

NBS Publi cations

CONTAINER BOARD

NBSIR 80-1836

report no. 127 April 1980

NBS Collaborative Reference Program for Containerboard Fourdrinier Kraft Board Group American Paper Institute, Inc. and U.S. Department of Commerce, National Bureau of Standards

QC 100 .U56 80-1836 1980

NBS COLLABORATIVE REFERENCE PROGRAMS

TAPPI Paper and Board (6 times per year)

Bursting strength Tearing strength Tensile breaking strength K & N ink absorption Elongation to break Tensile energy absorption Folding endurance Stiffness Air resistance Grammage

Smoothness Surface pick strength Moisture content Opacity Blue reflectance (brightness) Specular gloss, 75° Thickness Concora (flat crush) Ring crush

FKBG-API Containerboard (48 times per year)

Mullen burst of linerboard Concora test of medium

MCCA Color and Appearance (4 times per year)

Gloss at 60° Color and color difference

CTS Rubber (4 times per year)

Tensile strength, ultimate elongation and tensile stress Hardness Mooney viscosity Vulcanization properties

ASTM Cement (2 times per year)

Chemical (11 chemical components) Physical (15 characteristics)

AASHTO Bituminous

Asphalt cement (2 times per year) Cutbacks (once a year)

> NBS Collaborative Reference Programs A05 Technology Building National Bureau of Standards Washington, DC 20234

SEP 1 9 1980

CONTAINER BOARD

Collaborative Reference Program for Containerboard report no. 127 April 1980

T.L. Cummings NBS Research Associate Collaborative Testing Services, Inc.

J. Horlick Office of Testing Laboratory Evaluation Technology, Office of Engineering Standards, National Engineering Laboratory

U.S. Department of Commerce, National Bureau of Standards Fourdrinier Kraft Board Group American Paper Institute, Inc.

The Collaborative Reference Program for Containerboard is cosponsored by the Fourdrinier Kraft Board Group (FKBG) of the American Paper Institute, Inc. and the National Bureau of Standards. The Program is maintained and operated by Collaborative Testing Services, Inc. (CTS). CTS is a non-profit organization of associations that offers CRPs to a wide range of industries.

Samples of three weights of linerboard, nominally 26 1b, 42 1b, and 69 1b and of corrugating medium (26 1b) are separately randomized from uniform narrow rolls and packaged for distribution to the participants. Each month, sufficient test material for four weekly tests is mailed to participants for testing Mullen bursting strength according to TAPPI official testing method T807 os-75 or Concora flat crush strength according to TAPPI official testing method T809 os-71. The participants return their test results to NBS for analysis and receive a monthly report from NBS. This report compares each laboratory's results with the industrial mean.

If there are any questions on the notes, the analyses, or the reports in general, contact Thomas L. Cummings on (703) 442-0433 or Jeffrey Horlick on (301) 921-2946.

Jeffrey Horlick, Technical Administrator

NBS Collaborative Reference Programs

Office of Testing Laboratory Evaluation Technology

May 29,1980

TABLE OF CONTENTS

Page	
1	Explanation of Tables
4	Instrument Codes
5	Use of Average Mean as a Reference Standard
6	Bursting Strength, Linerboard 42L3, weeks 1 - 4
8	Bursting Strength, Linerboard 26K1 weeks 1 - 4
10	Concora Flat Crush, Corrugating Medium 26D3

EXPLANATION OF TABLES

Each table shows laboratory test results for Mullen bursting strength of linerboard or Concora flat crush strength of corrugating medium. The data are divided into three time spans. On the left of each table is an analysis for each week of the month. In the center is cumulative data for the month and on the right is cumulative data for up to 16 weeks.

Conservative statistical tests have been used in excluding extreme data from the analyses. Thus, where the mean (average) for one laboratory is compared with the average for many laboratories, limits have been used that would exclude only one laboratory in a hundred if all laboratories followed exactly the same testing procedure. Consequently, laboratories receiving "X" flags should review their testing procedures, instrument calibration, and control processes. Similar conservative criteria were used in flagging within-laboratory standard deviations and other statistics.

LAB MEANS THIS MONTH WEEKLY VALUES: CODE V WK-1 WK-2 WK-3 WK-4

- LAB CODE Confidential laboratory identification number known only to the participant and the Collaborative Reference Program staff.
 - V Code for indicating instrument type, units used, and any other variation in test procedure or conditions. A '+' in this column means a non-standard variation. Data marked '+' are not included in the combined averages for all laboratories. (see page 4).
- MEANS THIS MONTH For each laboratory each weekly mean is the average of individual test determinations, usually an average of 20 determinations.

FLAGS (following means and standard deviations) -

- X Data excluded from an AV MEAN or average standard deviation because value deviated from the AV MEAN or average standard deviation by more than 2.576 times the appropriate standard deviation. A laboratory following the prescribed test method could obtain such an extreme value by chance only one time in a hundred. Corrective action is almost certainly required.
- * Data included in the CUMULATIVE AV MEAN but the value deviated from this mean by more than 1.960 and less that 2.576 times the SD CUM MEAN. A laboratory following the prescribed test method could obtain such an extreme value by chance only one time in twenty. Corrective action may be desired.

