
NBSIR 79-1927

OLE COPY
'

Nor REMOVE
0£c 14 1979

Recovery from Soft Errors in

Triplicated Computer Systems
Operat ing in Lock-Step

A. L. Koenig

A. W. Holt

System Components Division

Center for Computer Systems Engineering

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, D.C. 20234

June 30, 1979

Issued November 1979

Sponsored by

Defense Nuclear Agency
Washington, D.C. 20305

NBSIR 79-1927

RECOVERY FROM SOFT ERRORS IN

TRIPLICATED COMPUTER SYSTEMS
OPERATING IN LOCK-STEP

A. L. Koenig

A. W. Holt

System Components Division

Center for Computer Systems Engineering

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, D.C. 20234

June 30, 1 979

Issued November 1979

Sponsored by

Defense Nuclear Agency
Washington, D.C. 20305

U S. DEPARTMENT OF COMMERCE
Luther H. Hodges, Jr., Under Secretary

Jordan J. Baruch, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS. Ernest Ambler, Director

RECOVERY FROM SOFT ERRORS IN TRIPLICATED
COMPUTER SYSTEMS OPERATING IN LOCK-STEP

ABSTRACT

A Triply Modular Redundant (TMR) computer system operating in clocked
lock-step is being investigated for an application requiring a Mean
Time Between Failure of five years. No mechanical memories are used;

this allows comparison of the outputs of the three computers to be
made each clock period. The most novel contribution is the method of

recovery from soft errors, such as those produced by lightning strokes
or alpha particles. Data are provided on the uptime history of an
experimental system, which uses three commercial microcomputers.

Key Words: Fault tolerant computer; soft errors; triply modular
redundant; TMR.

INTRODUCTION

Where exceptionally high reliability is essential, an acceptable level
of performance can often be achieved through the use of redundant
structures or modules. Two common forms of modular redundancy are
fault masking and spare switching. With fault masking, all channels
are active all the time; majority logic is used to "mask" a failing
channel, keeping the total system output correct. Spare switching, as

the name implies, has spare channels in a standby or passive state
ready to be switched in when an active channel fails. Digital systems
have been implemented with these techniques with varying degrees of

success. Fault masking systems are often difficult to maintain because
the process that makes them fault tolerant also makes fault detection
and isolation complicated. Using spare computers in standby mode
presents the complex problem of making the spare processor reconstruct
the current working status after the active computer has failed.

A third category of modular redundancy has been proposed, called
Sift-Out Redundancy . With this technique there are no standby
channels; all are active at starting time. If any one fails, however,

the structure reconfigures itself so that the contribution of the
failed channel to system output is eliminated. At least three modules
are required to implement this kind of structure. If reduced to two

modules and one fails, the system is unable to detect which module is

in error. If three or more modules are used in the implementation, any
errant one is "sifted out" automatically; when a failure occurs in
another module, the process repeats itself until the system is sifted
down to two. It must be assumed that no more than one module will fail
at a given instant of time. The sifted out modules may be restored to

operation at any convenient time by a command from the supervisory
element of the system.

1 / P. T. de Sousa and F. P. Mathur, "Sift-Out Modular Redundancy,"
IEEE Transaction on Computers, Vol. C-27, pp. 624-627, July 1978

3

The experiment described here is an implementation of Sift-Out Redundan-

cy applied to the data bus of a microcomputer. One unique aspect of the

system is the requirement for synchronous operation of multiple computers

in order to use the Sift-Out technique; another is the self-restoring
action which takes place when an error has been detected. The latter

takes advantage of the synchronous operation in its implementation.

In the triply modular redundant (TMR system described in this report, the

modules are single-board microcomputers. Each module consists of a

microprocessor, read/write random access memory (RAM), programmable
read-only memory (PROM), buffers for the address bus and data bus, and
various timing and control circuits. All three computers run identical
programs which reside in PROM. The RAM is used to store data. The
programs run "lockstep"; synchronism is achieved by driving all three
processors from a common clock. The input/output (I/O) data bus of each
computer is the logical OR of the individual bus outputs. The busses
are checked for identical content once during each clock period. If one
bus is not identical to the other two, it is logically disconnected from
the combined output immediately and latched out. Outputs from the error
detector identify which bus has failed. This information is used by the
computers to take corrective action: restore erroneous data in RAM;
resynchronize the programs; reset the error detector, reconnecting the
failed bus to the system output. Thus the system is self-restoring for
"soft" failures, i.e., transient faults on one bus. The system can be
programmed to give an appropriate alarm for more serious or very
repetitive faults.

