

NBS PUBLICATIONS

NBSIR 80-2029

The Thermochemical Properties of the Uranium-Halogen Containing Compounds

Vivian B. Parker

Center for Thermodynamics and Molecular Science Chemical Thermodynamics Division National Bureau of Standards U.S. Department of Commerce Washington, D.C. 20234

July 1980

Interim Report

Prepared for International Atomic Energy Agency and fice of Standard Reference Data, NBS 100 .U56 80-2029 1980 c.2

THE THERMOCHEMICAL PROPERTIES OF THE URANIUM-HALOGEN CONTAINING COMPOUNDS

Vivian B. Parker

ALTONAL BUREAU OF STA

	DATE DUE			
Center for Thermodynamics and Molecular Science Chemical Thermodynamics Division National Bureau of Standards U.S. Department of Commerce Washington, D.C. 20234	NOV 0 6 1	INCEL	#2 <u>11</u>	
July 1980				
Interim Report				
Prepared for International Atomic Energy Agency and Office of Standard Reference Data, NBS				
and the Constants	GAYLORD			PRINTED IN U.S.A.

ATIONAL BUREAU OF STANDARDS LIBBARY SEP 1 9 1980

15 360 - 100

20 - 053

1420

1 4 -

DATE DUE

U.S. DEPARTMENT OF COMMERCE, Philip M. Klutznick, Secretary

Luther H. Hodges, Jr., Deputy Secretary Jordan J. Baruch, Assistant Secretary for Productivity, Technology, and Innovation

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

The Thermochemical Properties of the Uranium-Halogen Containing Compounds

Vivian B. Parker

.

Table of Contents

I.	Gener	ral Description	
	1.	Introduction	2
	2.	Explanation of the Contents of the Text and Tables	3
	2.1	Conventions Regarding Pure Substances	3
	2.2	Convention Regarding Solutions for the Tabulated Values	4
	2.3	Convention Regarding Solutions for Reactions in the Text	6
	2.4	Chemical Formulae and Physical States for the Tabulated Values	6
	2.5	Definition of Symbols for Thermochemical Properties for the Tabulated Values	7
	3.	Unit of Energy and Fundamental Constants	7
	4.	Internal Consistency of the Tables	8
	4.1	The Use of Auxiliary Data	8
	4.2	Uncertainties	10
	4.3	Relationship to Other Tables of Thermodynamic Properties	10
	5.	Arrangement of the Tables	12
II.	The the	Evaluation and Analysis of the Thermochemistry of Uranium-Halogen Containing Compounds	
	1.	The Evaluation Procedure	18
	2.	The Analysis of the Data	20
	3.	The Evaluations of the Uranium-Halogen Containing Compounds	21

	3.100	U-X (X=F,C1,Br or I) Compounds with/without 0	21
	3.101	U-F Compounds	21
	3.102	U-F-O Compounds	59
	3.103	U-Cl Compounds	69
	3.104	U-C1-O Compounds	86
	3.105	U-Cl-F Compounds	105
	3.106	U-Br Compounds	106
	3.107	U-Br-O Compounds	113
	3.108	U-Br-Cl Compounds	119
	3.109	U-I Compounds	121
	3.110	U-I-C1-Br Compounds	126
	3.200	U-X Compounds with N	128
	3.201	U-NH ₄ -F-O Compounds	128
	3.300	U-X Compounds and the Alkali Metals, M (M = Li, Na, K, Rb, or Cs)	131
	3.301	U-F-M Compounds	131
	3.302	U-F-O-M Compounds	133
	3.303	U-C1-M Compounds	135
	3.304	U-Br-M Compounds	138
III.	Tables 298.15	of Values for \triangle Hf°, \triangle Gf°, S°, C _p °, and H-H ₀ at K and \triangle Hf° at 0 K for the Uranium-Halogen Containing	120
	Compour		128
IV.	Bibliog	graphy	149
V.	Append	ix	160

The Thermochemical Properties of the Uranium-Halogen Containing Compounds

Vivian B. Parker

Abstract

A detailed analysis and evaluation of the thermochemistry of 142 uranium-halogen containing compounds is presented, and a tabular summary of the thermochemical properties is given. The properties given, where data are available, are the enthalpy of formation, Δ Hf°, Gibbs energy of formation, Δ Gf°, entropy, S°, heat capacity, C_p °, and the enthalpy difference, (H-H₀), all at temperature 298.15 K, and the enthalpy of formation at 0 K, Δ Hf°₀. The values are consistent with the CODATA Key Values for Thermodynamics.

The analysis of the uranium-halogen containing compounds includes some vapor pressure equations and C_p equations. Some thermal functions which are not readily available in the accessible open literature are presented in the Appendix for compounds that required their use.

The tabular summary of $\triangle Hf^\circ$, $\triangle Gf^\circ$, etc. includes the values for those uranium compounds which were necessary for this evaluation.

Keywords: Data evaluation; enthalpy; entropy; Gibbs energy; heat capacity; thermochemical tables; uranium-halogen containing compounds.

-1-

I. General Description

1. Introduction

This report presents a detailed analysis and evaluation of the thermochemistry of 142 uranium-halogen containing compounds and a tabular summary of \triangle Hf°'s, \triangle Gf°'s, S°'s, Cp°'s, (H-H₀)'s at 298 K, \triangle Hf°₀'s for these compounds. It is part of an independent ongoing evaluation of the thermochemistry of the actinide compounds for inclusion in the NBS Technical Note 270 Series. The interest of the IAEA in sponsoring a series on the thermochemistry of the actinides by compound class, both at low and high temperatures, has led to our participation in this effort^{*}.

Since this IAEA review uses the CODATA (1975) recommended values for the auxiliary key compounds, all compounds considered here have been evaluated on this basis and represent part of our contribution to the Halide Chapter of the IAEA sponsored series, "The Chemical Thermodynamics of Actinide Elements and Compounds".

The analysis of the uranium-halogen containing compounds includes some vapor pressure equations and C_p equations. Some thermal functions which are not readily available in the accessible open literature are presented in the Appendix for compounds that required their use.

The tabular summary of $\triangle Hf^\circ$, $\triangle Gf^\circ$, etc. includes the values for those uranium compounds which were necessary for this evaluation. The sources for these values are given in 4.1.

Users are invited to comment on the selections, correct errors and bring new measurements to our attention.

See Wagman et al. (1977). References are listed by author and year in the bibliography (Section IV).

2. Explanation of the Contents of the Text and Tables

The following material provides definitions and conventions used in the tables.

2.1 Conventions Regarding Pure Substances

The values of the thermodynamic properties of the pure substances given in these tables are for the substances in their standard states. These standard states are defined as follows:

For a pure solid or liquid, the standard state at any temperature is the substance in the condensed phase under a pressure of one atmosphere.

For a gas the standard state at any temperature is the hypothetical ideal gas at unit fugacity, in which state the enthalpy is that of the real gas at the same temperature and at zero pressure.

The phase of a substance is indicated in parentheses at the end of the chemical formula (see Table A).

The values of \triangle Hf° and \triangle Gf° given in the tables represent the change in the appropriate thermodynamic quantity when one mole of the substance in its standard state is formed, isothermally at the indicated temperature, from the elements, each in its appropriate standard reference state. The standard reference state at 298 K for each element except phosphorus has been chosen to be the standard state that is thermodynamically stable at 298 K and at one atmosphere pressure. For phosphorus the standard reference state is the crystalline white form; the more stable forms have not been well characterized

-3-

thermochemically. The same reference states have been maintained for the elements at 0 K except for the liquid elements bromine and mercury for which the reference states have been chosen as the stable crystalline forms. The standard reference states for the elements are indicated in the tables by the fact that the values of ΔHf° and ΔGf° are exactly zero.

The values of S° represent the virtual or "thermal" entropy of the substance in the standard state at 298.15 K, omitting contributions from nuclear spins and isotopic mixing. Where data have been available only for a particular isotope, they have been corrected when possible to the normal isotopic composition.

2.2 Convention Regarding Solutions for the Tabulated Values

For all dissolved substances the composition of the solvent is indicated in parentheses following the chemical formula. Except in special cases, discussed below, the number of moles of the solvent associated with one mole of solute is stated explicitly. See Table A for the conventions used.

In some cases the concentration of the solute can not be specified. These are indicated as "AU" (aqueous, unspecified) for water solutions and by "U" for non-aqueous and mixed media. In all these cases the solution may be assumed to be "dilute".

The standard state for a non-dissociated solute in aqueous solution is taken as the hypothetical ideal solution of unit molality, which has been designated as "std. state, m = 1". For strong electrolytes in aqueous solution the conventional standard state is the ideal

-4-

solution of unit <u>activity</u> (unit mean molality). The designation "A" is used for strong electrolytes in the standard state and "AO" for undissociated species in water solution. In non-aqueous media two standard states are commonly used. For the mole fraction scale, "std. state, $x_2 = 1$ ", x is added to the formula of the solvent. For the molal scale, "std. state, m = 1", either s or M is appended to the formula.

The value of \triangle Hf° for a solute <u>in its standard state</u> is equal to the apparent molal enthalpy of formation of the substance in the infinitely dilute real solution, since the enthalpy of dilution of an ideal solution is zero. At this dilution the partial molal enthalpy is equal to the apparent molal quantity. At concentrations other than the standard state, the value of \triangle Hf° represents the apparent enthalpy of the reaction of formation of the solution from the elements comprising the solute, each in its standard reference state, and the appropriate total number of moles of solvent. In this representation the value of \triangle Hf° for the solvent is not required. The experimental value for a heat of dilution is obtained directly as the difference between the two values of \triangle Hf° at the corresponding concentrations. At finite concentrations the partial molal enthalpy of formation differs from the apparent enthalpy.

The values of the thermodynamic properties tabulated for the individual ions in aqueous solution are based on the usual convention

-5-

that the values of $\triangle Hf^{\circ}$, $\triangle Gf^{\circ}$, S° and C_{p}° for H^{+} (aq, std. state, m = 1) are zero. The properties of a <u>neutral electrolyte</u> in aqueous solution in the standard state are equal to the algebraic sum of these values for the appropriate kinds and numbers of individual ions assumed to constitute the molecule of the given electrolyte. For an <u>ionic aqueous species</u> e.g., HSO_{4}^{-} , the properties tabulated refer to that undissociated ion, i.e., they are not equal to the sum of those for its constituent ions. By adopting the above convention with respect to aqueous H^{+} , it follows that the thermodynamic relation $\triangle Gf^{\circ} = \triangle Hf^{\circ} - T(\triangle Sf^{\circ} + n \cdot 0.5S^{\circ}(H_{2}))$ holds for individual ionic species, with n equal to the algebraic value of the charge. For neutral electrolytes the normal consistency relationship applies. See section 4.

2.3 Convention in the Text (Section II) for Reactions Involving Solutions

In the text reactions involving solutions are given as the authors presented them in the literature. The discussion accompanying the reactions gives the interpretation.

2.4 Chemical Formulae and Physical States for the Tabulated Values (Section III

These tables were reproduced from computer printout in which only capital (upper case) letters are available. Normal one-line chemical formulae are used, with the following modifications:

- Subscripts (counts of atoms): UCL'4 = UCl_{/c}
- The apostrophe ' appears after each letter in a chemical symbol that would normally be written in lower case:
 UCL'BR'3 = UClBr₃

-6-

- The centered dot, used in hydrates and minerals, is shown as a colon: UF4:2.5H20 = UF₄.2.5H₂O
- The physical state of the substance is appended to the chemical formula in parentheses: UCL'4(C) = UCl₄, crystalline

Conventions with respect to physical state are given in Table A.

2.5 <u>Definition of Symbols for Thermochemical Properties for the</u> <u>Tabulated Values</u> (Section III)

The headings used in the tabulated Thermochemical Values have the following meanings:

DH298 = \triangle Hf°, standard enthalpy of formation at 298.15 K;

DG298 = \triangle Gf°, standard Gibbs energy of formation at

298.15 K;

The others are self explanatory. All H and G relationships are in kcal/mol; all S and C_p° relationships are in cal/mol·K.

All values refer to one mole of substance for the formula given.

3. Unit of Energy and Fundamental Constants

All of the energy values given in these tables are expressed in terms of the thermochemical calorie. This unit, defined as equal to 4.184 joules exactly, is used throughout the IAEA review series. Values reported in other units have been converted to calories by means of the conversion factors for molecular energy given in Table B.

Values in this report are consistent with the CODATA fundamental constants (1973).

The formula weights in the tables have been calculated from the molecular formula using the 1969 Table of Atomic Weights as given by IUPAC (1970).

-7-

4. Internal Consistency of the Tables

The processes given in the text have been obtained from the original articles, using consistent values for all subsidiary and auxiliary quantities. The original data were corrected where possible for differences in energy units, molecular weights, temperature scales, etc. Thus we have sought to maintain a uniform scale of energies for all processes in the text and tables. In addition the final tabulated values of the properties of a substance satisfy all the known physical and thermodynamic relationships among these properties. The quantities $\triangle Hf^\circ$, $\triangle Gf^\circ$, and S° at 298.15 K satisfy the relation:

$\triangle Gf^{\circ} = \triangle Hf^{\circ} - T \triangle Sf^{\circ}$

to the precision given. The special case of solutions is discussed in section 2.2. Furthermore the calculated value of any thermodynamic quantity for a reaction is independent of the path chosen for the evaluation.

4.1 The Use of Auxiliary Data

As indicated this evaluation uses as its basis the CODATA (1975) recommended values for the auxiliary key compounds. Parker et al. (1976) have incorporated these values into an extensive consistent set of CODATA compatible values for auxiliary values needed in this evaluation. Unless otherwise stated all values for the non-uranium containing auxiliary compounds are taken from the latter report or are consistent with it. Values for the thermal functions as a function of temperature for the auxiliary data are from JANAF (1971).

-8-

The tables in Section III also include values for those key non-halogen containing uranium compounds that were necessary for the present evaluation. These values also maintain consistency with other IAEA chapters. In addition, the values listed for the oxides are in agreement with the independent evaluations of Parker (1975, 1976a), CODATA (1978), Rand et al. (Part XI: The Actinide Oxides) and Glushka (1978).

These compounds and the sources for their values are listed below.

U(cs) and U(g)

The tabulated values are from Oetting et al. (1976).

 $U^{3+}(aq, std. state), U^{4+}(aq, std. state) and UO₂²⁺(aq, std. state)$

The tabulated values are from Fuger and Oetting (1976).

S°, C_p° and H-H₀ are obtained from the C_p measurements of Westrum and Huntzicker (1971); \triangle Hf° is from the combustion measurements of Huber and Holley (1969).

$UO_3(c,\gamma)$

The S°, C_p° and H-H₀ are from the C_p measurements of Westrum (1966). The \triangle Hf° is obtained from the solution calorimetry of Fitzgibbons et al. (1967) on the uranium oxides and the decomposition measurements on $UO_3(c,\gamma)$ of Cordfunke and Aling (1965). $U_3O_8(c)$

The S°, C_p ° and H-H₀ are obtained from Westrum and Grønvold (1959) and Girdhar and Westrum (1968), the \triangle Hf° from the combustion measurements of Huber and Holley (1969).

-9-

4.2 Uncertainties

Each selected value in the tabular summary, Section III, contains the final assigned uncertainty, i.e. the estimate by the evaluator of the accuracy of the selected value. In some cases these uncertainties are calculated from (1) the uncertainties assigned to the individual reactions (usually given as 2°) and the auxiliary data and (2) how well the calculated values for a property (obtained from the various reaction paths) agree within their assigned uncertainties.

Where possible or warranted the various uncertainties and the uncertainty on the selected value are also given in the individual evaluation (Section II).

In many cases, however, the final uncertainty is based on (2) and/or the evaluator's judgment, since a strictly mathematical calculation is not warranted (i.e. (1) is not applicable since no measure of precision is available, and a quantitative estimate of the uncertainty on the individual processes can not be made. In these cases no uncertainties are given in the individual evaluations (Section II)).

In both approaches, however, the final uncertainty is partly subjective.

The uncertainties for the C_p °'s and $(H-H_0)$'s appear in square brackets and are arbitrarily assigned as "10 in the last place". 4.3 Relationship to Other Tables of Thermodynamic Properties

The chemical thermodynamic properties in the present tables of halogen containing compounds may be combined with those published by

-10-

CODATA (1975, 1978) and Parker et al. (1976) in order to calculate the change in a property for a process. However, we recommend against these values being combined with those in any other tabulation or with a property reported in an original research paper. In particular, we warn against indiscriminate combination with the NBS Technical Note 270 Series. Values consistent with auxiliary data in the NBS Technical Note 270 Series are available and will be included in that series.

There are several reasons for avoiding the combination of thermochemical data from more than one table. The most important is that different large-scale tables use different thermochemical properties of formation for substances that are ubiquitous in thermochemical measurements. Outstanding examples are in the common inorganic acids and their ions. Another reason is that the groups preparing different tables may have relied on different measurements as the basis for selecting property values.

It is difficult to predict a priori how a change in one selected formation property would affect values assigned to other substances because of the way these are linked by complex networks. In general, it may be expected that the advantage of internal consistency of a table will be lost if values from several sources are combined and the experimental measurements may be reproduced poorly.

No general, simple algorithm can be suggested for overcoming this problem. If it becomes necessary to extend a table of data to substances other than those tabulated, the user is advised to consult the group that prepared the table about the procedure that is contemplated.

-11-

5. Arrangement of the Tables

The compounds in the tables are entered according to the Standard Order of Arrangement, (see Figure 1), by the principle of latest position. In this scheme, a compound is listed under the element occurring latest in the list; water of hydration is neglected. Within a given element-table will be found all of the compounds of that element with elements occurring earlier in the order; the arrangement within a table follows the same ordering.

However, for the alkali metal halogen-containing compounds the arrangement is by compound class, i.e., UF_6 , UO_2F_2 , UCl_4 , and UBr_4 , in combination with the alkali metals.

TABLE A: Physical State Conventions for Section III

The following conventions are used to designate the physical state of a substance. These apply to the tables in Section III. This information appears in a parenthetical expression appended to the molecular formula. Some of the explanations imply a thermochemical value, particularly those for solutions. These normally are used in describing enthalpy measurements.

Basic Symbols

Explanation

(G)	Gaseous, e.g., HCL'(G) for HCL(g)
(GS)	Gaseous reference standard state for an element, e.g., $02(GS)$ for $0_2(g)$
(C)	Crystalline, e.g., NH4CL'(C) for NH ₄ Cl(c)
(CS)	Crystalline reference standard state for an element, e.g., RB'(CS) for Rb(c)
(L)	Liquid, e.g., H2O(L) for $H_2O(\ell)$
(LS)	Liquid reference standard state fo an element, e.g., $BR'2(LS)$ for $Br_2(\ell)$
(AM)	Amorphous
(GL)	Glassy
(A)	Hypothetical standard state of the ideal aqueous solution at unit activity. For a neutral electrolyte the value of a property is equal to the algebraic sum of the values for the ions assumed to constitute the molecule of the electrolyte are $H(U_{i}^{+}(A)) = H(A_{i}) + CU_{i}^{+}(A_{i})$

electrolyte, e.g. HCL'(A) = H+(A) + CL'-(A).
For an ionic species this notation is commonly
used to refer to the undissociated ion as written.
e.g., HS04-(A)

-13-

Symbol	Explanation
(AO)	Hypothetical standard state of the ideal aqueous solution at unit activity of the undissociated (non-ionized) species, e.g., HF(AO), HF2-(AO). May also be used whenever the designation (A) could be ambiguous. Note that the descriptions HSO4-(A) and HSO4-(AO) are equivalent, but that HF(A) and HF(AO) are not.
(AU)	Aqueous solution of undefined, but usually

dilute, concentration, e.g., XE'O3(AU).

The symbols used above occasionally are modified by numbers to distinguish two substances in the same state that have the same molecular weight, as for isomers: (AU2), (C3). They are also used in combination with descriptive material, e.g. (C:HE'), (C:AL') etc. to mean "crystalline, hexagonal, "crystalline, alpha form", etc.

Special notations for substances in solutions

The notations for the "state" of a substance in solution may combine a definition of the system, e.g. HCL in 220 moles of water, and a specification of the thermochemical property associated with it. Usually the thermochemical property is the apparent integral enthalpy or free energy of formation or an absolute entropy, i.e. the formation properties of the solvent are not included. If a partial molal property is tabulated the notation D: ("D" for "differential") occurs as the first term in the state bracket. The notations given below illustrate the differences for integral and differential (partial molal) properties, and extrapolated values. Examples are given for aqueous, mixed, and non-aqueous solvents.

-14-

Explanation

Symbol

HCL'(200H20)

An aqueous solution of specified composition, e.g. one mole of HCl in 200 moles H_2O . The value of ΔHf represents the apparent integral enthalpy of formation.

HCL'(D:200H20) and H2O(D:HCL'+200H20) These represent the partial molal (enthalpy of formation of the substance in a solution of specified concentration, e.g. the partial molal enthalpy of formation of HC ℓ and H $_2$ O respectively, in a solution consisting of 1 mole HC ℓ and 200 moles H $_2$ O.

UCL'4(HCL'04+50H20)

UCL'4(HCL'04+ 50H20:AU) Δ Hf represents the apparent integral enthalpy of formation of the substance, UC ℓ_4 , in the medium. This represents a solute at an unspecified but

This describes a solute dissolved in a mixed solvent, e.g. one mole of UCl_4 in a mixture of 1 mole of $HClO_4$ and 50 moles H_2O . The value of

usually dilute concentration in a solvent mixture of fixed composition.

TABLE B

CONVERSION FACTORS FOR UNITS OF MOLECULAR ENERGY

eV/molecule	1.036435 x10 ⁻⁵	4.33644 x10 ⁻⁵	1.050166 x10 ⁻⁶	37.3117	2.41075 ×10 ⁻⁵	1.239852 x10 ⁻⁴	1
cm ⁻¹ /molecule	8.35935 x10 ⁻²	3.49755 x10 ⁻¹	8.47011 x10 ⁻³	300,937	1.944384 ×10 ⁻¹	1	8065.479
Btu/lb-mol	0.429923	1.798796	4.35619 x10 ⁻²	1,547,721	1	5.14302	41480.9
kWH/mo1	2.77778 x10 ⁻⁷	1.162222 x10 ⁻⁶	2.81458 x10 ⁻⁸	1	6.46111 x10 ⁻⁷	3.32296 x10 ⁻⁶	2.68013 x10 ⁻²
cm ³ atm/mol	9.86923	41.2928	1	3.55292 x10 ⁷	22.9558	118.0622	952,230
cal/mol	2.390057 ×10 ⁻¹	1	2.42173 ×10 ⁻²	860,421	5.55927 ×10 ⁻¹	2.85914	23060.4
J/mol	1	4.184	0.1013251	3,600,000	2.32600	11.96266	96484.56
	l J/mol =	l cal/mol =	l cm ³ atm/mol =	1 kWh/mo1 =	l Btu/lb-mol =	l cm ⁻¹ /molecule =	l eV/molecule =

The remaining The underlined numbers represent the fundamental values used in deriving this table. factors were obtained by applying the relationships:

 $n_{ij} = n_{ik} \cdot n_{kj}$ $n_{ii} = n_{ik} \cdot n_{ki} = 1$

Figure l

Periodic Classification of the Elements

II. The Evaluation and Analysis of the Thermochemistry of the Uranium-Halogen Containing Compounds

1. The Evaluation Procedure

Although the compounds evaluated are arranged systematically, it is recommended that the user first read the evaluations for the key compounds in the following order:

1. $UCl_4(c)$ 2. $UO_2Cl_2(c)$ 3. $UF_6(c)$ and $UO_2F_2(c)$ 4. $UF_3(c)$ and $UF_4(c)$

This arrangement follows the stepwise procedure of evaluating the thermochemical properties by the sequential method described by Garvin et al. (1976). In this method, the values for the key compounds are determined first, so that a framework or network of values is developed for those compounds that are essential for the determination of the properties of many other compounds.

Initially, this procedure involves the compounds whose properties can be determined independently, i.e., they involve no other compounds of the same element (in this case, uranium) and/or they depend only on known auxiliary data. Ideally, there should be definitive measurement paths between these key compounds as indications of mutual confirmation. Thereafter, the properties of other compounds dependent on these first selections are chosen.

-18-

The halogen compounds listed above are only part of the uranium key network, which includes all of the following compounds:

1. U(c), $U_{3}O_{3}(c)$, $UO_{2}(c)$, and $UO_{3}(c, \gamma)$ 2. $UC1_{4}(c)$, $UO_{2}C1_{2}(c)$, and $UO_{2}(NO_{3})_{2} \cdot 6H_{2}O(c)$ 3. $U^{4+}(aq, std. state)$ and $UO_{2}^{2+}(aq, std. state)$ 4. U(g), UN(c), US(c), and UC(c)5. $UF_{6}(c)$ and $UO_{2}F_{2}(c)$, $UF_{3}(c)$ and $UF_{4}(c)$

The non-halogen compounds listed above in 1, 2, and 3, as well as U(g) from 4 are considered fixed auxiliary data for this evaluation (see Section I 4.1).

2. The Analysis of the Data

The purpose of thermochemical data evaluation is the selection of reliable values, i.e., ones that can be used with confidence. When properly documented, an evaluation not only presents the results but also explains how they were obtained. This explanation is analogous to the detailed experimental section of a thermochemical measurement paper. An explanation of our evaluation is provided here to assist the user and to reduce the need for reinvestigation in the future.

The evaluator usually works with some incomplete records. There are not enough data to solve all of the problems that arise. Therefore, it is necessary to "squeeze" the maximum amount of information out of the existing data. That will become apparent in the individual evaluations that follow.

Complete thermochemical cycles, where possible, are given. The same measurements are repeatedly considered from different points of view. The work of a research group on related systems is considered in order to assess the likely accuracy for the system of immediate interest and to modify or avoid suspect reactions and paths in determining the "best" values.

-20-

3. The Evaluations of the Uranium-Halogen Containing Compounds

3.100 U-X (X=F, C1, Br, or I) with/without O

3.101 U-F Compounds

 $UF_n(g) (n = 1, 2, 3)$

Gurvich et al. (1977) have recently published the ideal gas thermodynamic functions for UF(g), $UF_2(g)$, and $UF_3(g)$ based on estimates for the molecular constants and frequencies. These estimates are:

Values for Molecular Constants of UF

Molecule	ω e	w x e e	Be	α	D ₀ • 10 ⁷	Number of Electropic
INTEGULE			cm ⁻¹			States
UF	580	1.72	0.230	0.0014	1.5	82 with sta- tistical weight=2 and T _e ≦51000 cm ⁻¹

Values for Molecular Constants of UF_2 and UF_3 in the Ground State

	UF ₂	UF ₃
Symme try	C _{2V}	C _{3v}
σ	2	3
r(U-F), Å	2.00±0.05	2.00±0.05
<f-u-f, degrees<="" td=""><td>110^{+50}_{-20}</td><td>115⁺³</td></f-u-f,>	110^{+50}_{-20}	115 ⁺³
$I_{A}I_{B}I_{C} \cdot 10^{117}, g^{3} \cdot cm^{6}$	2920±2000	13690±2300
v_1, cm^{-1}	575±100	600±100
v_2 , cm ⁻¹	140±50	100±50
v_3 , cm ⁻¹	525±100	550(2)±100
V4, cm ⁻¹	-	140(2)±50

Other details are to be found in Gurvich et al. (1977). The functions are retabulated in the Appendix. They are to be considered approximate.

-21-

Zmbov (1969) has made a mass spectrometric study of high temperature equilibria (1201-1313 K) of the following:

$$UF_{A}(g) + Ca(g) - CaF(g) + UF_{2}(g)$$
(1)

$$UF_{\lambda}(g) + 2Ca(g) \rightarrow 2CaF(g) + UF_{\gamma}(g)$$
(2)

From his reported ΔH 's at the mean temperature and his tabulated K's, the following are obtained at 298 K:

	<u>^H</u> ° 2nd law	kcal/mol 3rd law
(1)	23.5±4.0	25.6
(2)	21.2±5.0	36.0

The 2nd law value for ΔH_2° appears unreasonable compared to the values for ΔH_1 , so that $\Delta H_1 = 23.5 \pm 4.0$ kcal/mol is accepted, resulting in ΔHf° UF₃(g) = -248±5 kcal/mol. ΔHf° UF₂(g), then, may be obtained from the 3rd law $\Delta H_2 = H_2 - H_1$:

 $UF_{3}(g) + Ca(g) - UF_{2}(g) + CaF(g); \Delta H_{3} = 10.4 \text{ kcal/mol}$ (3) The resultant ΔHf° UF₂(g) = -129±7 kcal/mol.

From a comparison of the $\triangle H^{\circ}$'s for:

$$UF_{g}(g) \rightarrow U(g) + nF(g)$$

a reasonable estimate for $\triangle H^\circ$ when n = 1 is 148±5 kcal/mol resulting in $\triangle Hf^\circ UF(g) = -2\pm5$ kcal/mol.

Obtained using the thermal functions of $UF_4(g)$ without the addition of 8.2 cal/mol·K to S° $UF_4(g)$, since a similar contribution may be necessary on S° $UF_3(g)$ and S° $UF_2(g)$. Most of the contribution would cancel resulting in third law values close to those given.

$\text{UF}_3(c)$, $\text{UF}_4(c)$ and $\text{UF}_4 \cdot 2.5 \text{H}_2 O(c)$

The entropy of $UF_3(c)$ at 298 K has been estimated as 30.0=1.0 cal/mol·K in comparison with $\Delta S [PuF_3(c)-PuF_4(c)]^*$ and S° $UF_4(c)$. Krestov (1972) has estimated the Cp (298-1000 K) as:

Thermal functions have been generated from this equation and the estimated S°.

Burns et al. (1960) measured the low temperature heat capacities (1.3-20 K) of UF₄(c). These measurements are in agreement (in the overlapping range) with those of Osborne et al.'s (1955) measurements, 5-300 K. The smoothed functions tabulated by Burns et al. are accepted here.

Dworkin (1972) measured the heat content of $UF_4(c,1)$ (298-1400 K). His smoothed tabulated functions extrapolated to 1600 K are accepted and are represented by :

The measurements of Settle et al. (1963) and Hayman (1967) are in good agreement on the direct fluorination of U(c) to $UF_6(c,g)$; this lent support to the ΔHf° 's of $UF_3(c)$ and $UF_4(c)$ obtained from

^{*} Osborne et al. (1974, 1975) reported S° = 30.14 ± 0.10 and 35.18 ± 0.10 cal/mol·K for PuF₃(c) and PuF₄(c), respectively.

the fluorinations of $\mathrm{UF}_3(\mathbf{c})$ and $\mathrm{UF}_4(\mathbf{c})$ to $\mathrm{UF}_6(\mathbf{g})$ by Hayman (1967) resulting in $\triangle \mathrm{Hf}^\circ \mathrm{UF}_3(\mathbf{c}) \approx -357$ and $\triangle \mathrm{Hf}^\circ \mathrm{UF}_4(\mathbf{c}) \approx -454$ kcal/mol. The reappraisal made here of the $\triangle \mathrm{Hf}^\circ$'s of $\mathrm{UF}_6(\mathbf{c})$ and (g) necessitate a complete reevaluation of the $\triangle \mathrm{Hf}^\circ$'s $\mathrm{UF}_3(\mathbf{c})$ and $\mathrm{UF}_4(\mathbf{c})$. A tabular summary is also given (Table 1).

A. The Measurements on the Enthalpy of Formation of UF₃(c)

1. Room Temperature Calorimetry

Khanaev and Khripin (1970) measured the following AH's (kcal/mol) at 323 K:

$$(UO_{2}Cl_{2} + 3FeCl_{2} + HCl + 3/4HBF_{4} + 1/4H_{2}O) soln. I
UF_{3}(c) + (3FeCl_{3} + 3/4H_{3}BO_{3})solv.; \Delta H_{1} = +34.43\pm.12$$
(1)

$$UO_{2}Cl_{2}(c) + (3FeCl_{3} + 3/4H_{3}BO_{3})solv. \rightarrow (UO_{2}Cl_{2} + 3FeCl_{3} + 3/4H_{3}BO_{3})soln. II; \Delta H_{2} = -8.79\pm.03$$
(2)

$$(3FeCl_{2} + UO_{2}Cl_{2} + HCl + 3/4HBF_{4} + 1/4H_{2}O)soln. I \rightarrow 3FeCl_{2}(c) + (UO_{2}Cl_{2} + HCl + 3/4HBF_{4} + 1/4H_{2}O)soln. IX; \Delta H_{3} = 3x(2.642\pm.035)$$
(3)

$$(UO_{2}Cl_{2} + HCl + 3/4HBF_{4} + 1/4H_{2}O)_{soln. IX} + 3FeCl_{3}(c) \rightarrow (3FeCl_{3} + UO_{2}Cl_{2} + HCl + 3/4HBF_{4} + 1/4H_{2}O)_{soln. V}; \Delta H_{4} = 3(-7.198\pm.05) (4)$$

Use was made of the following Khanaev (1968) measurements which they confirmed:

$$(UO_{2}Cl_{2} + 3FeCl_{3} + 3/4H_{3}BO_{3})_{soln. II} + 3HF(1.33H_{2}O) \rightarrow (UO_{2}Cl_{2} + 3FeCl_{3} + 3/4HBF_{4} + 9/4H_{2}O)_{soln. III} + 3.99H_{2}O(1) \\ \triangle H_{6} = -15.18\pm.12 \quad (6)$$

$$(UO_{2}Cl_{2} + 3FeCl_{3} + 3/4HBF_{4} + 9/4H_{2}O) \text{ soln. III} + HCl(3.91H_{2}O) \rightarrow (UO_{2}Cl_{2} + 3FeCl_{3} + 3/4HBF_{4} + 9/4H_{2}O + HCl) \text{ soln. IV} + 3.91H_{2}O(1)$$
$$\triangle H_{7} = +4.04\pm0.004 \quad (7)$$

The summation, $\Delta H_1 + \Delta H_2 - \Delta H_3 - \Delta H_4 + \Delta H_5 + \Delta H_6 + \Delta H_7 = \Delta H_8 = +30.292 \pm 0.25$ corrected to 298 K using a $\Delta C_p = 30$ cal/mol·K results in:

 $UO_{2}Cl_{2}(c) + 3FeCl_{2}(c) + 3HF(aq) + HCl(aq) \rightarrow 2H_{2}O(1) + 3FeCl_{3}(c) + UF_{3}(c); \Delta H_{8} = 29.54 \pm 0.32 \text{ kcal/mol} (8)$

The integral values for \triangle Hf HCl(3.92H₂O) and \triangle Hf HF(1.33H₂O) are appropriate here. The resultant \triangle Hf° UF₃(c) is -354.9±0.8 kcal/mol.

Khanaev and Khripin also measured the $\triangle H_{soln}$ of UCl₄(c) as part of their series of measurements. The reaction follows:

$$\frac{\text{UCl}_{4}(c) + (3\text{FeCl}_{3} + 3/4\text{H}_{3}\text{BO}_{3} + 2\text{H}_{2}\text{O})_{\text{solv.}} \rightarrow (\text{UO}_{2}\text{Cl}_{2} + 2\text{FeCl}_{2} + \text{FeCl}_{3} + 3/4\text{H}_{3}\text{BO}_{3} + 4\text{HCl})_{\text{soln. VI}}; \ \Delta \text{H}_{9} = -18.44\pm.02$$
(9)

The summation from a rearrangement of the reactions, $\Delta H_9 + \Delta H_6$ + $\Delta H_1 - 3x\Delta H_7 - 1/3\Delta H_3 - 1/3\Delta H_4 = \Delta H_{10} = -6.754\pm0.018$, corrected to 298 K with a $\Delta C_p = -48$ cal/mol·K is:

$$FeCl_{2}(c) + UCl_{4}(c) + 3HF(a_{1}) \rightarrow FeCl_{3}(c) + UF_{3}(c) + 3HCl(a_{1});$$
$$\Delta H_{10} = -5.564 \pm 0.20 \text{ kcal/mol} (10)$$

so that $\triangle Hf^{\circ} UF_{3}(c) = -354.67 \pm 0.8 \text{ kcal/mol.}$ The two paths are in good agreement.

As shown in the section on $UO_2Cl_2(c)$, the $\Delta Hf^{\circ}UO_2Cl_2(c) = -297.0\pm0.5$ kcal/mol obtained from the above Khanaev and Khripin reactions (relating $UO_2Cl_2(c)$ to $UCl_4(c)$) is in excellent agreement with the selected value for $UO_2Cl_2(c)$, and this lends support to the above values for $UF_3(c)$.

