. Peterming Organ. Report No.         8. PERFORMING ORGANIZATION NAME AND ADDRESS       4. Peterming Organ. Report No.         NATIONAL SUFEAU OF STANDARDS<br>DEPARTMENT OF COMMERCE       10. Ontact/Grant No.         DET. ROBERT R. Reeber<br>Division of Geothermal Energy<br>U.S. Department of Energy       10. Ontact/Grant No.         MATIONAL SUFEAU OF STANDARDS       11. Ontact/Grant No.         MATIONAL SUFEAU OF STANDARDS       13. Speinert No.         D. S. Department of Energy<br>Washington, D. C. 2024       13. Supplement State Sta                                                                                                                                                                                                                                                                                                                                                                                                                           | NBS-114A (REV. 9-78)        |                                              |                                  |                                          |                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------|----------------------------------|------------------------------------------|-----------------------------|
| BIBLIOGRAPHIC DATA       NESTR 80-2099-4       Spatialized Construction Data         4. TITLE AND SUBTITLE       TESTING GEOTHERMAL-WELL COMENTS: Strength Measurements<br>Following Exposures to Simulated Geothermal Fluids       Spatialized Data         7. AUTHOR(S)       Ralph F. Krause, Jr. and Edwin R. Fuller, Jr.       Spatialized Data         2. PERFORMING ORGANIZATION NAME AND ADDRESS       Spatialized Coments and Complexity of Statement of Coments and Complexity of Complexity of Coments and Complexity of Coments and Complexity of Com                                                                                                                                                                                                      | U.S. DEPT. OF COMM.         | 1. PUBLICATION OR REPORT NO.                 | 2. Gov't Accession No.           | 3. Recipient's Act                       | ession No.                  |
| ATTLEANS USETTLE     TESTING GEOTHERMAL-WELL CEMENTS: Strength Measurements     Following Exposures to Simulated Geothermal Fluids     Subjection Ode     December 1931     Subjection Ode     Subjecti                                  | BIBLIOGRAPHIC DATA          | NESTE 90 2000 4                              |                                  |                                          |                             |
| A Inite AND Sublinite     TESTING GEOTHERMAL-WELL CEMENTS: Strength Measurements     Following Exposures to Simulated Geothermal Fluids     Secondare 1983     Automing Organization God     Ralph F. Krause, Jr. and Edwin R. Fuller, Jr.     S. PERFORMING ORGANIZATION NAME AND ADDRESS     NATIONAL BUREAU OF STANDARDS     OFPARTMENT OF COMMERCE     WASHINGTON, OC 2024     Secondare 2024                                     | SHEET                       | NB31R 80-2099-4                              |                                  |                                          |                             |
| Its in a GEUINEMAL-WELL CUMENTS: Strength Measurements:       December 1981         Following Exposures to Simulated Geothermal Fluids       Forware Organization Gov         7. AUTHORIS:       Ralph F. Krause, Jr. and Edwin R. Fuller, Jr.       It Preforme Organization Gov         9. PERFORMING ORGANIZATION NAME AND ADDRESS       It Preforme Organization Gov       It Preforme Organization Gov         9. PERFORMING ORGANIZATION NAME AND ADDRESS       It Contract/Orant No.       It Contract/Orant No.         9. PERFORMING ORGANIZATION NAME AND COMPLETE ADDRESS reference Care, States, ZEP)       It. Contract/Orant No.         10. Symmony of Count of Energy       It. Contract/Orant No.         11. Supplement of Energy       It. Supplement of Energy         11. Supplement describes a computer program: SF-105, FIPS Software Summary, is stached.       It. Supplement and the present of the first Marked Sector                                                                                                                                                                                                                                                                                                                                                                                         | 4. THE AND SUBTILE          |                                              |                                  | 5. Publication Da                        | te                          |
| PUTTOW HIGHERD States to Similar Diede Gebündenden Produiss       6. Performing Organization Code         7. AUTHOR(S)       8. Performing Organization Code         8. PERFORMING ORGANIZATION NAME AND ADDRESS       13. Project/Teak/Work Unit No.         9. PERFORMING ORGANIZATION NAME AND ADDRESS       13. Project/Teak/Work Unit No.         MATIONAL BUREAU OF STANDARDS       13. Project/Teak/Work Unit No.         MATIONAL BUREAU OF STANDARDS       13. Contract/Orant No.         MATIONAL SUPERAU OF STANDARDS       13. Contract/Orant No.         MATIONAL SUPERAU OF STANDARDS       13. Contract/Orant No.         MATIONAL SUPERAU OF STANDARDS       13. Type of Report Rece         MATIONAL SUPERAU OF STANDARDS       13. Type of Report Rece         Dr. Robert R. Reeber       13. Type of Report Rece         D'V ISSION OF GEOLOGENIZATION NAME AND COMPLETE ADDRESS (Street, City, State, 207)       13. Type of Report Rece         Supervisition of GeoLinemal Energy       13. Supervisition of GeoLinemal Energy       13. Type of Report Rece         U.S. SUPPLICEMENTARY NOTES       14. Source of State Receint Statemal Networks, Statemal Net                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TESTING GEOTHE              | RMAL-WELL CEMENIS: Stren                     | gth Measurements                 | December                                 | 1981                        |
| 7. AUTHORIS     4. Performing Organ. Report No.       Ralph F. Krause, Jr. and Edwin R. Fuller, Jr.     4. Performing Organ. Report No.       9. PERFORMING ORGANIZATION NAME AND ADDRESS     10. Project/Task/Work Unit No.       NATIONAL BUREAU OF STANDARDS     11. Contract/Grant No.       DEPARTMENT OF COMMERCE     11. Contract/Grant No.       WASHINGTON, DC 20224     FA-77-A-01-6010       12. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Strees. City, Stars, 207)     13. Type of Report Ne.       Dr. Robert R. Reeber     Therin, July 1980       U.S. Department of Energy     14. Someoning Agency Code       Washington, D. C.     15. SUPPLEMENTARY NOTES       Decument describes a computer program; SF-185, FIPS Software Summary, is attached.     14. Someoning Agency Code       18. ADSTRACT (A DOWNE or the Researd summary of most significant information. If downmant includes a significant bifugraphy or Utargent wave, Section if there.)       Compressive and splitting tensile strengths were measured for several set cements at room temperature after they had been exposed for periods of 1 week and 1 month to a 20 wtp ercent salt solution pressurized to 20 MPa and heated to 200°C. The compressive strength was also measured following exposures for identical periods to distilled water under the same pressure and temperature as the distilled water words unless exposure. These measurements are part of a project being carried out to evaluate certain physical properties of cements which are candidates for use in finishing geothermal wells.       11. NEY WORDS/ris to tworit strength.     10. Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rorrowing expu              | isures to simulated deothe                   | final Fluids                     | 5. Performing Org                        | anization Code              |
