ANALYSIS OF LIQUID VOLUME AND LIQUID MASS FRACTIONS AT COEXISTENCE FOR PURE FLUIDS

Lambert John Van Poolen，Ph．D．t

Thermophysical Properties Division
National Engineering Laboratory
National Bureau of Standards
Boulder，Colorado 80303

＋Guest Worker：Professor of Engineering Calvin College
Grand Rapids，Michigan 49506

ANALYSIS OF LIQUID VOLUME AND LIQUID MASS FRACTIONS AT COEXISTENCE FOR PURE FLUIDS

Lambert John Van Poolen, Ph. D.t

Thermophysical Properties Division
National Engineering Laboratory
National Bureau of Standards
Boulder, Colorado 80303

May 1980

\author{

+ Guest Worker: Professor of Engineering
 Calvin College
 Grand Rapids, Michigan 49506
}

U.S. DEPARTMENT OF COMMERCE, Philip M. Klutznick, Secretary

Luther H. Hodges, Jr., Deputy Secretary
Jordan J. Baruch, Assistant Secretary for Productivity, Technology and Innovation
NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director
Page

1. INTRODUCTION 1
2. MATHEMATICAL DESCRIPTION OF $X_{L V}$ AND $X_{L M}$ 2
3. ANALYSIS OF $X_{L V}$ AND $X_{L M}$ 4
3.1 Maxima and Minima Analysis for $T_{T P}<T<T_{C}$ 4
3.2 Maxima and Minima Analysis as T Goes to T_{C} 17
3.3 Analysis $A l o n g \rho_{C}$ and $X_{C, L I M}$ as T Goes to T_{C} 22
3.4 Maxima and Minima Analysis as T Goes to $T_{T P}$ 36
4. CORRELATING COEXISTENCE - CRITICAL POINT DATA USING THE LIQUID VOLUME FRACTION 37
5. EXPERIMENTAL APPROACH TO SIMULTANEOUS DETERMINATION OF COEXISTENCE DATA 51
6. SUMMARY 55
7. ACKNOWLEDGMENTS 55
8. REFERENCES 56
APPENDIX A. Symbols and Units 58
Page
Figure 1. $X_{L V}$ vs T for CH_{4} at constant ρ_{T} 5
Figure 2. $X_{L M}$ vs T for CH_{4} at constant ρ_{T} 6
Figure 3. ρ_{T} vs T for CH_{4} at constant $X_{L V}$ 7
Figure 4. ρ_{T} vs T for CH_{4} at constant $X_{L M}$ 8
Figure 5. $\quad X_{L V}$ vs ρ_{T} for CH_{4} at constant T 9
Figure 6. $X_{L M}$ vs ρ_{T} for CH_{4} at constant T 10
Figure 7. Verification of $X_{L V}-X_{L M}$ structure 15
Figure 8. $\quad X_{L V, M A X}$ First Possibility 23
Figure 9. $\quad X_{L V, M A X}$ Second Possibility 24
Figure 10. Data for $X_{L V, M A X}$ Possibility Analysis 26
Figure 11. Implications of $X_{c, L I M}>1 / 2$ 34
Figure 12. Percent Deviation Plot of $\rho_{\ell}+\rho_{v}$ for Ethylene 45
Figure 13. 3σ Confidence Limit Band on $\rho_{\ell}+\rho_{V}$ of Ethylene 50
Figure 14. $X_{L V}$ vs ρ_{T} to Find ρ_{ℓ} and ρ_{V} for Ammonia 52
LIST OF TABLES
Table 1. $X_{L V, C}$ and $X_{L V, M A X}$ for Ethylene 27
Table 2. Effect of $\phi, B_{l \ell}$, and, $B_{1 v}$ on $\left.\lim _{T \rightarrow T_{C}} \frac{\partial \rho_{T}}{\partial T}\right|_{X_{L V}}=X_{C, L I M} \quad$ and $\lim _{T \rightarrow T_{C}}\left(\rho_{\ell}^{\prime}+\rho_{V}^{\prime}\right)$. 32
Table 3. Analysis of $\left(B_{2 \ell}+B_{2 v}\right)$ for $\left(B_{1 \ell}=-B_{1 v}\right)$ 33
Table 4. Check on Inequalities for Ethylene 36
Table 5. $\quad X_{L V, c}$ vs T for Argon 39
Table 6. $\quad X_{L V, c}$ vs T for Ammonia 40
Table 7. Experimental Ethylene Data 42
Table 8. $\quad X_{L V, C}$ and $\left(\rho_{\ell}+\rho_{V}\right)$ Comparison for Ethylene 43
Table 9. Critical Properties of Ethylene 46
Table 10. $\rho_{\ell}\left(\mathrm{mol} / \mathrm{dm}^{3}\right)$ Comparisons for Ethylene 47
Table 11. $\rho_{v}\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)$ Comparisons for Ethylene 47
Table 12. Comparison of Coexistence Densities ($\mathrm{g} / \mathrm{cm}^{3}$) 53
Table 13. Comparison of ρ_{v} Values $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ 54
Table 14. Comparison of ρ_{ℓ} Values $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ 54

An analysis of the behavior of liquid volume and liquid mass fractions at coexistence for pure fluids is made. Scaled equations for the saturation liquid and vapor densities are analyzed and relationships between various exponents and among constant coefficients are presented. Inequalities which exist among the saturation densities and thetr derivatives are developed. A procedure to correlate saturation data with the critical point is applied to ethylene. An experimental procedure to determine, simultaneously, saturated liquid and vapor densities at a given temperature is presented.

Key words: Coexistence densities; critical density; critical point; liquid mass fraction; liquid volume fraction; phase equilibria; pure fluids.

1. intronuction

A complete description of a pure fluid at liquid-vapor coexistence from a P-V-T perspective is given by the intensive variables:

P, vapor pressure,
T, vapor temperature,
ρ_{ℓ}, saturated liquid density,
ρ_{v}, saturated vapor density,
and the following extensive variables:
m_{ℓ}, m_{v}, masses of the two phases $\left(m_{\ell}+m_{v}=m_{T}=\right.$ total mass $)$,
V_{ℓ}, V_{V}, volumes of the two phases $\left(V_{\ell}+V_{V}=V_{T}=\right.$ total volume $)$.
Of the four intensive variables only one is independent, i.e., there is one degree of freedom as described by the fibbs phase rule. For the purpose of this work, T is assumed the independent variable.

An analysis of the extensive variables reveals that any two are independent variables. Hence, to completely describe the pure fluid at coexistence it is sufficient to specify one intensive variable and two extensive variables, i.e., the overall system has three degrees of freedom.

It is not obvious that useful information about the coexistence state is to be gained by considering the extensive variables along with the intensive ones. However, an investigation of these extensive variables when normalized by the total volume and/or total mass has proven interesting.

Consider the mass balance at coexistence,
$m_{T}=m_{l}+m_{v}$,
normalized by V_{T}, utilizing the fact that
$m_{\ell}=\rho_{\ell} V_{\ell}$ and $m_{V}=\rho_{V} V_{V}$,
with the result that
$\left(m_{T} / V_{T}\right)=\rho_{\ell}\left(V_{\ell} / V_{T}\right)+\rho_{V}\left(V_{V} / V_{T}\right)$.
Now define:
$\rho_{T} \equiv m_{T} / V_{T}$, overall or total density,
$X_{L V} \equiv V_{\ell} / V_{T}$, liquid volume fraction,
and since
$1-X_{L V} \equiv V_{V} / V_{T}$,
the overall density is
$\rho_{T}=\rho_{\ell} X_{L V}+\rho_{V}\left(1-X_{L V}\right)$,
or rewriting,
$X_{L V}=\left(\rho_{T}-\rho_{V}\right) /\left(\rho_{\ell}-\rho_{V}\right)$.
Now, $\rho_{v}=\rho_{v}(T)$ and $\rho_{\ell}=\rho_{\ell}(T)$, therefore, $e q$. (5) describes a variable field having two degrees of freedom - one from the intensive variable set (T) and one from the extensive variable set $\left(m_{T} / V_{T}=\rho_{T}\right)$. Another extensive variable, perhaps V_{T}, would also have to be explicitly known to completely describe a system at coexistence. However, eq. (5) does provide a connection between the intensive and extensive variables and it is that connection, $X_{L V}$, which provides the interest.

The liquid mass fraction:
$X_{L M} \equiv m_{\ell} / m_{T}$
is found directly from the liquid volume fraction, i.e.,
$X_{L M} \equiv m_{\ell} / m_{T}=\left(V_{\ell} \rho_{\ell}\right) /\left(V_{T} \rho_{T}\right)=\left(\rho_{\ell} / \rho_{T}\right) X_{L V}$.
The two variable fields to be explored are then (from (5)):
$f\left(X_{L V}, \rho_{T}, T\right)=0$, i.e., $\quad X_{L V}=\left(\rho_{T}-\rho_{V}\right) /\left(\rho_{\ell}-\rho_{V}\right)$
and from (6) and (5),
$g\left(X_{L M}, \rho_{T}, T\right)=0$, i.e., $X_{L M}=\left(\rho_{\ell} / \rho_{T}\right)\left(\rho_{T}-\rho_{V}\right) /\left(\rho_{\ell}-\rho_{V}\right)$.
2. MATHEMATICAL DESCRIPTION OF $X_{L V}$ AND $X_{L M}$

For $f\left(X_{I V}, \rho_{T}, T\right)=0$ we expect:
$\left.\left.\left.\frac{\partial X_{L V}}{\partial T}\right|_{\rho_{T}} \frac{\partial T}{\partial \rho_{T}}\right|_{X_{L V}} \frac{\partial \rho_{T}}{\partial X_{L V}}\right|_{T}=-1$
and from eq. (5) the derivatives are:

$$
\begin{align*}
& \left.\frac{\partial X_{L V}}{\partial T}\right|_{\rho_{T}}=\frac{-\rho_{V}^{\prime}}{\left(\rho_{\ell}-\rho_{V}\right)}-X_{L V} \frac{\left(\rho_{\ell}^{\prime}-\rho_{V}^{\prime}\right)}{\left(\rho_{\ell}-\rho_{V}\right)} \tag{9}\\
& \left.\frac{\partial X_{L V}}{\partial \rho_{T}}\right|_{T}=\frac{1}{\left(\rho_{\ell}-\rho_{V}\right)} \tag{10}\\
& \left.\frac{\partial \rho_{T}}{\partial T}\right|_{X_{L V}}=\rho_{V}^{\prime}+X_{L V}\left(\rho_{l}^{\prime}-\rho_{V}^{\prime}\right) \tag{11}
\end{align*}
$$

Indeed eqs. (9), (10), and (11) together satisfy eq. (8) - the chain rule. It can also be shown that for:

$$
\begin{equation*}
d X_{L V}=\left.\frac{\partial X_{L V}}{\partial \rho_{T}}\right|_{T} d \rho_{T}+\left.\frac{\partial X_{L V}}{\partial T}\right|_{\rho_{T}} d T \tag{12}
\end{equation*}
$$

that:
$\frac{\partial^{2} X_{L V}}{\partial T \partial \rho_{T}}=\frac{\partial^{2} X_{L V}}{\partial \rho_{T} T^{T}}$
indicating that $d X_{L V}$ is an exact differential and that $X_{L V}$ is a thermodynamic property.

For $g\left(X_{L M}, \rho_{T}, T\right)=0$ we have:
$\left.\left.\left.\frac{\partial X_{L M}}{\partial T}\right|_{\rho_{T}} \frac{\partial T}{\partial \rho_{T}}\right|_{X_{L M}} \frac{\partial \rho_{T}}{\partial X_{L M}}\right|_{T}=-1$
and from eq. (7) the derivatives are:

$$
\begin{align*}
& \left.\frac{\partial X_{L M}}{\partial T}\right|_{\rho_{T}}=\frac{-\rho_{\ell} \rho_{V}^{\prime}}{\rho_{T}^{\left(\rho_{\ell}-\rho_{V}\right)}}+X_{L M} \frac{\left(\rho_{\ell} \rho_{V}^{\prime}-\rho_{\ell}^{\prime} \rho_{V}\right)}{\rho_{\ell}\left(\rho_{\ell}-\rho_{V}\right)} \tag{14}\\
& \left.\frac{\partial X_{L M}}{\partial \rho_{T}}\right|_{T}=\frac{\rho_{V} \rho_{\ell}}{\rho_{T}^{2}\left(\rho_{\ell}-\rho_{V}\right)} \tag{15}\\
& \left.\frac{\partial \rho_{T}}{\partial T}\right|_{X_{L M}}=\frac{\rho_{T} \rho_{V}^{\prime}}{\rho_{V}}-\frac{X_{L M} \rho_{T}^{2}\left(\rho_{\ell} \rho_{V}^{\prime}-\rho_{\ell}^{\prime} \rho_{V}\right)}{\rho_{\ell}^{2} \rho_{V}} \tag{16}
\end{align*}
$$

Indeed eqs. (14), (15), and (16) satisfy eq. (13). It can also be shown that for:
$d X_{L M}=\left.\frac{\partial X_{L M}}{\partial \rho_{T}}\right|_{T} d \rho_{T}+\left.\frac{\partial X_{L M}}{\partial T}\right|_{\rho_{T}} d T$
that:
$\frac{\partial^{2} X_{L M}}{\partial T \partial \rho_{T}}=\frac{\partial^{2} X_{L M}}{\partial \rho_{T} T^{\partial}}$
indicating that $d X_{L M}$ is an exact differential and that $X_{L M}$ is a thermodynamic property.
3. ANALYSIS OF $X_{L V}$ AND $X_{L M}$
3.1 Maxima and Minima Analysis for $T_{T P}<T<T_{C}$

The fields $f\left(X_{L V}, \rho_{T}, T\right)=0$, and $g\left(X_{L M}, \rho_{T}, T\right)=0$, are plotted from smoothed methane data presented by IUPAC [1]. The results are shown in figs. 1-6.

For the maximum in $X_{L V}$, shown in fig. 1 , eq. (9) can be set to zero, i.e.,
$\left.\frac{\partial X_{L V}}{\partial T}\right|_{\rho_{T}}=\frac{-\rho_{V}^{\prime}}{\rho_{\ell}-\rho_{V}}-X_{L V} \frac{\left(\rho_{\ell}^{\prime}-\rho_{V}^{\prime}\right)}{\left(\rho_{\ell}-\rho_{V}\right)}=0$.
Designating the subscript "MAX" for the point where the maximum occurs,
$X_{L V, \text { MAX }}=\frac{-\rho_{V}^{\prime}}{\left(\rho_{\ell}^{\prime}-\rho_{v}^{\prime}\right)}$ for $\left(\rho_{\ell}-\rho_{v}\right) \neq 0$.
Now there is a corresponding $\rho_{\mathrm{T}, \text { maX }}$ such that:
$X_{L V, \text { MAX }}=\left(\rho_{T, \text { MAX }}-\rho_{V}\right) /\left(\rho_{\ell}-\rho_{v}\right)$
or,
$\rho_{T, \text { MAX }}=\frac{-\rho_{v}^{\prime}}{\left(\rho_{\ell}^{\prime}-\rho_{v}^{\prime}\right)}\left(\rho_{\ell}-\rho_{v}\right)+\rho_{v}=\frac{\left(\rho_{v} \rho_{\ell}^{\prime}-\rho_{v}^{\prime} \rho_{\ell}\right)}{\left(\rho_{\ell}^{\prime}-\rho_{v}^{\prime}\right)}$.
later on (see figs. 8, 9, and 10), when dealing directly with the critical liquid volume fraction, $X_{L V, C}\left(\rho_{T}=\rho_{c}\right)$, it is shown that it is unlikely that a maximum occurs along the curve describing it for $T<T_{c}$. The implication is that if a maximum does occur, the $X_{L V}$ curve is turning towards zero and hence the ρ_{T} is a ρ_{v} (refer to fig. 1). We can then conclude that $\rho_{T, \text { MAX }}=\rho_{V}<\rho_{C}$ and hence:
$X_{L V, C}>X_{L V, M A X}$.
Figure 1. $\quad X_{L V}$ vs T for CH_{4} at constant ρ_{T}.
Nollovyd SSbw ainoli - WTx

Figure 5. $X_{L V}$ vs ρ_{T} for CH_{4} at constant T.

