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DEVELOPMENT OF RECOMMENDED TEST METHOD FOR
TOXICOLOGICAL ASSESSMENT OF INHALED COMBUSTION PRODUCTS

Merritt M. Birky, Maya Paabo, Barbara C. Levin,
Susan E. Womble, Dolores Malek

Abstract

The objective of the project supported by PRC was to develop
a test method for measuring the toxicity of combustion products
from polymeric materials including cellular plastics . The develop-
ment of such a test procedure was considered an essential first
step to determine the hazard to life when cellular plastics are
involved in fire.

As a result of this work, a test procedure was developed.
It consists of 3 major elements; (1) combustion system, (2) chemi-
cal analysis system and (3) animal exposure system. Two
biological endpoints obtained from the exposure are: (1) incapaci-
tation in 30 minute exposure period, and (2) lethality in 30 minutes
plus 14 days post exposure.

The test apparatus has been evaluated to determine mixing
rates and loss of reactive chemicals in the exposure chamber.
In addition, a statistical evaluation of the experimental results
demonstrated that order of incapacitation was independent of
animal location.

Evaluation of a limited number of different materials that
produce different toxicological syndromes has demonstrated the
utility of all 3 endpoints. Two natural polymers (wood and wool)
and 2 synthetic materials (modacrylic and PTFE) have been studied
in detail. In addition, preliminary data have been obtained on a
flexible polyurethane foam (GM-21)

.

Key words: Combustion; fatality (LCcq) ; hydrogen cyanide;
incapacitation; inhalation; test method; toxicology.
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1. PROJECT DESCRIPTION1.1

Scientific Background

Fire statistics show that approximately 70% of the fire fatalities in
the U.S.A. are attributed to smoke inhalation. An extensive revjew of the
scientific literature on the toxicity of combustion products [1] showed
that a great deal of effort had been expended in trying to determine the
toxic hazard associated with fires and to correlate this hazard with the
chemical analysis of pyrolysis products. In the review, it was pointed out
that the conclusion reached by those authors who conducted such analytical
measurements was that more measurements were required before one could
establish the toxicity of these products.

As a result of this information and experience in the field, it became
apparent that if progress is to be made in our understanding of the toxicity
of fire products, a judicious combination of chemical analysis and exposure
of living organisms is required. Living organisms are required to determine
the integrative effects of the large number of chemical species produced
from a single polymeric material when it undergoes thermal decomposition.
Furthermore, the evaluation of this complex mixture is complicated by the
fact that various toxic products affect living organisms in different ways
and in many cases these effects are unknown. Chem.ical analysis of selected
toxic products is considered important to further our understanding of the
toxic syndrome identified through the use of living organisms.

1.2

Objective

The objective of this study was to develop the measurement tools, in
this case, a standardized procedure, by which the toxicity of combustion
products could be measured. While the PRC program was limited to cellular
plastics, our objective was to develop the basis for a toxicity protocol
which was not limited to cellular plastics, but included all polymeric
materials, both natural and synthetic.

1.3

Approach

The details of the test method are provided in Appendix A. In summary,
the method consists of exposing 6 adult male rats in the head-only mode for
a period of 30 minutes. The combustion products are generated in a cup
furnace in the flaming and non-flaming modes in the bottom of a nominal
200 liter exposure chamber. Incapacitation, as defined by the hind-leg flex-
ion behavioral model, and percent lethality, including deaths during the 30
minute exposure period and for a 14 day post-exposure period, are determined
as a function of mass loading from which the LCc» value is statistically
determined. Blood carboxyhemoglobin saturation^associated with the exposure
is measured. Rats were chosen as the animal species rather than mice to
provide a sufficient blood supply for COHb determinations as well as other
selected blood parameters.

1 Numbers in brackets refer to the literature references listed
at the end of this report.



Heat stress and oxygen deprivation are eliminated as toxicological factors
by chamber temperature and oxygen concentration control in order to reduce
the scope of the problem to a manageable size. In addition, the static mode
of exposure was chosen to reduce the preferential loss of low vapor pressure
toxic species when transporting these species from the combustion chamber to
the exposure chamber.

Combustion of the material in the exposure chamber was considered the
most ideal solution as long as the environmental temperature was controlled
to eliminate heat stress on the animals.

It was further decided that incapacitation should be an endpoint as
well as death. Incapacitation was considered important since one would like
an early indication that the combustion products are causing a toxicological
problem and since investigations of fire fatalities indicated that in many
cases the fire victims had made an attempt to escape. Since no incapacitation
model appears to be universally responsive to the effects of all toxic chemi-
cals, death was considered an important endpoint as well.

After due consideration of the above factors, a test apparatus and method
were proposed. A copy of the proposed test method is attached as appendix A.

1.4 Major Accomplishments

During the period of PRC support, the following accomplishments have
been realized:

(1) the development of an animal exposure system for use
in the proposed test procedure,

(2) the determinations of the mixing characteristics of
the system, both analytically and toxicologically

,

(3) the development of a reliable analytical technique
for hydrogen cyanide in the fire gases,

(4) the development of a more rapid technique for the
measurement of blood cyanide and

(5) the determinations of the toxicity of the combustion
products of samples of Douglas fir, wool, modacrylic,
polytetrafluoroethylene and a flexible polyurethane.

The above accomplishments will be reviewed in detail in the following
discussion. However, it should be noted that this is a progress report
toward the development of a toxicity protocol and not a completed study.
For example, while time to incapacitation is required in the proposed
test method, time is not reported in this study pending further research on
time effects versus concentration effects. Incapacitation is reported on a
mass loading basis similar to the lethality end-point.

3



2 . ANIMAL EXPOSURE SYSTEM AND TEST METHOD

The animal exposure system is shown diagrammatically in figure 1. The
chamber is constructed of 1.25 cm (1/2 in) polymethylmethacrylate (PMMA) and
measures 122 cm (48 in) long by 46 cm (18 in) high by 36 cm (14 in) deep in
inside dimensions. This chamber provides a nominal volume of 200 liters.
Combustion products are generated in a small cup furnace inserted in the
bottom of the chamber at the left end as noted, in figure 1. The furnace is
of the design reported by Potts and Lederer [2]

.

For this test system, mass
loading of combustion products is defined as the weight of the material added
to the furnace in milligrams divided by the volume of the exposure chamber
in liters (mg/1)

.

Various radiant heat systems were tried without success. The major dif-
ficulty was designing a system that was compatible with the animals, that is,
all systems tested produced an unacceptable temperature rise in the exposure
chamber. The first system that was tested was a radiant panel (quartz-iodide
lamps) that was placed outside the chamber and the radiation was directed
through a quartz window.

A second radiant system was placed inside the chamber where the top of
the furnace is located. This system consisted of a truncated pyrex cone
coated with a reflective layer and wrapped with a resistance coil on the
inside surface of the cone.

Again, the heat losses were large enough that the chamber temperature
rose beyond the 35 °C environmental temperature limit specified in the pro-
posed test method.

The proposed test method, a description of which is attached as Appendix
A, details the apparatus and procedure that was used for the combustion pro-
duct toxicity determinations. The method may undergo further modifications
as more materials are evaluated and as the results of an interlaboratory
evaluation of the method by nine laboratories are analyzed.