Because of limitations on time and resources, this experiment is
designed to demonstrate only the operation of the Sift-Out comparator
hardware and the feasibility of automatic recovery through memory-to-
memory transfer. Admittedly, a fully operational computer system is
susceptible to many types of faults other than soft errors on the data
bus. It is not within the scope of this experiment to remedy or even
identify all failure modes, but rather to offer a means of improving
reliability for one class of errors. Recognizing the limitations of
the experiment, no attempt has been made to measure the improvement in
Mean Time Between Failures resulting from TMR, though the uptime
history of the system presents an encouraging picture.

HARDWARE DESCRIPTION

System Configuration

Figure 1 shows the configuration of the hardware for the TMR experiment.
One line from the data bus of each computer is brought to the comparator
and to the collector. The collector output is the "correct" system
output, i.e., the combined output from which erroneous data has been
sifted out. One one data bus line, the least significant bit (LSB) , is
used in this experiment in order to minimize the construction of special
hardware; in a fully implemented system all data lines, and possibly
address bus lines, would be similarly connected. However, comparison of
one data line is sufficient to demonstrate the principles of the TMR

4

MASTER

CLOCK

5

FIGURE

1,

TMR

CONFIGURATION

system. The choice of the LSB for comparison makes the comparator

particularly sensitive to timing anomalies since this bit is most likely

to change from one clock cycle to the next.

Other interconnections of the hardware are needed to effect automatic
resynchronization after an error has been detected. Command decoders
are connected to each address bus in order to assert reset lines and

enable input gates for reading the error detector. Parallel I/O ports
connect the computers to each other for memory-to-memory transfer.

Computer 1 has additional peripheral devices attached which are used
primarily for software development and are not directly involved in the
TMR experiment; A CRT display, keyboard, cassette tape recorder, and a

2400 baud serial I/O port. The serial port is used to down-load program
code from computers in the NBS Experimental Computer Facility (ECF)

.

The CRT display is used in the experiment as a means of verifying
correct operation of the TMR system.

Computer 1 and its peripheral interface boards are installed on a single
backplane which is mounted on a chassis along with the system power
supplies; computers 2 and 3, their parallel output ports, and the
comparator hardware are mounted on a remote chassis. There is about one
meter of cable between chassis.

Microprocessors

The microprocessors used in this experiment are type 6800. The 6800 is
a single chip, 8-bit N-MOS processor housed in a 40-pin package. Its
important features include:

Bidirectional data bus (8 bits)
Sixteen-bit address bus
72 instructions (1 to 3 bytes/instruction)
1 MHz maximum clock rate
Two 8-bit accumulators
Three 16-bit registers (stack pointer, program counter,

index register)
Memory-mapped I/O

Timing is controlled by a 2-phase clock which is external to the chip.
During phase one, the contents of the program counter are transferred
to the address bus; on the negative transition of this phase, the
program counter is incremented. During phase two, data are put on the
data bus, and, when this phase goes low, these data are latched into
either the processor or external memory. Direction of data flow is
determined by a read /write control line.

CPU Boards

Each CPU board consists of the microprocessor chip, 2,048 bytes of
static RAM, 256 bytes of PROM, buffers for the address and data busses,
and several timing and control circuits.

6

The 16-bit address bus is buffered with tri-state drivers. Since the
processor uses memory mapped I/O, the same lines are used for memory
address and I/O port addresses.

The bidirectional data bus is split into four parts by the buffering
process; memory data out, memory data in, I/O data out, and I/O data
in. Memory and I/O data out are not functionally different; they are
simply connected to two different sets of tri-state buffers. The input
buffers, however, are controlled differently. The memory inputs are
gated with a clocked Read signal while I/O inputs are selected by the
Read signal and a signal decoded from the upper half of the address bus.
Thus one "page" of memory (hexadecimal addresses FEOO through FEFF) is

reserved for I/O port addresses. Both the data out and address bus
buffers can be disabled — that is, put in the high impedance state —
when a direct memory access (DMA) transfer is requested. This allows
the requesting device to have full control of the memory for the
transfer.

The on-board memory consists of sixteen 1024 x 1 bit static MOS memory
chips and one 256 byte ultraviolet erasable PROM. The address range of

the RAM memory can be changed by jumpers on the board; the range of the

PROM is fixed at hexidecimal addresses FFOO through FFFF.