| 7. AUTORIS <ul> <li>PERFORMING ORGANIZATION NAME AND ADDRESS</li> <li>PERFORMING ORGANIZATION NAME AND ADDRESS</li> <li>MATIONAL BUREAU OF STANDARDS</li> <li>DEPARTMENT OF COMMERCE</li> <li>WASHINGTON, DC 20234</li> </ul> <ul> <li>PERFORMING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, 21P)</li> <li>D. Contract/Grant Ne.</li> <li>FA-77-A-01-6010</li> <li>The GRADIE ADDRESS (Street, City, State, 21P)</li> <li>D. Contract/Grant Ne.</li> <li>FA-77-A-01-6010</li> <li>The GRADIE ADDRESS (Street, City, State, 21P)</li> <li>D. Contract/Grant Ne.</li> <li>FA-77-A-01-6010</li> <li>The GRADIE ADDRESS (Street, City, State, 21P)</li> <li>D. SuperLement Are Notes</li> <li>Department of Energy</li> <li>U. SuperLement Are Notes</li> </ul> <li>I.S. SUPPLEMENTARY NOTES</li> <li> <ul> <li>Decoment describes a completer program: SF-185, FIPS Software Summary, is sittached.</li> <li>I.S. SuperLement Are Notes</li> <li>Compressive and soft iting tensile strengths were measured for several set cements at room temperature after they had been exposed for periods of 1 week and 1 month to a 20 wt percent salt solution pressurized to 20 MPA and heated to 200 °C.</li> <li>Compressive and temperature as the distilled water under the same pressure and temperature as the distilled water was also measured for lowest end temperature as the distilled water was also measured for low service of the approximation information. If desembles a supplement is finishing geothermal wells.</li> </ul> </li> <li> <ul> <li>I. NEY WORDS (size to reacts anothest supplemented to 20 wtrees there of the first kery word whest a</li></ul></li>                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                                              |                                  |                                          |                             |
| Ralph F. Krause, Jr. and Edwin R. Fuller, Jr.         PERFORMING ORGANIZATION NAME AND ADDRESS         MATIONAL SUREAU OF STANDARDS         DEPARTMENT OF COMMERCIE         WASHINGTON, DC 20234         12. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS rever, City, State, ZIP2         Dr. Robert R. Reeber         Division of Geothermal Energy         U.S. Department of Energy         U.S. Sequence and splitting tensile strengths were measured for several set coments and send immerse of most significant information. If desembed for between sensed for periods of 1 week and 1 month to a 20 wt percent salt solution pressurized to 20 MPa and heated to 200 °C. Prior to the exposure, the cements had been set-cured for 2 days in molds immersed in water under the same pressure and temperature as the distilled water exposure. These measurements are part of a project being carried out to evaluate certain physical properties of caments which are candidates for use in finishing geothermal wells. </td <td>7. AUTHOR(S)</td> <td></td> <td></td> <td>8. Performing Org</td> <td>an. Report No.</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7. AUTHOR(S)                |                                              |                                  | 8. Performing Org                        | an. Report No.              |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS       ID. Project/Tax/Mens Unit Ne.         NATIONAL BUREAU OF STANDARDS<br>DEPARTMENT OF COMMERCE<br>WASHINGTON, DC 0032       ID. Contract/Grant Ne.         12. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (stores), City, State, ZIP)<br>Dr. Robert R. Reeber<br>Division of Geothermal Energy<br>U.S. Department of Energy<br>Washington, D.C.       ID. Type of Resort & Period Covered<br>Inter in, July 1980         14. SUPPLEMENTARY NOTES       ID. Suppressive and splitting tensile strengths were measured for<br>Several set cements at room tamperature after they had been exposed for<br>periods of 1 week and month to a 20 wt percent sail solution pressurized<br>to 20 MPa and heated to 300 °C. The compressive strength was also<br>measured following exposures for identical periods to distilled water<br>pressurized to 20 MPa and heated to 200 °C. Prior to the exposure, the<br>cements had been set-cured for 2 days in molds immersed in water under<br>the same pressure and temperature as the distilled water exposure.<br>These measurements are part of a project being carried out to evaluate<br>coretain hysical properties of cements which are candidates for use in<br>finishing geothermal wells.         17. KEY WORDS (sits to inverte entries: signatural order; exploration on the strength, sectored under<br>the same pressure and temperature as the distilled water exposure.<br>These measurements are part of a project being carried out to evaluate<br>coretain hysical properties of cements which are candidates for use in<br>finishing geothermal wells.         17. KEY WORDS (sits to inverte entries: signatural order; exploration, DC<br>coretain hysical properties of cements which are candidates for use in<br>finishing geothermal wells.       ID. Scientify CLASS<br>(THIS PARCE)       21. NO. OF<br>PRINTED PARCES<br>(THIS PARCE)      <                                                                                                                                                                                    | Ralph F. Kraus              | se, Jr. and Edwin R. Fulle                   | er, Jr.                          |                                          |                             |
| NATIONAL BUREAU OF STANDARDS<br>DEPARTMENT OF COMMERCE<br>WASHINGTON, DC 20234       II. Contract/Grant No.<br>FA-77-A-01-6010         12. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Sneed, City, State, ZIP)<br>Dr. Robert R. Reeber<br>Division of Geothermal Energy<br>U.S. Department of Energy<br>Washington, D.C.       II. Contract/Grant No.<br>FA-77-A-01-6010         13. SUPPLEMENTARY NOTES       Decument describes a computer program; SF-185, FIPS Software Summary, is attached.       II. Contract/Grant No.<br>FA-77-A-01-6010         14. Spinsoring Agency Code       Va. Spinsoring Agency Code       Va. Spinsoring Agency Code         15. SUPPLEMENTARY NOTES       Compressive and splitting tensile strengths were measured for<br>several set coments at room temperature after they had been exposed for<br>periods of 1 week and 1 month to a 20 wt percent salt solution pressurized<br>to 20 MPa and heated to 200 °C. The compressive strength was also<br>measured following exposures for identical periods to distilled water<br>pressurized to 20 MPa and heated to 200 °C. Prior to the exposure, the<br>coments had been set-curred for 2 days in molds immersed in water under<br>the same pressure and temperature as the distilled water exposure.<br>These measurements are part of a project being carried out to evaluate<br>certain physical properties of cements which are candidates for use in<br>finishing geothermal wells.         19. MY WORDS (size to inverse strength, geothermal well; set-cement; simulated geothermal fluid;<br>splitting tensile strength.       19. SECURITY CLASS<br>VINTEP DAGE<br>UNCLASSIFIED       26.<br>20. SECURITY CLASS<br>VINTEP DAGE<br>VINTE PAGE<br>VINTE PAGE<br>VINTE PAGE       21. NO. OF<br>(THIS FROED<br>VINTEPAGE)       21. NO. OF<br>(THIS FROED<br>VINTEPAGE)       22. Price<br>VINTEPAGE<br>VINTEPAGE                                                                                                                                                                                                                                     | 9. PERFORMING ORGANIZATIO   | ON NAME AND ADDRESS                          |                                  | 10. Project/Task/                        | Work Unit No.               |