It is important to note that the value for ΔHf° UF₄(c) = -452.3±0.9 kcal/mol derived from Khanaev (1968) [see section on UF₄(c)] and the above values for UF₃(c) lead to:

$$UF_{3}(c) + 1/2F_{2}(g) \rightarrow UF_{4}(c); \ \triangle H_{11} = -452.3 + 354.8 = -97.50 \pm 0.8 \ \text{kcal/mol}$$
(11)

Hayman (1967) has fluorinated $\rm UF_3(c)$ as well as $\rm UF_4(c)$ and $\rm U(c)$ to obtain $\rm UF_6(g)$:

$$\text{UF}_{3}(c) + 3/2\text{F}_{2}(g) \rightarrow \text{UF}_{6}(g); \ \Delta \text{H}_{12} = -153.39 \pm 0.45$$
 (12)

$$U(c) + 3F_2(g) \rightarrow UF_6(g); \Delta H_{13} = -510.47 \pm 0.64$$
 (13)

$$UF_4(c) + F_2(g) \rightarrow UF_6(g); \Delta H_{14} = -56.82 \pm 0.17$$
 (14)

It appears that ΔH_{13} is in error as shown in the discussion on UF₆(c) and UF₆(g). If it is assumed that the error is systematic in all the measurements, then ΔHf° UF₃(c) = $\Delta H_{13} - \Delta H_{12} = -357.1$ kcal/mol. If only ΔH_{13} is in error, and ΔH_{12} and ΔH_{14} are reasonably correct, then using the selected ΔHf° UF₆(g), ΔHf° UF₃(c) = -513.25 + 153.39 = -359.86±0.6 kcal/mol and ΔHf° UF₄(c) = -513.25 + 56.82 = -456.4±0.5 kcal/mol.

With either assumption one obtains $\Delta H_{11} = -96.6\pm0.5$ kcal/mol, as contrasted with -97.5 from the Khanaev measurements.

There are other possibilities in interpreting the Hayman results: the errors in ΔH_{12} and ΔH_{14} are proportional to the error in ΔH_{13} ; the errors are random and the uncertainties on ΔH_{12} , ΔH_{13} , and ΔH_{14} are too small and the ΔHf° 's of UF₃(c) and UF₄(c) could be more positive.

2. High Temperature EMF Measurements Involving $UF_3(c)$

The values cited here depend on the estimated thermal functions for $UF_3(c)$.

Heus and Egan (1966) and Markin et al.(1967) have measured the e.m.f. of cells involving CaF_2 as a solid electrolyte.

For

$$A1(c) + UF_{3}(c) \rightarrow A1F_{3}(c) + U(c)$$
(15)

the values for ΔG at 873 K are 4.84±1.0 and 5.40±1.0 kcal/mol, respectively, leading to $\Delta H^{\circ}_{15} = -3.73\pm1.5$ and -3.16 ± 1.5 kcal/mol at 298 K and ΔHf° for UF₃(c) = -357.3±2.0 and -357.8±2.0 kcal/mol, respectively.

The above relationship (15) was combined with other experimental reactions of Heus and Egan, and Markin et al. to obtain the relationship of $\text{UF}_3(c)$ to $\text{MgF}_2(c)$, which on the NBS Technical Note Scale, was less dependent upon their F⁻(aq, std.). The following relationship is obtained which can be used with the CODATA Δ Hf° MgF₂(c):

$$4/3U(c) + 2MgF_{2}(c) \rightarrow 2Mg(c) + 4/3UF_{2}(c)$$
 (16)

and from the Heus and Egan values $\triangle G$ at 873 K = 50.73, so that $\triangle H^{\circ}_{16}$ = 62.09±1.5 and $\triangle Hf^{\circ}$ = -356.5±2.0 kcal/mol. From Markin et al.: $\triangle G$ at 873 K = 50.27, $\triangle H^{\circ}_{16}$ = 61.63±1.5 and $\triangle Hf^{\circ}$ for UF₃(c) = -356.8±2.0 kcal/mol.

These two relationships indicate that the measured ΔG 's are good within their experimental uncertainty of 1.0 kcal/mol. Because of the uncertainty in $-(G-H_{298})/T$ for UF₃(c) and the uncertainties in ΔHf° of AlF₃(c) and MgF₂(c), the assigned uncertainties on the UF₃ values are ±2.0 kcal/mol.

-27-

Markin et al. have also determined the relationship between $\mathrm{UF}_3(c)$ and $\mathrm{UF}_4(c)$.

$$4UF_{3}(c) \rightarrow 3UF_{4}(c) + U(c)$$
 (17)

 $\Delta G_{873K} = 62.20$ and $\Delta H^{\circ} = 61.86 \pm 4.0$ kcal/mol (3rd law)

This relationship will be used with the results of Heus and Egan, and Markin et al. to calculate the Δ Hf°'s of UF₄(c). The calculated Δ H₁₁ then is ~ -98 kcal/mol.

B. The Measurements on the Enthalpy of Formation of $UF_4(c)$

1. Room Temperature Calorimetry

Khanaev (1968) has made a series of measurements at 323 K on the ΔH_{soln} 's. $UF_4(c, monoclinic) = -3.11\pm.02$ kcal and $UCl_4(c) = -17.91\pm.05$ kcal in various $HCl-H_3BO_3$ aqueous solutions, and on the various ΔH_{mix} .'s to obtain the relationship between $UCl_4(c)$ and $UF_4(c)$.

The summation of the measured reactions leads to:

 $UF_4(c) + 4HC1(aq) \rightarrow UC1_4(c) + 4HF(aq); \Delta H_1 = 49.77\pm0.15 \text{ kcal/mol}$ (1) where ΔH_1 includes the correction from ΔH at 323 K = 51.20 \pm 0.13 kcal/mol using a $\Delta Cp = 58 \text{ cal/mol}\cdot\text{K}.$

The concentrations for HCl(aq) and HF(aq) are the same as for the similar cycles for UF₃(c) by Khanaev and Khripin (1970), so that Δ Hf° UF₄(c) = -452.3±0.9 kcal/mol.

As indicated in the discussion on the \triangle Hf° UF₃(c), the results of Hayman (1967) on the fluorination of UF₄(c) lead to \triangle Hf° UF₄ values of -453.7±0.7 (if a systematic error is assumed in all their measurements) or -456.4±0.5 kcal/mol (if only \triangle H₁₃ is in error).

The available information on $UF_4 \cdot 2.5H_2O(c)$ and the various reported hydrates, as well as on the other forms of $UF_4(c)$, must be considered.
The \triangle Hf° UF₄·2.5H₂O(c) may be obtained from the Maltsev et al. (1960) calorimetric measurements involving the precipitation of UF₄·2.5H₂O(c) at 293 K. Their measured reactions (kcal/mol) are: UCl₄(c) + 250HCl(aq) \rightarrow [UCl₄ + 250HCl]aq; \triangle H₂ = -43.47±0.10 (2) [UCl₄ + 250HCl]aq + 18HF(aq) + 2.5H₂O(aq) \rightarrow UF₄·2.5H₂O(c) +

 $[254HC1 + 14HF]aq; \Delta H_3 = -20.96\pm0.33$ (3)

$$[250HC1 + 18HF]aq \rightarrow 250HC1(aq) + 18HF(aq); \Delta H_4 = 5.30\pm0.12$$
(4)

The summation,
$$\Delta H_5 = \Delta H_2 + \Delta H_3 + \Delta H_4 = -59.15 \pm 0.4$$
 is for:
 $UCl_4(c) + [250HCl + 18HF]aq + 2.5H_0(aq) \rightarrow [254HCl + 14HF]aq + UF_4 \cdot 2.5H_0(c)$ (5)

The authors have calculated

$$4\text{HF}(g) + [254\text{HC1} + 14\text{HF}]aq \rightarrow 4\text{HC1}(g) + [250\text{HC1} + 18\text{HF}]aq;$$
$$\Delta H_{6} = 4x(5.68\pm0.50) \quad (6)$$

using unevaluated literature data for the $\triangle H_{soln} HF(g) \rightarrow HF(aq)$ and $\triangle H_{soln} HC1(g) \rightarrow HC1(aq)$ to obtain:

$$4HF(g) + 4HCl(aq) \rightarrow 4HCl(g) + 4HF(aq); \Delta H_7 = 5.68x4$$
(7)
This ΔH was assumed to be equal to their ΔH_6 .

This approach leads to:

$$UC1_{4}(c) + 4HF(g) + 2.5H_{2}O(1) \rightarrow UF_{4} \cdot 2.5H_{2}O(c) + 4HC1(g);$$

$$\Delta H_{8} = -36.43\pm 2.1$$
(8)

which corrected to 298 K ($\Delta C_p = -24 \text{ cal/mol}\cdot K$) is -36.55±2.1 kcal and $\Delta \text{Hf}^\circ \text{UF}_4 \cdot 2.5 \text{H}_2 O(c) = -623.9\pm3.0 \text{ kcal/mol}.$

The $\triangle H$ which will be discussed and evaluated separately, hydration'

$$\text{UF}_4(c) + 2.5\text{H}_2O(1) \xrightarrow{\rightarrow} \text{UF}_4 \cdot 2.5\text{H}_2O(c)$$
 (9)

is ~ -10 kcal/mol UF₄(c). This results in a \triangle Hf° UF₄(c) = -443 kcal/mol which is not reasonable.

A better approach would be to use the experimental summation, (4) which contains a mixture of HF and HCl on both sides of the equation differing only by the removal of 4HF(aq) and the addition of 4HCl(aq) and assume that the differentials, $\Delta \overline{\text{Hf}}$ for the HCl, HF, and H_2O at the appropriate concentrations are to be used; the assumption, of course, is that the $\Delta \overline{\text{Hf}}$ of HCl(aq) and HF(aq) would be the same as in pure solutions.

Schematically, then, and corrected to 298 K:

 $UCl_{4}(c) + 4HF(aq) + 2.5H_{2}O(aq) \rightarrow UF_{4} \cdot 2.5H_{2}O(c) + 4HCl(aq);$ $\triangle H_{10} = -59.68\pm0.5 \text{ kcal/mol} (10)$

With the differential $\triangle Hf^{\circ}$'s for HCl(10.04H₂O), H₂O, and HF(160H₂O), the resultant $\triangle Hf^{\circ}$ UF₄·2.5H₂O(c) = -633.2±1.0 kcal/mol which means that $\triangle Hf^{\circ}$ UF₄(c) is ~ -452.4 kcal/mol.

2. High Temperature Equilibria

Briggs (1960) has reported the K's in the range 622 to 955 K for the equilibrium:

$$UO_{2}(c) + 4HF(g) \rightarrow UF_{4}(c) + 2H_{2}O(g).$$
 (11)

The $\triangle H = -50.6$ kcal/mol UF₄(c) at the mean T results in $\triangle H^{\circ} = -50.84$ kcal/mol and $\triangle Hf^{\circ} = -455.88$ kcal/mol. The third law value for $\triangle H^{\circ} = -51.90\pm0.92$ results in $\triangle Hf^{\circ} = -456.99$ kcal. The earlier measurements were evaluated by Rand and Kubaschewski (1963) who cite $\Delta G_{11} = -50,000 + 57.7T \text{ cal mol}^{-1}$ for the range 700 to 900 K. This results in a 3rd law $\Delta H^{\circ} = -50.12$ and ΔHf° UF₄(c) = -455.1 kcal/mol. The other measurements cited by Rand and Kubaschewski are:

- (1) Johns and Walsh (1945) (temperature range 873-1073 K)
 2nd law △H = -42.83; △Hf° = -447.82 kcal/mol
 3rd law △H = -56.46±2.8; △Hf° = -461.45
- (2) Domange and Wohlhuter (1949) (temperature range 374-773 K) 2nd law $\Delta H = -27.4$

3rd law $\triangle H = -49.1 \pm 9.0$

These two sets are given no further consideration.

3. Room Temperature Aqueous Equilibria

Vdovenko et al. (1963) reported for the following equilibria:

$$U^{+4}(aq) + F(aq) \rightarrow UF^{3+}(aq); \log K = 7.15$$
 (12)

$$U^{++}(aq) + 2F^{-}(aq) \rightarrow UF_{2}^{2+}(aq); \log K = 12.4$$
 (13)

$$U^{+4}(aq) + 3F(aq) \rightarrow UF_3(a_1); \log K = 17.7$$
 (14)

Savage and Browne (1960) reported:

$$UF_4 \cdot 2.5H_0(c) \rightarrow UF_4(aq); K = 1.09 \times 10^{-4} molal$$
 (16)

$$JF_{4}(aq) \rightarrow UF_{3}^{+}(aq) + F(aq); K = 5.4 \times 10^{-3} \text{ molal}$$
 (17)

$$\mathbb{F}_{3}^{+}(aq) \rightarrow \mathbb{U}F_{2}^{+2}(aq) + F^{-}(aq); K = 5.9 \times 10^{-5} \text{ molal}$$
(18)

From the combination of (16) and (15) we obtain:

$$UF_{4} \cdot 2.5H_{2}O(c) \rightarrow U^{+4}(aq) + 4F(aq) + 2.5H_{2}O(1); \quad \Delta G^{\circ}_{19} = +36.9 \text{ kcal/mol}$$
(19)

which results in ΔGf° UF₄·2.5H₂O(c) = -574.9 kcal/mol.

If it is assumed that S° $\rm UF_4 \cdot 2.5H_2O(c) = 60.0\pm 2.0$ cal/mol·K, then the calculated $\triangle Hf^\circ$ for $\rm UF_4 \cdot 2.5H_2O(c) = -631.0$ kcal/mol and $\triangle Hf^\circ \rm UF_4(c) \approx -450.2$ kcal/mol.

Other combinations for the equilibria (19) are possible from various combinations of the Vdovenko et al. data with the Savage and Brown data, such as $\Delta G^{\circ}_{19} = +35.4$ from (16) + (17) - (14) which would result in -629.5 kcal/mol for ΔHf° UF₄·2.5H₂O(c) and ΔHf° UF₄(c) = -448.7 kcal/mol.

4. High Temperature EMF Measurements

As indicated under $UF_3(c)$, Markin et al. (1967) have determined the relationship between $UF_3(c)$ and $UF_4(c)$, as:

$$\Delta G_{873 \text{ K}} = 62.20 \text{ kcal/mol}$$

for

$$4UF_3(c) \rightarrow 3UF_4(c) + U(c)$$
(20)

Their results and Heus and Egan's (1966) EMF measurements on $UF_3(c)$ can then be converted to relationships involving $UF_4(c)$ and $MgF_2(c)$, and $UF_4(c)$ and $AlF_3(c)$ negating the added uncertainty of the estimated thermal functions of $UF_3(c)$ on the reactions involving $UF_3(c)$.

Then for:

$$A1(c) + 3/4UF_4(c) \rightarrow A1F_3(c) + 3/4U(c)$$
 (21)

from Heus and Egan, $\triangle H^\circ = -19.2 \text{ kcal/mol} \text{ and } \triangle Hf^\circ = -455.7\pm1.0 \text{ kcal/mol},$ and from Markin et al., $\triangle H = -18.6 \text{ and } \triangle Hf^\circ = -456.5\pm1.0 \text{ kcal/mol}.$

-32-

Similarly for:

$$J(c) + 2MgF_2(c) \rightarrow 2Mg(c) + UF_4(c)$$
 (22)

from Heus and Egan, $\triangle H^\circ = 82.7$ kcal and $\triangle Hf^\circ = -454.7\pm1.0$ kcal/mol; from Markin et al $\triangle H^\circ = 82.3$ and $\triangle Hf^\circ = -455.1\pm1.0$ kcal/mol.

C. The Selection of Values for the Enthalpies of Formation of $UF_3(c)$ and $UF_4(c)$

As can be seen from the range of values for ΔHf° 's for $UF_3(c)$ and $UF_4(c)$, Table 1, the selected values can not be considered definitive; however a reasonable presentation of the relationships can be made with ΔHf° $UF_4(c) = -455.5\pm1.0$ kcal/mol.

$$\triangle(\triangle Hf^{\circ} UF_{3}(c) - \triangle Hf^{\circ} UF_{4}(c)) = 98.2\pm1.0 \text{ kcal/mol}$$

 $\triangle Hf^{\circ} UF_{2}(c) = -357.3\pm1.5 \text{ kcal/mol}$

The data derived from the aqueous equilibria measurements are suspect; the hydrate system is a complex one; the K's given are not true equilibrium constants.

The more disturbing values are those from the Khanaev measurements; many reactions are involved in their paths to $\text{UF}_3(c)$ and $\text{UF}_4(c)$ from $\text{UO}_2\text{Cl}_2(c)$ and $\text{UCl}_4(c)$; it does not appear reasonable to assume that all the measurements are in error and that these errors are additive, particularly since the relationship between $\text{UCl}_4(c)$ and $\text{UO}_2\text{Cl}_2(c)$ is in excellent agreement with that from the selected values for ΔHf° 's $\text{UCl}_4(c)$ and $\text{UO}_2\text{Cl}_2(c)$. One of the reactions in common for both compounds is the $\Delta \text{H}_{\text{mix}}$. of $\text{HF}(1.33\text{H}_20)$ with the appropriate solution; if the ΔH mix. should be 0.7 kcal/mol HF more negative, the $\Delta(\Delta \text{Hf}^\circ \text{UF}_3 - \Delta \text{Hf}^\circ \text{UF}_4)$ would become 98.2 in agreement with the Markin et al (1967) EMF measurements and would result in

-33-

 \triangle Hf° of UF₃(c) and UF₄(c) \approx -357 and -455 kcal/mol, respectively. The UF₄·2.5H₂O value may have a similar error in \triangle H mix. Obviously all of this is conjecture.

D. The Enthalpy of Hydration of $UF_4(c, monoclinic)$ to $UF_4 \cdot 2.5H_2O(c, orthorhombic)$

As indicated in C, from the Maltsev et al.(1960) reactions involving the precipitation of $UF_4 \cdot 2.5H_2O(c)$ from UCl_4 -HCl solutions, Δ Hf° $UF_4 \cdot 2.5H_2O(c) = -633.2\pm 1.0$ kcal/mol.

Gagarinskii and Khanaev (1967) have measured the ΔH 's of solution of UF₄(c, monoclinic) and UF₄·2.5H₂O(c) at 323 K and 298 K to the same final solution.

Their measurements are:

$$\begin{aligned} & \text{UF}_{4}(c) + [166.5\text{HC1} + 3\text{H}_{3}\text{BO}_{3}] \xrightarrow{\rightarrow} [\text{UC1}_{4} + 3\text{H}_{2}\text{O} + \text{HBF}_{4} + \\ & 162.5\text{HC1} + 2\text{H}_{3}\text{BO}_{3}]\text{aq}; \ \triangle \text{H}_{23} \end{aligned} \tag{23} \\ & [\text{UC1}_{4} + 3\text{H}_{2}\text{O} + \text{HBF}_{4} + 162.5\text{HC1} + 2\text{H}_{3}\text{BO}_{3}]\text{aq} + 2.5\text{H}_{2}\text{O}(1\text{iq}) \\ & \xrightarrow{\rightarrow} [\text{UC1}_{4} + 5.5\text{H}_{2}\text{O} + \text{HBF}_{4} + 162.5\text{HC1} + 2\text{H}_{3}\text{BO}_{3}]\text{aq}; \ \triangle \text{H}_{24} \end{aligned} \tag{24} \\ & \text{UF}_{4} \cdot 2.5\text{H}_{2}\text{O}(c) + [166.5\text{HC1} + 3\text{H}_{3}\text{BO}_{3}]\text{aq} \xrightarrow{\rightarrow} [\text{UC1}_{4} + 5.5\text{H}_{2}\text{O} \\ & + \text{HBF}_{4} + 162.5\text{HC1} + 2\text{H}_{3}\text{BO}_{3}]; \ \triangle \text{H}_{25} \end{aligned} \tag{25}$$

then for:

$$UF_{4}(c) + 2.5H_{2}O(1iq) \rightarrow UF_{4} \cdot 2.5H_{2}O(c); \Delta H_{26} \qquad (26)$$

$$\Delta H_{26} = \Delta H_{23} + \Delta H_{24} - \Delta H_{25}$$
At 323 K: $\Delta H_{23} = -2.74\pm0.02 \text{ kcal}$

$$\Delta H_{24} = -2.629\pm0.001,$$

$$\Delta H_{25} = +5.13\pm0.01$$

$$\Delta H_{26} = -10.50 \pm .025$$
 kcal

At 298 K:
$$\Delta H_{23} = -4.73 \pm 0.05$$
 kcal
 $\Delta H_{24} = -2.405 \pm 0.003$
 $\Delta H_{25} = +3.21 \pm 0.03$
 $\Delta H_{26} = -10.34 \pm .06$

Correcting ΔH_{26} from 323 K to 293 K ($\Delta C_p = -22 \text{ cal/mol} \cdot K$) results in $\Delta H_{26} = -9.94 \text{ kcal/mol}$. A weighted average for ΔH_{26} at 298 K, then, is -10.2±0.2 kcal/mol.

From an inspection of the values calculated from \triangle Hf° UF₄(c) and \triangle Hf° UF₄·2.5H₂O(c) from the Khanaev measurements and the Maltsev et al. measurements, one can calculate:

 $\Delta H_{26} = -633.2 + 2.5x68.315 + 452.3 = -10.11$ kcal which indicates a consistent cycle.

Popov et al. (1957) reported the $\Delta H_{hydration}$ of $UF_4(c)$ at 293 K to be -8.21±0.02 kcal/mol UF_4 . The samples of UF_4 were obtained by dehydrating the crystalline $UF_4 \cdot 2.5H_2O(c)$ in.vacuo, gradually heating to 498 K.

In addition to this Popov and Gagarinskii (1957) reported from tensimetric data

$$UF_4 \cdot 2.5H_2O(c) \rightarrow UF_4(c) + 2.5H_2O(g) (293-318 \text{ K}); \qquad (27)$$
$$\log P_{atm} = 7,154 - 2,920/T$$

so that for the process given:

 $\triangle H = 13.36x2.5 = 33.4$ kcal $\triangle G = 3.60x2.5 = 9.0$ kcal $\triangle S = 32.7x2.5 = 81.75$ cal

This would result in $\triangle H_{26} = -33.4 + 2.5 \times 10.52^* = -7.1 \text{ kcal/mol} \text{ of}$ UF₄·2.5H₂O(c).

 $\overset{*}{\bigtriangleup}_{\text{vap}} \overset{H}{_2} O(1) = 10.52 \text{ kcal/mol at 298 K.}$

This is clearly in error. In addition $\Delta S = 32.7 \text{ cal/mol H}_2 0 \cdot K$ is low; one would expect $\Delta S = 35-36 \text{ cal/mol H}_2 0 \cdot K$. There is a possibility of a lower hydrate forming.

If it is assumed that the $\triangle G^{\circ}$ is reasonable but that the slope is in error, then $\triangle H_{26} = -(9.0 + 35 \times 2.5 \times .29815) + 2.5 \times 10.52 =$ -8.7 kcal/mol UF₄·2.5H₂O(c), in somewhat better agreement with the Popov et al (1957) $\triangle H_{26}$.

We have selected \triangle H hydration from the results of Gagarinskii and Khanaev (1967), = -10.2±0.2 kcal/mcl, since these direct solution measurements are on well characterized samples. This results in \triangle Hf° UF₄·2.5H₂O(c) = -636.5±0.2 kcal/mol (relative to \triangle Hf° UF₄(c)).

The previously mentioned $\triangle Hf^\circ = -633.2 \text{ kcal/mol from Maltsev et al. (1960 may suffer from incomplete precipitation to <math>UF_4 \cdot 2.5H_2O(c)$; more probable is an error in the $\triangle H_{\text{mix}}$ involving HF(aq); this would cancel in the derived $\triangle H_{\text{hydration}}$ (obtained using the $\triangle Hf$ $UF_4(c)$ from Khanaev (1968)).

The estimated S° $UF_4 \cdot 2.5H_2 O(c) = 60\pm 2.0 \text{ cal/mol}\cdot K$ is obtained from the measured S° $UF_4(c)$ plus an estimate for the contribution of the 2.5H₂O's (2.5 x 9.5).

The calculated and accepted $\triangle Gf^\circ = -580.4$ kcal/mol is obtained from the selected $\triangle Hf^\circ$ and the $\triangle Sf^\circ = -188.2\pm 2.0$ cal/mol·K.

The $\triangle Gf^{\circ}$ obtained from the aqueous K's (see Section C) are in poor agreement.

Gagarinskii and Khanaev (1967) have also prepared and measured the ΔH soln. of various lower hydrates and metastable forms. These lower hydrates and their dehydration products are ill-defined. The values derived for the $\Delta H_{hydration}$ UF₄(c, monoclinic) to the lower hydrates are inconsistent, i.e.,

 $UF_4(c) + 1.5H_2O(1) \rightarrow UF_4 \cdot 1.5H_2O(c); \Delta H = -5.1 \text{ kcal/mol}$ but

$$UF_{4}(c) + 1.33H_{2}O(1) \rightarrow UF_{4} \cdot 1.33H_{2}O(c); \Delta H = -7.44 \text{ kcal/mol}.$$

The metastable forms of $UF_4(c)$ are formed from the lower hydrates and are irreversibly converted to the monoclinic. Again, they are not well defined.

An earlier paper by Gagarinskii and Mashirev (1959) also reports on the lower hydrates. Table 1 The Enthalples of Formation of $\mathrm{DF}_3(c)$ and $\mathrm{UF}_4(c)$

Invariant Mt^{*} $W_{2}(c)$ Mthol Key begendency Key begendency Key holomody Key holo Key holomody Key holomody <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
Klinnave (1968) Solation calorimetry, 323 K UGI _q (c), W(m) -432.110.9 91.3 Klannave and Klirtpin (1970) -354.94 Solution calorimetry, 0.2012(c), W(m) -432.110.9 -432.110.9 " -10.8 333 K VO ₁ O ₁ (c), W(m) -634.61 90.5 " -354.67 " UO ₁ ₄ (c), W(m) -432.10.9 90.5 " -354.67 " UO ₁ ₄ (c), W(m) 90.5 90.5 " -357.08 Fluorination of U ₁ ₂ (c) UW(m) 90.5 90.5 Urb 0.73 US ₂ (c) to U _F ₆ (c) M(F ₀ (c) Af5.651.0.7 90.5 Mount 1967 US ₂ (c) to U _F ₆ (c) M(F ₀ (c) -456.451.0.7 90.5 Mount US ₂ (c) to U _F ₆ (c) M(F ₀ (c) AfF 90.5 90.5 Mount US ₂ (c) to U _F ₆ (c) M(F ₀ (c) -456.451.0.7 90.5 Mount US ₂ (c) US ₂ (c) M(F ₀ (c) -456.451.0.7 90.5 Mount US ₂ (c) US ₂ (c) M(F ₀ (c)	Investigator	Alf°UF ₃ (c) kca1/mo1	પ્રહનમુખ્ય	Key Dependency for UP ₃ (c)	Key Dependency For UF ₄ (c)	Altf UP ₄ (c) kca1/mo1	∧(UF ₃ -UF ₄) cale. From ∧uff UF ₃ & UF ₂ keal/mo1
Rianaev and Birthin (1970) -36.96 Solution calorinetry, -0.6 0.921 , $(c) + te(a)$ 0.014 (c), $11E(a)$ " -354.67 " 32.3 K $ecl_2(c) + te(a)$ 90.61 " -354.67 " " 0.014 (c), $11E(a)$ 90.61 Hyman (1967) -357.68 " " 0.014 (c) 106 0000 ur -357.68 " " " 0.12 (c) 1060 0.014 ur 0.072 0.18 " " " 0.16 ur 0.12 0.16 0.01 0.06 0.014 0.06 ur 0.05 0.16 (c) 1006 0.06 0.016 0.06 Hyman (1967) $0.353.66$ 1006 (c) 0.06 0.016 0.06 Hus and Egan (1966) -337.34 106.60 $0.16_9(0)513.25$ $0.456.4310.5$ $0.456.4310.5$ Hus and Egan (1966) -337.34 106.80 $0.11.5^{2}$ $0.456.4310.5$ $0.456.4310.5$ <	Khunaev (1968)		Solution calorimetry, 323 h		$\text{UCl}_4(c)$, $\text{HF}(aq)$	-452.310.9	0.1.2
" "	Khamuev and Khripin (1970)	-354.94 ~±0.8	Solution calorimetry, 323 K	U0 ₂ G1 ₂ (c), 11° (aq) FeG1 ₂ (c)-FeG1 ₃ (c)			7.11
Hymun (1967) -357.08 Fluorination of U(c) and or nore uor -454.65.10.7 90.6 or 90.75 0.75 0.75 0.76 0.75 0.75 0.75 0.6 0.75 0.6 $0.17_{0}(6)$ $0.01_{0}(6)$ 0.6 0.6 $0.17_{0}(6)$ 0.6 0.6 $0.17_{0}(6)$ 0.6 0.6 $0.17_{0}(6)$ 0.6 0.6 $0.17_{0}(6)$ 0.6	=	-354.67 ~±0.8	=	UC1 ₄ (c) , llf (aq) FeC1 ₂ (c) -FeC1 ₃ (c)			
Hayman (1967) -339.86 Fluorination of $W_3(c)$ ΔH^c $U_6(g) = -513.25$ $\Delta 456.4310.5$ 96.4 $a0.6$ to $UF_6(g)$ $a0.6$ to $UF_6(g)$ $a1F_3(c)$ $a1F_3(c)$ $a56.4310.5^*$ 96.4 Heus and Egan (1966) -357.3 EW^c , 873 K $A1F_3(c)$ $A1F_3(c)$ $-455.711.5^*$ 98.4 Markin et al (1967) -357.8 u u u u $-456.411.5^*$ 98.4 Markin et al (1965) -357.8 u u u u $-456.411.5^*$ 98.5 Markin et al (1966) -356.5 EW^c , 873 K $M_8F_2(c)$ $M_8F_2(c)$ $M_8F_2(c)$ $454.711.5^*$ 98.5 Markin et al (1967) -356.80 u u u u $-455.111.5^*$ 98.2 Markin et al (1967) -356.80 u u u u $-455.111.5^*$ 98.2 Markin et al (1967) -356.80 u u u u $-455.111.5^*$ 98.2 -22.0 u u u u	Hayman (1967) or	-357.08 ±0.75	Fluorination of U(c) and UF ₃ (c) to UF ₆ (g)	none	none	-454.6510.7	96.6!0.5
Heus and Egan (1966) -357.3 ENE', 873 K AlF_3(c) $AlF_3(c)$ $-455.741.5^*$ 98.4 ~ -42.0 ~ -42.0 " " " " -456.411.5^* 98.4 Murkin et al (1967) -357.8 " " " " -456.411.5^* 98.4 Murkin et al (1966) -356.5 ENP', 873 K NgF_2(c) MgF_2(c) $-454.711.5^*$ 98.2 Murkin et al (1967) -356.80 " " " " -454.711.5^* 98.2 Murkin et al (1967) -356.80 " " " " -454.711.5^* 98.2 Murkin et al (1967) -356.80 " " " " -454.711.5^* 98.2 Murkin et al (1967) -356.80 " " " " -455.111.5^* 98.2	(1967) numeri	-359.86 ±0.6	Fluorination of UF ₃ (c) to UF ₆ (g)	∆Hf° UF ₆ (g)513.25	∆Hf° UF ₆ (g) =-513.25	-456.43±0.5	96.6±0.5
Mirkin et al (1967) -357.8 " " " " -456.411.5 [*] 98.6 ~ -22.0 ~ -22.0 ~ -236.5 EMP, 873 K $N_{\rm b}F_2(c)$ $N_{\rm b}F_2(c)$ $-454.711.5^{*}$ 98.2 Markin et al (1967) -336.60 " " " 98.2 Markin et al (1967) -336.60 " " " 98.3 Markin et al (1967) -336.60 " " " 98.3 Markin et al (1967) -336.80 " " " 98.3 Markin et al (1967) -356.80 " " " 98.3	liens and Egan (1966)	-357.3 ~ <u>1</u> 2.0	EMF, 873 K	A1F ₃ (c)	AlF ₃ (c)	-455.7±1.5 [*]	98.4
Heus and Egan (1966) -356.5 EMF, 873 K $N_{B}F_{2}(c)$ $M_{B}F_{2}(c)$ -454.711.5 [*] 98.2 $\rightarrow 22.0$ -22.0 $M_{B}F_{10}(c)$ -454.711.5 [*] 98.2 $M_{B}F_{10}(c)$ -556.80 u u u -356.80 u u u $-455.111.5^{*}$ 98.2 -22.0 -22.0	Murkin et al (1967)	-357.8 ~±2.0	=	-	-	-456.4 <u>-</u> 1.5 [*]	98.6
Markin et al (1967) -356.80 " " '' '' '' ''''''''''''''''''''''''	lleus and Egan (1966)	-356.5 ~±2.0	EMP, 873 K	$^{\rm NgF}_2(c)$	$M_BF_2(c)$	-454.7 <u>-</u> 1.5 [*]	98.2
	Murkin et al (1967)	-356.80 ~±2.0	=	-	-	-455.1±1.5 [*]	98.3

³ Obtained from Markin et al (1967) $40F_3(c) \rightarrow 30F_4(c) + U(c)$, $\Delta M^\circ = 61.8644.0$ kcal

-38-

Hildenbrand (1976) has calculated the thermal functions for $UF_4(g)$ using the estimates of Tumanov (1968) where a tetrahedral structure was assumed and the vibrational frequencies were estimated on that basis. These are the assumed parameters:

 $v_1 = 555 \text{ cm}^{-1}$ (1) $v_2 = 147$ " (2) $v_3 = 566$ " (3) $v_4 = 177$ " (3) $T_d \mod l, \text{ tetrahedron}$ $\sigma = 12$ Singlet ground state $r \text{ U-F} = 2.08\text{\AA}$

However, an analysis of the vapor pressure of UF₄(c) and (1) indicates a serious discrepancy in calculated ΔH 's of sublimation from 2nd and 3rd.law analyses (which also shows a trend with temperature). The trend can be removed and agreement with the 2nd law values can be made by increasing S° and -(G-H₂₉₈)/T by 8.2 cal/mol·K (see Table 2 ΔH°_{sub1} UF₄(c) to (g)). One can account for about 3.7 cal/mol·K of this difference if UF₄(g) has the less symmetrical C_{2v} structure; it had been assumed that the rest was due to a large electronic partition function. However, Gurvich et al. (1977) have indicated that this would not resolve the remaining 4 cal/mol·K discrepancy. For convenience the thermal functions are tabulated but with S° and -(G-H₂₉₈)/T increased by 8.2 cal/mol·K. Table 2 shows the available vapor pressure measurements on UF₄(c) and (1), the \triangle H and \triangle S at the mean temperature, the 2nd law \triangle H₂₉₈ calculated from the \triangle (H-H₂₉₈)_T for the gas and the condensed phases, and the increment in S° needed to resolve the discrepancy between the 2nd law \triangle H₂₉₈ and 3rd law \triangle H₂₉₈ (calculated using S° at 298 K = 80.18 cal/mol·K from the unadjusted thermal functions for UF₄(g)). From these measurements the selections at 298 K are:

 $\Delta H^{\circ}_{subl} = 75.4 \pm 0.5 \text{ kcal/mol}$

 $\Delta S^{\circ}_{subl} = 80.2 - 36.25 + 8.2 = 52.1\pm1.5 \text{ cal/mol} \cdot K$ leading to ΔHf° UF₄(g) = -380.1±1.2 kcal/mol. The $\Delta Gf^{\circ} = -373.9\pm2.0$ kcal/mol is calculated from the ΔHf° and the tabulated S° = 88.4 ' cal/mol ·K.

		X X cal/mol·K	7.2	8.5	8.9	6.3	10.1	3.4
		<u>∆S⊤</u> cal/mol·K	32.52	45.3	45.8	42.0	45.75	40.1
		∆H298 3r4 law kcal/mol	64.3	67.1	65.7	66.8	64.3	65.9
		∆H298 2nd law kcal/mol	74.7	76.2	75.55	74.5	76.1	69.7
	$\mathrm{UF}_4(\mathrm{g})$	H H	1430	1050	1000	1210	1185	1050
ole 2	UF ₄ (c) →	∆H kcal/mol	55.62	71.8	71.45	69.02	70.84	65.3
Tal	∆H° subl	Method	Static and b.p. technique	Mass spec., torsion effusion	Mass spec., effusion	Flow	Static, diaphragm	Effusion
		Temp. Range	1314-1579 [*]	1040-1108	920-1040	1150-1273	1120-1275	830-1280
		Investigator	Lange and Blankenship (1960)	Hildenbrand (1976)	Akishin and Khodeev (1961)	Popov et al. (1959b)	Johnsson (1947)	Chudinov and Choporov (1968)

* Liquid above 1309 K; $\Delta S_{fusion} = 8.58$ cal/mol·K

To be added to all S° values of T.F. $\mathrm{UF}_4(\mathrm{g})$ to obtain 2nd and 3rd law agreement.

