ALLIOL LLL799

NBS PUBLICATIONS SEP 1 7 1979

NBSIR 79-1751

Custody Transfer Systems for LNG Ships: Tank Survey Techniques and Sounding Tables

Richard H. F. Jackson* Richard S. Collier** Seymour Haber* Peter V. Tryon*

*Center for Applied Mathematics *Thermophysical Properties Division National Engineering Laboratory National Bureau of Standards U.S. Department of Commerce Boulder, Colorado 80303

July 1, 1978

Issued May 1979

Prepared for The Maritime Administration Department of Commerce 'Washington, D.C.

QC 100 .U56 79-1751 C.2

CUSTODY TRANSFER SYSTEMS FOR LNG SHIPS: TANK SURVEY TECHNIQUES AND SOUNDING TABLES

Richard H. F. Jackson* Richard S. Collier** Seymour Haber* Peter V. Tryon*

*Center for Applied Mathematics **Thermophysical Properties Division National Engineering Laboratory National Bureau of Standards U.S. Department of Commerce Boulder, Colorado 80303

July 1, 1978

Issued May 1979

Prepared for The Maritime Administration Department of Commerce Washington, D.C.

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary Jordan J. Baruch, Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

ABSTRACT

Static measurements of liquefied natural gas (LNG) for custody transfer purposes require an accurate and precise knowledge of the container volume and the volume-height relationship. The extremely low temperatures of LNG (less than 150° K) preclude <u>in situ</u> surveys; however, the increasing value of the cargo requires more precise and accurate measurements than previously used for bulk marine cargoes.

A description and assessment of the application of photogrammetric techniques to the ambient temperature survey of a 35-meter diameter spherical aluminum container are presented. Sample sounding tables (height-volume) are calculated, and an estimate of error is given.

Key words: accuracy; statistical analysis; cryogenic; error estimation; liquefied natural gas; LNG; marine; mathematical modeling; measurement; photogrammetric; precision; ship cargo; strapping; survey.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the assistance, advice, and encouragement of James D. Siegwarth, Patricia J. Giarratano, Dwain E. Diller, and Douglas B. Mann of the NBS Thermophysical Properties Division, Robert J. Hocken, NBS Dimensional Technology Division, and Christoph Witzgall of the NBS Operations Research Division. Additionally, without the patience and cooperation of Don Shaaf and personnel in the General Dynamics Quincy Shipbuilding Division much of this work would not have been possible. Discussions with photogrammetric consultants John Kenefick, Duane Brown, and John Strahle were also most helpful.

LIST OF TABLES AND FIGURES

		Page
Table l.	Summary of target residuals by horizontal row	21
Table 2.	Rod end-point coordinates	34
Table 3.	Gauge rod data	35
Table 4.	Mean radial target residuals	43
Table 5.	Volume error as a function of height	45
Table 6.	Percentage standard deviation of the error in the volume of the tank below the plane at height h	47
Figure 1.	Tank schematic	3
Figure 2.	Distribution and numbering scheme for targets on inner plate and equatorial ring	4
Figure 3.	Tank residuals displayed as a function of height	12
Figure 4.	Residuals in equatorial ring region, displayed as function of height	14
Figure 5.	Residual plots of target rows as noted	15
Figure 6.	Residual plots of target rows as noted	16
Figure 7.	Residual plots of target rows as noted	17
Figure 8.	Residual plots of target rows as noted	18
Figure 9.	Residual plots of target rows as noted	19
Figure 10.	Residual plot of top polar plate	20
Figure 11.	Target residuals grouped by plate and displayed by strake	22
Figure 12.	Plot of x coordinate vs. the standard error of x	26
Figure 13.	Plot of z coordinate vs. the standard error of x	27
Figure 14.	Plot of x coordinate vs. the standard error of the radius	28
Figure 15.	Plot of y coordinate vs. the standard error of the radius	29
Figure 16.	Plot of z coordinate vs. the standard error of the radius	30
Figure 17.	"Wrap-around" display of traget residuals, from π to 0	32
Figure 18.	"Wrap-around" display of target residuals, from 0 to π	33
Figure 19.	Volumes of tank internals	41
Figure 20.	Piecewise linear plot of mean radial residuals	49