The gas analysis system for CO, CO^ and 0- is shown by figure 2. The
CO and CO

2
are measured by continuous flow commercial infrared analyzers.

The 0» is determined by a galvanic cell. These gas concentrations are
measured continuously and since these are routine measurement techniques,
they will not be described further except to note that the 0.5 1/min. gas
stream used for this analysis is returned to the exposure chamber.

3. MIXING CHARACTERISTICS OF THE EXPOSURE SYSTEM

3.1 Analytical Measurements

Prior to the exposure of animals in the proposed test method, extensive
analytical measurements were made in the chamber at various locations to
determine the mixing characteristics of the system. As noted in figure 1,
CO

2 , HCl and HCN determinations were made at three elevations (5 cm from top

Note; Certain commercial equipment, instruments, or m.aterials are
identified in this paper in order to adequately specify the experi-
mental procedure. In no case does such identification imply recom-
mendation or endorsement by the National Bureau of Standards, nor does
it imply that the material or equipment identified is necessarily the
best available for the purpose.
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and bottom and at center) along the front face of the chamber in a vertical
line between animal ports 3 and 4. In addition, an HCN measurement was made
5 cm from the bottom of the chamber at the far end.

The results of the CO- measurements taken when 10 mg/1 of Douglas fir
was thermally degraded at ?40®C (non-flaming) are shown in figure 3. For
this analysis, samples were collected in pre-evacuated bulbs and analyzed
gas chromatographically

.

As indicated in figure 3, mixing occurs very rapidly in the chamber and
there were no significant gradients between the three levels under the test
conditions. Similar results were obtained with 20 and 30 mg/1 samples.

Repeated combustion of wood samples at a fixed loading was carried out
to determine the repeatability of the system. In this case, carbon monoxide
was measured in addition to CO- and reproducible results were obtained.
Continued measurements of CO from other materials have confirmed this finding.

A poly (vinylchloride) was degraded at 475°C in the non-flaming mode to
generate HCl in the exposure chamber. These measurements were designed to
determine if concentration gradients existed in the system when a reactive
gas such as HCl was present and to establish the adsorptivity of HCl on the
PMMA used for construction of the exposure chamber.

The HCl analysis was made with an ion selective electrode. The technique
for trapping the gaseous HCl was similar to that described by O' Mara [3]

.

10 ml disposable plastic syringes were used to withdraw 5 ml gas samples
simultaneou|ly at the three sampling ports. Once the gas was in the syringe,
5 ml of 10 HCl solution was drawn into the syringe and the syringe was
vigorously shaken. The scrubbing was repeated three more times.

The dissolved HCl was measured with a chloride ion-selective electrode
(Orion 92-17A

)

2

in conjunction with a double junction reference electrode
(Orion 90-02)

.

Emf measurements were made with a digital pH meter that had
been calibrated with standard HCl solutions in the range of 10 to 5 x 10 M.
The concentration of HCl in the gaseous samples was calculated using cali-
bration curves obtained by plotting electrode potentials versus the log of
HCl concentrations

.

The efficiency of the syringe sampling technique was checked by compar-
ing it with a standard sampling procedure employing midget impingers and a
large volume of gas. Two liters of HCl reference gas (4000 ppm) were col-
lected in two impingers filled with 15 ml of 2% NaOH. After sampling, the
chloride content of the combined trapping solution was measured with the
ion-selective electrode. The efficiency of the syringe sampling technique
was found to be 82 + 2%.

The results of two HCl measurements in the test chamber are illustrated
in figure 4. The broken line is the theoretical quantity of HCl based on
formulation information. In the first experiment, the HCl concentration was
lower in the upper position than in the lower two, unlike the second experi-
ment where the concentration was the same in all three positions. There was
some evidence of inhomogeneity as the initial HCl concentration in the second
experiment was above the theoretical amount (based on 92% resin content)

.

As evidenced by the rate of decrease in HCl concentration and comparison
with theoretical yield, adsorption does not appear to be unreasonably large
suggesting that this chamber is suitable for the exposure system.

As noted in figure 1, cyanide determinations were also made at three
levels. In this case various nitrogen containing polymers were used. The
results of measurements when wool was thermally degraded at 625°C (non-
flaming) are shown in figure 5. In this figure, two separate determinations

5



at different mass loadings (sample weight in furnace) are illustrated. As
noted in this figure, there was no significant stratification of HCN in the
box and mixing was good within the 10 minute -sampling period.

The analytical procedure for the HCN determinations was based on a gas
chromatographic technique utilizing a nitrogen specific detector. The
details of this technique have been published [4]

.

These measurements on CO
2 / HCl and HCN, although limited, show that

mixing in the chamber is rapid compared to the 30 minute exposure period and
that stratification and absorption do not appear to be problems, at least
for these products. One would expect that other products would have behave
similarly and that there would not be concentration gradients. This has been
proven by subsequent toxicity studies detailed in the following section.

3.2 Toxicological Measurements

To demonstrate the overall adequacy of mixing in the inhalation chamber,
a statistical analysis [(Chi)^ test of independence] of both flaming and non-
flaming experiments was made to determine if the time order of incapacitation
was independent of animal location. Table 1 shows the data used to calculate
the (Chi)^ test of independence of the order of incapacitation and animal
position in 45 flaming experiments. Flaming data were analyzed separately
from non-flaming to determine if radiation effects (heat stress) were having
an effect on the animals in addition to possible concentration gradients.

This analysis of the data showed that the order of incapacitation was
statistically independent of the animal position in both the flaming and
non-flaming experiments. The experimental variation noted was not significant
at the p = 0.05 level.

However, the statistical analysis did show that cannulated animals do
have a tendency to be incapacitated first. This is shown by figure 6. Two
animals out of six used in each experiment were cannulated. If the cannulated
animals had an equal probability of being incapacitated first, the data would
show that 33% of the time a cannulated animal would be first as shown by the
solid line in the bar graph. However, a cannulated animal was incapacitated
first 74% of the time. This analysis shows that the cannulated animals are
slightly more susceptible to the effects of toxic products.

More importantly, the statistical analysis of the data shows that within
the limits of the data, all six positions are equivalent. These findings
confirm the extensive analytical data.

4. BLOOD CYANIDE MEASUREMENTS

4 . 1 Background

Past efforts to evaluate the toxicological importance of HCN in the
fire environment had been handicapped by the lack of a rapid and accurate
technique for determination of cyanide in blood. Several methods are
available for blood cyanide and these our outlined in table 2. They all
require relatively large volumes of blood (several milliliters) for the
isolation step which itself is time consuming (2-3 hours) . In these
methods, the cyanide is separated from blood and analyzed by a number of
techniques

.

In the course of exposure of animals to degradation products of moda-
crylic, two methods were used for determining blood cyanide. First, in the
non-flaming modacrylic exposures, blood cyanide was determined by a modifi-
cation of a gas chromatographic method of Valentour [5]

,

In this case the
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cyanide was isolated from the blood utilizing the micro-diffusion technique
of Feldstein and Klendshoj [6]

.

This multistep process uses Conway microdiffusion dishes for isolation
of volatile HCN. The cyanide is converted to cyanogen chloride with chlora-
mine-T, extracted with n-hexane and detected by gas chromatography using an
electron capture detector. In addition to the time required for carrying
out the procedures, the main disadvantage of this technique is that only one
blood cyanide determination can be made per animal.