 $UF_n(c)$ (n = 4.25, 4.5, 5)

Katz and Rabinowitch (1951) and Agron (1958) reported on the properties of $\mathrm{UF}_{4.25}(c)$, $\mathrm{UF}_{4.5}(c)$, $\mathrm{UF}_5(c,\alpha)$ and $\mathrm{UF}_5(c,\beta)$. Although the α -form of UF_5 is the stable form above 398 K (under 1.76 mm $\mathrm{UF}_6(g)$), the \sim -form has not been converted to the β -form at lower temperature. To affect complete conversion of the β -form to the α -form requires 12 hrs heating at 458 K. Both α and β forms have tetragonal crystal symmetry.

Brickwedde (1951) measured the C_p of UF₅(c, α) which contained only 83 weight % UF₅. The reported S° UF₅ at 298 K was 45±3 cal/mol·K. This value lies between the values for UF₅(c, α) and UF₅(c, β) which are derived from the disproportionation reactions of Agron (1958) on UF₅(α), UF₅(β), UF_{4.5}(c) and UF_{4.25}(c). The values for S° UF_{4.5} and S° UF_{4.25} were estimated by Rand and Kubaschewski (1963).

Rand and Kubaschewski (1963) evaluated the disproportionation reactions of Agron (1958) modifying the experimental data (382-621 K) by using their estimated S°'s for $\rm UF_{4.5}(c)$ and $\rm UF_{4.25}(c)$ and a $\Delta C_{\rm p} = -11 \ cal/mol \cdot K^*$. The following relationships are accepted:

$$8UF_{4.25}(c) \rightarrow 7UF_4(c) + UF_6(g)$$
 (1)
 $\Delta G^{\circ} = 33,400 - 116.5T + 25.3T \log T cal/mol UF_6(g)$
(502-621 K)

at	298	K	∆H°	=	30.1	kcal/mol UF ₆ (g)
			∆G°	=	17.4	kcal/mol UF ₆ (g)
			∆s °	=	42.7	cal/mol·K UF ₆ (g)

A slightly better $\triangle C_p$ for the disproportionations, -5 cal/mol·K, would result in negligible differences in the $\triangle Hf$ °'s.

$$7UF_{4.5}(c) \rightarrow 6UF_{4.25}(c) + UF_6(g)$$
 (2)
 $\Delta G^{\circ} = 31,100 - 114.4T + 25.3 T \log T cal/mol UF_4(g)$
(533 - 590 K)

at 298 K $\triangle H^{\circ} = 27.8 \text{ kcal/mol } UF_6(g)$ $\triangle G^{\circ} = 15.7 \text{ kcal/mol } UF_6(g)$ $\triangle S^{\circ} = 40.7 \text{ cal/mol} \cdot K UF_6(g)$

For the disproportionations of α -UF₅(c) and β -UF₅(c), however, Rand and Kubaschewskii did not distinguish between the two forms, so that the original measurements of Agron then were refit (with a $\Delta C_p = -11$ cal/mol·K) to obtain:

		$3UF_5(c,\alpha) \rightarrow 2UF_{4.5}(c) + UF_6(g)$	(3)
		△G° = 18,300 - 99.8T + 25.3T log T cal/mol (382 - 469 K)	
at	298 K	$\Delta H^{\circ} = 15.0 \text{ kcal/mol UF}_{6}(g)$ $\Delta G^{\circ} = 7.3 \text{ kcal/mol UF}_{6}(g)$ $\Delta S^{\circ} = 26.1 \text{ cal/mol} \cdot K \text{ UF}_{6}(g)$	
		$3UF_5(c,\beta) \rightarrow 2UF_{4.5}(c) + UF_6(g)$	(4)
		△G° = 24,000 - 114.0T + 25.3T log T cal/mol (384 - 423 K)	
at	298 K	$\Delta H^{\circ} = 20.7 \text{ kcal/mol UF}_{6}(g)$ $\Delta G^{\circ} = 8.7 \text{ kcal/mol UF}_{6}(g)$ $\Delta S^{\circ} = 40.4 \text{ cal/mol·K UF}_{6}(g)$	
	The se	equations result in the tabulated values (Section 3	CII).
	Then,	from (3) and (4) for:	
		$UF_5(c,\beta) \rightarrow UF_5(c,\alpha)$	(5)
at	298 K	$\Delta H = 1.9 \text{ kcal/mol}$ $\Delta G = 0.5 \text{ kcal/mol}$ $\Delta S = 4.8 \text{ cal/mol} \cdot K$	

UF₅(g)

Krohn et al. (1976) estimated the vibrational assignment for $UF_5(g)$ on the basis of the C_{4v} pyramidal structure ($\sigma = 4$). Hildenbrand (1976) used these with the U-F bond length = 1.995 Å and a doublet electronic ground state to calculate the thermal functions for $UF_5(g)$. These functions are accepted as modified below.

Hildenbrand (1976) using high temperature mass spectrometry studied the gaseous equilibrium (range 1012-1158 K):

$$Ag(g) + UF_{5}(g) \rightarrow AgF(g) + UF_{4}(g)$$
 (1)

The experimental $\triangle S^{\circ}_{1100 \text{ K}} = 8.9 \pm 1.0 \text{ cal/mol} \cdot \text{K}$ results in $S^{\circ} \text{ UF}_5(g) \approx$ 131.1 cal/mol·K, at 1100 K, ~ 3 cal/mol·K higher than the calculated $S^{\circ} = 128$ cal/mol·K. The tabulated S and $-(G-H_{298})/\text{T}$ have been increased by these 3 cal/mol·K. These are to be considered approximate functions.

The 2nd law $\triangle H = 15.6 \pm 0.6$ kcal/mol corrects to $\triangle H^{\circ}_{1} = 16.9 \pm 1.5$ kcal/mol. Using:

 $AgF(g) \rightarrow Ag(g) + F(g); \Delta H^{\circ}_{2} = 84.8 \pm 4.0 \text{ kcal/mol}$ (2) from Clements and Barrow (1968), and Hildenbrand's determination:

$$UF_4(c) \rightarrow UF_4(g); \Delta H^{\circ}_3 = 76.2 \text{ kcal/mol}$$
(3)

the following is obtained:

T

$$UF_5(g) \rightarrow UF_4(c) + F(g); \Delta H^{\circ}_4 = 25.5 \pm 4.5 \text{ kcal/mol}$$
 (4)
he resultant $\Delta Hf^{\circ} UF_5(g) = -462.\pm 5.0 \text{ kcal/mol}.$

From electron impact threshold measurements Hildenbrand also

$$\mathrm{UF}_{6}(\mathrm{g}) \to \mathrm{UF}_{5}(\mathrm{g}) + \mathrm{F}(\mathrm{g}) \tag{6}$$

 $D_0^{\circ} = 2.955 \text{ e.v. or } 68.0\pm0.2 \text{ kcal/mol}$

so that $\Delta H^{\circ}_{298} \approx 69 \text{ kcal/mol} \text{ and } \Delta Hf^{\circ} \text{ UF}_{5}(g) = -463.3 \pm 3.3 \text{ kcal/mol}.$

Wolf et al. (1965) determined the vapor pressure of the α form of UF₅(c) from 555 K to the experimentally determined melting point, 621° K as well as that of the liquid to 685°K by measurements of the transpiration rates, using UF₆ as the carrier gas to prevent disproportionation of the UF₅. The following vapor pressure equations were derived:

UF₅(c,α): log P(atm) = -(8001±664)/T + (11.113±1.119),(555-621 K) UF₅(liq):

 $\log P(atm) = -(5388\pm803)/T + (6.938\pm1.236), (621-685 K)$

The calculated mean ΔH_{subl} and ΔS°_{subl} at 580 K = 36.6±3.0 kcal/mol and 50.8±4.5 cal/mol·K. Correcting to 298 using an estimated $\Delta C_{p} = -7$ cal/mol·K results in $\Delta H^{\circ} = 38.6\pm3.2$ and $\Delta S^{\circ} = 55.6\pm5.0$, leading to ΔHf° UF₅(g) = -456±3.6 kcal/mol and S^o= 104±5.4 cal/mol·K. The entropy appears particularly high. One would not expect S^o UF₅(g), even including an electronic contribution, to be greater than 94 cal/mol·K. In addition, the calculated $\Delta S_{fusion} = 19$ cal/mol·K appears high; one would expect $\Delta S_{fusion} = 12-14$ cal/mol·K.

A third law analysis of the vapor pressure measurements on the crystal, however, results in $\Delta H^{\circ}_{subl} = 32.6 \text{ kcal/mol}$. At 600 K, - $\Delta(G-H_{298})/T = 44.0 \text{ cal/mol}\cdot\text{K}$, based on the adjusted - $(G-H_{298})/T$ for UF₅(g), S° UF₅(c, α) = 47.7 and an estimate for - $(G-H_{298}/T)_{600 \text{ K}}$ for UF₅(c, α). This ΔH°_{subl} results in $\Delta Hf^{\circ} \approx -462 \text{ kcal/mol}$ for UF₅(g) in agreement with the Hildenbrand measurements.

The Gibbs energy of formation has been calculated from $\triangle Hf^{\circ}$ and $\triangle Sf^{\circ}$.

$UF_6(c)$

The S°, C_p° and $(H-H_0)_T$ values tabulated by Brickwedde et al. (1948) from their C_p measurements on the crystal and liquid (14-370 K) are accepted. These measurements also define the triple point (337.20 K) and $\Delta H_{fusion} = 4.588 \pm 0.045$ kcal/mol.

In addition, there are measurements by Llewellyn (1953) in the range 213-373 K.

The \triangle Hf° UF₆(c) has recently been redetermined by Johnson (1977) by direct fluorination of U(c) to be -525.13±0.44 kcal/mol. Although still to be considered preliminary, this new determination confirms the value = -525.1±0.5 kcal/mol recommended by Parker (1976) from the key network analyses and the UO₃(c, γ) - UF₆(c) - HF(aq) - UO₂F₂(c) cycles. These values supercede the value -522.6±0.4 kcal/mol that had been considered to be definitive.

The analysis which indicated that the value -522.6 kcal/mol for $UF_6(c)$ was questionable and that a direct redetermination was needed to substantiate the indirect value, -525.1 kcal/mol, is presented historically in order to indicate how values considered reliable become suspect through a detailed analysis of the network. The analysis includes much of the preliminary evaluation of $\Delta Hf^\circ UO_2F_2(c)$ and $\Delta Hf^\circ UO_2F_2(aq, in HF)$ which brought the problem into focus. A. The Initially Accepted $\Delta Hf^\circ UF_6(c)$ and $\Delta Hf^\circ UF_6(g)$

There were two determinations of the enthalpy of fluorination of U(c) to $UF_6(c)$ and $UF_6(g)$ that were in good agreement with one another and were considered definitive for $\triangle Hf^\circ UF_6(c)$ and $\triangle Hf^\circ UF_6(g)$. The first of these is by Settle et al. (1963) using bomb calorimetry

$$U(c) + 3F_{2}(g) \rightarrow UF_{6}(c); \Delta H_{1} = -522.64 \pm 0.43 \text{ kcal/mol}$$
(1)
Havman (1967) in a flow calorimeter obtained:

 $U(c) + 3F_2(g) \rightarrow UF_6(g); \Delta H_2 = -510.47 \pm 0.64 \text{ kcal/mol}$ (2)

From the analysis of the vapor pressure measurements (see $UF_6(g)$):

 $UF_6(c) \rightarrow UF_6(g); \Delta H_3^\circ = 11.85 \pm 0.10 \text{ kcal/mol}$ (3)

so that $\Delta H_1^{\circ} = -522.32 \pm 0.65$ kcal/mol from Hayman's data.

These measurements led to the accepted $\triangle Hf^{\circ} UF_6(c) = -522.6 \pm 0.4$ and $\triangle Hf^{\circ} UF_6(g) = -522.6 \pm 11.85 = -510.75 \pm 0.4$ kcal/mol.

B. The Inconsistency in Paths and How it Affected \triangle Hf° UO₂F₂(c) and \triangle Hf° UO₂F₂(in HF)

The analysis of the data on the $\triangle Hf^{\circ} UO_2F_2(c)$ involves the $\triangle Hf$ of the aqueous species. The measurements on the reaction of $UO_3(c,\gamma)$ in HF(aq) to form a species for convenience called $UO_2F_2(aq, in HF)$ will be cited first. The measured reactions are of the form:

 $UO_3(c,\gamma) + 2HF(aq, in excess) \rightarrow UO_2F_2(aq, in HF) + H_2O(aq, in HF)$

Since all the measurements on the ΔH_r of $UO_3(c,\gamma)$ were made in excess HF of varying concentration and in varying UO_3/HF ratios we have corrected for the dilution of the excess HF in the final solution, either by using the appropriate φ_L^* values for the initial and final concentrations, or by using the differentials \overline{L}_2^* and \overline{L}_1 if there is no appreciable concentration change for HF(aq).

All values listed by Parker et al. (1976) for the integral and differential \triangle Hf's HF(nH₂O) should be made more negative by 0.07 kcal/mol. The value listed for \triangle Hf HF(aq, std. state) = -80.15 kcal/mol is correct.

Table 3

The Reaction of $\mathrm{UO}_3(\mathrm{c},\gamma)$ in HF(aq)

Descriptive AHF UO2F2(aq) state of in descriptiv UO2F2 formed state	q. std. state -403.8±0.5*	4 (HF+400H ₉ 0) -402.79±0.45	46 (HF+276H ₂ 0) -403.54±0.4	5.3(HF+124.4 -403.62±0.4 H ₂ 0)	7 (HF+22.4H ₂ 0) -403.78±0.4
Initial I HF soln. I	∞H ₂ 0, ac 0 HF	6 (HF+267H ₉ 0) 4	~48 (HF+264 H ₉ 0) ~1	27.3(HF+115.25 25 H ₂ 0)	19 (НF+20H ₂ 0) 17
∆ll _r kca1/mo1	-19.32 [*]	-18.308	-19.052	-19.140	-19.293
∆H _m kcal/mol		-24.56±.11	-25,31±,08	- 25.38±.09	-25.63±.08
	Calculated *	Vidavskii et al. (1965)	Cordfunke and Ouweltjes (1976)	0'Hare and Johnson (1976)	Vidavskii and Ippolitova(1971)

Calculated from the \triangle Hf F (aq, std. state) and \triangle Hf NO $_2^{2+}$ (aq, std. state) -*

Table 3 shows the measured $\triangle H_m$ and the corrected $\triangle H_r$ for the reaction,

 $UO_3(c,\gamma) + 2HF(aq, std. state) \rightarrow H_2O(1) + UO_2F_2(aq, in HF),$ the initial composition of the HF solution, the descriptive state for the UO_2F_2 in the final solution and the calculated $\triangle Hf UO_2F_2$ for that state.

As can be seen, the results are in good agreement with one another, although the \triangle Hf calculated from Vidavskii et al. (1965) is 0.75 to 1.0 kcal/mol more positive than the others. The solution is also more concentrated with respect to the UO₂F₂.

Similarly, information on \triangle Hf $UO_2F_2(aq, in HF)$ from the reaction of $UF_6(c)$ in $H_2O(1)$ or in a solution of HF(aq) may be obtained. The measured reactions are of the form:

 $UF_6(c) + 2H_2O(1)$ or (in HF soln.) $\rightarrow UO_2F_2(aq, in HF soln.)$ + 4HF(soln.)

The reactions have been corrected where necessary to 298 K and to the form:

 $\mathrm{UF}_6(c) + 2\mathrm{H}_2\mathrm{O}(1) \rightarrow \mathrm{UO}_2\mathrm{F}_2(\mathrm{aq}, \mathrm{in} \mathrm{HF}) + 4\mathrm{HF}(\mathrm{aq}, \mathrm{std. state})$ by correcting as for the reaction of $\mathrm{UO}_3(c,\gamma)$ in a solution of HF.

Table 4 The Reaction of $UF_6(c)$ in H_2O

	∆H _m kcal/mol	∆H _r	Initial Soln.	Descriptive state of UO ₂ F ₂ formed	∆Hf UO ₂ F ₂ in descriptive state
Popov et al. (1957)	-49.73 [*] ±0.30	-61.874	1602H ₂ 0	4(HF+400H ₂ 0)	-400.50 ±0.8
O'Hare and Johnson(1976)	-49.918 ±0.07	-62.35	21.33(HF+ 147.80H ₂ 0)	25.33(HF + 124.4H ₂ 0)	-400.98 ±0.75
* Corrected from	△H _m = -50.2	2±0.30 a	t 305 K ass	uming $\Delta C_p = -70$	cal/mol·K

The two values are in good agreement with one another, and show the same effect as noted earlier, but the values calculated from the two tables differ by ~ 2.5 kcal/mol.

AHE UO2F2	(aq, in HF)	Descriptive	Difference
from UF ₆	from $\gamma UO_3(c)$	State	UF ₆ -UO ₃
-400.50	-402.79	4(HF+400H ₂ 0)	2.29
-400.98	-403.62	25.33(HF+124.4H ₂ 0)	2.64

The following measurements have been made on the ΔH_{soln} . $UO_2F_2(c)$ in HF and in $H_2O(1)$ corrected to 298 where necessary.

	^{∆H} soln kcal/mol	Solution
Suponitskii et al. (1971)	-7.12	571H ₂ 0
Popov et al. (1957)	-7.89±0.2 [*]	4(HF+400H ₂ 0)
Cordfunke and Ouweltjes (1976)	-8.10±0.05	47.6 (HF+264H ₂ 0)

These values are also in agreement with one another. Obviously the values calculated for \triangle Hf° UO₂F₂(c) from the two available paths will reflect the 2.5 kcal discrepancy, i.e. \triangle Hf° UO₂F₂(c) = -402.79 + 7.89 = -394.90±0.50 kcal/mol and -403.54 + 8.10 = -395.44±0.40 kcal/mol from the UO₃(c, γ) path and the appropriate \triangle H_{soln} UO₂F₂(c), and \triangle Hf° UO₂F₂(c) = -400.50 + 7.89 = -392.61±0.85 kcal/mol from the UF₆(c) path and the appropriate \triangle H_{soln} UO₂F₂(c).

At this point it is essential to explore the possible causes of the difference.

1. There is a major error in either the experimental measurements involving the reaction of $UF_6(c)$ or those of $UO_3(c,\gamma)$. This is

^{*} Corrected from $\Delta H_{soln.}$ = -8.10 at 305 K assuming ΔC_p = -30 cal/mol·K.

highly unlikely since the agreement within each set (differing in their origin) is good.

- 2. The $UO_3(c,\gamma)$ used for the measurements is not the same form as that for which $\triangle Hf^\circ = -292.5\pm0.3$. However, O'Hare confirmed that the sample of $UO_3(c,\gamma)$ used by O'Hare and Johnson (1976) was the same as that used by Fitzgibbon et al. (1967) in their determination of $\triangle Hf^\circ UO_3(c,\gamma)$ from solution calorimetry involving $UO_3(c,\gamma)$, $UO_2(c)$ and $U_3O_8(c)$ since they confirmed these solution measurements.
- 3. The value used for $UO_3(c, \gamma) = -292.5\pm0.3$ kcal/mole is too negative by ~2.5 kcal/mol. This does not seem possible unless a corresponding change is made in $UO_2(c)$ and an even larger change is made in $U_3O_8(c)$. If $UO_2(c)$ and $UO_3(c, \gamma)$ were changed significantly the good agreement obtained for the Δ Hf° values for (1) UCl₄(c) [only partly dependent on Δ Hf $UO_2(c)$], (see section on $UCl_4(c)$); (2) $UO_2Cl_2(c)$ [partly dependent on $UCl_4(c)$ and partly dependent on $UO_3(c, \gamma)$], (see section on $UO_2Cl_2(c)$); and (3) $UO_2^{2+}(aq, std. state)$ [partly dependent on $UO_2Cl_2(c)$ and partly dependent on $UO_2(NO_3)_2 \cdot 6H_2O(c)$ which is completely dependent on $UO_3(c, \gamma)$], (see Fuger and Qetting (1976)) would disappear.
- 4. The value used for $UF_6(c)$ should be made more negative than -522.6 by this 2.5 kcal/mol. As shown in A on the $\triangle Hf^{\circ}$'s for $UF_6(c)$ and $UF_6(g)$, there is confirmation for -522.6 kcal/mol. However, a more negative value for $UF_6(c)$ and $UF_6(g)$ would lower the value for $\triangle H^{\circ}$ subl. U(c) derived from UN(c) and US(c) and would bring them into better agreement with the accepted $\triangle H^{\circ}$ subl = 127 kcal/mol (Oetting et al. (1976)).

5. Neither the \triangle Hf° UO₃(c, γ) nor the \triangle Hf° UF₆(c) are seriously in error, but the auxiliary values for \triangle Hf HF(aq) are. Since the UF₆(c)-UO₃(c, γ) relation involves six HF(aq), this shift of 0.4 kcal/mol HF would account for the discrepancy in paths. However, the \triangle Hf HF(aq) values listed by Parker et al. (1976) from the Johnson et al. (1973) determinations are consistent with the CODATA (1975) \triangle Hf° F⁻(aq, std. state) = -80.15±0.16 kcal/mol which was fixed from various cycles, five of which were in agreement (within ±0.1 kcal).

6. None of the above, but an erroneous assumption is being made.

The first three possibilities are at present rejected. It is more difficult to assess the remaining three; however, these 3 possibilities all involve the reaction of $UF_6(c)$, either because the accepted ΔHf° $UF_6(c)$ is erroneous, or because of the greater dependency on the value for ΔHf° F⁻(aq, std. state), or because the assumption on final solutions is not warranted.

The better path, then, to $UO_2F_2(c)$ and $UO_2F_2(aq, in HF)$ is from the relationship to $UO_3(c,\gamma)$, which results in -394.90±0.5 and -395.44±0.4 kcal/mol for Δ Hf° $UO_2F_2(c)$ rather than from the $UF_6(c)$ path which results in -392.6±0.85 kcal/mol.

C. The decision to change the $\triangle Hf^{\circ}'s UF_6(c)$ and $UF_6(g)$

As is indicated in B, either the \triangle Hf° UF₆ is suspect or to a lesser extent \triangle Hf HF(aq, std. state). However, if one goes through the uranium key network the more positive \triangle Hf° HF(aq, std. state) (= -79.75 kcal/mol) required here would not resolve other inconsistencies. (See UF₃(c) and UF₄(c)) where a more negative \triangle Hf° HF(aq, std. state) would be

-52-

required to resolve the inconsistencies. In addition, on a practical note, many more new cycles would have to be considered before one could say with certainty that the CODATA \triangle Hf HF(aq, std. state) is too negative by 0.4 kcal/mol (the UF₆(c)-UO₃(c, γ) cycle from the combination of Popov et al. (1957) and Vidavskii et al. (1965) had been considered by the CODATA task force).

The most likely values then, by the process of elimination, are \triangle Hf°'s UF₆(c) and UF₆(g). In order to substantiate this the following was done:

It was assumed that the fluorinations of U(c) to $\rm UF_6(c)$ and (g) were in error but that the ΔH 's of fluorination of UN(c), US(c) to UF₆ were correct.

The high temperature decomposition reactions of US(c) and UN(c) were considered and the most reasonable reactions used. The ΔHf° U(g) = 127_{-1}^{+2} kcal/mol from Oetting et al.(1976) was used in each reaction to obtain values for ΔHf° of US(c) and UN(c) which were then used in the fluorination reactions to obtain values for ΔHf° UF₆(c) and ΔHf° UF₆(g).

The reactions are:

 $UN(c) \rightarrow U(g) + 1/2N_2(g); \Delta H^\circ_1 = 200.7 \pm 1.0 \text{ kcal/mol}$ (1) (avg. of 2nd and 3rd law) from Hoenig (1971), so that ΔHf° UN(c) = -73.7 \pm 1.8 kcal/mol and ΔHf°

-53-

 $UN_{0.9957} = -73.6 \pm 1.8 \text{ kcal/mol.}$

 $UN_{0.9957}(c) + 3F_2(g) \rightarrow UF_6(c) + 0.9957/2N_2(g);$ $\Delta H_2 = -451.86\pm0.3 \text{ kcal/mol}$ (2)

from O'Hare et al. (1967) (corrected for composition), so that \triangle Hf° UF₆(c) = -525.5±1.9 kcal/mol.

 $US(c) \rightarrow U(g) + S(g); \Delta H_2 = 269.6\pm2.0 \text{ kcal/mol from Nater (1969) (3)}$ so that $\Delta Hf^\circ US(c) = -76.4\pm2.5 \text{ and } \Delta Hf^\circ US_{1.011}(c) = -76.8\pm2.5 \text{ kcal/mol.}$

 $US_{1.011}(c) + 6.033F_{2}(g) \rightarrow UF_{6}(g) + 1.011SF_{6}(g);$ $\Delta H_{4} = -732.59\pm2.0 \text{ kcal/mol from O'Hare et al. (1967) (4)}$

with ΔHf° UF₆(g) = -514.4±3.2 kcal/mol and ΔHf° UF₆(c) = -526.3±3.2 kcal/mol. These two paths lend support to more negative values for ΔHf° UF₆(c) and ΔHf° UF₆(g). These are obtained from the UF₆-UO₃ cycles, so that ΔHf° UF₆(c) = -522.6 - 2.29 = -524.89±0.6 kcal/mol from the Popov-Vidavskii cycle and -522.6 - 2.64 = -525.24±0.5 kcal/mol from the O'Hare and Johnson cycle, resulting in a selected ΔHf° UF₆(c) = -525.1±0.5 kcal/mol.

D. Confirmation From the Direct Enthalpy of Fluorination

Obviously confirmation for this new value was needed. The new measurements of Johnson (1977) on the direct fluorination to $UF_6(c)$ cited previously = $-525.13\pm0.44^*$ kcal/mol lends support to the indirect value^{**}.

^{*} A recalculation by Johnson (1979) using the values for the ΔHf° 's for UF₃(c) and UF₄(c) and the ΔH°_{subl} UF₆(c) selected in this evaluation results in $\Delta Hf^{\circ}UF_{6}(c) = -525.28\pm0.44$ kcal/mol.

^{**} One should also note that the new direct determination lends support to the CODATA Δ Hf° HF(aq, std. state) and Δ Hf° F (aq, std. state) = -80.15 kcal/mol.

We can now with certainty assign $\triangle Hf^\circ UF_6(c) = -525.1\pm0.4$ kcal/mol and $\triangle Hf^\circ UF_6(g) = -525.1 + 11.85 = -513.25\pm0.4$ kcal/mol.

There is at present no explanation for the two earlier direct fluorination reactions, in agreement with one another, being in error.

The Gibbs energy of formation has been calculated from the $\triangle Hf^{\circ}$ and the $\triangle Sf^{\circ}$.

 $UF_6(g)$

The $\triangle H^{\circ}_{subl}$ = 11.85±0.10 kcal/mol and the $\triangle G^{\circ}_{subl}$ = 1.14 kcal/mol result in $\triangle S^{\circ}_{subl.}$ = 35.95±0.3 cal/mol·K which leads to S° UF₆(g) = 90.3±0.45 cal/mol·K.

The thermal functions for the ideal gas may also be calculated from spectroscopic data. The frequency assignment by Claasen (1959) 667(1), 535(2), 623(3), 181(3), 202(3), 140(3) cm⁻¹ based on the measurements of Gaunt (1953), Claasen et al. (1956), Burke et al. (1952), and Bigeleisen et al. (1948), for the octahedron (symmetry = 24), with r-U-F 1.999A from Seip (1965) results in S° = 90.23 cal/mol·K in excellent agreement with the experimentally derived S°.

The more recent assignment of McDowell et al. (1974) 672(1), 540(2), 634(3), 186(3), 200(3), 143(3) cm⁻¹ results in S° = 89.93 cal/mol·K.

A table of thermal functions based on Claasen et al.'s (1956) assignment is presented here (Section V).

The $\triangle Hf^{\circ}$ of $UF_{6}(g)$ is derived from the selected $\triangle H^{\circ}_{subl} = 11.85\pm0.10$ kcal/mol for:

$$UF_6(c) \rightarrow UF_6(g).$$
 (1)

This is obtained from both the calorimetric determinations of $\triangle H^{\circ}_{vap}$ (277-363 K) of Masi (1949) and those calculated from the various vapor pressure measurements, all in excellent agreement. This results in $\triangle Hf^{\circ}$ UF₆(g) = -513.25±0.4 kcal/mol.

-56-

As indicated under $\rm UF_6(c)$, Hayman (1967) obtained $\Delta H_2 = -510.5 \pm 0.7$ kcal/mol for:

$$U(c) + 3F_2(g) \rightarrow UF_6(g)$$
(2)

This has been shown to be in error.

The $\Delta G_1^\circ = 1.14$ kcal/mol, result's in $\Delta G f^\circ UF_6(g) = -493.26$ kcal/mol.

The various vapor pressure measurements on the solid and liquid are in good agreement and can be represented by the equations of Oliver et al.(1953):

 $UF_6(c)$ log P(atm) = 3.50282 + 0.0075377t - 942.76/(t+183.416) (273-337 K)

UF₆(1) log P(atm) = 4.11383 - 1126.288/(t+221.963) (337-390 K)

UF₆(1) log P(atm) = 4.80988 - 1683.165/(t+302.148)

(390-500 K)

The triple point calculated here is 337.20 K with P(mm) = 1139.6. This calculated triple point is in excellent agreement with that directly determined by Brickwedde et al. (1948) as 337.202 K with $\Delta H_{fusion} = 4.588 \text{ kcal/mol}, \Delta S^{\circ} = 13.61 \text{ cal/mol}\cdot K.$

For $UF_6(1) \rightarrow UF_6(g)$:

at T = 337.202 K $\triangle H^{\circ}_{vap} = 6.84 \text{ kcal/mol}$

The sublimation temperature (1 atm.) is at 329.69 K.

-57-

For convenience Masi's (1949) smoothed $\triangle H^{\circ}_{vap}$ for the condensed phases (273-370 K) are tabulated. These values are within 50 cal/mol of the recommended values given here.

TABLE 5

Enthalpies of Vaporization of UF₆

		∆¶H
Т, К		cal/mole
	crysta l	
273.15		12,023
280		11,988
290		11,929
298.15		11,872
300		11,858
310		11 ,7 72
320		11,666
330		11,537
337.20		11,429
	liquid	
337.20		6859
340		6817
350		6671
360		6533
370		6404

See Rand and Kubaschewski (1963) for citations to the individual investigations for the vapor pressure measurements.

3.102 U-F-O Compounds

 $UOF_2(c)$ and $UOF_2 \cdot H_2O(c)$

S° $UOF_2(c)$ has been estimated as 28.5±1.0 cal/mol·K based on a comparison of the S°'s of $UCl_4(c)$, $UF_4(c)$, $UOCl_2(c)$, $UO_2Cl_2(c)$, $UO_2F_2(c)$, $UO_2(c)$, and $UO_3(c)$. The S° $UOF_2 \cdot H_2O(c)$ is derived from the estimated ΔS_5 discussed in the following section.

Vdovenko et al.(1967) isolated a black crystal hydrate which corresponded to $UOF_2 \cdot H_2O(c)$. In (1969) they measured its enthalpy of reaction in HCl(aq) at 293 K. Their measured reactions are:

$$UOF_{2} \cdot H_{2}O(c) + 254HC1(aq) \rightarrow [UF_{2}C1_{2} + 252HC1 + 2H_{2}O]aq;$$

$$\triangle H_{1} = -5.42\pm0.04 \text{ kcal/mol} (1)$$

$$[UC1_{4} + 250HC1]aq + 2HF(aq) \rightarrow [UF_{2}C1_{2} + 252HC1]aq;$$

$$\triangle H_{2} = -7.90\pm0.05 \text{ kcal/mol} (2)$$

The concentrations used correspond to those used by Maltsev et al. (1960) in their determination of \triangle Hf° UF₄·2.5H₂O(c) and use is made of the Maltsev et al. reaction:

UCl₄(c) + 250HCl(aq) \rightarrow [UCl₄ + 250HCl]aq; \triangle H₃ = -43.47±0.10 (3) to complete the cycle. From these reactions the following summation is obtained:

From the individual reactions in the two papers involved it is clear that the \triangle Hf of the HF 40% soln. HF 1.667H₂0) to be used is an

* Corrected to 298 K, assuming $\Delta C_p = -145$ cal/mol·K.

integral quantity = -76.42 kcal/mol but the \triangle Hf's of HCl and H₂O in 5N HCl solution, HCl(10H₂O), are differential quantities.

The resultant $\triangle Hf^{\circ} UOF_2 \cdot H_2O(c) = -430.7 \pm 0.8 \text{ kcal/mol.}$

In addition, the H₂O vapor pressure (283 to 363 K) over $UOF_2 \cdot H_2O$ was determined by Vdovenko et al. (1969). For:

$$UOF_{2} \cdot H_{2}O(c) \rightarrow UOF_{2}(c) + H_{2}O(g); \qquad (5)$$

at 298 K they report a calculated $\Delta H_5 = 11.1 \text{ kcal/mol } H_2O(g)$ $\Delta G_5 = 2.82 \text{ kcal/mol } H_2O(g)$ $\Delta S_5 = 27.8 \text{ cal/mol} \cdot K$

Use of the calculated $\Delta H_5 = 11.1 \text{ kcal/mol results in } \Delta Hf^{\circ} UOF_2(c)$ = -361.8 kcal/mol. This would mean that for the reaction:

$$2UOF_{2}(c) \rightarrow UO_{2}(c) + UF_{4}(c)$$
(6)

$$M \geq 8 \text{ kcal/mol } UF_{4}^{*} \text{ and } \Delta G \geq 9 \text{ kcal/mol } UF_{4}$$

This would indicate that the stability of $UOF_2(c)$ is greater than that of $UOCl_2(c)$ (ΔH and ΔG for the comparable chloride reaction are 7.2 and 7.4 kcal/mol $UCl_4(c)$, respectively). This is questionable. In addition the calculated ΔS and ΔH for reaction (5) are low. One would expect ΔS_5 to be ~ 35 e.u. If the measured pressure at 298 K is used ($\Delta G^{\circ}_5 = 2.82$ kcal/mol) with the estimate $\Delta S_5 = 35$ cal/mol·K, $\Delta H_5 = 13.3$ kcal/mol $H_2O(g)$. This results in ΔHf° $UOF_2(c) = -359.6\pm1.5$ kcal and results in, for (6), $\Delta H \leq 6$ kcal/mol UF_4^{*} .

The Gibbs energies of formation have been calculated from the \triangle Hf°'s and \triangle Sf°'s.

 $^{^{\}sim}$ $\Delta H > 8$ and $\Delta H < 6$ are used because of the uncertainty in the ΔHf° $UF_{L}(c)$.

 $UO_2F_2(c)$

Wacker and Cheney (1947) measured the heat capacity from 13 K to 418 K. The tabulated S°, C_p° and H-H₀ are obtained from their smoothed values. Kelley and King (1961) cite the above measurements in their tabulation; however, they report S°₂₉₈ = 33.40 cal/mol[•]K. This appears to be an error in transcription.

Cordfunke et al. (1978) determined the high-temperature enthalpy from 375 to 811 K relative to 298 K. The results are expressed as: $H_T-H_{298} = 29.53T + 0.5833 \times 10^{-3} T^2 + 5.193 \times 10^{5} T^{-1} - 10,598$ cal/mol

(298-811 K)

This equation results in values for $H_T - H_{298}$ in good agreement (lower by $\sim .03$ kcal/mol at 400 K) with those tabulated by Wacker and Cheney (1947) but leads to a calculated C_p° at 298.15 K ~ 0.6 cal/mol·K lower than that obtained from the direct C_p° determinations which are, at present, preferred for the low-temperature properties.

Purity of the Wacker and Cheney sample, however, may be the problem.

As indicated in the discussion of $\Delta Hf^{\circ} UF_{6}(c)$, from

 $UO_3(c,\gamma) + 2HF(aq, std. state) \rightarrow UO_2F_2(c) + H_2O(1)$ $\Delta Hf^\circ UO_2F_2(c) = -394.90\pm0.50$ kcal/mol from the combination of the Popov et al. (1957) $\Delta H_{soln} UO_2F_2(c)$ in 4(HF + 400H₂O) and the Vidavskii et al. (1965) $\Delta Hf^\circ UO_2F_2(aq)$ in the same final solution. Also ΔHf° $UO_2F_2(c) = -395.44\pm0.35$ from the Cordfunke and Ouweltjes (1976) values. From the Popov et al. (1957) $UF_6 - UO_2F_2$ cycle $\Delta Hf^\circ = -403.0^* + 7.89 = -395.11\pm0.6$ kcal/mol.