- S This is a warning to the laboratory but does not affect inclusion or exclusion of the laboratory's results from the corresponding AV MEAN. This flag indicates an extremely high or low within-laboratory standard deviation (SDR, not shown) that could occur by chance only one time in a hundred if the laboratory is following the prescribed test method.
- AV MEAN (at bottom of table) The average for the indicated week of the means for all laboratories, except those laboratories marked '+' in column V and those means marked with an 'X'.
- SDR (not shown) The standard deviation of within-laboratory measurements; i.e., the Standard Deviation of the Replicate measurements made at one time in one laboratory on one package of test pieces.
- AV SDR The average for the indicated week of the SDR's of all the laboratories, except those omitted from the AV MEAN. Also an extremely high or low SDR as compared with the AV SDR based on the remaining laboratories is omitted from the AV SDR and the letter 'S' is placed after the laboratory mean for that week. The AV SDR is an index of the within-laboratory precision for repeated measurements; i.e., a measure of the ability of an average laboratory to repeat its results over a short period of time. It includes measurement error and sample variation.
- SD LABS For each week the standard deviation of the means about the AV MEAN for that week after omitting those means marked with an 'X' or noted '+' in column V. The SD LABS is an index of the among-laboratory precision of the test method as applied by the participating laboratories; i.e., a measure of the ability of laboratories to get comparable results.
- NO. INCL The number of laboratory means included in the AV MEAN for that week.
- NO. OMIT The number of laboratory means reported but omitted from AV MEAN because of non-standard equipment, environment or procedure ('+' in column V) or because of extreme results (X following mean).
- NOT RCD The number of laboratories failing to report data on time or in usable form for this week (but who reported data for at least one of the other weeks of this month), or who received test pieces from a different sample of material and whose data therefore are shown in another table of this report.
- SD SHTS (Concora only) The average for the indicated week of the amongsheet within-laboratory standard deviations. The SD SHTS is an index primarily of the variability among sheets.

THIS MONTH

VALUES THIS MONTH:

MEAN SDR SDWKS

- MEAN The average for the indicated laboratory of the reported weekly MEANS THIS MONTH.
- SDR The average for the indicated laboratory of the weekly SDRs for the current month.
- SDWKS For the indicated laboratory, the standard deviation among the laboratory's weekly MEANS THIS MONTH (including those means marked with an 'X').

CUMULATIVE

CUMULATIVE VALUES: MEAN SDR SDWKS WKS

- MEAN The average for the indicated laboratory of all its weekly means for the number of weeks indicated, including those for the current month. An '*' or 'X' following this CUMULATIVE MEAN indicates the laboratory is running consistently low or high. (See above for explanation of these flags).
- SDR The average for the indicated laboratory of the weekly SDRs for the indicated number of weeks.
- SDWKS For the indicated laboratory, the standard deviation among the laboratory's weekly means (including those means marked with an 'X'). SDWKS is an index of the week to week precision; i.e., a measure of the ability of a laboratory to repeat its results from week to week.
- WKS Number of weeks for which usable results have been reported by that laboratory. At most, 16 weeks of data are included.

GRAND AVERAGES

GRAND AVERAGES: THIS MONTH CUMULATIVE 12 WEEKS

THIS MONTH - Averages for the four weeks of the quantities shown to the left.

CUMULATIVE - Averages for the indicated number of weeks, including the four weeks of the current month.

- AV SDWKS The average of the SDWKS for all laboratories excluding those marked '+' in column V or with an 'X' following the corresponding THIS MONTH or CUMULATIVE MEAN or SDWKS.
- SD CUM MEAN The larger of either (1) the standard deviation of the CUMULATIVE MEANS about the average CUMULATIVE MEAN after omitting those CUMULATIVE MEANS marked with an 'X' or with a '+' in column V, or (2) the CUMULATIVE SD LABS divided by the square root of the number of weeks cumulated. The former will be appreciably larger than the latter only when there are persistent systematic differences among the laboratories.

INSTRUMENT CODES FOR MULLEN BURST OF LINERBOARD (Column V)

Code	Description
A	Model A, Manual Clamp
H	Model AH, Hydraulic Clamp
I	Model A, Hydraulic Clamp added
J	Jumbo, Hand Clamp, Hand Driven
L	Lhomargy, Hydraulic Clamp, in kPa
M	Model AH, Hydraulic Clamp, Transducer
R	Model A, Air Clamp added
Х	Other Model, Please Describe Instrument Make and Model
Y	Nonstandard Instrument or Method
Z	Data received too late to be included in statistical analysis

INSTRUMENT CODES
FOR
CONCORA TEST OF MEDIUM
(Column V)

Code	Description
Z	Data received too late to be included in statistical analysis

A large supply of linerboard in three weights was randomized and placed in sealed packages ready for shipment. The supply for each weight of board was divided into several narrow "rolls" or cross-machine "positions" of a larger roll, and each position was separately randomized. Each package contains test pieces from one position only. The position is designated by the number following the letter in the code marked on the package. Thus $42\text{H}\ \underline{1}$ indicates that this package contains $42\ \text{lb}$ board from position 1 of lot H. Samples from the first position are distributed until exhausted, then from the second position, and so forth for each weight of board. Thus for short periods of time (several weeks to months), the samples that the participants test are from the same position of a lot, and for a longer period from the same lot.