TABLE OF CONTENTS

		Page
1.	INTRODUCTION	1
2.	THE SURVEY METHOD	2
	Photogrammetric Surveying	2
	The Tank Model	5
	Tank Model Modifications	6
3.	ANALYSIS OF AQUARIUS TANK NUMBER 4	6
	Tank Description	7
	Sources of Error	7
	Exploratory Statistical Analysis	8
	Calculation of Best-fitting Sphere	8
	The Best-fitting Sphere	10
	Analysis of Residuals	11
	Target Measurement Errors	23
	Random Errors: Analysis of Residuals	24
	Random Errors: Internal Estimates of Target Coordinate Error	24
	Systematic Error	31
	Calculation of Sounding Tables	37
	Tank Model 1	37
	Tank Model 2	38
	Tank Model 3	40
	Comparison of NBS' and Consultants' Results	44
	Sounding Table Error: Target Coordinate Error Contribution	44
	Sounding Table Error: Model Error Contribution	48
	Sounding Table Error: Plate Curvature Error Contribution	50
REFE	RENCES	52
APPE	NDIX A: NBS SOUNDING TABLES	53
APPE	NDIX B: PORTIONS OF PHOTOGRAMMETRIC CONSULTANTS' SOUNDING TABLES	60

The Liquefied Natural Gas (LNG) Program of the National Bureau of Standards (NBS) is designed primarily to supply property data for the materials and fluids of interest and to aid in the establishment of measurement methods and instrumentation for custody transfer of this fluid in commerce. This report concerns work, supported in part by the Maritime Administration of the Department of Commerce, in the area of custody transfer: specifically, static measurements of the quantity of fluid contained in a storage tank before and after delivery, either into or out of the tank.

The analysis reported herein was performed on spherical LNG tanks constructed by General Dynamics/Quincy Shipbuilding Division for use in the LNG ship Aquarius. Previous methods for calibrating such tanks and calculating "list and trim" tables relied heavily on measurements taken with tapes, referred to as "strapping" [5]. Ship owners and therefore ship builders have a specific interest in these measurements and the resulting tables of volume vs. height, since they are used by a ship's captain to determine the amount of cargo at any particular time. The resultant estimates of volume added or removed are then mathematically combined with fluid density measurements to determine mass transferred. Gas sampling and analysis provide average BTU content, and the combination of mass transferred and BTU content yields total heating value of the cargo.

One objective of the Maritime Administration is to promote the development of the LNG shipbuilding industry in the United States. The Mar Ad was therefore interested in establishing accurate and precise tank-calibration technology for use with the first LNG ships constructed in U.S. shipyards. Since strapping measurements are typically made at the shipyard during construction, the analysis of tank strapping accuracies reported here was undertaken.

In essence, strapping is a geometric survey of the inside of the ship tank, relating measured points on planes and surfaces to fixed reference points. The balance of the work concerns the mathematical treatment of the measured data to construct an accurate model of the tank geometry. (Error estimates can be made by relating the model to the measured and reference points.) The volume-height relationships are then derived from the mathematical model.

This report contains three sections, a list of references, and two appendices. Following this introductory section, section 2 presents the photogrammetric technique for calibrating large tanks. The analysis of sounding table accuracies that can be expected from the survey technique is presented in section 3. Also included is a discussion of similarities and differences between the analysis performed by the photogrammetric consultants and that performed by NBS. Appendix A contains samples of the sounding tables computed by NBS, and appendix B contains portions of the sounding tables computed by the photogrammetric consultants.

It should be pointed out that NBS had no specific contract authority to gather and analyze data. Only the extensive cooperation of the Maritime Administration, the ship builder, the ship owner, and the photogrammetric contractors made it possible to complete and publish this work.

2. THE SURVEY METHOD

Rectangular and spherical tanks are usually dimensioned by conventional strapping techniques; sufficient lengths and circumferences are measured by taping so that the shape of the tank can be determined and used to calculate the volume as a function of height. Since the spherical tanks on the General Dynamics ships do not lend themselves well to conventional taping, a photogrammetric technique to measure tank volume has been developed (by a commercial firm).

Photogrammetric Surveying

The wide-angle analytic photogrammetric technique used to determine the dimensions of the General Dynamics tanks offers potentially higher accuracy than strapping. The claimed precision for this technique approaches 1 part in 100,000, or approximately ±0.4 mm for a 35 m diameter tank.

The photogrammetric method, described in detail in [1], consists of determining the x-, y-, and z-coordinate values for targets on the inner tank surfaces by photographing the targets from nine different positions within a tank. Targets are required on the tank so that points on the surface can be identifiable from photograph to photograph (see figs. 1 and 2 for tank target distributions). The 408 targets used in these tanks are 7/8" diameter white spots surrounded by a black background and are spray-painted on during construction of the tank. Special photographic plates consisting of thin emulsions of uniform thickness on very flat glass plates are used for the photography.

The two-dimensional positions of the target images on the plates are measured to within 3 µm with a monocomparator. These values are related to the

Figure 1. Tank schematic.