As manufactured, the board contains a 1 MHz crystal controlled
oscillator with fixed delay and drive circuits to provide two non-
overlapping phases of clock for the microprocessor chip. For this
experiment, the oscillator was disabled and a master oscillator
provided on a separate board to drive all three CPU boards. The delay
and driver circuits on each board were retained.

Other on-board features provided but not used in this experiment include
interrupt and DMA Request control logic and Run/Step control. The
latter is jumpered for Run condition only. Step forces a halt after
each instruction cycle. This is of little use with this particular
microprocessor because all of its address and data lines go into the
high impedance state during a halt. A display panel with latches would
be required to capture the status of the processor between steps.

On the original boards, a Power-On Reset function was provided by having
a delay one-shot circuit attached to the processor Reset input, This
one-shot could also be triggered by a remote contact closure for Manual
Reset. Since the reset delay in the TMR system must be identical for

all three processors, this feature was disabled on all boards and a

Master Reset circuit built on a separate board.

Parallel I/O Ports

Eight-bit parallel ports are used in this system as a means of trans-
ferring RAM contents from one computer to another and to connect
peripheral devices to computer 1.

7

As previously noted, data from the processors are buffered by tri-state

drivers which are always enabled except when a DMA transfer is in prog-

ress. When data on the bus is intended for output to a port (addresses

FEOO-FEFF) , an I/O Output Strobe pulse is generated on the CPU board.

Thus, to capture this data, it is only necessary to decode the eight

least significant bits of address and strobe the data into latches. The

data remains in the latches until another data byte is sent to the port.

Data input is handled in a similar manner. The address decoder used for

output may be used for input. When the CPU executes the instruction,
LOAD FROM ADDRESS FEnn, the I/O Input Strobe line is asserted. The AND
of the strobe and the decoder output is used to gate the desired data
onto the processor input bus. Open collector NAND gates are used for

this function.

Note that a single address may be used to identify one input and one
output port. Input and Output Strobes, generated by LOAD and STORE,
respectively, define which function the port is to execute.

Clocking

Lock-step operation of the three TMR computers is achieved by having a

common oscillator for all the computers. The circuit used is shown in
figure 2.

The 10,000 ohm resistors across the inverters make them operate as
linear amplifiers. The two amplifiers in series provide the 360 degree
phase shift required for oscillation. The crystal frequency is 1 MHz.
The third inverter provides enough drive for the three CPU boards. The
output is a square wave.

As previously stated, the circuits necessary to produce the two non-
overlapping clock phases to the microprocessors are located on each CPU
board.

Reset Circuits

Initialization of the hardware and transfer of program control to a
selected starting address is accomplished by assertion of the CPU Reset
input line. This action takes place automatically when the system
power is turned on. The same function can be activated at any time by
pushbutton or on command from the software.

The CPU Reset circuit is shown in figure 3. The basic element is a
delay one-shot with a pulse duration long enough to allow for power
suppiy settling plus the required initialization time of the processor.
The latter is specified by the manufacturer to be at least eight clock
periods.

8

IMHZ

CRYSTAL

9

10

FIGURE

3.

RESET

CIRCUITS

The delay one-shot is constructed from a CMOS flip-flop and external
timing components as shown. For the Power-On condition, triggering
does not occur until the 10 yf capacitor has charged to at least half

the supply voltage. The flip-flop is then in the set state until it is

reset through the RE network connected to the dc reset (pin 4) . Manual
Reset by pushbutton involves the same components. The 10 yf capacitor
is discharged when the button is depressed; release of the button
starts the triggering sequence just described. For activation of Reset
by software command, the path is slightly different. The command
appears as an address (from any of the three computers) which must be
decoded. The decoded address triggers the 0.3 millisecond one-shot
which in turn triggers the delay one-shot through its dc set input
(pin 6). With the component values shown, the pulse width of the delay
one-shot is 6 milliseconds. For Power-On and Manual Reset, additional
delay is provided by the charge time of the 10 yf capacitor.

Reset of the TMR error flip-flops is done via a separate reset line.

Another address decoder output is used for command reset. Power turn-
on reset delay is provided by an RC network connected to the OR gate
as shown in figure 3.

Comparator

The comparator checks data bus lines to make sure they have identical
information. If one line is in disagreement with the other two, only
the information from the two in agreement is passed to the output.
Furthermore, there is a feedback loop in the comparator which holds the
"bad" line disabled until it is deliberately reset. A flip-flop in
each feedback loop provides an output to identify the errant computer.
The comparison of data lines is made at one instant during each clock
cycle.