Figure 6. $\quad X_{L M}$ vs ρ_{T} for CH_{4} at constant T.

The tendency towards zero for the $\rho_{T}=\rho_{V}$ curves (or towards one for $\rho_{T}=\rho_{\ell}$) is literally true in the absence of gravity effects. Indeed Hohenberg, et al. [2] indicate that within a very narrow range of temperature and overall density near the critical the meniscus, under the effect of gravity, dissappears somewhere other than at the top or bottom of the test cell.

For the minimum in $X_{L M}$, shown in fig. 2, eq. (14) can be set to zero, i.e.,
$\left.\frac{\partial X_{L M}}{\partial T}\right|_{\rho_{T}}=\frac{-\rho_{\ell} \rho_{V}^{\prime}}{\rho_{T}\left(\rho_{\ell}-\rho_{V}\right)}+X_{L M} \frac{\left(\rho_{\ell} \rho_{V}^{\prime}-\rho_{\ell}^{\prime} \rho_{V}\right)}{\rho_{\ell}\left(\rho_{\ell}-\rho_{V}\right)}=0$.
Using the subscript "MIN" for the point where the minimum occurs,
$x_{L M, M I N}=\frac{\rho_{\ell}}{\rho_{T, M I N}}\left[\frac{\left(\rho_{\ell} \rho_{V}^{\prime}\right)}{\left(\rho_{\ell} \rho_{V}^{\prime}-\rho_{\ell}^{\prime} \rho_{V}\right)}\right]$.
Now the corresponding $\rho_{\mathrm{T}, \text { MIN }}$ is that for which
$x_{L M, M I N}=\frac{\rho_{\ell}}{\rho_{T, M I N}}\left[\frac{\left(\rho_{T, M I N}-\rho_{V}\right)}{\left(\rho_{\ell}-\rho_{V}\right)}\right]$,
or,
$\rho_{T, M I N}=\frac{\rho_{\ell} \rho_{V}^{\prime}}{\left(\rho_{\ell} \rho_{v}^{\prime}-\rho_{\ell}^{\prime} \rho_{v}\right)}\left(\rho_{\ell}-\rho_{v}\right)+\rho_{v}=\left(\rho_{v}^{\prime} \rho_{\ell}^{2}-\rho_{\ell}^{\prime} \rho_{v}^{2}\right) /\left(\rho_{\ell} \rho_{v}^{\prime}-\rho_{\ell}^{\prime} \rho_{v}\right)$.
In an argument similar to that for $X_{L V, C}>X_{L V, M A X}$ it can be shown, based on fig. 2, that values of $\rho_{T, \text { MIN }}$ are ρ_{ℓ} 's and hence:
$X_{L M, M I N}>X_{L M, C}$,
where $X_{L M, C}$ is the critical liquid mass fraction ($\rho_{T}=\rho_{C}$).
If ρ_{C} is substituted for ρ_{T} in eqs. (5) and (7), the critical liquid volume fraction and critical liquid mass fraction are explicitly:
$X_{L V, c}=\left(\rho_{c}-\rho_{v}\right) /\left(\rho_{\ell}-\rho_{v}\right)$
$X_{L M, C}=\left(\rho_{\ell} / \rho_{c}\right)\left(\rho_{c}-\rho_{v}\right) /\left(\rho_{\ell}-\rho_{v}\right)$
Now, $X_{L M, C}>X_{L V, c}$ at a given temperature by inspection of eqs. (24) and (25) since, $\rho_{l}>\rho_{c}$, therefore:
$X_{L M, M I N}>X_{L M, c}>X_{L V, c}>X_{L V, M A X}$
and
$\rho_{T, M I N}>\rho_{C}>\rho_{T, \text { MAX }} \quad$,
where $\rho_{l}>\rho_{c}>\rho_{v}$.
Also, considering the value of $X_{L M}$ at the temperature and $\rho_{T, M A X}$ for which $X_{L V}$ is a maximum, i.e.,
$X_{L M, M A X}=\frac{\rho_{\ell}}{\rho_{T, M A X}} X_{L V, M A X}$ (form of eq. 6)
Substituting for $\rho_{\mathrm{T}, \text { MAX }}$ eq. (19) and for $X_{L V, M A X}$ eq. (18) the result is:
$X_{L M, M A X}=\frac{\rho_{\ell} \rho_{V}^{\prime}}{\left(\rho_{\ell} \rho_{V}^{\prime}-\rho_{\ell}^{\prime} \rho_{V}\right)}$.
Also, consider the value of $X_{L V}$ at the temperature and $\rho_{T, \text { MIN }}$ for which $X_{L M}$ is a minimum, i.e.,
$X_{L V, M I N}=\frac{\rho_{T, M I N}}{\rho_{\ell}} X_{\text {LM,MIN }} \quad$ (form of eq. 6)
Substitute for $\rho_{T, M I N}$ eq. (22) and for $X_{L M, M I N}$ eq. (21) to obtain
$x_{L V, M I N}=\frac{\rho_{\ell} \rho_{V}^{\prime}}{\rho_{\ell} \rho_{V}^{\prime}-\rho_{\ell}^{\prime} \rho_{V}}$,
which is the same as $X_{\text {LM, MAX }}$ for the same temperature (see eq. (28)). Now $X_{\text {LV,MIN }}$ is the liquid volume fraction at a density $\rho_{\ell}=\rho_{T, M I M}>\rho_{C}$. Therefore:
$X_{L V, M I N}>X_{L V, C}$
and $X_{L M, M A X}$ is the liquid mass fraction at a density $\rho_{V}=\rho_{T, M A X}<\rho_{C}$ so
$X_{L M, \operatorname{MAX}}<X_{L M, C}$.
Combining eqs. (26), (28), (29), (30), and (31) results in:
$X_{L M, M I M}>X_{L M, C}>X_{L M, M A X}=X_{L V, M I N}>X_{L V, c}>X_{L V, M A X}$.
An investigation of the individual terms in eq. (32) and their related equations indicates they are only functions of temperature. This is interesting since the field describing the coexistence states has two degrees of freedom. Therefore, these are loci of points, having only one degree of freedom. This reduction comes via the "zero" condition on the first derivative. Also, some conclusions can be drawn about the derivatives,
$\left.\frac{\partial X_{L M}}{\partial T}\right|_{\rho_{T, M A X}}$ and $\left.\frac{\partial X_{L V}}{\partial T}\right|_{\rho_{T, M I N}}$, at the same temperature.
From eq. (6),
$\left.\frac{\partial X_{L M}}{\partial T}\right|_{\rho_{T}}=\frac{1}{\rho_{T}}\left[\left.\rho_{\ell} \frac{\partial X_{L V}}{\partial T}\right|_{\rho_{T}}+\rho_{\ell}^{\prime} X_{L V}\right]$
Now at. a minimum, $\frac{\partial X_{L M}}{\partial T} \rho_{T}=0$ and from eq. (33),
$\left.\rho_{\ell} \frac{\partial X_{L V}}{\partial T}\right|_{\rho_{T, M I N}}+\rho_{\ell}^{\prime} X_{L V, M I N}=0$,
and from,
$X_{L V}=\frac{\rho_{T}}{\rho_{\ell}} X_{L M}, \quad$ (form of eq. 6)
obtain:

$$
\begin{equation*}
\left.\frac{\partial X_{L V}}{\partial T}\right|_{\rho_{T}}=\rho_{T}\left[\left.\frac{1}{\rho_{\ell}} \frac{\partial X_{L M}}{\partial T}\right|_{\rho_{T}}-\frac{X_{L M \rho_{\ell}^{\prime}}^{2}}{\rho_{\ell}^{2}}\right] \tag{35}
\end{equation*}
$$

At a maximum, $\left.\frac{\partial X}{\partial V}\right|_{\rho_{T}}=0$, therefore from eq. (35):
$\left.\rho_{\ell} \frac{\partial X_{L M}}{\partial T}\right|_{\rho_{T, M A X}}-X_{L M, M A X} \rho_{\ell}^{\prime}=0$.
Combining eqs. (34) and (36):
$\frac{X_{L V, M I N}}{X_{L M, M A X}}=-\left.\frac{\frac{\partial X_{L V}}{\partial T}}{\frac{\partial X_{L M}}{\partial T}}\right|_{\rho_{T, M I N}}$
and as previously shown from eqs. (28) and (29):
$X_{L V, M I N}=X_{L M, M A X}$,
therefore:

$$
\begin{equation*}
\left.\frac{\partial X_{L V}}{\partial T}\right|_{\rho_{T, M I N}}=-\left.\frac{\partial X}{} \frac{\partial T}{}\right|_{\rho_{T, M A X}} \tag{39}
\end{equation*}
$$

The methane data of IUPAC [1] was analyzed to check the validity of eqs. (27), (32), (38), and (39). The results are shown in fig. 7 for one temperature, 344 K ($160^{\circ} \mathrm{F}$). The data used is published at two degree intervals and the slight errors in the equality of $X_{L M, M A X}$ to $X_{L V, M I N}$ and $\left.\frac{\partial X_{L V}}{\partial T}\right|_{\rho_{T, M I N}}$ to $-\left.\frac{\partial X_{L M}}{\partial T}\right|_{\rho_{T, M A X}}$ reflect the effect of using this large temperture increment in the numerical calculation of the derivatives.

An examination of fig. 3 reveals a minimum in ρ_{T} versus T at constant $X_{L V}<X_{C, L I M}$ (limit of critical liquid volume fraction).

Substituting eq. (5) into eq. (11) and setting the derivative to zero,
$\left.\frac{\partial \rho_{T}}{\partial T}\right|_{X_{L V}}=0=\rho_{V}^{\prime}+\frac{\left(\rho_{T}-\rho_{V}\right)}{\left(\rho_{\ell}-\rho_{v}\right)}\left(\rho_{\ell}^{\prime}-\rho_{V}^{\prime}\right)$,
the expression for ρ_{T} at the minimum is:
$\rho_{T, \text { ZER0 }}=\frac{\rho_{v^{\prime} \rho_{\ell}^{\prime}-\rho_{v}^{\prime} \rho_{\ell}}}{\left(\rho_{\ell}^{\prime}-\rho_{v}^{\prime}\right)}$,
which is the same as eq. (19). Thus these minimums in fig. 3 correspond to the maximums in fig. 1.

A similar analysis of the maximums in fig. 4 reveal that they correspond to the minimums in fig. 2.

An interesting inequality arises from the fact that the second derivative of $X_{L V}$ at the maximum shown in fig. 1 must be less than zero. The derivative of eq. (9) is calculated recognizing that at the point of consideration:
$\left.\frac{\partial X_{L V}}{\partial T}\right|_{\rho_{T, M A X}}=0$ by definition, and $X_{L V, M A X}$ is given by eq. (18),
with the result:
$\left.\frac{\partial^{2} X_{L V}}{\partial T^{2}}\right|_{\rho_{T, \text { MAX }}}=\frac{\left(\rho_{\rho^{\prime}}^{\prime} \rho_{\ell}^{\prime \prime}\right)+\left(-\rho_{v}^{\prime \prime} \rho_{\ell}^{\prime}\right)}{\left(\rho_{\ell}^{\prime}-\rho_{v}^{\prime}\right)\left(\rho_{\ell}-\rho_{v}\right)}$
Now by inspection of figs. 3 or 4,
$\rho_{V}^{\prime}>0, \quad \rho_{\ell}^{\prime}<0$
$\rho_{V}^{\prime \prime}>0, \quad \rho_{\ell}^{\prime \prime}<0$.
In terms of signs, eq. (40) is:

$\left.\frac{\partial^{2} X_{L V}}{\partial T^{2}}\right|_{\rho_{T, M A X}}=\frac{(-)+(+)}{(-)(+)}$.
Therefore if $\left.\frac{\partial^{2} X L V}{\partial T^{2}}\right|_{\rho_{T, M A X}}$ is to be less than zero,
$\left|\rho_{v}^{\prime \prime} \rho_{\ell}^{\prime}\right|>\left|\rho_{\ell}^{\prime \prime} \rho_{v}^{\prime}\right|$
This same conclusion can be reached from the minimums in fig. 3. From the derivative of eq. (16),
$\left.\frac{\partial^{2} \rho_{T}}{\partial T^{2}}\right|_{X_{L V}}=\rho_{V}^{\prime \prime}+\left.\frac{\partial X_{L V}}{\partial T}\right|_{\rho_{T}}\left(\rho_{l}^{\prime}-\rho_{V}^{\prime}\right)+X_{L V}\left(\rho_{l}^{\prime \prime}-\rho_{V}^{\prime \prime}\right) \cdot$
Now, as seen in an earlier analysis, at this minimum:
$\left.\frac{\partial X_{L V}}{\partial T}\right|_{\rho_{T}}=0$,
and:
$X_{L V}=X_{L V, M A X}=-\rho_{V}^{\prime} /\left(\rho_{l}^{\prime}-\rho_{V}^{\prime}\right)$.
After substitution of these in eq. (43):
$\left.\frac{\partial^{2} \rho_{T}}{\partial T^{2}}\right|_{X_{L V, \text { MAX }}}=\frac{\left(\rho_{v}^{\prime} \rho_{l}^{\prime}\right)+\left(-\rho_{V}^{\prime} \rho_{\ell}^{\prime \prime}\right)}{\left(\rho_{\ell}^{\prime}-\rho_{V}^{\prime}\right)\left(\rho_{\ell}-\rho_{V}\right)}$
If this is a true minimum $\left.\frac{\partial^{2} \rho_{T}}{\partial T^{2}}\right|_{X_{L V, M A X}}$ should be greater than zero. This is true if again:
$\left|\rho_{v}^{\prime \prime} \rho_{l}^{\prime}\right|>\left|\rho_{\ell}^{\prime \prime} \rho_{v}^{\prime}\right|$
And since we have already indicated that a maximum in $X_{L V}$ exists for all $T_{T P}<T<T_{C}$,
eq. (42) is true for this temperature range.
Consider the minimum in $X_{L M}$ as seen in fig. 2 . The related derivative is given hy eq. (14).

If the minimum is truly so, the curve is concave upward and the second derivative is positive at that point.

We had at this minimum, $\left.\frac{\partial X_{L M}}{\partial T}\right|_{\rho_{T, M I N}}=0$, and from previous work eqs. (21) and (22) apply.

