Measurements on Insulating Materials at Cryogenic Temperatures

Wiliam E．Ariderson and Richard S ．Davis

Electrosystems Division
Center ：or Electronics
and Electrical Engineering
National Bureau of Standards

August 1579
Issued January 1380
Final Reoort
！Jnder Department of Energy Cuntract No．EA－77－A－01－6010 Task No．A023－EES

Grepared for
Brookhaven Mational Laboratory
Department of Energy

MEASUREMENTS ON INSULATING MATERIALS AT CRYOGENIC TEMPERATURES

William E. Anderson and Richard S. Davis

Electrosystems Division

Center for Electronics
and Electrical Engineering
National Bureau of Standards

August 1979
Issued January 1980
Final Report
Under Department of Energy Contract No. EA-77-A-01-6010
Task No. A023-EES

Prepared for
Brookhaven National Laboratory Department of Energy

U.S. DEPARTMENT OF COMMERCE, Philip M. Klutznick, Secretary

Luther H. Hodges, Jr., Deputy Secretary

 Jordan J. Baruch, Assistant Secretary for Science and TechnologyNATIONAL BUREAU OF STANDARDS. Ernest Ambler, Director
Abstract i
Summary ii
Introduction 1
I. Dielectric Loss Measurement Methodology 4
Dissipation Factor Measurement 7
A. Parallel Plate Sample Holder 8
B. Cryostat 11
C. Mandrel and Associated Cryostat for Coaxial Measurements 13
D. Standard Capacitor 17
E. Current Comparator Bridge 26
II. Dielectric Loss Results and Discussion 34
A. Parallel Plate Geometry 34

1. Polymer Tapes 34
2. Epoxy Samples 37
B. Coaxial Geometry 46
III. Partial Discharge Measurements Using the Pulse Height Analysis System 58
Appendix 66
Partial Discharge Measurement System 66
I. Hardware 67
A. Detection Impedance and Amplifier 67
B. Absolute Value Circuit 69
C. Peak and Hold Circuit 73
D. Peak and Hold Control Logic 77
E. Analog-to-Digital Control Logic Circuit 79
F. Analog-to-Digital Converter 81
II. Software 83
A. Timing Constraints Imposed by Software and Processor 84
B. Operator Commands 89
C. Detailed Software Description 91
3. BASIS Main Routine 91
4. Data Collection Routines (statements 94-161) of Assembler Language Listing 99
5. Utility Routines 101
III. Appendix References 150
IV. References 151

Abstract

This final report describes the results of a four-year effort to study the high voltage dielectric behavior of various materials at cryogenic temperatures. Dissipation factors at 60 Hz were measured for polymer tapes and epoxy samples at 4.2 K , atmospheric pressure. Multi-layer polymer samples in coaxial geometries at temperatures from 7 to 10 K and helium pressures up to 1.5 megapascals were also studied. The measurements were performed at stresses up to $40 \mathrm{MV} / \mathrm{m}$. Since partial discharges were a major source of losses at the higher stresses and their presence was possibly detrimental to the integrity of the insulation, instrumentation was developed and implemented to study these discharges under conditions found in proposed ac superconducting power-transmission lines.

Summary

The contents of the following report are here summarized for the convenience of the reader. The report covers the period from November 1974 through October 1978.

In November of 1974 the National Bureau of Standards began a project sponsored by the then Energy Research and Development Administration to study ac losses in dielectrics at cryogenic temperatures and at high electrical stresses. The ultimate goal of the project was to provide dissipation factor and partial discharge data under the proposed operating conditions for Brookhaven National Laboratory's (BNL's) ac superconducting power-transmission line (ac SPTL). Because of BNL's urgent need for engineering data and the necessary delay involved in designing and constructing a supercritical cryostat, initial efforts were toward providing $60-\mathrm{Hz}$ dissipation factor data of polymer films at 4.2 K and at atmospheric pressure. These measurements provided valuable data at the electrical stresses proposed for the ac SPTL. Dissipation factor measurements on layers of polymer films suggested that losses at interfaces may dominate the intrinsic dielectric losses of the polymer films. These interfacial losses are probably due to partial discharges. Since their effect may diminish under the proposed supercritical conditions of the actual ac SPTL, measurements were extended to more realistic conditions. A partial discharge measurement system was designed to carefully monitor the integrity of the dielectric under partial discharge conditions.

Besides the measurements on the polymer tape insulation for the BNL SPTL, dissipation factor and dielectric constant values of various epoxies were provided to Union Carbide Corporation, Linde Division (UCC-Linde). These epoxies were to be used as spacers in their liquid helium-insulated cable.

In order to accomplish the necessary measurements, two different cryogenic facilities were built. The first consisted of a conventional glass double-dewar system. High voltage was introduced into the cryostat by means of a vacuum-insulated bushing which was discharge free to 8.5 kV . All experiments were performed with the sample material immersed in liquid helium at atmospheric pressure. Size limitations of the dewar necessitated the use of a small ($10 \mathrm{~cm}^{2}$) parallel-plate capacitor as sample-holder. The second cryogenic facility consisted of a conventional stainless steel dewar with a liquid nitrogen jacket. The sample was placed in a pressure vessel which allowed measurements at pressures up to 1.5 megapascals. Polymer films were wrapped around the bare cylindrical high-voltage electrode permitting measurements in the coaxial geometry and under the temperature and pressure conditions of the proposed BNL SPTL.

Electrical measurement of dissipation factor was made by comparing the loss of the sample dielectric with that in a commercial compressedgas high-voltage capacitor. This comparison was made with sufficient accuracy by using the NBS current-comparator bridge. Samples formed the dielectric of a three-terminal capacitor. Due to the small dissipation factor allowable in any practical superconducting cable insulation, an
accuracy of $\pm 1 \times 10^{-6}$ was desirable in the measurements. Success in this was achieved through a meticulous absolute determination of our compressed-gas high voltage capacitor.

As an initial consistency check we measured the dissipation factor of liquid helium at 4.2 K . At a stress of $1.5 \mathrm{kV} / \mathrm{mm}$ the 60 Hz dissipation factor was $(0.3 \pm 0.7) \times 10^{-6}$. This is consistent with the fact that liquid helium has no intrinsic loss mechanisms at power frequencies.

As previously mentioned initial measurements were made of singlelayer films with the parallel-plate sample holder at 4.2 K and atmospheric pressure. No attempt was made to measure a representative sample of polymer tapes. Only those tapes that proved to be among the most promising from mechanical tests, low-voltage electrical tests, or economic considerations were sent to us by BNL. Each sample was measured at least twice to test repeatability and prevent erroneous values caused by the occasional cracking of some materials. The polyethylenes and polypropylenes both have dissipation factors considerably less than 30×10^{-6} (upper 1 imit for BNL SPTL) at cryogenic temperatures and at design stresses of the order of $20 \mathrm{kV} / \mathrm{mm}$. These films along with the polyamide sample, however, have poor mechanical properties at liquid helium temperatures. The polycarbonate and polysulfone films are much better mechanically but have dissipation factors in the range of 50 to 100×10^{-6}. An attempt by the manufacturer to improve the dissipation factor of one of these materials (green polysulfone) by reducing the concentration of sodium impurities was somewhat successful.

While the dissipation factor of most of the materials increases slightly with increasing voltage, both of the polyether-sulfone samples measured have negative voltage coefficient. We do not know whether the cause of this is related to the well-understood similar behavior of oilimpregnated paper-insulated capacitors.

The dissipation factor of the epoxies submitted by UCC-Linde were an order of magnitude larger than the polymer tapes but below the 500×10^{-6} limit for the UCC-Linde SPTL. There were inconsistencies in dissipation factor results between different thickness samples made of the same material. A model was developed that accounted for this behavior.

We found it impossible to make these single-layer atmosphericpressure measurements without coating the electrode-sample interfaces with paraffin oil. Presumably this procedure suppresses partial discharges at the interfaces. It was observed that when samples were not coated with paraffin oil prior to insertion into the sample capacitor, the measured dissipation factor exhibited a large voltage coefficient.

To examine further the effects of paraffin oil on various interfaces, several stacking arrangements of polypropylene films were studied. We measured the dissipation factor of three-sheet stacks of this material with and without paraffin oil on the various interfaces. As the number of uncoated surfaces increased, the positive voltage coefficient of the dissipation factor increased. Since this effect may be suppressed under the supercritical conditions of the BNL proposed SPTL, our measurements were extended to these conditions.

Dissipation factor measurements on multi-layer coaxial samples under supercritical conditions were for the most part encouraging. Dissipation factors for many samples were less than 20×10^{-6} for stresses of several megavolts/meter. As the stress increased there appeared a break point or point at which the dissipation factor became strongly dependent on electrical stress. This break-point stress agreed with the measurements of others on the breakdown of supercritical helium when allowance was made for the dielectric mismatch of the polymer and the helium butt gaps. The actual BNL SPTL will contain bedding and screen layers. The screen layer was found to have little effect on the dissipation factor. Preliminary measurements with the bedding layer did indicate serious problems.

Part of the NBS program was to study the effect partial discharges might have on the electrical insulation. NBS designed and constructed a partial discharge measurement system for this purpose. The system which includes a minicomputer, measures partial discharge amplitude spectra. A change in a given spectrum would indicate that the properties of the dielectric were changing. Measurements under conditions of varying electrical stress, frequency of the applied voltage, impurity or defect concentration, temperatures, and pressures could yield important information on aging processes at cryogenic temperatures.

Only a small number of long (3 hour) measurements were made with this instrumentation yielding limited information. The effort near the end of the NBS program was redirected to providing dissipation factor
data for BNL on new materials thought to be promising. (The partial discharge measurement system recently has been used extensively on measurements of the partial discharge behavior of SF_{6} at room temperatures).

Introduction

In November of 1974 the High Voltage Measurements Section in the Electricity Division of the Institute for Basic Standards (now the Applied Electrical Measurements Group in the Electrosystems Division of the Center for Electronics and Electrical Engineering) began a project sponsored by the then Energy Research and Development Administration to study ac losses in dielectrics at cryogenic temperatures. The ultimate goal of the project was to provide dissipation factor and partial discharge data for the dielectric materials under consideration for use in ac superconducting power-transmission lines (ac SPTLs). At that time there were two ac SPTLs being developed domestically. One was a rigid cable that used liquid helium for both the coolant and the dielectric. The center high voltage conductor was held in place by epoxy spacers. This cable was being developed by the Linde Division of Union Carbide Corporation (UCC-Linde). Brookhaven National Laboratory (BNL) was developing the other ac SPTL. This cable was flexible until cooled. The insulation contemplated was analogous to conventional oil-impregnated paper cables in that helium played the role of oil and a suitable polymer played the role of paper.

The early work then was involved with the measurement of the dielectric constant and dissipation factor for the insulating materials to be used in the BNL and UCC-Linde SPTLs. A group of workers at Oak Ridge National Laboratory were complementing this effort by determining the breakdown characteristics of these insulating materials under high electrical stress.

In order to provide timely data to BNL and UCC-Linde our early work was limited to measurements of thin polymer and epoxy films at atmospheric pressure and at 4.2 K. Dielectric constant and dissipation factor measurements were made up to stresses of $40 \mathrm{MV} / \mathrm{m}$. Of the polymer tapes being considered for the BNL SPTL, several were found to have dissipation factors less than the 30×10^{-6} upper limit that BNL personnel had originally ascribed in order to minimize refrigeration load. However, when stacks of these thin polymer films were measured, their dissipation factor showed an alarmingly strong positive voltage dependence. This necessitated measurements under the operating conditions of the BNL SPTL in order to determine if the resulting higher helium densities would reduce this problem. Several epoxy samples were initially measured for UCC-Linde. Since the epoxy represented only a small fraction of the total dielectric volume in their cable, a higher dissipation factor could be tolerated. Development of this cable was curtailed and, as a result, no additional epoxy measurements were made.

Dissipation factor measurements on polymer tapes for BNL were thus extended to multi-layer coaxial geometries, 7 to 10 K temperatures, and 1.5 MPa pressures. The dissipation factors for the most part under these conditions showed far less voltage dependence than for multi-layer samples at atmospheric pressure. The voltage dependence that did occur seemed to be a result of partial discharges.

A partial discharge measurement system was developed based on the pulse-height-analysis technique to study the behavior of these tapes under the proposed operating conditions. The instrumentation is described
in an appendix to this report. The evolution of the partial discharge amplitudes as a function of time for various pressures, temperatures, electrical stresses, materials, frequencies, impurity or defect concentrations would yield important information on aging processes at these low temperatures. These measurements were never completed because of the termination of funding in September 1978.

This report covers the period from November 1974 through October 1978. The work through June 1976 will be described in lesser detail as it was contained in an earlier report. ${ }^{[1]}$ Also the previous report contained a bibliography of useful references that will not be repeated here. This report is divided into three major sections: Dielectric Loss Measurement Methodology; Dielectric Loss Results and Discussion; and Partial Discharge Measurements. The appendix provides a complete description of the partial discharge measurement system developed for this project.

I. Dielectric Loss Measurement Methodology

In considering the measurement of dielectric loss, it is convenient to model the dielectric and its electrodes as a combination of an ideal capacitor and an ideal resistor. This model, in the absence of partial discharges is adequate to explain the loss behavior of a capacitor containing a dielectric. Two equally valid configurations of capacitor and resistor are shown in Fig. 1. In general, the resistor value will be a function of the frequency and of the applied voltage. The problem of measuring dielectric loss may be thought of as equivalent to finding the value of the resistor in either Fig. 1A or 1B.

While many techniques to measure dielectric loss have been used, circumstances generally limit the optimum choice. For instance, for very lossy capacitors the test capacitor may be combined with an inductor to produce an LC circuit. The value of L which causes the circuit to resonate at a given frequency determines the value of C in Fig. 1 while the width of the resonance can be used to find R or R^{\prime}. Cleariy, this technique is unsuitable if the capacitor's loss is less than that of the inductor.

Two techniques have been successfully applied to the measurement of dielectric loss at cryogenic temperatures. One of these techniques depends on the fact that current through the resistor of Fig. 1 is shifted

by 90° with respect to capacitive current. In the case of Fig. 1 A ,
$I=\frac{\left(\omega^{2} C^{2} R+j \omega C\right)^{V_{0}}}{1+\omega^{2} C^{2} R^{2}}$ and in the case of Fig. $1 B, I=V_{0}\left(\frac{1}{R}+j \omega C\right)$.

The angle by which the total current vector differs from the vector for a pure capacitor is known as δ. The tangent of δ (or $\tan \delta$) is a figure of merit for dielectric materials. This number is also known as the "dissipation factor", or "D.F.". In Fig. 1A, $\tan \delta=\omega C R ;$ in Fig. IB, $\tan \delta=\frac{1}{\omega C R^{\top}}$. For any good dielectric material $\tan \delta$ is small. If the dielectric constant of a material is written in terms of its real and imaginary parts, i.e., $\varepsilon=\varepsilon^{\prime}+j \varepsilon^{\prime \prime}$ where ε^{\prime} and $\varepsilon^{\prime \prime}$ are real numbers, then $\tan \delta=\frac{\varepsilon^{\prime \prime}}{\varepsilon^{\top}}$. One can use ac bridge techniques to balance the two current components against known standards of capacitance and resistance and thereby determine $\tan \delta$. This is the technique we have used. It will be discussed in detail within this report.

A second technique, which has been successfully applied to the measurement of single dielectric sheets at cryogenic temperatures, measures tan δ using a calorimetric method. The power dissipated in a capacitor in the form of heat is $P=I \cdot V=\omega C V^{2} \tan \delta$. If the heat capacity of the sample and holder can be determined and is small, a measurement of temperature rise can be used to find $\tan \delta$. This technique was pioneered in England by Vincett. ${ }^{[2]}$ It has been used successfully in this country by King and Thomas. ${ }^{[3]}$ Calorimetric measurements have proven to be extremely useful for studying intrinsic dielectric behavior
at 4 K over a wide range of frequency. The technique is, however, not well suited to measurements of composite dielectric structures such as actual cables because of the large heat capacities involved.

We have thus far assumed that the tan δ losses are independent of the applied voltage. It was further assumed that whatever be the source of the dielectric loss, it causes no deterioration of the material. At a high enough voltage, partial discharges begin to be observed and the above two assumptions are no longer valid. No cable is designed to operate in the partial discharge regime. Nevertheless, it is important that partial discharges be examined because unplanned circumstances may temporarily force the cable into partial discharge. Techniques for the study of partial discharges in the cryogenic cable models will be presented later in this report.