| MATIONAL BUREAU OF STANDARDS<br>DEPARTMENT OF COMMERCE<br>WASHINGTON, DC 20334       II. Contract/Grant No.<br>FA-77-A-01-6010         12. SPONSCHING ORGANIZATION NAME AND COMPLETE ADDRESS (street, City, State, ZIP)<br>Dr. Robert R. Reeber<br>Division of Geothermal Energy<br>U.S. Department of Energy       II. Type of Resort & Pend Covered<br>Inter in July 1980         14. Sponsoring Acency Code       II. Sponsoring Acency Code         15. SUPPLEMENTARY NOTES       II. Sponsoring Acency Code         16. ABSTRACT (A 200-wead or loss factual number of and significant infomation. If document includes a significant bibliography or<br>literature surger, action if there.)         16. ABSTRACT (A 200-wead or loss factual number of and significant infomation. If document includes a significant bibliography or<br>literature surger, action if there.)         18. ABSTRACT AC 200 MPa and heated to 200 °C. The compressive strength was also<br>measured following exposures for identical periods to distilled water<br>pressurized to 20 MPa and heated to 200 °C. Prior to the exposures, the<br>coments had been set-cured for a project being carried out to evaluate<br>creates the physical properties of caments which are candidates for use in<br>finishing geothermal wells.         17. KEY WORDS (size to indexe entries eighteenteel order, apprenties only the inst letter of the inst key word unlises a proper nume:<br>expended by semicolon)         19. KEY WORDS (size to indexe entries eighteenteel order, apprenties only the inst letter of the inst key word unlises a proper nume:<br>expended by semicolon)         19. KEY WORDS (size to indexe entries eighteenteel order, apprenties only the inst letter of the inst key word unlises a proper nume:<br>expended by semicolon)      <                                                                                                                                                                                                                                                                                                     | ·                           |                                              |                                  |                                          |                             |
| WASHINGTON, DC 20234       FA-77-A-01-6010         12. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (stores), City, State, ZTP)       IS. Type of Report & Period Covered<br>Dr. Robert R. Reeber<br>Division of Geothermal Energy<br>U.S. Department of Energy<br>Washington, D.C.       IS. Type of Report & Period Covered<br>Interim, July 1980         13. SUPPLEMENTARY NOTES       IS. Sponsoning Agency Code       Is. Sponsoning Agency Code         15. SUPPLEMENTARY NOTES       IS. Sponsoning Agency Code       Is. Sponsoning Agency Code         15. SUPPLEMENTARY NOTES       IS. Sponsoning Agency Code       Is. Sponsoning Agency Code         16. ABSTRACT (A 200-word or two ferent decomment of the state of the score state state score state state score state state score state state of the score state state of the score state state of the score state score state state score state state of the score state state o                                                                                                                                                                                                                                                                | NATIONAL BUREAU OF          | STANDARDS<br>ERCE                            |                                  | 11. Contract/Gran                        | t No.                       |
| 12. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)       11. Type of Report & Penot & Penot General Covered Division of Geothermal Energy         13. Type of Report & Penot & Penot Geothermal Energy       11. Type of Report & Penot Geothermal Energy         14. Sponsoning Agency Code       14. Sponsoning Agency Code         15. SUPPLEMENTARY NOTES       14. Sponsoning Agency Code         16. ABSTRACT (A 200-word or less Result submary of most significant information. If document includes a significant bibliography or literane works, mention if them?         17. MEY WORDS (All to cover the additional to a 20 wt percent salt solution pressure ized to 20 MPa and heated to 200 °C. The compressive strength was also measured for 20 MPa and heated to 200 °C. Prior to the exposure, the caments had been set-cured for 2 days in molds immersed in water under the same pressure and temperature as the distilled water exposure. These measurements are part of a project being carried out to evaluate certain physical properties of cements which are candidates for use in finishing geothermal wells.         17. MEY WORDS (size to project entrees; signalestical orders: application of the first key word unless a proper ment: exponence in the same pressure and temperature as the distilled water exposure. These measurements are part of a project being carried out to evaluate certain physical properties of cements which are candidates for use in finishing geothermal wells.         17. MEY WORDS (size to prefix entrees; signalestical order: application or the same pressure and temperature as the distilled water exposure. These measurements are part of a project being carried out to evaluate certain physical properties of cements which are candidates for use in fi                                                                                                                                                                                                                                                                                      | WASHINGTON, DC 20234        |                                              |                                  | FA-77-A-01                               | -6010                       |
| 17. KEY WORDS (six to rest-to enclose submested order: capitalize only the first letter of the first key word unless a proper memori<br>respected by sensible and the submested order: capitalize only the first letter of the first key word unless a proper memori<br>respected by sensible of cameters which are candidates for use in<br>first physical properties of cameters which are candidates for use in<br>first physical properties of cameters which are candidates for use in<br>first physical properties of cameters which are candidates for use in<br>first physical properties of cameters which are candidates for use in<br>first physical properties of cameters which are candidates for use in<br>first physical properties of cameters which are candidates for use in<br>first physical properties of cameters which are candidates for use in<br>first physical properties of cameters which are candidates for use in<br>first physical properties of cameters which are candidates for use in<br>first physical properties of cameters which are candidates for use in<br>first physical properties of cameters which are candidates for use in<br>first physical properties of cameters which are candidates for use in<br>first physical properties of cameters which are candidates for use in<br>first physical properties of cameters which are candidates for use in<br>first physical properties of cameters which are candidates for use in<br>first physical properties of cameters which are candidates for use in<br>first physical properties of cameters which are candidates for use in<br>first physical properties of the physical | 12 SPONSOPING OPCANIZATU    | ON NAME AND CONDUCTE ADDRESS (SA             |                                  | 13 Type of Repor                         | t & Bariad Cavarad          |
| Dr. KOUPT A. KEEDET       Interim, July 1980         Division of Geothermal Energy       M. Spamooring Agency Code         Main Shington, D.C.       M. Spamooring Agency Code         15. SUPPLEMENTARY NOTES       M. Spamooring Agency Code         Document describes a computer program; SF-185, FIPS Software Summary, is statched.       M. Spamooring Agency Code         16. ABSTRACT (A Spamooring Agency Code       Main Spamooring Agency Code         Iterature survey, mainten if here.)       Compressive and splitting tensile strengths were measured for several set cements at room temperature after they had been exposed for periods of 1 week and 1 mont to a 20 wt percent salt solution pressurized to 20 MPa and heated to 300° °C. The compressive strength was also measured following exposures for identical periods to distilled water pressurized to 20 MPa and heated to 200 °C. Prior to the exposure, the cements had been set-cured for 2 days in molds immersed in water under the same pressure and temperature as the distilled water exposure. These measurements are part of a project being carried out to evaluate certain physical properties of cements which are candidates for use in finishing geothermal wells.         17. KEY WORDS (size to preize energet, apphased order; capitalize only the first latter of the first key word unless a proper name(size) appropriate of cements which are candidates for use in finishing geothermal wells.         17. KEY WORDS (size to preize energet, apphased order; capitalize only the first latter of the first key word unless a proper name(size) appropriate of cements which are candidates for use in finishing geothermal wells.         18. AVAILABILITY       Unlim                                                                                                                                                                                                                                                                                                                                                                              | Dr. Dobont D                | DA NAME AND COMPLETE ADDRESS (SP             | eet, City, State, ZIP)           | 13. Type of Repor                        | t a Feriou Covereu          |