The comparator logic is shown in figure 4. Exclusive-OR (XOR) gates
compare to a given data bus line to each of its like neighbors, that is,

bit 0 of computer 1 to bit 0 of computer 2, etc. As long as all lines
are identical, the XOR outputs are zero, the NOR gate outputs FI, F2,
F3 will be zero, and all three data lines are allowed to contribute to

the output (final NOR gate). Also, the D inputs to the flip-flops will
all be zero so no flip-flops will get set.

Consider the following example to illustrate how errors are detected.
Assume that data line D01 disagrees with the other two, lines E12 and
E13 will now have a logical 1; output Fl will be a 1 while F2 and F3
will remain at zero. Computer 1 now will contribute a logical zero to
the final NOR gate regardless of the state of line D01. Also, since
Fl is 1, No. 1 error flip-flop will be set by the trailing edge of
phase 2 clock. Note that the flip-flop is in a feedback loop so that
Fl cannot return to zero, and thus bit 0 of computer 1 has been "sifted
out" of the system. The comparator will return to normal when a Reset
pulse is received to reset the flip-flop. The outputs of the error
flip-flops are wired to the data input bus via tri-state buffers so that
comparator status can be read by the computers. The buffers are enabled

11

7402

v— Vl

< u. ^hOD
< *- ftQ 3 u
° Z <i— = <

O
<

12

PHASE

2

CLOCK

by an address decoder output.

The above circuit has been implemented only for bit 0 (LSB) of the
data bus. A fully implemented system would have a replication of the

circuit of figure 4 for every data bus line. Any line not passing the
comparison test would result in that line being locked out until the
arrival of a Reset pulse; further, the identity of the failed lines
is maintained by the error flip-flops whcih are read by each computer
prior to issuing the Reset. Thus a comparator for a complete data bus
will provide a correct system output as long as at least two of the
three lines to each cell of the comparator are correct.

Considering multiple errors, a failure of more than one bit on any given
bus can be handled successfully as long as the other two computers
maintain correct output during the prescribed interval. However, if

the, multiple error affects different bits of two or more computers, the

situation is more difficult. The individual comparator circuits will
still function as described above, locking out the erroneous lines;
however, since data of more than one computer is now suspect, this must
be considered an alarm, or non-recoverable situation. The subject of

error recovery is treated more fully in the Software section of this

report.

Peripheral Device Interfaces

Computer 1 has several peripheral device interfaces connected to it,

primarily used for program development. Since these do not directly
affect the TMR experiment, they will not be treated in detail here. A
keyboard, video display, and a cassette tape are interfaced via parallel-

ports. A serial I/O channel is connected directly to the I/O Data Bus.

Table 1 lists these interfaces and their port addresses.

TABLE 1. PERIPHERAL DEVICE INTEREACES

PERIPHERAL DEVICE PORT ADDRESS

Keyboard FEOO , Input
Video Display FEOO, Output
Cassette Tape FE01, Input and Output
Serial I/O, Data FE60, Input and Output
Serial I/O, Status FE61, Input

SOFTWARE DESCRIPTION

Software for the TMR experiment was designed to demonstrate very simply
the synchronous operation of the computers and the technique for auto-
matic recovery from soft errors. The program performs a task (display
memory), periodically checks for errors, and, if an error has occurred,
updates the suspect memory and resynchronizes the computers. All of
this, plus initialization and utility subroutines, occupies less than

13

256 bytes of ROM. Program flow is shown in figure 5.; a program
listing is given in the appendix.

Initialization

There are always certain housekeeping tasks to be performed at the

beginning of a program. In this case, all that is necessary is to set

the stack pointer to a convenient RAM address and to make sure that

interrupts are disabled. Clearing the CRT screen may be considered an
initializing task but this is not done immediately; it is important to

read the status of the error flip-flops (EFF) to determine if

resynchronization is required. Note that the same path is used for

initial start and restart after an error, hence the necessity for an
EFF check at this time. This is not the periodic error check mentioned
above

.

If any of the EFF are set, the program branches to the appropriate
error service routine. The EFF are tested in numerical order , therefore
computer 1 can be said to have top priority. This is not significant
unless more than one flip-flop is set, in which case the lower numbered
computer will be assumed to be the errant one. However, more than one
computer in error is a non-recoverable case so other procedures would
have to be invoked in this situation.