Dissipation Factor Measurements

We have measured $\tan \delta$ for various samples at cryogenic temperatures by using a current comparator bridge operating at 60 Hz . The details of the electronic instrumentation will be described below. Common to every capacitance bridge technique is the balancing of an unknown capacitance against a known standard. The unknown or sample capacitor contains the dielectric to be measured. Thus, ideally, the sample capacitance is determined by a combination of the capacitor dimensions and the dielectric constant of the material filling the capacitor. The $\tan \delta$ of the capacitor depends only on the sample dielectric. We used two sample capacitors in the course of our measurements. One, constructed at NBS, was in the form of
parallel plates and was designed for measurements of single sheets of dielectric material. The other, given to us by Brookhaven National Laboratory, was a mandrel designed for the simulation of the composite dielectric and coaxial geometry used in cryogenic cables of the BNL design.

A. Parallel Plate Sample Holder

The sample holder consists of the two plates forming the paralielplate capacitor, the dielectric of which is the material to be measured. The stainless-steel electrodes are shown in Fig. 2. The bottom plate consists of an active (inner) electrode and a guard ring. These two electrodes were epoxied together then lapped and polished. The area of the active electrode is $1.05 \times 10^{-3} \mathrm{~m}^{2}$ resulting in the following relation between capacitance C and thickness $d(i n \mu m)$ of the dielectric:

$$
\begin{equation*}
C \simeq 9.29 \times 10^{3}\left(\varepsilon^{\prime} / \mathrm{d}\right) \text { picofarads. } \tag{1}
\end{equation*}
$$

Typical thickness of the sample dielectric ranged from $25 \mu \mathrm{~m}$ to $125 \mu \mathrm{~m}$ so that the capacitances to be measured are in the range of about 100 to 1000 pF ($\varepsilon^{\prime} \sim 2$ or 3 for proposed polymer insulation).

The capacitor is held together with two polyetrafluorethylene plates using nylon screws and nuts with phosphor-bronze springs as shown in Fig. 3. During the actual measurement the top electrode is energized and the resulting current from the inner, active electrode is sent to the current comparator bridge via a coaxial cable. The outer shield of the cable is connected to the guard ring on the one end and to ground at the bridge.

BOTTOM ELECTRODES

FIGURE 2 Electrodes for parallel plate sample nolder.
NYLON boLt
nYLON nuts

FIGURE 3 Samp.le holder for parallel plate measurements.

B. Cryostat

The cryostat is shown in Fig. 4. The inner diameter of the inner glass dewar is 11 cm with a usable height of 1 m . A high-vacuum electrical feedthrough ($\sim 10^{-5} \mathrm{~Pa}$) terminated at both ends by commercial ceramic bushings (rated at 8.5 kV rms) was used to get the high voltage below the liquid helium level. This was necessary because gaseous helium has poor breakdown characteristics (several times worse than air). A stainless steel, shielded, coaxial cable brings the low-voltage signal out of the liquid helium to the top of the cryostat. The total resistance of the leads running from the capacitor to the bridge was less than 1Ω. At 60 Hz , this resistance would cause an added dissipation factor 1×10^{-6} in the measurement of a 2600 pF capacitor. Since the capacitances of all samples measured in this apparatus were substantially less than this, the lead resistance is seen to have a negligible effect on the measurement of dissipation factor.

A typical measurement required about 5 to 6 liters of liquid helium allowing from 3 to 4 runs per 25 liter supply dewar. The helium would remain in the cryostat for several hours, if necessary, although most measurements were completed in less than an hour. The time for the cryostat to cycle from room temperature to 4.2 K and back to room temperature was about 20 hours which allowed daily runs.

Since the dewars are constructed of glass, no attempt was made to measure the dissipation factor as a function of increasing helium pressure. Also in these measurements the sample was immersed directly in liquid

FIGURE 4 Cyrostat for parallel-plate measurements.
helium while in the calorimetric measurements of King and Thomas ${ }^{[3]}$, the sample was in a vacuum.

C. Mandrel and Associated Cryostat for Coaxial Measurements

In order to test selected tapes at conditions more nearly simulating the BNL cable design than those of our parallel-plate sample holder, we acquired, in October 1976, apparatus developed by BNL. The apparatus consisted of a cryostat specially designed to accommodate mandrels around which were wound plastic tapes in simulation of cable insulation. These mandrels were also designed and built by BNL personnel. In addition, BNL provided us with a tapewinding device with which it was possible to wind layers of tape on a mandrel at selectable pitch angles. Although the cryostat and mandrel facility have been described in detail by their designers ${ }^{[4]}$, it will be useful to restate the features of this facility which were most important to our work and to detail our own modifications to the equipment. The mandrels terminated in stress-relief cones at either end. The bare portion of the mandrel was a cylinder of $\sim 50 \mathrm{~cm}$ in length and 1.3 cm in diameter. The mandrels could be mounted vertically in the cryostat at which time the bare portion of the mandrel was centered along the vertical axis of the cryostat. The inner chamber of the cryostat was 5 cm in diameter. The stress-relief cones of the mandrels allowed one to energize the center electrode to at least 50 kV without the onset of corona. In addition, the cryostat was designed to withstand helium pressures of over $10^{6} \mathrm{~Pa}$ at temperatures from 4 K to 10 K . The cryostat was housed in a liquid-nitrogen jacketed, stainless-steel helium dewar identical to that used at BNL.

Extensive modifications of the mandrels were necessary before they could be used for D.F. measurements. At BNL, the mandrels were used for breakdown studies. Therefore, the center electrode was simply energized and the cryostat grounded. On the other hand, D.F. measurements of the precision required by this project require that the sample holder be a three-terminal capacitor. What is more, the low voltage and guard electrodes must only be grounded at the current comparator bridge. These problems were solved in the following way.

First, a shallow groove was machined along the mandrel insulation from the point at which it enters the cryostat to the point at which it begins to taper toward the bare center electrode. A shielded cable (made of an insulated wire in a stainless-steel tube) was cemented into the groove with epoxy. The top of the cable was terminated with a BNC connector. It was found that upon cooling, shrinkage of the polytetrafluoroethylene insulation in the connector sometimes caused a leak to the pressurized cryostat. Replacement of a small segment of the insulation with epoxy solved this problem.

A second groove machined along the mandrel insulation provided space for thermometer leads. For our three-terminal measurements it was possible to introduce thermometers directly into the inner chamber of the cryostat instead of relying on thermometers placed in the vacuum space surrounding the inner chamber as was done at BNL.

At first, germanium resistance thermometers were used, but it was found that these were not robust enough to withstand repeated cycling to pressures of many atmospheres. Instead, calibrated carbon resistors were used and proved to be nearly ideal.

Pressure in the cryostat was read using a Bourdon-tube type aneroid barometer. A somewhat less accurate transducer was also used as a check. The mandrels were wound on the tape-winding machine that we obtained from BNL. This machine allows the pitch angle to be easily varied. Figure 5 (a cross-sectional view parallel to the axis) shows how the mandrels were wound and illustrates the guarding arrangement that is necessary with the NBS current comparator bridge. The connection to the stainless steel coaxial cable, mentioned above, is not shown. The tape to be measured (Valeron* in Fig. 5) was first wound on the mandrel with the proper registration and tension. The low voltage electrode and the two guard electrodes were then attached. The inner wire of the stainless-steel coaxial cable was soldered to the low voltage electrode (the active electrode), and this electrode and wire were then covered with a layer of insulation. Another guard, electrically attached to the two guard electrodes and the outer conductor of the stainlesssteel coaxial cable, was placed over this insulation. A final layer of insulation (not shown) was then wound around the outer guard to isolate it electrically from the pressure vessel wall.

Under these conditions, the capacitance in picofarads of a measured sample is

1. 4 LAYERS OF VALERON, $65-35$ REGISTRATION
2. GUARD ELECTRODES (tin)
3. LOW VOLTAGE ELECTRODE (tin)
4. 1 LAYER OF INSULATION, OVERLAPPED
5. SHIELD (tin)
6. HIGH VOLTAGE ELECTRODE (stainless steel)
FIGURE 5 Cross-section of mandrel showing wound layers.

$$
C \simeq \frac{8.85 \varepsilon^{\prime} L}{\ln r_{2} / r_{1}}
$$

where L is the length of the active electrode in meters, r_{1} is the radius of the inner electrode (mandrel) and r_{2} is the distance from the center axis of the mandrel to the active outer electrode. The quantity ε^{\prime} is an effective value for the composite structure of polymer tapes and helium-filled butt gaps.

D. Standard Capacitor

Since the dielectric properties of the sample are obtained by electrically balancing the current in the sample capacitor with the current in the standard capacitor, a knowledge of the properties of the standard capacitor is essential for this measurement. A 100 pF compressedgas (nitrogen) capacitor was used for the standard. In the majority of high voltage measurements, this type of capacitor can be assumed to be lossless. (Commercial capacitors generally claim a dissipation factor of "less than 10×10^{-6} "). In our measurements, where a total dissipation factor uncertainty of $\pm 1 \times 10^{-6}$ was necessary, the dissipation factor of the standard capacitor must be accurately measured. The current comparator bridge which will be described in the next section has the capability of measuring relative dissipation factors to better than $\pm 1 \times 10^{-6}$ but the absolute dissipation factor of the standard must be known in order to determine the dissipation factor of the material being measured. The dissipation factor of our standard capacitor was measured by John Q. Shields of the Center for Absolute Physical Quantities, NBS. A brief discussion of how this was done ${ }^{[5,6]}$ follows.

A guard ring capacitor with variable plate separation is placed in one arm of a transformer ratio-arm bridge and the standard capacitor to be measured in the other. Successive relative dissipation factor balances between the variable capacitor at different plate settings and the standard capacitor with auxiliary capacitors in parallel with it are made. Since the relative dissipation factors between the standard capacitor and each of the auxiliary capacitors can readily be measured, then the relative dissipation factor between the standard and the variable plate capacitor at several settings will be known. If the dissipation factor for the variable plate capacitor is caused only by a surface film, a plot of the relative dissipation factor versus capacitance should be on a straight line as will be shown below. The guard-ring capacitor with electrode spacing, d, and film thickness, t, is shown in Fig. 6a. This capacitor can be represented by an ideal capacitor, C_{1}, in series with a lossy capacitor with capacitance, C_{2}, and parallel resistance, R_{2}, Fig. 6b. This series combination can be represented as in Fig. 6c by an ideal capacitor, C_{0}, in parallel with a resistor, R_{0}.

a.

b.

c.

FIGURE 6 Guard-ring capacitor.

$$
\begin{equation*}
Y_{0}=\frac{Y_{1} Y_{2}}{Y_{1}+Y_{2}} \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
& Y_{1}=j \omega C_{1} \tag{3}\\
& Y_{2}=1 / R_{2}+j \omega C_{2} \tag{4}
\end{align*}
$$

and

$$
\begin{equation*}
Y_{0}=1 / R_{0}+j \omega C_{0} . \tag{5}
\end{equation*}
$$

From (2), (3), (4), and (5),

$$
Y_{0}=j \omega C_{1}\left(1+j \omega C_{2} R_{2}\right) /\left(1+j \omega R_{2}\left(C_{1}+C_{2}\right)\right)
$$

or

$$
\begin{equation*}
Y_{0}=\frac{\omega^{2} c_{1}^{2} R_{2}+j \omega C_{1}\left[1+\omega^{2} c_{2} R_{2}^{2}\left(c_{1}+c_{2}\right)\right]}{1+\omega^{2} R_{2}^{2}\left(c_{1}+c_{2}\right)^{2}} \tag{6}
\end{equation*}
$$

Using (5) and (6)

$$
\dot{R}_{0}=\frac{1+\omega^{2} R_{2}^{2}\left(C_{1}+C_{2}\right)^{2}}{{ }^{2} C_{1}{ }^{2} R_{2}}
$$

and

$$
c_{0}=c_{1}\left[1+\omega^{2} c_{2} R_{2}^{2}\left(c_{1}+c_{2}\right)\right] /\left[1+\omega^{2} R_{2}^{2}\left(c_{1}+c_{2}\right)^{2}\right] .
$$

The dissipation factor, D.F., is equal to $\left(\omega C_{0} R_{0}\right)^{-1}$.

$$
\text { D.F. }=\omega C_{1} R_{2} /\left[1+\omega^{2} C_{2} R_{2}^{2}\left(C_{1}+C_{2}\right)\right]
$$

where

$$
c_{1}=\frac{\varepsilon_{0} A}{d-2 t}
$$

and

$$
C_{2}=\frac{\varepsilon_{r} \varepsilon_{0} A}{2 t}
$$

assuming an area, A, and dielectric constant ε_{r} for the film.

$$
\text { Since } t \ll d \text { or } C_{1} \ll C_{2}
$$

$$
\text { D.F. } \approx \omega R_{2} \varepsilon_{0} A /\left[(d-2 t)\left(1+\omega^{2} c_{2}^{2} R_{2}{ }^{2}\right]\right.
$$

or

$$
\begin{equation*}
\text { D.F. } 3 \frac{K}{d-2 t} \tag{7}
\end{equation*}
$$

where for a particular frequency K is a constant independent of plate spacing.

The film thickness t is much less than the electrode spacing so (7) can be further approximated

$$
\text { D.F. \&s } \mathrm{K} / \mathrm{d}
$$

Therefore, if the dissipation factor is caused by surface films, the D.F. should vary inversely with the electrode separation, d, and hence be proportional to the capacitance. A plot of relative dissipation factor for the variable capacitor versus capacitance should be on a straight line. The intercept of this line with the dissipation factor axis represents the relative dissipation factor for infinite electrode separation and, therefore, the dissipation factor of the standard capacitor. The fact that the points do lie on a straight line supports this model.

A portable standard capacitor was calibrated in this fashion and found to have a $60-\mathrm{Hz}$ dissipation factor of -1.1×10^{-6} with an uncertainty of $\pm 0.3 \times 10^{-6}$. Our compressed-gas standard capacitor had a relative dissipation factor of 2.9×10^{-6} with respect to this portable standard or an absolute dissipation factor of $1.8 \times 10^{-6} \pm 0.5 \times 10^{-6}$.

The negative dissipation factor, seemingly worrisome, is easily explained. To see how this is possible, consider Fig. 7. The threeterminal measurement of a guarded lossless capacitor, C_{S}, is shown in Fig. 7a.

FIGURE 7 Three-terminal capacitor with negative dissipation factor.

Capacitors C_{H} and C_{L} are the capacitances formed by the guard and the high and low voltage electrodes. In a bridge measurement, the low voltage side is grounded. In this case, the short-circuit transfer admittance of the circuit shown in Fig. $7 a$ is $y_{12}=j \omega C_{s}$. Now suppose, as in Fig. 7b, the capacitor's construction is flawed by loss in a common ground return. This frequency-dependent mechanism is represented by a resistance, R. If $1 / R \omega$ is large, compared to both C_{H} and C_{L}, then y_{12} \& $j \omega C_{S}-\omega^{2} R C_{H} C_{L}$. The right hand side of this relation differs from the ideal case by containing a small term which is $\pi / 2$ radians out of phase with $j \omega C_{s}$. Since the measurement of y_{12} is made on a "black box", the results of the measurement could be caused either by the circuit in Fig. 7b or Fig. 7c. Fig. 7c is the schematic representation of a guarded capacitor with capacitance C_{S} and dissipation factor equal to $-1 / \omega C_{S} R^{\prime}$ where $R^{\prime}=$ $\left(\omega^{2} R C_{H} C_{L}\right)^{-1}$. The dissipation factor is negative. In the case of our portable standard capacitor, the negative dissipation factor was caused by the unsuspected presence of a layer of a high-loss adhesive between the guard and ground.

Measuring the loss of a capacitor containing liquid helium as its dielectric provided an independent means of checking the loss of our standard. At low enough voltages a liquid helium capacitor should be lossless -- the helium itself has no loss mechanisms and its temperature, 4.2 K, reduces to insignificance the loss of any adventitious film on the electrode surface. ${ }^{[7]}$ Our parallel-plate sample holder with $100 \mathrm{\mu m}$ dielectric spacers between the guard ring and the active electrode was
used as a liquid helium capacitor. The results of a bridge measurement against our compressed-gas standard confirmed loss measurements of the standard described above. (At a stress of $1.5 \mathrm{kV} / \mathrm{mm}$ the 60 Hz dissipation factor was $\left.(0.3 \pm 0.7) \times 10^{-6}\right)$.

E. Current Comparator Bridge

The real part of the dielectric constant and the dissipation factor of a sample are measured by balancing the current in the sample capacitor against the current in the standard capacitor using a bridge. A simplified version of how this is done is illustrated in Fig. 8. The lossy sample capacitor is represented by a parallel combination of an ideal capacitor, C_{X}, and a resistor, R_{x}. At balance (i.e., zero signal at the detector, D) since $I_{X} N_{X}=I_{S} N_{S}$,

$$
c_{X}=n_{s d} n_{d x} c_{s}
$$

and

$$
\text { D.F. }=\left(\begin{array}{lll}
\omega & R_{s} & C_{s}
\end{array}\right)^{-1}
$$

where

$$
n_{s d} \equiv N_{s} / N_{d} .
$$

The transformer in Fig. 8 is a three-winding current transformer or a current comparator. Extensive work on this type of bridge has been done at the National Research Council in Canada and at NBS. ${ }^{[8,9]}$

Unfortunately, the bridge in Fig. 8 is not practical because resistance standards for high voltage are impractical to make, and another method for baiancing the in-phase or loss current must be sought.