The three weights of linerboard distributed in this program may be used as reference standards. The best reference values are the cumulative grand AV MEANs in the latest reports. These values are given at the bottom right of each table. For each weight of board, comparisons should be made first for measurements made on the same position, i.e., for checking your current measurement, use grand AV MEANs that have the same position code as on the packages being tested. The position is shown in the upper left corner of the table. If no report is yet available on the current position, grand AV MEANs from previously tested positions of the same lot may be used as approximate reference values.

Similarly a large supply of a 26 lb corrugating medium was randomized, after dividing into several narrow rolls or positions. The above discussion for linerboard also applies to the corrugating medium.

We are currently using the fourth lot of linerboard and the fourth lot of corrugating medium:

Lot	Material	Codes	Used
1	linerboard	A,B,C	October 1969 - April 1973
2	linerboard	D,E,F	September 1972 - September 1976
3	linerboard	G,H,I,J	October 1976 - September 1979
4	linerboard	K,L,M	September 1979 -
1	corrugating medium corrugating medium corrugating medium corrugating medium	(A)	May 1973 - March 1976
2		B	April 1976 - February 1977
3		C	March 1977 - August 1978
4		D	Septemher 1978 -

REPORT NO. 127 BURSTING STRENGTH (MULLEN), PSI

TAD			WELVIO MY	To Maney		AD 17 S						
LAB	2 37			IS MENTH			S MON			CUMULAT		
CGDE	. v	W K - 1	WK-2	₩K-3	WK-4	MEAN	SDR	SDWKS	MEAN	SDR S	DWKS	WKS
100	TT	110 4	116 0	101 0			0 (0 5				
100	H	118.4		121.2	121.2	119.2	8.6	2.5	119.3	7.9	1.5	11
102	H	114.4		119.5	115.3	116.1	7.2	2.3	116.1	6.9	1.9	11
103	I	119.3		119.5	119.4	119.3	5.4	• 1	119.4	6.3	1.4	11
105	M	118.6		118.4		118.8	6.6	. 5	117.2	8.3	3.0	10
106	Н	120.1	121.2	116.2	117.3	118.7	6.1	2.3	121.2	6.7	2.6	11
108	M	119.4	121.1	122.3	118.8	120.4	7.2	1.6	120.0	6.9	, ,	9
											1.2	
109	Н	118.5	124.6X	122.5	121.0	121.6	7.3	2.6	120.4	-		11
110	M	117.9	119.0		-	120.0	6.8	2.6	120.8	7.7	2.3	10
111	M	122.7		117.C	114.5S		8.6	3.4	117.7	8.1	3.0	11
112	H	118.5	120.3	115.0	116.1	117.5	8.4	2.4	114.6	€.5	4.0	11
113	R	114.1	120.3	115.0	117.0	116.6	7.2	2.8	116.7	6.9	2.1	11
114	М	115.1	120.9	120.15	117.2	118.4	8.9	2.7	119.9	7.5	2.7	11
115	R	117.6	119.3	121.7	120.7	119.8	7.2	1.8	117.0	6.6	3.3	11
117	Ħ	118.0		116.8	115.1	116.6	8.2	1.2	115.5	7.3		
											2.4	11
119	H	121.8	117.6	116.1	119.8	118.8	7.0	2.5	117.9	7.5	3.2	10
120	R	118.0	116.3	115.9	114.4	116.2	7.5	1.5	116.4	7.6	1.8	11
121	M	121.0		120.3	122.3	121.5	6.9	1.0	121.2	7.3	1.8	11
125	I	119.4		122.4	120.7		7.7	1.4	119.1	7.7	2.0	11
127	H	120.6		118.0	118.5	119.0	5.9	1.1	119.7			
									118.8	6.4	1.9	11
128	H	122.2	117.4	119.1	117.3	119.0	7.6	2.3	110.5	7.5	2.6	11
130	AL.	122.1	119.7	118.0	120.8	120.2	7.9	1.8	120.7	7.9	1.8	11
131	R	113.7		111.7XS		113.5X		1.7	115.7	8.8	3.4	11
133	A	118.4	119.9	117.2	121.0	119.1	7.7	1.7	117.3	7.0	1.9	11
134	H	115.2		117.6	118.8	117.3	7.1	1.5	117.3	7.3	1.2	11
135	ī	117.1	117.2	113.3	111.8	114.9	8.2	2.8	115.8	7.7	2.4	8
133	7	117.1	117.02	110.5	111.0	114.9	0.2	2.0	115.6	7 . 7	C . 4	0
136	Н	118.7	116.2	116.6	120.1	117.9	7.8	1.8	116.6	7.5	2.5	11
137	H	115.1		120.7	119.7	118.7	9.2	2.5	120.4	8.3	4.4X	11
138	H	122.3		122.6	120.0	121.3	8.1	1.3	123.1*		2.2	11
139	2	115.9	117.6	117.4	118.7	117.4	9.1	1.2	115.4	7.9	4.1	10
140	Н	116.0S	117.98	119.95	11001	117.9	2.8	1.9	117.3	3.1X	1.2	9
140	11	110.05	117450	119.90		111.0	2.0	1.00	117.5	J. 1 X	102	7
141	М	115.9	115.9	116.6	116.1	116.1	6.6	.3	116.4	6.4	. 8	11
142	A	118.4	118.7	118.6	117.7	118.4	5.6	. 4	117.2	6.5	2.3	11
143	H	121.5	117.0	122.2	118.7	119.8	8.0	2.4	120.7	2.7	2.3	6
145	Н	115.4	117.8	119.4	123.2	118.9	5.7	3.3	118.6	6.4	3.0	10
147	Ħ	119.9	117.4	119.8	115.4	118.2	8.1	2.1	116.5	7.8	2.5	11
	-									. • •	-,-	
149	H	120.2	118.6	117.7	117.9	118.6	7.9	1.1	118.5	7.2	3.1	11
151	Æ	117.3	121.4	120.6	119.1	119.6	7.5	1.8	120.3	7.5	1.8	11
153	Н	126.5X	123.1	118.4	126.1X	123.5X	6.9	3.7	123.1*	7.3	3.3	11
155	H	117.4	120.2	118.5	117.5	118.4	7.0	1.3	118.8	8.0	1.1	11
157	H	114.6	114.3	113.4	115.3	114.4	6.6	. 8	114.7	6.2	1.0	11
		-										
161	+ X	120.4	123.5	120.0	120.3	121.1	8.3	1.7	123.4*	7.1	2.7	10
165	P	117.8	119.3	118.4	115.5	117.8	7.5	1.6	117.5	6.9	1.6	11
167	Ħ	112.3	116.0	117.1	117.3	115.7	6.2	2.3	115.3	7.0	2.1	11
169	I	119.6		117.8	111.6S	116.2	7.8	3.4	116.8	7.5	2.5	11
171	H	114.4		120.3	116.4	117.4	7.0	2.5	115.8	6.8	2.4	11
172	H	117.5	117.4	116.05	117.5	117.1	4.6	.7	117.9	5.8	1.9	11
173	H	121.0		119.6	118.6		6.6	1.5	121.5	6.2	2.3	11
174	Н	116.1	112.3X		114.4	114.2	8.1	1.6	116.2	7.9	2.5	11
175	Ħ	124.6X	124.0X		124.5	123.0	8.4	2.7	120.7	8.1	3.3	10
176	H	115.7	117.1	117.6	115.3	116.4	8.2	1.1	116.0	7.5	2.8	11
177	H	115.9	115.3	116.3		115.9	8.1	• 5	117.7	7.6	2.1	10
182	H	118.5	116.9	121.9	119.6	119.2	6.4	2.1	119.8	7.4	2.0	11
184	H	118.7	141.6XS		119.3	126.5X	9.6	10.7	123.1#	8.2	7.0X	10
186	I	119.6	118.6	116.9	119.5	118.7	8.1	1.2	119.7	7.8	1.2	11
188	7	117.6	117.1	119.2	118.1	118.0	6.1	• 9	117.9	6.6	1.0	11