If no EFF are found set, the program goes through a "dummy" error
routine which makes the computer idle for a length of time equal to a
real error routine. This is done only to make all paths in this part
of the program of equal length. The significance of this will be
discussed later.

Task

For demonstration purposes, the TMR system is programmed to display the
contents of a 128-byte block of RAM on a CRT screen. To make it easy
to detect an error visually, the bytes of the block are loaded with
sequential numbers. Thus the CRT display is a count (in hexadecimal
notation) from 0 through 127 (hex 7F) . This count is generated only
when a pushbutton is depressed by the operator — that is, the program
will not autonomously correct an error by reloading the byte. This
point is essential to demonstrate that the system self-corrects only by
transfer of data from another computer.

To display RAM contents, a byte is brought to the accumulator with an
indexed load instruction, converted to two ASCII characters and
transferred to the video interface memory. The block is limited to
128 bytes because of the size of the display.

Aj-ter 128 bytes have been displayed, the EFF are read. If none are set,
the program loops back to display the block again. If an error has
occurred, the CPU Reset line is asserted and the computers are all
forced to restart.

14

FIGURE 5. TMR PROGRAM FLOW
15

Resynchronization

Bringing the computers back into full synchronization after an error

has been detected requires two distinct operations. Restart and Memory

Transfer. The former forces the processors to a common program

reference point; the latter gives assurance that all processors have

the same data to operate on.

The Restart sequence is initiated by the assertion of the CPU Reset

line. While the line is asserted, the processors are in a halt

condition; as soon as the line is released, the contents of last

two locations in ROM are loaded into the program counter. These

locations contain the Restart Vector, that is, the address where program

execution must begin, in this case FFOO, the lowest address in ROM.

As noted above, the program path after Restart is the same as for the

initial start. However, CPU Reset does not clear the EFF; hence, after

a Restart one EFF will be set, indicating the error just detected.
This information will be used to initiate a memory-to-memory transfer
from one of the "good" computers to the errant one.

Data transfer from one CPU RAM to another is done synchronously through
parallel I/O ports. This technique takes advantage of the fact that

the three computers are all running off the same clock. Timing is

accomplished by the order of load/store instructions in the respective
programs, thus eliminating the need for an exchange of busy/ready
control signals. In this part of the program the code is necessarily
non-identical; to effect a transfer, one computer must be reading
while another is writing. The comparator will indicate errors for all
three during this process. However, the computers actually remain in
step, that is, each program segment executes in exactly the same number
of clock cycles. This fact is essential not only for the data transfer
but also to insure synchronous operation at the end of the transfer.

To examine this process in detail, assume that computer 1 is in error.
All three processors receive this information when the EFF are
interrogated; all then branch to the routine labeled ERRl. (See
figure 5). At this point the code in each computer is different;
computer 2 will write to computer 1, so computer 1 must read.
Computer 3 will execute a program which uses the same number of clock
cycles as the other two but is neither reading nor writing. The
relative position of the read and write instructions is shown in
figure 6. Note that the Write Strobe from computer 2 occurs ahead of
the Read Strobe from computer 1. The computers at this point are
executing indexed LOAD/STORE instructions, testing the index register
after each pass to see if the upper limit has been reached. When not
yet at the limit, the program loops back to repeat. The execution time
of each instruction is not identical, but the total time for each loop
is the same; hence, a synchronous transfer is achieved.

16

o

So
Q Ul

t o
me a.

* O

S*£
ui 5 >

z
U ^ i- Ul
Z S * t
< o ui >

U. 7 U

O £

Q Ul

t= o
oe a.

* O

*
e*

O
u

O t

na SE<o;
Ul mt O

z
<-> *- U!
Z 5 K £> O ui >' U * u

Sol

•n
M

CD

O
r>

CO

ui O
O “*

Ul O
* Ulo »-

V)

Q
<

o
u

m
CN

O AC
z o
o 2oS w

« w s0 *
« o
— 5-
1 c

_ m

O S £< o «
Ul ^ O

x -K Ul O
Ul Q III
«A =2 CD

Q
<
ui

ui
VI

Ul O
Q Ul

3
a. n
v

3
a.
u

17

While computer 1 and computer 2 are transferring data, computer 3 is

executing instructions chosen solely to expend an equal amount of time.

When the transfer is complete, all three computers will arrive at an

end point on the same clock cycle. The EFF are then cleared, which is

the final function of the resynchronization process. The code for all

three is identical for the remainder of the program.

Subroutines

The software for driving the display consists primarily of subroutines.
These are listed in table 2. The symbols given are those which appear
in the program listings in the appendix.