The circuit in Fig. 9 provides a suitable method for balancing the loss component. An operational amplifier, which provides a virtual ground for the current through the N_{S} winding (the amplifier's open loop gain being greater than 10^{4}), outputs a voltage signal equal to $-V C_{s} / C_{f}$, typically one thousandth of the source voltage, V, or smaller. A variable resistance which is connected between the amplifier output and the third current-carrying ratio winding, N_{3} (opposite in polarity to N_{S}) can be used to balance the loss component. The balance equation now becomes:

$$
\begin{equation*}
c_{x}=n_{s d} n_{d x} c_{s} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\text { D.F. }=\left(N_{3} / N_{S}\right)\left(1 / \omega C_{f} R_{S}\right) . \tag{9}
\end{equation*}
$$

In the actual bridge the switches for the N_{3} and N_{S} windings are mechanically coupled so that the bridge can be made direct reading in dissipation factor for a particular frequency (e.g., 60 Hz).

The resistance of the leads between the voltage source and the capacitors and between the capacitors and the bridge will contribute to the dissipation factor. In the case of the standard capacitor side of the bridge, it would take a lead resistance of about 25 ohms to cause an apparent decrease in D.F. of 1×10^{-6}. On the sample capacitor side of the bridge, however, the lead resistance could become significant. From (1) the capacitance for the sample capacitor could be as large as 1000 pF so that an increase in D.F. of 1×10^{-6} would be caused by a lead resistance of 2 to 3 ohms. The actual lead resistance in our measuring circuit is less than 1 ohm so that the lead resistance is still negligible. Larger capacitance sample holders would require careful consideration of the effect of the leads. The bridge in Fig. 10 remedies this problem by automatically compensating for the lead resistance between the sample capacitor and the bridge. The small voltage, v, caused by this lead resistance, r, results in the voltage drop across the sample capacitor being $V-v$ instead of V. To compensate for this, the voltage v is inverted and passed through the capacitor, C_{S}^{\prime}, the resulting current entering the N_{S} winding. The total current in the N_{S} winding then becomes

$$
I_{S}=V j \omega C_{S}-v j \omega C_{S}^{1}
$$

or

$$
I_{S}=j \omega C_{S}\left(v-v C_{S}^{\prime} / C_{S}\right)
$$

If C_{S}^{\prime} is set equal to C_{S}, then

$$
I_{S}=j \omega C_{S}(V-v) .
$$

The resulting current is as if a voltage $\mathrm{V}-\mathrm{v}$ was placed across the standard capacitor, the same voltage that is across the sample capacitor. The compensating circuit, therefore, has eliminated the effect of this lead resistance.

From (1), (8) and (9) the dielectric-constant, ε^{\prime}, and the dissipation factor, D.F., of the sample can be found from the bridge by the following equations for the parallel-plate sample holder:

$$
\begin{align*}
\varepsilon^{\prime} & =\left(1.08 \times 10^{-4}\right)\left(d n_{s d} n_{d x} C_{S}\right) \tag{10}\\
\text { D.F. } & =\left(N_{3} / N_{S}\right)\left(1 / \omega C_{f} R_{S}\right)+1.8 \times 10^{-6} \tag{11}
\end{align*}
$$

where C_{S} is in picofarads and d is in micrometers.

The effect of the dissipation factor of the standard capacitor discussed in the previous section is included in (11).

The estimated uncertainty of (11) is $\pm 1 \times 10^{-6}$ at 60 Hz . The uncertainty in (10), the dielectric constant, may be as large as ± 10 percent even though the turns, $n_{s d}$ and $n_{d x}$, are known to 1×10^{-6}. This is because the actual electrode spacing at low temperature is not known. In our measurements the room temperature value of d is used thereby assuming no thermal contraction of the sample. The thickness of these thin samples is not always uniform which also contributes to the error. Errors due to coating the sample with paraffin oil (discussed below) are negligible.

Similar considerations hold for the mandrel measurements. The real component of the dielectric constant is

$$
\begin{equation*}
\varepsilon^{\prime}=0.113 n_{s d} n_{d x} C_{S} \ln \mathrm{Cr}_{2} / r_{1} / L \tag{12}
\end{equation*}
$$

where C_{S} is in picofarads and L is in meters.

The dissipation factor is the same as (11). Measurement errors are the same as for the parallel plate capacitor.
II. Dielectric Loss Results and Discussion
A. Parallel Plate Geometry

Many samples of different polymer tapes and epoxies were studied using the parallel plate apparatus described above. The polymers were all candidate insulators for the BNL flexible cable. The epoxies were either under consideration as spacers in the pipe-type cable being developed by the Linde Division of the Union Carbide Corporation (UCC-Linde) or were used as bushing material in BNL test apparatus. The sample holder was immersed in liquid helium at atmospheric pressure (4.2 K).

All samples were coated with paraffin oil prior to loading in the sample holder. Without the paraffin oil coating, the dissipation factor of all samples showed a strongly positive voltage dependence. This dependence could be greatly reduced by use of the paraffin oil, indicating the presence of voltage-dependent interfacial losses at the metal plastic interface. These losses will be discussed more fully below. King and Thomas ${ }^{[10]}$ have shown that the paraffin oil coating introduces no additional contribution to the dissipation factor. They place the uncertainty of this determination at less than 1×10^{-6} at 60 Hz .

1. Polymer Tapes

The results of the polymer measurements are shown in Table I. The voltage dependence on $\tan \delta$ is in most cases quite small. Measurements were terminated at the first signs of partial discharge inception as

1000 V rms ($25 \mathrm{kV} / \mathrm{mm}$)
 으 으
 2000 2000
800
2000
1200
evidenced by unstable bridge behavior. The repeatability of polymeric samples from the same manufacturer is generally good although polymers with the same generic name may differ markedly. Several of the samples are seen to have tan δ 's less than 20×10^{-6} at design stresses of the order of 10 to $20 \mathrm{kV} / \mathrm{mm}$. However, these materials have rather poor mechanical properties. The mechanically-sound materials have tan δ 's in the range of 50 to 100×10^{-6}. An attempt by the manufacturer to improve the $\tan \delta$ of one of these materials (green polysulfone) by reducing the sodium concentration met with some success.

The significant decrease in dissipation factor with increasing stress for the two polyether-sulfone samples is unique in our lowtemperature experience. This negative voltage coefficient is a commonly observed property of power-factor capacitors and there the effect is well understood. [11] The explanation for the observed behavior of polyethersulfone remains unexplained.

As a check of our measurements one can compare our data with the published data of King and Thomas ${ }^{[12]}$ for experimental conditions of 4.2 K and 60 Hz . Agreement is excellent. The measurements are quite independent of each other since theirs rely on a temperature rise and ours on an electrical bridge balance to measure dissipation factor. Our measurements also agree rather well with those of Mopsik made at NBS. [13] Mopsik's apparatus is capable of studying the low voltage behavior of small polymer samples as a function of temperature and frequency of applied voltage. Comparison of our data with his is not quite independent because the dissipation factor of his standard capacitor was supplied
by us. Nevertheless, we feel secure that this number is correct.

To examine the effects of paraffin oil on various interfaces, we studied several stacking arrangements of $30 \mu \mathrm{~m}$-thick polypropylene films. This film was chosen because it exhibited a small voltage coefficient over a wide range of voltage stress. The dissipation factor of three-sheet stacks of this material was measured under the following conditions. In one case, both sides of each sheet were coated with paraffin oil. In another instance only the metal-insulator interfaces were coated. A two-sheet stack with oil only between the metal-insulator interfaces was also measured.

The results of these measurements are plotted in Fig. 11. The slopes are consistent with similar measurements made using the calorimetric method at another laboratory. ${ }^{[13]}$ Nevertheless, it is clear that the nature of the interfaces plays an important role in the dissipation factor of a composite structure at high stress. For this reason we decided that simulated cable insulation must be studied under conditions as close to those of the actual cable as possible. Hence, future studies of dissipation factor in composite structures were undertaken using the coaxial mandrel apparatus already described. The results of these measurements will be described below.

2. Epoxy Samples

Epoxy measurements offered an additional experimental difficulty as compared to polymer measurements: epoxy sheets must have surfaces which are parallel and free from imperfections. This is because epoxy, unlike

kV/mm,rms
yO1O甘」 NOILVdISSIG
plastic tapes, is not compliant at room temperature and thus will not seat well between the electrodes of the sample holder. Due to this probiem, tan δ measurements of epoxy samples which were not carefully fabricated exhibited a pronounced voltage dependence. In samples which were well-made, we observed a dependence of $\tan \delta$ with sample thickness. We were able to develop a theoretical model which explains the thickness dependence and allows us to ascertain the intrinsic D.F. of the material.

Our hypothesis to explain the observed thickness dependence of tan δ is based on the following considerations. As a result of imperfect parallelism of the epoxy surfaces as well as the rigidity of epoxy at room temperature, the sample capacitance behaves as the model shown in Fig. 12. In addition to the epoxy, the capacitor dielectric includes a thin film of thickness τ and dielectric constant ε_{1}. In our measurements this film is either mineral oil or liquid helium both of which have negligible loss. We assume τ is roughly the same for all well-made samples.

Assume the epoxy has a complex dielectric constant $\varepsilon^{\prime}+j \varepsilon^{\prime \prime}$. Then the capacitance and dissipation factor of the epoxy-film composite may be found from the schematic representation of Fig. 12 .

$$
\begin{align*}
C_{E F} & =A \varepsilon^{\prime} \varepsilon_{0} /\left\{d\left(1+\varepsilon^{\prime} \tau / \varepsilon_{1} d\right)\right\} \\
(\tan \delta)_{E F} & =\left(\varepsilon^{\prime \prime} / \varepsilon^{\prime}\right) /\left(1+\varepsilon^{\prime} \tau / \varepsilon_{1} d\right) \tag{13}
\end{align*}
$$

FIGURE 12 Model of epoxy behavior.
where A is the active electrode area, d is the sample thickness and ε_{0} is the permittivity of free space. The model, therefore, predicts that the quantity $(\tan \delta)_{E F} / C_{E F} d$ is a constant which we shall call γ, and which depends only on properties of the epoxy.

$$
\begin{equation*}
\gamma \equiv \frac{(\tan \delta)}{C_{E F}{ }^{d}}=\frac{\varepsilon^{\prime \prime}}{A \varepsilon_{0} \varepsilon^{\prime 2}} \tag{14}
\end{equation*}
$$

Our hypothesis was tested with the aid of four samples of Perma-Rez CRS-48* differing in thickness but identical in composition. The samples were provided by UCC-Linde which took great care in their fabrication. Each sample was measured twice. The raw data are shown in Table iI. The calculation of γ is carried out in Table III. The average value, γ, is equal to $77.94 \times 10^{9}(\mathrm{~F} \cdot \mathrm{~m})^{-1}$ with a standard deviation of 1.6%. Thus, a prediction of the model has been verified.

Equation 13 may be rewritten in the form

$$
\begin{equation*}
(\tan \delta)_{E F}{ }^{-1}=\varepsilon^{\prime} / \varepsilon^{\prime \prime}+\tau \varepsilon^{\prime 2} / \varepsilon^{\prime \prime} \varepsilon_{1} \mathrm{~d} . \tag{15}
\end{equation*}
$$

A plot of $(\tan \delta)_{E F}{ }^{-1}$ as a function of $1 / \mathrm{d}$ should give a straight line if our hypothesis is correct. Figure 13 shows this to be the case. The solid line was obtained using a least squares fit to the data. This fit gives a y-intercept of 2.55×10^{3} and a slope of 0.3039 m . Then

Dissipation Factor Data of Epoxy Samples

Tan δ was read directly from bridge, ε ' was calculated from the thickness of the epoxy and the capacitance reading of bridge.

$$
\text { Perma-Rez CRS-48*, } 60 \mathrm{~Hz}, 4.2 \mathrm{~K}
$$

$1020 \mu \mathrm{~m}$ thick sample

Voltage (volts-rms)	$\tan \delta$ 100	Run \#1 $\left(\varepsilon^{\prime}=3.14\right)$ 200
400	348×10^{-6}	$\tan \delta$ 600
800	344	354×10^{-6}
1000	337	
2000	335	

$510 \mu \mathrm{~m}$ thick sample

Voltage	$\text { Run \#1 }\left(\varepsilon^{\prime}=2.86\right)$	$\text { Run \#2 } 2^{\tan }\left(\varepsilon^{\prime}=3.08\right)$
100	314×10^{-6}	335×10^{-6}
200	312	333
400	303	
600	297	
800	289	
1000	283	
1500	270	

$249 \mu \mathrm{~m}$ thick sample

	$\tan \delta$	$\tan \delta$
Voltage	Run \#1 ($\left.\varepsilon^{\prime}=2.24\right)$	Run \#2 ($\left.\varepsilon^{\prime}=2.38\right)$
100	252×10^{-6}	265×10^{-6}
200	249	260
400	247	
600	244	
800	245	
1000	251	

$140 \mu \mathrm{~m}$ thick sample

Voltage
100
200
400
600

$\tan \delta$	$\tan \delta$
Run \#1 ($\left.\varepsilon^{\prime}=1.96\right)$	Run \#2 $\left(\varepsilon^{\prime}=1.88\right)$
223×10^{-6}	204×10^{-6}
219	200

217
225

TABLE III
Calculation of Model Constant, γ

$d(\mathrm{~m})$	D.F.	$C(F)$
1.016×10^{-3}	348×10^{-6}	28.6×10^{-12}
1.016×10^{-3}	354	29.3
0.508×10^{-3}	314	52.1
0.508×10^{-3}	335	56.2
0.249×10^{-3}	252	83.5
0.249×10^{-3}	265	88.7
0.140×10^{-3}	223	129.8
0.140×10^{-3}	204	124.5

$$
\tan \delta=\varepsilon^{\prime \prime} / \varepsilon^{\prime}=392 \times 10^{-6} \text { and }
$$

$$
\varepsilon^{\prime}=3.53 .
$$

The one adjustable parameter in our model, $\gamma / \varepsilon_{\rho}$, is found to have a value of $3.37 \times 10^{-5} \mathrm{~m}$. Since the dielectric constant of the helium or mineral oil film is about 1 or 2 , τ, the thickness of the film is predicted to be about $20 \mu \mathrm{~m}$. This number cannot be verified but it seems reasonable to us since it is the same order as machining tolerances.

Evidently, epoxy sample results must be interpreted with considerable care in order to avoid error. Measurements on a single, thin sample must be viewed with dubiety. Further, different lots of epoxy may have dissipation factors which depend on the details of preparation. We have measured various epoxies used in the casting of high voltage bushings and find their dissipation factors to vary over a range of (200-350) $\times 10^{-5}$ depending on the lot. We have also measured a 1.6 mm-thick sample of G-10, a material commonly used as circuit board and found its $\tan \delta$ to be 560×10^{-6} and its dielectric constant to be 4.2.

B. Coaxial Geometry

The tests using the parallel-plate electrodes were designed to obtain data on the intrinsic behavior of various materials under consideration as insulation in superconducting cables. The mandrel measurements were designed to study the behavior of the composite insulation being considered for the BNL cable. This insulation composite consists of layers of plastic tape wound at a particular registration (we used a 65-35 registration for all our measurements) and the helium which fills the butt gaps formed by the plastic tape layers. This is analogous to conventional, flexible oil-filled cable but, instead of kraft paper and oil, one uses plastic tapes and helium. Of particular concern at high electrical stress is the butt gap region. It is here that field enhancement will occur, caused by the dielectric mismatch between helium ($\varepsilon^{\prime} \sim 1.0$) and plastic ($\varepsilon^{\prime} \sim 2$). In an effort to improve the breakdown properties of the helium-filled butt gaps, the cable is operated at high pressure. At design conditions, the helium is in a region past its triple-point. In this "supercritical" region the formation of bubbles is suppressed because a gas-liquid interface cannot exist under equilibrium conditions. The suppression of bubble formation improves the breakdown properties of the helium. In addition, the heat capacity of the helium is a maximum along the transposed critical line ${ }^{[14]}$ which is useful to the engineering of the cable refrigeration.

The first measurements made were with a simple composite structure: four layers of $75 \mu \mathrm{~m}$ - thick Valeron* wound directly on the bare mandrel. Copper was wrapped around the Valeron* in order to form a three-electrode, guarded coaxial capacitor as described above.