The selected value of $\Delta Hf^{\circ} UO_{2}F_{2}(c) = -395.2\pm0.3 \text{ kcal/mol}.$

In addition to the measurements described above, Knacke et al. (1969) reported a $\Delta H = 90.7$ kcal/mol UF₆(g) and $\Delta S^{\circ} = 62.3$ cal/mol UF₆(g) in the range 1033 K to 1073 K for the decomposition:

 $3UO_2F_2(c) \rightarrow 2/3U_3O_8(c) + UF_6(g) + 1/3O_2(g)$

With a $\Delta C_p = -3.7 \text{ cal/mol}\cdot\text{K}$, $\Delta H^\circ = 94.0 \text{ kcal/mol}$ and $\Delta S^\circ = 66 \text{ cal/mol}\cdot\text{K}$. This ΔH results in $\Delta Hf^\circ UO_2F_2(c) = -392.3 \text{ kcal/mol}$ and $S^\circ UO_2F_2(c)$ = 28.6 cal/mol·K, in sharp disagreement with the measured low temperature ture value. In addition, if one uses the measured low temperature S° 's and the ΔG° at 1040 K, the resultant $\Delta H^\circ_{298} = 80.2 \text{ kcal/mol}$ and $\Delta Hf^\circ = -387.7 \text{ kcal/mol}$, even further off. No weight can be given to these measurements. There is a possibility that the products of the decomposition are not as written.

The Gibbs energy of formation has been calculated from the accepted ΔHf° and the ΔSf° .

^{*} i.e., -400.5 - 2.5 where -2.5 = -525.1 - 522.6.

The various values for the $\Delta Hf^{\circ} UO_2F_2(aq, in HF)$ cited in the discussion under $UF_6(c)$ from the ΔH° 's of reaction of UF_6 , γUO_3 and $UO_2F_2(c)$ in HF can now be consolidated. The major effect appears to be the concentration of the HF solution.

Final smoothed values are:

$\Delta H_{soln} UO_2 F_2(c)$	AHf UO ₂ F ₂ (solution)	Descriptive
kcal/mol	kcal/mol	State
-8.6	-403.8	aq. std. state
-7.12	-402.32	in 570H ₂ 0
-7.85	-403.05	$in 4 (HF + 400H_2 0)$
-8.20±.10	-403.40	in $47(\text{HF} + 276\text{H}_20)$
-8.35	-403.55	in $25(\text{HF} + 124.4\text{H}_20)$
-8.58	-403.78	in $17(\text{HF} + 22.4\text{H}_2^{-0})$

$$UO_2F_2 \cdot nH_2O(c)$$

F

Suponitskii et al (1971) report the following $\triangle H$'s soln. in 571H₂O:

	AH, kcal/mol
U0 ₂ F ₂ (c)	-7.12±.11
U0 ₂ F ₂ ·1.6H ₂ O(c)	-2.05±.07
$UO_2F_2 \cdot 3H_2O(c)$	$-1.46 \pm .06$
$UO_2F_2 \cdot 4H_2O(c)$	-1.35±.02
$UO_2F_2 \cdot 3H_2O(c)$ $UO_2F_2 \cdot 4H_2O(c)$	-1.46±.06 -1.35±.02

Tsvetkov et al (1972) report from tensimetric measurements:

Reaction	$\triangle \mathbf{H}$	
	kcal/mol H ₂ O(g)	kcal/mol H ₂ O(g)
1	12.8±0.8	2.32±0.08
2	12.6±0.8	2.54±0.07
3	10.7±1.2	2.54 ± 0.08
4	13.3±1.4	3.25 ± 0.10
5	11.7±1.9	3.25 ± 0.12
6	13.3±2.2	3.93=0.13
7	11.3±2.4	3.93±0.15
	62	

for the following:

$$UO_{2}F_{2} \cdot 4H_{2}O(c) = UO_{2}F_{2} \cdot 3H_{2}O(c) + H_{2}O(g)$$
(1)

$$UO_2F_2 \cdot 3H_2O(c) = UO_2F_2 \cdot 2.18H_2O(c) + 0.82H_2O(g)$$
 (2)

$$UO_2F_2 \cdot 2.18H_2O(c) \neq UO_2F_2 \cdot 1.75H_2O(c) + 0.43H_2O(g)$$
 (3)

$$UO_2F_2 \cdot 1.75H_2O(c) \neq UO_2F_2 \cdot 1.18H_2O(c) + 0.57H_2O(g)$$
 (4)

$$JO_{2}F_{2} \cdot 1.18H_{2}O(c) = UO_{2}F_{2} \cdot 0.85H_{2}O(c) + 0.33H_{2}O(g)$$
 (5)

$$10_{7}F_{2} \cdot 0.85H_{7}O(c) \neq 10_{7}F_{2} \cdot 0.25H_{7}O(c) + 0.60H_{7}O(g)$$
 (6)

$$JO_{7}F_{2} \cdot 0.25H_{7}O(c) \neq UO_{7}F_{7}(c) + 0.25H_{7}O(g)$$
 (7)

Then for:

$$UO_2F_2 \cdot nH_2O(c) \rightarrow UO_2F_2(c) + nH_2O(1)$$

we obtain:

n	∆H kcal/mol	∆H kcal/mol	∆G kcal/mol	S° cal/mol∙K
	Suponitskii		Tsvetkov et al	
4	5.77	7.54	3.45	13.7
3	5.66	5.46	3.14	7.8
2	5.36	3.97	2.73	4.2
1.6	5.07			
1.0		2.09	1.7	1.3

 $\triangle H = 5.6 \pm 1.0$ kcal/mol is accepted for:

 $UO_2F_2 \cdot 3H_2O(c) \rightarrow UO_2F_2(c) + 3H_2O(1)$

leading to $\triangle Hf^{\circ} UO_2F_2 \cdot 3H_2O(c) = -605.8\pm1.0$ kcal/mol. No values are given for the others because of the disagreement and the imprecise states of the hydrates.
UOF(OH)(c) and $UOF(OH) \cdot 0.5H_2O(c)$

Vdovenko et al. (1970a) prepared a black finely crystalline precipitate (by the addition of alkali to an aqueous solution containing UF^{3+}) which has the composition $\mathrm{UOF(OH)}\cdot 0.5\mathrm{H}_2\mathrm{O(c)}$. They also measured the thermal properties at 293 K, i.e. in 5N HCl (1970b).

$$UOF(OH) \cdot 0.5H_2O(c) + 254HC1(aq) \rightarrow [UFC1_3 + 251HC1 + 2.5H_2O]aq;$$

$$\Delta H_1 = -13.84 \pm 0.15 \text{ kcal} \qquad (1)$$

and

$$[UC1_4 + 250HC1]aq + HF(aq) \rightarrow [UFC1_3 + 251HC1]aq;$$

 $\triangle H_2 = -4.6\pm0.1 \text{ kca1/mol}$ (2)

The concentrations appear to correspond, as in their similar solution measurements on $UOF_2 \cdot H_2O(c)$, to those used by Maltsev et al. (1960) in their determination of $\triangle Hf^\circ UF_4 \cdot 2.5H_2O(c)$ and use is made of the Maltsev et al. reaction:

$$UCl_{4}(c) + 250HCl(aq) \rightarrow [UCl_{4} + 250HCl]a_{4};$$

$$\Delta H_{3} = -43.47 \pm 0.1 \text{ kcal}$$
(3)

so that

 $UCl_{4}(c) + HF(40\% \text{ soln.}) + 2.5H_{2}O(aq) \rightarrow UOF(OH) \cdot 0.5H_{2}O(c) + 4HCl(aq); (4)$

$$\Delta H_{i} = -34.8 \pm 0.6^{*} \text{kcal/mol}$$

With the integral \triangle Hf° HF(40% soln., HF(1.667H₂O)) = -76.42 kcal/mol and the differential \triangle Hf 's for HCl and H₂O in a 5N HCl solution, i.e. HCl(10H₂O) \triangle Hf° = -376.7±1.5 kcal/mol for the hemihydrate.

* Corrected to 298 K, assuming $\Delta C_p = -120 \text{ cal/mol} \cdot \text{K}$.

Vdovenko et al. (1970b) also measured the vapor pressure (283-363 K) and reported for:

$$UOF(OH) \cdot 0.5H_2O(c) \rightarrow UOF(OH)(c) + 0.5H_2O(g);$$
(5)

$$\Delta H_5 = 10.4 \text{ kcal/mol } H_2O(g) \text{ and } \Delta S_5 = 25.6 \text{ cal/mol } H_2O(g) \cdot K$$

If one assumes (5) to be the process, one would expect ΔS to be 35-36 cal/mol·K. If this ΔS is used and one assumes the ΔG° is reasonable $\approx 2.8 \text{ kcal/mol}$, a $\Delta H \approx 13.2 \text{ kcal/mol} \text{ H}_2^{\circ}(g)$ is obtained, and $\Delta H f^{\circ}$ UOF(OH)(c) $\approx -341\pm3.0 \text{ kcal/mol}$.

 $UO_2(OH)F \cdot H_2O(c)$ and $UO_2(OH)F \cdot 2H_2O(c)$

Tsvetkov et al. (1973) observed the existence, in the UO_3 -HF-H₂O system, of two hydrates of a basic salt of variable composition; they are $UO_2(OH)_xF_{2-x} \cdot 2H_2O$ and $UO_2(OH)_xF_{2-x} \cdot H_2O$, where x = 0.3-1.2. The thermodynamic characteristics have been determined by DTA.

They report the following for the case when x = 1.

$$JO_{2}(OH)F \cdot H_{2}O(c) \rightarrow 1/2UC_{2}F_{2}(c) + 1/2UO_{3} \cdot H_{2}O(c) + H_{2}O(g)$$
(1)
$$log P(atm) = (7.60\pm0.84) - (3100\pm246)/T (303-408 \text{ K})$$

$$UO_{2}(OH)F \circ 2H_{2}O(c) \rightarrow UO_{2}(OH)F \cdot H_{2}O(c) + H_{2}O(g)$$
(2)
log P(atm) = (6.23±0.52) - (2360±141)/T (303-379 K)

The calculated values at 298 K are:

For reaction (1)
$$\Delta H_1 = 14.2 \text{ kcal/mol } H_2 O(g)$$

 $\Delta G^{\circ}_1 = 3.82 \text{ kcal/mol } H_2 O(g)$
 $\Delta S^{\circ}_1 = 34.8 \text{ cal/mol } H_2 O(g)$
for reaction (2) $\Delta H_2 = 10.8 \text{ kcal/mol } H_2 O(g)$
 $\Delta G^{\circ}_2 = 2.3 \text{ kcal/mol } H_2 O(g)$
 $\Delta S^{\circ}_2 = 28.5 \text{ cal/mol } H_2 O(g)$

The formation properties of $UO_2(OH)F \cdot H_2O(c)$ are obtained from the values for reaction (1) since the formation properties of $UO_2F_2(c)$ and $UO_3 \cdot H_2O(c)^*$ are known.

For reaction (2), the $\triangle H$ and $\triangle S^{\circ}$ are unreasonable. The normal $\triangle S^{\circ}_{dehyd} \approx 35-36 \text{ cal/mol H}_2O(g)$. A more reasonable $\triangle H = 13.0 \text{ kcal/mol results from using the measured } \Delta G^{\circ}_2 = 1.11 \text{ kcal/mol at}$ T = 340 K and the estimated $\triangle S^{\circ} = 35 \text{ cal/mol}$.

^{*} AHf° U0., H₂O(c, 3) = -366.5±0.2 kcal/mol from Cordfunke and O'Hare (1978) is used. Parker (1976) recommends -366.6±0.3 kcal/mol.

Then for the dehydration

$$UO_{2}(OH)F \cdot 2H_{2}O(c) \rightarrow UO_{2}(OH)F \cdot H_{2}O(c) + H_{2}O(g)$$
(2)
$$\Delta G^{\circ} = 13,000 - 35T (ca1/mol) (298-380 \text{ K})$$

and

.

$$\log P(atm) = 7.65 - 2,840/T.$$

3.103 U-C1 Compounds

UC1₃(c)

The 298 K values for S° and H-H₀ are taken from Katz and Rabinowitch's (1951) tabulation of the smoothed thermal functions obtained from the low temperature specific heat measurements of Ferguson and Prather (1944) (15-380 K) made on samples of unknown purity. They are considered accurate to 0.5%. The measurements extrapolated to 0 K assuming no abnormal behavior results in S° = 38.0 cal/mol·K; however, as pointed out by MacWood (1958), the UCl₃ curve appears unusual between 15-20 K, appearing to approach a minimum at ~ 10 K. If this is so, then a better value for S° UCl₃(c) would be between 38.0 and 40.75 cal/mol·K where R ln 4 = 2.75 is the total magnetic entropy present in UCl₃(c). However, until more definitive measurements are made, S° = 38.0±0.3 cal/mol·K is accepted.

Ginnings and Corruccini (1947) measured the heat content relative to 273 K in the range 273-998 K using a higher purity sample (~ 99.8%) than Ferguson and Prather. In the overlapping range, 273-373 K, the derived C_p 's are 0.5% lower.

Kelley (1960) tabulated the C_p° , $(S-S_{298})_T$ and $(H-H_{298})_T$ from the Ginnings and Corruccini results which, with the low temperature S°, results in the thermal functions to 1000 K. The results can be expressed as:

 $H_T - H_{298 \ K} = 20.98T + 3.72 \times 10^{-3} T^2 - 1.16 \times 10^5 T^{-1} - 6,197 \ cal/mol$ (298-1,000 K)

-69-

Fontana (1947) and (1958) measured the following:

UCl₃(c) +
$$[1/2UO_2^{2+} + 2H^+]$$
 in 0.5m HClO₄ →
 $[3/2U^{4+} + 3C1^- + H_2^{0}]$ in 0.5m HClO₄; $\Delta H_1 = -69.07\pm0.5$ kcal/mol
(1)

With the values for the \triangle Hf's for U⁴⁺ (0.5m HClO₄) and UO₂²⁺

(0.5m $HClO_4$) from Fuger and Oetting (1976) and the assumption that the enthalpy of formation of the Cl⁻ in 0.5m $HClO_4$ is the same as in 0.5m HCl, $\Delta Hf^\circ UCl_3(c) = -207.3\pm 1.3$ kcal/mol is calculated.

However, since Fontana made a whole series of calorimetric oxidation reduction measurements on UCl₃(c), UCl₄(c), and $U^{4+} \rightarrow UO_2^{2+}$ (see Fuger and Oetting (1976)), another way of treating the above measurements would be to rearrange his reactions and obtain the ΔH_{soln} . UCl₃(c): UCl₃(c) $\rightarrow [U^{3+} + 3Cl^{-}]$ in 0.5m HClO₄; $\Delta H_2 = -28.97\pm0.5$ kcal/mol

 $UCI_3(c) = -28.9/\pm 0.5 \text{ kcal/mol}$ (2)

Assuming \triangle Hf° U³⁺ (in 0.5m HClO₄) $\approx \triangle$ Hf° U³⁺(aq, std. state), one obtains \triangle Hf° UCl₃(c) = -206.5±1.3 kcal/mol.

Another approach, which minimizes the assumptions regarding the value to be used for the formation of Cl⁻ in 0.5m HClO_4 and ties $\Delta \text{Hf}^\circ \text{UCl}_3(c)$ to $\Delta \text{Hf}^\circ \text{UCl}_4(c)$ is through the rearrangement of Fontana's' reactions to:

 $UC1_{3}(c) + HC1(in \ 0.5m \ HC10_{4}) \xrightarrow{\rightarrow} UC1_{4}(c) + 1/2H_{2}(g);$ $\triangle H_{2} = +3.01\pm0.6 \ kca1/mol$ (3)

Although, again the partial $\triangle \hat{H}f$ of HCl is to be used, the solution now involves only one mole of HCl, an introduction of only ~ 0.1 kcal uncertainty. The resultant $\triangle Hf^\circ$ UCl₃(c) = -207.0±0.9 kcal/mol. The experimental calorimetric results of Barkelew given by MacWood (1958) result in:

 $UCl_{3}(c) + Cl_{2}(g) \rightarrow UCl_{4}(c); \Delta H_{4} = -38.1 \text{ kcal/mol}$ (4) and $\Delta Hf^{\circ} UCl_{3}(c) = -205.4 \pm 2.0 \text{ kcal/mol}.$

MacWood (1958) also tabulates the K's from Altman (1944) and Gregory (1945) for the UC1₄ hydrogen reduction equilibrium (673 to 823 K). The third law ΔH° values for the reaction:

$$JCl_{4}(c) + 1/2H_{2}(g) \rightarrow UCl_{3}(c) + HCl(g)$$
 (5)

are:

Altman
$$\Delta H_5^\circ = 14.36\pm0.1 \text{ kcal/mol UCl}_4(c)$$

Gregory $\Delta H_5^\circ = 14.38\pm0.3 \text{ kcal/mol UCl}_4(c)$

The value obtained for \triangle Hf° UCl₃(c) from the data of Altman and Gregory is -207.0±0.7 in excellent agreement with the calorimetric value from Fontana's results. However, as MacWood (1958) points out, if a value for S° = 40.5 cal/mol·K is used for UCl₃(c), then the 3rd law \triangle H° = 16.21 kcal/mol and \triangle Hf° UCl₃(c) from Altman and Gregory is -205.2 kcal/mol in better agreement with the calorimetric value of -205.4 from Barkelew and MacWood. At present, the value -207.0±1.0 is accepted.

A value of -29.5±0.6 kcal/mol (Fuger (1976)) for ΔH° soln UCl₃(c) at infinite dilution can be estimated from the experimental $\Delta H_{solr.}$ PuCl₃(c) and AmCl₃(c). This value with the $\Delta Hf^{\circ} U^{3+}(aq, std. state)$ results in ΔHf° UCl₃(c) = -207.2±1.1 in support of -207.0±1.0 kcal/mol.

-71-

There are other measurements pertaining to $UCl_3(c)$.

Hardy-Grens (1964) reported pressure measurements for the decomposition of $UCl_3(c)$. The assumed reaction is:

$$4/3UCl_{3}(c) \rightarrow UCl_{4}(g) + 1/3U(c)$$
 (6)

The reported $\triangle G^{\circ}$ (1030 to 1173 K) is 52,900 - 27.9T cal/mol UCl₄(g) with $\triangle H^{\circ}_{298} = 57.7$ kcal/mol (assuming $\triangle C_{p} = -6$ cal/mol·K) and $\triangle S^{\circ}_{298} = 35.8$ cal/mol·K, resulting in -188.3 kcal/mol for $\triangle Hf^{\circ}$ UCl₃(c) and S° UCl₃(c) = 51 cal/mol·K.

Similarly Shchukarev et al. (1956) reported, in the temperature range 863 to 1063 K:

$$\Delta G = 51,000 - 27.5T \text{ cal/mol}$$

This results in $\triangle H_{298} = 55.0$ kcal/mol UCl₄(g) and $\triangle Hf^{\circ} = -186.3$ kcal/mol for UCl₃(c).

These two sets of measurements are in reasonable agreement with one another but differ with both the calorimetric values and the UCl_4-H_2 reduction equilibria values. It may be that the measurements made do not pertain to the disproportionation process.

The tabulated $\triangle Gf^{\circ}$ is obtained from the accepted $\triangle Hf^{\circ}$ and $\triangle Sf^{\circ}$.

UC1₄(c)

The low temperature heat capacities (15-355 K) have been measured by Ferguson et al. (1944a). The C_p° , (H-H₀)_T and S° at 298 K are taken from Katz and Rabinowitch's (1951) tabulated values. It is appropriate at this point to point out that the S° UCl₄ at 298.15 K (47.1₄) has been listed in various places as 47.4 cal/mol·K [for example Rand and Kubaschewski (1963) and Rossini et al. (1952)]. There is no evidence that a reevaluation of the low temperature C_p and S° was made. It would appear to be an error in transcription.

Ginnings and Corruccini (1947) measured the heat content of $UCl_4(c)$ in the range 700 K to 273 K. Popov et al. (1959a) measured the C_p from 450 K to 920 K (above the melting point). A reasonable presentation of the high temperature measurements has been made by Rand and Kubaschewski (1963):

UCl₄(c)
$$C_p = 27.2 + 8.57 \times 10^{-3} T - 0.79 \times 10^{5} T^{-2}$$
 cal/mol·K
(400-800 K)
UCl₄(1) $C_p = 25.8 + 14.4 \times 10^{-3} T$ cal/mol·K
(890-920 K)

In combination with the vapor pressure measurements (see $UCl_4(g)$) the following is accepted:

at the melting point, 863 K (Mueller (1948)): $UCl_4(c) \rightarrow UCl_4(1)$ $\triangle H = 10.9 \text{ kcal/mol}$ $\triangle S = 12.6 \text{ cal/mol}\cdot K$

 $UCl_4(c)$ is a key compound in the evaluation of a consistent set of thermodynamic data for the uranium compounds, and until 1971 the

-73-

 Δ Hf° had been considered to be firmly established as -251 kcal/mol. [See Rand and Kubaschewski (1963), Rossini et al. (1952), Brewer et al. (1945)]. However, an inconsistency noted by Rand and Kubaschewski existed in the paths to Δ Hf° UO₂²⁺(aq, std. state) and the various forms of UO₃(c). These inconsistencies can now be traced primarily to the Δ Hf°'s of UCl₄(c) and UO₂Cl₂(c).

These early measurements and subsequent ones in support of the above mentioned value for \triangle Hf° have been recalculated and are listed below. They are given no further consideration for the selection of \triangle Hf° UCl₄(c).

These values^{*} were obtained from measurements of U(c) and $UCl_{4}(c)$ in excess HCl so that:

$$U(c) + 4HCl(aq) \rightarrow UCl_{(aq, in excess HCl)} + 2H_{2}(g); \Delta H_{1}$$
(1)

$$UCl_{(c)} \rightarrow UCl_{(aq, in HCl)}; \Delta H_{2}$$
(2)

and by difference:

$$U(c) + 4HCl(aq) \rightarrow UCl_{4}(c) + 2H_{2}(g); \Delta H_{3}$$
(3)
$$\Delta H_{3} = \Delta H_{1} - \Delta H_{2} = \Delta Hf^{\circ} UCl_{4}(c) - 4\Delta Hf HCl(aq)$$

The measurements of Barkelew were for oxidation in HCl-FeCl₃ soln., but by difference $\triangle H_3$ is for the same reaction.

Investigator	T K of measurement	Conc. HC1, HC1•nH ₂ O	∆Hf°UCl ₄ (c) kcal/mol
Smith et al. (1969)	298	8.13	-251.0
Argue et al. (1961)	298	8.13	-250.5±0.6
Barkelew [MacWood (1946)] 273	*	-249.8*
Biltz and Fendius (1928) 273	8.	-248.2**

Fitzgibbon et al. (1971) redetermined the \triangle Hf° UCl₄(c) by two independent paths, and obtained significantly different results from those tabulated above. Their measurements were confirmed by Cordfunke et al. (1976); the resultant newly established \triangle Hf° UCl₄(c) = -243.5±0.6 kcal/mol has resolved many of the earlier inconsistencies in the uranium network of key values. Measurements by Fitzgibbon et al. also offer a reasonable explanation for the more negative values arrived at earlier.

One of Fitzgibbon's paths is a repeat of the above; i.e., reactions (1) and (2) for which $\Delta H_1 = -137.5\pm0.5$ kcal/mol when $m_{HC1} = 4.35$, or HC1:12.76H₂O) and $\Delta H_1 = -136.2\pm1.0$ kcal/mol when $m_{HC1} = 6.83$, or HC1:8.13H₂O) and $\Delta H_2 = -45.7\pm0.5$ and -39.3 ± 0.5 kcal/mol, respectively.

Using the differentials $\triangle Hf$ HCl (12.76H₂0) = -37.856 kcal/mol and $\triangle Hf$ HCl (8.13H₂0) = -36.671 kcal/mol, values of -243.22±0.70 and -243.58±1.1 kcal/mol are obtained for $\triangle Hf^\circ$ UCl₄(c).

^{*} Barkelew used a 12M HCl-FeCl₃ solution and experimentally determined the \triangle Hf HCl in this medium at 273 K as -33.0 kcal/mol; certain auxiliary components needed revising so that \triangle Hf HCl for use in the Barkelew HCl-FeCl₃ medium is -32.7 kcal/mol.

^{**} Earlier evaluations had \triangle Hf° = -251, in exact agreement with Barkelew (MacWood); an erromeous interpretation of \triangle Hf° HCl and the experimental \triangle H mix had been made.

The ΔH 's for the individual reactions, particularly (1), are significantly less negative than the earlier measurements. It would appear, as explained by Fitzgibbon et al., that the earlier measurements for the reaction of U(c) with HCl(aq) were not for process (1). Probably not all dissolved oxygen had been eliminated; nor had a scavenger been used (SiF₂²⁻ in the acid) to prevent the formation of insoluble residues from the reaction of U(c) in HCl solutions.

The other path, which confirms the above values is dependent upon $UO_2(c)$. Fitzgibbon's experimental measurements, and those of Cordfunke et al. (1976) who repeated the measurements are cited in the following Table 6.

	The Enthalpy of Formation of $\text{UCl}_4(c)$ from $\text{UO}_2(c)$		
	Soln. A refers to $1.502M$ H_2SO_4 ; Soln. B refers to $1.502M$ H_2SO_4 + 0.0	3350M Ce (S0 ₄) ₂	
	Reaction	Fitzgibbon	cordfunke *
(†)	$00_2(c) + 2Ce(S0_4)_2 \cdot Soln.B \rightarrow 00_2 S0_4 \cdot Soln.B + Ce_2(S0_4)_3 \cdot Soln.B$	-53.16±0.4	-53.92±0.06
(2)	$U(C_2H_3O_2)_4$ (c) + 2Ce (SO ₄) ₂ • Soln.B + 2H ₂ O•Soln.B ··		
	$00_2 S0_4 \cdot S01n.B + Ce_2 (S0_4)_3 \cdot S01n.B + 4 HC_2 H_3 0_2 \cdot S01n.B$	-45.34±0.7	-45.70±0.53
(9)	$4HC_2H_3O_2 \cdot Soln.B \rightarrow 4HC_2H_3O_2 \cdot Soln.A$	-0.12 ± 0.1	
(2)	$U(C_2H_3O_2)_4(c) + H_2SO_4 \cdot Soln.A \rightarrow U(SO_4)_2 \cdot Soln.A + 4HC_2H_3O_2 \cdot Soln.A$	-8.446±0.1	-8.58±0.05
(8)	$UCI_4(c) + 2H_2SO_4 \cdot Soln \cdot A \rightarrow U(SO_4)_2 \cdot Soln \cdot A + 4HCI \cdot Soln \cdot A$	-49.958 ± 0.6	-50.94±0.20
(6)	4 (HC1.3.61H ₃ 0) + Soln.A \rightarrow 4 (HC1.3.16H ₃ 0) · Soln.A [*]	-10.64 ± 0.2	-1.18 ± 0.04
(10)	$14.44H_20(1)$ + Soln.A $\rightarrow 14.44H_20.Soln.A^*$		
(11)	$211_2 0(1) + Soln.B - 211_2 0 \cdot Soln.B$	1°077°0-	-0.49±0.20

^{*} For the Cordfunke results the H_2SO_4 concentration is 1.505M and the $H_2O/HC1$ ratio is 10.01; Reaction (10) involves 40.04 moles H_2O .

Table 6

The summation results in:

 $UO_2(c) + 4HCl(aq) \rightarrow UCl_4(c) + 2H_2O(1); \Delta H_{12}$ (12) and $\Delta H_{12} = 23.37\pm0.9$ and 33.55 ± 0.60 kcal/mol, respectively. With $\Delta Hf^{\circ} UO_2(c) = -259.3\pm0.2$ based on the combustion work of Huber and Holley (1969) and the integral values for ΔHf° HCl(aq), $\Delta Hf^{\circ} = -243.95\pm1.1$ (Fitzgibbon) and -243.27 ± 0.65 kcal/mol (Cordfunke).

A weighted average from these four values results in the selected \triangle Hf° UCl₄(c) = -243.5±0.6 kcal/mol.

These two paths to \triangle Hf° UCl₄(c), one independent of other uranium compounds and one dependent upon \triangle Hf° UO₂(c), are mutually consistent; i.e., the \triangle Hf° UCl₄(c), independent of other uranium compounds supports a \triangle Hf° UO₂(c) = -259.3±0.2 kcal/mol.

The Gibbs energy of formation has been calculated from the $\triangle Hf^{\circ}$ and $\triangle Sf^{\circ}$.

UC1, in Various Aqueous Media

The concern here is with the bulk ΔH_{soln} , that is, the ΔH_{soln} of UCl₄(c) in various aqueous media to form the real solution, which in HCl may be highly complexed and in dilute HCl and HClO₄, a partly hydrolyzed one, correcting only for the presence of the foreign silicate ion when present, temperature (if not at 298.15 K) and possible impurities if known.

In all measurements cited here the concentration of the UCl_4 in solution is below .01m. There is at present insufficient

-78-

experimental information to correlate the ΔH_{soln} UCl₄ as a function of m_{UCl_4} .

1. Measurements in HCl

In Fuger and Oetting (1976) the measurements were corrected and extrapolated from HCl and HClO₄ solutions in order to obtain the Δ Hf°, Δ Gf°, and S° for U⁴⁺(aq, std. state). For convenience they are repeated here (uncorrected for hydrolysis) along with additional measurements.

Conc. m, moles HC1/kg H ₂ 0	∆H soln kcal/mol
7.2	-39.4*
7.2	-36.2
6.90	-40.0
6.82	-38.9
6.82	-42.7
5.53	-43.47**
4.35	-45.3
2.08	-51.53
1.02	-54.46
1.02	-57.0
	Conc. m, moles HC1/kg H ₂ 0 7.2 7.2 6.90 6.82 6.82 5.53 4.35 2.08 1.02 1.02

Measurements at 273 K, uncorrected. ** Measurements at 293 K, uncorrected.

2. Measurements in HClO4

Investigator	Conc. m, moles HC10 ₄ /kg H ₂ 0	^{∆H} soln kcal/mol
Argue et al. (1961) **	.01	-54.6*
	.05	-57.3
	0.135	-55.6
	0.200	-59.1
	1.02	-61.0
Fontana (1947)	0	-44.7
	0.1	-52.7
	0.5	- 55.7
	2.0	-53.6

3. Measurements in Acid-Salt Mixtures

Fontana (1947) [concentration UC1 ₄ ~5x10 ⁻³ m] 0.1m HC10 ₄ , [concentration UC1 ₄ ~5x10 ⁻⁴] 0.4m LiC10 ₄ -54.22 Hearne and White (1957) [concentration UC1 ₄ ~5x10 ⁻⁴] HC1-LiC1 with constant μ =2.0 [H ⁺] = 2.0 -51.53±0. 1.6 -54.40 1.2 -56.10 1.0 -56.89 0.6 -57.15 0.4 -57.96 0.2 -58.31	Investigator	Solvent	^{∆H} soln kcal/mol
$\begin{array}{c} [concentration UC1_{4} \sim 5 \times 10^{-6}m] & 0.4m \text{ LiC10}_{4} & -54.22 \\ \\ \text{Hearne and White (1957)} & \text{HC1-LiC1 with} \\ [concentration UC1_{4} \sim 5 \times 10^{-4}] & \text{constant } \mu = 2.0 \\ [H^+] = 2.0 & -51.53 \pm 0.16 \\ 1.6 & -54.40 \\ 1.2 & -56.10 \\ 1.0 & -56.89 \\ 0.6 & -57.15 \\ 0.4 & -57.96 \\ 0.2 & -58.31 \end{array}$	Fontana (1947)	0.1m HC10,	
Hearne and White (1957) [concentration UC1 ₄ ~ 5×10^{-4}] HC1-LiC1 with constant $\mu=2.0$ [H ⁺] = 2.0 -51.53±0. 1.6 .54.40 1.2 -56.10 1.0 -56.89 0.6 -57.15 0.4 -57.96 0.2 -58.31	[concentration UC1 $_4$ ~5x10 m]	0.4 m LiClo ₄	-54.22
[concentration UC1 ₄ ~5x10 ⁻⁴] constant μ =2.0 [H ⁺] = 2.0 -51.53±0. 1.6 .54.40 1.2 -56.10 1.0 -56.89 0.6 -57.15 0.4 -57.96 0.2 -58.31	Hearne and White (1957)	HC1-LiC1 with	
$\begin{bmatrix} H^{T} \end{bmatrix} = 2.0 & -51.53\pm0. \\ 1.6 & -54.40 \\ 1.2 & -56.10 \\ 1.0 & -56.89 \\ 0.6 & -57.15 \\ 0.4 & -57.96 \\ 0.2 & -58.31 \end{bmatrix}$	[concentration UC1,~5x10]	\perp constant $\mu=2.0$	
1.6 -54.40 1.2 -56.10 1.0 -56.89 0.6 -57.15 0.4 -57.96 0.2 -58.31	4	$[H^{T}] = 2.0$	-51.53±0.7
1.2 -56.10 1.0 -56.89 0.6 -57.15 0.4 -57.96 0.2 -58.31		1.6	-54.40
1.0 -56.89 0.6 -57.15 0.4 -57.96 0.2 -58.31	•	1.2	-56.10
0.6 -57.15 0.4 -57.96 0.2 -58.31		1.0	-56.89
0.4 -57.96 0.2 -58.31		0.6	-57.15
0.2 -58.31		0.4	-57.96
		0.2	-58.31
0.1 -58.43		0.1	-58.43
0.04 -58.50		0.04	-58.50
0.02 -58.46		0.02	-58.46

The final smoothed values recommended for ΔH_{soln} of UC1₄(c) as a function of m of HC1 and HC10₄ are given in Tables 7 and 8.

** Measurements by Argue are for molar concentrations.

^{*} Corrected for polymerization of U(IV).

	Table /		
Recommended	Values of ΔH_{sol}	In UCl ₄ (c) in HCl	
Conc. m, moles HC1/kg H ₂ 0	ΔH_{soln} UC1 ₄ (c)	∆Hf UCl ₄ (aq, in	HC1)
	ko	al/mol	
1.0	-54.6	-298.1	
2.0	-51.5	-295.0	
3.0	-48.8	-292.3	
4.0	-46.2	-289.7	
5.0	-43.7	-287.2	
6.0	-41.3	-284.8	
7.0	-39.25	-282.7	

Table 7

Table 8

Recommended	Values of AH soln UC1	(c) in HClO ₄
Conc. m	∆H _{soln}	\triangle Hf UCl ₄ (aq,
moles HClO4/kg H20	UCl ₄ (c)	in HClO ₄)
	,	kcal/mol
0	-44.7	-288.5*
0.1	-52.7	-296.2
0.5	-55.7	-299.2
1.0	-55.1	-298.6
2.0	-53.6	-297.1

^{*} This represents the 'real' ΔH_{soln} in H_2O , i.e. the hydrolyzed solution, not to be confused with the $\Delta H^{\circ}_{soln} = (-141.3 - 4x39.933) + 243.5 = -57.5$ kcal/mol for the ideal unhydrolyzed solution [U⁺⁴ + 4C1⁻]. The difference between the two ΔH 's soln. is a measure of $\Delta H_{hydrolysis}^{\circ}$

$UCl_4(g)$

The vapor pressure measurements of Choporov and Chudinov (1968) (650-750 K; Knudsen effusion) on UCl₄(c) are in good agreement with the evaluation of Rand and Kubaschewski (1963); a readjustment, however, of the parameters of the ΔG expressions for UCl₄(1) (which retains the fit of the experimental measurements of Young and Grady (1958), Gregory (1948), and Jenkins and Anderson (1948)) has been made in order to obtain slightly better agreement with the measurements of Popov et al (1959a) whc, from C_p measurements, calculated the $\Delta H =$ 11.9 kcal/mol of all transformations between 834 and 882 K (including fusion).

The adjusted expressions are:

$$UCl_{4}(c) \rightarrow UCl_{4}(g)$$
(1)

$$\Delta G_{1} = 51,900 - 93.0T + 13.8 T \log T cal/mol (298-863 K)$$
at 298 K:

$$\Delta G^{\circ}_{1} = 34.3 \text{ kcal/mol}$$

$$\Delta H^{\circ}_{1} = 50.1 \text{ kcal/mol}$$

$$\Delta S^{\circ}_{1} = 52.9 \text{ cal/mol} \cdot K$$

$$UCl_{4}(1) \rightarrow UCl_{4}(g)$$
(2)

$$\Delta G_{2} = 47,000 - 134.8T + 29.9 T \log T \text{ cal/mol} (863-1063 K)$$
at 1063 K:

$$\Delta G = 0$$

$$\Delta H = 33.2 \text{ kcal/mol}$$

$$\Delta S^{\circ} = 31.2 \text{ cal/mol} \cdot K$$

The calculated tabulated values for $\triangle Hf^\circ$, $\triangle Gf^\circ$ and S° for UCl₄(ϵ) are obtained from the sublimation process.