Taking the derivative of eq. (14) and substituting eqs. (21) and (22) the result is:

$$
\begin{equation*}
\left.\frac{\partial^{2} X_{L M}}{\partial T^{2}}\right|_{\rho_{T, M I N}}=\frac{\left(-\rho_{v} \rho_{l} \rho_{l}^{\prime \rho_{V}^{\prime}}+2 \rho_{v}^{\prime} \rho_{l}^{\prime}\left(\rho_{\ell}^{\prime} \rho_{v}-\rho_{v}^{\prime} \rho_{\ell}\right)\right)+\left(\rho_{v} \rho_{\ell} \rho_{v}^{\prime \prime} \rho_{l}^{\prime}\right)}{\left(\rho_{\ell}-\rho_{v}\right)\left(\rho_{v}^{\prime} \rho_{l}^{2}-\rho_{l}^{\prime} \rho_{v}^{2}\right)} \tag{45}
\end{equation*}
$$

Equation (45) in terms of signs using eq. (41) is:
$\left.\frac{\partial^{2} X_{L M}}{\partial T^{2}}\right|_{\rho_{T, M I N}}=\frac{(+)+(-)}{(+)(+)}$.
If $\left.\frac{\partial^{2} X L M}{\partial T^{2}}\right|_{\rho_{T, M I N}}$ is to be greater than zero,
$\left|-\rho_{v} \rho_{\ell} \rho_{\ell}^{\prime \prime} \rho_{v}^{\prime}+2 \rho_{v}^{\prime} \rho_{\ell}^{\prime}\left(\rho_{\ell}^{\prime} \rho_{v}-\rho_{v}^{\prime} \rho_{\ell}\right)\right|>\left|\rho_{v} \rho_{\ell} \rho_{v}^{\prime \prime} \rho_{\ell}^{\prime}\right|$.
This is true for $T_{T P}<T<T_{C}$ for which a minimum in $X_{L M}$ occurs. (No doubt eq. (46) can also be found by considering the maximum in fig. 4. This was not done.)

3.2 Maxima and Minima Analysis as T Goes to T_{C}

To aid in this limit analysis, use is made of the following coexistence dome equations based on those given by Green, et al. [3], and Sengers, et al. [4] with the exception that the exponents are not assumed the same for each phase, i.e.,
$\rho_{\ell}-\rho_{c}=B_{1 \ell} \varepsilon^{\beta_{\ell}}+B_{2 \ell} \varepsilon^{\phi_{\ell}}+B_{3 \ell} \varepsilon^{\psi_{\ell}}$
$\rho_{v}-\rho_{c}=B_{1 v} \varepsilon^{\beta} v+B_{2 v} \varepsilon^{\phi} v+B_{3 v} \varepsilon^{\psi} v$
where,
B's are constants,
$\beta_{\ell}, \beta_{v} \xlongequal{\cong} .35$
$\phi_{\ell}, \phi_{V} \cong 1.00$
$\psi_{\ell}, \psi_{v}>1.00$
$\varepsilon=T_{c}-T$.
To analyze the limits of various mass and liquid fractions in eq. (32) it is helpful to develop the relationship between the exponents β_{v} and β_{ℓ} in eqs. (47) and (48).

To that end, form the critical liquid volume fraction $X_{L V, C}=\left(\rho_{c}-\rho_{V}\right) /\left(\rho_{\ell}-\rho_{V}\right)$ using eqs. (47) and (48), i.e.:
$X_{L V, C}=\frac{-B_{1 v^{\varepsilon}} \varepsilon^{\beta}-B_{2 v^{\varepsilon}} v^{\phi}-B_{3 v} \varepsilon^{\psi_{v}}}{B_{1 \ell} \varepsilon^{\beta_{\ell}}-B_{1 v^{\varepsilon}} \varepsilon^{\beta} v+B_{2 \ell} \varepsilon^{\phi_{\ell}}-B_{2 v^{\varepsilon}}{ }^{\phi} v+B_{3 \ell} \varepsilon^{\psi_{\ell}}-B_{3 v^{\varepsilon}}{ }^{\psi_{v}}}$
Now fig. 1 indicates the generally accepted fact that the liquid volume fraction in the limit along the critical isochore is neither one (a liquid) nor zero (a vapor). A recent detailed critical point investigation by Moldover [5] reinforces such an opinion.

With that in mind, it may be assumed in eq. (49) that $\beta_{\ell}>\beta_{v}$, and each term can be divided by $\varepsilon^{\beta} v$ obtaining:
$X_{L V, c}=\frac{-\mathrm{B}_{1 V}+\operatorname{TERMS}\left(\varepsilon^{E X P>0}\right)}{-\mathrm{B}_{1 V}+\operatorname{TERMS}\left(\varepsilon^{E X P>0}\right)}$
where "EXP" means the exponent of ε. In the limit as $T \rightarrow T_{C}(\varepsilon \rightarrow 0)$
$\lim _{T \rightarrow T_{C}} X_{L V, C}=1$ for $\beta_{\ell}>\beta_{V}$

Or if it is assumed that, $\beta_{v}>\beta_{\ell}$, and each term of eq. (49) is divided by $\varepsilon_{\ell}^{\beta_{\ell}}$ the result is:
$X_{L V, c}=\frac{\operatorname{TERMS}\left(\varepsilon^{E X P>0}\right)}{B_{1 \ell}+\operatorname{TERMS}\left(\varepsilon^{E X P>0}\right)}$
In the limit then as $T \rightarrow T_{C}(\varepsilon \rightarrow 0)$
$\lim _{T \rightarrow T_{C}} X_{L V, C}=0 \quad$ for $\beta_{V}>\beta_{\ell}$.
Neither of these conclusions, eqs. (51) and (53), agree with the accepted fact that
$0<\lim _{T \rightarrow T_{C}} X_{L V, C}<1$.
The only possible conclusion is:
$\beta_{\ell}=\beta_{v} \equiv \beta$.
In most of the current work with eqs. (47) and (48) the " β exponents" are assumed equal. However, the behavior of the critical liquid volume fraction gives a rational reason for their equality. If this is true each term of eq. (49) can be divided by ε^{β} obtaining,
$X_{L V, c}=\frac{-B_{1 V}+\operatorname{TERMS}\left(\varepsilon^{E X P>0}\right)}{\left(B_{1 \ell^{-B}}{ }_{1 V}\right)+\operatorname{TERMS}\left(\varepsilon^{\operatorname{EXP}>0}\right)}$.
In the limit, then, as $T \rightarrow T_{c}(\varepsilon \rightarrow 0)$:
$\lim _{T \rightarrow T_{c}} X_{L V, c}=\frac{-B_{1 v}}{B_{1 \ell}-B_{1 V}} \equiv x_{c, L I M}$
We note that obviously $\mathrm{B}_{1 \mathrm{l}}$ nor $\mathrm{B}_{1 \ell}$ is zero leading again to limits of zero and one respectively. Also, Sengers, et a1. [4] indicate that for first order "dome" symmetry at the critical point,
$B_{1 \ell}=-B_{1 v}$,
indicating also (see eq. (63)) that $B_{1 \ell}$ and $B_{1 v}$ are of opposite algebraic sign. Normally $\mathrm{B}_{1 \ell}$ is positive while $\mathrm{B}_{1 \mathrm{l}}$ is negative (see eqs. (47) and (48)).

Also, the limit, $T \rightarrow T_{c}$, in eq. (6), i.e.,
$\lim _{T \rightarrow T_{c}} X_{L M, C}=\lim _{T \rightarrow T_{c}} \frac{\rho_{\ell}}{\rho_{c}} \lim _{T \rightarrow T_{c}} X_{L V, c}$
results in:
$\lim _{T \rightarrow T_{c}} X_{L M, c}=\lim _{T \rightarrow T_{c}} X_{L V, c}=X_{c, L I M}$.
The critical isochores in figs. 1 and 2 can then be extended to the point "X" $=-B_{1 v} /\left(B_{1 \ell}-B_{1 v}\right)$, i.e., to $X_{c, L I M}$ at $T_{c}=190.555 \mathrm{~K}$ for the methane.

The limits of the liquid mass and volume fractions found in eq. (32) can be analyzed. Substituting the derivatives of eqs. (47) and (48) into eq. (18) and dividing each term by, $\varepsilon^{\beta-1}$,
$X_{L V, M A X}=\frac{-\beta B_{1 V}+\operatorname{TERMS}\left(\varepsilon^{\operatorname{EXP}>0}\right)}{+\beta\left(B_{1 \ell}-B_{1 v}\right)+\operatorname{TERMS}\left(\varepsilon^{\operatorname{EXP}>0}\right)}$.
In the limit $(\varepsilon \rightarrow 0)$:
$\lim _{T \rightarrow T_{c}} x_{L V, M A X}=\frac{-B_{1 v}}{\left(B_{1 \ell}-B_{1 V}\right)}=x_{c, L I M}$
and for eq. (21), in the limit $(\varepsilon \rightarrow 0)$, by inspection,
$\lim _{T \rightarrow T_{C}} X_{\text {LM,MIN }}=\lim _{T \rightarrow T_{C}} X_{L V, M A X}=X_{C, L I M}$.

The rasults given in eqs. (67) and (68) allow the extension of the locus of maximum and minimumpopints to X at T on the figs. 1 and 2 and to ρ on figs. 3 and 4 at T_{c}.

Examining $X_{L V, M I N}$ and $X_{\text {LM,MAX }}$ in the context of eq. (38) it can be seen by inspection that as $T \rightarrow T_{C}$,
$\lim _{T \rightarrow T_{c}} X_{L V, M I N}=\lim _{T \rightarrow T_{c}} X_{L M, \text { MAX }}=\lim _{T \rightarrow T_{c}} X_{L V, M A X}=X_{C, \text { LIM }}$.
Thus eq. (32) can be rewritten for the limit at the critical as:
$\lim _{T \rightarrow T_{C}} X_{L M, M I N}=\lim _{T \rightarrow T_{C}} X_{L M, C}=\lim _{T \rightarrow T_{C}} \quad X_{L M, M A X}=\lim _{T \rightarrow T_{c}} X_{L V, M I N}$
$\rho_{T}+\rho_{C}^{+} \quad \rho_{T} \rho_{\bar{C}} \quad \rho_{T} \rho_{C}^{+}$

$$
\begin{equation*}
=\lim _{T \rightarrow T_{c}} X_{L V, c}=\lim _{T \rightarrow T_{c}} X_{L V, M A X}=X_{c, L I M} \tag{70}
\end{equation*}
$$

Since all these "X's" collapse to a single value at the critical point it might be expected that the derivatives of these curves at the points in eq. (32) would also go to a single value in the limit.

By inspection of figs. 1 and 2 and considering eq. (68) it is concluded that:
$\left.\lim _{\substack{T \rightarrow T_{C}}} \frac{\partial X_{L V}}{\partial T}\right|_{\rho_{T}=\rho_{\bar{C}}}=\rho_{T, \text { MAX }}=0$
and
$\left.\lim _{T \rightarrow T_{C}} \frac{\partial X_{L M}}{\partial T}\right|_{\rho_{T}=\rho_{T, M I N}}=0$.
$\rho_{\mathrm{T}}{ }^{+\rho_{\mathrm{C}}^{+}}$
Further, consideration of eq. (69) suggests that the following limits also be considered:
$\left.\lim _{\substack{T \rightarrow T_{C} \\ \rho_{T} \rightarrow \rho_{C}^{+}}} \frac{\partial X_{L V}}{\partial T}\right|_{\rho_{T}=\rho_{T, M I N}} \quad$ and $\left.\quad \lim _{T \rightarrow T} \quad \frac{\partial X_{L M}}{\partial T}\right|_{\rho_{T}}=\rho_{T, M A X} \quad$.
The values of these derivatives can be found by combining eqs. (18), (19), (28), (36) and (39), to obtain:
$\left.\frac{\partial X_{L M}}{\partial T}\right|_{\rho_{T}=\rho_{T, M A X}}=-\left.\frac{\partial X_{L V}}{\partial T}\right|_{\rho_{T}=\rho_{T, M I N}}=\frac{-\rho_{\ell}^{\prime} \rho_{V}^{\prime}}{\left(\rho_{\ell}^{\prime} \rho_{V}-\rho_{V}^{\prime} \rho_{\ell}\right)}$

Substituting the derivatives from eqs. (47) and (48) into eq. (73) and dividing each term by ($-\beta \varepsilon^{\beta-1}$) results in:
$\left.\frac{\partial X_{L M}}{\partial T}\right|_{\rho_{T}=\rho_{T, M A X}}=-\left.\frac{\partial X_{L V}}{\partial T}\right|_{\rho_{T}=\rho_{T, M I N}}=\frac{B B_{1 \ell} B_{l V} \varepsilon^{\beta-1}+\operatorname{TERMS}\left(\varepsilon^{E X P>0}\right)}{\rho_{C}\left(B_{1 \ell}-B_{l V}\right)+\operatorname{TERMS}\left(\varepsilon^{E X P>0}\right)}$
Noting that, $\mathrm{B}_{1 \ell} \mathrm{~B}_{1 v}<0$ and $\left(\mathrm{B}_{1 \ell}{ }^{-\mathrm{B}_{1 v}}\right)>0$, in the limit $(\varepsilon \rightarrow 0)$:
$\left.\lim _{T \rightarrow T_{C}} \quad \frac{\partial X_{L V}}{\partial T}\right|_{\rho_{T}=\rho_{T, M I N}}=+\infty$
${ }^{\rho_{T, M I N}}{ }^{+p_{C}^{+}}$
$\left.\lim _{T \rightarrow T} \frac{\partial X_{L M}}{\partial T}\right|_{\rho_{T}=\rho_{T, M A X}}=-\infty$.
$\rho_{\mathrm{T}, \text { MAX }}{ }^{+} \rho_{\bar{c}}$
So rather than uniformity in the derivatives at the critical point eqs. (71), (72), (75) and (76) indicate different values depending on whether the approach to ρ_{c} is from "below" or "above" and whether the function is $X_{L V}$ or $X_{L M}$. These results are sensible in light of figs. 1 and 2. Also, since the maxima and minima of figs. 3 and 4 are shown to extend to the critical point, the limits,

$X_{L V}+X_{\bar{C}, \operatorname{LIM}}$
$\left.\lim _{T \rightarrow T} \quad \frac{\partial \rho_{T}}{\partial T}\right|_{X_{L M}}$ at $\rho_{T, M I N}=0$,
$X_{L M}{ }^{+} X_{C, L I M}^{+}$
seem reasonable. Al so by analogy to eqs. (75) and (76) as well as by inspection of figs. 3 and 4,

$X_{L V}{ }^{+X_{C}}{ }_{C, L I M}$
$\left.\lim _{T \rightarrow T_{C}} \quad \frac{\partial \rho_{T}}{\partial T}\right|_{X_{L M}}$ at $\rho_{T, M A X}=+\infty$
$X_{L M}+X_{\bar{c}, L M}$
seem to be rational conclusions.

3.3 Analysis Along ρ_{C} and $X_{C, L I M}$ as T Goes to T_{C}

It appears that to obtain a derivative at the critical point, unambiguously, the approach to the critical point must be along the critical isochore in figs. 1 and 2 and along the line $X_{c, L I M}$ in figs. 3 and 4. Furthermore, the $X_{L V, c}$ function has been utilized by this author [6] to both check the internal consistency of coexistence data and critical density values and to predict ρ_{c} from saturation data. (These procedures are discussed further later in this report.) A knowledge of the derivative is an obvious help to these ends.

The ambiguity in the limit prompts reconsideration of the function map and the areas of applicability of eqs. (8) and (13), i.e., the chain rules.

Now $f\left(X_{L V}, \rho_{T}, T\right)=0$, becomes, along the critical isochore, $f_{c}\left(X_{L M, c}, T\right)=0$. Likewise $g\left(X_{L M}, \rho_{T}, T\right)=0$ becomes $g_{C}\left(X_{L M}, c, T\right)=0$. This reduction in dependent variables is al so true on the saturation boundaries, i.e., $f\left(X_{L V}, \rho_{T}, T\right)=f_{\ell}\left(\rho_{\ell}, T\right)=0$ for $X_{L V}=1$, and $f\left(X_{L V}, \rho_{T}, T\right)=f_{V}\left(\rho_{V}, T\right)=0$ for $X_{L V}=0$. This would occur al so for $g\left(X_{L M}, \rho_{T}, T\right)=0$.

Therefore the chain rule only holds in the regions between the saturation boundaries and the critical isochore for both the liquid volume and liquid mass fractions in figs. 1 and 2 respectively. This may be a reason for the ambiguity of the limits for the derivatives when the critical point is approached from these regions. To avoid this ambiguity then, approach the critical point along ρ_{c} (figs. 1 and 2) or $X_{c, L I M}$ (figs. 3 and 4).