The sample was immersed in helium and the dissipation factor was measured at a range of helium pressures (170 kPa to $1,150 \mathrm{kPa}$). The temperature was varied from 8 K to 9.5 K . Typical data are shown in Fig. 14. As with all the data obtained from this sample, the dissipation factor begins at a value less than 10^{-5}, increases very gradually with applied stress and then at a well-defined, reproducible point begins to increase rapidly with electrical stress. The "break point", or point at which the D.F. becomes strongly dependent on electrical stress, is a function of the density of helium in the butt gaps. Pertinent numbers are gathered in Table IV.

The variability in D.F. measurements before the break point as a function of different helium densities has a range of less than 2×10^{-6}. The tendency for D.F. to be somewhat lower at higher He density may be due to experimental scatter but might also be caused by the disappearance of interfacial losses at higher helium densities. The observed effect is too small to permit one to be certain of its origin.

The observed function of break point stress with helium density, when normalized to the maximum stress, is identical to Meats' results for the breakdown of supercritical helium. [15] The correlation of our break point data with Meats' helium breakdown data suggests strongly that the break point signals the start of discharges in the butt gaps. We were not able to correlate the numerical values of break point stress with Meats' data because of the geometrical complexity of a practical cable sample.

FIGURE 14 D.F. of Valeron* in coaxial geometry.

TABLE IV

Dissipation Factor Results of Valeron* Samples in Coaxial Geometry

He Density	Temperature	D.F. at IMV/m (inner electrode)	Stress at Inner Electrode at "Break Point"
$9 \mathrm{~kg} / \mathrm{m}^{3}$	9.3 K	8.2×10^{-6}	3.2 MV/m
20	8.4	8.4	4.5
45	8.5	7.4	7.2
70	8.7	6.4	12.5
90	8.9	7.3	11.1

It was also observed by using a commercial partial discharge detector that the break point corresponds to the partial discharge inception voltage. The sensitivity of the partial discharge detector was $\sim 0.2 \mathrm{pC}$. If the increase in D.F. is due to discharges of magnitude q at a single site, then elementary considerations ${ }^{[16]}$ predict that the dissipation factor caused by these discharges is

$$
\text { D.F. }=\sqrt{2} q / \pi C V
$$

where C is the sample capacitance and V is the applied rms voltage. In the case of the sample under study, $\mathrm{C} \cong 950 \mathrm{pF}$. Since the resolution of our capacitance bridge is $\pm 0.2 \times 10^{-6}$ in D.F., repetitive discharges of order ~ 1 pC can be detected at an applied voltage of 1 kV . (This voltage corresponds for the sample under study, to a stress of $3.4 \mathrm{MV} / \mathrm{m}$ at the inner electrode):

Partial discharges were detected using a commercially available, balanced detector. Balanced detection was used to suppress the effect of voltage pulses which may occur at the output of the power supply. These unwanted discharges were further suppressed by the presence of a $100 \mathrm{k} \Omega$ resistor between the power supply and the sample. This resistor and the stray capacitance to ground on the load side of the resistor form an effective low-pass filter. The resistor also limits current in the event of a flashover or breakdown at the sample. The high voltage wiring
was identical for the measurement of D.F. and for corona detection. Only low-voltage leads needed to be changed in order to proceed from one type of measurement to the other.

Once the behavior of this simple system was studied and reliably reproduced, the next step was to see how the addition of bedding and screen layers would alter the behavior. It was anticipated that the BNL cable insulation would be wound over a spongy semiconducting bedding layer covered by an intercalated layer of plastic tape. The plastic tape would have one metallized surface (at the bedding interface) and would thus serve as a screen. Polytetrafluoroethylene impregnated with carbon was the choice of bedding layer. The bedding was deemed necessary for mechanical reasons and, of course, the screen would then be necessary to prevent ac losses which the semiconducting bedding would otherwise introduce.

We first ran a sample of four layers of Valeron* wound over an intercalated layer of metallized Valeron*. The results were similar to the system without the screen. The screen did cause a slight slope to appear in the pre-break point section of the D.F. vs. stress curve (Fig. 15) but the break point itself now occurred at a somewhat higher stress. No additional partial discharges were observed below the break point.

Introduction of a bedding layer could not be studied carefully due to more immediate needs of BNL for measurements on a new candidate insulation. Preliminary measurements (Fig. 16), however, indicated that introduction

of a bedding layer between the bare electrode and the screen greatly increased the D.F. of the composite. Partial discharges were detected at voltage minima indicating contact noise in the sample holder. Similar results have been observed by a General Electric group studying bedding layers in experimental cryoresistive cables. ${ }^{[17]}$

At the request of BNL, we began a study of three composite polymer tapes. The tapes have been designated $P P-U-P P(B), 3 P P-2 U(A)$ and PP-PE-PP(B). All three were 19 mm in width and were color-coded (blue, violet, and red). The blue tape (PP-U-PP(B)) consisted of two layers of $32 \mu \mathrm{~m}$ - thick polypropylene bonded with a $2.5 \mu \mathrm{~m}$ - thick layer of polyurethane. The violet tape (3PP-2U(A)) had three layers of the polypropylene bonded with $2.5 \mu \mathrm{~m}$ - thick layers of polyurethane. Finally, the red tape (PP-PE-PP(B)) had two layers of the polypropylene bonded with a $2.5 \mu \mathrm{~m}$ - thick layer of polyethylene. Microscopic study of the tapes by the NBS polymers group had revealed the presence of numerous voids in the bonding layers of these tapes. It was anticipated that measurement of the D.F. and partial discharge inception voltages of these tapes would elucidate the role of the voids in the tapes' behavior at high electrical stress. Some of the results are plotted in Figs. 17 through 19.

While the different tapes show different behavior, the results are such as not to be explained by consideration of voids in the polyurethane binding layer. Such consideration would predict the violet tape, with the highest percentage of binding layer, would have the greatest loss. A comparison of the data for the three laminated samples shows that the violet sample (3PP-2U(A)) has somewhat superior dissipation factor properties at the high electrical stresses of interest. The violet

sample and the blue sample both have relatively thin polyurethane layers but the violet sample has two such layers with four polypropylenepolyurethane interfaces compared with one layer and two interfaces for the blue sample. The discussion by Khoury in the BNL quarterly report dated 2 November $1977^{[18]}$ on the morphology of these two tapes does not give any clues to this behavior. The voids in the laminating layers of the two tapes are similar in shape and number.
III. Partial Discharge Measurements Using the Pulse Height Analysis System

The partial discharge measurement system (PDMS) as developed at NBS (described in the appendix to this report) performs high-speed pulse-height-analysis of the partial discharge amplitudes. It can be used much the same way as conventional discharge detectors. That is, the PD:MS may be attached to the detection impedance of any conventional partial discharge circuitry. [19] The circuit used in our laboratory is shown in Fig. 20. It is very nearly the same as the bridge circuit used for our D.F. measurements. The resistor, R, which limits supply current in the event of breakdown also forms a low-pass filter with the stray capacitance between the load and ground. This filter tends to suppress spurious spikes in the supply. The capacitor C_{k} is conventionally known as the "coupling capacitor". In our case, we used the same compressedgas capacitor which also served as our standard for bridge measurements. The low side of the coupling capacitor is connected directly to ground as is its guard electrode. The sample capacitor, C_{x}, is, of course, the same as was used in our mandrel measurements of D.F. The guard electrodes

of C_{x} are connected to ground while the low voltage electrode is connected to the detection impedance, Z. In our case, Z consisted of a resistor, capacitor and inductor in parallel. The RLC circuit parameters were chosen so that a very narrow pulse ($\leqq 30 \mathrm{~ns}$) produces an output of a critically damped pulse of width $\sim 2 \mu \mathrm{~s}$. Of course, the choice of capacitance in the RLC circuit is not entirely discretionary because of unavoidable strays in parallel with R and L. It should also be noted that the guard capacitances of the three-terminal capacitors C_{k} and C_{x} act in parallel to effectively increase the value of C_{k}. This is an important consideration if the signals on the detection impedance are to be related theoretically to partial discharges in the sample. The actual calibration of the entire system was carried out experimentally at low voltage by using a pulse generator in conventional fashion. [18]

Time and other constraints only permitted the use of the PHA system in one actual test. This was an attempt to monitor a sample of cable insulation under consideration of accelerated aging.

The partial discharge measurement system is a powerful tool for studying the aging of cryogenic dielectrics under discharge conditions. In order to design a meaningful experiment, some mechanism must be provided to accelerate this aging process so that some changes might be observed during the course of the experiment. Accelerated aging might be accomplished by increasing the frequency of the alternating voltage, raising the sample temperature or some other means. An attempt was made to accelerate the dielectric aging by running at high stresses so that large discharge activity was observed (discharges of the order of 200300 pC).

The sample measured consisted of four layers of Valeron* wound over two intercalated tapes of metalized Valeron*. There was no bedding layer. The sample was run at a pressure of about 1.35 megapascals and a temperature of about 8 K . The applied voltage was 6.95 kV which is equivalent to an electrical stress of about $18 \mathrm{MV} / \mathrm{m}$. The partial discharge inception level for this sample was at about half this stress.

The original plan was to run this sample at this elevated stress for as long as liquid remained in our cryostat (~ 15 hours). The pulse height distributions at the beginning of the run, two hours later, and $3-1 / 2$ hours into the run are shown in Fig. 21. These are not cumulative distributions but are fresh distributions taken for a 10 minute interval at the measurement time. While there appear to be some differences (the valley disappears with time), the distribution of large discharges does not vary significantly. About a half hour after the last picture in Fig. 21 was taken, our partial discharge measurement system suddenly stopped working. An analysis of the hardware indicated that a protection diode in a preamplifier failed. After removing this preamplifier and the partial discharge measurement system, the sample was reenergized and discharges monitored with a conventional discharge detector. The sample appeared to be normal suggesting that the failure was unrelated to the sample.

It was decided to repeat the same test using the same sample with improved preamplifier protection. Figures $22 a$ and b show the results at the beginning of the test and 2-1/2 hours later. The results are similar to the first test on this sample except that the valley has disappeared.

(b) 2 hours later
(6) 3 1/2 hours later

FIGURE 22 Discharge spectra-second run.

(a) Beginning

(b) 2 l/2 hours later
(c) After failure

Between the two runs the problem of the dynamic range of the system, mentioned in the Appendix, was readdressed. It now appears likely that the valley in the distribution observed in the first run was a result of improper setting of the threshold detector caused by an erroneous value for the dynamic range. It appears that the sample in the second run has changed little after almost 3 hours at $18 \mathrm{MV} / \mathrm{m}$. At the three hour point the sample failed. This time, with improved protection for the preamplifier, the system survived and the discharges indicating failure were observed on both the conventional corona detector and the pulse-height analysis system. Figure 22c shows the output of the latter system. The discharge rate was so large that the minicomputer was "locked up" and had to be shut off and "rebooted" to retrieve the data. Figure 22c shows that several of the channels are filled $(32,767$ counts). The fact that certain channels are filled and others appear empty probably is not significant. At high discharge rates the a-d converter and related logic could not perform accurate conversions.

The voltage was reduced to zero and the inception voltage for this failure was measured. As opposed to the first run on the sample, this time the inception voltage was practically at the turn-on voltage indicating permanent damage to the sample. After the sample had reached room temperature, it was measured again with SF_{6}. The inception voltage was still very low.

There was a striking similarity between the failures for the two runs (or possible failure for the first run). They both occurred about the same time after the run began. It was first thought that this meant the dielectric tapes were aging in the presence of this high stress. But now the significant similarity appears to be that the liquid helium in the dewar had reached the identical level at the time of the two failures, 63 cm from the bottom of the helium dewar. Since this is near the bottom of the pressure vessel, it is likely that the temperature differential along the mandrel length is increasing at this point. While a 2 K temperature differentiai is often observed, an increase to 4 K would decrease the helium density at the top of the mandrel to about half the value at the bottom.

When the mandrel was removed from the pressure vessel, a puncture was observed through the four layers of Valeron* and the intercalated screen. The site of the puncture was under a relatively sharp corner edge of the guard electrode at the very top of the sample.

Termination of this project prevented us from continuing these measurements in order to systematically study aging processes at cryogenic temperatures. The partial discharge measurement system has proven most valuable in other measurements such as the study of partial discharge behavior in sulfur hexafluoride.

APPENDIX

Partial Discharge Measurement System

A partial discharge measurement system (PDMS) was developed in order to study aging processes in electrical insulation. While the original system was designed for the studies of partial discharge behavior at cryogenic temperatures, the PDMS has been used for more conventional insulation systems as well. The PDMS uses the technique of pulse-heightanalysis in order to obtain amplitude spectra of the partial discharges as a function of time. Changes in these spectra as a function of applied electrical stress, frequency, temperature, pressure, impurity or defect concentration could yield important information on aging processes.

Pulse-height-analysis has been used to study partial discharges previously. ${ }^{[A-1]}$ The system developed at NBS has the advantage of being significantly faster (i.e., the dead time is only $8 \mu s$ compared to about $50 \mu \mathrm{~s}$ for conventional systems). The key to this speed is a fast analog-to-digital converter and the use of the direct-memory-access input to a minicomputer used for data acquisition. Having a minicomputer as part of the system results in increased power and versatility compared to other systems based on conventional multichannel analyzers.

A description of the PDMS will be presented in two sections: hardware and software. The intent is to provide enough information so that the system could be duplicated by others if they wished.

I. Hardware

A. Detection Impedance and Amplifier

A typical detection impedance, Z, is shown in Fig. A-1. Typically the impedance is some RLC circuit tuned for optimum system behavior. The selection of this impedance can affect the dynamic range of the PDMS. If a discharge results in an under-damped oscillation, the PDMS can be adjusted so as not to trigger on the subsequent peaks. This, however, increases the dead time. This detection impedance also severely limits protection devices that can be used. Normally some protection should be placed between the detection impedance and the amplifiers to follow. Unfortunately high-speed protection devices have too large a capacitance resulting in very small signal levels and far from critically damped performance. Care must therefore be taken in circuit design so that if a breakdown does occur the most likely component to fail will be readily replaceable.

A small but significant level of $60-\mathrm{Hz}$ voltage (and harmonics) is present at the detection impedance. This voltage, becoming more serious at higher voltage levels, can cause the peak-and-hold circuitry to trigger on the peaks of the applied sinusoidal voltage giving erroneous discharge spectra and ultimately saturating the lower channels.

A standard method of reducing this voltage is to use balanced detection of the partial discharge pulses. The balance is made to null the common-mode partial discharges which may be occurring in the power supply, for example, but this balance is generally close enough to a 60 Hz balance to eliminate this source of voltage. Balanced

FIGURE A-1 High-voltage circuit for partial discharge measurements.
detection seemed impractical in this development system, however, and was not pursued. Instead of a balancing impedance, active circuitry was used, Fig. $A-2$, to inject a 60 Hz signal of adjustable amplitude and phase into one input of a differential amplifier Fig. A-3. The other amplifier input is derived from the corona detection impedance after being amplified by the wide-band FET preamplifier Fig. A-4. This preamplifier incorporates a high pass filter (cut-off frequency of 5 kHz) to also help reduce the effects of the applied voltage and the harmonics. The input of the 60 Hz buck-circuit can be connected to the primary of the supply transformer. Since the transformer itself generates harmonics, the buck-circuit is only useful for canceling out the 60 Hz component. An oscilloscope is used for this balancing, adjusting the phase and amplitude controls until the signal is zero (below the partial discharge inception voltage). Once the zero has been obtained no further adjustments are normally necessary over the transformer's working range. The presence of harmonics in the supply voltage ultimately limits the dynamic range of the PDMS. That is, partial discharges must appear larger than the sinusoidal harmonics in order to be observed.

B. Absolute Value Circuit

The partial discharge measurement system as it is now designed, measures the discharge magnitude and ignores the polarity of the discharge. The system could be easily modified to keep track of the discharge polarity. It would, however, necessitate a redesign of the peak and hold circuitry.

FIGURE A-2 Circuit for reducing $60-\mathrm{Hz}$ common-mode voltage.

FIGURE A-3 Differential pulse amplifier.

FIGURE A-4 Wide-band FET preamplifier.

The present system requires an absolute value circuit, Fig. A-5, to convert the bipolar pulses to negative pulses suitable for the peak-and-hold circuit. This circuit is basically an ideal diode circuit and an adder-subtractor. For positive input pulses diode D_{1} conducts and D_{2} does not so that the voltage, V_{2}, is zero. The feedback variable resistor is adjusted so the output of the second operational amplifier is equal in magnitude but opposite in polarity to the positive input. For negative pulses, D_{2} conducts and D_{1} does not. The signal at V_{2} is a positive pulse of equal magnitude to the input. The output of the adder-subtractor is minus two times the positive pulse plus minus one times the negative pulse or a negative pulse of equal magnitude to the input pulse.