The earlier measurements are cited by Rand and Kubaschewski.

 $UCl_5(c)$ and $UCl_6(c)$

The low temperature thermal functions of $UCl_6(c)$, 0-350 K, from the specific heat measurements of Ferguson and Rand (1945), have been tabulated by Katz and Rabinowitch (1951).

S° UCl₅(c) at 298.15 K has been estimated from the measured values for UCl₄(c) and UCl₆(c).

The enthalpies of formation of UC1₅(c) and UC1₆(c) are discussed together.

MacWood (1958), reporting on the experimental results of Barkelew, cites the ΔH 's at 273 K for the oxidation of UCl₄(c) (ΔH = -24.1±0.1 kcal/mol), UCl₅(c) (ΔH = -33.9±0.1 kcal/mol) and UCl₆(c) (ΔH = -44.6 ±0.1 kcal/mol) in 12N HCl, 10% FeCl₃ solutions, so that: UCl₄(c) + FeCl₃(aq) \rightarrow UCl₅(c) + FeCl₂(aq); ΔH_1 = 9.8±0.15 kcal/mol (1) UCl₅(c) + FeCl₃(soln) \rightarrow UCl₆(c) + FeCl₂(soln); ΔH_2 = 10.7±0.15 kcal/mol (2)

Using the relationship:

and

 $\operatorname{FeCl}_2(\operatorname{soln}) + \operatorname{Cl}_2(g) \rightarrow \operatorname{FeCl}_3(\operatorname{soln}); \Delta H_3 = -20.2\pm0.5 \text{ kcal/mol}$ (3) which incorporates the Barkelew experimental components and pertains to the specific medium of a 12N HCl, 10% FeCl₃ soln. at 273 K, the following relationships are obtained:

$$UCl_4(c) + 1/2Cl_2(g) \rightarrow UCl_5(c); \Delta H_{1a} = -10.4 \pm 0.6 \text{ kcal/mol}$$
 (1a)

$$JC1_{5}(c) + 1/2C1_{2}(g) \rightarrow UC1_{6}(c); \Delta H_{2a} = -9.4\pm0.6 \text{ kcal/mol}$$
 (2a)

More recently Gross et al. (1971) reported the direct chlorination of U(c) with $Cl_2(1)$, so that:

 $U(c) + 5/2Cl_{2}(g) \rightarrow UCl_{5}(c); \Delta H_{4} = -247.8\pm1.0 \text{ kcal/mol}$ (4) which results in $\Delta H_{1a} = -4.3\pm1.2 \text{ kcal/mol}.$

Obviously there is a major disagreement in the relationships for UCl₅(c) and UCl₆(c). If, from Gross et al., \triangle Hf° UCl₅(c) = -247.8 kcal/mol one would expect \triangle H_{2a} \approx -4 and \triangle Hf° UCl₆(c) \approx -252 kcal/mol, as opposed to \triangle Hf° UCl₅(c) = -253.9 and \triangle Hf° UCl₆(c) = -263.3 kcal/mol from the MacWood-Barkelew measurements. Although the Gross et al. measurements appear to be definitive for UCl₅(c), the overall picture they present appears unreasonable, as compared to the other halides.

The Barkelew measurements for $\triangle H$ of oxidation of U(c) in this medium are known to be in error; however, some of the other measurements appear reasonable and lead to calculated values for $\triangle Hf^{\circ}$ that are in agreement (within 2 kcal/mol) with the presently accepted values, such as UCl₃(c), UBr₄(c), UOCl₂(c) and UOBr₂(c). It may be that $\triangle H_3$ is erroneous, and that a better value is \approx -19 kcal/mol for these conditions. See Rand and Kubaschewski (1963) for the variation of $\triangle H_3^*$ with HCl concentration. Use of -19 kcal/mol for $\triangle H_3$ results in: $\triangle H_{1a} = -9.2$ kcal/mol and $\triangle Hf^{\circ}$ UCl₅(c) = -252.7 kcal/mol; and $\triangle H_{2a} = -8.2$ kcal/mol and $\triangle Hf^{\circ}$ UCl₆(c) = -260.9 kcal/mol. These values have been rounded. Further work is necessary on the UCl₄-UCl₅-UCl₆ relationships.

^{*} Use of $\triangle H_3 \approx -19$ kcal/mol would result in $\triangle Hf^\circ UCl_3(c) = -206.6$ kcal/mol from the MacWood-Barkelew investigation, in better agreement with the selected $\triangle Hf^\circ = -207.0$.

The Gibbs energies of formation have been calculated from the selected \triangle Hf°'s and the calculated \triangle Sf°'s.

 $UC1_6(g)$

Rand and Kubaschewski (1963) reviewed the vapor pressure data through 1961 and reported $\triangle H^{\circ}_{subl}$ 298.15 K to be 18.8 kcal/mol and $\triangle S^{\circ} = 35.1 \text{ cal/mol} \cdot \text{K}.$

The $\triangle Gf^{\circ}$ UCl₆(g) is derived from the $\triangle G^{\circ}_{subl}$.

$U_2C1_{10}(g)$

Gruen and McBeth (1969) studied the reaction of $UCl_4(c)$ with $Cl_2(g)$ (450-650 K) spectrophotometrically; the uranium pentachloride was found to vaporize as a dimer molecule.

For the reaction:

$$2UCl_4(c) + Cl_2(g) \rightarrow U_2Cl_{10}(g);$$

 $SG = 15,130 - 15.4T cal/mol (450-650 K)$

The Uranium Pentachloride-Aluminum Chloride Vapor Complex

Gruen and McBeth (1969) studied the reaction of $UCl_4(c)$ with $AlCl_3(c)$ and $Cl_2(g)$ spectrophotometrically; they report:

$$\Delta G = 8,910 - 10.7T \text{ cal/mol} (440-630 \text{ K})$$

and

$$UC1_4(c) + A1_2C1_6(g) \rightarrow UC1_4 \cdot A1_2C1_6(g)$$

 $\Delta G = 15,780 - 15.3T cal/mol (600-800 K)$

3.104 U-C1-O Compounds

UOC1(c) and UOBr(c)

Katz and Rabinowitch (1951) tabulate the K's of Gregory (1945) for the supposed equilibrium of the H_2 reduction of UOX_2 , where X = Cl or Br. It was assumed that the products were UOX(c) and HX(g). No analyses of the products were made.

The K's lead to the following for:

	UOX ₂ (c)	$+ 1/2H_2(g) \rightarrow UOX$	(c) + HX(g)	
Х	$ riangle \mathbf{H}_{\mathbf{T}}$	$\triangle G_T$	$ riangle_{ extsf{T}}$	T
	kcal/mol HX	kcal/mol HX	cal/mol·K	
C1	10.6	6.0	6.9	673
Br	10.1	6.1	6.0	673

If it is assumed that the ΔC_p 's are negligible, the resultant ΔHf° 's for UOCl(c) and UOBr(c) are -222 and -213 kcal/mol, respectively; however, the resultant calculated S°'s are 11 cal/mol·K for UOCl(c) and 12 cal/mol·K for UOBr(c), obviously impossible values. Reasonable values for S° UOCl(c) and S° UOBr(c) are ~ 24 and ~ 27 cal/mol·K, respectively (based on a comparison of the measured S°'s for U(c), $UO_2(c)$, UCl₃(c), UCl₄(c), UOCl₂, UO₂Cl₂ and UOBr₂(c)).

If it is assumed that the measured K's are reasonable, but the T dependency is in error, then, with the estimated S°'s for UOC1 and UOBr (and assuming $\Delta C_p \approx 0$) one obtains $\Delta S = 20$ cal/mol·K and $\Delta H = 19.5$ kcal/mol for the UOC1(c) equilibrium and $\Delta S = 21$ cal/mol·K and $\Delta H = 20.2$ kcal/mol for the UOBr(c) equilibrium. These ΔH 's result in ΔHf° UOC1(c) = -213 kcal/mol and ΔHf° UOBr(c) = -203 kcal/mol. However, these ΔHf° values still appear unreasonable in comparison

-86-

with the relationships derived for the $PuOCl(c)-PuCl_3(c)$, $PuOBr(c)-PuBr_3(c)$, and $AmOCl(c)-AmCl_3(c)$ systems from Fuger (1976). No recommendations are made at this time.

UOC1,(c)

Greenberg and Westrum (1956b) measured the heat capacity from 11.7 to 348 K (also some measurements from 5 to 10 K of lower precision). Thermal anomalies were not observed. The extrapolation below 10°K was made assuming the absence of magnetic transformation below 5 K. Their tabulated values are accepted.

Rand and Kubaschewski (1963) evaluated the earlier measurements (700 to 800 K) on the equilibria:

$$2UOC1_{2}(c) \rightarrow UO_{2}(c) + UC1_{4}(g)$$
(1)

and arrived at $\Delta H_1 = 57.1 \text{ kcal/mol} \text{ UCl}_4$, with perfect agreement on ΔS° from the experimental ΔS_1 at 750 K (46.4 cal/mol·K) and that obtained from the calorimetric S°'s for UOCl₂(c) and UO₂(c), and the calculated S° UCl₄(g) obtained from the $\Delta S^\circ_{\text{subl}}$ UCl₄(c) and a ΔC_p = -6 cal/mol·K. These earlier measurements will not be cited here, or reinterpreted. The resultant ΔHf° UOCl₂(c) = -254.9 kcal/mol.

Recently Knacke et al. (1972) reported measurements on the same equilibria (in the range 700 to 1023 K), which result (with a $\Delta C_p = -6 \text{ cal/mol} \cdot \text{K}$) in $\Delta \text{H}^\circ_1 = 57.3 \text{ kcal/mol}$, and $\Delta \text{S}^\circ_1 = 52.4 \text{ cal/mol} \cdot \text{K}$, also in perfect agreement with the independently calculated ΔS° . This ΔH° results in ΔH° UOCl₂(c) = -255.0 kcal/mol.

-87-

Barkelew, as cited in MacWood (1958), calorimetrically determined the Δ Hf°'s of many of the uranium-halogen containing compounds; however, his determination of Δ Hf° UCl₄(c) is seriously in error because of the reaction of U(c) in HCl; the Δ Hf°'s of UCl₅(c) and UCl₆(c) agreement with better determinations. Where possible, little weight is given to the determination, even if it is in agreement with better determinations, but calculations will continue to be made of the Δ Hf°'s from the Barkelew data, possibly giving alternative ways of handling his data, in order to apply this knowledge to compounds where other data are scanty or non-existent.

Barkelew's measurements on UOC1, are viewed in this regard.

Since the measurement of the oxidation of U(c) in a 12N HCl, 10% FeCl₃ is seriously in error, Barkelew's $\Delta H = -16.7$ kcal/mol for the oxidation of UOCl₂(c) in this medium is combined with the oxidation of UCl₄(c) in the same medium, $\Delta H = -24.1$ kcal/mol. Since the final solutions are the same, UO₂Cl₂ and FeCl₂ forming in the medium:

 $UCl_4(c) + H_2O(aq) \rightarrow UOCl_2(c) + 2HCl(aq); \Delta H_2 = -7.4 \text{ kcal/mol}$ (2)

Barkelew's values for $\triangle Hf$'s of HCl and H₂O(aq) in the 12N HCl, 10% FeCl₃ medium (which are partly experimental) have been corrected for the presently accepted $\triangle Hf^{\circ}$ HCl (3.49H₂O) = -36.05 kcal/mol and $\triangle Hf^{\circ}$ H₂O(1) = -68.315 kcal/mol and recorrected to 273 K, incorporating the experimental determinations of $\triangle H_{mix}$ and $\triangle H_{diln}$ to obtain for

-88-

 $\triangle \overline{H}f$'s HCl and H₂O in the medium at 273 K, -32.7 and -69.45 kcal/mol, respectively. These $\triangle Hf$'s and -243.6 for $\triangle Hf$ UCl₄(c) (at 273 K) result in $\triangle Hf^\circ$ UOCl₂(c) = -255.0 at 273 K and -254.9 kcal/mol at 298 K.

The agreement here indicates that the Barkelew-MacWood data on the reaction for $UOCl_2(c)$ can be considered reasonable and can be used in combination with the $\Delta H_{reaction}$ of $UOBr_2(c)$ to obtain $\Delta Hf^\circ UOBr_2(c)$.

The Gibbs energy of formation is derived from the ${\bigtriangleup}Sf^\circ$ and the ${\rightthreetimes}Hf^\circ.$

$U0_2C1_2(c)$

*

The low temperature heat capacities (6-350 K) have been measured by Greenberg and Westrum (1956a). The smoothed thermodynamic functions are accepted. Prins *(1973) determined the high-temperature enthalpy from 392 to 696 K relative to 298 K. The results are expressed as: $H_T-H_{298} = 22.93T + 5.662 \times 10^{-3} T^2 + 0.4643 \times 10^{5} T^{-1} - 7,494$ cal/mol (298 - 700 K)

These functions join the low temperature results smoothly.

The recent measurements of Cordfunke et al.(1976) have clarified the situation regarding the \triangle Hf° UO₂Cl₂(c). Two different cycles existed prior to this time for obtaining \triangle Hf°, both involving \triangle Hf° UCl₄(c). Rand and Kubaschewski (1963) obtained \triangle Hf° = -302.9 kcal/mol (based on \triangle Hf° UCl₄(c) = -251.3) from the Shchukarev et al. (1958a) path which at that time was the only available one: a complete recalculation using presently accepted auxiliary \triangle Hf°'s and \triangle Hf° UCl₄(c) = -243.5 kcal/mol results in \triangle Hf° UO₂Cl₂(c) = -292.0±2.0 kcal/mol. The more recent cycle ^{**}from Khanaev and Khripin (1970) results in -297.0±1.0 kcal/mol.

More recently Cordfunke et al. (1978) reported measurements in the range 366 to 649 K relative to 298 K: $H_T-H_{298} = 27.55T + 2.178 \times 10^{-3}T^2 + 2.729 \times 10^{5}T^{-1} - 9323 \text{ cal/mol}$

 $H_T-H_{298} = 27.55T + 2.178 \times 10^{-3}T^2 + 2.729 \times 10^{5}T^{-1} - 9323$ cal/mol At 500 K and 700 K, H_T-H_{298} are 1% and 0.2% higher than those of Prins (1973).

Another value for \triangle Hf° UO₂Cl₂(c) can be derived, = -291.5 kcal/mol, if one uses the \triangle Hf° Na₃UO₄(c) from the mass spectrometric studies of Battles et al.(1972) in the thermochemical cycle from O'Hare et al.(1972) involving Na₃UO₄(c) and UO₂Cl₂(c). Since this \triangle Hf° Na₃UO₄(c) has a high uncertainty, a better approach is to obtain \triangle Hf° UO₂Cl₂(c) from the other thermochemical cycles and to obtain \triangle Hf° Na₃UO₄(c) from the O'Hare measurements as has been done by Cordfunke and O'Hare (1977).

Cordfunke et al. determined the \triangle Hf° relative to \triangle Hf° UO₃(c, γ) and determined \triangle Hf° UO₂Cl₂(c) = -297.1±0.3 and also repeated the "Shchukarev" cycle and obtained -297.9±0.9 kcal/mol.

The thermochemical cycles studied are presented, beginning with the Cordfunke " γUO_3 " cycle, which is the most straightforward of the four available cycles. The measurements have been made in excess 5.545 molal HCl solutions.

$$\gamma$$
-UO₃(s) + 2HCl(aq, excess) \neg UO₂Cl₂(in HCl) + H₂O(in HCl);
 \triangle H₁ = -15.53±0.07 kcal/mol (1)

 $UO_2Cl_2(s) \rightarrow UO_2Cl_2(aq, HCl); \Delta H_2 = -17.06\pm0.05 \text{ kcal/mol}$ (2) so that:

$$UO_3(c, γ)$$
 + 2HCl(aq, excess) → $UO_2Cl_2(c)$ + H₂O(in HCl);
 $\Delta H_3 = 1.53\pm0.09$ kcal/mol (3)

With the differentials, $\triangle H f$ HCl(10.01H₂0) and $\triangle H f$ H₂0 in HCl \cdot 10.01H₂0) = -37.291±0.01 and -68.440±0.001 kcal/mol, respectively, $\triangle H f^{\circ} UO_2 Cl_2(c)$ = -297.12±0.3 kcal/mol.

The second of Cordfunke's cycles, the "Shchukarev cycle", and the original Shchukarev results are tabulated.

> TABLE 9 The "Shchukarev cycle" for the Enthalpy of Formation of UO₂Cl₂(c)

	Prosting	∆H kcal	,mol
	Reaction	(Cordfunke)	(Shchukarev)
(4)	$UCl_4(c) + 2FeCl_3(soln.) + 2H_2O(soln.)$		
	$\rightarrow U0_2C1_2(soln.) + 2FeC1_2(soln.) +$		
	4HC1(soln.)	-45.11±0.37	-45.50±0.10
(5)	$U0_{2}C1_{2}(c) - U0_{2}C1_{2}(soln.)$	-24.56±0.17	-25.44±0.07
(6)	$2FeCl_3(c) \rightarrow 2FeCl_3(soln.)$	-64.64±0.15	-61.14±0.54
(7)	$2FeCl_2(c) \rightarrow 2FeCl_2(soln.)$	-36.74±0.11	-
The	solution refers to 1.98 mass percent of	HC1, i.e. HC1(100.6H ₂ 0)
cont	aining 0.5 mass percent of FeCl ₃ , i.e. H	FeCl ₃ (1800H ₂ 0).	

-91-

From the Cordfunke Measurements:

$$UC1_{4}(c) + 2FeC1_{3}(c) + 2H_{2}O(soln.) \xrightarrow{} 2FeC1_{2}(c) + 4HC1(soln.) + UO_{2}C1_{2}(c); \Delta H_{8} = -48.45\pm0.45 \text{ kca1/mo1}$$
(8)

Using auxiliary values for ΔHf° FeCl₃(c), ΔHf° FeCl₂(c) ΔHf HCl(100.6H₂0) and ΔHf H₂0 in HCl 100.6H₂0) from Parker et al. (1976), ΔHf° UO₂Cl₂(c) = -297.89±0.9^{*} kcal/mol.

From the Shchukarev measurements:

$$UC1_{4}(c) + 2FeC1_{3}(c) + 2H_{2}O(soln.) \rightarrow UO_{2}C1_{2}(c) + 2FeC1_{2}(soln.) + 4HC1(soln.); \Delta H_{82} = -81.20\pm0.55 \text{ kcal/mol}$$
(8a)

The value for $\triangle Hf^{\circ}$ FeCl₂(soln.) = -101.2 kcal/mol from Wagman et al. (1969) used to obtain the $\triangle Hf^{\circ}$ UO₂Cl₂(c) = -292.0 cited previously was probably not appropriate for this solution; a larger uncertainty (±2.0 kcal/mol) was therefore assigned to the calculated $\triangle Hf^{\circ}$. Also Shchukarev's value for $\triangle H_6$ differs considerably from that reported by Cordfunke, although the measurements for reactions (4) and (5) are in reasonable accord. If the measurements of Shchukarev for $\triangle H_4$ and $\triangle H_5$ are combined with Cordfunke's values for $\triangle H_6$ and $\triangle H_7$, $\triangle H_8 = -47.96\pm0.8$ kcal/mol is obtained, which results in $\triangle Hf^{\circ} = -297.67$ ± 1.0 kcal/mol, in good agreement with the two Cordfunke values and that derived from the Khanaev and Khripin work cited earlier.

^{*} Cordfunke et al. (1976) at the same time measured the \triangle Hf[°] UCl₄(c) = -243.27±0.65, relative to \triangle Hf[°] UO₂(c). This value was used to be consistent with Cordfunke's cycle.

A detailed analysis of the Khanaev and Khripin measurement is given under the discussion for $UF_3(c)$ where the summation equations are:

$$UO_{2}Cl_{2}(c) + 3FeCl_{2}(c) + 3HF(aq) + HCl(aq) \rightarrow 2H_{2}O(liq) + 3FeCl_{3}(c) + UF_{3}(c); \Delta H_{9} = +29.54 \pm 0.32 \text{ kcal/mol}$$
(9)

and

$$FeCl_{2}(c) + UCl_{4}(c) + 3HF(aq) \rightarrow FeCl_{3}(c) + UF_{3}(c) + 3HCl(aq);$$

$$\Delta H_{10} = -5.564 \pm 0.20 (10)$$

By difference reaction (8) is obtained with $\Delta H_8 = -35.104\pm0.50$ kcal/mol. However, here the H₂O/HCl ratio is 3.91 and the integral Δ Hf° HCl(aq) = -36.449 kcal/mol is needed, resulting in the earlier mentioned Δ Hf° = -296.98±1.0 kcal/mol.

 \triangle Hf° U0₂C1₂(c) = -297.2₃±0.3 is the selected value.

 ${\bigtriangleup}{Gf}^\circ$ has been calculated from ${\bigtriangleup}{Hf}^\circ$ and ${\rightthreetimes}{Sf}^\circ.$

$UO_2Cl_2(in HCl solutions)$

There are scattered values in the literature for the ΔH_{soln} of UO₂Cl₂(c) in HCl solutions. The following table summarizes the available measurements. In all cases the concentration of the UO₂Cl₂, although different in each case, is below 1×10^{-3} molal.

Table 10

The Enthalpy of Solution of $U0_2C1_2$ in HC1

	^m HC 1	△H soln
	mol(KgH ₂ 0) ⁻¹	kcal/mol
Fitzgibbon et al (1971)	6.82	-15.34±0.5
Cordfunke et al (1976)	5.55	-17.06±0.1
Prins (1973)	5.55	-17.30±0.23
Fitzgibbon et al (1971)	4.35	-18.75±0.5
O'Hare and Hoekstra (1974)	1.0	-22.18±0.15 [*]
Shchukarev et al (1958a)	0.552 (0.5% FeCl ₃)	-25.44±0.07
Cordfunke et al (1976)	0.552 (0.5% FeCl ₃)	-24.56±0.17
O'Hare et al (1972)	0.25 (containing NaCl)	-24.27±0.07
O'Hare and Hoekstra (1973)		-24.19±0.09
Cordfunke (1975)	5.6×10^{-4}	-26.03±0.03

Lipilina and Samoilov (1954) measured the ΔH_{soln} of the trihydrate (using one mole of the salt in 50 moles H_2 0) as a function of the HCl concentration. The experimental ΔH 's have been corrected for

^{*} Revised from original -22.49±0.13 as explained by O'Hare et al (1976).

the dilution of $3H_2O(aq)$. These results are tabulated.

	Table 11	
The Enthalpy of	Solution of UO2C	$12 \cdot 3H_2 O(c)$ in HCl
^m HC1	∆H exp kcal/mol	∆H corrected kcal/mol
0.80	-8.86	-8.86
0.97	-8.75	-8.74
1.55	-7.78	-7.75
1.98	-6.95	-6.91
4.44	-2.80	-2.56

In addition Prins measured ΔH_{soln} in 5.55 molal HCl (concentration of $UO_2Cl_2 \sim .03 \text{ mol} \cdot \text{kg}^{-1}$) = -2.41±0.01 kcal/mol, which corrected for the 3H₂O(aq) formed = -2.04±.01 kcal/mol.

As can be seen from the tabulated results the data on the $\triangle H_{soln}$ $UO_2Cl_2(c)$ below one molal HCl are discordant; the measurements (m = 4.4 to 0.8) for $UO_2Cl_2 \cdot 3H_2O(c)$ appear to be reasonable (the concentration of the UO_2Cl_2 , though, is much greater). From a smoothed plot of the $UO_2Cl_2 \cdot 3H_2O$ data we obtain at m = 4.40 $\triangle H_{soln}$ = -2.65 kcal/mol. From the $UO_2Cl_2(c)$ data (m = 4.35 to 6.82) we obtain $\triangle H_{soln}$ = -18.65 kcal/mol for m = 4.4 If the difference in the concentrations of UO_2Cl_2 (in HCl) is ignored, a $\triangle H_{hydration}$ = -16.0 kcal/mol is obtained for: $UO_2Cl_2(c) + 3H_2O(1) \rightarrow UO_2Cl_2 \cdot 3H_2O(c)$

If, however, it is assumed that $\Delta \varphi_{L}(\varphi_{L} \ 1.11m - \varphi_{L} \ m < 0.001) = +0.5$ kcal/mol, estimated on the basis of the behavior of BaCl₂ (Parker et al (1971)), $\Delta H = -15.5$ kcal/mol. This confirms the $\Delta H_{hydration} = -15.3 \pm 0.23$ from Prins (1973) measurements. In view of this confirmation,

-95-

all measurements on $UO_2CI_2(c)$ and $UO_2CI_2 \cdot 3H_2O(c)$ have been merged to obtain a set of smoothed values for $\Delta H_{soln} UO_2CI_2(c)$ as a function of the HCl concentration (Table '2). The $UO_2CI_2 \cdot 3H_2O(c)$ measurements were converted using the ΔH hydration = 15.3 and $\Delta \phi_L = 0.5$ kcal/mol. The corresponding values for the ΔHf 's of UO_2CI_2 (m<10⁻³ and m = 1.11) are also given in Table '2. This approach supports the Cordfunke and Shchukarev measurements in the dilute region and is in agreement with a $\Delta H^\circ = 26.3$ kcal/mol.

Table 12

m	∆H soln	∆Hf	∆Hf
HC 1	$UO_2CI_2(c)$	UO ₂ Cl ₂	U02C12
	$m UO_{2}C1_{2}^{-3}$	m<10≤3	m=1,11
		kcal/mol	
10 ⁻³	-26.0	-323.2	-322.7
0.5	-25.2	-322.4	-321.9
1.0	-24.3	-321.5	-321.0
1.5	-23.4	-320.6	-320.1
2.0	-22.6	-319.8	-319.3
2.5	-21.7	-318.9	-318.4
3.0	-20.9	-318.1	-317.6
3.5	-20.1	-317.3	-316.8
4.0	-19.3	-316.5	-316.0
4.5	-18.6	-315.8	-315.3
5.0	-17.8	-315.0	-314.5
5.5	-17.1	-314.3	-313.8
6.0	-16.4	-313.6	-313.1
6.5	-15.7	-312.9	-312.4
7.0	-15.1	-312.3	-311.8

The Recommended $\triangle H_{soln} UO_2 Cl_2(c)$ in HCl

The Heat Capacity of Aqueous U0, C1, Solutions

Kapustinskii and Lipilina (1955) measured the specific heat of various aqueous solutions in the concentration range m = 0.9 to 0.14

mols $(\text{kg H}_2^0)^{-1}$. A graph of $\varphi_{C}^{}$ (the apparent molal heat capacity) vs. m^{1/2} results in the following tabulated values:

m UO ₂ C1 ₂	ං _C cal/mol·K		
0.2	-33.0		
0.3	-28.0		
0.4	-23.0		
0.5	-10.5		
0.6	-14.0		
0.7	-10.0		
0.8	-7.0		
0.9	-3.0		
1.0	0		

$UO_2Cl_2 \cdot H_2O(c)$ and $UO_2Cl_2 \cdot 3H_2O(c)$

The S°'s at 298 K have been estimated from the known S° $UO_2Cl_2(c)$, the estimated contributions of the additional H_2O and the Gibbs energies of formation.

There are two self contained sets of measurements on the ΔH 's solution of the two hydrates and the anhydrous $UO_2Cl_2(c)$, those of Prins (1973) [measurements in 5N HCl], and those of Shchukarev et al (1959b) [measurements in H_2O]. The following summarizes the measurements and the calculated enthalpies of dehydration for:

 $UO_2CI_2 \cdot nH_2O(c) \rightarrow UO_2CI_2(c) + nH_2O(liq)$

	Prins	Shchukarev et al	Prins	Shchukarev	
Hydrate	∆Hsoln	oln (1959b); AH _{soln} AH _{dehydration}			
	(in 5N HC1)	(in H ₂ ^(in H₂) kcal/mol		1/mol	
	KCal		*		
3	-2.41±0.01	-10.00 ± 0.11	15.26 ± 0.23	13.86±0.17	(1)
1	-10.19±0.3	-13.32±0.23	7.24±0.38 [*]	10.54±0.26	(2)
0	-17.30±0.23	-23.86±0.13	-	-	

As is obvious the results are not in agreement. Other information, though, is available which supports the Prins measurements. A detailed analysis is given elsewhere of the measurements of ΔH_{soln} of $UO_2Cl_2(c)$ in varying concentrations of HCl [from different laboratories], and the Lipilina and Samoilov (1954) measurements of the ΔH_{soln} of the trihydrate in HCl solutions over the range $m_{HCl} = 0.8$ to 4.4, where the molal concentration of UO_2Cl_2 is 1.1 (a much higher concentration of UO_2Cl_2 than for the measurements on the anhydrous). Exclusive

^{*} Corrected for the formation of $H_2O(aq)$ in 5N HCl, $H_2O(liq) \rightarrow H_2O(aq)$; $\triangle H = -0.125$ kcal/mol.

of the Prins measurements they also result in a ΔH dehydration = 15.1 to 15.6 kcal/mol, confirming the Prins (1973) relationship for the trihydrate complete dehydration. In addition, the individual measurements from Prins are in agreement with other ΔH_{soln} measurements.

Now, ΔH_3 can also be obtained:

$$UO_2C1_2 \cdot 3H_2O(c) \rightarrow UO_2C1_2 \cdot H_2O(c) + 2H_2O(1)$$
 (3)

which from Prins' measurements is = 8.02±0.3 kcal/mol and from Shchukarev's measurements is = 3.32±0.25 kcal/mol. Cordfunke (1965) represents his vapor pressure measurements for:

$$U_{2}C_{2} \cdot 3H_{2}O(c) \rightarrow U_{2}C_{2} \cdot H_{2}O(c) + 2H_{2}O(g)$$
 (4)

as

$$\log P_{a+m} = -3,406 \pm 32/T + 8.497 \pm 0.10.$$

This converts to:

△G°, = 31,170 - 77.76T cal/mol

with $\Delta H_4^\circ = 31.2\pm0.3$ kcal/mol and $\Delta S_4^\circ = 77.8$ cal/mol·K. Converting to equation (3) using for $H_2O(1) \rightarrow H_2O(g)$, $\Delta H^\circ = 10.52\pm0.01$ kcal/mol and $\Delta S^\circ = +28.4$ cal/mol·K, we obtain $\Delta H_3^\circ = +10.6$ kcal/mol and $\Delta S_3^\circ = 21.0$ cal/mol·K. Obviously this derived value for ΔH does not confirm either the Prins measurements or Shchukarev's; the ΔS° for the decomposition of a hydrate should be $\approx 33-36$ cal/mol· $H_2O(g)$ ·K and $\approx 5-8$ cal/mol· $H_2O(1)$ ·K. The derived ΔS_3° is 5-8 cal/mol· $H_2O(g)$ ·K too high. If the assumption is made that the measured pressure is

-99-

reasonably correct, i.e., $\log P_{atm} = -2.93$, then $\triangle G_4^\circ = 7.98\pm0.4$ kcal and with the estimate $\triangle S_4^\circ = 71$ cal/mol·K, $\triangle H_4^\circ = 29.1$ kcal and $\triangle H_3^\circ = 8.1$ kcal, in excellent agreement with the Prins determination.

The Prins' values for the dehydrations result in $\triangle Hf^{\circ} UO_2Cl_2 \cdot 3H_2O(c)$ = -517.4±0.4 kcal/mol and $\triangle Hf^{\circ} UO_2Cl_2 \cdot H_2O(c)$ = -372.8±0.5 kcal/mol.

With an estimate of $46\pm 2 \text{ cal/mol} \cdot \text{K}$ for S° $UO_2Cl_2 \cdot H_2O(c)$, ΔSf° $UO_2Cl_2 \cdot H_2O(c) = -124.0 \text{ cal/mol} \cdot \text{K}$ which in combination with ΔHf° $UO_2Cl_2 \cdot H_2O(c)^\circ = -372.8\pm 0.5 \text{ kcal/mol}$ results in $\Delta Gf^\circ = -335.8\pm 0.8 \text{ kcal/mol}$.

The experimental $\Delta G_4^\circ = 7.98 \pm 0.1$ kcal/mol, results in ΔGf° $UO_2Cl_2 \cdot 3H_2O(c) = -453.0 \pm 0.8$ kcal/mol. The calculated S° $UO_2Cl_2 \cdot 3H_2O(c)$ = 65.4 cal/mol·K is rounded to 65±2 cal/mol·K.

The experimental vapor pressure measurements of Cordfunke (1965), with modifications, have been used to obtain the following equation:

$$UO_2Cl_2 \cdot 3H_2O(c) \rightarrow UO_2Cl_2 \cdot H_2O(c) + 2H_2O(g)$$

 $\triangle G^\circ = 29,040 - 70.6T \text{ cal/mol}$

so that:

$$\log P_{a+m} = -3,170/T + 7.71$$
U0₂C1₂(g)

Cordfunke and Prins (1974) chlorinated $U_3^{0}_8(c)$ (1140-1330 K). Volatile $U0_2C1_2$ is formed. The transpiration method was used to measure the pressure of $U0_2C1_2(g)$ formed.

The equilibrium:

$$U_{3}O_{8}(c) + 3Cl_{2}(g) \rightarrow 3UO_{2}Cl_{2}(g) + O_{2}(g)$$

can be expressed by:

 $\Delta G_{\rm T}^{\circ} = 142,300 \pm 1600 - (67.8 \pm 1.3) {\rm T \ cal/mol} \ 0_2 \ (1140-1330 \ {\rm K})$ A $\Delta C_{\rm p} = -10 \ {\rm cal/mol} {\rm \cdot K}$ is assumed so that at 298 K, $\Delta {\rm H} = 151.5$ kcal/mol and $\Delta {\rm S} = 82 \ {\rm cal/mol} {\rm \cdot K}$, resulting in $\Delta {\rm Hf}^{\circ} = -234 \pm 3 \ {\rm kcal/mol}$ and S° = $87 \pm 4 \ {\rm cal/mol} {\rm \cdot K}$. The S appears low and is not tabulated as a recommended value.

The results of Sietz cited by Kangro (1963) are not in agreement.

UOC1₃(c) and UOBr₃(c)

An estimate is given for $UOCl_3(c) S^\circ = 41\pm 2$ based on the measured S° for $UCl_3(c)$, $UCl_4(c)$, $UOCl_2(c)$, and $UO_2Cl_2(c)$.

Similarly for $UOBr_3(c)$ from the above pattern and the measured $UOBr_2(c)$, S° = 49±3 cal/mol is estimated.

Shchukarev et al. have determined the ΔH 's of reaction of UOCl₃(c) = -28.55±0.13 (1958a) and UOBr₃(c) = -45.42±0.21 kcal/mol (1958b) in 2% HCl, 0.5%FeCl₃ solution, as well as UCl₄(c). [See discussion on UO₂Cl₂(c).]

The reactions of $UOCl_3(c)$ and $UOBr_3(c)$ involve oxidation to the (VI) state, e.g.,

 $UOCl_3(c) + FeCl_3(aq) + H_2O(aq) \rightarrow UO_2Cl_2(aq) + 2HCl(aq) + FeCl_2(aq)$ as does the reaction of $UCl_4(c)$, so that .

 $UOCl_{3}(c) + FeCl_{2}(c) + 2HCl(aq) \rightarrow UCl_{4}(c) + FeCl_{3}(c) + H_{2}O(aq)^{*}; (1)$ $\triangle H_{1} = 30.90\pm0.22 \text{ kcal/mol}$

and $\triangle Hf^{\circ} UOCl_3(c) = -277.5 \pm 0.8 \text{ kcal/mol.}$

The difference between Shchukarev's measurements on UOC13(c) and UOBr3(c) yie

 $UOCl_3(c) + 3HBr(aq) \rightarrow UOBr_3(c) + 3HCl(aq); \Delta H_2 = 16.87\pm0.25 \text{ kcal/mol}$ (2) and $\Delta Hf^\circ UOBr_3(c) = -228.2\pm0.84 \text{ kcal/mol}$

The value for $UOCl_3(c)$ appears to be reasonable; however, the value for $UOBr_3(c)$ appears questionable; one would expect, if $\triangle Hf^\circ$ $UOCl_3(c)$ is correct, $\triangle Hf^\circ UOBr_3(c) \approx -238$ kcal/mol. Since there is

^{*} As in the case of U0₂C1₂(c) the Cordfunke et al. (1976) measurements on FeC1₂(c)-FeC1₃(c) are used.

no other information at present to resolve this, the uncertainties have been enlarged to ±5 kcal/mol.