The 128 bytes of RAM are displayed on the CRT in sixteen lines,
eight bytes per line. Each byte is represented by two hexadecimal
digits; bytes are separated in the line by two spaces. This fills
the entire 1024 positions that are available on this display.

18

TABLE 2. SUBROUTINES

Name Symbol Function

Hex Dump hdump Translate a byte from RAM into two
hex digits, format for display by
adding two spaces after each pair
of digits.

Hex Output hexout Convert binary half-byte in
accumulator to an ASCII hex digit
for display on the CRT.

Home Erase homer Clear CRT screen by writing 1024
spaces. Return with cursor set
at upper left corner of screen.

Print print Output character in accumulator
to the CRT.

Print Space prspc Output space code to CRT.

Spacer spacer Output 512 spaces to CRT.

EVALUATION

Testing Procedure

During the course of the experiment, several programs have been run on

the computers to test the hardware and to try various software concepts.

The first programs were kept very short and simple so that synchronism
could be easily verified by monitoring the address bus with an

oscilloscope. Once design and wiring errors were eliminated, other
programs were written to more fully exercise the system and to test

features such as automatic restart and memory-to-memory transfers.
During each of these intermediate steps observations were made of error
rates and sources of errors. Some errors were found to be caused by
slow or weak RAM chips, while others were caused by induced noise in

the system wiring. After correcting these problems, the system
failures have become so infrequent that none are observable in a time
frame of days or weeks. Errors have to be artificially induced in
order to demonstrate that the system has the capability of automatic
error recovery.

The most extensive reliability testing of the system has been done with
the software described in this report. The error recording apparatus
consists of a logic analyzer and a counter. The logic analyzer is
attached to the address bus of one computer; its trigger word is set
to a program location that will be encountered only if an error occurs
and the system resynchronizes. The counter input is connected to the
trigger pulse output of the analyzer; thus, the counter indicates the
number of resynchronization attempts of the system.

For demonstration, errors are induced by shorting a data or address
bus line to ground momentarily or by turning on an external noise
source. A very effective device for the latter is a high voltage arc
generator. An arc of a few centimeters length in the general vicinity
of the computers will produce errors readily.

A power line failure will, of course, cause an error indication. The
computers will restart automatically after power returns to normal but
the RAM contents will be random until the load button is depressed.
This is equivalent to reloading the system from non-volatile memory, a
procedure which must involve operator intervention. In order to isolate
this type of error, the test setup includes a power line monitor which
has a strip-chart recorder and a latching lamp circuit to indicate line
failures

.

20

Results

As noted above, naturally occurring errors in the TMR system are rare.

Over sixty days of running time have been accumulated with the system
in its final configuration. During that time only three failures have
been observed. One of these affected only the format of the display, a

device which is not really a part of the TMR experiment. A software
modification has since been made to periodically reset the display
cursor, thus eliminating this type of error from the experimental data.
Another error resulted in computer 1 being latched into a halt mode,
again a situation not covered by the scope of the experiment. This
type of error requires operator action, that is, manual reset. The
third error was a "soft" error from which the system recovered auto-
matically.

It is important to note that this low error rate has been achieved
without extraordinary measures in selection or construction of hardware.
As noted above, some weak memory chips were eliminated during the
course of development, and system wiring had to be done carefully.
Neither of these aspects, however, are above ordinary good commercial
practice. The memory chips are inexpensive static RAM, type 2102. No
exhaustive testing or preselection was done; there were simply a few
chips that did not perform well and they were replaced.

The inter-chassis wiring consists of twisted pair for bus and control
signals, miniature coaxial cable for the clock. No special line
terminations were used. Bus pull-up resistors, bypass capacitors on
the boards, termination of unused inputs, etc., are all according to

standard TTL rules.

Software for the TMR experiment is specialized only in the error re-
covery routines, the remainder is programmed in the conventional
manner. No special precautions or procedures are required. Thus, once
the recovery programming has been done for a TMR system, the applications,
programming can proceed in a normal manner. As the final step, ROMs
containing the applications software are produced in triplicate.

Conclusions

The experience with the TMR system indicates that (a) synchronous
operation of the three computers is a feasible approach to modular
redundancy; (b) off-the-shelf computer hardware can be used in the
construction of a TMR system; (c) soft errors which might otherwise
crash a system or cause erroneous results can be corrected automatically;
and (d) all the above can be achieved without significant increase
in software complexity.