In combustion toxicity studies, it is desirable to take repeated blood
samples during an exposure in order to determine blood cyanide content at
the time of incapacitation as well as at the time of death. This requires
a rapid and simple blood cyanide analysis method using small volumes of
blood. Such a method was developed based on the analysis of head gas above
an acidified blood sample. This second technique was used for flaming
modacrylic studies.

This technique involves isolation of HCN by acidification of a small
blood sample (0.2 ml) in a gas tight container, followed by analysis of HCN
in the head gas by the same gas chromatographic technique as used for envir-
onmental HCN.

4.2 Experimental Details

4.2.1 Conway Microdiffusion/GC-ECD Technique

Two ml of O.lN NaOH is added to the inner wall of a Conway microdiffu-
sion dish. A 2 ml aliquot of the blood sample is placed into the outer
chamber to which 2 ml of IN tartaric acid is added. The dish is immediately
sealed with a glass cover. The acid and blood are mixed with gentle swirling
and allowed to stand at room temperature for 2 hours. The alkaline NaCN
solution is pipetted from the center well and subjected to wet chemistry for
converting the cyanide to cyanogen chloride.

To 1 ml of NaCN solution in a septum sealed vial, 2 ml of n-hexane, 1 ml
of IM NaH

2
PO., and 1 ml of chloramine T solution (0.26%) are added. The vial

is shaken for 30 seconds and allowed to stand for 5 minutes for the n-hexane
layer to separate. All reagents and the reacting mixture are cooled in an
ice bath.

The HCN (in the form of cyanogen chloride in the hexane layer) was-
quantified by gas chromatography. A gas chromatogram equipped with a "^Ni

pulsed linearized electron capture detector was used for this purpose.
1 ul samples of the hexane layer were injected on to a 6 ft. x 1/4 in. O.D.
stainless steel colvimn packed with 7% Halcomid M-18 on Anakrom ABS, (90-100
mesh) . The column was operated isothermally either at 75 or 85 ®C. The
injection port was at 150°C and the detector was kept at 300®C. Five per-
cent methane in 95% argon was used as a carrier gas at a flow rate of 60
ml/min. Chromatograms were traced with a recorder and the peak areas
determined with a digital integrator.

The GC system was calibrated with standard aqueous cyanide solutions

^
* 7^^ ug/ml) which were subject to similar wet chemical conversion steps.

The first n-hexane solvent peak was used as an internal standard and theratio of the peak heights of cyanogen chloride to n-hexane was related toHCN concentration in blood using a standard KCN solution of similar con-
centration.

efficiency of the microdiffusion step was evaluated by spiking
blood samples with KCN solutions in the range of 0.1 to 5 ug/ml and sub-
jecting the samples to blood cyanide analysis procedure. Standard curves

7



were calculated based on the detector response to aqueous reference solu-
tions containing KCN. Spiked blood analyzed by microdiffusion technique
gave results lower than the theoretical amount. The average recovery
efficiency of the Conway microdiffusion technique was found to be 73.1% with
std. dev. + 6.3. Blood cyanide values for exposed animals were corrected
for this recovery efficiency.

4,2.2 Head Gas/GC-NPD Technique

In this technique, 0.2 ml of blood is added to a 3 ml vacutainer con-
taining 0.2 ml of 85% H^PO,, mixed with a vortex mixer, and equilibrated for
1 hour in a waterbath at 60°C. The HCN in the head gas was sampled with a
100 ul gas-tight syringe and quantified by gas chromatography using an alkali
flame detector. The experimental parameters were the same as used for the
analysis of environmental HCN in gaseous degradation products [4]

.

The efficiency of liberation of HCN from blood matrix under the experi-
mental conditions was examined by comparing HCN concentrations in the head
space of acidified O.lN NaOH solutions and blood samples, both spiked with
CN in the range of 1-10 ug/iril. A linear relationship was obtained between
alkali flame detector response and cyanide concentration in the solutions
for both substrates, as shown by figure 7. Repeatability of duplicate
analysis was better than + 6%. Lower detection limit was estimated to be
about 0.2 ug CN/ml. The portion of HCN liberated into the head space was
12.5% (std. dev. + 0.8%) for aqueous solutions and 9.4% (std. dev. + 1.3%)
for blood samples.

The recovery of HCN from blood by the head gas technique was 75% of that
from aqueous media. However, to avoid the uncertainty of this correction
factor, spiked blood containing 10-20% H„0 was used for standardization
purposes when cyanide levels were determined in blood of exposed animals.

The results of the head gas measurements permit the calculation of the
partition ratio between HCN in the vapor phase and HCN in water and blood
at 60 °C. The partition ratio is expressed as:

mg HCN/1 solution
1 =

mg HCN/1 gas

and was approximately 125 for water and 160 for blood. These results are
compared with solubility data obtained from the literature for HCN in water
(see figure 8) over a range of temperatures.

4 . 3 Animal Exposure to HCN

The two techniques (head space and microdiffusion) described in the
previous sections were used for determination of blood cyanide during expo-
sure of animals to degradation products of modacrylic. The product load
was varied between 2-5 mg/1 which resulted in a concentration of HCN in the
range of 100-275 ppm.

During non-flaming modacrylic experiments, the animals were sacrificed
at the end of 30 minute exposure and blood samples were taken for cyanide
determinations via the Conway diffusion technique. The average blood-cyanide
values ranged from 0.62 to 2.73 ug/ml. The average deviation for five
measurements with duplicate determinations was + 8.5%.

During flaming modacrylic experiments, the blood for cyanide determina-
tions by the head gas technique was withdrawn from the cannula close to the
time of incapacitation and near the end of the 30 minute exposure. The
average blood cyanide levels varied between 1.91 and 6.53 ug/ml. The repro-
ducibility of the head gas technique was not as good as for the Conway diffu-
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sion method. The average deviation for 10 blood samples with duplicate
determinations was + 21%. Results of blood-cyanide concentrations as a

function of exposure time are shown in figure 9. In this figure, the arrows
indicate time of incapacitation.

The toxicological interpretation of blood cyanide findings will be dis-
cussed in section 5.2.2.

5. EVALUATION OF TOXICITY OF VARIOUS ti^TERIALS

5.1 General Toxicological Information

As indicated earlier, toxicological and analytical data have been
obtained for Douglas fir, wool, modacrylic and PTFE using the proposed test
procedure. Douglas fir was obtained as rectangular sheets approximately
30 cm X 23 cm x 1.9 cm and was cut into a cube of desired weight before each
experiment. Wool was obtained as a roll of washed, unbleached and unwoven
fibers. Modacrylic was a knit fabric. Both wool and modacrylic were cut
into a piece of desired weight before each experiment. PTFE, a powder, was
weighed on an analytical balance to insure precise weighing of the small
quantities needed. Preliminary data have also been obtained for a flexible
polyurethane foam (GM-21)'^. The temperatures at which these data have been
obtained are tabulated in table 3. Polystyrene (GM-51) is listed in this
table, but no toxicological data are reported here.