(UO₂)₂Cl₃(c)

Cordfunke et al. (1977) have prepared a new oxide-chloride by two different methods, one the thermal decomposition of $UO_2Cl_2(z)$ in vacuum at ~ 723 K, and the other by heating mixtures of $UO_2(c)$ and $UO_2Cl_2(c)$ (in a molar ratio of 1:3) ~ 773 K. They have characterized this black-brown solid as $(UO_2)_2Cl_3(c)$ with an orthorhombic unit cell and have determined its ΔH solution in 1.505M H_2SO_4 , (-46.025 ±0.8 kcal/mol).

Previously Cordfunke et al. (1976) had determined the ΔH_{soln} of UCl₄(c) (-50.94±0.20) and HCl(10.01H₂0)(-0.245±0.01) and Cordfunke and Ouweltjes (1977) had determined the ΔH_{soln} of UO₃(c, γ) (-20.13±0.04 kcal/mol), all in 1.505M H₂SO₄.

A summation (after correction for dilution effects to the same final solutions) results in:

$$3UO_3(c,\gamma) + UCl_4(c) + 2HCl(aq)^{*} \rightarrow 2(UO_2)_2Cl_3(c) + H_2O(1);$$

 $\triangle H = -19.64\pm 0.3 \text{ kcal/mol UCl}_4$

The recommended value is derived from this reaction.

The integral AHf° HC1 10.01H,0

UO₂(OH)C1·2H₂O(c)

Prins (1973) measured the $\triangle H_{soln}$ of $UO_2(OH)C1 \cdot 2H_2O(c)$ in excess $HC1(10.01H_2O) = -2.04\pm0.07$ kcal/mol. With his $\triangle H_{soln} UO_2C1_2 \cdot 3H_2O(c)$ = -2.4±0.01 kcal/mol, one obtains the relationship:

 $UO_2(OH)C1 \cdot 2H_2O(c) + HC1(aq) \rightarrow UO_2C1_2 \cdot 3H_2O(c); \Delta H = 0.37\pm0.07 \text{ kcal/mol}$ from which $\Delta Hf^\circ = -480.5\pm0.4 \text{ kcal/mol}.$

3.105 U-C1-F Compounds

$\text{UF}_{3}\text{Cl}(c)$, $\text{UF}_{2}\text{Cl}_{2}(c)$, and $\text{UFCl}_{3}(c)$

The tabulated values for S°, C_p° and $H-H_0$ are obtained from the thermal functions estimated by Maslov (1964) on the basis of UF₄(c) and UCl₄(c) (0-350 K).

No enthalpy or Gibbs energy of formation data are available.

3.106 <u>U-Br Compounds</u>

UBr₃(c)

Krestov (1972) has estimated the C_p as a function of the temperature as:

 $C_p = 24.1 + 6.3 \times 10^{-3} T \text{ cal/mol} \cdot K$ (298-1000 K). MacWood (1958) cites the measurements of Altman (1944) and Gregory (1945) in the range 648-798 K on the H₂ reduction equilibrium:

$$UBr_4(c) + 1/2H_2(g) \rightarrow UBr_3(c) + HBr(g)$$
 (1)

From the K's as a function of T, a second law $\Delta H^{\circ}_{1} = 16.0 \text{ kcal/mol}$ ($\Delta Hf^{\circ} UBr_{3}(c) = -167.0 \text{ kcal/mol}$) is obtained which is in agreement with the calorimetric determinations cited below, so that this ΔH° in conjunction with the $\Sigma(H-H_{298})_{T}$, $\Sigma(S-S_{298})_{T}$ and the K's are used to obtain S° $UBr_{4}(c)-S^{\circ} UBr_{3}(c) = 11.0 \text{ cal/mol}$, resulting in S° $UBr_{3}(c)$ = 46±2 cal/mol·K.

MacWood (1958) reporting on the measurements of Barkelew cites the ΔH 's for reaction of $UBr_3(c)$ (= -49.5 kcal/mol) and $UCl_3(c)$ (= -42.0 kcal/mol) in solutions of 12N HCl, 10% FeCl₃. In both of these solutions the uranium is oxidized to the hexavalent state so that one can write:

UBr₃(c) + 3HCl(aq) \rightarrow UCl₃(c) + 3HBr(aq); $\Delta H_2 = -7.5$ kcal/mol (2) with $\Delta H f^\circ$ HCl(aq) = -32.7 and $\Delta H f$ HBr(aq) = -22.0 kcal/mol which are consistent with Barkelew's experimental components, $\Delta H f^\circ$ UBr₃(c) = -167.4 kcal/mol.

One can also use the measurement of $UBr_4(c)$ in the same media ($\Delta H = -33.1 \text{ kcal/mol}$) to obtain the relationship:

 $UBr_{3}(c) + HBr(aq) + FeCl_{3}(aq) - UBr_{4}(c) + FeCl_{2}(aq) + HCl(aq);$ $\triangle H_{3} = -16.4 \text{ kcal/mol} (3)$ With the Barkelew relationship ($\Delta H = -20.2 \text{ kcal/mol}$) cited previously (see UCl₅(c) and UCl₆(c)) for the FeCl₂-FeCl₃ relationship, ΔHf° UBr₃(c) = -165.8 kcal/mol. This provides a crosscheck.

As cited previously, the high temperature equilibrium studies result in \triangle Hf° = -167.0 kcal/mol. The selected value is \triangle Hf° = -167.0±1.0 kcal/mol.

The Gibbs energy of formation is derived from the selected $\triangle Hf^{\circ}$ and $\triangle Sf^{\circ} = -20.6$ cal/mol·K. UBr₃(g)

Rand and Kubaschewski (1963), using the information given by Katz and Rabinowitch (1951) on the vapor pressure of $UBr_3(c, 1)$ (measurements by Altman and by Webster), obtained the following:

 $UBr_3(c) \rightarrow UBr_4(g)$ △G = 75,100 - 91.8T + 13.8T log T cal/mol (298 to 1000 K) at 298 K: $\triangle H = 73.4 \text{ kcal/mol}$ $\Delta S = 51.6 \text{ cal/mol} \cdot K$ $\Delta G = 58.0 \text{ kcal/mol}$ $UBr_3(1) \rightarrow UBr_3(g)$ △G = 68,600 - 112.8T + 23.0T log T cal/mol (1000 to 1810 K) $\triangle G = 0$ at 1810 K and $\Delta H = 50.5 \text{ kcal/mol}$ $\triangle S = 27.9 \text{ cal/mol} \cdot K$ $UBr_3(c) \rightarrow UBr_3(1)$ At 1000 K: $\triangle H = 10.5 \text{ kcal/mol}$ $\Delta S = 10.5 \text{ cal/mol} \cdot K$

These values are accepted.

 $UBr_4(c)$

S° has been estimated as 57.0 \pm 2.0 cal/mol. Krestov (1972) has estimated the C_p UBr₄(c) as:

 $C_p = 28.5 + .0071T \text{ cal/mol} \cdot \text{K} (298-792 \text{ K})$

From the discussion on $UBr_4(g)$ we have, at the melting point, 792 K:

$$\Delta H_{fusion} = 11.6 \text{ kcal/mol}$$

$$\Delta S_{fusion} = 14.6 \text{ cal/mol} \cdot K$$

$$C_{p}(1) = 41 \text{ cal/mol} \cdot K$$

Fuger and Brown (1973) measured ΔH 's of soln. of $UBr_4(c)$ and $UCl_4(c)$ in 1M HCl solutions, i.e., HCl(54.4H₂0) of -63.24±0.09 and -54.46±0.23 kcal/mol, respectively. From these measurements the following is obtained:

$$UBr_4(c) + 4HC1(aq) \rightarrow UCl_4(c) + 4HBr(aq); \Delta H_1 = -8.78\pm0.25 \text{ kcal/mol}$$
(1)

It is assumed that the formation of HBr in a 1M HCl solution is equivalent to the formation of an additional mole of HBr in an HBr 1M solution. Using differential $\triangle Hf's$, then for HCl and HBr of -39.284 and -28.53 kcal/mol, respectively, $\triangle Hf^\circ$ of $UBr_4(c) = -191.70$ ± 0.7 kcal/mol.

Shchukarev et al (1959a) measured the $\triangle H$ for the reaction of $UBr_4(c)$ wit 2% HCl, 0.5%FeCl₃ solution as -53.27±0.36 kcal/mol. In an earlier report (1958a) they measured the $\triangle H$ for reaction of UCl₄(c) as -45.50±0.10 kcal/mol in a similar solution. These reactions involve oxidation to UO₂Cl₂ (in HCl) as:

$$UBr_4(c) + 2FeCl_3(aq) + 2H_2O(1) \rightarrow UO_2Cl_2(aq) + 2FeCl_2(aq) + 4HBr(aq)$$

By difference, though, one obtains $\Delta H_1 = -7.77 \pm 0.37$ kcal/mol and with the same assumptions as earlier regarding the use of the differentials and with $\Delta \overline{H}f$ HCl(100H₂O) and $\Delta \overline{H}f$ HBr(100H₂O) = -39.489 and -28.692 kcal/mol, respectively, ΔHf° HBr₄(c) = -192.5₄±0.8.

Similarly, Vdovenko et al (1973) obtain $\triangle H$ for $UBr_4(c)$ to be -54.32±0.1, and -45.34±0.1 for $UCl_4(c)$, from which $\triangle H_1 = -8.98\pm0.14$ and $\triangle Hf^\circ = -191.4\pm0.6$ kcal/mol.

MacWood (1958), reporting on the measurements of Barkelew (1946) cites the Δ H's at 273 K of the reaction of UCl₄(c) and UBr₄(c) in 12N HCl, 10% FeCl₃ solutions, from which Δ H₁ = -9.0 kcal/mol. With their values for Δ Hf's of HCl and HBr = -32.7 and -22.0 kcal/mol, respectively (these values for the differentials at 273 K incorporate the Barkelew experimental components), Δ Hf° = -191.8±2.0 kcal/mol.

A weighted average results in $\triangle Hf^{\circ} = -191.7 \pm 0.6 \text{ kcal/mol}$.

The Δ Sf° = -27.77 cal/mol·K and the Δ Hf° results in Δ Gf° = -183.4±0.9 kcal/mol.

 $UBr_4(g)$

Rand and Kubaschewski (1963) reviewed the vapor pressure data on the crystal and liquid and using an estimated $\Delta C_p = -6 \text{ cal/mol} \cdot \text{K}$ obtained for the sublimation process, (from the excellent agreement in the measurements of Thompson and Schelberg (573 K - 723 K; effusion) and Nottorf and Powell (723-773; gas saturation) given by Katz and Rabinowitch (1951)):

> $UBr_4(c) \rightarrow UBr_4(g)$ $\Delta G^\circ = 49,400 - 92.7T + 13.8 T log T cal/mol$

These results lead to, at 298.15 K:

 $\Delta H^{\circ} = 47.6 \text{ kcal/mol}$ $\Delta G^{\circ} = 31.9 \text{ kcal/mol}$ $\Delta S^{\circ} = 52.6 \text{ cal/mol} \cdot K$

These values are accepted in the absence of newer data.

A similar equation, with ΔC_p = -11 for the vaporization process

 $UBr_{4}(1) \rightarrow UBr_{4}(g)$

results in ΔH_{fusion} at the melting point, 792 K, = 13.2 kcal/mol and a ΔS_{fusion} = 16.5 cal/mol·K.

In view of the large ΔS_{fusion} a reexamination of the vapor pressure data was made using the measurements of Gregory (815-1033 K; boiling point), and Nottorf and Powell (798-898; gas saturation) as given by Mueller (1948). The measurements (although there is some scatter) are in agreement, and with $\Delta C_p = -13$ cal/mol·K, the following is obtained:

△G° = 43,300 - 131.9T + 29.9T log T cal/mol

-111-

 $\Delta G^{\circ} = 0$ at 1040 K, $\Delta H = 29.8$ kcal/mol and $\Delta S = 28.6$ cal/mol·K. At 792 K (melting point):

$$\Delta H = 11.6 \text{ kcal/mol}$$

 $\Delta S = 14.6 \text{ cal/mol} \cdot K$

UBr₅(c)

Krestov's (1972) estimated $C_p = 36.0 + 8.0 \times 10^{-3} T \text{ cal/mol} \cdot K$ is accepted. The S° was estimated as 70±3 cal/mol·K. These values result in a reasonable fit of the Blair and Ihle (1973) thermal decomposition measurements of UBr₅(c) to a third law plot.

The thermal decomposition of $UBr_5(c)$ was studied in the range 298-400 K.

$$UBr_5(c) \rightarrow UBr_4(c) + 1/2Br_2(g)$$

The decomposition is reversible below 353 K. Above this temperature the compound decomposes irreversibly into $\text{UBr}_4(c)$ and $\text{Br}_2(1)$. From the vapor pressure measurements below 383 K a third law $\Delta \text{H}^\circ = 6.0$ kcal/mol ($\Delta \text{Hf}^\circ = -194.0$ kcal/mol). A second law $\Delta \text{H} = 5.4$ kcal/mol ($\Delta \text{Hf}^\circ = -193.4$ kcal/mol). The average ΔHf° UBr₅(c) = -193.7±2.0 kcal/mol is selected. The ΔGf° is calculated from the ΔHf° and the estimated ΔSf° . 3.107 U-Br-O Compounds

UOBr(c)

See UOC1(c)

UOBr₂(c)

The S°, C_p °, and H-H₀ are from Greenberg and Westrum's (1956b) tabulation from their heat capacity measurements from 5 K to 339 K.

Mueller (1948) reported the vapor pressure measurements of $UBr_4(g)$ over $UOBr_2(c)$ from the results of Gregory. For the range 710 to 960 K,

$$\log P(atm) = -10,870/T + 8.32$$

 $\Delta H = 49.7$ kcal/mol UBr₄ at the mean temperature for:

$$2UOBr_2(c) \rightarrow UBr_4(g) + UO_2(c) \tag{1}$$

which, with $\Delta C_p = -6 \text{ cal/mol} \cdot \text{K}$ results in $\Delta H_1 = 52.9 \text{ kcal/mol}$ and $\Delta Hf^\circ = -228.2 \text{ kcal/mol}$. However, the $\Delta S_1^\circ = 38.1 \text{ cal/mol} \cdot \text{K}$ at the mean temperature results in a ΔS_1° at 298 K = 44 cal/mol} \cdot K, whereas the value calculated from the S°'s of UO₂(c), UOBr₂(c) and UBr₄(g) [obtained from $\Delta S_{\text{subl}}^\circ$ and an estimate for S° UBr₄(c)] results in ΔS_1° = 53 cal/mol·K. The difference in ΔS° is too great to be rationalized; the S° UBr₄(g) accepted here does not appear to be appreciably too high since 110 cal/mol·K is reasonable with regard to S° UCl₄(g) obtained from $\Delta S_{\text{subl}}^\circ$ UCl₄(c) which is in excellent agreement with the value obtained from the comparable UOCl₂(c) decomposition to UCl₄(g). In addition, using the $\triangle Hf^\circ UOBr_2(c) = -228.2$ kcal/mol for

$$2UOBr_{2}(c) \rightarrow UO_{2}(c) + UBr_{4}(c),$$
 (2)

 $\Delta H_2 = 5.4$ kcal/mol UBr₄(c) which indicates a lower stability for UOBr₂(c) than for UOCl₂(c). Again this does not seem reasonable.

For these reasons the Gregory data has been rearranged by:

- Assuming that his pressure measurements are reasonable, with log P(atm) = -4.47 at 850 K (obtained from his equation).
- 2. Assuming ΔS°_{1} at 850 K \approx 47 cal/mol·K (using the ΔS°_{1} at 298 K 53 cal/mol·K and $\Delta C_{p}^{\circ} = -6$ cal/mol·K).
- 3. Recalculating ΔH_1 at 850 K to be 57.3 kcal/mol from the above listed values for log P and ΔS° results in ΔH°_{l} at 298 K = 60.6 kcal/mol.

The resultant $\triangle Hf^{\circ} UOBr_{2}(c) = -232.0 \text{ kcal/mol.}$

The Barkelew (1946) measurements on the oxidation reactions of (1) $UOBr_2(c)$ and (2) $UOCl_2(c)$ in a 12N HCl, $10\%FeCl_3$ aqueous solution at 273 K are now considered. As indicated in the discussion on $UOCl_2(c)$ the values obtained for the \triangle Hf° $UOCl_2(c)$ from the Barkelew data are in reasonable agreement with the preferred data, although the sample of $UOCl_2(c)$ used was not of high purity.

The \triangle H of oxidation of UOBr₂(c) in a 12N HCl, 10% FeCl₃ aqueous solution = -16.3 kcal/mol. This reaction was paired with the comparable reaction of UOCl₂(c), \triangle H = -16.7 kcal/mol, tc obtain \triangle H₃at 273 K = -0,4 kcal/mol for

UOCl₂(c) + 2HBr(aq) → UOBr₂(c) + 2HCl(aq). (3) As for the differential △Hf HCl(aq), the Barkelew value for the differential △Hf of HBr(aq) in a 12N HCl, FeCl₃ aqueous solution has

-114-

been recalculated equal to -22.03 kcal/mol at 273 K (this value incorporated Barkelew's experimental components), so that \triangle Hf° at 273 K = -234.2 for UOBr₂(c) and \triangle Hf° at 298 K = -234.1 kcal/mol.

None of these values by themselves can be considered good. However, the recalculations have brought them, from very different paths, into reasonable agreement.

 \triangle Hf° UOBr₂(c) has been taken to be -232.7±2.0 kcal/mol. This value results in \triangle H₃ = 14.4 kcal/mol UBr₄(c).

The $\triangle Gf^\circ$ is calculated from the $\triangle Hf^\circ$ and S°.

 $UO_2Br_2 \cdot nH_2O(c)$ (n = 0, 1, 3)

The entropy for $UO_2Br_2(c)$ at 298 K is estimated on the basis of the values for $UOCl_2(c)$, $UOBr_2(c)$, and $UO_2Cl_2(c)$; those for the hydrates using a contribution to S° of 9.4 cal/mol·K per mole of H_2O .

Recently Cordfunke et al. (1978) determined the enthalpy of $UO_2Br_2(c)$ in the range 345 to 454 K relative to 298 K. The results are expressed as:

$$H_T - H_{298} = 24.92T + 4.534 \times 10^{-3} T^2 - 7833$$
 cal/mol
(298 - 460 K)

The values for the ΔHf° 's are obtained from the recent measurements of Prins et al. (1978) on the ΔH 's of solution of $UO_3(c,\gamma)$, $UO_2Br_2 \cdot 0.024H_2O(c)$ $UO_2Br_2 \cdot 1.05H_2O(c)$ and $UO_2Br_2 \cdot 2.92H_2O(c)$ in excess $HBr(14.63H_2O)$. The ΔH 's are given, corrected to the appropriate hydrates.

Compound	^{∆H} soln kcal/mol		
UO ₃ (c,γ)	-17.88±0.05	(1)	
U0,Br,(c)	-25.38±0.10	(2)	
$UO_{2}Br_{2} \cdot H_{2}O(c)$	-17.61±0.15	(3)	
U02Br2·3H2O(c)	-10.43±0.20	(4)	

The $\triangle Hf^{\circ} UO_2Br_2(c) = -271.84\pm0.32$ is obtained from the summation: $UO_3(c,\gamma) + 2HBr(aq) \rightarrow UO_2Br_2(c) + H_2O(aq); \Delta H_5 = 7.50\pm0.11$ kcal/mol (5) using the differentials, $\triangle Hf^{\circ}$ HBr(aq) = -27.60 kcal/mol and $\triangle Hf^{\circ}$ H_2O(aq) = -68.361 kcal/mol.

For the *A*H's of hydration:

$$UO_{2}Br_{2}(c) + H_{2}O(1) \rightarrow UO_{2}Br_{2} \cdot H_{2}O(c); \Delta H_{6} = -7.82\pm0.18 \text{ kcal/mol}$$
(6)
$$UO_{2}Br_{2}(c) + 3H_{2}O(1) \rightarrow UO_{2}Br_{2} \cdot 3H_{2}O(c); \Delta H_{7} = -15.09\pm0.22 \text{ kcal/mol}$$
(7)

from which $\Delta Hf^{\circ} UO_2 Br_2 \cdot H_2 O(c) = -347.97 \pm 0.34$ kcal/mol and $\Delta Hf^{\circ} UO_2 Br_2 \cdot 3H_2 O(c) = -491.88 \pm 0.36$ kcal/mol.

The ΔH 's of hydration for $UO_2Br_2(c)$ and $UO_2Cl_2(c)$ appear to be essentially the same.

The earlier measurements of Shchukarev et al. (1958a) on ΔH_{soln} UO₂Cl₂(c) = -25.44±0.07 and (1958b) on ΔH_{soln} UO₂Br₂(c) = -31.23±0.2 kcal/mol in 2% HCl, 0.5% FeCl₃ aqueous solutions lead to:

$$JO_2Cl_2(c) + 2HBr(aq) \rightarrow UO_2Br_2(c) + 2HCl(aq);$$

 $\Delta H_8 = 5.79 \pm 0.5^* \text{ kcal/mol}$ (8)

which, with the differentials for the formation of $HX(100H_2^0)$, ΔHf HCl = -39.489 and ΔHf HBr = -28.689 kcal/mol, results in $\Delta Hf^\circ UO_2Br_2$ = -269.8 kcal/mol, in poor agreement with the Prins et al. results.

From the Shchukarev et al. (1959b) ΔH_{soln} measurements of the anhydrous $UO_2Br_2(c)$ and the two hydrates in H_2O , $\Delta H_6 = -8.9$ kcal/mol and $\Delta H_7 = -11.8$ kcal/mol, also in poor agreement with the Prins et al. results.

The Shchukarev et al. (1958a, 1958b, 1959b) measurements on the $UO_2Br_2 \cdot nH_2O$ system are suspect and are rejected for the following reasons:

- 1. The ΔH FeCl₃(c) in a solution of 2% HCl by Shchukarev et al. (1958a) has been found to be in error.
- 2. The ΔH 's of hydration of $UO_2Cl_2(c)$ to the two hydrates from Shchukarev et al. (1959b) appear to be incorrect. See $UO_2Cl_2 \cdot H_2O(c)$ and $UO_2Cl_2 \cdot 3H_2O(c)$.
- 3. A comparison of the ΔH 's of solution of UO_2Br_2 in a solution of 2% HCl, 0.5% FeCl₃ (1958b) and in $H_2O(1)$ (1959b)

^{*} See U0₂C1₂(c) discussion on the "Shchukarev" cycle.

with those for $UO_2Cl_2(c)$ indicates an inconsistency which may be caused by erroneous measurements on $UO_2Br_2(c)$. The Prins measurements, in contrast, offer a consistent picture on the behavior of $UO_2Cl_2 \cdot nH_2O(c)$ and $UO_2Br_2 \cdot nH_2O(c)$.

The ΔGf° 's have been calculated from the ΔHf° 's and the ΔSf° 's.

UOBr₃(c)

See UOCl₃(c)

$UO_2(OH)Br \cdot 2H_2O(c)$

Prins et al. (1978) measured the $\Delta H_{soln} = -6.67 \pm 0.01 \text{ kcal/mol}$ of UO₂(OH)Br·2H₂O(c) in HBr(14.63H₂O). Combining this with their measurement for ΔH_{soln} of UO₃(c, γ) in HBr(14.63H₂O) = -17.88±0.05 one obtains:

 $UO_3(c,\gamma) + HBr(aq) + 2H_2O(aq) \rightarrow UO_2(OH)Br \cdot 2H_2O(c); \Delta H = -11.21\pm0.05$ and $\Delta Hf^\circ = -468.0_3\pm0.3$ kcal/mol.

The differential $\triangle H f$'s to be used are $\triangle H f$ HBr(14.63H₂0) = -27.60 and $\triangle H f$ H₂O(aq) = -68.361 kcal/mol.

3.108 U-Br-Cl Compounds

$UC1_{3-x}Br_{x}(c)$ (x=1,2) and $UC1_{4-x}Br_{x}(c)$ (x=1,2,3)

MacWood (1958) reports the K's for: (1) the H_2 reduction of various UC1_{4-x}Br_x(c) in the range 650-750 K from the results of Gregory (1945) and (2) the exchange equilibria with HBr(g) in the range 600-773 K from the results of Altman (1944). Examples of these equilibria are:

1.
$$UC1_{4-x}Br_{x}(c) + 1/2H_{2}(g) \rightarrow UC1_{4-x}Br_{x-1}(c) + HBr(g)$$

$$UCl_{4-x}Br_{x}(c) + 1/2H_{2}(g) \rightarrow UCl_{3-x}Br_{x}(c) + HCl(g)$$

.
$$UCl_{4-x}Br_{x}(c) + HBr(g) \rightarrow UCl_{3-x}Br_{x+1}(g) + HCl(g)$$

These K's and the $\triangle H$'s calculated from the $\triangle Hf^{\circ}$'s selected here were used to obtain the S°'s for the various III and IV mixed halides. They are to be considered approximate values.

MacWood also reports the measurements of Barkelew on the ΔH 's of solution in a 12N HCl 10% FeCl₃ solution of the mixed halides (III and IV) as well as UCl₃(c), UCl₄(c), UBr₃(c), and UBr₄(c) from which the ΔHf° 's can be obtained by summation reactions. Examples follow, as well as the measured ΔH 's of solution.

-119-

$$UCl_{2}Br(c) + HCl(aq) \rightarrow UCl_{3}(c) + HBr(aq);$$

$$\Delta H = \Delta H_{soln} \quad UCl_{2}Br - \Delta H_{soln} \quad UCl_{3}(c)$$

and

$$UClBr_{3}(c) + HBr(aq) \rightarrow UBr_{4}(c) + HCl(aq);$$

$$\Delta H = \Delta H_{soln} \quad UClBr_{3}(c) - \Delta H_{soln} \quad UBr_{4}(c)$$

	^{∆H} soln kcal/mol
UC1 ₃ (c)	-42.0
UC1 ₂ Br(c)	-44.2
UClBr ₂ (c)	-48.2
UBr ₃ (c)	-49.5
UC1 ₄ (c)	-24.1
UCl ₃ Br(c)	-25.7
UC1 ₂ Br ₂ (c)	-29.2
UC1Br ₃ (c)	-31.8
UBr ₄ (c)	-33.1

3.109 U-I Compounds

UI₃(c)

Krestov (1972) has estimated the C_p as a function of temperature $C_p = 25.1 + 5.8 \times 10^{-3} T \text{ cal/mol} \cdot K (298-800 \text{ K})$

MacWood (1958) tabulated the decomposition pressure measurements (523-666 K) of MacWood et al. (1944) for:

$$UI_4(c) \rightarrow UI_3(c) + 1/2I_2(g)$$
 (1)

From the values for $\triangle Hf^{\circ}$ UI₃(c) listed below, $\triangle Hf^{\circ} = -111.7\pm1.0$ kcal is selected. The resultant $\triangle H^{\circ}_{1} = 19.7\pm0.5$ kcal/mol is used in combination with the above pressure measurements and $\triangle (H-H_{298})_{T}$ and $\triangle (S-S_{298})_{T}$ to obtain $\triangle S_{1} = 21.8\pm1.0$ cal/mol·K and $\triangle (S^{\circ} UI_{4}(c)-S^{\circ} UI_{3}(c))$ = 10 cal/mol·K. S° UI₃(c) = 53\pm2 appears reasonable in comparison with the measured S° UCl₃(c) and $\triangle S^{\circ}$ (Cl-I). This value for S° UI₃(c) in conjunction with the estimated C_p equation completes the tabulated thermal functions.

The second law value for ΔH°_{l} from the above decomposition pressure measurements is 18.5±1.0 kcal/mol which results in ΔHf° = -113.0±1.2 kcal/mol.

MacWood (1958) reporting on the measurements of Barkelew (1946) cites the Δ H's reaction of UI₃(c) = -56.5 and UI₄(c) = -44.2 kcal/mol, respectively, with a solvent of 12N HCl saturated with I₂(c). In these final solutions the uranium is considered to be in (IV) state. Then for the relationship:

 $UI_4(c) \rightarrow UI_3(c) + 1/2I_2(c); \ \Delta H_2 = 12.3 \pm 0.6 \ \text{kcal/mol}$ (2) and $\Delta Hf^\circ = -111.7 \pm 1.0 \ \text{kcal/mol}.$

-121-

Tweekrem and Chandrasekharaiah (1968) from cell measurements obtained $\Delta G^{\circ}_{643 \ K} = -98.8 \pm 0.4 \ \text{kcal/mol for:}$

$$U(c) + 3/2I_2(g) \rightarrow UI_3(c)$$
 (3)

The third law $\Delta H^\circ = -131.5\pm1.0$ and $\Delta Hf^\circ = -110.2\pm1.0$ kcal/mol.

The $\triangle Sf^\circ = -0.6$ cal/mol·K results in $\triangle Gf^\circ = -111.5 \pm 1.2$ kcal/mol.

$UI_4(c)$

The S° has been estimated as 63 ± 2 cal/mol based on a comparison of the differences in measured entropies of chlorides and iodides for the polyvalent halides.

Popov et al. (1959a) have measured the C_p of $UI_4(c)$ and (1) from 373 K to 873 K.

Rand and Kubaschewski (1963) used these measurements to obtain for $UI_{L}(c)$:

$$C_p = 34.8 + 2.38 \times 10^{-3} T - 4.72 \times 10^{5} T^{-2}$$
 cal/mol·K (380-720 K)

The results of Popov et al., for the phase changes have been accepted. (See the discussion of the vapor pressure data for $UI_4(c)$ and (1) under $UI_4(g)$.) The total $\triangle H$ for the phase changes of $UI_4(c)$ to $UI_4(1)$ (m.p. \approx 779 K) is 9.2 kcal/mol. For $UI_4(1)$: $C_p = 39.6$ cal/mol·K (820-870 K).

The selected C_p° at 298 K is obtained from the extrapolation of the measurements below 473 K. Smoothed tabulated functions are given here incorporating the estimated S_{298}° .

The measurements of Fuger and Brown (1973) on the enthalpies of solution of $UI_{4}(c)$ (-69.29±0.3 kcal/mol) and $UCl_{4}(c)$ (-54.46±0.23

-122-

kcal/mol) in 1M HCl, i.e., HCl(54.4H₂0) lead to:

 $UI_4(c) + 4HCl(aq) \rightarrow UCl_4(c) + 4HI(aq); \Delta H_1 = -14.83\pm0.38 \text{ kcal/mol}$ (1) With the assumption that the differential ΔHf HI(aq) in HCl is the same as in an HI solution = 13.265 kcal/mol and using ΔHf HCl = -39.284, $\Delta Hf^\circ = -124.55\pm0.07 \text{ kcal/mol}.$

In addition, from their measurements in 6M HCl (i.e. $HCl(8.13H_2^0)$) (8.13H₂0) of $UI_4(c) = -57.41\pm0.07$ and $UBr_4(c) = -49.17\pm0.20$, there is:

 $UI_4(c) + 4HBr(aq) \rightarrow UBr_4(c) + 4HI(aq); \Delta H_2 = -8.24\pm0.21$ (2)

With the same assumption, i.e., that the differentials, $\Delta \overline{H}f's$ of HBr = -26.103 and HI = -11.202 in HCl are equivalent to the differentials in their own respective solutions, ΔHf° = -123.51±0.7 kcal/mol.

The average $\Delta Hf^{\circ} = -124.0\pm0.7$ kcal/mol is accepted.

The calculated $\Delta Sf^{\circ} = -4.52\pm2.0$ cal/mol·K and the $\Delta Hf^{\circ} = -124.0$ ±0.7 results in $\Delta Gf^{\circ} = -122.7\pm0.9$ kcal/mol. UI₄(g)

The vapor pressure of UI₄(c) has been measured by Thompson and Schelberg (as given by Katz and Rabinowitch (1951)); 573-683 K; effusion method and that of UI₄(1) by Gregory (1946); 823-923 K; boiling point measurements against a known pressure of I₂(g) to prevent decomposition of UI₄. These have been reviewed by Rand and Kubaschewski (1963); however, the calculated values obtained for ΔH_{fusion} (16.9 kcal/mol) and ΔS_{fusion} (21.6 cal/mol·K) at the melting point, 779±3 K, (Gregory (1946)) are unreasonable.

Popov et al.'s (1959a) C_p measurements on UI₄ (c) and (1) indicate a total $\Delta H = 9.2$ kcal/mol and $\Delta S = 12.1$ cal/mol K for the phase changes $(\Delta H_{trans} = 3.53\pm0.1$ kcal/mol at ~ 723 K, $\Delta H_{fusion} = 5.64\pm0.2$ at the melting point) which are reasonable although possibly low. This indicates that either one or both sets of vapor pressure measurements are in error.

If the UI₄(c) measurements are correct, S° UI₄(g) \approx 125 cal/mol·K at 298 K. If the UI₄(l) measurements are correct, then Gregory's (1946) measurements can be described (with $\Delta C_p = -15$ cal/mol·K) by:

UI₄(1) → UI₄(g) (1) $\Delta G_1 = 47,770 - 150.67T + 34.54T \log T cal/mol; (792-1000 K)$ and at 900 K:

> $\Delta H_1 = 34.3 \text{ kcal/mol}$ $\Delta G_1 = 4.00 \text{ kcal/mol}$ $\Delta S_1 = 33.7 \text{ cal/mol} \cdot K$

Using $\triangle(S-S_{298})_{900}$ from the ThI₄ system = -21.3 cal/mol·K (Wagman et al. (1977)), results in $\triangle S^{\circ}_{1}$ at 298 K = 55 cal/mol·K and S° UI₄(g) = 118 cal/mol·K, which appears more reasonable, in a correlation of

the S°'s for the Th-U halides, than 125 cal/mol·K. For the vaporization, the expression for ΔG_1 is accepted. The extrapolated boiling point is 1020 K with $\Delta S_{vap} = 31.9$ cal/mol·K. For the sublimation,

$$UI_4(c) \rightarrow UI_4(g),$$
 (2)

with $\Delta H_2 = 34.3 \text{ kcal/mol}$ at 900 K and the comparable $\Delta (H-H_{298})_{900} = -16.00 \text{ kcal/mol}$ from the ThI₄ system (Wagman et al. (1977)) one obtains at 298 K:

$$\Delta H^{\circ}{}_{2} = 50.3 \text{ kcal/mol}$$
$$\Delta S^{\circ}{}_{2} = 55.0 \text{ cal/mol} \cdot K$$
$$\Delta G^{\circ}{}_{2} = 33.9 \text{ kcal/mol}$$

The tabulated values are obtained from these values.

An approximate equation then for this process is: $\Delta G_2 = 52,400 - 101.9T + 16.1T \log T cal/mol; (550-700 K)$

3.110 U-I-Cl-Br Compounds

UCl₃I(c) and UBr₃I(c)

MacWood (1958), reporting on the measurements of Barkelew, cites the reactions of UCl₃I(c) (Δ H = -28.0 kcal/mol), UCl₃(c) (Δ H = -35.7 kcal/mol) and UBr₃I(c) (Δ H = -36.7 kcal/mol) with a solvent of 12N HCl saturated with I₂(c) at 273 K. Since the resultant final colutions are considered to contain the U(IV) species, a summation results in:

 $UCl_{3}(c) + 1/2I_{2}(c) \rightarrow UCl_{3}I(c); \Delta H_{1}^{*} = -7.7 \text{ kcal/mol}$ (1) The calculated $\Delta Hf^{\circ} = -214.7\pm 2.0 \text{ kcal/mol}.$

UCl₃I(c) + 3HBr(aq) \rightarrow UBr₃I(c) + 3HCl(aq); $\Delta H_2^{**} = +8.7$ kcal/mol (2) With $\Delta H f$ HCl(aq) = -32.7 kcal/mol and $\Delta H f$ HBr(aq) = -22.0 kcal/mol which pertain to the particular solutions used by Barkelew and incorporates the experimental components measured by Barkelew, $\Delta H f^{\circ}$ UBr₃I(c) = -173.9±2.0 kcal/mol.

These values are accepted.

MacWood (1958) cites the measurements of Davidson et al. (1945) for the I₂ pressure (effusion method) over UCl₃I(c) and UBr₃I(c).

$$UCl_{3}I(c) \rightarrow UCl_{3}(c) + 1/2I_{2}(g)$$
(3)
(472 - 575 K)
$$UBr_{3}I(c) \rightarrow UBr_{3}(c) + 1/2I_{2}(g)$$
(4)
(551 - 655 K)

With the accepted \triangle Hf° UCl₃I(c), \triangle H₃ = 15.16 kcal/mol at 298 K and with a \triangle C_p = -2 cal/mol·K the equilibrium K's can be fit to:

$$G_3^\circ = 15,760 + 4.61 \text{ Tlog } T - 31.5T \text{ cal/mol}$$

The $riangle C_{D}$ for this is negligible.

This results in $\Delta G^{\circ}_{3} = 9.8$ kcal/mol and $\Delta S^{\circ}_{3} = 18$ cal/mol·K, from which the tabulated values for $\Delta G f^{\circ}$ and S° for UCl₃I(c) are obtained.