21

APPENDIX

The following is an assembly language listing of the TMR pro-
grams. Programs for the three computers are identical axcept for
the error routines (errl through err4); routines for computer 1

are listed as they appear in the actual program while computer 2

and computer 3 error routines are listed separately at the end.

INITIALIZE

org $ff00 ; start at bottom of ROM

sei ;disable interrupts
Ids #$7ff ;load stack pointer
ldaa $fe6f ;read error flip-flops
bita #1 ; error in computer 1?

bne errl ; branch to errl
bita #

2

;in computer 2?
bne err2 ; branch to err2
bita #4 ;in computer 3?
bne err3 ; branch to err3
bra err4 ;no error or not identi:

;branch to err4

###****#**#*###»*###*###*#**#**#

#

3 ####*###*#*#***### *****#»#

ERROR ROUTINES FOR COMPUTER 1

errl : nop
nop
nop
nop
ldx #lolim

loopl : ldaa port
staa 0(x)
inx

cpx #hilira

bne loopl
bra clref

; Computer 1 must

;set index
;read from port
; store in ram
; increment index
;block done?
;loop if not
;if so, continue

read from 2's memory

err2: ldx #lolim
loop2: ldaa 0(x)

staa port
inx

cpx #hilim
bne loop2
nop
nop

nop
nop
bra clref

; Computer 1 must write to 2's memory
;set index
;read from memory
;write to port
; increment index
;done with block?
;loop if not
; delay

; continue

22

err3

:

nop ; Computer 3 must read from 2's memory
nop
nop
nop
ldx #lolim

; Computer 1 will idle

loop3

:

adda 0(x)

anda 0(x)

inx

;instructions to take up time

cpx #hilim
bne loop3
bra clref ; continue
nop

err4

:

nop ;make computer idle
nop

nop
nop
ldx

;time must equal other error times

loop4

:

adda 0 (x

)

anda 0(x)

inx

;form loop to take up time

cpx tfhilim

bne loop4

;end of error routines

##***####**##*#********##**»#**#***##*******#*#**##»**##*»*##*

clref: staa $fe64 ; clear error flip-flops
jsr homer ;clear screen
ldaa $fe6f ;read load switch
bita #8 ; switch closed?

beq prmem ;if not, skip ahead

;L0AD RAM WITH COUNT PATTERN
ldx #lolim ;set index
ldaa #0 ; clear acc A

count

:

staa 0(x) ; store count
inca ; increment A

inx ; increment index
cpx #hilim ;done?
bne count ;loop if not

; DISPLAY RAM BLOCK
prmem: ldx #lolim ; reset index

ldaa #$ff
jsr print

;home cursor

1

:

ldaa 0(x) ;load byte from ram
jsr hdump ;display it

inx ; increment index
cpx y/hilim ;done?
bne 1b ;loop if not

ldaa $fe6f
beq prmem

rstrt: staa $be68
wai

; CHECK FOR ERRORS
;read error flip-flops and switch
;loop if all zero
;output restart pulse
;wait, restart pulse will force

;
program back to beginning

; SUBROUTINES

homer: ldaa #$ff ;Home Erase subroutine
jsr print ;write home code
ldaa #2
staa tl

;set tl for 2 passes

clra
staa t2

;set t2 for 512 spaces

1

:

jsr spacer
dec tl

;call for space

bne 1b jrepeat until t1=0
rts ; return

spacer: jsr prspc ;call print space
dec t2 jdecrement space counter
bne spacer ;repeat if not zero
rts ; return

prspc

:

ldaa #$a0 ;Print Space subr.
print

:

staa outO
clra

;Print subr.
,
out to TV

staa outO ;clear strobe
rts ; return

hdump

:

tab ;save A in B
lsra ; shift right four
lsra
lsra
lsra
jsr hexout

; print one char.
tba ;B to A
jsr hexout ;print second char.
jsr prspc

;
print space

jsr prspc
rts ; return

hexout

:

anda #$f ;strip upper half of byte
cmpa #$a ;is char 0-9?
bmi If jbranch if yes
suba #9 ; subtact 9
oraa #$c0 ;add ascii bits
jsr print ;out to tv
rts