| 11. S. Department of Energy       14. Sponsoring Agency Code         U.S. Department of Energy       14. Sponsoring Agency Code         15. SUPPLEMENTARY NOTES         16. ABSTRACT (A 200-word or less desinal summary of uses sightfleent information. If document includes a significant bibliography or titesteen survey, manitor in the ben         16. ABSTRACT (A 200-word or less desinal summary of uses sightfleent information. If document includes a significant bibliography or titesteen survey, manitor in the ben         17. MEY MORDS (as to provide and heated to 300 °C. The compressive strength was also measured following exposures for identical periods to distilled water pressurized to 20 MPa and heated to 200 °C. Prior to the exposures, the cements had been set-cured for 2 days in molds immersed in water under the same pressure and temperature as the distilled water exposure. These measurements are part of a project being carried out to evaluate certain physical properties of cements which are candidates for use in finishing geothermal wells.         17. KEY WORDS (size to provide strength; aphabetical order; capitalize only the first letter of the first key word unless a proper name; reserved by semicolonal.         17. KEY WORDS (size to provide strength; aphabetical order; capitalize only the first letter of the first key word unless a proper name; reserved by semicolonal.         17. KEY WORDS (size to provide strength; gothermal well; set-cement; simulated geothermal fluid; splitting tensile strength.         18. AVAILABILITY       19. SetURITY CLASS (THIS PAGE)         20. Order From Sup, of Doc., U.S. Government Printing Office, Washington, DC 20402, 50 Stock No. Stochol.       22. P                                                                                                                                                                                                                                                                                                                                                                    | Division of G               | eothermal Energy                             |                                  | Interim, J                               | uly 1980                    |
| Washington, D.C.       15. SUPPLEMENTARY NOTES         15. SUPPLEMENTARY NOTES         16. ASTRACT (A 200-word or less decrual numbers of mest significant information. It document includes a significant bibliography or literature surger, mention if here.)         18. AVAILABILITY         19. AVAILABILITY         14. AVAILABILITY         14. AVAILABILITY         14. AVAILABILITY         14. AVAILABILITY         14. AVAILABILITY         14. AVAILABILITY         15. AUXILIABILITY         16. ACKING, Sp. of Onc., U.S. Government Printing Office, Washington, DC 2042, 5D Stock No., SNO02-003-         19. Perform Sup, of Onc., U.S. Government Printing Office, Washington, DC 2042, 2D Stock No., SNO02-003-         10. Other From Sup, of Onc., U.S. Government Printing Office, Washington, DC 2042, 2D Stock No., SNO02-003-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U.S. Departmen              | nt of Energy                                 |                                  | 14. Sponsoring Ag                        | ency Code                   |
| 15. SUPPLEMENTARY NOTES           Document describes a computer program; SF-185, FIPS Software Summary, is attached.           16. ABSTRACT (A 100-word or less desnuel summary of most significant information. If document includes a significant bibliography or literature survey, aention if here.)           Compressive and splitting tensile strengths were measured for several set cements at room temperature after they had been exposed for periods of 1 week and 1 month to a 20 wt percent salt solution pressurized to 20 MPa and heated to 300 °C. The compressive strength was also measured following exposures for identical periods to distilled water pressurized to 20 MPa and heated to 200 °C. Prior to the exposures, the cements had been set-cured for 2 days in molds immersed in water under the same pressure and temperature as the distilled water exposure. These measurements are part of a project being carried out to evaluate certain physical properties of cements which are candidates for use in finishing geothermal wells.           17. KEY WORDS (six to medve entries; alphabetical order; capitalize only the first letter of the litest key word unless a proper memory especies dry semicolono)           Compressive strength; geothermal well; set-cement; simulated geothermal fluid; splitting tensile strength.           18. AVAILABILITY         Quotimited           19. SECURITY CLASS         21. No. OF PRINTED PAGES           20422, 50 Stock No. SN003-003.         26           20422, 50 Stock No. SN003-003.         26           20422, 50 Stock No. SN003-003.         26. 50           20422, 513         UNCLASSIFIED                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Washington, D               | .C                                           |                                  | and the first of the first of the second | gin ginne .                 |
| Document describes a computer program; SF-185, FIPS Software Summary, is statched.      ABSTRACT (A 200-word or less decord summary of most significant information. If document includes a significant bibliography or literature survey, mention if here.)      Compressive and splitting tensile strengths were measured for several set cements at room temperature after they had been exposed for periods of 1 week and 1 month to a 20 wt percent salt solution pressurized to 20 MPa and heated to 300 °C. The compressive strength was also measured following exposures for identical periods to distilled water pressurized to 20 MPa and heated to 200 °C. Prior to the exposures, the cements had been set-cured for 2 days in molds immersed in water under the same pressure and temperature as the distilled water exposure. These measurements are part of a project being carried out to evaluate certain physical properties of cements which are candidates for use in finishing geothermal wells.      // KEY WORDS(six to over/or entries; alphasetical order; capitalize only the first letter of the first key word unless a preper memory exposure. These measurements are part of a project being carried out to evaluate certain physical properties of cements which are candidates for use in finishing geothermal wells.      // KEY WORDS(six to over/or entries; alphasetical order; capitalize only the first letter of the first key word unless a preper memory exposure. These measurements are part of a project being carried out to evaluate certain physical properties of cements which are candidates for use in finishing geothermal wells.      // KEY WORDS(six to over/or entries; alphasetical order; capitalize only the first letter of the first key word unless a preper memory exposure. These measurements are part of a project being carried out to evaluate for use in finishing geothermal wells.      // KEY WORDS(six to over/or entries; alphasetical order; capitalize only the first letter of the first key word unless a preper memory exposure. These me                                  | 15. SUPPLEMENTARY NOTES     |                                              |                                  |                                          |                             |