LINERBOARD 42L3

COLLABORATIVE REFERENCE PROGRAM REPORT NO. 127 BURSTING STRENGTH (NULLEN), PSI

APRIL 1980

LAB		1	MEANS TH	IS MONTH		TH	IS MON	TH	CUNULATIVE			
CGDI	V	W K - 1	WK-2	WK-3	W K - 4	MEAN	SDR	SDWKS	MEAN	SDR	SDWKS	WKS
198	R	118.1	117.0	116.0		117.0	6.2	1.0	115.9	6.5	1.9	10
25 0	+N		115.6S	115.1	116.9	115.9	10.1	. 9	115.2	9.6X	1.5	8
274	H	116.9	117.3	117.3	118.7	117.6	7.0	.8	117.1	6.8	1.0	11
283	H	121.0		121.3		121.2	6.9	. 2	119.2	6.6	1.9	6
287	A	130.5XS	131.2X	132.4X	128.1X	130.6X	9.9	1.8	139.1X	10.2X	2.6	11
359	H	120.1	119.8	116.7	119.2	119.0	8.4	1.5	116.1	7.6	2.9	11
553	M	120.0	120.3	118.2	125.9X	121.1	6.1	3.3	121.3	6.9	2.2	11
562	A	121.1	123.8	122.0	119.5	121.6	8.3	1.8	122.9#	0.9	3.6	11
568	I	129.4X	130.1X	125.9XS	125.6X	127.8X	10.7	2.3	126.9X	8.9	4.3X	11
569	A	121.5	117.7	118.1	118.0	118.8	8.9	1.8	120.3	8.3	2.2	11
658	H	116.5	117.9			117.2	5.1	1.0	117.2	5.4X	.8	6
701	H	120.8	117.4	122.9	118.4	119.9	7.2	2.4	119.8	7.7	2.0	11