; return

24

1 : oraa #$b0
jsr print
rts

;add ascii bits
;out to tv
; return

;END

org $fffe ; restart vector stored at top

byte $ff,0 ;of ROM, points to bottom of ROM

*ft*fttt*********ft******ft*fttftfit*******************************#****#

ERROR ROUTINES FOR COMPUTER 2

errl : ldx #lolim
loopl : ldaa 0(x)

staa portl

inx

cpx #hilim
bne loopl

nop
nop
nop
nop
bra clref

err2: nop
nop
nop
nop
ldx #lolim

loop2: ldaa portl

staa 0(x)

inx
cpx #hilim
bne loop2
bra clref

; Computer 2 must
;set index
;read from memory
;write to port
; increment index
;done with block?
;loop if not
;delay

; continue

; Computer 2 must

;set index
;read from port

; store in ram
; increment index
;done with block?
;loop if not

; continue

write to I's memory

read from 1 ’ s memory

err3: ldx #lolim
loop3: ldaa 0(x)

staa port2
inx

cpx #hilim
bne loop3
nop
nop
nop
nop
bra clref

; Computer 2 must write to 3’s memory
;set index
;read from memory
;write to port
; increment index
;done with block?
;loop if not
; delay

; continue

25

err4: nop ;make computer idle

nop
nop
nop
ldx #lolim

loop4: adda 0(x) ;form loop to take up time

anda 0(x)
inx

cpx #hilim
bne loop4

ERROR ROUTINES FOR COMPUTER 3

err 1

:

loopl

nop
nop
nop
nop
ldx

adda
anda
inx

cpx #hilim
bne loopl
bra clref
nop

#lolim
0(x)

0(x)

; Computer 1 must read from 2’s memory
; Computer 3 will idle

;set index
; instructions to take up time

; increment index
;block done?
;loop if not
; if* so, continue

err2

:

loop2

:

nop
nop
nop
nop
ldx #lolim
adda 0(x)
anda 0 (x)

inx

cpx #hilim
bne loop2
bra clref
nop

; Computer 2 must read from I’s memory
; Computer 3 will idle

;set index
; instructions to take up time

; increment index
;done with block
;loop if not
; continue

err3

:

loop3

nop
nop
nop
nop
ldx #lolim
ldaa port
staa 0(x)
inx

cpx #hilim
bne loop3
bra clref

; Computer 3 must read from 2's memory

; continue

26

;make computer idleerr4: nop
nop
nop
nop
ldx #lolim

loop4: adda 0 (x) ;forra loop to take up time
anda 0 (x)
inx

cpx #hilim
bne loop4

H**H*H*»*»*m*H**HH««**«HHH*H«*H*l«H»»H*l***«*H**

27

NBS-1WA (REV. 9-76)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET

1. PUBLICATION OR REPORT NO.

NBSIR 79-1927
pnnHRg
Ifeft

4. TITLE AND SUBTITLE

Recovery from Soft Errors in Triplicated

Computer Systems Operating in Lock-Step

5. Publication Date

November 1979

Perteratfflf Organization Code ?

7. AUTHOR(S)

A. L. Koenig and A. W. Holt

8. Performing Organ. Report No.

NBSIR 79-1927

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, DC 20234

11. Contract/Grant No.

IACRO 79-802

12. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, city, state, ZIP)

Defense Nuclear Agency
Washington, D. C. 20305

13. Type of Report & Period Covered

Topical

15. SUPPLEMENTARY NOTES

I |
Document describes a computer program; SF-185, FIPS Software Summary, is attached.

16. ABSTRACT (A 200-word or leas factual summary of most significant information. If document includes a significant bibliography or

literature survey , mention it here.)

A Triply Modular Redundant (TMR) computer system operating in clocked lock-step is

being investigated for an application requiring a Mean Time Between Failure of five

years. No mechanical memories are used; this allows comparison of the outputs of

the three computers to be made each clock period. The most novel contribution is the

method of recovery from soft errors, such as those produced by lightning strokes or

alpha particles. Data are provided on the uptime history of an experimental system,
which uses three commercial microcomputers.

KEY WORDS (aix to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name;
separated by semicolons)

Fault tolerant computer; soft errors, triply modular redundant; TMR.

19. SECURITY CLASS
(THIS REPORT)

X

21. NO. OF
PRINTED PAGES

27

UNCLASSIFIED

20. SECURITY CLASS
(THIS PAGE)

22. Price

UNCLASSIFIED
M- 4>- OO

U SCOMM- DC

18. AVAILABILITY ® Unlimited

I I
For Official Distribution. Do Not Release to NTIS

Order From Sup. of Doc., U.S. Government Printing Office, Washington, DC
20402, -SD Stock No. SN003-003-

’

3 Order From National Technical Information Service (NTIS), Springfield
VA. 22161