| Document describes a computer program: SF-185, FIPS Software Summary, is attached.      AS ABSTRACT (A 200-word or less locumal summary of most sightleant information. If document includes a significant bibliography or literatures, methods as a significant bibliography or periods of 1 week and 1 month to a 20 wt percent salt solution pressurized to 20 MPa and heated to 300 °C. The compressive strength was also measured following exposures for identical periods to distilled water pressurized to 20 MPa and heated to 200 °C. Prior to the exposures, the caments had been set-cured for 2 days in molds immersed in water under the same pressure and temperature as the distilled water exposures, the careta base pressure and temperature as the distilled water evoluate certain physical properties of caments which are candidates for use in finishing geothermal wells.      If KEY WORDS (size to project entries; siphebetical order; ceptentize only the first letter of the first key word unless a proper name; expressive entries; siphebetical order; ceptentize only the first letter of the first key word unless a proper name; expression by social properties of caments which are candidates for use in finishing geothermal wells.      Is. AVAILABILITY INTERPORT INTERPORT 26     Order From National Technical Information Service (NTIS), Springfield, UNCLASSIFIED 26     Noc.ASSIFIED                                   |                             |                                              |                                  |                                          |                             |
| 16. ASSTRACT (A 200-word or less include summary of most sightheant information. If document includes a sightheant information in the properties of the term.)       Compressive and splitting tensile strengths were measured for several set cements at room temperature after they had been exposed for periods of 1 week and 1 month to a 20 wt percent salt solution pressurized to 20 MPa and heated to 300 °C. The compressive strength was also measured following exposures for identical periods to distilled water pressurized to 20 MPa and heated to 200 °C. Prior to the exposures, the cements had been set-cured for 2 days in molds immersed in water under the same pressure and temperature as the distilled water exposure. These measurements are part of a project being carried out to evaluate certain physical properties of cements which are candidates for use in finishing geothermal wells.         17. KEY WORDS (six to prever entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolons)         Compressive strength; geothermal well; set-cement; simulated geothermal fluid; splitting tensile strength.         18. AVAILABILITY       Immined         19. SECURITY CLASS       21. NO. OF PRINTED PAGES         20. Order From Sup, of Dac, U.S. Government Printing Office, Washington, DC 20402, 50 Stock No. SM03-003-       19. SECURITY CLASS       21. NO. OF PRINTED PAGES         20. Order From National Technical Information Service (NTIS), Springfield, VA, 22151       22. Price       22. Price                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Document describes a co     | mputer program; SF-185, FIPS Software Sur    | nmary, is attached.              |                                          |                             |
| Compressive and splitting tensile strengths were measured for<br>several set cements at room temperature after they had been exposed for<br>periods of 1 week and 1 month to a 20 wt percent salt solution pressurized<br>to 20 MPa and heated to 300 °C. The compressive strength was also<br>measured following exposures for identical periods to distilled water<br>pressurized to 20 MPa and heated to 200 °C. Prior to the exposures, the<br>cements had been set-cured for 2 days in molds immersed in water under<br>the same pressure and temperature as the distilled water exposure.<br>These measurements are part of a project being carried out to evaluate<br>certain physical properties of cements which are candidates for use in<br>finishing geothermal wells.<br>17. KEY WORDS (six to medve entries; siphabetical order; capitalize only the first letter of the first key word unless a proper name:<br>separated by semicolona)<br>Compressive strength; geothermal well; set-cement; simulated geothermal fluid;<br>splitting tensile strength.<br>18. AVAILABILITY Immined<br>For Official Distribution. Do Not Release to NTIS<br>Order From Sup. of Dac., U.S. Government Printing Office, Washington, DC<br>20402, 3D Slock No. SN03-003-<br>Greater From Sup. of Dac., U.S. Government Printing Office, Washington, DC<br>20402, 2D Slock No. SN03-003-<br>Greater From Sup. of Dac., U.S. Government Printing Office, Washington, DC<br>20402, 2D Slock No. SN03-003-<br>For Official Distribution. Too Not Release to NTIS<br>Driver From National Technical Information Service (NTIS), Springfield,<br>VA. 22181<br>UNCLASSIFIED 26<br>UNCLASSIFIED 26<br>UNCLASSIFIED 26                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16. ABSTRACT (A 200-word or | less factual summary of most significant in  | formation. If document inclu     | des a significant bil                    | bliography or               |
| 17. KEY WORDS (size to prefere entries) elphabetical order; capitalize only the first letter of the first key word unless a proper name; asparated by semicolom)       11. KEY WORDS (size to prefere entries) elphabetical order; capitalize only the first letter of the first key word unless a proper name; asparated by semicolom)         17. KEY WORDS (size to prefere entries) elphabetical order; capitalize only the first letter of the first key word unless a proper name; asparated by semicolom)         17. KEY WORDS (size to prefere entries) elphabetical order; capitalize only the first letter of the first key word unless a proper name; asparated by semicolom)         17. KEY WORDS (size to prefere entries) elphabetical order; capitalize only the first letter of the first key word unless a proper name; asparated by semicolom)         17. KEY WORDS (size to prefere entries) elphabetical order; capitalize only the first letter of the first key word unless a proper name; asparated by semicolom)         18. AVAILABILITY       Immined         19. SECURITY CLASS       11. NO. OF         19. AVAILABILITY       Immined         19. SECURITY CLASS       12. NO. OF         19. Order From Sup. of Onc., U.S. Government Printing Office, Washington, DC       10. SECURITY CLASS       12. Price         19. Order From National Technical Information Service (NTIS), Springfield, VA, 22161       26. 50       26. 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Compressive, mention it     | nere.)                                       | athe ways messives               | dfor                                     |                             |
| 17. KEY WORDS (six to prefer entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; aspersted by semicolons)       17. KEY WORDS (six to prefer entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; aspersted by semicolons)         17. KEY WORDS (six to prefer entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; aspersted by semicolons)         17. KEY WORDS (six to prefer entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; aspersted by semicolons)         17. KEY WORDS (six to prefer entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; aspersted by semicolons)         17. KEY WORDS (six to prefer entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; aspersted by semicolons)         18. AVAILABILITY       Image: Image                                                                                                                                                                                                                | compressive at              | ha splitting tensile stren                   | igths were measure               | u for                                    |                             |