C. Peak and Hold Circuit

The peak and hold circuit shown in Fig. A-6 is designed for a negative input pulse whose magnitude is less than 5 volts and whose duration is from 1 to $3 \mu s$. The purpose of the circuit is to hold the peaks of the voltage pulses and provide a signal to the peak and hold control logic when the peak is above some selectable threshold values. After the voltage pulse has been processed by the analog to digital converter and the minicomputer, the peak and hold circuit is reset for the next measurement.

FIGURE A-6 Peak and hold circuit.

The basic peak and hold circuit consists of operational amplifiers A_{1}, A_{2}, and associated circuitry. With S_{1} and S_{2} open the circuit will follow the negative peaks. If e_{1} is less than e_{2} (and both less than zero), diode D_{1} will conduct thereby charging the 500 pF capacitor. If e_{1} is less negative than e_{2}, diode D_{1} will not conduct (and capacitor C will not discharge) but diode D_{2} will conduct so that a feedback path is provided and A_{1} will not lockup. A_{2} must have a large input impedance in order to prevent the 500 pF capacitor from discharging. Amplifier A_{3} provides a gain of 2 before the signal is sent to the analog to digital converter.

In order to prevent the system from being swamped by low-level noise signals a threshold circuit, A_{4}, is used. The reference potential is adjusted by a 20 -turn potentiometer. If the peak circuit is more negative than the threshold voltage the output of A_{4} swings positive. This causes the inverter output (7406) to go low which causes the output of the positive NAND buffer (7438) to go high. This signal, START i, indicates the presence of a partial discharge event of sufficient magnitude to be measured. START 1 is used by the peak and hold control logic (to be discussed below) to initiate the necessary chain of events for a discharge to be processed.

The peak and hold control logic, after allowing time for the discharge pulse to reach its peak value ($\sim 3 \mu s)$, sends a hold signal back to the peak and hold circuit. This signal closes S_{1} so that additional pulses cannot interfere. After the partial discharge has been processed
a RESET signal momentarily discharges the 500 pF capacitor, C , through switch S_{2}, which grounds e_{2} and causes START 1 to go low. The subsequent removal of the HOLD signal opens S_{1} and thereby enables the peak and hold circuit.

D. Peak and Hold Control Logic

The peak and hold control logic is shown in Fig. A-7 along with the various signal levels. Input X104 is connected to the computer's general reset signal and on computer turn-on this signal (a low-level pulse) initializes the peak and hold control logic.

When START 1 goes high (indicating a discharge of magnitude greater than the threshold) the output of the positive-NAND Schmitt-trigger (7413) goes low. This does two things. First of all a low-level pulse is outputted from \bar{Q} of the monostable multivibrator, M_{4}. This goes to the preset of the $J-K$ flip-flop, $J_{\mathcal{l}}$ which sets \bar{Q} low. This effectively causes the output of the positive-NAND Schmitt-trigger (7413) to return to the high state and stay there until the discharge pulse has been processed. Secondly it causes a high-level pulse to be outputted by Q of M_{1} with a $3 \mu \mathrm{~s}$ delay time to its trailing edge. This pulse does two things. First it causes the monostable multivibrator M_{5} to output a low-level pulse which goes to the preset of the $J-K$ flip-flop, J_{2}. This causes \bar{Q} of J_{2} to go low which raises the HOLD signal. Also the output pulse of M_{1} goes to M_{2} which causes a high-level pulse to be outputted by Q of M_{2} with a $1 \mu s$ width and subsequently a high-level pulse out of Q of M_{3} which results in a similar low level pulse at START 2 which goes to the analog-to-digital control logic circuit and starts the conversion process.

The hold signal stays high until a low-level pulse is returned on Y71 indicating that the data point has been read by the selector channel. This low-level pulse does several things. It causes a high-level pulse on RESET which partially enables the peak and hold circuit by zeroing the hold capacitor, C. The Y7l pulse also causes a high-level pulse at Q of M_{7}. Since the clear, preset, J, and K inputs of $J-K$ flip-flop J_{3} are high (by the $Y 71$ preset) the high level input clock pulse causes J_{3} to toggle or Q to go low. This causes a high level output pulse at Q of M_{8}. This pulse causes J-K flip-flop J_{2} to toggle which results in the input of M_{6} going low and the HOLD pulse going low. The removal of the HOLD signal opens switch S_{1} of Fig. A-6 and enables the peak and hold circuit. A high level pulse is outputted from Q of M_{6} which causes J_{7} to toggle thereby causing \bar{Q} to go high. This enables the next sizable pulse to trigger the 7413 positive-NAND.

E. Analog-to-Digital Control Logic Circuit

The control logic for the analog-to-digital converter is shown in Fig. A-8 along with the various signal levels. This circuitry is designed to give the analog-to-digital converter a suitable start signal, to notify the computer when the conversion is completed and data can be read, and to produce a signal level to indicate when the digital data has been read by the computer.

The low-level pulse, START 2, from the peak and hold control logic circuit causes a high level pulse to be outputted at Q of the retriggerable monostable multivibrator, M_{1}. This output pulse is suitable to start the analog-to-digital converter. After the conversion process is completed

FIGURE A-8 A/D converter control logic.
the analog to digital converter sends the trailing edge of the positive pulse, EOC to the $7476 \mathrm{~J}-\mathrm{K}$ flip-flop, J_{1}. The output of this flip flop, Q , is initially high because of the preset going low caused by the X104 clear pulse. The EOC pulse causes the flip flop to toggle resulting in Q of J_{1} and hence BUSY, (X118) going low. This tells the selector channel that data is ready to be read. If the computer is not busy the computer sends back the Y7l low-level pulse. This causes the flip-flop preset to again go low which causes J, K, and Q to go high. The Y 71 also causes a high-level DRG1 pulse which strobes in the data. BUSY is again high and stays there until the next data point has been converted. If the computer is busy (exchanging buffers, for example), the Y7l low-level pulse will not be returned until the computer is not busy and the data point can be read. This means that the data point will not be lost. However, the peak and hold control logic will also not be reset until it sees the Y 71 pulse so any additional discharges will not be measured. The Y 71 pulse functions to keep other data from entering the peak and hold circuitry (and hence the analog-to-digital converter) until the previous data point has been completely processed. A convert command can be simulated by the computer by sending to the interface board any output command. This causes a high-level pulse at X 103 which results in a low-level pulse at the A input of M_{1}.

F. Analog-to-Digital Converter

The analog-to-digital wiring diagram is shown in Fig. A-9. The converter used is a DATEL* ADC-NI2B2A with a conversion time of $4 \mu \mathrm{~s}$ for a 12 bit binary output. In order to achieve the fast conversion time, the converter uses the technique of successive approximations. After receiving the START pulse from the analog-to-digital control logic,

FIGURE A-9 Analog-to-digital converter interface circuit.
all the internal D/A switches are set to the off state except the most significant bit. The voltage level to be converted is compared to the analog equivalent of the most significant bit. If the voltage level is higher, the most significant bit is kept and if not, the bit is dropped. Next the voltage level is compared to the sum of the first choice and the second bit on. The process is completed at the rate of 220 ns per bit until all 12 bits have been determined. The EOC stays high until the conversion is completed. After the conversion is completed its trailing edge toggles the J_{1} flip-flop on the analog-to-digital control logic circuit.

The input range of this analog-to-digital converter is 0 to -10 volts. The output format is straight binary. The 12 parallel data lines are strobed to the computer by the Y71 low-level pulse which results in the DRG1 high-level pulse. The converter has both a zerooffset adjustment and a gain adjustment. The manufacturer claims a long term stability for the converter of $\pm 0.1 \%$ for six months and a linearity of $\pm 1 / 2$ least-significant-bit. The temperature coefficient is about $\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

II. Software

The software will be first described in very general terms and later in this report the details will be presented. The main challenge is to gather data as fast as possible, sort it, and display it. The program must allow user intervention but without sacrificing the data acquisition rate. There are three distinct parts of the software: the main routine, the utility routines, and the data collection routines.

The data collection routines run independently of the others (except for the starting and stopping of the data collection routines) and have priority over anything else in the system. They are interrupt driven, which means they get control when a collection of data has been completed (i.e., data buffer is full). They use a double buffering scheme to insure that data collection always continues. The data collection routines process the input data quickly (i.e., sort it by amplitude and add it to data already collected) and return to whatever else was going on at the time of the interrupt (Fig. A-10).

The main routine consists of a simple main loop which displays the processed data, pauses for a time, displays again and so on. If the operator presses the escape key on the terminal, this loop is broken and the routine will now accept operator commands. After the operator command is acted on, the display loop is begun again. Meanwhile, during all this, the data collection goes on.

The utility routines do the work for the main routine such as: starting and stopping the data collection, drawing the display, varying the oscilloscope screen brightness, displaying characters, controlling the channels to be displayed,etc.

The utility and data collection routines are written in Assembler and the main routine is in BASIC.

A. Timing Constraints Imposed by Software and Processor

The maximum average rate of the data collection is determined by the time it takes to sort the contents of a filled data buffer while

the other buffer is collecting data. In the interrupt service routine is found this loop:

LOOP LH R15, 0(11) Load Data Point
AHM R14, CHANL (R15) Increment Memory Location by One
BXLE 11, LOOP Loops for Entire Data Buffer.
These three instructions are executed once for each data point collected. The execution times for the three are $3.00+4.50+4.75$ or $12.25 \mu \mathrm{~s}$.

There are two other smaller effects:

1) For each buffer emptied, there is some overhead in setting up for the next buffer ($\sim 50 \mu \mathrm{~s}$). Typically there are at least 200 points in the filled buffer (user selectable) and each one's share in this overhead is consequently small.
2) While the interrupt service routine is running, the data collection is busily stealing memory access cycles, which can slow the processor.

Experimentally, the maximum average data acquisition rate is about 80,000 data points per second. The maximum burst rate (the rate that data can be properly handled for short periods of time) is 125,000 twelve-bit data points per second. The selector channel or direct-memory-access can transfer data points at a rate of 1 MHz . The limiting factor in bursts is the time taken for the peak and hold and the analog to digital circuits to cycle. Bursts of up to the number of points in the buffer can be properly handled.

Another timing constraint is the amount of dead time. After receipt of a partial-discharge pulse, the circuitry will not recognize a new pulse until after its $8 \mu s$ cycle time (the burst rate limitation). Also, whenever a data buffer is filled, the selector channel will be inactive for a time while the new data buffer is being initiated. If one pulse enters during that time, it will be correctly handled (the peak and hold circuitry does not reset until the point is read) but successive pulses would be lost. The selector channel is inactive during the following command sequence:

Immediate Interrupt	$8.00 \mu \mathrm{~s}$	Sent to interrupt service routines
STM 12, REGS+2	10.00	
LHI SELCH, SDA	1.50	
OC SELCH, SSTOP	4.50	Clear selector channel
RHR SELCH, RT3	4.75	Get ending address
OC SELCH, SSTOP	4.50	Clear selector channel
WH SELCH, ASOB	5.75	Send new address
WH SELCH, AEOB	5.75	
LHI AD, ADDA	1.50	
SSR AD, RI2	4.00	Access device
OC SELCH, SREAD	$\underline{4.50}$	Start selector channe1

In practice it is extremely rare that the partial discharge rate is so fast that data points are lost. There is usually a considerable amount of time during a 60 -hertz cycle when partial discharge pulses are not being generated. For example, there are usually no discharges near the voltage zeroes except in the cases of discharge caused by poor contact.

The selector channel (or direct-memory-access) used for data input can transfer data to memory at up to 2 megabytes/s. (One byte is equal to 8 bits). The selector channel has two registers: current address and final address. The selector channel attempts to raise an interrupt when it has filled the final address.

While the selector channel is filling up one buffer, A, with new data, the other buffer, B, is being processed. For each data point in buffer B, the appropriate channel in the display buffer is incremented by one. The interrupt from the selector channel will not be raised until buffer B is done being processed. If buffer B is still being processed when the selector channel has finished filling buffer A, new data may be lost and the message "Possible Lost Data" will be printed on the system console when there is time. If buffer B is done being processed when the selector channel interrupt is raised, the two buffers are quickly interchanged ($\sim 55 \mu \mathrm{~s}$) and data collection continues. As mentioned above it is extremely rare in practice that the data sorting cannot keep up with the data collecting.

Once the selector channel interrupt has been handled, the control will revert to the main program which will keep displaying the updated data on the oscilloscope. If there is channel overflow (> 32,767 counts in a channel), data collection will be halted. No information is lost; the data can be outputted to a floppy diskette and the experiment started over again.

B. Operator Commands

The operator commands allow user interaction with the partial discharge measurement system. They are entered by hitting the "escape key" and then at least the first two letters of the appropriate command. The escape key causes an error which temporarily breaks the loop in the BASIC main routine. The command is then read and if necessary the
appropriate utility routine is called to execute the command. If the data collection rate is high, the system will temporarily ignore the new operator command since the data collection has top interrupt priority. All commands will be executed, however, when there is sufficient free time. Listed below are the current operator commands and what they explicitly do. New commands can easily be added.

OPERATOR COMMAND LIST

GO - Begins the collection of data
COUNT - Prints the total number of data points collected
HALT - Stops the collection of data
RESUME - Continues a run after HALT
END - Ends a run, writes data to floppy diskette
ABORT - Stops a run
SELECT [N, M] - Display channel N to M, if no operand writes on system console the N and M in use

PRINT N,M - Prints on the system console all the nonzero channeis and their contents from N to M

TOGGLE - Toggles data collection buffers (i.e., forces buffers A and B to interchange thereby allowing the display of a non-filled buffer)

BASIC - Stops main routine and returns to BASIC compiler BUFFERSIZE [N] - Sets buffersize to N, if no operand prints buffersize currently in use (500 is the default size)

BRIGHT - Intensifies display
LOW - Dims display
DISPLAY - Displays a standard test pattern for adjusting the oscilloscope

DVM - For testing the analog to digital converter, +5 volts in series with $1 \mathrm{k} \Omega$ required on "start", 0--10 Vdc required on "data", reading displayed on minicomputer front panel meter in hexadecimal

INFO [N] - Writes information (run number, calibration, channels being displayed) on screen in quadrant N. If no operand, writes in first quadrant

NOINFO - Removes information from screen

C. Detailed Software Description

The software was specifically written for an Interdata* 7/16 minicomputer. The detailed software presentation that follows should enable the software to be modified for other machines.

1. BASIC Main Routine

This routine has three main functions:
a) Waste time by executing the loop:

FOR I=1 TO DT
NEXT I
where DI is currently set for 700 (statements $90,800,810$).
b) Update the display, if data collection is going on (statements 620-850).
c) Handle commands from the operator.

If the operator hits the "escape" key on the system console, an "ES" BASIC error results (statements $20,1140,1150$) which causes a transfer due to the ON ERROR TO statement. Then an operator command is read, and a transfer is made to the appropriate section (1250-1590). If

（1） $\mathrm{E} \$(2)$ $=0 \mathrm{TO} \mathrm{N}+5$

cuis

－ \simeq 20
21
22
\＄＝＂RUN 〈35〉＂+ STR\＄（NS）
CALL 1001，A\＄，X，Y，X1，Y1，II $=Y-13 * Y 1$ F SE：－0 GOTO 760
$=180$ 水S $1 * S 5$
$58=100 * * S 2 * 55$
＝＂RANGE＂＋STR\＄（S7）＋＂－n＋STR\＄（S8）＋＂PC＂
CALL 1001，A $\$, X, Y, X 1, Y 1, I 1$
$=Y-13 * Y 1$
AS＝＂CHANMELS $"+S T R \$(S 1)+n-n+S T R \(52)
CALL 1001，A $\$, X, Y, X 1, Y 1, I 1$
CALL 1008．S1．S2，II
CALI 1005
$I=1$ TO D 1

1590

ERRORS FROM ASSEMBLER ROUTINES
：COLLELT MORE DATA？（Y OR N）？＂
IMPUT Q世 INPUT Q世
IF QSa＂Y＂
$=1$
$3=A$
$5=A$
RR\$(0) : "ERROR, LINE":ERL(0)

ㅁ．뭉
를
岩
론
＂data collection resumed＂

IF 03＜＞2 GOTO 1600

TH COLLECTION BEGUN＂
\square

岦

2210 $1!=1$

\sum_{a}

[^0]TO N STEP G．
（U）USING $L 5, D(I), D(I+1), D(I+2), D(I+3), D(I+4), D(I+5)$ － －틀․

吴䍐甯署心品

the command is invalid, a message is printed and the routine returns to the main loop (1600-1610). This escape strategy rules out using GOSUB and RETURN because an escape could interrupt execution in the middle of a subroutine and there would be no way to know where to return.

The commands are broken up into a two-character variable, C\$ (being the first two letters of the command), a variable telling the number of operands (03), and the operands (01 and 02) if present. The commands are straightforward, execution typically being accomplished by calls to a utility routine. A flag variable, S, tells whether data collection is going on. If no data are being collected, the display is not continually updated.