Along ρ_{c},
$\left.\frac{\partial X_{L V}, c}{\partial T}\right|_{\rho_{T}=\rho_{c}}=\frac{d X_{L V}, c}{d T} \equiv X_{L V, c}^{\prime}$
$\left.\frac{\partial X_{L M, c}}{\partial T}\right|_{\rho_{T}=\rho_{c}}=\frac{d X_{L M, c}}{d T} \equiv X_{L M, c}^{\prime}$,
independent of the derivatives and their limits found previously.
Figure 1 shows that $X_{L V, C}$ has positive values virtually to the critical point. The argument that $X_{L V, C}$ does not have a maximum (i.e., $X^{\prime}{ }_{L V, C}=0$) except perhaps at T_{c} is as follows. There are only two possibilities for a maximum in $X_{L V}, c$ in the interval $T_{T P}<T<T_{C}$. The first is illustrated graphically in fig. 8.

The locus of $X_{L V, M A X}$ in fig. 8, stops at point "a" for some $T<T_{C}$. But it has been shown that eq. (18) describes, for all $T<T_{C}$, $X_{L V, M A X}$. In addition, eq. (67) indicates that $X_{L V, M A X}=X_{c, L I M}$ at T_{c}. Therefore this case could not exist, i.e., point "a" and $X_{c, L I M}$ of fig. 8 must be the same point. This leads to the second possibility shown graphically in fig. 9.

Figure 8. $X_{L V, M A X}$ First Possibility.

Figure 9. $X_{\text {LV, maX }}$ Second Possibility.

Here the locus of the zeros in $X_{L V}$ is shown going into the critical point. However, for $\rho_{T}>\rho_{c}$ a maximum and a minimum occurs in $X_{L V}$. Now at these "zero slope points" the value of ρ_{T} is given by eq. (19).

In order for the case of fig. 9 to exist, it would be necessary, at two different temperatures, for the right hand side of eq. (19) to be the same (for $\rho_{T}>\rho_{c}$ in the example). This behavior in $X_{L V}$ has never been found by this author even when working with data very near the critical point. An example of data close to the critical point is shown in fig. 10 based on oxygen data of Weber [7] in a one-half degree interval before the critical point. The departures from smooth curves can only be attributed to experimental error and certainly the points lie on the smooth curves "within" that error. The only data which might cause the reader to suspect the phenomena suggested in fig. 9 is that at 154.560 K in fig. 10 (second to the last temperature). But this "upward" trend appears at densities above and below the critical point and can most likely be attributed to an experimental bias. (The critical isochore appears to approach a value of $X_{c, L I M}$ very near one-half.)

To further amplify the idea that the case of fig. 9 does not occur, data based on "dome" equations similar to eqs. (47) and (48) are presented. The equations are those of Douslin, et al. [8] for ethylene. They are:
$\rho_{\ell}=7.635+1.9695 \varepsilon^{.350}+.02669 \varepsilon^{.984}-.2731 \times 10^{-3} \varepsilon^{1.618}$
$\rho_{v}=7.635-1.9695 \varepsilon^{.350}+.01404 \varepsilon^{.984}+.6783 \times 10^{-3} \varepsilon^{1.618}$
These were substituted into eq. (24) for $X_{L V, c}$ and eq. (18) for $X_{L V, M A X}$. The results are given in table 1.

Equations (82) and (83), based on theory and fit to actual data, result in an $X_{L V, c}$ which has a positive slope and is monotonic to the critical point. Also $X_{L V, M A X}$, with a positive slope, increases monotonically into the critical point. The behavior shown in table 1 coincides with that of fig. 1 and al so reinforces the result of the last section that $\lim _{T \rightarrow T_{C}} X_{L V, M A X}=X_{C, L I M}$.

The conclusion is that the cases shown in figs. 8 and 9 do not occur. Therefore $X_{L V, c}$ does not have a zero slope except perhaps at the critical point. That is, the behavior of $X_{L V, C}$ in fig. 8 is incorrect mathematically and there is no evidence for the behavior of $X_{L V, c}$ as shown in fig. 9. The result is as suggested in fig. 1, that $X_{L V, c}$ continues monotonically into $X_{c, L I M}$ and, that the possibilities for $X_{L V, c}^{\prime}$ are:
$0 \leq \lim _{T \rightarrow T_{C}} X_{L V, C}^{\prime} \leq+\infty$

Table 1. $X_{L V, C}$ and $X_{L V, M A X}$ for Ethylene

T (K)	$\underline{X_{L V, C}}$	$\underline{X_{L V, M A X}}$
0.1 K INTERVALS		
280.05	. 4911	. 4750
280.15	. 4914	. 4757
280.25	. 4916	. 4764
280.35	. 4919	. 4771
280.45	. 4922	. 4779
280.55	. 4924	. 4786
280.65	. 4927	. 4794
280.75	. 4930	. 4802
280.85	. 4933	. 4810
280.95	. 4935	. 4818
281.05	. 4938	. 4827
281.15	. 4942	. 4835
281.25	. 4945	. 4844
281.35	. 4948	. 4853
281.45	. 4951	. 4863
281.55	. 4955	. 4873
281.65	. 4959	. 4883
281.75	. 4962	. 4894
281.85	. 4966	. 4906
281.95	. 4971	. 4918
282.05	. 4976	. 4932
282.15	. 4981	. 4947
282.25	. 4988	. 4966
0.01 K INTERVALS		
282.26	. 4989	. 4968
282.27	. 49896	. 4971
282.28	. 49904	. 4973
282.29	. 49913	. 4975
282.30	. 49923	. 4978
282.31	. 49933	. 4981
282.32	. 49944	. 4984
282.33	. 49957	. 4988
282.34	. 49972	. 4992
282.35 (T_{C})	. 50000	. 4999

Having established eq. (84), further analysis can be done by developing the derivative $X_{L V, c}$ in terms of eqs. (47) and (48). For convenience set $\phi_{\ell}=\phi_{V}$, an assumption usually made. (See eqs. (82) and (83) where Douslin, et al. [8] have $\phi_{l}=\phi_{v}=.984$.) The equation is as follows:
$X_{L V, c}^{\prime}=\frac{\left(B_{1 \ell}{ }_{2 v}-B_{2 \ell}{ }^{B}{ }_{1 v}\right)(\phi-\beta) \varepsilon^{-\beta+\phi-1}+\operatorname{TERMS}\left(\varepsilon^{E X P>0}\right)}{\left(B_{1 \ell}-B_{1 v}\right)^{2}+\operatorname{TERMS}\left(\varepsilon^{\text {EXP>0 }}\right)}$,
and eq. (84) allows the limit of this derivative to be either zero, positive finite, or positive infinity.

Before the exponents are examined, the nature of the constant coefficient $\left(B_{1 \ell}{ }_{2 v}-B_{2 \ell}{ }^{B} l_{v}\right)$ should be analyzed. The possibilities for it are either zero or greater than zero based on eq. (85). If it is to be zero then:
$\frac{{ }^{B_{1 \ell}}}{B_{1 v}}=\frac{{ }^{B_{2 \ell}}}{B_{2 v}}$
Since it has been previously shown that $\mathrm{B}_{1 \ell}$ and $\mathrm{B}_{1 \mathrm{l}}$ have opposite algebraic signs, eq. (86) would mean that $\mathrm{B}_{2 \ell}$ and $\mathrm{B}_{2 v}$ would also have opposite signs. Sengers, et al. [4] in an extensive study of data near the critical point suggest that no conclusion can be made that $B_{2 \ell}=B_{2 v}$ but indicate that when taking the difference $\rho_{\ell}-\rho_{v}$ the $B_{2 \ell}$ and $B_{2 v}$ terms are nearly equal in magnitude and are of the same sign. The eqs. (82) and (83) of Douslin, et al., indicate that $B_{2 \ell}=.02669$ and $B_{2 v}=.01404$, i.e., they are of the same sign.

It is reasonable then to suggest that since no evidence exists for assuming eq. (86), $\left(B_{12} B_{2 v}-B_{2 \ell} B_{1 v}\right)>0$.

An examination of eq. (85) in the light of eq. (87) would result in the virtual elimination of zero as a limit for the derivative. Also, since the exponent $(-\beta+\phi-1)$ is not equal to zero itself the choice of the positive finite limit is also removed. The only reasonable choice left is that:
$\lim _{T \rightarrow T} X_{L V, c}^{\prime}=+\infty$
The derivative $X_{L V, c}^{\prime}$ behaves as though the fluid were a "liquid" at the critical point (see fig. 1) and eq. (75).

A check of eqs. (82) and (83) for ethylene indicates that indeed eq. (87) is satisfied, i.e., (1.9695)(.01404)-(-1.9695)(.02669) > 0, affirming that:
$\lim _{T \rightarrow T_{c}} X_{L V, c}^{\prime}=+\infty$.

The data of table 1 indicates that the $X_{L V, C}$ function comes into $X_{C, L I M}$ with a very small slope and therefore must then turn upward virtually at T_{c}.

An exception to eq. (87) was found in the recent paper of Haar, et al. [9] for
ammonia. His values are:

$$
\begin{aligned}
& B_{1 \ell}=2.117 \\
& B_{1 v}=-2.117 \\
& B_{2 \ell}=-1.4097 \\
& B_{2 v}=-1.1390
\end{aligned}
$$

Indeed, $B_{2 \ell}$ and $B_{2 v}$ have the same sign but $(2.117)(-1.4097)-(-2.117)(-1.1390)<0$, which would indicate $\lim _{T \rightarrow T_{C}} X_{L V, C}^{\prime}=-\infty$. However the equations are based mainly on data by Cragoe, et al $[10,11]$ which are at best some 30 K away from the critical point. These equations were used only to estimate T_{c} and ρ_{c} and were not used in the determination of the published saturation data.

To check the ammonia data for the slope $X_{L V, c}^{\prime}$ at the critical point, this author fit the published saturation data from $116-132{ }^{\circ} \mathrm{C}$ to the function $X_{L V}, c\left(T_{C}=132.24{ }^{\circ} \mathrm{C}\right)$. The procedure is outlined in a previous paper [6]. The results for an unweighted least squares fit is $\left(\operatorname{Var}(\right.$ data $\left.)=.2547 \times 10^{-7}\right)$:
$X_{L V, C}=(1 / 2)\left[1-3.903 \times 10^{-3} \varepsilon^{.97}\right]$
from which:
$X_{L V, c}^{\prime}=\left(1.893 \times 10^{-3}\right) \varepsilon^{-.03}$.
Clearly the limit is: $+\infty$, which agrees with eq. (88).
The equation for the derivative of the critical liquid mass fraction, $X^{\prime}{ }_{L M}, C$, is developed from eqs. (47) and (48) assuming $\phi_{V}=\phi_{\ell}$. The result is:

$$
\begin{align*}
& X_{L M, C}^{\prime}=\left[\left[\beta\left(B_{1 \ell^{-B}}{ }_{1 v}\right)\left(B_{1 \ell^{B}}{ }_{1 v}\right) \varepsilon^{\beta-1}+\rho_{c}^{2}(\phi-\beta)\left[B_{1 \ell} B_{2 v}-B_{2 \ell}{ }^{B}{ }_{1 v}\right] \varepsilon^{\phi-\beta-1}\right.\right. \\
& +\rho_{c}\left[\left\{2 \beta\left(B_{2 \ell}-B_{2 v}\right)+2 \phi B_{2 \ell}\right\} B_{1 \ell} B_{1 v}\right. \tag{91}\\
& \left.+\phi\left\{\left(\mathrm{B}_{1 \ell}-\mathrm{B} \imath_{v}\right) \mathrm{B}_{1 \ell} \mathrm{~B}_{1 v}-\left(\mathrm{B}_{1 v}+\mathrm{B}_{1 \ell}\right) \mathrm{B}_{2 \ell} \mathrm{~B}_{1 v}\right\}\right] \varepsilon^{\phi-1} \\
& \frac{\left.\left.+\operatorname{TERMS}\left(\varepsilon^{E X P>0}\right)\right]\right]}{\rho_{c}^{2}\left(\mathrm{~B}_{1 \ell}-\mathrm{B}_{1 v}\right)^{2}+\operatorname{TERMS}\left(\varepsilon^{E X P>0}\right)}
\end{align*}
$$

The term containing $\varepsilon^{\beta-1}$ would have the strongest influence since

$$
\begin{array}{lll}
\beta-1 & 2 & -.65 \\
\phi-\beta-1 & 2 & -.35 \\
\phi-1 & 2 & 0.0
\end{array}
$$

The coefficient of $\varepsilon^{\beta-1}$, i.e., $B\left(B_{1 \ell^{-B}} 1 v\right)\left(B_{1} \ell^{B} 1_{v}\right)$ is <0 (assuming as before, ${ }^{B} 1_{\ell}>0$ and $\left.B_{1 v}<0\right)$. Hence the only choice for the limit of $X_{L M, C}^{\prime}$ is:
$\lim _{T \rightarrow T_{c}} X_{L M, C}=-\infty$
This limit is also strongly suggested by the graph of fig. 2 for the critical isochore. The derivative $X_{L M, C}^{\prime}$ behaves as though the fluid were a "vapor" at critical point (see eq. (76)).

As previously stated, the liquid volume fraction derivative behaves as a "liquid" derivative, hence there is some ambiguity at the critical point in the derivatives in addition to the non-liquid, non-vapor ambiguous behavior of $X_{L V}, c$ and $X_{L M, C}$ themselves at the critical point.

From eq. (6):
$x_{L V, C}=\frac{x_{L M, C} \rho_{C}}{\rho_{\ell}}$
The derivative with respect to temperature is
$X_{L V, c}^{\prime}=X_{L M, c}^{\prime} \frac{\rho_{c}}{\rho_{\ell}}-\frac{X_{L M, c} \rho_{\ell}^{\prime} \rho_{c}}{\rho_{\ell}^{2}}$.
In the limit:
$\lim _{\mathrm{T} \rightarrow \mathrm{T}_{c}} X_{L V, c}^{\prime}=\lim _{\mathrm{T} \rightarrow \mathrm{T}_{c}} X_{L M, c}^{\prime}-\frac{X_{c, L I M}}{\rho_{c}} \lim _{\mathrm{T} \rightarrow \mathrm{T}_{c}} \rho_{\ell}^{\prime}$
Since ρ_{l}^{\prime} and $X_{L M, c}^{\prime}$ in the limit are $-\infty$,
$\lim _{T \rightarrow T_{C}} X_{L V, c}^{\prime}=-\infty+\infty$,
an indeterminate form. Thus the limit could be anything. The limit as given by eq. (75) $(+\infty)$ is allowed by eq. (95).

The ambiguity in the limit of the derivatives of eqs. (77), (78), (79) and (80), is avoided by accessing the critical point along the lines $X_{L V}=X_{c, L I M}$ in fig. 3 and $X_{L M}=X_{c, L I M}$ in fig. 4.