| 17. KEY WORDS (six to ovelve entries; alphabetical order; cepitalize only the list letter of the list key word unless a proper name; separated by semicolone)       17. KEY WORDS (six to ovelve entries; alphabetical order; cepitalize only the list letter of the list key word unless a proper name; separated by semicolone)         17. KEY WORDS (six to ovelve entries; alphabetical order; cepitalize only the list letter of the list key word unless a proper name; separated by semicolone)         17. KEY WORDS (six to ovelve entries; alphabetical order; cepitalize only the list letter of the list key word unless a proper name; separated by semicolone)         17. KEY WORDS (six to ovelve entries; alphabetical order; cepitalize only the list letter of the list key word unless a proper name; separated by semicolone)         17. KEY WORDS (six to ovelve entries; alphabetical order; cepitalize only the list letter of the list key word unless a proper name; separated by semicolone)         18. AVAILABILITY       Image: Ima                                                                                                                                                                                                                | popieds of 1 work           | at room temperature at te                    | cont salt solutio                | n proseuriza                             | А                           |
| The second of the first consistence of the second of th                                                            | to 20 MPa and heat          | and to $300 ^{\circ}$ C. The compress        | sive strength was                | also                                     | .u                          |
| In KEY WORDS (six to pressure and temperature as the distilled water exposure.         These measurements are part of a project being carried out to evaluate certain physical properties of cements which are candidates for use in finishing geothermal wells.         17. KEY WORDS (six to pressure antries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolone)         Compressive strength; geothermal well; set-cement; simulated geothermal fluid; splitting tensile strength.         18. AVAILABILITY       Intimited         19. SECURITY CLASS       21. NO. OF PRINTED PAGES         Order From Sup. of Doc., U.S. Government Printing Office, Washington, DC 20402, SD Stock No. SN003-003.       26. SECURITY CLASS (THIS PAGE)         Image: Strength       26         UNCLASSIFIED       26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | measured following          | exposures for identical r                    | periods to distill               | ed water                                 | •                           |
| cements had been set-cured for 2 days in molds immersed in water under<br>the same pressure and temperature as the distilled water exposure.<br>These measurements are part of a project being carried out to evaluate<br>certain physical properties of cements which are candidates for use in<br>finishing geothermal wells.         17. KEY WORDS (six to prove entries; siphabetical order; capitalize only the first letter of the first key word unless a proper name;<br>separated by semicolons)         Compressive strength; geothermal well; set-cement; simulated geothermal fluid;<br>splitting tensile strength.         18. AVAILABILITY       Unlimited         For Official Distribution. Do Not Release to NTIS       19. SECURITY CLASS<br>(THIS REPORT)       21. No. OF<br>PRINTED PAGES         Order From Sup. of Doc., U.S. Government Printing Office, Washington, DC<br>20402, SD Stock No. SN003-003-       19. SECURITY CLASS<br>(THIS PAGE)       22. Price         WincLASSIFIED       26         20. SECURITY CLASS<br>(THIS PAGE)       22. Price       22. Price         WincLASSIFIED       26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pressurized to 20 M         | MPa and heated to 200 °C.                    | Prior to the exp                 | osures, the                              |                             |
| the same pressure and temperature as the distilled water exposure.         These measurements are part of a project being carried out to evaluate certain physical properties of cements which are candidates for use in finishing geothermal wells.         17. KEY WORDS (six to ovelve entries; alphabetical order; capitalize only the list letter of the list key word unless a proper name; separated by semicolons)         Compressive strength; geothermal well; set-cement; simulated geothermal fluid; splitting tensile strength.         18. AVAILABILITY       ① Unlimited         For Official Distribution. Do Not Release to NTIS       UNCLASSIFIED       26         Order From Sup, of Doc., U.S. Government Printing Office, Washington, DC 20402, SD Stock No. SM003-003-       UNCLASSIFIED       26         VA, 22161       S6.50       UNCLASSIFIED       26.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cements had been s          | et-cured for 2 days in mol                   | ds immersed in wa                | ter under                                |                             |
| These measurements are part of a project being carried out to evaluate certain physical properties of cements which are candidates for use in finishing geothermal wells.         17. KEY WORDS (six to revelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolons)         Compressive strength; geothermal well; set-cement; simulated geothermal fluid; splitting tensile strength.         18. AVAILABILITY       Intimited         Is. AVAILABILITY <td< td=""><td>the same pressure a</td><td>and temperature as the dis</td><td>stilled water expo</td><td>sure.</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the same pressure a         | and temperature as the dis                   | stilled water expo               | sure.                                    |                             |
| 17. KEY WORDS (six to twolve entries; elphabetical order; capitelize only the lirst letter of the first key word unless a proper name; esparated by semicolone)         17. KEY WORDS (six to twolve entries; elphabetical order; capitelize only the lirst letter of the first key word unless a proper name; esparated by semicolone)         17. KEY WORDS (six to twolve entries; elphabetical order; capitelize only the lirst letter of the first key word unless a proper name; esparated by semicolone)         18. AVAILABILITY       Image: Compressive strength; geothermal well; set-cement; simulated geothermal fluid; splitting tensile strength.         18. AVAILABILITY       Image: Compressive strength; geothermal well; set-cement; simulated geothermal fluid; splitting tensile strength.         18. AVAILABILITY       Image: Compressive strength; geotherman well; set-cement; set cement; set cement; simulated geothermal fluid; splitting tensile strength.         18. AVAILABILITY       Image: Compressive strength; geotherman well; set cement;                                                                                                                                                                                                                                                            | These measurements          | are part of a project be                     | ing carried out to               | evaluate                                 |                             |
| 11. KEY WORDS (six to neelve entrice; elphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolona)         12. KEY WORDS (six to neelve entrice; elphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolona)         Compressive strength; geothermal well; set-cement; simulated geothermal fluid; splitting tensile strength.         13. AVAILABILITY       Image: Second secon                                                                                                                                                   | certain physical p          | roperties of cements which                   | are candidates t                 | or use in                                |                             |