As specified in the test procedure, the animals are exposed head only.
The restrainer tube used to hold the animals is illustrated in figure 10.
These restrainers position the animals in the exposure chamber at the ports
shown in figure 1. The details of the test procedure are given in appendix
A.

Fisher 344 albino male rats were obtained weekly. The animals weighed
224-250 grams upon arrival and were kept at least 10 days before experiments
in order to acclimate to our laboratory conditions of 22®C and 50% relative
humidity. They were weighed during the laboratory acclimation period to
assure normal weight gain.

Each arrival of animals was divided into experimental and control groups
i.e., a usual weekly arrival consisted of 28 animals, 24 were used for experi
ments (4 experiments, 6 animals each) and 4 were kept as controls. All
animals were housed individually in suspended stainless steel wire cages in
a temperature and humidity controlled room. Twelve hours of fluorescent
lighting per day were controlled by an automatic timer. Food and water were
consumed ^ libitum . Fresh bedding was provided three times a week. All
animals surviving exposure were kept 14 days and weighed 5 days per week.

The types of data that are recorded during the experiments are shown in
tables 4a and 4b. These tables provide for the tabulation of all data except
the concentration of various gases in the exposure chamber.

Blood measurements are performed on two of the six exposed animals.
These two animals are cannulated at least 12 hours prior to the experiment.
The cannula, which is placed in the left femoral artery, allows arterial
blood to be drawn before, during (at 15 minutes and at incapacitation) , and
just prior to the end of the exposure.

Standard reference materials available from PRC.
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Nine different blood parameters are analyzed. Total hemoglobin (THb)

,

carboxyhemoglobin (COHb) , oxyhemoglobin (02Hb) , methemoglobin (MetHb) and
volume % oxygen are measured by a co-oximeter which was calibrated for rat
blood. The pH, pCO^ and pO^ were measured on a blood gas analyzer. This
instrument was calibrated before each experiment with a certified calibration
standard clinical blood mixture made for in vitro diagnostic use. In addi-
tion, blood cyanide was measured by the procedures described in sections 4.2
and 4.3.

At the beginning of an experiment before the sample is introduced into
the furnace, arterial blood samples are taken from the two cahnulated animals
for control values. The control values for various arterial blood parameters
are tabulated in table 5 and compared with similar values obtained at the
University of Utah.

The major differences in the control values between the two laboratories
are partial pressures of CO^ and O^. The Utah values are lower due to a
difference in atmospheric pressure, as Salt Lake City is situated at an
elevation approximately 5000 ft. and Washington is approximately at sea level.

5.2 Toxicolgical Results

The results of the toxicity measurements for the four materials that
have been evaluated under conditions of non-flaming and flaming combustion
are summarized in table 6. The temperature at which the material is degraded
is listed in column 2 of the table. The third column (EC^q) is the mass
loading of combustion products per unit volume required to^cause incapacita-
tion of 50% of the animals within the 30-minute exposure period. The 5th
and 4th columns lists the mass loading that leads to lethality of 50% of the
aniioals (LCc«) in 30 minutes and 30 minutes plus 14 days post exposure, res-
pectively. ^While the residue in the furnace is determined by weighing, it
is not taken into account for calculating the mass loading. The results of
measurements on each of these materials will be discussed individually below.

5.2.1 Douglas Fir

A graph of the carbon monoxide concentrations and the resulting carboxy-
hemoglobin values versus different mass loading of Douglas fir tested in
flaming mode are shown in figure 11. The mass loading for EC_^ and LC-^ are
overlayed as vertical lines on the figure. The carbon monoxide values^are the
average concentrations for the 30-minute exposure period.

Animals exposed to the flaming combustion of Douglas fir showed very high
levels of carboxyhemoglobin (COHb). In figures 11-14, COHb levels are indi-
cated by circles; open circles mean that the animal died during the 30-minute
exposure. Other blood parameters besides COHb values changed during the
exposure. For example, the O^Hb and partial pressure of oxygen (pO^) declined
as the COHb increased. In addition, the partial pressure of CO^ (pCO-)
increased and pH decreased as a result. All of the above blood^parameters
are for arterial blood.

From figure 11, one notes that for a 30-minute exposure, the ECc^
occurred when there was about 1800 ppm of CO and an average COHb concentra-
tion of 75%. For the LC^q, the average COHb value was about 85%. This data
plus the finding that there were no post-exposure deaths indicates that the
predominate cause of incapacitation and death from exposure to the flaming
combustion products of Douglas fir is most likely carbon monoxide.

Results of non-flaming experiments with Douglas fir are shown in tables
6 and 7. As noted in these tables, the flaming mode is less toxic with all
deaths attributed to CO.
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5.2.2 Modacrylic

Analysis of the analytical and toxicological data for flaming and non-
flaming combustion of the m.odacrylic fabric tested is shown in figures 12
and 13, respectively. In these figures, hydrogen cyanide environmental levels
and blood cyanide are also recorded.

It is obvious, from environmental CO and COHb concentrations, that carbon
monoxide is not a very significant toxicant in the cause of the incapacitation
or death of the animals exposed to modacrylic decompositions. For example,
COHb never exceeded 25% saturation. However, in the flaming mode, (figure 12,
table 7) the average HCN concentration at the calculated ECcq is about 125 ppm
and the corresponding average blood level is about 2.5 ug/ml. The average
concentration of HCN for the calculated 30-minute LCcq level is about 215 ppm
with a corresponding blood level of 4 ug/ml. Under non-flaming conditions
(figure 13, table 7), the environmental HCN concentrations at the EC^q and
LCgQ were similar to those values found under flaming conditions. However,
the blood cyanide levels found in the non-flaming mode were approximately half
those found in the flaming mode. This apparent discrepancy may be due to
analytical uncertainties in the blood cyanide measurements or to an increased
toxicity from different combustion products produced in the non-flaming mode.

The presence of cyanide in the blood is indicative of exposure to atmos-
pheric cyanide, however, the precise blood level may not reflect the magnitude
of the exposure or the extent of the toxicological problem. The reason for
this is found in the mechanism of cyanide toxicity.

First of all, cyanide is not toxic while in the blood. Cyanide toxicity
results from interfering with the electron transport system within the cells
of the tissues. It does not prevent the oxygenation of hemoglobin nor does
it interfere with the metabolism of the red blood cells. Therefore, if
cyanide is kept in the blood, it is essentially in a non-;^^xic state. In
fact, cyanide can be kept in the blood by changing the Fe oxidation state
(hemoglobin) to the Fe state (methemoglobin) which will bind the CN ion.
This is part of the procedure used to detoxify victims poisoned by HCN.

It should be clear from the above that it is the total body burden
resulting in a given tissue level which accounts for the toxicity of cyanide.
Furthermore, this distribution is time dependent. That is, a low environ-
mental concentration will provide more time for HCN to be distributed through-
out the body fluids and to tissues, resulting in a lower blood level at
incapacitation or death. A higher environmental concentration will saturate
both the blood and the tissues rapidly, thus resulting in a higher value at
incapacitation or death. Reference to the data shown in figure 9 suggest
that blood cyanide measurements are insufficient to demonstrate a causal
relationship between death and inhaled cyanide. This suggests that using
blood cyanide levels to determine cause of death in fire victims may be
misleading. Experiments on pure cyanide and its distribution between the
blood and other body tissues may help to resolve this problem.