To that end, in eq. (11), substitute the derivatives from eqs. (47) and (48) and eq. (63) for $X_{c, L I M}$ resulting in:

But the coefficient of $\varepsilon^{\beta-1}$ is zero hence:
$\left.\frac{\partial \rho_{T}}{\partial T}\right|_{X_{L V}=X_{c, L I M}}=\frac{-\phi\left[\mathrm{B}_{1 \ell} \ell_{2 v}-\mathrm{B}_{1 v} \mathrm{~B}_{2 \ell}\right]^{\phi-1}+\operatorname{TERMS}\left(\varepsilon^{\operatorname{EXP}>0}\right)}{\left(\mathrm{B}_{1 \ell}-\mathrm{B}_{1 v}\right)}$.
Earlier analysis indicates that it is reasonable to have $\left(B_{1 \ell} B_{2 v}-B_{1 v} B_{2 \ell}\right)>0$, and since ϕ and $\left(B_{1 \ell}-B_{1 v}\right)$ are greater than zero the possibilities are:
$-\infty \leq\left.\lim _{T \rightarrow T_{C}} \frac{\partial \rho_{T}}{\partial T}\right|_{X_{L V}=X_{c, L I M}} \leq 0$
where the actual value is then determined by the value of ϕ, i.e.,
$0<\phi<1,\left.\lim _{T \rightarrow T_{c}} \frac{\partial \rho_{T}}{\partial T}\right|_{X_{L V}=X_{c, L I M}}=-\infty$,
$\phi=1,\left.\lim _{\Gamma \rightarrow T_{c}} \frac{\partial \rho_{T}}{\partial T}\right|_{X_{L V}=X_{c, L I M}}=-$ finite , and
$\phi>1,\left.\lim _{T \rightarrow T_{C}} \frac{\partial \rho_{T}}{\partial T}\right|_{X_{L V}=X_{c, L I M}}=0$.
There is much interest in the literature of today in the slope of the rectilinear diameter, $\left(\rho_{l}^{\prime}+\rho_{v}^{\prime}\right) / 2$, especially at the critical point. Theoretical work by Green, et al. [3] and experimental work by Weiner, et al. [12] indicate the possibility of a slight "hook" in the rectilinear diameter, i.e., the hypothesis is that
$\lim _{T \rightarrow T_{c}} \frac{\left(\rho_{v}^{\prime}+\rho_{\ell}^{\prime}\right)}{2}=-\infty$

If in eq. (11), $X_{L V}=1 / 2$, then:
$\left.\frac{\partial \rho_{T}}{\partial T}\right|_{X_{L V}=1 / 2}=\frac{\rho_{V}^{\prime}+\rho_{\ell}^{\prime}}{2}$
the slope of the rectlinear diameter.
The slope of the rectilinear diameter may be obtained by using the derivatives of eqs. (47) and (48) directly for ρ_{ℓ}^{\prime} and ρ_{V}^{\prime} obtaining,
$\rho_{\ell}^{\prime}+\rho_{v}^{\prime}=-\beta\left(B_{1 \ell}+B_{1 v}\right) \varepsilon^{\beta-1}-\phi\left(B_{2 \ell}+B_{2 v}\right) \varepsilon^{\phi-1}+\operatorname{TERMS}\left(\varepsilon^{E X P>0}\right)$
The variables of interest in eqs. (97), (103), and (104) are $B_{1 \ell}, B_{1 v}$, and the exponent ϕ. In eq. (104), it is assumed that if $\left(B_{l \ell}+B_{1 v}\right) \neq 0$ the $\varepsilon^{\beta-1}$ dominates. Table 2 summarizes the effect of varying $B_{l \ell}, B_{l v}\left(X_{c, L I M}=-B_{l v} /\left(B_{l \ell}{ }^{-B_{l v}}\right)\right)$ and ϕ.

Table 2. Effect of $\phi, B_{l \ell}$, and, $B_{l V}$ on $\left.\lim _{T \rightarrow T_{C}} \frac{\partial \rho_{T}}{\partial T} \right\rvert\, X_{L V}=X_{C, L I M}$ and $\lim _{T \rightarrow T}\left(\rho_{l}^{\prime}+\rho_{V}^{\prime}\right)$

${ }^{1}$ The number in parentheses refers to the related equation.

When $B_{1 \ell}=-B_{1 v}\left(X_{c, L I M}=1 / 2\right)$, the rectilinear diameter slope is found from eq. (97) as $\left.\frac{\partial \rho_{T}}{\partial T}\right|_{L V}=X_{C, L I M}=\frac{1}{2}$ and $\frac{\rho_{l}^{\prime}+\rho_{V}^{\prime}}{2}$ are equal (see eq. (103). These should match the values obtained from eq. (104) where at first order symmetry, $\mathrm{B}_{1 \ell}=-\mathrm{B}_{1} \mathrm{lv}$, eq. (104) reduces to:
$\rho_{\ell}^{\prime}+\rho_{V}^{\prime}=-\phi\left(B_{2 \ell}+B_{2 v}\right) \varepsilon^{\phi-1}+\operatorname{TERMS}\left(\varepsilon^{E X P>0}\right)$
From the values in table 2 for $\lim \left(\rho_{l}^{\prime}+\rho_{v}^{\prime}\right)$, at $B_{1 \ell}=-B_{1 v}$ (based on eq. (97)) there are the following implications, given in table 3, for $\left(B_{2 l}+B_{2 v}\right)$ since, as said above, the values in eq. (105) should match.

Table 3. Analysis of $\left(B_{2 \ell}+B_{2 v}\right)$ for $\left(B_{1 \ell}=-B_{1 v}\right)$

| ϕ | $\frac{\lim _{T+T}\left(\rho_{\ell}^{\prime}+\rho_{V}^{\prime}\right)}{}$ | | $\left(B_{2 \ell}+B_{2 V}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| - | $-\infty(97)^{2}$ | | $>0 \quad(105)$ |
| <1 | - FINITE (97) | | $>0 \quad(105)$ |
| $=1$ | 0 | (97) | NO RESTRICTION (105) |

${ }^{2}$ The number in parentheses refers to the related equation.

If first order symmetry is assumed ($B_{1 \ell}=-B_{1 v}$), and if $\phi<1$, both generally assumed to be valid, then:
$\left(B_{2 \ell}+B_{2 v}\right)>0$.
We see that for Douslin's [8] eqs., (82) and (83), both $\mathrm{B}_{2 \ell}$ and $\mathrm{B}_{2 v}$ are positive so the criterion is met. The $B_{2 l}$ and $B_{2 v}$ of Haar, et al. [9] for ammonia are both negative but see the previous discussion regarding the validity of these values in light of the data range from which they were derived.

Figure 11 indicates that if the rectilinear diameter is to have a slope in the limit of $+\infty$, the diameter must have the value of ρ_{c} two times, i.e., once at T_{a} (point "a") and again at the critical point. This author does not know of any evidence in the literature for such an occurrence. A reasonable hypothesis is then:
$x_{c, \text { LIM }} \leq 1 / 2$.
An expression for the derivative $\left.\frac{\partial \rho_{T}}{\partial T}\right|_{X_{L M}}$ along $X_{c, L I M}$ (see fig. 4) can also be developed. Utilizing eqs. (7), (16), (67), (68) and the derivatives of eqs. (47) and (48),

$$
\begin{align*}
\left.\frac{\partial \rho_{T}}{\partial T}\right|_{X_{L M}=X}= & {\left[-\left(B_{1 \ell, L I M}-B_{1 v}\right) B_{1 \ell} B_{1 v} B \rho_{c} 2 \varepsilon^{2 \beta-1}\right.} \\
& -\left(B_{1 \ell} B_{2 v}-B_{1 v} B_{2 \ell}\right) \phi \rho_{c}^{2} \varepsilon^{\phi-1} \tag{108}\\
& +\frac{\text { TERMS } \left.\left(\varepsilon^{E X P>0}\right)\right]}{}
\end{align*}
$$

Since, $\left(B_{1 \ell}-B_{1 v}\right)>0, B_{1 \ell} B_{1 v}<0$, and the term $\varepsilon^{2 \beta-1}$ dominates near the critical point,
$\left.\lim _{T \rightarrow T} \frac{\partial \rho_{T}}{\partial T}\right|_{X_{L M}=X_{c, L I M}}=+\infty$
regardless of what $X_{c, \text { LIM }}$ is.
A brief analysis was made regarding insights into the rectilinear diameter in light of eq. (108). No additional information was found beyond that already reported.

The inequalities of eqs. (42) and (46) were investigated in the limit as $T \rightarrow T_{c}$. By use of the derivatives of eqs. (47) and (48) it can be shown that, $\lim _{T \rightarrow T}\left|\rho_{v}^{\prime \prime} \rho_{l}^{\prime}\right|=\lim _{T \rightarrow T}\left|\rho_{l}^{\prime \prime \rho_{V}^{\prime}}\right|$.

Equations (82) and (83) for ethylene were used to demonstrate the validity of eq. (42) and eq. (110). The results are given in table 4.

A similar limit analysis for the inequality of eq. (46) was attempted with no conclusive result. However, the computer generated results of table 4 indicate that, not only is eq. (46) valid but also most likely,
$\lim _{T \rightarrow T}\left|-\rho_{v} \rho_{\ell} \rho_{\ell}^{\prime \prime} \rho_{v}^{\prime}+2 \rho_{v}^{\prime} \rho_{\ell}^{\prime}\left(\rho_{\ell}^{\prime} \rho_{v}-\rho_{v}^{\prime} \rho_{\ell}\right)\right|=\lim _{T \rightarrow T}\left|\rho_{v} \rho_{\ell} \rho_{V}^{\prime} \rho_{\ell}^{\prime}\right|$.

Table 4. Check on Inequalities for Ethylene

$$
\left|\rho_{l}^{\prime} \rho_{v}^{\prime}\right|>\left|\rho_{v}^{\prime} \rho_{l}^{N} \rho_{l}^{\prime}\right|
$$

$$
\underline{\left|-\rho_{v} \rho_{l} \rho_{l}^{\prime \prime} \rho_{v}+2 \rho_{v} \rho_{l}^{\prime}\left(\rho_{l}^{\prime} \rho_{v}-\rho_{v}^{\prime} \rho_{\ell}\right)\right|>\left|\rho_{v} \rho_{l} \rho_{v}{ }^{\prime \rho_{l}}\right|}
$$

T (K)
242.15
247.15
252.15
257.15
262.15
267.15
272.15
277.15
282.15

$\rho_{\ell}^{\prime} \rho_{V}^{\prime \prime}$	$\rho_{V}^{\prime} \rho_{l}^{\prime \prime}$
$-.970 \mathrm{E}-4$	$-.420 \mathrm{E}-4$
$-.127 \mathrm{E}-3$	$-.604 \mathrm{E}-4$
$-.173 \mathrm{E}-3$	$-.907 \mathrm{E}-4$
$-.252 \mathrm{E}-3$	$-.145 \mathrm{E}-4$
$-.402 \mathrm{E}-3$	$-.252 \mathrm{E}-3$
$-.737 \mathrm{E}-3$	$-.507 \mathrm{E}-3$
$-.175 \mathrm{E}-2$	$-.133 \mathrm{E}-2$
$-.777 \mathrm{E}-2$	$-.653 \mathrm{E}-2$
$-.127 \mathrm{E}+2$	$-.124 \mathrm{E}+2$

$\frac{-\rho_{v} \rho_{l} \rho_{l}^{\prime} \rho_{v}+2 \rho_{v}^{\prime} \rho_{l}^{\prime}\left(\rho_{l}^{\prime} \rho_{v}-\rho_{v}^{\prime} \rho_{l}\right)}{.540 \mathrm{E}-2}\left(\begin{array}{l}.794 \mathrm{E}-2 \\ .121 \mathrm{E}-1 \\ .193 \mathrm{E}-1 \\ .332 \mathrm{E}-1 \\ .650 \mathrm{E}-1 \\ .161 \\ .718 \\ .942 \mathrm{E}+3\end{array}\right.$
${ }^{\rho_{v} \rho_{\ell} \rho_{v} \rho_{\ell}}$
-. 192E-2
-. 285E-2
-. $440 \mathrm{E}-2$
-. $723 \mathrm{E}-2$
$-.130 \mathrm{E}-1$
-. 269E-1
$-.726 \mathrm{E}-1$
-. 369
$-.724 \mathrm{E}+3$
(The following is for an increasingly finer ΔT.)

282.25	$-.622 \mathrm{E}+2$	$-.613 \mathrm{E}+2$	$.443 \mathrm{E}+4$	$-.358 \mathrm{E}+4$
282.30	$-.305 \mathrm{E}+3$	$-.303 \mathrm{E}+3$	$.210 \mathrm{E}+5$	$-.177 \mathrm{E}+5$
282.33	$-.250 \mathrm{E}+4$	$-.249 \mathrm{E}+4$	$.165 \mathrm{E}+6$	$-.145 \mathrm{E}+6$
282.34	$-.1232 \mathrm{E}+5$	$-.1228 \mathrm{E}+5$	$.794 \mathrm{E}+6$	$-.716 \mathrm{E}+6$
andfor T_{C} 282.35	$-.40274 \mathrm{E}+24$	$-.40274 \mathrm{E}+24$	$.23480 \mathrm{E}+26$	$-.23477 \mathrm{E}+26$

3.4 Maxima and Minima Analysis as T Goes to $T_{T P}$

Figures 3 and 4 indicate that the following limits obtain at the triple point:
$\left.\lim _{T \rightarrow T} \frac{\partial \rho_{T}}{\partial T}\right|_{X_{L V}}=0$
$X_{L V} \rightarrow 0^{+}$
$\left.\lim _{\substack{T \rightarrow T_{T P} \\ X_{L V}+1^{-}}} \frac{\partial \rho_{T}}{\partial T}\right|_{X_{L V}}=-$ FINITE VaLUE
$\left.\lim _{T \rightarrow T_{T P}} \frac{\partial \rho_{T}}{\partial T}\right|_{X_{L M}} \cong 0 \quad$ or + FIMITE
$\left.\lim _{T \rightarrow T} \frac{\partial \rho_{T P}}{\partial T}\right|_{X_{L M}}=0$.
$X_{L M}+1^{-}$
Hypothesize that eqs. (32) and (112) simultaneously hold at the triple point. Equation (112) implies that $X_{L V, M A X} \rightarrow 0$ and $\rho_{T, M A X} \rightarrow \rho_{V, T P}$ as $T \rightarrow T_{T P}$. The corresponding $X_{L M, M A X}$ at $\rho_{T, M A X}=\rho_{V, T P}$ is:
$X_{L M, M A X}=\frac{\rho_{\ell, T P}}{\rho_{v, T P}}\left[\frac{\rho_{v_{2} T P}-\rho_{v, T P}}{\rho_{\ell, T P}-\rho_{v, T P}}\right]=0$.
But eq. (32) says that $X_{L M, M A X}>X_{L V, C}$ and $X_{L V, C}$ is usually about .3 or .4 at the triple point (see fig. 1) so our original hypothesis is wrong.

Hypothesize that eqs. (32) and (115) simultaneously hold at the triple point. Equation (115) implies that $X_{\text {LM,MIN }} \rightarrow 1$ and $\rho_{T, M I N} \rightarrow \rho_{\ell, T P}$. The corresponding $X_{L V, M I N}$ at $\rho_{T, M I N}=\rho_{\ell, T P}$ is:
$X_{L V, M I N}=\frac{\rho_{\ell, T P}-\rho_{V, T P}}{\rho_{\ell, T P}-\rho_{V, T P}}=1$
But eq. (32) says that $X_{L M, C}>X_{L V, M I N}$. While $X_{L M, C}$ is very close to one, about .998 , or so, at the triple point it can never be one because $\rho_{c} \neq \rho_{\ell, T P}$ (also see fig. 1). So this hypothesis is also wrong. The conclusion is that eq. (32) does not hold at the triple point.

Equations (112) and (114) would appear to be expressions for ρ_{v}^{\prime} at the triple point and eqs. (113) and (115) appear to be values of ρ_{ℓ}^{\prime} at the triple point. However, the ambiguity is obvious. Again, as at the critical point, this ambiguity of definition of the derivative may be due to the inapplicability of eqs. (8) and (13) along the saturation lines as has been already mentioned. Thus, the only non-ambiguous limit for ρ_{V}^{\prime} and ρ_{ℓ}^{\prime} at the triple point can be found along the saturated vapor and saturated liquid lines respectively as $T \rightarrow T$.