The END command causes the collected data to be written to a floppy diskette. The run number, sensitivity, and the contents of the 1023 channels are outputted. The run number and sensitivity are written on the first two records in an El0.4 format. The channels are written, 6 per record, in a (5(E10.4, IX), E10.4) format. Each diskette track contains 16 sectors or 288 channels (3 records per sector) so that an entire run can be stored on 4 tracks. This implies that seventeen runs could be stored on each side of a diskette. The current format is chosen because each number has exactly one space between it and its neighbor and no spaces occur at the end of a line, so BASIC can read the file. It is also a fixed field format (the numbers always fall in the same columns) so FORTRAN can read the file.

If a data-related error is detected, a message is printed (statements 590, 870-950). Data collection is not halted on a selector channel error or a lost data error. For a channel overflow error data collection is halted. The main routine then asks whether the data collected should be saved. If so, the data are added into the data previously collected (if any). Therefore, on channel overflow no information is lost -- not even from the channel which overflowed (statements 950-1070).

The return to the BASIC host environment, either due to the operator command "BASIC" or because the operator responded "no" when asked if the output device is ready, is accomplished by causing an undefined function error (statements 20, 30, 1180, 1520, 2070, 2410, 2420, 2720). The next statement to be executed is found by adding 10 to the line number of the statement which caused the error. This number is stored, variable R, and a stop issued. The operator continues operation with a "RUN 20", which reinstates the "ON ERROR GO TO" statement (which is killed by the "STOP") and branches to statement number R.
2. Data Collection Routines (statements 94-161 of Assembler Language Listing

Upon selector channel interrupt, control is transferred to this routine by way of the immediate interrupt sequence. Three steps occur in this transfer: (1) the old Program Status Word (PSW) is saved at location ISR, (2) the new PSW status part is loaded from ISR+4 (X ' 2000 ' is loaded), and (3) the location counter is set to ISR $\div 6$ (at the start of the program). The new PSW has locked out all interrupts except
machine malfunction. This does not mean interrupts occurring during this time will be lost; they are just not acknowledged. When a normal PSW status is restored any pending interrupts will occur. When this routine is running nothing (except a machine malfunction) will interrupt it.

The ISR or data collection routine has two specific duties. The first is to restart the selector channel on a new buffer as quickly as possible. A double buffer technique is used where one buffer is given to the selector channel to fill while the other one is being processed. When the one is filled, their roles are exchanged. The error checking and actual buffer exchange are postponed until the selector channel is restarted. The ending address of the selector channel is read and compared to the expected ending address. If they do not agree, some selector channel error has occurred.

The second duty is to process the data buffer just filled by the selector channel. The selector has read numbers off the analog-to-digital converter in the range $0-4095$ (12-bit converter). This number is used directly as an index into the channel array. The channels array is 2048 halfwords (4096 bytes) long. (On the Interdata machine an address which is not on a halfword boundary is truncated to be on a halfword boundary thereby effectively compacting the data. Each halfword location thus indexed is incremented by one):

The routine senses two error conditions. The selector channel error occurs when the address of the selector channel stopping point is different from that expected indicating a premature halt. Variable SFLAG is set on
this error. The possible lost data error occurs when the selector channel has finished collecting a new buffer of data before the old buffer has been processed. This condition is detected in the following way. Suppose the selector channel has finished during processing (it will not interrupt the processing because interrupts are disabled). As soon as the interrupts are enabled it will interrupt. During this time span it is inactive and data would be lost. So if the processing routine is ever re-entered with a return address of the last statement of the processing routine then this situation has occurred and variable LOST is set on this error. "POSSIBLE LOST DATA" usually means too high a rate of input data. Increasing the buffer size thereby decreasing the dead time could help if the rate is only slightly too high. Having the buffer size too large, however, results in long waits before collected data is displayed. Note that it is not desirable to print an error message at the time this error occurs because then is precisely when all activity should be directed towards collecting and processing data.

3. Utility Routines

There are a number of utility routines. Some are executed using calls from BASIC. Others are used in the execution of different routines.
a. Name: DVM

Calling Sequence: CALL 1002
Operands: None
Purpose: To check the A-to-D (analog-to-digital) converter.

Each call to this routine causes an output command to be sent to the $A-t o-D$ board triggering a conversion then reading the converted value and displaying it on the hexadecimal display panel.

The start input (see hardware section) must have +5 volts in series with $1 \mathrm{k} \Omega$ placed on it. The data input should have a dc level from 0 to -10 volts. The 10 most significant bits of the $A-t o-D$ are displayed giving numbers from 0 to 1023 but in hexadecimal ($0-3 F F$).
b. Name: STRT

Calling Sequence: CALL 1020, N, B1(0), B2(0)
Operands: N is the number of halfwords in each buffer (each array element in BASIC consists of 2 halfwords) $B 1$ and B2 are arrays to be used as buffers, each N halfwords long. These are the input buffers used in the double buffering scheme. (Zero indexing is suggested for $B 1$ and $B 2$ so that the case $N=1$ will be handled without a problem).

Purpose: To begin data collection.

This routine sets up the interrupt service table to handle interrupts from the selector channel. The operating system has set bits 1 and 4 of the PSW, so when an interrupt occurs, it is handled as an immediate interrupt. That is, an interrupt causes the processor to send out an acknowledge interrupt signal. The first device (often the only device) on the interrupt chain which is in an interrupt state responds by giving its device number. The processor takes this number and uses it as an
index into the interrupt service table, retrieving from the table the address of the interrupt service routine for that device. The routine sets up an entry in the table so that a selector channel interrupt will be sent to routine "ISR".

This routine also zeros out the channels (CHANL) where the collected data is accumulated, stores the addresses of the starting and ending points of the two buffers (ASFB, AEFB, ASOB, AEOB), and calls routine "RESUME" which starts the selector channel.
c. Name: RESUME

Calling Sequence: CALL 1022
Operands: None
Purpose: To start the selector channel, used in commands GO and RESUME.

This routine sets the A-to-D board to halfword mode, initializes the A-to-D logic with a READ, and starts the selector channel. It locks out interrupts for a time using an exchange program status command. This is necessary because the selector channel accesses the device last addressed on the private bus before the selector channel was started. If another device interrupted at the wrong time, the selector channel would be reading from that device instead of the A-to-D board.
d. Name: CLOSER

Calling Sequence: Set RESTART to 0 or 1
BAL 14, CLOSER

Operands: None
Purpose: To stop the selector in the middle of a buffer, and possibly to restart it, used in HALT, TOGGLE, END, ABORT. Conmand affected variables: CHANL, ASFB, ASOB, AEFB, AEOB.

If RESTART $=0$, the selector channel is not restarted. The code is similar to the interrupt service routine (ISR). Interrupts are shut out with an exchange program status command. Only the part of the buffer filled is processed into the channels. Note that this routine clears the interrupt caused by halting the selector channel.

If the selector channel is already stopped, this routine does nothing.
e. Name: HALT

Calling Sequence: CALL 1021
Operands: None
Purpose: To halt data collection
Affected Variables: RESTART.

This routine makes a call to routine CLOSER with RESTART set to 0 . The selector channel is not restarted.
f. Name: TOGGLE

Calling Sequence: CALL 1023
Operands: None
Purpose: To halt data collection and resume it immediately, this is to cause processing of data collected in a buffer that has not yet filled.

This routine makes a call to routine CLOSER with RESTART set equal to 1.
g. Name: DATA

Calling Sequence: CALL $1024 \mathrm{C}(0)$
Operands: C is an array dimensioned C(1023) into which the channel counts will be placed. The channels are stored internally in array CHANL in I*2 form (halfword integer). They are converted to $R * 4$ (fullword real numbers).

Purpose: To make the channels available to the BASIC main routine for calculations or printing.

This routine takes each adjacent pair of the 2048 channels, sums them and converts the sums to real numbers giving 1024 actual channels. Negative numbers are treated as large positive numbers permitting channel overflow to occur without any information being lost.
h. Name: ERROR

Calling Sequence: CALL 1026,E
Operands: E-Error code, will be set to:
0 - no error,
1 - error on selector channel,
2 - possibility of lost data,
3 - channel overflow.
Purpose: To communicate errors raised to the main program.
Affected Variables: LOST, OVER, SFLAG

This routine checks the error flags LOST, OVER, and SFLAG (in that order) to see if those flags have been raised. After setting E to reflect an error, the error flag involved is cleared.
i. Name: PLOTR and PLOTI

Calling Sequence: CALL 1003, X, Y, I or BAL 14, PLOTI

Operands: X and Y - the X and Y values in the range -2047 to 2047, I - the intensity (1-dim, 2-off, 3-bright).

Purpose: To plot an X and Y pair.
Affected Variables: MANY, BLOCK

PLOTR is for a call from BASIC with real number arguments. PLOTI is for calls from other Assembler routines. Return register for both is register 14 and register 15 points at the parameter address list.

This routine converts the numbers into numbers suitable for the dual D-to-A (which outputs to an oscilloscope display) and sets them into a buffer. If the buffer is filled, it is automatically dumped by a CALL 1005 or CALL 1006 to be displayed. If an X value is repeated from point to point, the X being unnecessary, is left out the second time.
j:. Name: DUMP and LOOK
Calling Sequence: CALL 1005 for DUMP
CALL 1006 for LOOK
Operands: None.
Purpose: To dump the plot buffer to the display, DUMP resets the buffer to be empty and LOOK does not.

This routine does the actual plotting. The sequence is as follows: turn on the bus,
set the mode of the dual D to A, set the memory to sequential mode, write the plot buffer to memory, set the memory to external mode (to continously sweep through memory to the D to $A)$.

Most of these operations are done with supervisor calls available in the Interdata* operating system.
k. Name: SIDES

Calling Sequence: CALL 1007,P(1),N
Operands: P - an array of Y values to be plotted on the left side of the display as a reference, N - the dimension of P, N less than 50 .

Purpose: To set up the margin display.
Affected Variables: SIDE, NSIDE

This routine is necessary only because the main histogram drawing routine is written in Assembler. This routine takes a list of Y values, converts them from $R * 4$ as they are in BASIC to $I * 2$ and stores them.
.1. Name: SLAP
Calling Sequence: CALL 1008, S1, S2, I
Operands: S1 - the starting channel to be plotted,
S2 - the ending channel to be plotted, I - the intensity (1-dim, 2-off, 3-bright).

Purpose: To plot the histogram of the channels.
Affected Variables: OVER

This routine makes a quick copy of the channels which is necessary since they are constantly changing. It then scales the histogram to fit on the display using variable LEFT (the direction of the shift) and CONS (the magnitude of the shift). The channel with the largest count in the range of channels S1 and S2 will be scaled to be in the upper half of the display (unless all channels are empty).

The margin display undergoes the same scaling as the main display. If a margin point winds up off screen, it is simply not plotted.

This routine can raise the error "CHANNEL OVERFLOW". Suppose during the data accumulation, more points (> 32767) than an I *2 variable can hold are collected in one channel. This is no real problem for the addition hardware treats an I*2 variable as if it were unsigned (e.g., $7 \mathrm{FFF}_{16}\left[32767_{10}\right]+1=8000_{16}\left[32768_{10}\right]$ and so on). The other instructions will recognize $8^{8000} 16$ as a negative number (the sign bit is on). This is the way an overflow condition is detected. No information is lost if we treat this number as unsigned. However, once overflow has occurred, data collection should be halted. Channel overflow indicates either to much data or, a dc input to the $A-t o-D$, or positive pulses. Channel overflow
is not checked during data collection because too much time would be wasted. This routine would be better written in a higher language if floating point hardware were available. It is in Assembler to take advantage of the shift instructions which provide a very fast way of multiplying and dividing by powers of two.
m. Name: MFIX

Calling Sequence: BAL 15,MFIX
Operands: Floating point register 0 contains the input and register 0 contains the output.

Purpose: This routine converts a $R * 4$ number to $I * 2$, numbers in the range -32767 to 32767 are converted correctly.

This routine uses the method of adding an unnormalized zero to the number which yields an unnormalized result. The $I * 2$ equivalent is the least significant 4 bytes.

Consider floating point 2:
41200000.

Add 46000000 (unnormalized zero), result is:
46000002.

This is still floating point but unnormalized. The second half can be picked off as fixed point 2. Negative numbers will have their two's complement taken.
n. Name: MFLOAT

Calling Sequence: BAL 15, MFLOAT
Operands: Register 0 contains the input, floating point
register 0 contains the output.
Purpose: To convert an I*2 number to $R * 4$.

This routine uses the method of creating an unnormalized number.

Consider fixed point 2:
0002.

If the halfword 4600 is placed in front of it, the number becomes:
46000002
which is floating point two unnormalized. The LE command (load floating point) automatically normalizes the number. Negative numbers are complemented and the sign bit set. Both MFIX and MFLOAT are faster than the corresponding FORTRAN routines.
o. Name: WRITE

Calling Sequence: CALL $1001, N \$, X, Y, X 1, X 2, I$
Operands: N\$-- character string to be written,
X and Y-- the X and Y location of where to begin the string in the range -2047 to 2047, $\mathrm{X1}$ and Y1-- the spacing between dots in the letters in the X and Y directions, this determines the size and proportion of the letters, and I-- the intensity (1-dim, 2-off, 3-bright).

Purpose: To write characters on the screen.

\sim

$\underset{\sim}{\sim} N$

squez passes 1111 Mbilvinilltud

＊II IS THE HIIIUER OF HOLFIJORDS IN EACII BUFFER ＊BI \＆日？hRE ARRAYS．TO BE USED AS BUFFERS．
＊EACH in lIALFHORDS LONG
＊（a REnl ！ilmber is usunlly 2 holflords）
＊THE ROUTINE ZEROS THE CIINHMELS

$\begin{array}{ll}\text { EOU } & 9 \\ \text { EDU } & 10 \\ \text { EOU } & 8\end{array}$
dコ＇0 ヨLS
（SI） 0 O 117
总

＊TIIS RUUTIIIE RESUIES DATA COLLECTIOH KCCLLL IS OF THE FORH CALL 1022 R2． K $^{\prime} 2000^{\prime}$
R3．R2
SELCI．，SSTOP
SD．HIIF
sTOP SELCH
TELL INTEPFACE THIS IS IALUURD TYPE GIVE STARTING AHD ENDING ADDRESSES READ TO IHITIALIZE DEVICE START SELCII
RETURN TO COLLER

10ABR	D000	10日2R
IOACR	COFE	ODFO
10BOR	CBEO	008C
IOBAR	C820	2000
10日GR	$\underline{9} 932$	
IOBnR	DEFG	IIBFR
10日ER	DEEO	I IDER
IGC2R	DEFE	g日大ar
IOCGR	DBFO	O日TCR
10CNR	99E5	
IOCCR	DEFO	II90R
10DOR	9523	
IGDER	D100	IGB2R
10DGR	030E	

＊IITERRUPT SERVICE ROUTIME FOR SELCI
＊PROCESSIIIG DOHE WITH IHTERRLIPTS DISNBLE
WWISII TO FIHISII DATN PROCESSIHG EEFORE USING NEW DRTA OLD PSU NDDRESS PART STORE REGS 12－15
INTERRUPTS DISABLE CLEAR SELCH FOR COMMAMDS
CLEAR SELCH FOR COMMANDS
SEHD STARTIHG AHD
EHDIHG ADDRESSES
LOAD A TO D DEVICE ADDRESS
TO ADDRESS DEVICE
START SELCH

DID IT STOP AT END？

SET ERROR FLOG
RETURH TO INTERRUPTEE
check if we came from continue set lost data flag
store ruay callers psw
CLEAR SELCH FOR COMMANDS
CLEAR SELCH FOR COMMANDS
SEHD STARTING AMD
EHDING ADDRESSES
LOAD A TO D DEVICE ADDRESS
TO ADDRESS DEVICE
START SELCH
DID IT STOP AT END？
SET ERROR FLAG
RETURH TO INTERRUPTEE
CHECK IF WE CAME FROII CONTINUE
SET LOST DATA FLAG
STORE AUAY CALLERS PSW

	0800	D09\％
	0000	0日gD
	0000	h⿴囗口⿺卜丿
	0000	ODDE
IOD日R		
	0000	IODAR
10DCR	2000	
lader	DOCE	$1186 R$
IUE2R	C日FB	D日Fo
10EGR	DEFG	1 I日FR
IOEIR	99FD	
IGECR	DEFO	$118 F R$
1日F日R	DBFO	gover
1OF 4 R	DAFE	0080R
10FER	CEEO	日为
10FCR	9DEC	
10FER	DEFG	I 190R
1102 R	4000	118AR
11068	49 DO	007CR
l10日R	4330	111日R
$110 E R$	2421	
11108	409	IİER
11142	C200	10DER
1118 R	48 C 0	10DAR
$111 C R$	49 CO	1176R
11208	4230	1130 R
1124 R	COCO	0001
112日R	40C0	II7CR
112 CR	4300	113CR
1130 R	40C0	1182R
1134 R	$48 C 0$	10DER
1138 P	40С0	$1180 R$
113 CR	4880	O日大NR
1140 R	48 Ca	g日大ER
11448	4080	OOTER
1148R	40C0	ט日大刀R
$114 C R$	4800	007CR
1150 R	IECG	0080R
1154 R	40D0	goger
1158 ？	40Ca	B07CR