5.2.3 Wool

The toxicological results from the flaming wool exposures are illustrated
in figure 14 and summarized in table 6. In this case CO is somewhat higher
than in the modacrylic, with the CO and HCN concentrations sufficient to be
of some toxicological significance but neither alone being sufficient to
cause incapacitation.

Figures 15 and 16 are plots of total mass loading vs. toxicological
response for flaming and non-flaming combustion. The curves were drawn as
a best fit to the data points. However, the values recorded in table 6
were obtained from a statistical analysis of the data according to the method
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of Litchfield and Wilcoxon [7]. In the case of flaming wool (fig. 15) it is

interesting to note that the animals in a given experiment were either all

incapacitated or none were incapacitated thus producing a very steep-dose
response curve. The difference in product loading between zero incapacitation
and 100% incapacitation was 22.1 and 22.6 mg/1.

5.2.4 Polytetrafluorethylene (PTFE)

The PTFE produced by far the most toxic combustion products of any of

the materials tested. All deaths occurred post-exposure. No analysis of

carbon monoxide and other gases was made. The fixed gases were not measured
because of the possibility of damaging the gas cells in the non-dispersive
IR equipment.

The fatality data for PTFE are summarized in table 6 and in figure 17

in which the time of death and number of deaths is recorded with the sample
mass loaded. Incapacitation did not occur during the 30 minutes of the
exposure at these concentrations. The highest COHb recorded with this
material was 2.4%. The cause of death has not been established at this time,
however, the mode of death is suggestive of a CNS (Central Nervous System)
type of agent. Review of past work of the toxicity of thermal degradation
products of PTFE indicates that the toxicity is attributed to a hydrolyzable
fluoride [1]. However, we have not identified the toxic species.

5.2.5 Flexible Polyurethne (GM-21)

While the studies on non-flaming GM-21 are incomplete, preliminary
analytical and toxicological results show that hydrogen cyanide is not a
significant factor. Even at 30 to 40 mg/1 mass loading, the HCN levels never
exceeded 30 ppm. Carbon monoxide was elevated and COHb values were in the
range of 55%. This was not an incapacitating level or a lethal level for the
30-minute exposure period, however, post exposure deaths did occur.

The fatality data are shown in figure 18. The cause of death was
believed due to severe respiratory distress with some of the animals dying
as long as 15 days after exposure. In all cases, the animals were weighed
daily and as a result of the exposure many lost considerable weight (i.e.
as much as 100 grams)

.

Further analysis of data and more experiments are planned. We also
plan to do histology of the respiratory tissues of the exposed animals.

6. SUMMARY AND CONCLUSIONS

The results of measurements of the toxicity of the combustion products
from the four materials that have been tested according to the prescribed
toxicology protocol are summarized in table 7 and figure 19. As indicated
earlier, in our experimental system the primary toxicity of the combustion
product from the modacrylic fabric can be attributed to HCN. In the case of
the wood, it is not so clear. In fact, the average concentrations of HCN at
the EC__ level for the non-flaming wool is almost identical with the LC_-
(30 minV) concentration of HCN in non-flaming modacrylic. There are at^Ieast
two possible reasons for this difference in the toxicological response to the
combustion products of wool and modacrylic at the same HCN concentration;
(1) an additional unidentified toxic product could be generated in the non-
flaming combustion of the wool that somehow protects the animals from HCN.
Additional research is required to elucidate these differences.

In figure 19, the EC^q and two LC^q values are compared for the four
materials. This comparison shows that^under the test conditions used in
these experiments the combustion products from the modacrylic fabric tested

12



are about an order of magnitude more toxic than wood and that the PTFE powder
used is more than a hundred times more toxic than wood. This correlation
appears to be true for all the end-points that were used in these experiments.
It is clear, from these data and previous dose-response calculations, that
for the materials studied the EC-q and the LC-q values give above the same
information. That is, the incapacitation model is not providing significantly
enhanced sensitivity to detect the toxicity of combustion products. This
conclusion should not be extended to all materials until data on other
materials have been obtained. However, this data does suggest that the pro-
posed 'test method can be simplified by reducing the amount of incapacitation
data that is required.

Overall, the proposed test method gives repeatible results. Mixing in
the chamber is rapid and concentration gradients are not significant.

The combined use of analysis of specific toxic products and toxicological
data provides a powerful tool for gaining insights into the toxicity of the
combustion products of a given material.
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Figure 3. CO
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Figure 5. HCN profiles in the exposure box
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Figure 10. Restrainer for rats
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Table 2. Analytical methods for measuring blood cyanide

1. Separation of HCN from blood

- Aeration (5 ml, 30 min.)

- Diffusion flask - Cavette (5 ml, 2 hrs.)

- Microdiffusion cell - Conway (2 ml, 2 hrs.)

2. Measurement of HCN

- Specific ion electrode (0.01 ug/ml)

- Colorimetry - CNCl + pyrazolone/pyridine (0.1 ug/ml)

Benzidine/pyridine

phenylene-diamine/pyridine

- Fluorometry - Mg-quinoline sulfonic acid chelate

(0.5 ug/ml)

- Gas chromatography - ECD - CNCl (0.01 ug/ml)
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Table 3. Auto-ignition temperatures and temperatures used
in the flaming and non-flaming modes

Material Auto-ignition temp. Non-flaming Flaming

Douglas fir 465“C 440°C 490°C

Modacrylic 725°C 700°C 750°C

Polystyrene GM-51 590°C 565°C 615°C

Polyurethane GM-21 395°C 370°C 420°C

PTFE 620®C 595°C 645°C

625°C 675®CWool 650°C
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Test Method Outline
i|

I . Combustion Conditions - Potts Furnace
A. 2 non-flaming conditions

1. 25 ®C below auto ignition temperature
2. 440®C if condition 1 is greater than 460®

!
B, 1 Flaming Condition

1. 25®C above auto ignition temperature

|j

(a) add 2 drops of ethanol to sample
(b) use ignition spark or hot coil

I

II. Sample Conditions
A. Use 1 piece (unless supplied as pellets or granules)
B. Sample conditioning

1. stored for 24 hours at 40 to 50% relative

j

hiamidity prior to testing

I

2. stored at 22-24®C

I

III. Animal Model
A. Animal Species

I

1. adult rats - 200-300 gm
(a) male only
(b) 6 required per test
(c) suggested strains: Sprague-Dawley , Wistar

I Fisher 344, (specific pathogen free)

B. End Points
1. time to incapacitation (T^)

(a) based on hind leg flexure paradigm
(b) 2 rats removed at T. if uncannulated

(if cannulated they^remain exposed for 30 min.)
2. lethality (LC^q detemination)

(a) 30 minutes plus 14 days post-exposure)

IV. Exposure Conditions
A. 30 minute exposure
B. head only (see chamber)
C. minimum of 3 product concentrations

V. Biological Measurements
A. T.

1. measure COHb, OjHb and total hemoglobin
at T. on 2 animals

B. % lethality as a function of product concentration for
blood chemistry

VI. Environmental Exposure Chamber Measurements
A. CO, CO_ and 0^ continuously or every 5

minutes
1 . 21%^ (^

2 ^-
B. temperature^

1. 22®C< T< 35°C
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PROPOSED TEST METHOD FOR INTERLABORATORY COMPARISON
OF COMBUSTION PRODUCT TOXICITY

by

Merritt M. Birky

1. INTRODUCTION

The purpose of this test method is to identify those materials that
produce unusually toxic or "super" toxic products when the material is
thermally degraded. The test method is designed to provide toxicity data
in order to classify materials into 2 categories; (1) those producing com-
bustion products of unusual toxicity and (2) those producing combustion pro-
ducts of conventional or moderate toxicity, that is, the toxicity is not
significantly greater than wood (Douglas fir)

.