In the light of the behavior of the liquid volume and liquid mass fractions, the triple point exhibits singularities of the same sort as the critical point particularly as to ambiguity in the derivatives.

4. CORRELATING COEXISTENCE - CRITICAL POINT DATA USING THE LIQUID VOLUME FRACTION

An earlier paper by this author [6] outlined a method of testing whether or not the saturation density data correlated with published critical point data. The technique is based on fig. 1 and its subsequent analysis. If, as the critical liquid volume fraction
approached T_{c}, it went through a maximum, the ρ_{c} used was too low, i.e., in reality it was a ρ_{v}. Or, if, as the critical liquid volume fraction approached T_{c}, it increased beyond one-half and kept increasing, the ρ_{c} used was too high, i.e., in reality it was a ρ_{ℓ}.

In that earlier paper it was assumed that the critical liquid volume fraction is one-half at the critical point. This assumption was based on the work by Sengers, et al. [4]. The macroscopic approaches of this current paper, could only indicate that the fraction concerned is equal to or less than one-half at the critical point. The value one-half is, however, assumed for the work that follows. The one-half is a reasonable answer to the ambiguity at the critical, i.e., the fraction is not zero (a vapor) or one (a liquid). A further aspect of the value one-half is that it implies a first order symmetry $\left(B_{1 \ell}=-B_{1 v}\right)$ at the critical point, i.e., from eq. (63):
$x_{c, \text { LIM }}=-B_{1 v} /\left(B_{1 \ell}-B_{1 v}\right)=1 / 2$ for $\left(B_{1 \ell}=-B_{1 v}\right)$
A look at the ratio of the derivatives ρ_{ℓ}^{\prime} and ρ_{v}^{\prime} further emphasizes the nature of first order symmetry. From eqs. (47) and (48) and ($\beta_{\ell}=\beta_{v}=\beta$) the following ratio may be calculated:
$\frac{\rho_{\ell}^{\prime}}{\rho_{v}^{\prime}}=\frac{-B_{1 \ell^{\beta \varepsilon}}^{\beta-1}-B_{2 \ell} \varepsilon_{\ell} \varepsilon^{\phi \ell^{-1}}-B_{3 \ell} \psi_{\ell} \varepsilon^{\psi \ell}{ }^{-1}}{-B_{1 v^{1}} \beta \varepsilon^{\beta-1}-B_{2 v}{ }^{\phi} \varepsilon^{\phi v^{-1}}-B_{3 v} \psi_{v} \varepsilon^{\psi v^{-1}}}$
Dividing by $\varepsilon^{\beta-1}$, taking the $1 \mathrm{im} T \rightarrow T_{c}(\varepsilon \rightarrow 0)$, the result is
$\lim _{T \rightarrow T_{c}} \frac{\rho_{l}^{\prime}}{\rho_{v}^{\prime}}=\frac{B_{1 l}}{B_{1 v}}$,
and if $\left(B_{1 \ell}=-B_{1 v}\right)$ (first order symmetry),
$\lim _{T \rightarrow T} \frac{\rho_{l}^{\prime}}{\rho_{V}^{\prime}}=-1$.
This ratio of minus one also agrees with the idea that at the critical point neither the liquid or vapor is dominant thus carrying out the theme of ambiguity at the critical point. As a further indication that $X_{c, \text { LIM }}$ is one-half, the reader may refer to fig. 1 for methane and fig. 10 for oxygen. In both cases the graph indicates that the critical isochore on a $X_{L V}$ vs T plot comes to nearly one-half at the critical point. It is assumed, in the analysis that follows, that $X_{c, L I M}$ is one-half.

The behaviorial test for $X_{L V}$ is applied below to argon data published by Gosman, et al. [13]. The results are shown in table 5.

$$
\begin{gathered}
\text { Table 5. } X_{L V, c} \text { vs } T \text { for Argon } \\
\left(\rho_{c}=13.4123 \mathrm{~mol} / \mathrm{L} \text { pub }\right)
\end{gathered}
$$

$\frac{T(K)}{}$	$\frac{X_{L V, C}}{.4762}$
145.00	.4777
146.00	.4790
147.00	.4795
148.00	.4781
149.00	.4693
150.00	$(.5000)$

The published $\rho_{c}(13.4123 \mathrm{~mol} / \mathrm{L})$ is behaving more like a ρ_{V} since the $X_{L V}, c$ function turns down before T_{c} is reached. These same six data points were fit to a functional form of $X_{L V}, c$ by this author. From this fit an estimate of ρ_{c} can be made. (The details of this procedure are outlined later.)

The result from the unweighted least squares fit at a minimum variance of the data is:

$$
\begin{aligned}
& \rho_{c}=13.6138 \mathrm{~mol} / \mathrm{L} \\
& \sigma_{\rho_{c}}=0.0031
\end{aligned}
$$

for an $X_{c, L I M}$ assumed to be one-half.
This "correctly correlated" ρ_{c} is indeed higher than the published value as the "X" analysis predicts.

A similar analysis was done on more recent data - that of ammonia by Haar, et al. [9]. The results are shown in table 6. The second column of table 6 indicates that the proposed $X_{L V, c}$ goes through a maximum and decreases towards zero. These data ($116-132^{\circ} \mathrm{C}$) were then fit to an $X_{L V, c}$ function with one-half at the critical point (Haar's assumption). The result is:

Table 6. $X_{L V, c}$ vs T for Ammonia

T $\left({ }^{\circ} \mathrm{C}\right)$	$\underline{X_{L V, C}\left(\rho_{C}=.23502 \mathrm{~g} / \mathrm{cm}^{3} \mathrm{pub}\right)}$	$X_{L V, C}\left(\rho_{C}=.23652 \mathrm{~g} / \mathrm{cm}^{3}\right.$ from fit)
116	. 4664	. 4711
117	. 4678	. 4727
118	. 4693	. 4743
119	. 4708	. 4759
120	. 4724	. 4776
121	. 4739	. 4793
122	. 4755	. 481
123	. 4771	. 4829
124	. 4788	. 4848
125	. 4804	. 4867
126	. 4821	. 4887
128	. 4852	. 4927
130	. 4873	. 4963
132	. 4854	. 4983
$132.24\left(T_{C}\right)$	(.5000) ?	. 5000
ρ_{c}	$.23652 \mathrm{~g} / \mathrm{cm}^{3}$	
${ }^{\circ}{ }_{c}$. 00004	

Again the properly correlated ρ_{c} is slightly higher than the published value as the analysis would indicate. The results for $X_{L V}, c$ using this new ρ_{C} are given in column three of table 6. The values go monotonically towards .5000 which is expected by the earlier analysis in this report. (This type of analysis had been done previously by this author [6] for data published by ASHRAE-American Society of Heating, Refrigeration, and Air Conditioning Engineers, Inc., 1969.)

The foregoing procedure for testing the correlation of saturation/critical data may be useful to those whose task it is to evaluate thermodynamic property data.

Ethylene data are also analyzed. Whereas, for the argon and ammonia, smoothed published data were used, the weighted experimental values of Douslin, et al. [8] are used for ethylene. The intent of the following is to present a method for obtaining a correctly correlated value for ρ_{c} directly from data. Arguments are presented to indicate the statistical soundness of the approach.

An outline of the procedure (reported in a previous paper [6]), used to fit $X_{L V, c}$ to the data follows.

Substituting eqs. (47) and (48) into eq. (24) for the critical liquid volume fraction, results in a series of terms of ε having exponents (not necessarily integers). For convenience, a truncated form of this series of terms for $X_{L v, c}$ is assumed as follows:
$X_{L V, c}=\left(X_{c, L I M}\right)\left[1+b(\varepsilon)^{P}+c(\varepsilon)^{R}\right]$
where:

$$
\begin{aligned}
& b, c \text { are constants, } \\
& P, R \text { are exponents (not necessarily integers), } \\
& \varepsilon=T-T_{c}
\end{aligned}
$$

and:

$$
X_{L V, c} \rightarrow X_{c, L I M} \text { as } \varepsilon \rightarrow 0
$$

Combining eqs. (24) and (120) and doing some algebraic manipulation the result (with $X_{c, \text { LIM }}=$ one-half) is:
$\rho_{v}+\rho_{\ell}=A+B(\varepsilon)^{P}\left(\rho_{\ell}-\rho_{v}\right)+C(\varepsilon)^{R}\left(\rho_{\ell}-\rho_{v}\right)$
where:
$A=2 \rho_{c}, B, C$ are constants.
The exponents P and R are varied until the variance of the data for a least squares fit is minimized. The digital computer utilizes a Gauss Jordon pivoting technique yielding, among other things, the best estimate of $\rho_{c}(A / 2)$ and its standard deviation.

Whereas eq. (121) looks like the rectilinear diameter, it really is quite different as far as the data used in the fit is concerned. A normal fit of the rectlinear diameter uses only values of $\left(\rho_{\ell}+\rho_{v}\right) / 2$ while eq. (121) al so utilizes the difference ($\rho_{\ell}-\rho_{v}$) which is inherently quite accurate (see Weber [7] for this opinion). Also eq. (121) is not an extrapolation to the critical point but (from eq. (120)) is a fit constrained to a particular value, $X_{c, L I M}=$ one-half, at the critical point.

Equation (120) was fit (via eq. (121)) to the fourteen weighted data points presented by Douslin, et al. [8] for ethylene from 238.15 to $282.15 \mathrm{~K}\left(\mathrm{~T}_{\mathrm{C}}=282.35 \mathrm{~K}\right)$. The data used are given in table 7 below. In fitting the data, first one exponential term in eq. (121) is utilized, and a minimum variation in the data is found. Then a second term is added in eq. (121) until a lower minimum in the variation of the data is found. Then the "local" area of these exponents is searched by successive approximations to check on a further minimization of the variance. A more sophisticated approach could be utilized in which the computer finds the "best fit" of exponents using a non-linear fit procedure. However, the ρ_{c} found is certainly correct in the first four significant figures - well within experimental accuracy. The results given in table 8 , later presented, attest to the "goodness" of fit.

The use of only one term resulted in a systematic rather than a random error distribution found when using two exponential terms. The result of the weighted least squares fit is (for $X_{c, \text { LIM }}=$ one-half which Douslin assumes):

$$
\begin{align*}
\rho_{\ell}+\rho_{v}=15.258577 & +.011666548 \varepsilon \varepsilon^{.528}\left(\rho_{\ell}-\rho_{v}\right) \\
& +.65778747 \times 10^{-3} \varepsilon^{1.088}\left(\rho_{\ell}-\rho_{v}\right) \tag{122}
\end{align*}
$$

or in $X_{L V, c}$ form:
$X_{L V, c}=(.5)\left[1-.011666548 \varepsilon^{.528}-.65778747 \times 10^{-3} \varepsilon^{1.088}\right]$
and with a ρ_{C} found to be:

$$
\begin{aligned}
& \rho_{c}=7.6292884 \mathrm{~mol} / \mathrm{dm}^{3} \\
& \sigma_{\rho_{c}}=0.0000270 \mathrm{~mol} / \mathrm{dm}^{3} .
\end{aligned}
$$

Table 7. Experimental Ethylene Data (from Douslin, et al. [8]

T (K)	$\rho_{\ell}\left(\frac{\mathrm{mol}}{\mathrm{dm}^{3}}\right)$	$\rho_{v}\left(\frac{\mathrm{~mol}}{\mathrm{dm}^{3}}\right)$	Weight
238.15	16.036	1.1130	1280
243.15	15.634	1.2986	1280
248.15	15.196	1.5141	1280
253.15	14.723	1.7672	1280
258.15	14.207	2.0677	1280
263.15	13.630	2.4321	1280
268.15	12.966	2.8905	1279
273.15	12.146	3.5025	1053
278.15	10.995	4.4471	775
279.15	10.674	4.7246	725
280.15	10.290	5.071	485
281.15	9.767	5.546	232
281.65	9.387	5.911	128
282.15	8.780	6.489	33
282.35 (T_{C})	7.635	7.635	

${ }^{3}$ This ρ_{c} is from a straight line extrapolation of the rectilinear diameter.
If the derivative of eq. (123) is taken as $T \rightarrow T_{c}$, a limit of $+\infty$ is obtained. This is in accordance with previous findings (see eq. (88)). Further, in reference to eq. (122), if, from scaling laws:
$\rho_{\ell}-\rho_{v} \sim \varepsilon^{\beta}$,
(124)
the derivative $\left(\rho_{l}^{\prime}+\rho_{v}^{\prime}\right)$ goes to $-\infty$ which is predicted for $\phi<1(.350+.528=.878<1)$ and $X_{c, \text { LIM }}=$ one-half. This is in accordance with the results previously predicted and listed in table 2.

The critical temperature utilized is Douslin's value of 282.35 K . The ρ_{c} value calculated comes out slightly less than the value ($7.635 \mathrm{~mol} / \mathrm{dm}^{3}$) presented by Douslin. An analysis of $X_{L V, c}$ versus T using this value of 7.635 , resulted in an $X_{L V}, c=.5002$ at $282.15 \mathrm{~K}<\mathrm{T}_{\mathrm{c}}$. This indicates thät a correlated value for ρ_{c} must be slightly lower.

The fit of eqs. (122) and (123) to the data is shown in table 8. The percent differences are very small and indicate a random error which is statistically desirable. The results of the weighted least squares fit for ethylene are given below. For, $\rho_{v}+\rho_{\ell}=A+B(\varepsilon)^{P}\left(\rho_{\ell}-\rho_{v}\right)+C(\varepsilon)^{R}\left(\rho_{\ell}-\rho_{v}\right)$,

Table 8. $X_{L V, C}$ and $\left(\rho_{\ell}+\rho_{V}\right)$ Comparison for Ethylene

T (K)	$\underline{\left(\rho_{l}+\rho_{v}\right)^{4}}$, DATA	$\underline{\left(\rho_{\ell}+\rho_{V}\right)}{ }^{\text {, }}$ CALC	\% Diff	$X_{L V, c, D A T A}$	$X_{L V, C, C A L C}$	\% Diff
			$\left(\rho_{C}=7.6292884\right)$			
238.15	17.149000	17.151151	-. 0125	. 43666075	. 43658868	+. 0165
243.15	16.932600	16.929469	+. 0185	. 44161226	. 44172145	-. 0247
248.15	16.710100	16.709095	+. 0060	. 44695462	. 44699133	-. 0082
253.15	16.490200	16.491149	-. 0058	. 45246827	. 45243163	+. 0081
258.15	16.274700	16.276070	-. 0084	. 45814737	. 45809092	+. 0123
263.15	16.062100	16.063816	-. 0107	. 46412170	. 46404508	+. 0165
268.15	15.856500	15.854547	+. 0123	. 47032786	. 47042478	-. 0206
273.15	15.648500	15.647636	+. 0055	. 47744414	. 47749413	-. 0105
278.15	15.442100	15.442076	+. 0002	. 48598610	. 48598790	-. 0004
279.15	15.398600	15.400722	-. 0138	. 48823216	. 48805379	+. 0365
280.15	15.361000	15.358999	+.0130	. 49018747	. 49037917	-. 0391
281.15	15.313000	15.316183	-. 0208	. 49355328	. 49317621	+. 0764
281.65	15.298000	15.293720	+. 0280	. 49432923	. 49494492	-. 1246
282.15	15.269000	15.270265	-. 0083	. 49772519	. 49744914	+. 0555

[^0]\[

$$
\begin{aligned}
& A=.15258577 \times 10^{+2}=2 \rho_{C} ; \operatorname{Var}(A)=.29216971 \times 10^{-8} \\
& B=.11666548 \times 10^{-1} ; \operatorname{Var}(B)=.82952522 \times 10^{-11} \\
& C=.65778747 \times 10^{-3} ; \operatorname{Var}(C)=.10371048 \times 10^{-12} \\
& \operatorname{Cov}(A, B)=-.13428749 \times 10^{-9} \\
& \operatorname{Cov}(A, C)=+.13600825 \times 10^{-10} \\
& \operatorname{Cov}(B, C)=-.91386470 \times 10^{-12}
\end{aligned}
$$
\]

Correlation Coefficient $(A, B)=-.86258752$
Correlation Coefficient (A, C) $=.78133331$
Correlation Coefficient (B, C) $=-.98527119$
An analysis of each coefficient with its variance indicates that the value zero does not lie within a 3σ confidence limit; hence, each coefficient is statistically significant. It is also desirable that the value ($A=2 \rho_{c}$) be quite insensitive to the values of the coefficients B and C. Indeed, the correlation coefficients indicate that A does not correlate highly (statistically speaking) with B or C. The coefficients B and C are more highly correlated with each other. This is to be expected since they are each involved in similar type terms in eq. (121).