LOAD INCREMENT FOR BXLE
LOAD DATA POIMT
IHCREMENT MEM LOCOTION
BRAMCII TO CONTIHUE，EHADLE INTERRUPTS
RETURN TO COLLER

品去

SHUT OUT INTERRUPTS
SEE IF SELCH IS BUSY
IF HOT BUSY，DO MOTHING
FIHD OUT UHETHER TO RESTART
STOP SELCH
REND FIHISHIHG NDDRESS
RESET SELC．I
STOP SELCH
READ FINISHING ADDRESS
CLEAR SELCH FOR COHIIANDS
ADDRESS DEVICE，RESTART
START SELCH
ACKHOLLEDGE IHTERRUPT
HO DEVICE？
HOTE WE CLEAR ALL INTERRUPTS
NOTE WE CLEAR ALL INTERRUPTS
SELCH．SSTOP
 Sy ヨyjne

1192 R	D000	12
1196 R	CEF	D日F0
119 AR	CBED	000C
l19ER	C月2．	2000
11n2R	9532	
11 A 4 P	9DF5	
11 AGR	4380	$121 E$
11AnR	4850	1246R
11nep！	4230	1 ICOR
1132R	DEFB	118FR
1186R	99F0	
118日R	DEFB	11日FR
11BCR	4300	11 DER
11 COR	DEFG	119FR
11C4R	99F0	
11CGR	DE：「0	IIEFR
1 ICAR	DEFO	D07ER
llCER	DGFE	G080R
11D2R	99EC	
11DaR	DEFG	R
11 DBR	9F4． 4	
11 DAR	0844	
110 CR	4230	11D日R
1 IEOR	49 DO	O日TCR
IIEAR	48 Ca	日0日0R
IIE日R	40D0	ge日or
11ECR	40C0	日日TCR
IIFOR	4880	G日FAR
11F4R	48 CO	G日VER
$11 F 8 \mathrm{R}$	4080	gover
11FCR	40C0	g日FAR
1200R	2701	
1202R	C60日	0001
1206R	08D日	
1208R	0980	
120AP	4380	I2IER
120ER	24.2	
12108	24E1	
1212R	48FB	0000
1216R	615	0日ger

12INR CIBO 1212R
N
N
N
答菏宸
E
气

900 125CR

I276R	D090	125CR
1200R	2421	
1292R	1020	12468
I206R	41E0	1192P
I 200 P	DIFO	125CR
I20ER	Q3OE	

12901	D000	12日2R
1294R	CEEO	008C
1298R	2401	
1290R	DFEO	1280R
I29ER	DEEG	I Iber
I2n2R	99E3	
12A4R	90.32	
12nGR	9433	
12A日r	9003	
İAAR	D100	12B2R
I2AER	030E	
I2B0R	80	
12B2R		

I-ERRDR ON SELECTOR CHAHHEL 2-PUSSI日ILITY DF DATA LOSS

* 3-CHIHIHEL OVERFLOU
*ERROR COHDITIDNS ARE
*ERROR COHDITIONS ARE CLEARED
 STURE REGISTERS
LOND PARAIIETER ADDRESSES
IHITIALLY SET TO 0 IHITIALLY SET TO O RESET RESET RESET RETURN

		Pn 15	
SLOOP	AlIR	P2．R2	INDEX FOR CIIAHIIELS
	1.11	R4．CHANI．（R2）	COPY
	OII	RA．CIIAHL +2 （R2）	SUH1 ADJACENT CHAHMELS
	A 15	R2． 4	
	STII	RA．COPY（R5）	
	BSLE	5．SLOOP	
\＃SET UP FOF PLOT			
XV	EOIJ	2	
YV	EOU	3	
PL	LIS	PO． 0	RESET FLAG
	STII	RG．PIMLF	
	5 TH	PO，BUHIPS	
	LIII	R15．PI	LDAD ADDRESS FOR CALL
	LHIR	R5，51	STARTING FOR BXLE
	L＿11P	R．7．52	EHDIHG
	LIIP	SiV．Sistart	
SPL00P	STH	XV，XVAL	TAKE CARE OF x
	AIIR	SV．XIHC	
	LH	YV．COPY（R5）	LOAD TIIE Y VALUE
	BII	CRASH	CHECK FOR OVEP．FLOW OF A CHANINEL
MORE	A2．	SCOLE	
	L15	RG． 1	UILL SET FLAG IF UE GET A NON ZERO VALU
	STH	R0．BUMPS	TO TELL IF WE HIfVE THE ZERO FUNCTION
＊SCALE THE YVALUES			
Scale	LII	R1，COHS	
	LH	Pb．LEFT	CHECK IF UE＇RE SIIIFTING LEFT
	OH2	SL	
SR	SRIA	YV．0（RI）	
	B	日UZZ	
GL	SLIHA	YV．0（R1）	
BUZZ ＊CHECK	AHI	YV．LEASTY＋MARGINY	
	FOR T00	漚	
	CHI	YV．MOSTY－MARG INY	
	DL	LITTLE	
	LH	RO．LEFT	CHECK IF WE＇RE SHIFTING LEFT
	BNZ	DEC	YES，IIAKE IT SIIIFT LESS
	\square	IIIC	NO，SHIFTING RIGHT，MAKE IT SHIFT MORE
＊CHECK LITILE	IF AtIY	MAKE IT OVER HALFWAY	（SOME SHOLILD）
	LIII	YV．HOSTY＋LEASTY／Z	
	日L	HOPE	
	LIS	PO． 1	SET FLAG．WE＇RE FINE
	STH	RO．PHALF	
＊ACTIJAL PLOT			
NOPE	STII	YV．YVAL	
	Bnt	P14．PLOTI	
	BXLE	P．5．SPI．00P	
＊POST 1	HOR TEII．	CHECK IF ANY BIG ENOU PO．PIAALF	
	明2	dol Parg	
	1.11	R0．日UTPG	MONE WERE 日IG ENOUGII．BUT
		128	

	$$		$\begin{aligned} & \stackrel{N}{N} \\ & \underset{N}{N} \end{aligned}$		$\begin{aligned} & \frac{10}{N 1} \\ & \underline{0} \end{aligned}$			$\begin{aligned} & \text { 드N } \\ & \stackrel{\text { N }}{N} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\stackrel{\sim}{\approx}$ NO	
	$\begin{aligned} & \text { © } 0 . \\ & \text { 念 } \\ & \text { B } \end{aligned}$							$\begin{aligned} & \stackrel{\rightharpoonup}{心} \stackrel{0}{0} \\ & \underset{y}{\sim} \end{aligned}$		$\begin{aligned} & \text { 튼 튼 } \\ & \text { 븐 } \end{aligned}$	
		$\underset{\sim}{V}$						$\begin{aligned} & \text { 二总 } \\ & \text { n } \end{aligned}$			

[^1]dumarg
3111
て「Sà
RS．IISIDE
RSLID
RSLR
RO．LERSTX
ROMEML
PO． XVAL
RI5．PI
R3．5IDE－
R1．COIIS RG．LEFT
（1d）0．Ea HOP

0•ट㐅
R2．0（RI）
R2．R2
dIMS
£ป・モ．
d） 15
SNI 9\＆

SKIP
立

三山品
9．RID日R
O．FID日者
RETUPII
돌
． $1: 12 . x$ cus
RO．OVER
HORE 14．HALT RO．I RQ．OVER
MORE

 LHI
LH
BHZ
BAL
LIS
$5 T H$
B

믈

$$
\begin{aligned}
& \text { FIHCREMENT S } \\
& \text { IMC }
\end{aligned}
$$

萦
 CRASH

路
＊OVERFL

TURH OFF LEFT SHIFT KILL PLOT DUFFER TURN ON LEFT SHIFT

START OVER
TURH OFF LEFT SHIFT
KILL PLOT DUFFER
TURN ON LEFT SHIFT
DEC
MCDRASTIC
FLIP
COINCEL
IGOI
PI

录气
162BR
訔恙
采营

$$
\begin{aligned}
& \stackrel{8}{\sim} \\
& \text { ํㅜㄹ } \\
& \stackrel{\unrhd}{\sim}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\Phi \\
\frac{U}{E} \\
E
\end{array}
\end{aligned}
$$

[^2]

い入入

 IS OF TIIE FORM CNLI 1003，X, Y, I
THE ROUTIHE IINS ENTRIES FOR R＊4 ARGUMENTS（OS FROM n NORIMAL

$\begin{array}{ll}\text { EOU } & 8 \\ \text { EOU } & 9 \\ \text { EOU } & 10\end{array}$
4096
STORE REGISTERS
LOAD PRRRIIETER ADDRESSES
COMVERT X
CONVERT Y
CONVERT IHTENSITY
CONVERT MTMENSITY
STORE REGISTERS
LOAD PORAMETER ADDRESSES
LOAD VALUES
Two＇s COMPLEMENT
IfAKE SURE
$\begin{array}{ll}\text { EOU } & 8 \\ \text { EOU } & 9 \\ \text { EOU } & 10\end{array}$
至说密空

＊ 1 IS THE IHTEMSITY
$\begin{array}{ll}* \\ * \\ * & \text { 20AFF（VERY BORIMG）} \\ 3=\operatorname{BRIGIIT}\end{array}$

＊．VILUES OUTSIDE THIS ROHGE GIVE BIZARRE RESULTS
 EOU
\exists UIU0

\begin{abstract}
IHTENSITY INTO FIRST HIBBLE
MNFK AS A Y POINT
INCREMENT COUHT
DOUBLE
INCREMENT COUNT

OASCR	069A	
U05ER	C690	4020
Q062R	4980	00C2R
00G6R	4330	OUTER
006nR	4000	O日C2R
G06ER	4850	nocar
OOP2R	2651	
007 dR	4050	OOCAR
0日7日R	9151	
GQ7AR	4085	OOC6R
OOTER	4850	gocar
00日2R	2651	
008．1R	4050	OOC．AR
O0日日R	9151	
O日GAR	4095	OOCGR
O日BER	C050	OFFF
O092R	1950	BOCAR
0096R	2123	
0090R	41E0	20CBR
OOMCR	D100	00n2R
Ooner	030E	
DOn2R		
00C2R	FFFF	
OUCAR	0000	
OOCGR	0006	
OOCER		

STORE REGISTERS
GET COUMT

> POSSIBLE
> SET UP FOR DIVIDE

SIIDIID POINT OF BUFFER
STIRTING POINT OF BUFFER
EIDDIHD POIHT OF BUFFER
STAPTING POINT OF REPLICATION ENDING POINT OF PEPLICATION
AT EHD OF REPLICATION？

> LOAD \cap POINT
COPY IT
> INCREMENT COUNTER
AT EUD OF BUFFER？

INCREMENT COUNT

G711」 E

	0000	0004
	0000	0008
	0000	0006
20CBR	D000	$2198 R$
20CCR	10100	O日C4R
20DAR	033E	
20D2R	24ED	
20D4R	C19E0	OBCAR
$20 D 12$	1300	20E6R
200CR	D000	$21 A B R$
SUEOR	d 1950	nocar
20EAR	O33E	
20EGR	GAFF	
20E8R	CBEQ	2000
20ECR	2ACb	
2日EER	OBDE	
2日F0p	ODCF	
20F2R	OCCF ${ }^{-}$	
20F4P	cbco	日⿹C日R
20FER	cato	日日cer
2GFCR	CAFO	OUCBR
21008	CODA	HECER
2104 R	09FD	
210 GR	4300	$211 A R$
2109 R	48BC	0000
$210 E R$	40日F	0000
2112R	26С2	
2114R	26F2	
2116R	43015	$2104 R$
$2119 R$	2100	
211CR	O9DE	
$2115 R$	4300	212CR
2122R	40BD	0000
2126R	26102	
2120R	4300	21148
212CR	Ello	2176R
2130 R	El10	217 AR
213．1R	EllO	217ER
2138 R	Ello	$2189 R$

GELECT MEMORY COMMAND SUBADDRESS SELECT TIIE SUBADDPESS COUNTER SELECT THE MEMORY SUBADDRESS SELECT SUMODDRESS IIDDE

IF 日USY．WAIT WRITE AN ELEMENT

SE

＊THIS 日LOCK URITE SHOULD BE UNDER SVC UNDER SVC．
 HBSBUS EOU K＇BD＇
15．H850us
15．15．IE
15，54日
RIA．START
R15．P13
$0.6 n 1 T$
R15．0（R14）
1．4．5T0P
LUATT

1．MCOM

1．1160
05
Hanlay＊
no manle
UAIT

213CR E110 21日CR

X＇0日77＇$\quad 77$ ARBITRARY

00101000
$n(O N), A(O N+1)$
BLOCKS

Q．R1095

PETURH
00101001 n75net．0016． 6
11
00101000
$E R$ BL
DC
DS
DC
DS
DC
DS
DC
む気号出に
＊RETURN
n（MOW），$n($ MONH－1）
＊PARAMETER
UP DC UP
COM
nc．T
듬 厤

$\frac{\pi}{2}$

$\begin{array}{ll}\text { 21G日R } & \text { E110 } 2188 R \\ \text { 21GCR } & \text { E110 } 2198 R\end{array}$
$2170 R$ DIOO 2 IABR
$217 \cdot I R ~ O 31 H E$
罤 㩊

罥 号 号

OSI2E： $2+1+$ BLOCK
$16 \quad 138$
$X^{\prime} \theta 002^{\prime}$
$X^{\prime} 20^{\prime}$
n（BLOCK）
日SI2E：R2＋I HLOCK
$X^{\prime} 2800^{\prime}+$ BUSLU 00101000
2
A（MUHGO），A（MUNGO +1 ）
8^{\prime} 日002＇
$X^{\prime} 2 O^{\prime}$
O（BLOCK）
日SIZE：Y $2+1+$ BLOCK
x＇0001．
X＇OU
MEI

*HIJHBERS IH THE RAIIGE - 32767 TO 32767 IRE CONVERTED CORRECTLY
NDD UNHORMAL IZED ZERO
STORE AWAY. STILL UNHORMALIZED
LOAD FIRST PART
IS NUMBER NEGATIVE?
HO. WE'RE DK
HO. WE'RE OK
COMPLEMENT IT
1
$X^{\prime} 4600^{\prime}, X^{\prime} 0000$
*THIS ROUTINE COHVERTS A I*2 NUMBER TO R*4 WCALL: BRL 15. MFLOAT *IIIPUT: REG θ :KDUTPUT: FI.OA
MFLOAT 5 TH
LOAD REGISTEPS
15 NUMBER NEGATIVE?
NO. FINE STORE REGISTERS
COMPLEMENT IT

呙

\qquad
9
7
9
4
2
8
9
10
11
12
13
$0, R I$
D．R1091
D．FI001
日． $10(15)$
LOAD PARAMETER ADDRESSES
LOAD PARAMETER X
LOAD PARAMETER Y
LOAD PARAMETER XI
IA dヨL彐WUdUd aU07
LOAD PARAMETER I

LOAD CIIARACTER
LOOK IN TA日LE FOR CHARACTER
FOUND IT？

G）
（9NI 115 ）I－ RT，Ri

CHAR．O（STRING） R3，TA日LE CHAR，O（R3）
PLOTIT

R3．SEP音总

END OF TABLE

PAGE

GO OH TO NEXT CHARACTER
SPACE TO NEXT CHAR
OINT TODATA TABLE GIT POIHTER

IHCREMENT X
COUNTER FOR Y
IF OFF．MO PLOT
IF OFF．MO PLOT
AT END DF CIINR？
AT TOP OF CHARACTER？

INCREMENT Y

RETRIEVES THE NTH 日IT IN A TMELE，
IS II．AHD REG 3 PDIHTS TO THE TABL
5 TO THE TABLE
510 THE TABLE
LOND THE NUMBER
DIVIDE BY 日，GIVING LHICH BYTE
FIND ADIRESS DF EYTE
LORD THE BYTE IN DUESTION
MUI．TIPLY EY B
FIND WHICII BIT
get a one in right place
RETURI TO COLLER

3イヨlalay－sia
$K . X P$
$Y, Y P$
rาedud sid
PLDTI
ヨ01m＊11511．118

R13．11IGH
HXTCOL
ヨy०H
0
$d 111$
$d 0$
1113
514
$d E$
1113
514
748
1117
$H 15$
115
26