| 17. KEY WORDS (six to prefixe entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolona)         Compressive strength; geothermal well; set-cement; simulated geothermal fluid; splitting tensile strength.         18. AVAILABILITY       Image: comparison of the first letter of the first key word unless a proper name; reparated by semicolona)         18. AVAILABILITY       Image: comparison of the first letter of the first key word unless a proper name; separated by semicolona)         18. AVAILABILITY       Image: comparison of the first key word unless a proper name; separated by semicolona)         18. AVAILABILITY       Image: comparison of the first key word unless a proper name; separated by semicolona)         19. SECURITY CLASS       21. NO. OF PRINTED PAGES         19. SECURITY CLASS       21. NO. OF PRINTED PAGES         19. Order From Sup. of Doc., U.S. Government Printing Office, Washington, DC       20. SECURITY CLASS         20. SECURITY CLASS       22. Price         20402, SD Stock No. SN003-003-       26         20. Order From National Technical Information Service (NTIS), Springfield, UNCLASSIFIED       S6 . 50         VA. 22161       UNCLASSIFIED       S6 . 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | finishing geotherm          | al wells.                                    |                                  |                                          |                             |
| 17. KEY WORDS (six to ovelve entries; elphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolone)         Compressive strength; geothermal well; set-cement; simulated geothermal fluid; splitting tensile strength.         18. AVAILABILITY       Image: Compressive strength; geothermal well; set-cement; simulated geothermal fluid; splitting tensile strength.         18. AVAILABILITY       Image: Compressive strength; geothermal well; set-cement; simulated geothermal fluid; splitting tensile strength.         18. AVAILABILITY       Image: Compressive strength; geothermal well; set-cement; simulated geothermal fluid; splitting tensile strength.         18. AVAILABILITY       Image: Compressive strength; geothermal well; set-cement; simulated geothermal fluid; splitting tensile strength.         19. SECURITY CLASS       21. NO. OF PRINTED PAGES         Image: Conder From Sup. of Doc., U.S. Government Printing Office, Washington, DC 20402; SD Stock No. SN003-003-       20. SECURITY CLASS (THIS PAGE)         Image: Conder From National Technical Information Service (NTIS), Springfield, UNCLASSIFIED       S6.50         Image: VA, 22161       Image: Strength;                                                                                                                                                                                                                                                                                                                                                                              |                             |                                              |                                  |                                          |                             |
| 17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolons)         Compressive strength; geothermal well; set-cement; simulated geothermal fluid; splitting tensile strength.         18. AVAILABILITY       Image: separate on the first letter of the first key word unless a proper name; separated by semicolons)         Is. AVAILABILITY       Image: separate on the first letter of the first key word unless a proper name; separate on the first letter of the first key word unless a proper name; separate on the first letter of the first key word unless a proper name; separate on the first letter of the first key word unless a proper name; separate on the first letter of the first key word unless a proper name; separate on the first letter of the first key word unless a proper name; separate on the first key word unless a proper name; separate on the first letter of the first key word unless a proper name; separate on the first key word unless a proper name; separate on the first key word unless a proper name; separate on the first letter of the first key word unless a proper name; separate on the first key word unless a proper name; separate on the first key word unless a proper name; separate on the first key word unless a proper name; separate on the first key word unless a proper name; separate on the first key word unless a proper name; separate on the first key word unless a proper name; separate on the first key word unless a proper name; separate on the first key word unless a proper name; separate on the first key word unless a proper name; separate on the first key word unless a proper name; separate on the first key word unless a proper name; separate on the first key word unless a proper name; separate on the first key word unless a proper name; separate on the first key word unless                                                                                                                                                             |                             |                                              |                                  |                                          |                             |
| 17. KEY WORDS (six to twelve entriee; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolone)         Compressive strength; geothermal well; set-cement; simulated geothermal fluid; splitting tensile strength.         18. AVAILABILITY       Image: separated by semicolone in the first letter of the first key word unless a proper name; separated by semicolone)         18. AVAILABILITY       Image: separate in the first letter of the first key word unless a proper name; separated by semicolone)         18. AVAILABILITY       Image: separate in the first letter of the first key word unless a proper name; separate in the first key word unless a proper name; separate in the first key word unless a proper name; separate in the first key word unless a proper name; separate in the first key word unless a proper name; separate in the first key word unless a proper name; separate in the first key word unless a proper name; separate in the first key word unless a proper name; separate in the first key word unless a proper name; separate in the first key word unless a proper name; separate in the first key word unless a proper name; separate in the first key word unless a proper name; separate in the first key word unless a proper name; separate integer name;                                                                                                                                                                                                |                             |                                              |                                  |                                          |                             |
| 17. KEY WORDS (six to prely entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolons)         Compressive strength; geothermal well; set-cement; simulated geothermal fluid; splitting tensile strength.         18. AVAILABILITY       Image: second strength in the second st                                                                                                                         |                             |                                              |                                  |                                          |                             |