Another consideration is the sensitivity of ρ_{c} to changes in the exponents P and R. To analyze this, each exponent was held at its value found for the best fit while the other was varied until ρ_{c} could no longer be reproduced as $7.629 \mathrm{~mol} / \mathrm{dm}^{3}$ within four significant figures. The results are shown below:

$$
\begin{aligned}
& P=.528 \begin{cases}R=1.079, & \rho_{C}=7.62947\left(\mathrm{~mol} / \mathrm{dm}^{3}\right) \\
R=1.088, & \rho_{C}=7.62929 \quad \text { (Best Fit) } \\
R=1.126, & \rho_{C}=7.6285\end{cases} \\
& R=1.088\left\{\begin{array}{l}
P=.5306, \quad \rho_{C}=7.62949 \\
P=.528, \quad \rho_{C}=7.62929 \quad \text { (Best Fit) } \\
P=.5184, \quad \rho_{C}=7.6285
\end{array} \quad\right. \text { }
\end{aligned}
$$

The results indicate that ρ_{C} is relatively insensitive to the exponents P and R, i.e., the critical density is not highly dependent on the functional form - a desirable result.

The fit, if statistically sound, should result in a randomly distributed error or percent error. Data given in table 8 indicate a random error. Also, fig. 12 gives error data in a deviation plot for eq. (122). The figure indicates a relatively random error.

Also, the question arises concerning the sensitivity of the critical density to changes in the critical temperature. Moldover [5] and Sengers [14] report values of T_{c}

for ethylene differing slightly from Douslin's value of 282.35 K . Each of these temperatures was utilized in the $X_{L V, c}$ fit with no change in the critical density to four significant figures. These results are summarized in table 9 below.

Table 9. Critical Properties of Ethylene

Source

Moldover [5]
Douslin, et al. [8]

282.344
282.350
282.3452

Any of
above
7.650
7.635
7.634
7.629

This report

Method
Visual observation of critical Graphical - T_{c}; Straight line extrapolation of rectilinear diameter - ρ_{c}
Fit of single phase data to scaled equation of state
Fit of $X_{L V, C}$ vs T to Douslin's saturation data

Having found ρ_{c} from the data and $X_{L V, c}$ correlation it is possible to obtain an equation for ρ_{ℓ} of the form:
$\rho_{\ell}=\rho_{c}+B_{1 \ell} \varepsilon^{\beta}+B_{2 \ell} \varepsilon^{\phi}+B_{3 \ell} \varepsilon^{\psi}$
where, following Douslin, et at. [8]:
$\beta=.350$ (found from a graph of $\left(\rho_{\ell}-\rho_{v}\right)$ vs $\left.\varepsilon\right)$
$\phi=\beta+1 / \varepsilon$,
$\psi=\beta+2 / \varepsilon$.
The equation resulting from a weighted least squares fit for $\rho_{\ell}-\rho_{c}$ is:
$\rho_{\ell}=7.6292884+1.9752911 \varepsilon^{.350}+.025699752 \varepsilon^{.986}-.23107950 \times 10^{-3} \varepsilon^{1.622}$
compared to Douslin's equation repeated below.
$\rho_{\ell}=7.635+1.9695 \varepsilon^{.350}+.02669 \varepsilon^{.984}-.2731 \times 10^{-3} \varepsilon^{1.618}$
The fit of eq. (125) compared to eq. (82) is slightly better for one-half of the fourteen data points and slightly worse for the other half. The results are shown in table 10.

The next problem is to obtain values of ρ_{v}. Two approaches were utilized. The first approach was to combine eqs. (123) for $X_{L V, c}$ and (125) for ρ_{ℓ} and solve for ρ_{v}, i.e.,
$\rho_{V, C A L C}=\left(\rho_{c}-X_{L V}, \rho_{\ell}\right) /\left(1-X_{L V, C}\right)$
The results for this calculation are shown in table 11. The overall fit is slightly better than that for Douslin's fit given in eq. (83).

Table 10. $\rho_{\ell}\left(\mathrm{mol} / \mathrm{dm}^{3}\right)$ Comparisons for Ethylene

| T (K) | | $\rho_{\ell, \text { DATA }}$ |
| :--- | :--- | :--- | :--- |
| | | |
| 238.15 | | 16.036 |
| 243.15 | | 15.634 |
| 248.15 | | 15.196 |
| 253.15 | | 14.723 |
| 258.15 | | 14.207 |
| 263.15 | | 13.630 |
| 268.15 | | 12.966 |
| 273.15 | | 12.146 |
| 278.15 | | 10.995 |
| 279.15 | | 10.674 |
| 280.15 | | 10.290 |
| 281.15 | | 9.767 |
| 281.65 | | 9.387 |
| 282.15 | | 8.780 |

${ }^{\rho}$ ¢,CALC	$\rho_{\ell, \text { DATA }^{-\rho_{\ell, ~}^{\prime}}}{ }^{\text {CALC }}$
Equation (125)	
16.037977	-. 00198
15.630700	+. 00330
15.195190	+. 00081
14.724569	-. 00157
14.208639	-. 00164
13.631159	-. 00116
12.963389	+. 00261
12.144977	+.00102
10.996848	-. 00185
10.676468	-. 00247
10.287406	+. 00259
9.7651870	+. 00181
9.3907125	-. 00371
8.759117	+.02088

$\rho_{\ell, \text { DATA }^{-\rho}}^{\ell, \text { CALC }}$
Equation (82)
-. 001
+. 003
$+.001$
-. 002
-. 002
-. 001
+. 003
$+.001$
-. 001
-. 002
$+.003$
$+.001$
-. 005
+. 018

Table 11. $\rho_{v}\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)$ Comparisons for Ethylene

T (K)		$\rho_{V, \text { DATA }}$
238.15		1.1130
243.15		1.2986
248.15		1.5141
253.15		1.7672
258.15		2.0677
263.15		2.4321
268.15		2.8905
273.15		3.5025
278.15		4.4471
279.15		4.7246
280.15		5.0710
281.15		5.5460
281.65		5.9110
282.15		6.4890

$\rho_{v, \text { CALC }}$	$\rho_{v, \text { DATA }} \rho_{v, \text { CALC }}$		
Equation	(126)		
1.1133772	-.000377		-.0339
1.2984076	+.000192		+.0148
1.5138464	+.000254		+.0168
1.7667706	+.000429		+.0243
2.0675788	+.000121		+.0059
2.4326972	-.000597		-.0245
2.8909751	-.000475		-.0164
3.5026075	-.000107		-.0031
4.4453302	+.001769		+.0398
4.7243203	+.000280		+.0059
5.0715327	-.000533		-.0105
5.5509046	-.004905		-.0884
5.9031244	+.007876		+.1332
6.5109346	-.021935		-.3380

$\rho_{\mathrm{v}, \text { DATA }^{-\rho} \mathrm{v}, \text { CALC }}$
Equation (83)
-. 0001
$+.0003$
$+.0002$
$+.0002$
-. 0002
-. 0008
-. 0003
$+.0006$
$+.0020$
$+.0001$
-. 0020
-. 0070
+. 0040
-. 0280

The other approach is to utilize the ρ_{c} found from $X_{L V, C}$, assume first order symmetry, and assume the exponents in the equation are the same as for ρ_{ℓ} in eq. (125), and fit:
$\rho_{v}-7.6292884+1.9752911 \varepsilon^{.350}=B_{2 v} \varepsilon^{.986}+B_{3 v} \varepsilon^{1.622}$
The results are not as good as those obtained using eq. (126). The differences between $\rho_{v, \text { DATA }}$ and $\rho_{v, C A L C}$ are about one order of magnitude higher than those in table 11. This is not satisfactory. The equation obtained was:

$$
\begin{align*}
\rho_{v}=7.6292884-1.9752911 \varepsilon^{.350} & +.16287155 \times 10^{-1} \varepsilon^{.986} \\
& +.50890319 \times 10^{-3} \varepsilon^{1.622} \tag{128}
\end{align*}
$$

Equations (125) for ρ_{ℓ} and (128) for ρ_{v} meet the criteria of eqs. (87) and (106).
The following procedure is suggested for obtaining the critical temperature, density, and smooth saturation density values from experimental saturation data.

Step One: Plot $\rho_{\ell}-\rho_{v}$ vs ε on log-log paper to obtain a value for β. Use in addition, a computer analysis of this plot to obtain a best value of T_{c}. For this procedure see Weber [7]. This utilizes the well known scaling law:

$$
\begin{equation*}
\rho_{\ell}-\rho_{v} \sim \varepsilon^{\beta} . \tag{124}
\end{equation*}
$$

Step Two: Utilize this T_{c} in a fit of the data to $X_{L V}$, c finding the best value of ρ_{c}.
Step Three: Utilize the ρ_{C}, T_{c}, and β to fit the ρ_{ℓ} data to an equation.
Step Four: Utilize the $X_{L V, C}$ and ρ_{ℓ} equations to generate smooth data for the saturation densities both ρ_{ℓ} and ρ_{v}.
This procedure allows a rational integration of the critical and saturation properties. The $X_{L V, C}$ function is the integration tool.

One of the major problems left in coexistence data work is to obtain equations which will fit the entire range from the triple to the critical point. The "dome" equations which are used here are not thought to be valid over this entire range. However, the relative flatness of the $X_{L V, c}$ curves over this entire temperature range (see fig. l) may be helpful in solving this problem.

Now, ρ_{ℓ} from eq. (125) and ρ_{v} from eq. (126) can be utilized in a final statistical analysis of the original fit of eq. (121). This test is to look at the shape and magnitude of the 3σ confidence band over the temperature range of interest. The standard deviation with temperature of the fit can be found from the square root of the variation of ($\rho_{\ell}+\rho_{v}$). This variance, from well known statistical considerations, is:

$$
\begin{align*}
\operatorname{Var}\left(\rho_{\ell}+\rho_{v}\right) & =\frac{\partial\left(\rho_{\ell}+\rho_{v}\right)}{\partial A}\left[\frac{\partial\left(\rho_{\ell}+\rho_{v}\right)}{\partial A} \operatorname{Var}(A)+\frac{\partial\left(\rho_{\ell}+\rho_{v}\right)}{\partial B} \operatorname{Cov}(A, B)+\frac{\partial\left(\rho_{\ell}+\rho_{v}\right)}{\partial C}-\operatorname{Cov}(A, C)\right] \\
& +\frac{\partial\left(\rho_{\ell}+\rho_{v}\right)}{\partial B}\left[\frac{\partial\left(\rho_{\ell}+\rho_{v}\right)}{\partial A} \operatorname{Cov}(A, B)+\frac{\partial\left(\rho_{\ell}+\rho_{v}\right)}{\partial B} \operatorname{Var}(B)+\frac{\partial\left(\rho_{\ell}+\rho_{v}\right)}{\partial C} \operatorname{Cov}(B, C)\right] \tag{129}\\
& +\frac{\partial\left(\rho_{\ell}+\rho_{v}\right)}{\partial C}\left[\frac{\partial\left(\rho_{\ell}+\rho_{v}\right)}{\partial A} \operatorname{Cov}(A, C)+\frac{\partial\left(\rho_{\ell}+\rho_{v}\right)}{\partial B} \operatorname{Cov}(B, C)+\frac{\partial\left(\rho_{\ell}+\rho_{v}\right)}{\partial C} \operatorname{Var}(C)\right]
\end{align*}
$$

where from eq. (121):

$$
\begin{aligned}
& \frac{\partial\left(\rho_{\ell}+\rho_{v}\right)}{\partial A}=1, \\
& \frac{\partial\left(\rho_{\ell}+\rho_{v}\right)}{\partial B}=\varepsilon^{p}\left(\rho_{\ell}-\rho_{v}\right), \\
& \frac{\partial\left(\rho_{\ell}+\rho_{v}\right)}{\partial C}=\varepsilon^{R}\left(\rho_{\ell}-\rho_{v}\right),
\end{aligned}
$$

obtaining ρ_{ℓ} and ρ_{V} from eqs. (125) and (126) respectively. The variances and covariances are those previously given. The standard deviation of ($\rho_{\ell}+\rho_{v}$) at each temperature is multiplied by three and the result is plotted to show the 3σ confidence limit band. The results are shown in fig. 13.

The behavior of the band deviates from the so-called classical form in the temperature range from about $238-250 \mathrm{~K}$. The classical form is found from the latter temperature to the critical. The graph indicates that ρ_{C} is found to four significant figures at a high degree of confidence, i.e.,

$$
7.62921 \leq \rho_{\mathrm{c}} \leq 7.62937\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)
$$

within a 3σ confidence band.
Finally an analysis of the effect of the data weights on the ρ_{c} value was made. The unweighted fit of $X_{L V, C}$ resulted in a value of $\rho_{C}=7.629\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)$ to four significant figures with a slightly higher variance of the data. All in all, the value of ρ_{C}, found by the fit of $X_{L V, C}$ to the saturation data, results in a statistically reliable number. The foregoing analysis supports the use of the $X_{L V, C}$ method to obtain a correlated ρ_{C} from saturation data.

5. EXPERIMENTAL APPROACH TO SIMULTANEOUS DETERMINATION OF COEXISTENCE DATA

This section presents a method for obtaining saturation density data simultaneously. Current experimental approaches obtain ρ_{ℓ} and ρ_{v} in separate experiments. Usually the ρ_{ℓ} is obtained directly while the ρ_{v} is found from the intersection of isochores with the vapor pressure curve. See Kleinrahm, et al. [15] for a review of these techniques.

The method proposed here is based on the straight line plots found in fig. 5. Theoretically, all one needs to know is two pairs of liquid volume fraction - total density data at the same temperature to establish a line. Simple extrapolation to $X_{L V}=1$ for ρ_{ℓ} and to $X_{L V}=0$ for ρ_{V} produces the saturation values from the same set of data. This should enhance internal consistency.

Currently, in many cases, the coexistence data takes a secondary role in property fitting to equations of state. For example, the procedure used by Haar, et al. [9] for ammonia is to obtain the saturation data from a surface described by an equation of state explicit in Helmholtz free energy. The coexistence data (mainly those of Cragoe, et a . $[10,11]$ were used only to obtain estimates of the critical properties. Perhaps a more internally consistent set of ρ_{v}, ρ_{ℓ} data can provide the foundation for an equation of state.