＊THIS ROUTIHE
dI 15

14．R1
14．P3

13
R14．0（R14）
R1．3
PR．X＇0日G日＇
$日\left(R_{C}\right)$
R日（RCI）
ROR R 141
R 15
$\frac{n}{2}$

$(d I) U^{\prime}(d \Omega) U^{\prime}(d X) U$
141

6
In
4.3
1
91

$c^{\prime} \Gamma^{\prime}, x^{\prime} 75^{\circ}, x^{\prime} 40^{\circ}, x^{\prime} 60^{\circ}, x^{\prime} 30^{\circ}, x^{\prime} 10^{\prime}, x^{\prime} 00^{\prime}, x^{\prime} 05^{\prime}, x^{\prime} 04^{\prime}$
 을 $c^{\prime} 1^{\prime} \cdot x^{\prime} 00^{\circ} \cdot x^{\prime} 00^{\prime}, x^{\prime} 20^{\circ}-x^{\prime} 3 F^{\prime}, x^{\prime} F \theta^{\prime} \cdot x^{\prime} 0 \theta^{\circ} \cdot x^{\prime} 00^{\circ} \cdot x^{\prime} 00^{\circ}$
$C^{\prime} J^{\circ}, X^{\prime} 40^{\circ}, X^{\prime} 40^{\circ}, X^{\prime} 20^{\circ}, X^{\prime} 10^{\circ}, X^{\prime} 17^{\circ}, X^{\circ} F \theta^{\circ}, X^{\prime} 04^{\circ}, X^{\circ} 00^{\circ}$
$C^{\prime} K^{\prime}, X^{\prime} F F^{\prime}, X^{\prime} 04^{\prime}, X^{\prime} 05^{\prime}, X^{\prime} 04^{\prime}, X^{\prime} 44^{\circ}, X^{\prime} 14^{\prime}, X^{\prime} 04^{\prime}, X^{\prime} 00^{\prime}$

$C^{\prime} 11^{\prime}, X^{\prime} F F^{\prime}, X^{\prime} 80^{\circ}, X^{\prime} 00^{\circ}, X^{\prime} 80^{\circ}, X^{\prime} 80^{\circ}, X^{\prime} 20^{\circ}, X^{\prime} 0 \theta^{\circ}, X^{\prime} F E^{\prime}$

 142
37901
10011
10012

 $2338 R$
$2350 R$
$235 C R$

$\begin{aligned} & \dot{\theta} \\ & \dot{D} \\ & \dot{x} \end{aligned}$		$\begin{aligned} & \dot{\theta} \\ & \dot{x} \end{aligned}$	$\frac{\dot{e}}{\dot{x}}$	$\begin{aligned} & \dot{\theta} \\ & \dot{x} \end{aligned}$	\dot{e} \dot{x} \dot{x}	$\begin{aligned} & \dot{\theta} \\ & \dot{x} \end{aligned}$	$\dot{8}$ $\dot{8}$	$\begin{aligned} & \dot{\mathrm{E}} \\ & \dot{x} \end{aligned}$	$\begin{aligned} & \dot{0} \\ & i n \\ & \dot{x} \\ & \dot{b} \end{aligned}$	$\dot{\otimes}$ $\dot{\otimes}$ \dot{x}	$\dot{8}$ \dot{x}	$\begin{aligned} & \dot{Q} \\ & \dot{\theta} \\ & \dot{x} \end{aligned}$	$\begin{aligned} & \dot{\nabla} \\ & \dot{x} \end{aligned}$	$\begin{aligned} & \dot{\theta} \\ & \dot{x} \\ & \dot{x} \end{aligned}$	$\begin{aligned} & \dot{\otimes} \\ & \dot{\otimes} \\ & \dot{x} \end{aligned}$	$\begin{aligned} & \dot{\otimes} \\ & \dot{x} \end{aligned}$
ì	飔	－	$\dot{\otimes}$	$\dot{\otimes}$	$\dot{\otimes}$	©	©	宅	$\begin{aligned} & \stackrel{Q}{C} \\ & i \end{aligned}$	\dot{Q}	\dot{Q}	$\dot{\theta}$	©	$\dot{8}$	$\stackrel{\circ}{\circ}$	©
\dot{r}	$\dot{+}$	\dot{x}	\dot{x}	\dot{x}	x	\dot{x}	文	\dot{x}	\％	¢	\dot{x}	\dot{x}	\dot{x}	\dot{x}	i	\dot{x}
쏘	ì	$\dot{0}$	边	客	$\dot{8}$	¢ ${ }_{\text {¢ }}$	$\stackrel{\ddot{\theta}}{\dot{E}}$	$\stackrel{\grave{Q}}{\nabla}$	－	¢	¢	is	¢	－	寄	$\frac{i}{V}$
x	\dot{x}	\dot{x}	$\grave{\square}$	\dot{x}	\dot{x}	\dot{x}	\dot{x}	x	$\stackrel{\square}{\square}$	\dot{x}	\dot{x}	＂	\dot{x}	\dot{x}	穴	¢
$\stackrel{\square}{6}$	¢	\dot{i}	\dot{i}	io	$\stackrel{\square}{8}$	\dot{i}	－	$\stackrel{\square}{-}$	－	¢	in	－	i	is	$\dot{0}$	$\stackrel{\square}{-}$
x	ì	方	$\dot{\chi}$	文	\dot{x}	\grave{x}	文	文	\dot{x}	文	－	\dot{x}	；	i	安	\dot{x}
－	$\stackrel{\square}{\square}$	\therefore	¢	\therefore	$\stackrel{\square}{\square}$	\therefore	$\dot{8}$	－	¢	－	－	$\stackrel{\square}{\square}$	\therefore	io	－	$\stackrel{\square}{\square}$
\sim	\cdots	M	\pm	$\stackrel{\square}{0}$	－	\cdots	\％	\bigcirc	x	詈	$\stackrel{\sim}{\sim}$	0	－	E	\bigcirc	c
i	$\dot{\times}$	x	\dot{x}	\％	\dot{x}	\dot{x}	$\dot{\times}$	\dot{x}	$\stackrel{\square}{\square}$	安	\dot{x}	\dot{x}	\dot{x}	¢	\dot{x}	x
	iv	べ心	\％	㐫	들	$\dot{\lambda}$	is	ig	$\stackrel{4}{4}$	$\frac{1}{6}$	灾	io	$\stackrel{ \pm}{ \pm}$	¢	\％	$\stackrel{51}{5}$
غ	\dot{x}	i	\dot{x}	\dot{x}	i	\dot{x}	x	\dot{x}	$\stackrel{\square}{ }$	\％	\dot{x}	x	\dot{x}	\％	\dot{x}	x
$=\dot{0}$	$\stackrel{\square}{\square}$	$\stackrel{\circ}{*}$	$\stackrel{\circ}{*}$	$\dot{-}$	$\dot{*}$	$\dot{\theta}$	$\dot{-}$	\dot{c}	¢	$\stackrel{\square}{8}$	0	$\stackrel{\rightharpoonup}{*}$	i	\bigcirc	\square	－
E	$\stackrel{\square}{7}$	∇	8	\odot	0	\pm	©	¢	\dot{x}	E	0	$\stackrel{\square}{5}$	－	\％	\square	
＝	\dot{x}	i	\dot{x}	\dot{x}	¢	\dot{x}	\dot{x}	\dot{x}	x	亠	\％	\dot{x}	\dot{x}	$\stackrel{\text { ¢ }}{ }$	\dot{x}	¢
$=\dot{0}$	i	\dot{i}	$\grave{\square}$	$\stackrel{\text { ® }}{\text { ¢ }}$	$\stackrel{+}{5}$	$\stackrel{\square}{0}$	$\dot{\text { E }}$	¢	\pm	¢	$\stackrel{\square}{8}$	io	¢	¢	$\stackrel{0}{0}$	\％
$\frac{\pi}{x}$	\hat{x}	－	－	－	\dot{x}	$\stackrel{\oplus}{\dot{x}}$	$\underset{x}{E}$	$\begin{aligned} & \dot{x} \\ & \dot{x} \end{aligned}$	\dot{x}	\dot{x}	\dot{x}	シ	$\overline{\dot{x}}$	$\stackrel{\rightharpoonup}{x}$	\dot{x}	
－	\therefore	\therefore	\therefore	－	$\stackrel{\square}{ }$	i	，		is	\therefore				\therefore		
i	\dot{i}	$\begin{aligned} & \text { in } \\ & i \end{aligned}$	i	i	i	$\stackrel{\imath}{i}$	i	\dot{i}	$\underset{\sim}{x}$	i	\dot{i}	ت	is	\ddot{i}	$\stackrel{+}{\dot{~}}$	$\stackrel{3}{3}$
믕	号	등	응	®	䓢	등	뜽	ロ	뜰	涪	D	픛	¢	©	을	뜽
Σ	10	0	\cdots	$\stackrel{\infty}{\sim}$	n	8	®	$\%$	$\stackrel{M}{\square}$	∇	$\stackrel{18}{\square}$	0_{0}^{0}	$\underset{\sim}{\sim}$	\＄	9	0
re：	\cdots	No	\cdots	m	m	N	M	\cdots	m	m	m	m	m	m	m	m

믕 要

$\begin{array}{ll} & 01014110 \\ & 00 \\ 251 E F \\ & 27000000 \\ & 00700000 \\ & 00 \\ & 00002526 R\end{array}$

[^3]

Character strings in BASIC look like:
03424144
The first byte (03) is the length of the string. The address passed in a call statement is the second byte which begins the string.

The characters are stored in a table. The first byte for each telling the character and the next 63 bits showing which parts of the 9×7 matrix are to be lit. The routine searches through the first bytes for all entries to find a match for the character at hand and then sends the coordinates of the points to be plotted to the plotting routine PLOTI. If a character is not found in the character table, no error is generated and that character is simply skipped.

The example below will illustrate how the values in the table were derived. Consider the letter A in a 7×9 matrix
bbxxxbb
bxbbbxb
xbbbbbx xbbbbbx xbbbbbx xxxxxxx xbbbbbx xbbbbbx xbbbbbx

The bits are arranged in order column by column starting at the bottom xxxxxxx0 $0000 \times 000 \times 0000 \times 0000 \times 000 \times 0000 \times 000 \mathrm{x} 0000 \times 000 \times 000 \times 0 x x$ xxxxx000 or in hexadecimal

FE 0884221108 8B F8.

III. Appendix References

[A] R. Bartnikas, "Corona Pulse Probability Density Function Measurements on Primary Distribution Power Cables," IEEE Trans. on Power Apparatus and Systems, Vol. PAS-94, May/June 1975.

* Certain commercial instruments are identified in order to adequately specify the results. In no case does such identification imply recommendation by the National Bureau of Standards, nor does it imply the instruments are the best available.

IV. References

[1] W.E. Anderson and R.S. Davis, "Measurements on Insulating Materials at Cryogenic Temperatures Annual Report, Part I," CONS/2062-1 (1976).
[2] P.S. Vincett, "Calorimetric Measurement of Very Low Dielectric Loss at Low Temperatures," Brit. J. Appl. Phys. (J. Phys. D), Ser. 2, Vol. 2, p. 699 (1969).
[3] C.N. King and R.A. Thomas, "The Calorimetric Measurement of Low Temperature Dielectric Loss," 1975 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, National Academy of Sciences, Washington, D.C. p. 61 (1978).
[4] E.B. Forsyth, R.B. Britton, J. Dean, J.E. Jensen and K.F. Minati, "A Supercritical Helium Facility for Measuring High-Voltage Breakdown," Advances in Cryogenic Engineering, 19, Plenum Press, (1974).
[5] Allen V. Astin, "The Nature of Energy Losses in Air Capacitors at Low Frequencies," Jour. of Res. NBS 22, p. 673 (1939).
[6] E. So, "Losses in Electrode Surface Films in Gas Dielectric Capacitors," Masters' Thesis, George Washington University, unpublished (1973).
[7] R.L. Nelson, "Bridge Measurement of Very Low Dielectric Loss at Low Temperatures," Proc. IEEE, 127, p. 764 (1974).
[8] N. L. Kusters and 0. Petersons, "A Transformer-Ratio-Arm Bridge for High-Voltage Capacitance Measurements," IEEE CE-82, p. 606 (1963).
[9] 0. Petersons and W.E. Anderson, "A Wide-Range High-Voltage Capacitance Bridge with One PPM Accuracy," IEEE IM-24, p. 336 p. 4-7 (1975).
[10] C.N. King and R.A. Thomas, private communication.
[11] C.G. Garton, "Dielectric Loss in Thin Films of Insulating Liquids," Proc. IEE 88II, p. 103 (1941).
[12] R.A. Thomas and C.N. King, Dielectric Loss of Polymers and Composite Materials at Liquid Helium Temperature," J. of Appl. Phys.
[13] "Measurements on Insulating Materials at Cryogenic Temperatures, Annual Report, Part II," F.I. Mopsik et al., CONS/20621 (1976).
[14] For example, see E.B. Forsyth, ed., "Underground Power Transmission by Superconducting Cable," Brookhaven National Laboratory, BNL 50325, pp. 57-59 (1972).
[15] R.J. Meats, "Pressurized-Helium Breakdown at Very Low Temperatures," Proc. IEE 119, p. 760 (1972).
[16] F.H. Kreuger, Discharge Detection in High Voltage Equipment, American Elsevier, New York (1965).
[17] "Resistive Cryogenic Cable Phase III, Final Report," prepared for EPRI and ERDA by General Electric, Schenectady, NY, CONS-2104-1.
[18] Brookhaven National Laboratory Power Transmission Project, Quarterly Report for July 1, 1977 - September 30, 1977, PTP \#76, DoE Contract No. EY-76-C-02-0016.
[19] ASTM D-1868-68, 1969 Book of ASTM Standards, part 29, p. 884.

[^4]| U.S. DEPT. OF СОMM. BIBLIOGRAPHIC DATA SHEET | 1. PUBLICATION OR REPORT NO. NBSIR 89-1950 | 2.Govt Aecession No: | | |
| :---: | :---: | :---: | :---: | :---: |
| 4. TITLE AND SUBTITLE | | | 5. Publication Date | |
| Temperatures | | | 6. Performing Organization Code | |
| 7. AUTHOR(S)
 William E. And | son and Richard S. Davis | | 8. Performing Organ. Report No. | |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS
 NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, DC 20234 | | | 11. Contract/Grant No. | |
| 12. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, city, State, ZIP)
 Brookhaven National Laboratory
 Upton, New York 11973 | | | 13. Type of Report \& Period Covered14. Sponsering Agency Code | |
| 15. SUPPLEMENTARY NOTES Document describes a c | puter program; SF-185, FIPS Software | y, is attached. | | |
| \square Document describes a computer program; SF-185, FIPS Software Summary, is attached.
 16. ABSTRACT (A 200-word or less factual summary of most sigrificant information. If document includes a significant bibliography or literature survey, mention it here.)
 This final report describes the results of a four-year effort to study the high voltage dielectric behavior of various materials at cryogenic temperatures. Dissipation factors at 60 Hz were measured for polyiner tapes and epoxy samples at 4.2 K , atmospheric pressure. Multi-1ayer polymer samples in coaxial geometries at temperatures from 7 to 10 K and helium pressures up to 1.5 megapascals were also studies. The measurements were performed at stresses up to $40 \mathrm{MV} / \mathrm{m}$. Since partial discharges were a major source of losses at the higher stresses and their presence was possibly detrimental to the integrity of the insulation, instrumentation was developed and implemented to study these discharges under conditons found in proposed ac superconducting power-transmission lines. | | | | |
| 17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolons)
 Capacitance; cryogenic; dielectric constant; dielectric properties;
 dissipation factor; electrical transmission; partial discharges; polymers; precision electric measurements; pulse-height-analysis; superconducting transmissio | | | | |
| 18. AVAILABILITY
 X. Unlimited For Official Distribution. Do Not Release to NTIS Order From Sup. of Doc., U.S. Government Printing Office, Wasinington, DC 20402, SD Stock No. SNOO3-003- Order From National Technical Information Service (NTIS), Springfield, VA. 22161 | | 19. SECURIT
 (THIS RE
 UNCLASS | 19. SECURITY CLASS (THIS REPORT) | 21. NO. OF PRINTED PAGES 163 |
| | | 20. SECURIT THIS PA
 UNCLASS | UNCLASSIFIED $\$ 8.00$ | |

[^0]: UNIT": U

[^1]: SET TO LARGEST NUMEER
 CHECK IF FLAG UP
 IF ALREADY UP，CONTINUE
 IF HOT．SET FLAG，AND ABORT

[^2]:

[^3]:
 000F

 に

[^4]: * Certain commercial materials and electronic devices are identified in order to adequately specify the experimental results. In no case does such identification imply recommendation by the National Bureau of Standards, nor does it imply the material is the best available.