					GRAND AVERAGES
	WK-1	WK-2	WK-3	WK-4	THIS MONTH CUMULATIVE 11 WEEKS
AV MEAN	118.2	118.5	118.5	118.2	AV MEAN 118.4 118.3
AV SDR	7.5	7.1	7.1	7.5	AV SDR 7.3 7.3
SD LABS	2.5	2.0	2.4	2.6	SD LABS 2.4 2.8
NG. INCL	61	57	59	55	NG.INCL 58.0 59.2
NO. GMIT	5	9	6	6	AV SDWKS 1.9 2.2
NOT RCD	1	1	2	6	SD CUM MEAN 2.2

LINERBUARD 26K1 CULLABURATIVE REFERENCE PROGRAM REPORT NG. 127 REPORT NO. 127 BURSTING STRENGTH (NULLEN), PSI

LAB			MEANS TH			THI	S Men:	гн		CUMULAT	TIVE	
CODE	V	W K - 1	WK-2	WK -3	WK - 4	MEAN	SDR	SDWKS	MEAN	SDR S	DWKS	WKS
100	H	83.4	79.5	81.3	81.6	81.5	5.4	1.6	81.3	5.6	1.3	12
102	H	74.9X	79.4	76.9	77.1	77.1	5.1	1.8	77.9	5.1	2.0	11
103	I	80.5	80.5	80.5	78.9	80.1	6.6	. 8	80.0	6.0	1.9	12
105	ME	80.9	85.5	84.0		83.5	6.4	2.4	81.2	6.3	2.2	11
106	H	82.4	82.2	81.8	82.4	82.2	4.9	.3	82.1	6.4	1.8	12
100	м	0.4 1	83 4	80.4	70 7	01 7	<i>- -</i>	2.0	82 0	<i>5</i>	2 4	
108	M	84.1	82.4		79.7	81.7	5.4	2.0	82.9	5.6	2.4	6
109	H	79.6	79.4	79.4	78.7	79.3	6.2	• 4	78.6	6.4	2.0	12
110	M	81.1	83.2		84.1	82.8	8.2	1.6	83.2	7.0	1.3	11
111	VI.	83.1	82.5	81.8	78.6	81.5	6.2	2.0	80.5	6.9	2.5	12
112	H	74.1X	77.6	74.6	78.2	76.1	8.5	2.1	72.9X	7.9	2.9	12
113	R	81.7	83.8	81.0	80.1	81.7	6.7	1.6	80.1	5.7	1.6	12
114	М	86.3	83.4	83.2	85.5	84.6	5.7	1.5	83.5	5.8	2.0	11
115	R	80.5	81.8	78.7	80.4	80.4	5.5	1.3	78.7	5.5	2.0	
117	H											12
		78.6	81.5	78.8	77.8	7 9.2	6.5	1.6	79.7	5.9	2.0	12
119	H	84.1	76.2	78.9	77.9	79.3	7.2	3.4	79.1	6.4	2.5	11
120	R	82.8	81.2	82.1	61.4	81.9	5.9	.7	83.1	6.2	1.9	11
121	M	85.8	83.4	86.7	84.0	85.0	7.2	1.6	83.2	6.7	2.5	12
125	I	79.4	76.0	81.3	81.3	79.5	6.9	2.5	81.6	6.2	3.0	12
127	H	82.5	80.9	81.3	81.6	81.6	5.0	.7	81.7	5.1	.7	12
128	H	82.2	81.4	84.7	79.6	82.0	6.7	2.1	81.9	6.8	1.6	12
120	(1	02.2	01.4	04.1	7 9 . 0	02.0	0.,		01.09	0.0	1.0	12
130	Н	E3.3	81.3	82.4	82.0	82.3	6.6	.8	82.0	7.2	1.7	12
131	R	77.5	78.3	73.4	76.0	76.3	6.9	2.2	78.9	6.7	2.9	12
133	A.	82.1	79.9	80.3	76.8	79.8	7.2	2.2	79.6	7.1	2.0	12
134	H	79.1	82.9	84.1	83.3	82.4	5.8	2.2	83.9	5.7	3.1	12
135	I	81.6	78.4	75.9	78.5	78.6	6.9	2.3	83.3	6.2	5.4X	8
	_						- • •					
136	H	8.09	81.0	82.7	82.3	81.7	5.8	1.0	81.2	5.9	1.1	12
137	H	77.8	77.6	78.0	81.2	78.7	7.9	1.7	79.4	7.4	3.1	12
138	H	81.8	81.4	82.3	84.4	82.5	6.6	1.3	82.8	6.9	1.6	12
139	P	79.2	80.8	83.4	80.5	81.0	7.4	1.8	78.1	7.1	2.6	12
140	H	78.3	75.6	75.4		76.4	3.5	1.6	76 . 1 #	4.3X	1.3	11
	16	70.0	77 4	70 5	3 0 5	70 4	<i>5</i> 0	0	70 0	<i>-</i> -		1.0
141	M	78.0	77.4	78.5	79.5	78.4	5.0	. 9	78.8	5.7	. 8	12
142	A	77.2	76.7	78.5	76.2	77.2	5.7	1.0	76.5*	5.9	1.1	12
143	H	79.0	79.0	76.8	78.9	78.4	5.7	1.1	78.4	5.7	1.1	4
145	Н	82.3	76.2	83.4	84.7	81.7	6.3	3.8	81.8	6.1	2.9	10
147	H	76.8	79.6	7 9.3	83.0	79.7	7.0	2.5	80.2	6.7	2.0	12
149	н	83.5	81.7	81.4	79.7	81.6	6.4	1.6	82.2	6.4	1.2	1 1
151	H	80.7	82.9	82.6	79.7	81.5	6.2	1.6	79.8	6.5	2.4	11
153	H	84.1	81.8	85.5	85.1	84.1	6.7	1.7	83.1	7.1	1.9	12
155	Н	82.2	79.0	81.4	81.3	81.0	5.6	1.4	80.5	6.3	1.3	12
15 7	н	79.0	76.6	76.6	77.2	77. 5	4.8	1.4	82.3	5.6	4.4X	12
161	+ X	80.4	80.0	83.0	81.2	81.2	5.8	1.3	30.6	5.7	1.8	12
165	R	79.5	83.3	81.4	82.4	81.6	7.0	1.6	81.8	6.8	1.6	11
167	H	78.1	78.3	79.8	81.1	79.3	5.9	1.4	77.3	5.6	2.5	12
169	I	80.9	82.0	82.0	82.6	81.9	6.9	.7	82.9	6.3	1.6	11
171	Ħ	74.4X	77.2	74.6	78.2	76.1	7.1	1.9	78.7	6.4	2.5	12
_												
172	H	80.5	81.8	80.5	79.9	80.7	4.7	. 8	79.9	5.4	2.6	12
173	H	83.3	80.7	83.1	84.9	83.0	4.9	1.7	82.6	4.7X	1.5	11
174	H	80.4	82.1	77. 3	75.1	78.8	8.1	3.1	80.6	6.9	3.3	12
175	H	85.7	93.3X	88.C	89.9X	89.3X	5.7	3.2	83.8	5.9	5.7X	12
176	H	80.9	78.3	79.9	77.8	79.3	6.3	1.4	79.4	6.6	1.6	12
177	ĮŢ.	77 0	77 F	70 1		70 1	6 5	. 8	77. 3	6.5	2.0	10
177	H	77.8	77.5	79.1	90 ^	78.1	6.5					12
182	H	84.3	84.8	88.1	80.4	84.4	5.7	3.2	83.6	6.4	2.0	
184	H	79.6	85 .0	80.4S	78.9	81.0	8.4	2.7	81.8	7.6	3.1	12
186	I	83.3	80.8	77.5	80.3	80.5	6.2	2.4	81.5	6.0	2.3	12
188	I	79.0	80.3	79.1	80.8	79.8	6.9	. 9	80.1	€.5	1.2	12