Similarly $\Delta H^{\circ}_{4} = 14.0 \text{ kcal/mol at 298 K.}$ Here, however, a similar treatment of the K's results in a $\Delta S^{\circ}_{4} \approx 13 \text{ cal/mol which is}$ too low (i.e., the calculated S° $UBr_{3}I(c) = 64 \text{ cal/mol·K}$, too high a value); no improvement is made by adjusting the ΔC_{p} . In the absence of more information on this system, no recommendation is made for S° or ΔGf° for $UBr_{3}I(c)$. 3.200 U-X Compounds with N

3.201 U-NH₄-F-O Compounds

$$(NH_4)_3UO_2F_5(c)$$
 and $NH_4[(UO_2)_2F_5](c)$

Mukhametshina et al. (1974b) from a series of reactions in 2M HC1 reported:

 $3NH_4F(c) + UO_2F_2(c) \rightarrow (NH_4)_3UO_2F_5(c); \Delta H_1 = -17.74\pm0.27 \text{ kca1/mol}$ (1) which, using $\triangle Hf^{\circ} NH_{1}F(c)^{*} = -111.7\pm0.2 \text{ kcal/mol}$, results in $\triangle Hf^{\circ} =$ -748.0±0.7 kcal/mol.

Similarly, Suponitskii et al. (1974) obtained:

 $NH_{1}(c) + 2UO_{2}F_{2}(c) \rightarrow NH_{1}(UO_{2})_{2}F_{5}(c); \Delta H_{2} = -12.99\pm0.50 \text{ kcal/mol}$ (2)which results in $\triangle Hf^\circ = -915.1\pm 0.8 \text{ kcal/mol}$.

The above values are accepted, in preference to those which can be derived from the decomposition pressure measurements of Sudarikov et al. (1970) on $(NH_{L})_{3}UO_{2}F_{5}(c)$, the ammonium dioxopentafluorouranate (VI) and the intermediate compound, $NH_{4}[(UO_{2})_{2}F_{5}](c)$, the ammonium tetraoxopentafluordiuranate (VI).

 $^{^{\}star}$. This is compatible with the CODATA selections. It is derived from the following:

⁽¹⁾ Higgins and Westrum (1961) measured the ΔH 's soln $NH_3(g) =$ -42.53 ± 0.06 and $NH_{L}F(c) = -14.31\pm0.03$ kcal/mol in HF(1) so that. $NH_3(g) + HF(1) \rightarrow NH_4F(c); \Delta H = -28.22\pm0.07 \text{ kcal/mol}$

From Johnson et al. (1973) \triangle Hf° HF(1) = -72.55±0.06 kcal/mol, so that $\triangle Hf^{\circ} NH_{/}F(c) = -111.75\pm0.06;$

⁽²⁾ Armstrong et al. (1959) obtained: $NF_3(g) + 4NH_3(g) \rightarrow 3NH_4F(c) + N_2(g); \Delta H = -259.5\pm1.0 \text{ kcal/mol}$ which using $\Delta Hf^\circ NF_3(g) = -31.60\pm0.1 \text{ kcal/mol}$ (evaluated from sources in JANAF (1971)) results in $\triangle Hf^{\circ} NH_{A}F(c) = -111.67\pm0.4 \text{ kcal/mol}.$

The decomposition pressures are described by:

$$(\text{NH}_{4})_{3} \text{UO}_{2} \text{F}_{5}(c) \rightarrow 0.5 \text{NH}_{4} [(\text{UO}_{2})_{2} \text{F}_{5}](c) + 2.5 \text{NH}_{3}(g) + 2.5 \text{HF}(g)$$
(3)
$$\log P(\text{atm}) = 8.01 - 4.468 \times 10^{3} / \text{T} (516 - 538 \text{ K})$$
$$\Delta \text{G}^{\circ}_{3} = 102.3 - 176.4 \times 10^{-3} \text{T kcal/mol U}$$

a nd

$$0.5 \text{NH}_{4} [(\text{UO}_{2})_{2}\text{F}_{5}](c) \rightarrow \text{UO}_{2}\text{F}_{2}(c) + 0.5 \text{NH}_{3}(g) + 0.5 \text{HF}(g) \qquad (4)$$

$$\log P(\text{atm}) = 6.927 - 4.878 \times 10^{3} / \text{T} (647 - 703 \text{ K})$$

$$\Delta G^{\circ}_{4} = 22.3 - 30.3 \times 10^{-3} \text{T} \text{ kcal/mol U}$$

Assuming the ${{ {\rm \Delta}}} {\bf C}_p$'s for these decompositions are negligible and with the use of:

 $\begin{aligned} \mathrm{NH}_4\mathrm{F}(\mathrm{c}) &\to \mathrm{NH}_3(\mathrm{g}) + \mathrm{HF}(\mathrm{g}); \ \Delta\mathrm{H}_5 &= 35.40 \pm 0.20 \ \mathrm{kcal/mol} \end{aligned} \tag{5}$ we obtain $\Delta\mathrm{H}_1 &= -\Delta\mathrm{H}_3 - \Delta\mathrm{H}_4 + 3\Delta\mathrm{H}_5 = -18.4 \pm 6.0 \ \mathrm{kcal/mol} \ \mathrm{and} \ \Delta\mathrm{H}_2 = -2\Delta\mathrm{H}_4 + \Delta\mathrm{H}_5 = -9.2 \pm 2.0 \ \mathrm{kcal/mol}. \end{aligned}$

Since the temperature range for these decomposition measurements is short, these results are not unreasonable. If the measured pressures are used with the preferred values for $\triangle Hf'$, the following relations result for the decompositions:

> $\Delta G_3 = 99,700 - 171.6T \text{ cal/mol}$ log P(atm) = 7.80 - 4.36x10³/T

and

$$\Delta G_4 = 24,200 - 33.1T \text{ cal/mol}$$

log P(atm) = 7.53 - 5.29×10³/T

Approximate S° values of 86±5 and 90±5 cal/mol·K are calculated for $NH_4(UO_2)_2F_5(c)$ and $(NH_4)_3UO_2F_5(c)$, respectively.

$\operatorname{NH}_{4}[(UO_{2})_{2}F_{5}] \cdot 3H_{2}O(c) \text{ and } \operatorname{NH}_{4}[(UO_{2})_{2}F_{5}] \cdot 4H_{2}O(c)$

Tsvetkov et al (1971) measured the vapor pressure of the hexagonal tetrahydrate $NH_4[(UO_2)_2F_5] \cdot 4H_2O(c)$ and the orthorhombic trihydrate. They reported the following:

$$NH_{4}[(UO_{2})_{2}F_{5}] \cdot 3H_{2}O(c) \rightarrow NH_{4}[(UO_{2})_{2}F_{5}](c) + 3H_{2}O(g)$$
(1)
log P(atm) = 7.02±0.54 - 2,684±181/T (303-372 K)

and

$$NH_{4}[(UO_{2})_{2}F_{5}] \cdot 4H_{2}O(c) \rightarrow NH_{4}[(UO_{2})_{2}F_{5}] \cdot 3H_{2}O(c) + H_{2}O(g)$$
(2)
log P(atm) = 6.84±1.10 - 2,533±350/T (303-338 K)

121

These vapor pressure equations lead to the following:

(1)

. (1)	(2)
△H° = 12.3±0.8 kcal/mol H ₂ O(g)	11.6±1.6 kcal/mol H ₂ O(g)
$\Delta S^{\circ} = 32.2 \pm 2.5 \text{ cal/mol H}_{2}^{-0}(g)$	31.3±4.5 cal/mol H ₂ O(g)
$\Lambda G^{\circ} = 2.7 \pm 1.0 \text{ kcal/mol H}_{-} O(g)$	2.3 ± 1.6 kcal/mol H.O(g)

In both cases ΔS° appears low. Normally a ΔS of 35-36 cal/mol $H_2O(g)$ would be expected. The ΔG° 's have been accepted and have been used with the estimated $\Delta S^{\circ} = 35\pm 2$ cal/mol $H_2O(g)$ to obtain $\Delta H^{\circ}_{1} = 13.1\pm 1.3$ kcal/mol $H_2O(g)$ and $\Delta H^{\circ}_{2} = 12.7\pm 1.7$ kcal/mol $H_2O(g)$. These lead to the following approximate formation properties:

rihydrate		tetrahydrate
-1128		-1198 kca1/mo1
-1015		-1072 kcal/mol
116±10	·	126±10 ca1/mol•K
	rihydrate -1128 -1015 116±10	rihydrate -1128 -1015 116±10

3.300 <u>U-X Compounds and the Alkali Metals, M (M=Li, Na, K, Rb, or Cs)</u>
3.301 U-F-M Compounds

 $MDF_6(c)$ (M = Na(3), K, Rb, and Cs)

Kudryashov et al. (1978a) measured the enthalpy of oxidation of the alkali metal uranium (V) hexafluorides, $MUF_6(c)$ in aqueous solutions containing 0.8% H_2O_2 (i.e. $H_2O_2(250H_2O)$), 1.72% $K_2CO_3 + 2.5\%$ KOH (i.e. KOH(120H_2O)), and the reaction of UCl₄(c) in the same media $(\Delta H_2 = -175.4\pm0.3 \text{ kcal/mol}).$

$$MUF_{6}(c) + [3K_{2}CO_{3} + 4KOH + 1/2H_{2}O_{2}](aq) \rightarrow [K_{4}UO_{2}(CO_{3})_{3} + 6KF + MOH + 2H_{2}O](aq); \Delta H_{1}$$
(1)
$$UCl_{4}(c) + [3K_{2}CO_{3} + 2KOH + H_{2}O_{2}](aq) \rightarrow [K_{4}UO_{2}(CO_{3})_{3} + 4KC1 + 2H_{2}O](aq); \Delta H_{2}$$
(2)

With their measured ΔH_{soln} KCl(c) (3.96±0.01 kcal/mol) and their ΔH 's of solution MF(c) tabulated below, the following composite is obtained from which the tabulated ΔHf° 's are derived:

 $UCl_{4}(c) + 0.5H_{2}O_{2}(aq)^{*} + MF(c) + 5KF(c) \rightarrow MUF_{6}(c) + KOH(aq)^{*} + 4KCl(c);$ $\Delta H_{3} \quad (3)$

MUF ₆	∆H ₁ kcal	∆H _{soln} MF(c) kcal/mol	^{∆H} 3 kcal
Na(3)	-117.0 ± 0.3	$+0.05 \pm 0.01$	-94.59 ± 0.6
К	-114.1 ± 0.1	-4.08 ± 0.01	-101.62 ± 0.5
RЪ	-111.8 ± 0.8	-6.34 ± 0.10	-106.18 ± 0.7
Cs	-109.6 ± 0.5	-8.77 ± 0.06	-110.81 ± 0.7

^{*} The values used for \triangle Hf KOH(120H 0) = -115.077 kcal/mol and \triangle Hf H₂O₂(250H 0) = -45.69 kcal/mol are adjusted from Wagman et al. (1973, etc.) to be compatible with CODATA selections.

 $NaUF_7(c)$ and $Na_2UF_8(c)$

Katz (1964, 1966) measured the vapor pressure of $UF_6(g)$ (gas evolution) over UF_6 ·NaF(c) and UF_6 ·2NaF(c) and reported (1966):

$$2(UF_{6} \cdot NaF(c) \rightarrow UF_{6}(g) + UF_{6} \cdot 2NaF(c)$$
(1)
log P(atm) = 8.18 - 3.4x10³/T (340 - 400 K)
$$\Delta G_{1} = 15,900 - 37.4T \text{ cal/mol}$$

and (1964):

$$UF_{6} \cdot 2NaF(c) \rightarrow UF_{6}(g) + 2NaF(c)$$
(2)
log P(atm) = 6.37 - 4.18×10³/T (500 - 573 K)
$$\Delta G_{2} = 19,100 - 29.1T ca1/mo1$$

Cathers et al. (1958) reported the existence of $UF_6 \cdot 3NaF(c)$ and measured the $UF_6(g)$ vapor pressure over it by the transpiration method (626 to 873 K) as did Groves (1961).

However, Katz (1964) found no evidence for $\rm UF_6 \cdot 3NaF$ and indicated that the measurements by Cather et al. (1958) were on $\rm UF_6 \cdot 2NaF(c)$. Malm et al. (1966) prepared $\rm UF_6 \cdot NaF$ and measured the $\rm UF_6$ vapor pressure at 373 K ~ 35 mm, in fair agreement with Katz's measurements.

Tentatively the measurements of Katz for the systems specified are accepted and, with an estimated $\Delta C_p \approx -11 \text{ cal/mol} \cdot \text{K}$, $\Delta H_1 = 16.6$ and $\Delta H_2 = 21.5 \text{ kcal/mol} \text{ UF}_6$ from which the tabulated ΔHf° 's are obtained.

3.302 U-F-O-M Compounds

$$M_{3}UO_{2}F_{5}(c)$$
 (M = Na, K, Rb, Cs)

Mukhametshina et al. (1974b) measured the \triangle H's of solution of MF(c), $UO_2F_2(c)$, and $M_3UO_2F_5(c)$ in 2M HCl. These measurements lead to the following:

3MF(c)	+ $UO_2F_2(c)$	$\rightarrow M_3 UO_2 F_5(c);$	∆E
М		∆H kcal/mol M ₃ UO ₂ F ₅ (c)	
Na		-7.58±0.27	
K		-28.82±0.26	
Rb		-32.95±0.66	
Cs		-34.86±1.38	

The selected values are based on these relationships.

 $M(UO_2)_2F_5(c)$ (M = Na, K, Rb, Cs)

Suponitskii et al. (1974) from a series of AH's of solution of these compounds in 2M HCl obtained the following enthalpies for formation from MF(c) and $UO_2F_2(c)$:

 $MF(c) + 2UO_2F_2(c) \xrightarrow{\rightarrow} M(UO_2)_2F_5(c); \Delta H$

	∆H kcal/mol
М	M(UO ₂) ₂ F ₅
Na	-8.15±0.22
К	-18.64±0.24
Rb	-23.28±0.62
Cs	-27.32 ± 0.70

The selected values are based on these results.

-133-

$$M_5(UO_2)_2F_9(c)$$
 (M = K, Rb, Cs)

Ŧ

Mukhametshina et al (1974a), from a series of ΔH 's of solution of these compounds in HCl reported, for the enthalpies of reaction of alkali metal fluorides with $UO_2F_2(c)$:

MF(c)	+	2U0 ₂ F ₂ (c)	-	M ₅ (UO ₂)	2 ^F 9	(c);	∆H
-------	---	-------------------------------------	---	-----------------------------------	------------------	------	----

1	∆H kcal/mol M ₅ (UO ₂) ₂ F ₉ (c)
κ	-52.76±1.2
RЬ	-63.38±1.5
ls	-68.16±2.25

The selected values are based on these tabulated numbers.

3.303 <u>U-C1-M Compounds</u>

 $MUCl_5(c)$ (M = K, Rb, Cs)

The following summarizes the $\triangle H$'s for the formation of $MUCl_5(c)$ from the components salts (MCl(c) and $UCl_4(c)$) from measurements in 2% HCl, 0.5% FeCl₃ solutions: they are accepted.

 $MCl(c) + UCl_4(c) \rightarrow MUCl_5(c); \Delta H$

	AH KCal/mol MUOI 5			
	K	Rb	Cs	
Martynova et al. (1968)	-5.5±0.5			
Vdovenko et al. (1974)	-6.8±0.6	-10.5±0.8	-13.6±0.8	

$$M_2UCl_6(c)$$
 (M = Li, Na, NaK/2, K, Rb, Cs)

The following summarizes the $\triangle H$'s for the formation of $M_2UCl_6(c)$ from the component salts (MCl(c) and UCl₄)):

 $2MCl(c) + UCl_4(c) - M_2UCl_6(c); \Delta H$

AH kcal/mol M2UC16 M = LiNa NaK/2Κ RЬ Cs Martynova et al. (1968) -1.5±0.6 -6.0±0.6 -9.8±0.6 [measurements in 2%HC1, 0.5% FeC1₃] Vdovenko et al. (1974) 1.1±0.6 -1.7±0.7 -9.4±0.5 -16.1±0.6 -24.1±0.8 [measurements in 2%HCl, 0.5% FeC13] Fuger and Brown (1971) [measurements in 1M HC1] -26.7±0.3 [measurements in 6M HC1] -25.8=0.4

The selected values were obtained from the average riangle H.

$Rb_4UCl_8(c)$

The results of Vdovenko et al. (1974), from measurements in 2% HCl, 0.5% FeCl₃ solutions lead to:

 $4RbCl(c) + UCl_4(c) \rightarrow Rb_4UCl_8(c); \Delta H = -16.5\pm0.8 \text{ kcal/mol } Rb_4UCl_8(c)$ This is the basis for the selected value.

CsU₂Cl₉(c)

The results of Vdovenko et al. (1974) from measurements in 2% HCl, 0.5%FeCl₃ solutions lead to:

 $CsCl(c) + 2UCl_4(c) \rightarrow CsU_2Cl_9(c); \Delta H = -13.1\pm 1.4 \text{ kcal/mol } CsU_2Cl_9$ This is the basis for the selected value.
$MUCl_6(c)$ (M = Na(α and β), K, Rb, and Cs)

Kudryashov et al. (1978b) measured the enthalpy of oxidation of the alkali metal uranium (V) hexachlorides, MUC1₆, in 2% HC1, 0.5% FeC1₃ aqueous solutions:

 $MUCl_{6}(c) + [FeCl_{3} + 2H_{2}O](aq) \rightarrow [UO_{2}Cl_{2} + FeCl_{2} + 4HCl + MCl](aq); \Delta H_{1} (1)$

With their measured \triangle H's of solution for FeC1₃(c) (-32.55±0.1 kcal/mol), FeC1₂(c) (-18.7±0.2 kcal/mol) and MC1(c) cited below and the results of Vdovenko et al. (1973) for the reaction of UC1₄(c) in the same media:

UCl₄(c) + [2FeCl₃ + 2H₂0](aq) → [U0₂Cl₂ + 2FeCl₂ + 4HCl](aq); (2)

$$\triangle$$
H₂ = -45.3 ± 0.1 kca1/mol

the following summary reaction is obtained:

$$\text{UCl}_{4}(c) + \text{FeCl}_{3}(c) + \text{MCl}(c) \rightarrow \text{FeCl}_{2}(c) + \text{MUCl}_{6}(c); \ \Delta \text{H}_{3}$$
(3)

MUC1 ₆ (c)	∆H ₁	∆H MCl(c) kcal/mol	^{∆H} 3
Na (α)	-61.6 ± 0.5	1.19 ± 0.02	3.6 ± 0.6
Na (β)	-61.4 ± 0.4	1.19 ± 0.02	3.4 ± 0.5
К	-51.7 ± 0.3	4.37 ± 0.02	-3.0 ± 0.5
Rb	-45.0 ± 0.2	4.08 ± 0.02	-10.1 ± 0.4
Cs	-41.9 ± 0.2	4.01 ± 0.02	-13.2 ± 0.4

The $\triangle Hf^{\circ}$'s are obtained from $\triangle H_3$.

3.304 U-Br-M Compounds

 $M_2 UBr_6(c)$ (M = Rb, Cs)

The results of Vdovenko et al. (1973), from the ΔH 's of solution of the components in 0.5% FeCl₃, 2% HCl lead to:

 $2RbBr(c) + UBr_4(c) \rightarrow Rb_2UBr_6(c); \Delta H_1 = -14.86 \pm 0.15 \text{ kcal/mol} Rb_2UBr_6$ (1)

 $2CsBr(c) + UBr_4(c) \rightarrow Cs_2UBr_6(c); \Delta H_2 = -23.02\pm0.15 \text{ kcal/mol} Cs_2UBr_6(c)$ (2) These are accepted.

III. Tables of Values for AHf°, AGf°, S°, Cp°, and H-H0 at 298.15 K and AHf° at 0 K for the Uranium-Halogen Containing Compounds

The values are consistent with the CODATA key values for thermodynamics and the IAEA series, "The Chemical Thermodynamics of Actinide Elements and Compounds".

Included in the tabular summary are values for the non-halogen . containing uranium compounds which were necessary for this evaluation.

The compounds covered are listed in the standard order of arrangement except for those containing the alkali metals which are arranged by compound class of the uranium-halogen compound with the alkali metal.

See Section I - 2.5 and Section I - 2.4 for the conventions used for the Table headings, the chemical formulae and physical states.

-139-

Note Added in Proof

There are significant new results that necessitate modification of the values selected for certain uranium fluorides. These adjusted values are included in the tabulation.

The calorimetric measurements of Cordfunke, (private communication, June 1980) result in:

> $\Delta Hf^{\circ} UF_{3}(c) = -360.6 \pm 1.0 \text{ kcal/mol}$ $\Delta Hf^{\circ} UF_{4}(c) = -459.1 \pm 1.0 \text{ kcal/mol}$

These values are based on two different measurement paths. The paths are:

- 1. The direct fluorinations of $UF_3(c)$ and $UF_4(c)$ to $UF_6(c)$.
- 2. Solution measurements of $UF_3(c)$, $UF_4(c)$, and $UO_3(c,\gamma)$ and and $U_3O_8(c)$ in a H_2SO_4 , $Ce(SO_4)_2$, H_3BO_3 aqueous medium.

The above values are accepted and result in the adjustment of the values for UF(g), UF₂(g), UF₃(g), UF₄(g) and UF₄·2.5H₂O(c) as well, since they are all dependent upon the Δ Hf° UF₄(c).

The values for $UF_{4.25}(c)$, $UF_{4.5}(c)$, $UF_5(,\alpha)$ and $UF_5(c,\beta)$ and $UF_5(g)$ are also dependent upon $UF_4(c)$; however, there are indications from solution calorimetric measurements in progress by O'Hare (private communication, June 1980) on $UF_5(c,\alpha)$ and $UF_5(c,\beta)$ that their ΔHf° 's should be more positive, rather than more negative as required by the above cited ΔHf° $UF_4(c)$ and the Agron (1958) data.

Until the situation regarding $UF_5(c, \alpha)$ and (c, β) is clarified, the values for these two compounds and for $UF_{4.25}$, $UF_{4.5}(c)$, and $UF_5(g)$ are maintained as in Section II, but with larger uncertainties.

-140-

In addition, Westrum (private communication, June 1980) measured the low temperature heat capacity for $UF_3(c)$ resulting in S° = 29.50±0.10 and $C_p^{\circ} = 22.73\pm0.10$ cal/mol·K which replace the estimated S° = 30.0±1.0 and $C_p^{\circ} = 23.4\pm1.0$ cal/mol·K.

298 CP29b	2•00 6•612 +-0•05 +-[0•010]	7.725 5.663 +-0.020 +-[0.010]	1.8 +-2.0		+-3. 8.41 15.20	+-0.05 +-[0.10]	6.0-+	2.97 19.52	+-0.05 +-[0.10] 7.54 56.97	+-0.15 +-[0.10]	0. 9.04 +-4. 4-[0.10]		1. 16.0 	9.50 22.73	+-0.10 +-0.10	9. 17.8 +-4. +-[1.0]		6.25 27.73	+-0.05 +-[0.10] 3. 21.8	+-4. +-[1.0]	0.0 +-2.0	7.7	+-1.5	4.4 2.1	7.7	+-2.0	2.9	H-1.5 3. 26.2	+-6.1.0]	4.4 39.8€ +−0.3 +−[0.10]	30.98
H298 - H0 Si	1.521 13 +-0.005	1.554 4 +-[0.010]	4	-6-	2.696	+-[0•010]		3.486 2	+-[0•010] ·	+-[0.010] +	2.28 6(4-(0.10]		3.28 71	4.392 29	+-0.010	4•04 79 +-[0]10]		2*390 30	+-[0•010] + 4•76 86	+-[0.10]	6 0			Ē	4	•	4	4 0 4	+-[1.0]	7.545 54 +-[0.010] 4	6.384 9(
DG298	0	116.4	-114.9	-126.9	+-0.5 -246.6	+-0.2	+-0.5	-273.9	M • 0 - +	9 • 0 - +	-13.	• •	-136.	-344-2	+-1.0	-250.	•	4-754-	+-1.0 -377.5	1-1-1	-584.0 +-1.3	-443-	• • •	-453+	+-4. -469.	+-4.	-469.	+-+ ·	+-5.	-494.4 +-0.4	-493-26
6 LAL/MUL.A D11298	9	127.0	-116.9 +-0.9	-141 - 3	+-0.8 -259.3	+-0.2	0-+ +-0-+	-292.5	M • 0-+	4-90-4 4-0-6	- Q -	• • • •	-133.	•/-+ 9009E-	0 • 1 - +	-252.	•	-459.1	-1-+ -383-7	+-1.2	-640.1 +-1.2	-466-	+ + + •	-477.	+-4. -494.	+ - 4 •	-496.	+-4.	• 5 • •	-525.1 +-0.4	-513.25
N KCAL/MUL	0	126.97	, ,		-258.40	+-0.20		-291•35	0.0-+	-851.75 +-0.60	-5.7	n•c++	-132.6	0 • 7 - 4	+-1.00	-251.4		-458.75	+-1.00 -1-+	+-1.20				1.					+-5.0	- 524.80	-611 70
NTG CHPDS ON CODATA BASE I Formula W	238.0290	238.0290	238.0290	238,0290	270.0278		8/7 0 • 1 /7	286.0272		842.0822	257.0274		276.0258	205.0242		295.0242		314.0226	2000 A 15		359.4611	CCTT BIE	2211010	323.5218	333-0210		0130-0210		333.0210	352.0194	362 0104
THE THE PROP OF N-HALOGEN CON	1 n(CS')	2 u(G)	. (A)EIU E	4 UI4(A)	5 102(C)		6 (102+2(A)	7 UD3(C:641)	DRTHOPHONDIC ASSUMED	8 U309(C:AL') 001400404815	9 UF (G)		10 UF2(G)			c 12 UF3(G)		13 UF4(C)	MGNDCLINIC		15 UF4:2.5H20(C) ObthopHomelC		10 UF4.25(C)	17 UF4.5(C)			· 19 (155(C186•)		20 UF5(G)	21 UF6(C)	

THERMO PROP OF U-HALOGEN CONTG CMPDS ON CODATA BASE IN KCAL/MOL & CAL/MOL K

THIS THE RMC PREND OF U-HALDGEN LATE CHPUS UN CUE	ATA BASE IN KC FURMULA NT	AL/MOL 6 C	AL/HOL.K DH298	DG298	1298 - 110	5290	CP290
45 HCF+41HCF+18+20H5A14A4	C148.415		-292+3 +-0-8				
4 6 HCL. + 4 (HCL. + 27 + 75H241 AU+1	5148 · 615		-295.0				
47 NCL. 41HCL. 155.5H201AU.1	e 14n -622		-298.1 +-0.8				
1 inv tnz151-12+60.10114.101 44	379.8410		-297.1				
tonythzus-sgibno Toulto ton 6+	£169+61£		+-0+8 -298.6 +-0-8				
tonvinziittiiten.Tulle.Ton es	\$164 B15		-299.2				
ST UCH. ATHCH (04 F32 SH201 AUT)	979,4410		-296.2				
52 NCL 4 (HCL 104+00H20; AU1)	0148+61E		+-1.0 -208.5				
51 UCL'5(C)	415.2940		+-2+0 -253+ -253+	-227.		58.	
		8.18	176-1	01.6-	000	5.64	0.04
		· 0 • E - +	- 17 - +	• 11 +	101-01-+	**0-+	10.11-4
1- 22 NCL 6(6)	£141.05+		-242.2	-221.8		•E01	
1 56 UNCL'21C1	2- 1466-126	564.83 †-0.60	-255.0	-238.1	4.586 +-[0.010]	30.0-4	22 · 12 +-[0 · 10]
57 UD2CL+21C)	5- 8559.04E	196.57	-297.2	-213.9	5.157	35.98	25.78
54 UU2CL.1216)	8EE6 .0 .	+-0-30	-234 - 0 - 4	E+0-+	+-0*00B	+-0 • 02	+-0+0+
54 UH2CL'2(A)	tres-otr		• • • • • • • • • • • • • • • • • • •	-290.5 +-0.5		0 • 1 - +	
6.0 MUZCL'2:1120[C]	J58, 9492		-372.8	-335.8		46.	
()))))))))))))))))))))))))))))))))))))	0008.485	<i>j</i> .	-517.4	+-0.8 -453.0		+-2. 65.	
62 402CL*210.901HCL*+59H2U1	8846 • h • F		9•0-+ 0-12E-	₽ • •			
6.1 UR2CL+2(1+802NCL++50N2U)	ĤEË&•0€E		6-0-+				
64 UN2CE'2(2.5703NCE1+50N24)	5155-04E		9°0-+				
65 402CE+2FJ+604HCE++50H2U)			9•0-+ 9•0-+				
102005++200505++200200-0-2	866.046		9*0-4 5*61E-				

NUS TURARC PIUP OF U-MALUGEN CUNFU CNPU	la syn rivens I syn rivens	H KCAL/MDL 6	CAL/MOL.K DH298	04298	H298 - 110	5298	CP298
67 UU2CL.*2(5.405)(CL*+50)(2U)	82F6+0+F		1.616-				
to mach esticates and an an	Artsus.	. •	-312-3				
נים וווזכנו ובלוונרדי ו-6+י28וצמו אחון	8tr6.0+t		9-E1F-				
10110101010101010100000000000000000000	FEED DAE		0°91E-				
11 NOSCE 15 (11CF + 13+ 88154 441)	340°4733		-316+5 +-0+				
72 Wisch Stuck the Southurs	8885 * 0 4E		1.816-				
11 MILECT + 54 HCT+ + 51+ 12 MILE + 10	8669.04E		8.916-				
14 1105CF+5(HCF++22+2H50144n+)	nff8•0∳E		+-0-+ -321-5				
130 105(C+511++116)51711	ttrd.att		+-0 -322				
עיי החקנד ובלווכרו ובסחססווקחו אחו ל	86F6 *0 \$E		2°E2E-				
1511.1500 12	300-3871		-278.	-256.		•••	
1 70 (1002)2CL'3(C)	644.4145		-574.7 -574.7 +-0.4	• • • •			
79 U02(0H)CL+12H20(C)	358+5190		-480.5				
(), TOT IT 08	2114 º OEE				5.64	38.9	28.4
81 UF 2CL 2(C)	e164.046				5-85 +-[0,10]	41.6	28.6 +-[1.0]
82 UFCL+31C1	IONE E SE	1.			6.07	D • • •	28.9
tote.unn to	477+7410		-167.0	-160.9		46.	26,0
84 UUR 3161	477-7410		1-1-0 -93.6	+-1.2 -102.9		+-2. 98.	+-0-2
			+-1+2	1 - 1 - 1		• E - +	
us unit++(c)	157.6453		-191-7	-183.4		57.	30.6 4-1 1.01
86 NIN 416)	557.6453	-	-144-1	-151.5	-	.01	
()); uuu 10	1649-169		0-2-+	-183.9		70. +-3.	38.4 +-[1.0]
10.4 WINE 2 (C)	40FA - E 1 4	-229.27 +-2,00	-232.7	-222•2 +-2•0	4.989 +-[0.010]	37.66 0.00+	23.42 +-[0.10

инз тиелия рилр ор и-цасцоем слита смрг	DE UN CHUATA HASE IN KCALMUL FORMULA WE DHO	6 CAL/MOL.K	06290 I	1294 - 110	5294	CP2VB
4.2 10.2114.21C)	428*H150	-271,84	-264.9		10.5	
9.0 10208121020(C)	447.8412	16.746-	2 • 1 [E-		50.	
1 ULZHR'2: JH20(C)	483.8424	9E-0-4	+ + - + + + + + + + + + + + + + + + + +	` `	69. 1-1.	
(3)t.1007.76	1012 - 64	-224.	-215.		*9.	
91 UD2(DM)88.12H20(C)	1019.501	60-994-	• • • •		• • •	
st ucrisher(c)	03EH •03F	1-3-0 -+	-141.7		42. 1-4.	
(C), BER 10 88	£28-2+624	-231.2	-213+6		51.	
totainnin 76	coas-et+	4·6/1-	-170.6		40.	
41 NCL'248'21C)	40H-7430	-217-0	-203.4		-+-+	
איי הכרימאוס(כ)	84614E15	7.602-	-192.9		57.	
99 UI3(C)	614.7423	-111-7	-111.5		•+-+• 83•	26.4
	795.6478	+-1.0 -124.0 +-0.7	-1-1-2 -1-22+7 1-0+9		t-2. 63. t-2.	32 • 1 • 0 1 • 5 1 • 6
1a1 U[4(G)	746.6470	1.51-	-88.0		. 18.	
142 ACF 14(C)	471+2425	-214.7	-198.4		+-3+	
totternum cot	404 • ¢452	0+2-4	0 • ≈		+-5•	
104 (1014)3002F51C1	8581.014	-748.0	E.040-		90.	
105 11141 (1002) 2F5 1(C)	653.0463	1-516-	-842.8		86. 86.	
t un the thost sts that the the	197.45 Be	- 1120 - 1120	•E-+		+-to.	
1 07 11111 (U0212F51;4H20(C) 1 08 114* UF6(C;UE!)	724+1+72 775+0492	6-1-4 -9-4 -9511-	-1972.		26. †-10,	
tas kuřatci	1121-166	-052.7				
llu lin'ufé(C)	2184.164	-655+0 +-1++				

IS TREAM TELVI OF U-AFLOCH LING FATUR UN FU	FORMULA UT DHO	DH298	06298	H298 - H0	5298	CP298
111 CS*UF6(C)	484.9240	-658+7				
112 HA UF 7[C]	9100.48E	-670.	-631.5		65. 4-3	
11 1 HA' 2UFB(C)	6899.95¢	-010- -0	-764.7		79.	
114 HAT 3UQ2F5(C)	\$33* AH92	-816.2				
11 s kausfsto)	482,3258	-832.6				
116 RH. 3002F5(C)	2624-129	-829+9 +-0+8				
11/ CS+3U02F5(C)	163.7363	-829.1				
11H HA' (UD2)2F5(C)	658+0371	+*9E6-				
119 K(UD2)2F5(C)	074.4496	-945.2				
120 AN*(102)2F5(C)	720.5151	-947.6 				
121 CS+(U02)2F5(C)	167,9531	-950 - 7				
122 K5(U02)2F9(C)	906.5512	-1524.1				
1.2.1 AD*510212F9(C)	\$ 1 J 8+ 3 U 0 2	-1523.4				
12) CS.8(u02)2F9(C)	1375+5687	-1523.7				
125 KUCL'131C1	454.3960	-354.0 -354.0 -0.8				
126 RH+UCL+51C1	500+7618	-358.0				
157 CS+NCF+5(C)	548+1995	-362.9				
128 F1.50CF.01C1	464.6290	-437.7				
129 NA12UCL161C)	496.7266	-441.7				
130 KBUCL+6(C)	528.9510	-461.7				
1 11 114+KUCL+U(C)	54 2• U 3U 3·	-452.2				
1.12 AD1 20CL 4 (C)	621.6825	-467.5 +-0.9				

\$248										
- 110										
11298										
06298										
PH298	-480+7	-613.9 +-1.0	-605-9	-351•9 +-0•8	-152	364.6	9*0-+ E*11E-	6.0-+	1-395-1	-408.7 +-0.8
DIIG					,					
	ដ ព ព ថ	242	\$0\$0	8761	poll	Č6 • I	n • 1 =	₽ 2 1 2 2 2	ànne	040
	110.5	U63.t	. 926.0	1.E1.	1+E28	4 0 A • F	210.2	28.1* (5.6.3
	1 CS: 20CF: 01C1	1218.1306.88	י כציטצנריאלכן	1 114 - NCT - P (C 1 4 1 -)	1.981219.TOT.VN	1 MUCH 10101	ווויטנעיקנו	() \$19. TON: 51 (1 NH' 2UBR'64 C1	c.cst2uBAto(C)

06743

1112

_

-148-

*

• • •

1.