Since the apparent relative toxicity of combustion products from diff-
erent materials will depend on the experimental approach and laboratory
conditions chosen, small differences in measured toxicity cannot be considered
significant in terms of real fire hazard by the present state-of-the-art know-
ledge in combustion toxicology. Because of these limitations in our present
knowledge and experience, this test method, while generally applicable, is
designed to identify those materials that produce unusually toxic combustion
products as compared to materials such as untreated wood.

The ease with which one can separate the materials into 2 classes will
obviously depend on the definition of unusually or super toxic as compared to
moderately toxic.

It should be recognized that this proposed test method is still under
active study and development. Consequently, it is subject to modification
and change.

2 . TEST METHODOLOGY

The ''selection of a complete system for assessing combustion product
toxicity involves many considerations and alternatives. This test method
reflects the current state of knowledge which should be recognized as being
limited. Any system for assessment of combustion product toxicity must
include; (1) a method of product generation, (2) method of exposing animals
to these products, (3) chemical analytical measurement system and (4) a
measurable response or biological end-point in the experiment.

The design of the combustion and exposure system and the biological end-
point will be strongly influenced by the animal species chosen, the number
used in each experiment, and the method of exposure.

The test method includes an animal incapacitation model which should
provide the investigator with increased sensitivity and improved discrimina-
tory power with which to assess relative toxicity. However, since no incapaci-
tation model appears to be adequately developed to place full reliance on it,
lethality and COHb level measurements are used at this time. Such questions,
as the universality of any given incapacitation model to all combustion pro-
ducts have not been adequately explored. For example, some materials will
produce compounds that are primarily sensory and pulmonary irritants, while
combustion products from other materials may have a primary effect on the
central nervous system, or cardiac system, etc. Thus combustion products
from various materials will attack different target organs, and any animal
model should measure the overall ability of the animal to escape or survive
with signficantly increased sensitivity over a lethality measurement.
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since the primary route of entry of toxic combustion products into the
body is by way of the respiratory tract, the designated approach draws on
existing knowledge in respiratory or inhalation toxicology. MacFarland (1)

reviewed methodologies in inhalation toxicology, and the approach set forth
below draws heavily on his review.

2.1

Animal Model2.1.1

Test Animals

Rats were chosen as the animal of choice since a great deal of toxicolo-
gical data is available. Although similar data are generally available on
mice, the selected blood chemical measurements required in the test necessi-
tate the use of the larger animal with the greater blood supply. The use of
rats does not mean or imply that a correlation has been established between
the effects of fire products on humans and rats.

Male adult rats weighing 200-300 gm are required for the test protocol.
Choices of animal strain are Spraque-Dawley , Wistar or Fisher 344. Specific
pathogen free rats should be ordered. The animals are to be kept for obser-
vation 10-14 days prior to use. Clinical examination and pathological evalu-
ation of the test animals are mandatory to verify that they are pathogen free.
Approximately 1 rat in 10 should be used as a control, sacrificed and inspected
for pulmonary pathology. Facilities for housing, care and use of animals must
conform to Federal guidelines (2)

.

The test procedure requires 6 animals per exposure; 2 animals are to be
used to obtain blood samples at time of incapacitation or, if not incapaci-
tated, at the end of the 30 minute exposure. The other 4 are for lethality
determinations

.

2.1.2

Incapacitation Model

In the last few years, 3 animal (rat) incapacitation models have been
developed to study the toxicity of combustion products. The conditioned
avoidance response developed by Packham (3) has been used extensively for
combustion product toxicity and carbon monoxide toxicity studies. A second
system, the rotating activity wheel has been used by Crane et al. (4) to
evaluate combustion products of aircraft cabin materials. A third system,
the rotorod, has been used by Hartung et al. (5) to measure the toxicity of
a variety of materials.

A review of the limited data available from these 3 methods and dis-
cussions with these individuals indicate that they give similar results in
terms of toxicity of materials. As each method has both advantages and dis-
advantages, the choice of one over the other appears to be a matter of per-
sonal preference. However, the rotorod and the hind leg flexure are more
amenable to quantification through the triggering of an electrical signal
at the point when the animal can no longer perform the assigned task. The
rotating activity wheel requires visual observation of the animal to deter-
mine when the animal can no longer perform the assigned task and with some
materials smoke may obscure this observation.

In a preliminary in-house comparison of the activity wheel and the hind
leg flexure methods, animals exposed to wood, polyurethane or polyvinylchlo-
ride combustion products showed nearly equivalent incapacitation times.
Similar comparison of the rotorod incapacitation model has not been done in-
house .

The hind leg flexure paradigm was selected for this test method because
of certain advantages or conveniences. At the same time one must realize that
there are also certain limitations to this technique that may not arise in

A-
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the other two systems. Future measurements and experience with the various
techniques may suggest that one of these three methods, or a totally differ-
ent system, may clearly offer a superior test method. However, it may be a

number of years before enough data and experience are available to make such
a decision.

2.2 Criteria for Test System

2.2.1 Criteria for Animal Exposures

Exposure period for the test is to be 30 minutes. Heat stress and
oxygen depletion are not to be factors in the test method. In order to
eliminate heat stress, the chamber temperature should not exceed 35°C. The
chamber temperature at the beginning of an exposure shall be 22 i 2°C and
should not rise above 35°C for any time period during the 30 minute exposure.
The environmental oxygen level should not fall below 18%

.

Heat stress and oxygen depletion are eliminated in order to assess only
the "chemical" toxicity of products produced during thermal degradation.
These 2 factors, if included, would affect the chemical toxicity signifi-
cantly, and an exploration of the infinite variations possible would delay
a test method for years. For this reason these two parameters are to be
controlled within the narrow limits specified.

2.2.2 Criteria for Combustion System

Certain minimal requirements are also placed on the method of product
generation. It is clear that the 2 distinct modes of combustion (flaming
and non-flaming) should be realizable and each mode controlled and explored
separately for toxicity. In addition, the heat source (furnace system) must
be temperature or heat flux controlled over a broad range. Due to the fact
that the exposure is relatively short, the shape of the concentration-time
curve becomes important. That is, the concentration of combustion products
should peak rapidly and ideally remain constant for most of the exposure
period. This means that the combustion products should be generated rapidly
and the atmosphere within the chamber equilibrate rapidly. This will
obviously depend on the thermal response of the material.

2 . 3 Chamber Design and Construction

Various factors, which influence the chamber design, have to be con-
sidered before the chamber can be constructed. These factors are whether
the animals are placed in:

(1) a static or dynamic atmospheric exposure and
(2) a head only or whole body exposure mode.