LINERBOARD 26K1 COLLABORATIVE REFERENCE PROGRAM REPORT NO. 127 BURSTING STRENGTH (MULLEN), PSI

APRIL 1980

LAB			MEANS TH	IS MONTH		TH	IS MON	TH	CUMULATIVE			
CGDE	v	W K = 1	WK-2	WK-3	WK-4	MEAN	SDR	SDWKS	MEAN	SDR	SDWKS	WKS
198	R	82.7	78.8	77.6		79.7	5.9	2.6	82.4	5.9	4.1X	10
250	* N		77.2	75.4	76.7	76.5	6.6	. 9	75.3X	7.1	3.7X	9
274	H	80.7	79.4	79.9	80.1	80.1	5.3	• 5	80.0	5.5	• 5	12
283	H	79.1		82.3		80.7	7.0	2.3	80.2	7.9X	1.7	8
287	A	85.5	85.2	87.4	86.0	86.1	8.1	1.0	86.9X	8.2X	1.9	12
359	H	78.6	80.2	76.9	79.5	79.3	6.2	.7	78.1	6.7	1.9	8
553	M	83.6	85.7	86.2	86.1	85.4	5.8	1.2	84.7	5.7	2.5	12
562	A	84.0	85.0	78.5S	80.9	82.1	8.1	2.9	83.1	7.4	4.1X	12
568	I	83.4	83.4	77.5	77.2	80.4	6.9	3.5	79.4	6.6	3.1	11
569	A	78.9	79.4	80.8	75.1	78.6	5.8	2.4	79.1	6.2	1.8	10
658	H	80.0	79.7			79.9	4.2	. 2	80.6	5.1	1.2	9
701	H	85.2	84.7	83.5	78.3	82.9	7.4	3.2	82.8	7.2	1.8	12

					GRAND AVER	AGES
	WK-1	WK-2	WK-3	WK - 4	THIS MONTH CU	MULATIVE 12 WEEKS
AV MEAN	81.3	80.7	80.7	8C.4	AV MEAN 80.8	80.8
AV SDR	6.3	6.4	6.2	6.3	AV SDR 6.3	6.2
SD LABS	2.4	2.6	3.2	2.7	SD LABS 2.8	2.9
NO.INCL	62	63	63	58	NG.INCL 61.5	59 .7
NO. OMIT	4	3	2	3	AV SDWKS 1.7	2.0
NOT RCD	1	1	2	6	SD CUM MEAN	2.0