To test the validity of using data such as that illustrated in fig. 5, liquid volume fraction data is needed. Unfortunately, the thermodynamic property literature yields very little total density-liquid volume fraction information. However, Cragoe, et al. [10, 1] in obtaining ρ_{ℓ} and ρ_{v} for ammonia did measure and publish such data. They did not use them, however, in the manner suggested here. To test this idea, one needs saturated liquid and vapor density values data at the same temperature. Unfortunately, this occurs at only one point in all the data taken by Cragoe and his co-workers. In their report on the liquid densities [10] at $T=-46.43^{\circ} \mathrm{C}$ the values are:

$$
\begin{aligned}
& \rho_{T}=.5370715 \mathrm{~g} / \mathrm{cm}^{3}, \text { and } \\
& X_{L V}=.7695038
\end{aligned}
$$

and in the vapor density report [11] at $\mathrm{T}=-46.42^{\circ} \mathrm{C}$ the values of

$$
\begin{aligned}
& \rho_{\mathrm{T}}=.0037965898 \mathrm{~g} / \mathrm{cm}^{3}, \text { and } \\
& x_{\mathrm{LV}}=.0047679271
\end{aligned}
$$

are given. These two points determine a straight line. Then $X_{L V}=0$ is substituted to obtain ρ_{V}, and $X_{L V}=1$ is substituted to obtain ρ_{ℓ}. See fig. 14 for a sketch of the data and procedure. (Because of the relative sizes of the numbers, they are not plotted precisely on the linear scales.)

Table 12 gives some comparisons related to the data in fig. 14. The first column gives the results from the straight line. The second column gives the experimental values of Cragoe, et al. [10,11] while the third column gives the values of Haar, et al. [9] linearly interpolated to $-46.425^{\circ} \mathrm{C}$.

Figure 14. $X_{L V}$ vs ρ_{T} to Find ρ_{ℓ} and ρ_{V} for Ammonia.

Table 12. Comparison of Coexistence Densities ($\mathrm{g} / \mathrm{cm}^{3}$)

This Report Straight Line Method

Cragoe, et al. [10,11] Haar, et al. [9]. Equation
Experimental

$$
\begin{array}{ll}
\rho_{V}=.0004726344\left(T=-46.42^{\circ} \mathrm{C}\right) & \rho_{V}=.000462\left(T=-46.425^{\circ} \mathrm{C}\right) \\
\rho_{\ell}=.69781\left(T=-46.43^{\circ} \mathrm{C}\right) & \rho_{\ell}=.69770\left(T=-46.425^{\circ} \mathrm{C}\right)
\end{array}
$$

Another approach which could be taken would be to utilize accurate ρ_{ℓ} data ($X_{L V}=1$) along with ($X_{L V}<1, \rho_{T}$) data and obtain a straight line. This line could be extrapolated to $X_{L V}=0$ to obtain a value for ρ_{v}. This was done utilizing data presented by Cragoe, et al. [10] in their report on liquid densities only.

The results are presented in table 13. Data is taken from Haar, et al. [9] at the nearest even temperature for comparison. $A \rho_{v, C A L C}$ is found at the same temperature from the equations presented in Cragoe, et al. [11] when dealing only with ρ_{v}. The values for ρ_{v} in table 13 not only reflect the range of error involved in ρ_{v} determination but also the wide disagreement as to what the ρ_{v} actually are. The straight line values for ρ_{v} are at least correlated with the experimental ρ_{ℓ} values.

If the ρ_{V} is specified along with a point ($X_{L V}<1, \rho_{T}$), ρ_{ℓ} can be determined from the straight line at $X_{L V}=1$. Here the results are even more surprising. For very small $X_{L V}(2.005)$ there is good agreement in the ρ_{ℓ} values at $X_{L V}=1$. See table 14.

Table 13. Comparison of ρ_{v} Values $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$

T (${ }^{\circ} \mathrm{C}$)	${ }^{\rho} \ell$, DATA	$\rho_{\text {T, DATA }}$, DATA	$\begin{gathered} \rho_{v, ~ S T R} \\ \text { Line } \end{gathered}$	$\rho_{V, C A L C} \times 10^{4}$	$\rho_{V, P U B} \times 10^{4}$
Cragoe (Haar)	Cragoe [10]				Cragoe [11]	Haar [9]
-49.96 (-50)	. 702099	. 576546	. 821076	3.8557	3.8243	3.8100
-40.14 (-40)	. 690255	. 57690	. 835630	6.2074	6.4057	6.440
-30.04 (-30)	. 677782	. 540417	. 797018	10.454	10.367	10.380
-14.94 (-15)	. 658592	. 57627	. 87464	18.977	19.706	19.670
-00.05 (0)	. 638590	. 553245	. 865617	35.023	34.467	34.580
+10.00 (10)	. 624637	. 553035	. 884468	48.793	48.594	48.680
+20.01 (20)	. 610273	. 55291	. 904958	67.099	66.896	67.010
+29.98 (30)	. 595295	. 55275	. 927413	91.772	90.258	90.050
+39.94 (40)	. 579606	. 53600	. 923170	119.52	119.86	120.29
+49.94 (50)	. 562905	. 495826	. 877389	158.24	157.36	157.80
+60.22 (60)	. 544802	. 536281	. 98373	208.72	206.08	204.90
+80.58 (81)	. 504322	. 449203	. 882783	340.94	345.88	347.44
+91.24 (91)	. 479773	. 44896	. 929207	444.78	453.74	445.80

Table 14. Comparison of ρ_{ℓ} Values $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$

T ($\left.{ }^{\circ} \mathrm{C}\right)$	$\rho_{V, \text { DATA }} \times 10^{3}$	$\rho_{T, \text { DATA }} \times 10^{3}$	$X_{\text {LV , DATA }}$	$\rho_{\ell, \mathrm{STR}_{\substack{\text { Line }}}}$	${ }^{\rho} \ell$, CALC	${ }^{\rho}$ ¢, PUB
Cragoe (Haar)	Cragoe [11]				Cragoe [10]	Haar [9]
-50.00 (-50)	. 390442	3.6784	. 004687	. 701877	. 701997	. 70202
-42.07 (-42)	. 585035	3.8702	. 004748	. 692422	. 692486	. 69231
-32.99 (-33)	. 905551	3.8694	. 004356	. 681302	. 681370	. 68122
-17.88 (-18)	1.76246	7.5843	. 008815	. 662238	. 662279	. 66232
-03.09 (-3)	3.10183	6.9142	. 005960	. 642766	. 642762	. 64267
+02.98 (+3)	3.84438	3.9526	. 000172	. 634123	. 634480	. 63454
+24.05 (24)	7.57576	14.6599	. 011873	. 604227	. 604249	. 60448
+32.03 (32)	9.58130	16.3919	.011693	. 592041	. 592090	. 59227
+46.32 (46)	14.2653	14.6496	. 000693	. 568489	. 569091	. 56967

The results shown in tables $12,13,14$, may motivate experimentalists to obtain coexistence data from ($\rho_{T}, X_{L V}$) plots. Cragoe, although he did not use the above method, did measure liquid volume fractions using sight lines determined by careful volumetric calibration. (In evaluating the coexistence data of ammonia, Haar, et al. [9] concludes that the data of Cragoe, et al. [10,11] is the best-indicating that accurate measurements can be made of the liquid volume fraction.)

An even earlier effort than Cragoe's to determine saturation densities by measuring liquid volumes is that of Young [16]. He utilized pairs of measured liquid volumes and total mass values in calculations based on mass balances. The approach is similar in concept to the ideas expressed in figs. 5 and 14 of this paper. He did not utilize, however, the reduced variable form, i.e., liquid volume fraction vs. total density nor did he explore the implication of these as thermodynamic functions as is done in this report.

An examination of fig. 5, indicates that these lines should be significantly different (statistically speaking) over a small range of temperature just below the critical. This is in contrast to the (P vs T) isochores near the critical point which are extrapolated to the vapor pressure to find ρ_{V}. When utilizing the $X_{L V}$ vs ρ_{T} plots to obtain coexistence data it appears that the large changes in ρ_{ℓ} and ρ_{V} near the critical point may actually be helpful, whereas up to this time these changes were a problem.

The goal then is to obtain a good measurement of the liquid level. Aside from the visual method utilized by Cragoe, newer techniques such as time-domain reflectometry [17] or fiber optics [18] should be investigated.
6. SUMMARY

An analysis of the liquid volume and liquid mass fractions has been made over the temperature range from the triple point to the critical point. Limits of the functions and derivatives have been studied both at the triple and critical points. Also the slope of the rectilinear diameter at the critical was studied in some detail. Conclusions were made about the constants and exponents in the ρ_{ℓ} and ρ_{v} coexistence dome equations. A procedure for correlating saturation data with the critical point has been presented using ethylene as an example. Finally, an experimental approach for obtaining ρ_{ℓ} and ρ_{v} simultaneously is presented.

7. ACKNOWLEDGMENTS

I wish to thank the staff of the Thermophysical Properties Division of the National Bureau of Standards, Boulder, Colorado for making office, digital computer, and data resources available during my tenure as a guest worker. Thanks also to those staff members who took the time for stimulating discussions, especially Robert McCarty regarding the statistical analysis of the $X_{L V, c}$ fit. Salary support was provided by Calvin College, Grand Rapids, Michigan during my Sabbatical leave.

8. REFERENCES

[1] Methane, International Thermodynamic Tables of the Fluid State-5, 1976, IUPAC, Chemical Data Series, No. 16, Pergamon Press, Oxford.
[2] Hohenberg, P. C. and Barmatz, M., 1972, Gravity Effects Near the Gas-Liquid Critical Point, Phys. Rev. A, 6: 289-313.
[3] Green, M. S., Cooper, M. J. and Sengers, J. M. H. Levelt, 1971, Extended Thermodynamic Scaling From a Generalized Parametric Form, Phys. Rev. Lett., 26: 492-495.
[4] Sengers, J. M. H. Levelt, Straub, J. and Vincenti-Missoni, M. J., 1971, Coexistence Curves of $\mathrm{CO}_{2}, \mathrm{~N}_{2} \mathrm{O}$ and CClF_{3} in the Critical Region, J. Chem. Phys. 54: 5034-5050.
[5] Moldover, M. R., 1974, Visual Observation of the Critical Temperature and Density: CO_{2} and $\mathrm{C}_{2} \mathrm{H}_{4}$, J. Chem. Phys., 61: No. 5, 1766-1778.
[6] Van Poolen, Lambert John, 1977, Analysis of Property Data in the Critical Region Using the Function-Liquid Volume Fraction, ASHRAE Transactions, 8: Part II, Dec.
[7] Weber, Lloyd A., 1970, Density and Compressibility of Oxygen in the Critical Region, Phys. Rev. A, 2: No. 6, 2379-2388.
[8] Douslin, D. R. and Harrison, R. H., 1976, Pressure, Volume, Temperature Relations of Ethylene, J. Chem. Thermodynamics, 8: 301-330.
[9] Haar, L. and Gallagher, J. S., 1978, Thermodynamic Properties of Ammonia, J. Phys. Chem. Ref. Data, 7: No. 3, 635-792.
[10] Cragoe, C. S. and Harper, 3rd, D. R., 1921, Specific Volume of Liquid Ammonia, Scientific Papers of the Bureau of Standards, Vol 17, 287-315.
[11] Cragoe, C. S., McKelvey, E. C. and O'Connor, G. F., 1922, Specific Volume of Saturated Ammonia Vapor, Scientific Papers of the Bureau of Standards, Vol 18, 707-735 (dated 3/17/23).
[12] Weiner, J., Langley, K. H. and Ford, N. C., Jr., 1974, Experimental Evidence for a Departure from the Law of the Rectilinear Diameter, Phys. Rev. Lett., 32: No. 16, 879-886.
[13] Gosman, A. L., McCarty, R. D. and Hust, J. G., 1969, Thermodynamic Properties of Argon From the Triple Point to 300 K at Pressures to 1000 Atmospheres, NSRDS-NBS Report No. 27.
[14] Sengers, J. M. H. Levelt, private commication, 1979.
[15] Kleinrahm, R. and Wagner, W., 1978, Examination of Density Measuring Procedures and Design of Device for Precise Measurement of Boiling and Thawing Densities, Chem. Ing. Tech., 50: No. 10, 805 (synopsis)(in German).
[16] Young, S., 1910, The Vapor-Pressures, Specific Volumes, Heats of Vaporization, and Critical Constants of Thirty Pure Substances, Scientific Proceedings, Royal Dublin Society, 12: 374-443, June 10.
[17] Cruz, J. E., Rogers, E. H. and Heister, A. E., 1973, Continuous Liquid Level Measurements with Time-Domain Reflectometry, Paper H-4, Advances in Cryogenic Engineering, Vol 18, Plenum Press, N. Y., 323-327.
[18] Elson, B. M., 1978, Fiber Optics Technology Investigated, Aviation Week and Space Tech (0ct. 16).

```
A constant
B constant
b constant
C constant
c constant
Cov covariance
m mass
P pressure, EXPONENT
R exponent
T temperature
v volume
Var variance
X 0\leqfraction \leq }
X' mass or volume fraction derivative with respect to temperature
\beta exponent
E T
\phi exponent
\psi exponent
\rho density
\rho' density derivative with respect to temperature
\sigma}\quad\mathrm{ standard deviation
SUBSCRIPTS
C critical point
c,LIM critical point, limit
\ell saturated liquid
LM liquid mass
LV liquid volume
MAX point at which }\mp@subsup{X}{LV}{}\mathrm{ has a maximum
MIN point at which \mp@subsup{X}{LM}{}}\mathrm{ has a minimum
SAT saturation
T total or overall
TP triple point
v saturated vapor
1 related to constant modifying \mp@subsup{\varepsilon}{}{\beta}}\mathrm{ term
2 related to constant modifying E }\mp@subsup{}{}{\phi}\mathrm{ term
3 related to constant modifying E * term
SUPERSCRIPTS
- limit from below
+ limit from above
```


1. PUBLICATION OR REPORT NO.

NBSIR 80-1631
4. TITLE AND SUBTITLE ANALYSIS OF LIQUID VOLUME AND LIQUID MASS
FRACTIONS AT COEXISTENCE FOR PURE FLUIDS
5. Publication Date

May 1980

1. Terframs Ormanization Colse.
2. AUTHOR(S)

Lambert John Van Poolen
9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, DC 20234
12. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, Stato, 2IP)
8. Performing Organ. Report No.

11. Contract/Grant No.
13. Type of Report \& Period Covered 13. Type of Report \& Period Covered
15. SUPPLEMENTARY MOTES

\squareDocument describes a computer program; SF-185, FIPS Software Summary, is attached.
16. ABSTRACT (A 200-word or leas factual aummary of most algnlficant infomation. If document includes a significant blbllography or Ilterature survey, mention it here.)
An analysis of the behavior of liquid volume and liquid mass fractions at coexistence for pure fluids is made. Scaled equations for the saturation liquid and vapor densities are analyzed and relationships between various exponents and among constant coefficients are presented. Inequalities which exist among the saturation densities and their derivatives are developed. A procedure to correlate saturation data with the critical point is applied to ethylene. An experimental procedure to determine, simultaneously, saturated ifquid and vapor densities at a given temperature is presented.
17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the firat letter of the firat key word unless a proper name; separated by semicolons)
Coexistence densities; critical density; critical point; liquid mass fraction; liquid volume fraction; phase equilibria; pure fluids.
18. AVAILABILITY

UnlimitedFor Official Distribution. Do Not Release to NTISOrder From Sup. of Doc., U.S. Government Printing Office, Washington, DC
20402, SD Stock No. SNOO3-003-
X Order From National Technical Information Service (NTIS), Springfield, VA 22161
\(\left.$$
\begin{array}{|l|c|}\hline \text { 19. SECURITY CLASS } \\
\text { (THIS REPORT) } \\
\text { UNCLASSIFIED }\end{array}
$$ \quad \begin{array}{c}21. NO. OF

PRINTED PAGES\end{array}\right]\)| 20. SECURITY CLASS |
| :--- |
| (THIS PAGE) |
| UNCLASSIFIED |

.

[^0]: ${ }^{4}$ Density units is $\mathrm{mol} / \mathrm{dm}^{3}$.