These factors will influence the restrictions on environmental tempera-
ture rise in the chamber.

In the static mode, the products are generated in the animal chamber,
whereas in the dynamic mode, the products can be generated exterior to
the animal chamber and transferred by a blower or compressed air. Each
has advantages and disadvantages. In this particular protocol, the static
mode was chosen since certain toxic products may be lost by adsorption during
transfer in a dynamic system. This mode also requires less material for
toxicological evaluations.

Head only exposure was considered advantageous for it minimizes the
possibility of heat stress and it allows the investigator to monitor various
physiological functions. Head only also minimizes the deposition of toxicants
on the animal's fur and the subsequent ingestion of these toxicants by the
animals while grooming. On the other hand, whole body exposure, in which
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the animals are required to exercise moderately during the test, is advan-
tageous for observation of behavioral changes during the exposure. Whole
body exposure also eliminates the stress on the animal caused by the restraint
required in the head only technique. After due consideration of all these
factors, the head only exposure technique was selected.

The chamber design is shown in Figures la and lb and is to be constructed
of polymethvlmethacrylate sheet. The inside dimensions are 48 inches long
18 inches high by 14 inches deep. The nominal volume of the chamber is 200
liters. The chamber should be gas tight and checked for major leaks and any
leaks corrected. A pressure relief balloon is to be attached to allow for
expansion of the gases during combustion of the sample. In addition, a
blow-out panel should be incorporated in the chamber. This panel should be
a flexible film, such as mylar or teflon coated aluminvim foil.

In the chamber shown in Figure la and lb, 6 animals are exposed head only
in individual restrainers. Behavioral incapacitation measurements are per-
formed on all 6 animals. Two of the 6 animals must be sacrificed for blood
chemistry (COHb) at the time of incapacitation. Alternatively, if two animals
are cannulated prior to exposure, then the blood COHb determinations can be
determined at the time of incapacitation without sacrificing the animals.
In this case, all 6 animals may be exposed for the full 30 minutes.

The combustion module shown in Figure 2 is fitted into the animal chamber
as shown in Figure 1. The degradation system is similar to that reported by
Potts and Lederer ( 6 ) and consists of a small furnace closed at the bottom
end. The furnace temperature is controlled with an automatic temperature
controller. The temperature is monitored with a thermocouple inside the
sample container.

2.4 Chemical Measurements (Environmental )

The environmental temperature of the chamber must be recorded continuously
or every 5 minutes during the 30 minute exposure to insure that it does not
exceed 35°C. The temperature sensor must be placed in the air at the level
of the animals. A chrome 1-alumel thermocouple is recommended for this and
has a sensitivity of approximately 40 uv/deg. Celsius.

Continuous measurements for 02r CO 2 and CO are to be made and recorded.
Alternatively, if a gas chromatographic technique is used, measurements of
*^2' *^^2 made every 3 to 5 minutes. The oxygen level in the
chamber shall not fall below 18% any time during the exposure. Oxygen is to
be supplied to the chamber to maintain the level between 18-21%.

Continuous monitoring of 82 ^ CO
2

and CO will remove some of the products
from the chamber. For example, approximately 0.5 liter/min. flow rate is
required for non-dispersive IR analysis of CO and CO

2
and analysis of 02 «

During a 30 minute exposure this amounts to 15 liters that must be pumped
back into the chamber. Oxygen or air should be added depending on the degree
of O

2
depletion. One must correct for this addition when calculating the

mass loading of combustion products.

The overall "concentration" of combustion products is based on mass load-
ing of the sample into the furnace divided by the volume of the exposure chamber
and is expressed in milligrams per liter or grams per cubic meter. It is this
mass loading that is used to calculate the LCcq/ i.e. the mass loading that
results in the death of 1/2 of the animal population. Equivalently, the EC^q
is the mass loading (mg/1) that incapacitates 50% of the animal population in
the 30 minute exposure period.

Measurement of other expected toxicants is optional. For example, HCl
can be measured when vjn'-l materials are being examined. Likewise, HCN can
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be measured as desired when nitrogen containing materials are thermally
degraded.

2.5 Biological Measurements

During the exposure period, observations of the animal behavior should
be noted and recorded. Time to loss of avoidance should be recorded. Any
unusual behavioral activity should also be recorded along with the time.

Selected blood chemical measurements are required and measurement of
other biochemical parameters is suggested. Measurements of COHb, O-^Hb and
total Hb on at least 1 and preferably 2 animals at the time of incapacita-
tion are required . If 2 of the 6 animals are not cannulated, 2 are to be
removed at the time of incapacitation and blood samples obtained as rapidly
as possible. The remaining 4 animals are to be exposed for the full 30

minutes unless they all die before the 30 minutes

.

It is suggested that blood cyanide measurements be made when nitrogen
containing polymers are being studied. This, however, is not required.

3. DOSE RESPONSE EFFECTS

Two end-points are to be obtained in the test procedure:

( 1 ) incapacitation and
( 2 ) death

Both of these experiments are to be determined as a function of the mass
loading of combustion products. It is anticipated that both endpoints can be
obtained during the same experiment although this is not always possible.
That is, the time to incapacitation is recorded during the 30 minute exposure
period, and the exposure is continued for the full 30 minutes even though
the incapacitation occurred earlier.

The lethality endpoint is evaluated as a function of the mass loading
in order to construct a dose-response curve from which the LC^q may be
estimated. The ECcq may also be estimated by constructing a curve of the
concentration versus percent-of-population-incapacitated in 30 minutes. The
actual LCgQ and EC 5 Q

with their 95% confidence limits should be obtained via
an appropriate published statistical method, such as that of Litchfield and
Wilcoxon (7). In some cases, depending on the particular toxic products,
incapacitation may not occur during the exposure period, but death may occur
during the 14 days post exposure period. In these cases, it may not be
possible to obtain an EC^q for that material.

The data for the lethality determination must include the deaths during
the 30 minute exposure period and the 14 day post-exposure period.

Since an incapacitation model is used, a measurement of the time to
incapacitation should be recorded, although the use of time to an effect is
still open to discussion. The number of animals that die during the exposure
and during the 14 days post-exposure period must be recorded.

4. TEST PROCEDURE

4.1 Sample Preparation

Material samples to be evaluated for toxicity should be conditioned in
a constant humidity chamber maintained at 40 to 50% relative humidity at a
room temperature of 22-24°C for a period of 48 hours prior to testing. The
sample specimen is to be tested in one piece.

A-
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4.2 Combustion Conditions

The toxicity of combustion products from any material is to be determined
separately for non-flaming or smoldering combustion and for flaming combustion.

4.2.1 Non-Flaming Conditions

Each material is to be evaluated at 2 non-flaming temperatures: (1) 25°C
below auto-ignition temperature with a maximum temperature of 800 °C and
(2) 440°C, if 25®C below auto-ignition temperature is above 440°C by 50®C or
more. The 440°C temperature is 25°C below the auto-ignition temperature of
Douglas fir. The auto-ignition temperature will be different for each
material and this temperature is to be established without animals as des-
cribed below.