CORRUG.MEDIUM 26D3 COLLABORATIVE REFERENCE PROGRAM REPORT NO. 127 FLAT CRUSH STRENGTH (CONCORA) LB

LAB	N	LANS THE	S MONTH		THI	S MONT	Н		CUMULATI	VE	
CODE V	W K - 1	₩K-2	WK-3	WK-4	MEAN	SDR	SDWKS	MEAN		WKS	WKS
100	74.4	71.4	72.1	74.1	73.0	3.1	1.5	72.6	4.0	1.1	16
102	72.0	72.7	72.7	72.1	72.4	3.8	. 4	72.7	3.4	.6	16
105	73.7	70.1	69.2		71.0	4.0	2.4	72.6	4.2	1.7	13
106	73.9	73.7	72.9	72.5	73.2	3.5	.7	73.0	3.4		16
110	72.8		1609							• 4	
110	14.0	74.1		72.4	73.1	4.4	. 9	74.4	3.7	1.8	15
				m							
113	72.2	68.5	71.6	71.3	70.9	3.8	1.7	71.9	3.2	1.1	16
114	71.9	71.9	71.4	71.5	71.7	2.5	• 2	71.5	2.6X	. 8	16
115	74.1	73.5	72.3	72.8	73.2	3.4	. 8	72.2	3.5	1.4	16
119	72.1	72.5	70.8	73.9	72.3	4.2	1.3	70.5	4.0	2.8	15
120	73.7	72.3	71.8S	69.2	71.8	3.8	1.9	71.2	3.7	1.4	16
125	82.9X	81.8X	79.3X	78.3X	80.6X	4.4	2.1	80.4X	4.8X	1.3	16
128	74.3	70.7	71.9	72.0	72.2	3.6	1.5	72.2	3.3	1.0	16
136	70.5	74.0	73.9	70.4	72.2	4.1	2.0	71.2	3.9	2.1	16
138	75.1	76.3	74.5	74.5	75.1		.8			1.7	16
						3.9		76.0	4.2		
140	74.7	73.0	74.0	73.3	73.8	3.3	.7	73.3	3.6	1.0	16
_					_					_	
143	72.3		70.1	71.7	71.4	3.6	1.1	71.5	3.5	• 9	4
151	72.3	72.5	73.5S		72.8	4.5	• 6	72.7	4.1	•5	15
161	72.9	72.4	78.0S	72.1	73.9	4.9	2.8	74.0	4.4	2.9	16
164	71.5	71.0	71.1	71.7	71.4	3.7	. 3	71.9	3.7	1.2	16
167	71.3	72.0	71.5	72.3	71.8	3.2	.5	71.2	3.1	1.1	16
177	69.4	72.8	70.1		70.8	3.8	1.8	69.6	3.3	1.6	15
182	77.5	70.2	71.4	73.6	73.2	3.9	3.2	73.2	3.9	2.0	16
	71.9		-								
188	-	71.1	70.7	70.4	71.0	2.9	.7	71.5	3.0	1.1	16
198	71.7S	71.4	78.3	75.8	74.3	3.8	3.3	71.3	4.3	2.7	16
237	72.9	74.1	72.0	72.1	72.8	3.9	1.0	72.9	4.0	1.1	16
250	68.5	68.6	69.0		68.7	2.3	٠3	68.9	2.1X	1.4	12
269	69.8	73.9	74.0	72.3	72.5	3.7	1.9	71.6	3.6	1.5	16
284	71.0	71.4	70.5	69.7	70.7	4.0	.7	70.8	3.9	1.0	16
287	77.3	77.1	76.58	78.1X	77.3	3.9	.7	77.2*	4.1	• 9	16
289		65.6X	68.0	63.3X	65.7X	3.7	2.4	68.8*	3.3	2.8	15
						- • •				_ • -	
292	64.1X	63.2X	67.9		65.1X	4.0	2.5	67.9#	3.7	2.6	15
				96 2VC							16
350		87.6XS	86.7XS		86.7X	7.9	.7	84.2X		3.1	
35 1	72.9	71.4	71.0	69.6	71.2	2.6	1.4	72.6	2.6X	1.6	16
353	75.0	73.4	72.4	72.0	73.2	4.3	1.3	73.3	3.9	2.2	14
355	74.9	74.6	73.7	72.9	74.1	3.6	. 9	72.9	3.6	1.3	16
357	69.1	67.9	71.5	69.0	69.4	3.3	1.5	69.3	3.3	1.4	15
359	66.8X	67.1	65.1X	70.1	67.3X	3.8	2.1	80.5X	4.7X	9.0X	15
361	71.0	71.2	71.0	71.4	71.2	2.9	• 2	70.4	3.4	1.5	15
363		70.5	70.4	69.0	70.0	3.4	. 8	70.3	3.2	1.2	15
365	70.0	70.1	68.3	69.0	69.4	3.2	. 9	69.5	3.7	1.4	16
367	72.4	73.6	72.4	74.2	73.1	3.0	. 9	74.0	3.4	1.0	14
	72.3	72.1	72.8	72.6	72.5			72.4	3.4	.7	15
369											
377	76.9X	76.2		75.7	76.5			74.6	3.8	2.1	16
379		74.8	72.9	72.9	73.3	3.9	1.1	74.1	3.9	1.1	14
381	74.8	75.2	74.8	73.8	74.7	4.2	.6	73.6	3.9	1.1	16
383	73.5	70.4	74.6	73.5	73.0	2.8	1.8	73.6	3.3	2.4	16
385	75.3	73.1	75.6	74.9	74.7	3.1	1.1	74.1	3.2	2.2	15
38 7	72.8	77.2	77.4	78.4X	76.5	3.8	2.5	76.1	4.0	1.7	16
391		70.1	71.3		70.7	2.3	. 9	67.1X		3.8X	12
395	72.8	73.9		74.8	73.8	4.0	.8	73.9	3.7	1.3	16
	• •	• -	• •			. • .				-	
39 7	75.5	68 3	75 3	70.3	72.4	4.0	3.6	73.8	3.7	2.2	16
		68.3						70.8		1.8	16
399	71.5	71.2	70.9	72.1	71.5	3.5	• 5				
553	73.3	72.6		72.5	72.9		.4	73.0		.7	16
562		72.1		71.2	72.5			71.9		1.4	16
568	72.1	72.0	73.2	73.3	72.7	3.9	• 7	73.5	3.6	1.3	16