| 17. KEY WORDS (six to twolve entries; elphabetical order; capitelize only the first letter of the first key word unless a proper name; separeted by semicolone)         Compressive strength; geothermal well; set-cement; simulated geothermal fluid; splitting tensile strength.         18. AVAILABILITY       Image: second strength in the first letter of the first key word unless a proper name; separeted by semicolone)         18. AVAILABILITY       Image: second strength in the first letter of the first key word unless a proper name; separeted by semicolone)         18. AVAILABILITY       Image: second strength in the first letter of the first key word unless a proper name; separeted by semicolone)         18. AVAILABILITY       Image: second strength in the first letter of the first key word unless a proper name; separeted by semicolone)         18. AVAILABILITY       Image: second strength in the first letter of the first letter of the first key word unless a proper name; separeted by semicolone)         18. AVAILABILITY       Image: second strength in the first letter of the first letter of the first letter of the first key word unless a proper name; separeted by semicolone)         18. AVAILABILITY       Image: second strength in the first letter of the first letter of the first letter of the first letter of the first key word unless a proper name; separeted by semicolone)         18. AVAILABILITY       Image: second strength in the first letter of the first letter                                                                                                                                                                                                                                                                                                                                                                              |                             |                                              |                                  |                                          |                             |
| 17. KEY WORDS (six to prelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolons)         Compressive strength; geothermal well; set-cement; simulated geothermal fluid; splitting tensile strength.         18. AVAILABILITY       Image: separated by semicolons)         19. SECURITY CLASS       21. NO. OF PRINTED PAGES         Image: separated by semicolons)       Image: separated by semicolons)         Image: separated by semicolons)       Image: separated by semicolons)         18. AVAILABILITY       Image: separated by semicolons)         Image: separate separate separate semicolons)       Image: separate semicolons)         Image: separate semicolons)       Image: separate semicolons)         Image: semicolons)       Image: semicolons)         Image: semicolons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |                                              |                                  |                                          |                             |
| 17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word differs a proper hade; separated by semicolons)         Compressive strength; geothermal well; set-cement; simulated geothermal fluid; splitting tensile strength.         18. AVAILABILITY       Image: separated by semicolons)         19. SECURITY CLASS       21. NO. OF PRINTED PAGES         Image: separated by semicolons)       Image: separated by semicolons)         18. AVAILABILITY       Image: separated by semicolons)         Image: separated by semicolons)       Image: separated by semicolons)         Image: separated by semicolons)       Image: separated by semicolons)         18. AVAILABILITY       Image: separated by semicolons)       Image: separated by semicolons)         Image: separated by semicolons)       Image: separated by semicolons)       Image: separated by semicolons)         Image: semicolons)       Image: semicolons)       Image: semicolons)       Image: semicolons)         Image: semicolons)       Image: semicolons)       Image: semicolons)       Image: semicolons)         Image: semicolons)       Image: semicolons)       Image: semicolons)       Image: semicolons) <t< td=""><td></td><td></td><td>and the state of the first he</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                                              | and the state of the first he    |                                          |                             |
| Compressive strength; geothermal well; set-cement; simulated geothermal fluid;         splitting tensile strength.         18. AVAILABILITY       Image: Compressive strength in the strength in t                                                                                                                         | aspareted by semicolons)    | intries; alphabetical order; capitalize only | the lirst letter of the lifst Ke | y word unieas a prop                     | er name;                    |
| splitting tensile strength.         18. AVAILABILITY       Image: Construct of the strength of the strengt of the strength of the strength of the strength of the strengt of                                                                                               | Compressive streng          | th; geothermal well; set-o                   | cement; simulated                | geothermal f                             | luid;                       |
| 18. AVAILABILITY       Image: Constraint of the second secon                                                                     | splitting tensile           | strength.                                    |                                  |                                          |                             |
| 18. AVAILABILITY       Image: Constraint of the second secon                                                                     |                             |                                              |                                  |                                          |                             |
| For Official Distribution. Do Not Release to NTIS       UNCLASSIFIED       26         Order From Sup. of Doc., U.S. Government Printing Office, Washington, DC 20402, SD Stock No. SN003-003-       20. SECURITY CLASS (THIS PAGE)       22. Price         Order From National Technical Information Service (NTIS), Springfield, VA. 22161       UNCLASSIFIED       \$6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18. AVAILABILITY            | 🔀 Unlimited                                  | 19. SECURI<br>(THIS R            | TY CLASS<br>EPORT)                       | 21. NO. OF<br>PRINTED PAGES |
| For Official Distribution. Do Not Release to NTIS       UNCLASSIFIED       26         Order From Sup. of Doc., U.S. Government Printing Office, Washington, DC       20. SECURITY CLASS (THIS PAGE)       22. Price         20402, SD Stock No. SN003-003-       .       .       .       .         Corder From National Technical Information Service (NTIS), Springfield, VA. 22161       UNCLASSIFIED       \$6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                              |                                  |                                          |                             |
| Order From Sup. of Doc., U.S. Government Printing Office, Washington, DC       20. SECURITY CLASS (THIS PAGE)       22. Price         20402, SD Stock No. SN003-003-       .       .       .       .         Order From National Technical Information Service (NTIS), Springfield, VA. 22161       UNCLASSIFIED       \$6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L For Official Distribution | . Do Not Release to NTIS                     | UNCLAS                           | SIFIED                                   | 26                          |
| 20402, SD Stock No. SN003-003-<br>C Order From National Technical Information Service (NTIS), Springfield,<br>VA. 22161<br>UNCLASSIFIED \$6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Order From Sup. of Doc      | . U.S. Government Printing Office Washin     | zton, DC 20. SECURI              | TY CLASS                                 | 22. Price                   |
| Order From National Technical Information Service (NTIS), Springfield,       UNCLASSIFIED       \$6.50         VA. 22161       UNCLASSIFIED       UNCLASSIFIED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20402, SD Stock No. SNO     | 103-003-                                     | · (THIS P)                       |                                          | 1                           |
| VA. 22161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Crder From National Ter     | chnical Information Service (NTIS), Springf  | eld, UNCLAS                      | SIFIED                                   | \$6.50                      |
| 0,200000-000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VA. 22161                   |                                              |                                  |                                          | USCOMM-DC                   |