First, the temperature of the furnace is set at 500°C and when this
temperature is attained, the material is introduced into the furnace. Sample
size should be the maximiam that one anticipates using for toxicity tests since
a larger size may ignite at a lower temperature. Do not exceed 35 mg/1 of
mass loading (for 200 liter chamber this is a 7 gm sample) to reduce risk of
creating an explosive mixture. If auto-ignition does not occur, the process
is repeated at 550 °C and so forth until the auto-ignition temperature is
bracketed within 25°C of the auto-ignition temperature. 800°C is the upper
temperature at which the toxicity is to be studied regardless of whether
auto-ignition occurs or not. If auto-ignition does occur at 500°C, the fur-
nace temperature should be decreased in increments until the auto-ignition
temperature is bracketed within 25°C.

Once the auto-ignition temperature of the material has been established,
the furnace temperature is to be decreased by 25°C for the non-flaming con-
dition. In other words, if a material auto-ignites at 450°C, the maximum
temperature at which this material is studied in the non-flaming mode of
decomposition is 425°C. The auto-ignition temperature may be sample size
dependent, so that once this auto-ignition temperature is established with a
given sample size, it should be checked without animals when the size is
changed. However, for a given material only one temperature is used.

As a point of reference, Douglas fir has an auto-ignition temperature,
established by the above procedure, of approximately 465°C.

4.2.2 Flaming Conditions

The material must also be elevated under flaming conditions. The flaming
mode of decomposition is to be carried out at a furnace temperature 25°C
above the auto-ignition temperature established in the previous section.
The 25°C increase in temperature is to insure ignition. In addition, 2-3
drops of ethanol is to be added to the sample and an electric spark should
be used to insure early ignition of the test material. It should also be
noted that the maximum furnace temperature for flaming studies is 800°C.

4 . 3 Exposure Procedure

Prior to experiments involving animal exposures , the system should be
checked out to determine that the analytical and combustion systems are all
operating correctly. The analytical instrumentation for O

2 , CO
2

and CO
should be calibrated with a known gas mixture containing the 3 gases. A
regular calibration schedule of this instrumentation must be made. The O

2
can be checked with air.

To check the combustion system, the material to be tested for toxicity,
including the reference material, should be used in the system before animals
rp invol.ved. This check-out procedure is to determine:
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(1) the degree of oxygen depletion during coinbustion
of the sample,

(2) the increase in temperature in the chamber during
sample degradation and

(3) that the proper conditions have been established
for carrying out either non-flaming or flaming
combustion exclusively.

Once these conditions have been established, an experiment involving
animals can be initiated.

The instrumentation for CO
2

and CO measurements are zeroed and a base
line established during the checkout procedure. Oxygen concentration is also
recorded prior to initiation of the exposure.

The furnace temperature is established and the system allowed to reach
equilibrium 10 minutes before the start of the experiment. During this warm-
up period and the recording of pre-exposure data, the door of the exposure
chamber is left open.

After these conditions are established, the animals are placed in their
respective positions. To initiate the experiment, the weighed sample is
placed in the furnace, and the door of the chamber is immediately closed.
Placement of the sample into the furnace designates the starting time of
the exposure

.

If temperature rise in the exposure chamber is a problem, the electrical
power to the furnace may be cut off when the sample is completely degraded
(3-5 minutes). The length of time required to degrade the sample can be
determined by watching the increase of CO or CO^ concentrations. When these
concentrations reach a steady state, the heater"^can be shut off.

If no animals are cannulated, two animals are to be removed at the time
of incapacitation and the time recorded. Blood samples are to be obtained
from these 2 animals as rapidly as possible. The remaining 4 animals are to
be exposed for the full 30 minutes. If 2 animals are cannulated, the blood
can be obtained at the time of incapacitation. These 2 animals should continue
to be exposed for the full 30 minutes. If no incapacitation occurs, the
exposure is to be terminated at 30 minutes

.

The pathological examination on any animals that die during the exposure
or are sacrificed immediately after the termination of the exposure should
focus on the condition of the respiratory tract. Visual observations of soot
deposits, pulmonary edema, hemorrhagic lungs, etc., should be recorded.

Clinical examination of post-exposure behavior of animals not killed
during the exposure can be made, however this is optional. This examination,
immediately after exposure, should include the following behavioral para-
meters: (1) exploratory behavior, (2) righting reflex, (3) pain reflex,

(4)

nuzzle reflex, (5) posture, (6) eye irritation, (7) nasal discharge,
(8) respiratory irregularities (gasping, wheezing, etc.) (Irwin [8]). Any
other unusual behavior patterns must be recorded.

The animals are to be kept for a period of 14 days post-exposure. Any
deaths during this time period should be included in the lethality calcula-
tions. In addition, during these 14 days any unusual behavior should be
noted and recorded including daily animal weights

.
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5. REPORTING OF DATA

Required exposure chamber measurements are:

(1) carbon monoxide concentrations,
(2) carbon dioxide concentrations,
(3) oxygen concentrations, and
(4) temperature in the vicinity of the

nose of the rats

.

The above measurements are to be recorded at a minimum of 5 minute
increments during the exposure.

The temperature at which the sample is thermally degraded must also be
recorded.

Required biological measurements are:

(1) carboxyhemoglobin at time of incapacitation on
2 rats

,

(2) total hemoglobin at time of incapacitation on
2 rats

,

(3) oxyhemoglobin at time of incapacitation on 2 rats,
(4) time to incapacitation on all 6 rats, if incapaci-

tation occurs , and
(5) mortality data during the exposure period and for the

14 day post-exposure period.

The blood chemistry measurements are to be done at the time of incapaci-
tation or, if incapacitation does not occur, immediately after the 30 minute
exposure

.

In addition to the above required data, other observations can be made
and recorded during and after exposure. For example, observations on animal
posture, righting reflex, exploratory behavior, respiratory function (gasping,
wheezing)

,
grooming and eye and nasal discharge and body weight change should

be recorded. This information will be useful in evaluating the extent of
the toxicological insult.

6. NUMBER OF EXPERIMENTS AND DATA REDUCTION

As noted above, 6 animals are. to be exposed per experiment. Dose
response data based on lethality is to be obtained on each of 3 thermal
degradation conditions. A minimum of 3 concentrations are required for
each of these thermal conditions. The 3 thermal conditions are:

2 non-flaming conditions -

(1) 25 °C below auto ignition temperature and
(2) at 440°C if condition (1) above is 490°C or

greater

1 flaming condition -

(3) 25°C above auto ignition temperature

The minimum number of animals required to evaluate a given material is
as follows:

3 (thermal conditions) x 6 (animals/exp. ) x 3 (concentrations minimum)
= 54 animals.
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It is unlikely that one can get a statistically valid LC^q based on 3

concentrations unless one can get about a 20%, 50% and 80% response on these
3 concentrations, so that it may require significantly more animals per
material. The number of animals will also depend on the number of tempera-
tures required to complete the evaluation.

Time to incapacitation, blood carboxyhemoglobin and the mortality data
for each exposure should be recorded. The percent mortality for each con-
centration for a given thermal condition should be plotted, i.e., % mortality
should be plotted against mass loading of combustion products so that an
LC^q can be estimated from the plot. This percent mortality must include all
mortalities that occur during the exposure and the 14 day post exposure
period.
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PYROLYSIS/COMBUSTION FURNACE

Figure 2. Cutaway drawing of the pyrolysis/combustion furnace.
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