COPRUG. MEDIUM 26D3 COLLABORATIVE REFERENCE PROGRAM APRIL 1980

REPORT NG. 127 FLAT CRUSH STRENGTH (CONCORA) LB

LAB		MEANS TH	IS MENTH		THI	TH	CUMULATIVE				
CODE A	WK-1	WK-2	WK-3	WK-4	MEAN	SDR	SDWKS	MEAN	SDR	SDWKS	WKS
572	72.5	73.8	76.6	70.8	73.4	3.8	2.4	73.3	3.6	1.7	12
578	69.3	76.2	75.4	72.7	73.4	3.9	3.1	75.6	4.1	3.0	16
609	71.7	71.1	71.0	70.4	71.1	3.0	.5	72.2	3.6	1.4	16
617	77.4	75.0	80.9XS	76.9	77.6X	5.1	2.5	77.5X	4.7X	1.5	16

						GRAND AVERAGES			
	WK-1	WK-2	WK-3	WK-4	THIS	MONTE	CUMULATIVE 16 WEEKS		
AV MEAN	72.8	72.4	72.6	72.3	AV MEAN	72.5	72.5		
AV SDR	3.6	3.7	3.4	3.6	AV SDR	3.6	3.6		
SD LABS	2.0	2.3	2.4	1.9	SD LABS	2.1	2.4		
NO. INCL	51	54	54	48	Ne.INCL	51.7	53.8		
NO. CMIT	5	4	4	5	AV SDWKS	1.3	1.5		
NOT RCD	3	1	1	6	SD CUM ME.	AN	1.9		
SD SHTS	2.3	2.2	2.2	2.1					

U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. FKBG CRP 127	2. Gov't: Accession No.	3. Recipient's Ac	Cession No.				
4. TITLE AND SUBTITLE		, , , , , , , , , , , , , , , , , , , ,	5. Publication Da	ate				
CONTAINERBOARD Collaborative Ref Report No. 127	May 29,1980 6. Performing Organization Code							
7. AUTHOR(S)			8. Performing Org	gan. Report No.				
T.L. Cummings, J.	NBSIR - 80-1836							
9. PERFORMING ORGANIZATION	16. Project/Task/Work Unit No.							
NATIONAL BUREAU OF S DEPARTMENT OF COMM WASHINGTON, DC 20234	11. Contract/Grant No.							
12. SPONSORING ORGANIZATION	13. Type of Repo	rt & Period Covered						
Collaborative Tes 8343A Greensboro	FINAL							
and American Pape	14. Sponsoring Agency Code							
15. SUPPLEMENTARY NOTES								
Document describes a cor	mputer program; SF-185, FIPS Software Summ	ary, is attached.						
,	less factual summary of most significant info	rmation. If document inclu	des a significant bi	bliography or				
literature survey, mention it h	iere.)							
Collaborative Reference Programs provide participating laboratories with the means for checking periodically the level and uniformity of their testing in comparison with that of other participating laboratories. An important by-product of the programs is the provision of realistic pictures of the state of the testing art. This is one of the periodic reports showing averages for each participant, within and between laboratory variability, and other information for participants and standards committees.								
17. KEY WORDS (six to twelve en separated by semicolons)	ntries; alphabetical order; capitalize only the	first letter of the first key	word unless a prop	per name;				
	Terence program; Containerb ence samples; Testing calib	_	evaluation;	;				
18. AVAILABILITY	Unlimited	19. SECURIT (THIS RE		21. NO. OF PRINTED PAGES				
X For Official Distribution.	SIFIED	15						
Order From Sup. of Doc., 20402, SD Stock No. SNO	TY CLASS AGE)	22. Price						
Order From National Tec VA. 22161	unclas	SSIFIED						