1

IV Bibliography

Agron, P. A.; Paper 59, 610 in Katz, J. J. and Rabinowitch, E., eds.,U.S. AEC TID-<u>5290</u>, (1958) Ahrland, S.; and Kullberg, L.; Acta Chem. Scand. 25, 3471 (1971) Akishin, P. A.; and Khodeev, Yu. S.; Zhur, Fiz. Khim. 35, 1169 (1961) Altman, D.; Report RL-4.6.276, Aug 14, 1944, Quoted by MacWood. G.; Paper 58, 543 in Katz, J. J.; and Rabinowitch, F., eds. U. S. 8, 543 in Katz, J. J.; and Rabinowitch, E., eds. U. S. ALC T1D-<u>5290</u>,(1958) Argue, G. R.; Mercer, E. E.; and Cobble, J. W.; J. Phys. Chem. 65, 2041(1961) Armstrong, G. T.; Marantz, S.; and Coyle, T.; J. Am. Chem. Soc. 81, 3798 (1959) Barkelew, C. H.; data cited in MacWood, G. E.; U. S. AEC MDDC-<u>657</u>, 78pp (1946) Battles, S. E.; Shinn, W. A.; and Blackburn, P. E.: J. Chem. Thermodynam, <u>4</u>, 425 (1972) Bigeleisen, J.; Mayer, M. G.; Stevenson, P. C.; and Turkevich, J.; Chem. Phys. 16, 442 (1948) Biltz, W.; and Fendius, C.; Z. anorg. u. allgem. Chem. <u>176</u>, 49 (1928)Blair, A.; and Ihle, H.; J. Inorg. and Nuclear Chem. <u>35</u>, 3295 (1973) Brewer, L.; Bromley, L. A.; Gilles, P. W.; and Lofgren, L.: Paper 33, 219 in Katz, J. J.; and Rabinowitch, E., eds., U. S. AEC 11D-<u>5290</u> (1958) Brickwedde, F. G.; quoted in Katz, J. J.; and Rabinowitch, E.; "The Chemistry of Uranium", Chap. 12 McGraw-Hill Book Co., New York (1951) Brickwedde, F. G.; Hoge, H. J.; and Scott, R. B.; J. Chem. Phys. 16, 429 (1948) Briggs, G. G.; U. S. AEC NLCU-720, 72 pp (1960) Burke, T. G.; Smith. D. F.; and Nielsen. A. H.; J. Chem. Phys. 20, (1952)Burns, J. H.; Osborne, D. W.; and Westrum, E. F., Jr.; J. Chem. Phys. <u>33</u>, 387 (1960)

Cathers, G. I.; Bennett, M. R.; and Jolley, R. L.; Ind. Eng. Chem. 50, 1709 (1958) Choporov, D. Ya.; and Chudinov, E. T.; Soviet Radiochemistry 10, 208 (1968) Claassen, H. H.; J. Chem. Phys. <u>30</u>, 968 (1959) Claassen, H. H.; Weinstock, B.; and Malm, J. G.; J. Chem. Phys. 25, 426 (1956) Clements, R. M.; and Barrow, R. F.; Chem. Commun. 1968, 27 CODATA Task Group on Fundamental Constants CODATA Bulletin No. <u>11</u> (Dec. 1973) CUDATA Recommended Key Values for Thermodynamics 1975, CUDATA Bull. No. 17, (Jan. 1976), and Codata Special Report No. 3. (Sept. 1975), Codata, Paris CODATA Recommended Key Values for Thermodynamics 1977, CUDATA Bull. No. <u>28</u> (April 1978), Codata, Paris Cook, O. A.; and Eastman, E. D.; U. S. ALC AECD 2803, 3pp (Sept. 1944)Condfunkes E. H. P. Paper SM 66/7, 483-495, in Proceedings of the Symposium on Thermodynamics with Emphasis on Nuclear Materials and Atomic Transport in Solids. Vol. 11, organized by IAEA in cooperation with (UPAC, Vienna, July 22-27 (1965) Cordfunke, E. H. P.; unpublished results, Private communication Reactor Centrum Nederland, Pelten, the Netherlands (Oct. 1975) Cordfunke, E. H. P.; and Aling, P.; Trans. Faraday Soc. 61, 50 (1965) Cordfunke, E. H. P.; and O'Hare, P. A. G.; The Chemical Thermodynamics of Actinide Elements and Compounds. Part 3. Miscellaneous Actinide Compounds, IAEA, Vienna, (1977) Cordfunke, E. H. P.; and Duweltjes, W.; Private Communication, Reactor Centrum Nederland, Pelten, the Netherlands (Aug. 1976); (also J. Chem. Thermodynam. 2, 71 (1977)) Cordfunke, E. H. P.; and Ouweltjes, W.; Private Communication Reactor Centrum Nederland, Pelten, the Netherlands (March 1977) Cordfunke, E. H. P.; Ouweltjes, W.; and Prins, G.; J. Chem. Ther-Modvnam. 8, 241 (1976) Cordfunke, E. H. P.; Prins, G.; J. Inorg. and Nuclear Chem. 36. 1291 (1974)

CordFunke, E. H. F.; Prins, G.; van Vlaaderen, P.; J. Inorg. and Nuclear Chem. 39, 2189 (1977) Davidson, P.; MacWood, G.; and Streeter, I.; Report RL-4.6.932 (Aug. 30, 1245) Day, R. A., Jr.; and Powers, R. M.; J. Am. Chem. Soc. <u>76</u>, 3895 (1954)Day, R. A., Jr.; Wilhite, R. N.; and Hamilton, F. D.; J. Am. Chem. Soc. 77, 3180-3183 (1955) Domange, L.; and Wohlhuter, M.; Compt. rend. 228, 1591 (1949) Dworkin, A. S., J. Inorg. and Nuclear Chem. 34, 135 (1972) Egan, J. J.; McCoy, W.; and Bracker, J.; 'Thermodyn. Nucl. Mat'ls. IAEA, Vienna (1962) Ferguson, W. J.; and Prather, J. L.; Report A-<u>3145</u> (Nov. 18, 1944); cited in Katz, J. J.; and Rabinowitch, E.; "The Chemistry of Uranium", AcGraw-Hill Book Co., New York (1951) Ferguson, W. J.; Prather, J. L.; and Scott, R. B.; Report A-1920 (Mav 3, 1944); cited in Katz, J. J.; and Rabinowitch, E.; "The Chemistry of Uranium", McGraw-Hill Book Co., New York (1951) Ferguson, W. J.; and Rand, R. D.; Report A-3357 (March 28, 1945), taken from Katz, J. J.; and Rabinowitch, E.; "The Chemistry of Unanium", McGraw-Hill Book Co., New York (1951) Fitzgibbon, G. C.; Newton, T. W.; and Holley, C. E.; Calorimetry Conference, Seattle (July 1975) Fitzgibbon, G. C.; Pavone, D.; and Holley, C. E., Jr.; J. Chem. Eng. Data <u>12</u>, 122 (1967) Fitzgibbon, G. C.; Pavone, D.; and Hollev, C. E., Jr.; J. Chem. Ther-Modynam. 3, 151 (1971) Fontana, B. J.; in Papers 35 and 36, Katz, J. J.; and Rabinowitch, E., eds.; U.S. AEC T1D-5290, (1958) Fontana, B. J.; U. S. AEC MDDC-<u>1452</u>, 7pp (Oct. 1947) Fuger, J.; Private Communication, University of Liege, Scholum (1976) Fuger, J.; and Brown, D. J.; J. Chem. Soc. <u>A1970</u>, 763 Fuger, J.; and Brown, D. J.; J. Chem. Soc. <u>A1971</u>, 841 Fuger, J.; and Brown, D.; J. Chem. Soc. Dalton Trans. <u>1973</u>, 428

-151-

Fuger, J.; and Oetting, F. L.; The Chemical Thermodynamics of Actinide Elements and Compounds. Part II. The Actinide Aqueous Tons, IAEA, Vienna (1976) Gagarinskii, Yu. V.; and Khanaev, E. I.; Zhur. Neorg. Khim. <u>12</u>, 111 (1967) Gagarinskii, Yu. V.: and Mashirev, V. P.; Russ. J. Inorg. Chem. 4, 565 (1959) Galkin, N. P.; Veryatin, U. D.; and Smirnov, Yu. V.; Soviet J. At. Energy 11, 257 (1961) Garvin, D.; Parker, V. B.; Wagman, D. D.; and Evans, W. H.; "A combined Least Sums and Least Squares Approach to the Evaluation of Thermodynamic Data Networks", Nat'l Bur. Standards NBS IN 76-1147 (July 1976) Gaunt, J.; Trans. Faraday Soc. 49, 1122 (1953) Ginnings, D. C.; and Corruccini, R. J.; J. Research Natl. Bur. Standards 39, 309 (1947) Girdhar, H. L.; and Westrum, E. F., J. Chem. Eng. Data; <u>13</u>, 531 (1968)Glushko, V. P.; ed.; Termicheskie Konstanty Veshchestv. Vol 8, Part i, (Akad. Nauk SSSR, Institut Vysokikh Temperatur, Moskva, 1978) Greenberg, E.; and Westrum, E. F., Jr., J. Am. Chem. Soc. <u>78</u>, 4526 (1956a) Greenberg, E.; and Westrum, E. F., Jr.: J. Am. Chem. Soc. <u>78</u>, 5144 (1956b) Gregory, N.; Report RL-4.6.928 (Aug. 24, 1945); RL-4.6.936 (Oct 9, 1945); R1-4.6.940 (Dec. 13, 1945), quoted by MacWood, G. in in Paper 58, 543) in Katz, J. J.; and Rabinowitch, E., eds. U. S. AEC TID <u>5290</u>, (1958) Gregory, N. W.; in Mueller, M. E.; U. S. AEC AECD 2029, 118pp (May 28, 1948) Gregory, N. W., U. S. AEC AECD 3342, Spp (Aug 1946) Gross, P.; Hayman, C.; and Wilson, G. L.; Monatsh. Chem. 102, 924 (3.971) Groves, F. R., Jr.; U. S. AEC ORNE <u>3088</u>, UC-4-Chemistry, 19pp (April 11, 1961) Gruen, D. M.; and McBeth, R. L.; Inorg. Chem. 8, 2625 (1969) Gurvich, L. V.; Yungman, V. S.; Dorofeeva, O. V.; Gorokhov, L. N.; and Munvez, S. S.; (Thermodinamicheskie svoistva dakoobrazno) sistemy U-F1. Preprint 1-0018 Akademiya Nauk SSSR Institut vusokikn Temperatur, Moskva (1977)

Hardy-Grens, C.; European Atomic Energy Community, Report EUR-<u>2189F</u>, Ispra, Italy, 2Spp (1964) Hayman, H. J. G.; Thermodynamik Symposium in Heidelberg, Session I. Paper No. 7,; Schufer, K. L., editor, (Sept. 1967) Hearne, J. A.; and White, A. G.; J. Chem. Soc. 1957, 2081 Heus, R. J.; and Egan, J. J.; Z. physik. Chem. [NF] <u>49</u>, 38 (1966) Higgins, T. L.; and Westrum, E. F.; J. Phys. Chem. <u>65</u>, 830 (1961) Hildenbrand, D. L.; Stanford Research Institute Tech. Rep. PYU-<u>4822</u>, 29pp (1976) Hoekstra, H. R.; and Siegel, S.; J. Inorg. and Nuclear Chem. <u>18</u>, 154 (1961) Hoenig, C. L.; J. Am. Ceram. Soc. 54, 391 (1971) Huber, E. J., Jr.; and Hollev. C. E.; J. Chem. Thermodynam. 1, 267 (1969) lnman, D.; and Bockris, J. O'M.; Can. J. Chem. <u>39</u>, 1161 (1961) lUPAC Inorganic Chemistry Division Commission on Atomic Weights, Pure and Applied Chemistry 21, 91 (1970) JANAF Thermochemical Tables; NSRDS NDS 37, U. S. Government Printing Office, Washington, D. C.; (1971) Jenkins, F. A.; and Anderson, O. E.; in Mueller, M. E.; U. S. AECD 2029, 118pp (May 28, 1948) Johns, I. B.; and Walsh, K. A.; U. S. ALC LA <u>381</u>, 10pp (Aug. 30, 1945) Johnson, G. K.; Argonne Nat'l Lab, Private Communication (Jan 1977) Johnson, G. K.; J. Chem. Thermodynam. 11, 483 (1979) Johnson, G. K.; Smith, P. N.; and Hubbard, W. N.; J. Chem. Thermodynam. <u>5</u>, 793 (1973) Johnsson, K. O., Jr., U. S. ALC Y-<u>42</u>, 19pp (Oct. 20, 1947) Kangro, W.; Z. Erzbergb. Matallhuttwes <u>16</u>, 107 (1963) Kapustinskii, A. F., and Lipilina, I. I., Doklady Akad. Nauk S.S.S.R. <u>104, 264 (1955)</u> Katz, S.; Inorg. Chem. <u>3</u>, 1598 (1964) Katz, S.; Inorg. Chem. <u>5</u>, 666 (1966)____

-153-

Katz, J. J.; and Rabinowitch, E.; 'The Chemistry of Uranium', ist ed. McGraw-Hill Book Co. (1951) Kelley, K. K.; Contributions to the data on theoretical metallurgy. XIII. High-temperature heat content, heat-capacity, and entropy data for the elements and inorganic compounds. U. S. Bur. Mines Bull, 584, 232pp (1960) Kelley, K. K.; and King, E. G.; Contributions to the data on theoretial metallurgy, XIV. Entropies of the elements and inorganic compounds, U. S. Bur. Mines Bull. <u>592</u>, 149pp (1968) Khanaev, E. I.; Izvest. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk 2, 123 (1968) Khanev, E. I.; and Khripin, L. A.; Soviet Radiochem. 12, 158 (1970); English translation of Radiokhimiya <u>12</u>, 178 (1970) Kigoshi, K.; Nippon Kogaku Zasshi 72, 57 (1951) King, E. G.; and Christensen, A. U.; U. S. Bur. Mines, Rept. Invest. 5709, 4pp (1961) Knacke, D.; Lossmann, G.; and Muller, F.; Z. anorg. v. allgem. Chem. <u>371</u>, 32, (1969) Knacke, O.; Muller, R.; and von Rensen, E. V.; Z. physik. Chem. <u>80</u>, 91 (1972) Kothari, P. S., Ph. D. Thesis, Wayne State Univ., 115pp (1971) Krestov, G. A.; 'Termokhimiva Soedinenii Redkozemel'nykh u Aktinoidnykh Elementov' Moskva, Atomikdat, (1972) Krohn, B. J.; Person, W. B.; and Overend, J.; J. Chem. Phys. <u>65</u>, 969 (1976) Kudryashov, V. L.; Suglobova, I. G.; and Chirkst, D. E.; Radiokhimiya <u>20</u>, 366 (1978b) Kudryashov, V. L.; Suglobova, I. G.; and Chirkst, D. E.; Radiokhimiya 20, 373 (1978a) Kuhlman; MCW 118 (1948) Langer, S.; and Blankenship, F. F.; J. Inorg. and Nuclear Chem. 14, 26 (1960) Lipilina, I. I.; and Samoilov, O. Ya.; Doklady Akad. Nauk SSSR <u>98</u>, 99 (1954) Llewellyn, D. R.; J. Chem. Soc. 1953, 28

-154-

đ

Û

1)' (1

0';

Nat

MacWood, G. E.; Paper 58 in Katz, J. J.; and Rapinowitch, E., eds., U. S. AEU T1D-<u>5290</u>, p. 543 (1958) MacWood, G.; Mueller, M.; and Altman, D.; Report TL-4.6.277 (Dec. 18, 1944) malm, J. G.; Selig, H.; and Siegel, S.; Inorg. Chem. 5, 130 (1966) Mal'tsev, V. A.; Gagarinskii, Yu. V.; and Popov, M. M.; Zhur. Neorg. Khim. 5, 228 (1960) Markin, T. L.; Bones, R. J.; and Wheeler, V. J.; Proc. Brit. Ceram. Soc. 8, 51 (1967) Martynova, N. S.; Kudryashova, Z. P., and Vasil'kova, I. V.; Atomnava Energiya 25, 226 (1968) Masi, J. F.; J. Chem. Phys. <u>17</u>, 755 (1949) Maslov, P. G.; Zhur. Neorg. Khim. 2, 2076 (1964) McDowell, R. S.; Asprey, L. B.; and Paine, R. T.; J. Chem. Phys. <u>61</u>, 357i (1974) Mueller, M. E.; U. S. AEC AECD <u>2029</u>, 118pp (May 28, 1948) Mukhametshina, Z. B.; Seleznev, V. P.; Suponitskii, Yu. L.; Bodrov, V. G.; Karapet/yants, M. Kh.; and Sudarikov, B. N.; Zhur. Fiz. Khim. 48, 495 (1974a) Mukhametshina, Z. B.; Suponitskii, Yu. L.; Seleznev, V. P.; Bodrov, V. G., Kanapet/vants, M. Kh., and Sudarikov, B. N.; Zhur, Neorg. Khim. <u>19</u>, 474 (1974b) Nater, K. A.; Recent Develop. Mass Spectrosc., Proc. Int. Conf. Mass Spectrosc. <u>1969</u>, 1136 Uetting, F. L.; Rand, M. H.; and Ackermann, R. J.: The Chemical Thermodynamics of Actinide Elements and Compounds; Part 1. The Acting ide Elements, IAEA, Vienna (1976) O'Hare, P. A. G.; Boerio, J.; and Hoekstra, H. R.; J. Chem. Thermodvnam, 8, 845 (1976) O'Hare, P. A. G.; and Hoekstra, H. R.; J. Chem. Thermodynam. 5, 769 (1973)U'Hare, P. A. G.; and Hoekstra, H. R.; J. Chem. Thermodynam. <u>6</u>, 1161 (1974) O'Hare, P. A. G.; and Johnson, G. K.; Private Communication, Argonne Nat'l Lab. (June 1976); (also Johnson G. K.; and O'Hare, P. A. G.; J. Chem. Thermodynam. 10, 577 (1978))

O'Hare, P. A. G.; Settle, J. L.; Føder, H. M.; and Hubbard, W. N.; International Atomic Energy Agency Sympt, Vienna, Austria, Paper No. XM <u>98/41</u>, 19pp (Sept. 1967) O'Hare, P. A. G.; Shinn, W. A.; Mrazek, F. C.; and Martin, A. E.; J. Chem. Thermodynam. 4, 401 (1972) Oliver, G. D.; Milton, H. T.; and Grisard, J. W.; J. Am. Chem. Soc. 75, 2827 (1953) Osborne, D. W.; Flotow, H. F.; Fried, S. M.; and Malm, J. G.; J. Chen. Phys. 61, 1463 (1974) Osborne, D. W.; Flotow, H. E.; Fried, S. M.; and Malm, J. G.; J. Chem. Phys. <u>63</u>, 4613 (1975) Osborne, D. W.; Westrum, E. F.; and Lohr, H. R.; J. Am. Chem. Soc. 77, 2737 (1955) Parker, V. B.; letter to J. Fuger, June 13, 1975 Parker, V. B.; NBS Interim, Thermochem. Props. U Compounds [TN 270 Basel and (CODATA Basel, (April i, 1976a) Parker, V. B. "An Analysis and Interpretation of AHF' UF6 "Memorandum for IAEA Authors, (Oct. 15, 1976) Parker, V. B.; Wagman, D. D.; and Garvin, D.; 'Selected Thermochemical Data Compatible with CODATA Recommendations', Natl. Sur. Standards NBS IR 75-968 (1976) Popov, M. M.; and Gagarinskii, Yu. V.; Zhur. Neorg. Khim. <u>2</u>, 3 (1957) Popov, M. M.; Galichenko, G. L.; and Senin, M. D.; Zhur. Neorg. Khim. 4, 1241 (1959a) Popov, M. M.; Kostylev, F. A.; and Zubova, N. V.; Zhur. Neorg. Khim. 4, 1708 (1959b) Popov, M. M.; Kostylev, F. A.; and Karpova, T. F.; Zhur. Neorg. Khim. 2, 9 (1957) Prins, G.; Reactor Cent. Ned. Rept. No. 186, 115pp (1973) Prins, G.; Cordfunke, E.; Ouweltjes, W.: Private Communication (Feb. 1973) Rand, M. H.; Ackermann, R. J.; Gronvold, F.; Oetting, F. L.; and Pattoret, A. 'The Chemical Thermodynamics of Actinide Elements and compounds'. Part XI. The Actinide Oxides, IAEA, Vienna (to be published) Rand, M. H.; and Kubaschewski, O.; "The Thermochemical Properties of Uranium Compounds', Interscience Pub., New York (1963)

-156-

Rossini, F. D.; Wagman, D. D.: Evans. W. H.; Levine, S.; and Jaffe. Selected Values of Chemical Thermodynamics Properties, Nat'l Bur. Standards, Circ <u>500</u>, U. S. Govt. Printing Office. Wash. D. C., (1952) Savage, A. W., Jr.; and Browne, J. C.; J. Am. Chem. Soc. <u>82</u>, 4817-4821 (1960) Seip, H. M.; Acta Chem. Scand. 19, 1955 (1965) Settle, J. L.; Feder, H. M.; and Hubbard, W. N.; J. Phys. Chem. <u>67</u>, 1892 (1963) Shchukarev, S. A.; Vasil'kova, I. V.; and Efimov, A. I., Zhur. Neorg. Khim., <u>1</u>, 2652 (1956) Shchukarev, S. A.; Vasil'kova, I. V.; Martynova, N. J.; and Mal'tsev, Yu. G.; Zhur. Neorg. Khim. <u>3</u>, 2647 (1958a) Shchukanev, S. A.; Vasilíkova, I. V.; and Frozdova, V. M.; Zhor. Neorg, Khim. 3, 2651 (1958b) Shchukarev, S. A.; Vasil'kova, I. V.; Drozdova, V. M.; and Martvnova, N. S.; Zhur. Neorg. Khim. 4, 33 (1959a) Shchukanev, S. A.; Vasil'kova, I. V.; Drozdova, V. M.; and Frantseva, K. E.; Zhur. Neorg. Khim. <u>4</u>, 39 (1959b) Smirnov, M. V.; Nichkov, I. F.; Raspopin, S. P.; and Perful(ev, A. J.; Doklady Akad. Nauk SSSR 130, 581 (1960) Smith, B. C.; Thakur, L.; and Wassef, M. A.; Indian J. Chem. Z, 1154 (1969) Stull, D. R.; and Prophet, H. JANAF Thermochemical Tables, NSRDS-NBS 37 (June 1971) Sudarikov, B. N.; Seleznev, V. P.; Rakov, E. G.; and Kulvako, Yu. M.; Russ. J. Inorg. Chem. 15, 1441 (1970) Sundaram, S.; Z. physik. Chem. [NF1 <u>34</u>, 225-232 (1962) Supenitskii, Yu. L.; Seleznev, V. P.; Mukhametshina, Z. B.; Bedrov, V. G.; Karapet'yants, V. G.; and Sudarikov, B. N.; Radiokhimiya <u>16</u>, 88 (1974) Suponitskii, Yu. L.; Tsvetkov, A. A.; and Karapet/vants, M. Kh.; Russ. J. Phys. Chem. <u>45</u>, 558 (1971) Tsvetkov, A. A.; Seleznev, V. P.; Sudarikov, B. N.; and Gromov, B. V.; Russ. J. Inorg. Chem. 16, 1229 (1971) fsvetkov, A. A.; Seleznev, V. P.; Sudarikov, B. N.; and Gromov, B. V.; Russ. J. Inorg. Chem. 17, 1048 (1972)

Tsvetkov, A. A.; Seleznev, V. P.; Sudarikov, B. N.; and Gromov, B. V.; Russ. J. Inorg. Chem. 18, 5 (1973) Tumanov, Y. N.; Russ. J. Inorg. Chem. <u>13</u>, 782 (1968) Treekrem, J. D.; and Chandrasekharaiah, M. S.; J. Electrochem. Soc. 1 <u>115, 1021 (1968)</u> Vdovenko, V. M.; Romanov, G. A.; and Shcherbakov, V. A.; Radiokhimiya 5, 581 (1963) Vdovenko, V. M.; Romanov, G. A.; and Solntseva, L. V.; Radiokhimiya <u>9</u>, 727 (1967) Vdovenko, V. M.; Romanov, G. A.; and Solntseva, L. V.; Radiokhimiya 11, 466 (1969) Vdovenko, V. M.; Romanov, G. A.; Malinin, G. V.; and Solntseva, L. V.; Soviet Radiochem. 12, 726 (1970a) Vdovenko, V. M.; Romanov, G. A.; and Solntseva, L. V.; Soviet Radiochem. 12, 730 (1970b) Vdovenko, V. M.; Suglobova, I. G.; and Chirkst, D. E.; Radiokhimiya <u>15, (1) 58 (1973)</u> Vdovenko, V. M.; Volkov, V. A.; and Suglobova, I. G.; Radiokhimiya 16, 363 (1974) Vidavskii, L. M.; Byakhova, N. I.; and Ippolitova, E. A.; Zhur. Neorg. Khim. 10, 1746 (1965) Vidavskii, L. M., and Ippolitova, E. A., Radiokhimiva 13, 299 (1971) Vidavskii, L. M.; and Ippolitova, E. A.; Radiokhimiya <u>14</u>, 129 (1972) Wacker, P. F.; and Cheney, R. K.; J. Res. Natl. Bur. Standards <u>39</u>, 317 (1947) Wagman, D. D. et al; NBS Technical 270-3 (1968), 270-4 (1969), 270-5 (1971), Parker, V. B. et al; NBS Technical Note 270-6 (1971); Schumm, R. H., et al; NBS Technical Note 270-7 (1973); U. S. Government Printing Office (Washington, D.C.) Wagman, D. D.; Schumm, R. H.; and Parker, V. B.; 'A Computer-Assisted Evaluation the Thermochemical Data of the Compounds of Thorium', Nat'l Bur. Standards NBSIR 77-1300 (Aug. 1977) Weinstock, B.; and Crist, R. H.; J. Chem. Phys. <u>16</u>, 436 (1948) Westrum, E. F.; and Gronwald, F.; J. Am. Chem. Soc. <u>81</u>, 1777 (1959) Westrum, E. F.; IAEA Symposium on Thermodynamics, Vienna, Austria II, 497 (1966)

Westrum, E. F.; and Huntzicker, J. J.; J. Chem. Thermodynam. 3, 61 (1971)

Wolf, A. S.; Posey, J. C.; and Rapp, K. E.; Inorg. Chem. <u>4</u>, 751 (1965)

Young, H. S.; and Grady, H. F.; Paper 78 in Katz, J. J.; and Rabinowitch, E., eds.;U. S. AEC T1D-<u>5290</u>, (1958)

Znbov, K. F.; 'Heats of Formation of Lower Actinide Fluorides from Mass Spectrometric Studies', Proc. 1st Int. Conf. Calorimetry and Thermodynamics, Warsaw p. 423, (Aug. 31-Sept. 4, 1969)

•

V. Appendix: Thermal Functions for Some Uranium-Halogen Containing Compounds

·

		UF(g)		
ТК	Cp	H-H _O	S°	- (G-H ₂₉₈)/T
	cal/mol·K	cal/mol	cal/mol·K	cal/mol·K
100	7.01	696	51.83	67.65
200	7.99	1439	56.94	61.14
298.15	9.04	2278	60.34	60.34
300	9.05	2294	60.39	60.34
500	10.11	4229	65.31	61.41
1000	10.76	9492	72.58	65.37
1500	10.93	14919	76.98	68.55
2000	11.01	20405	80.14	71.07
		UF ₂ (g)		
100	9.48	858	58.48	82.69
200	11.93	1908	65.66	72.52
298.15	16.00	3279	71.18	71.18
300	16.06	3309	71.28	71.18
500	18.33	6887	80.37	73.16
1000	16.83	15552	92.45	80.18
1500	17.35	24060	99.34	85.49
2000	18.10	32937	104.44	89.62
		UF ₂ (g)		
100	12 61	1009	69 11	00.46
200	15 / 1	2611	72 72	93.40
298 15	17 76	2411	70.22	80.89
300	17 79	4044	79.00	79.33
500	20 27	7929	20 23	/9.33
1000	21.49	18457	103 79	01.40
1500	22.45	293/19	112 60	05.30
2000	22.05	40504	110.02	95.74
2000	22.50	+0.00+	119.02	100.78

		UF ₃ (c)		
тк	Cp	H-H ₂₉₈	s°	-(G-H ₂₉₈)/T
	cal/mol·K	cal/mol	cal/mol·K	cal/mol·K
298.15	23.38	0	30	30
300	23.39	43.	30.145	30.
400	24.12	2419.	36.974	30.927
500	24.85	4867.	42.434	32.700
600	25.58	7389.	47.029	34.715
700	26.31	9983.	51.027	36.766
800	27.04	12651.	54.588	38.775
900	27.77	15391.	57.815	40.714
1000	28.5	18205.	60.779	42.574

		UF ₄ (g)		
ΤK	Cp	H-H _O	s°a	-(G-H ₂₉₈)/T ^a
	cal/mol·K	cal/mol	cal/mol·K	cal/mol·K
298.15	21.815	4764	80.176 + 8.2	80.176 + 8.2
300	21.852	4804	80.311 + 8.2	80.177 + 8.2
400	23.304	707 0	86.818 + 8.2	81.054 + 8.2
500	24.114	9434	92.113 + 8.2	82.753 + 8.2
600	24.598	11882	96.556 + 8.2	84.693 + 8.2
700	24.906	14358	100.373 + 8.2	86.667 + 8.2
800	25.114	16860	103.713 + 8.2	88.593 + 8.2
900	25.259	19379	106.680 + 8.2	90.441 + 8.2
1000	25.365	21910	109.347 + 8.2	92.201 + 8.2
1100	25.444	24451	111.768 + 8.2	93.871 + 8.2
1200	25.505	26998	113.985 + 8.2	95.456 + 8.2
1300	25.553	29551	116.028 + 8.2	96.961 + 8.2
1400	25.591	32109	117.923 + 8.2	98.392 + 8.2
1 50 0	25.622	34669	119.690 + 8.2	99.753 + 8.2
		UF ₅ (g)		
298.15	26.222	5597	90.055 + 3.0	90.055 + 3.0
300	26.270	5646	90.218 + 3.0	90.056 + 3.0
400	28.222	8380	98.069 + 3.0	91.113 + 3.0
500	29.342	11263	104.498 + 3.0	93.167 + 3.0
600	30.022	14233	109.913 + 3.0	95.519 + 3.0
700	30.460	17259	114.576 + 3.0	97.916 + 3.0
800	30.756	20321	118.664 + 3.0	100.259 + 3.0
900	30.965	23407	122.298 + 3.0	102.510 + 3.0
1000	31.117	26512	125.570 + 3.0	104.655 + 3.0
1100	31.231	29629	128.541 + 3.0	106.693 + 3.0
1200	31.319	32757	131.262 + 3.0	108.629 + 3.0
1300	31.388	35892	133.772 + 3.0	110.468 + 3.0
1400	31.443	39034	136.100 + 3.0	112.217 + 3.0
1500	31.487	42181	138.271 + 3.0	113.882 + 3.0

^a S and $-(G-H_{298})/T$ values for $UF_4(g)$ are increased by 8.2 cal/mol·K to be consistent with equilibrium data; similarly 3.0 cal/mol·K are added for $UF_5(g)$.

		6 ^(g)		
ΤK	Cp	H-HO	S°	-(G-H ₂₉₈)/T
	cal/mol·K	cal/mol	cal/mol·K	cal/mol·K
298.15	30.985	6384.4	90.233	90.233
300	31.044	6441.7	90.425	90.233
400	33.436	9677.4	99.717	91.484
500	34.797	13095.1	107.337	93.916
600	35.620	16619.1	113.760	96.702
700	36.149	20209.4	119.293	99.543
800	36.506	23843.2	124.145	102.322
900	36.757	27507.0	128.460	104.991
1000	36.941	31192.4	132.343	107.535
1100	37.078	34893.7	135.871	109.953
1200	37.184	38607.0	139.102	112.249
1300	37.267	42329.8	142.081	114.431
1400	37.333	46059.9	144.846	116.506
1500	37.387	49796.0	147.423	118.482
1600	37.431	53537.0	149.838	120.367
1700	37.468	57282.0	152.108	122.168
1800	37.499	61030.3	154.251	123.892
1900	37.525	64781.5	156.279	125.543
2000	37.547	68535.1	158.204	127.129

7777 /

UBr	_२ (c)
-----	----------------	---	---

ΤK	Cp	^{H-H} 298	S°	-(G-H ₂₉₈)/T
	cal/mol·K	cal/mol	cal/mol·K	cal/mol·K
298.15	25.98	0.	46.00	46.00
300	25.99	48.	46.16	46.00
400	26.62	2670.	53.72	47.03
500	27.25	5372.	59.73	48.99
600	27.88	8129.	64.76	51.21
700	28.51	10948.	69.10	53.46
800	29.14	13831.	72.95	55.66
900	29.77	16776.	76.42	57.78
1000	30.40	19785.	79.59	59.80

 $UBr_4(c,1)$

ТК	Cp	^{H-H} 298	S°	- (G-H ₂₉₈)/T
	cal/mol·K	cal/mol	cal/mol.K	cal/mol·K
298.15	30.62	0.	57.00	57.00
300	30.63	57.	57.19	57.00
400	31.34	3155.	66.10	58.21
500	32.05	6325.	73.17	60.52
600	32.76	9565.	79.07	63.13
700	33.47	12877.	84.18	65.78
792	34.12	15986.	88.35	68.17
792	41.00	27586.	103.00	68.17
800	41.00	27914.	103.41	68.52
900	41.00	32014.	108.24	72.67
1000	41.00	36114.	112.56	76.44
1040	41.00	37754.	114.17	77.86

		01 ₃ (c)		
ТК	Cp	H-H ₂₉₈	S°	-(G-H ₂₉₈)/T
	cal/mol·K	cal/mol	cal/mol·K	cal/mol·K
298.15	26.83	0.	53.00	53.00
300	26.84	50.	53.17	53.00
400	27.42	2763.	60.97	54.06
500	28.00	5534.	67.15	56.08
600	28.58	8363.	72.30	58.37
700	29.16	11250.	76.75	60.68
800	29.74	14195.	80.68	62.94

UI₄(c,1)

ΤK	Cp	H-H ₂₉₈	S°	-(G-H ₂₉₈)/T
	cal/mol·K	cal/mol	cal/mol·K	cal/mol·K
298.15	30.20	0.	63.00	63.00
300	30.27	56.	63.19	63.00
400	32.80	3226.	72.29	64.22
500	34.10	6577.	79.76	66.61
600	34.92	10031.	86.06	69.34
700	35.50	13553.	91.48	72.12
779	35.88	16373.	95.30	74.28
779	39.60	25573.	107.11	74.28
800	39.60	26404.	108.16	75.16
870	39.60	29176.	111.49	77.95

NBS-114A (72% 74)			
U.S. DEPT. OF CONN. 1. PUBLICATIO BIBLIOGRAPHIC DATA SHEET NBSIR	N OR REPORT NO. 80-2029	2. Gov't Accession No.	3. Reciptent's Accession No.
4. TITLE AND SUBTITUE			1. Publication Date
The Thermonitamical Proparties	of the Trentum	-2010010	July 1980
Containing Compounds		-24-952	5. Performing Organization Code
AUTHOR S			8. Fertisiming Sirgan, Report No.
Vivian 3. Farker			
. PERFORMING ORGAN ZATION NAME AND AD	DRESS		11. Project (Task, Work Linit Wa
NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHEDTON, DC 20234			11. Contract Grant No.
2. SPONSORING OFICAN ZATION NAME AND CO	MPLETE AODRESS (Sm	eet, 1kr, State, 235	13. Type of Report & Period Covered
			14. Standaring Agency Code
5. SURPLEWENTARY NOTES	-186 FIPS Schokere Sur	nmany s sizecter.	
A dornally a filled analysis and a	eveluation of t	ne thermotherstry	ee e rigno cano bishisgrepro on 1 of the ottanium-haloger
containing compounds is presed	iced, with a ta	cular summary of c	is instructional
properties given. The propert	ies giver, vie	re iata are availa	ble, are in the enthal;
of formation, LEF", Sibbs ener	ay di iormatio	L. III, ELITY,	i, seat satatity, ly',
all at temperature 198013 4, a ecthalyy difference, 3° 1980-3	$\mathbb{P}^{2}(0)$. The val	y of formation at Des are consistent	vici the ONLATA Rey
Talves for thermosynamics.			
The analysis of the trans pressure equations and C. equa	um-halogen con cions, Some i	caining compounds hermal fractions w	incluies some vapor mich are not readily
available in the accessible of	en literature	are presented in t	as appendix for

compounds that required their use.

The tabular summary of LEF', LEF', includes the values for those gradium compounds which were necessary for this evaluation.

2. • E' WOFCI me is the relevant supresences order capital de or a the relief of the liter key word shutter a proper fame properties or periodiants

lata evaluation; enthalpy: entropy; Gibbs energy: heat depactoy; thermothemical tables; tranim-halogen containing compounds

······································	B.	LE CEDURITA CLASS TA CIREPORT	
_ేహహేంజ : హాయారా, ౫ ౫ [∞] శ	8208 T III	JNCLACT F ED	
- Star For Sal of Stal J.S. Saver - Intel II Star Ma DWILLANS-	ter interne 1991 is. Vestingen, 10	12 220187 21-22 THIS FASE	
	andr lær i a 🗂 1. lærigi e 1.	-WII = EI	