Figure 2. Distribution and numbering scheme for targets on inner plate and equatorial ring.

x-, y-, and z- coordinates through a large set of mathematical equations that are solved by computer. The unknowns calculated are the x-, y-, and z- coordinates, the directions of the principal axis of the camera, the coefficients of the lens distortion correction equation, and the uncertainties for the coordinate values. Details of the technique, however, are proprietary. The resulting coordinates have an arbitrary scale; hence, calibration lengths must be known to correct to coordinates in real space. This information is provided by targets placed at known spacings on calibration tapes visible in the photographs. The targets should be photographed when the tank is isothermal, either after dark or after the tank has been insulated.

The Tank Model

Construction of a mathematical model of the tank is essential to the calculation of tank capacity tables. The model is a mathematical description of the tank surface fitted to the target coordinates; its accuracy depends not only on the accuracy of the target coordinates but also on the density of targets on the tank surface and the regularity of the tank surface between target locations. It is clearly desirable to have as many targets as possible to reduce the uncertainty in interpolating between targets. However, there is a practical limit to the number of targets that can be measured because of the time and cost in reducing the data. With one exception (discussed in the next section), NBS had no control over the number or placement of targets painted on the tank surface.

Model construction usually begins with the calculation of some regular solid, e.g., a perfect sphere, prism, etc., which best fits the target coordinate data developed from the survey. Differences between actual target coordinates and the coordinates of the closest point on the surface of the model solid are then calculated. These "residuals" are then studied for patterns that would indicate systematic distortions (bulges, bends, or twists) in the shape of the tank.

On the basis of patterns discovered during this exploratory residual analysis, a special-purpose technique is developed to integrate numerically the composite tank model, which specifies a regular solid along with a table of deviations or residuals.

The final step in this analysis is the calculation of sounding tables giving tank volumes at regular intervals of liquid height in the tank. Error bounds on these tank table values are developed in this report.

Tank Table Modifications

There are a number of modifications to the sounding tables that must be made before their construction is complete. List, trim, thermal contraction, and stress effects must be accounted for. List and trim corrections, however, are not addressed in this report since NBS did not have access to the data or the procedures used in making these corrections.

It is standard practice to correct tank tables for thermal contraction by applying contraction coefficients as if the tank were mechanically unconstrained. The dimensions of the tank are decreased uniformly according to the thermal contraction of the material. Actually, tank mounting constraints and variations in the thermal expansions of the structural material can introduce strains in the tank that might affect cargo capacity. These thermal stress effects cannot presently be analyzed, because data on constraint effects and anisotropic thermal coefficients are lacking.

Another effect is the cargo load, which stresses both the tank and the ship hull. The tank strains supposedly have been measured during hydrostatic tests, but this information has not been made available. Data on capacity effects from hull strains are also unavailable. An analysis of the effects of these strains on the tank tables is therefore beyond the scope of this work. Furthermore, the photogrammetric contractors do not include such corrections in their report.

3. ANALYSIS OF AQUARIUS TANK NUMBER 4

As part of the Maritime Administration Custody Transfer program mentioned earlier, NBS was asked to evaluate the methodology used to calibrate the LNG tanks constructed by General Dynamics at its Charleston facility. In addition, NBS was asked to comment on the accuracy of the sounding tables subsequently constructed. In this section, we present our analysis and describe how it differs from the analysis performed by the photogrammetric consultants. Included also is a discussion of the accuracy of the sounding tables constructed and an assessment of the limitations, additional to those implicit in the last paragraph, to the applicability of those tables.

Tank Description

Each tank calibrated is spherical, with a diameter of approximately 36.5 meters and a capacity (volume) of 25,000 cubic meters. The tanks are constructed of four bands ("strakes") of aluminum plates in the shape of spherical trapezoids (see fig. 1), with special cap plates at the top and bottom. The only internal structure is a cylindrical tower extending from cap to cap containing piping, wiring, depth gauges, etc.

The first step in constructing a tank is to weld together the equatorial ring by which the tank is supported. The ring is set up on jigs, and the tank plates making up the central strakes (previously welded into pairs) are welded in place above and below the equatorial ring. The top and bottom strakes are then welded in place. The bottom and top circular plates are welded in after the rest of the welding is completed, and the internal staging is removed.

After a tank is completed, it is loaded on a crawler, supported from beneath, and moved to the hydrostatic test stand. After the test, the tank is moved to the insulation building and insulated. Then, it is moved to a barge for transporting to the shipyard at Quincy where it is lifted into place on the ship.

Sources of Error

The procedure for constructing sounding tables was discussed in section 2. Basically, that procedure consists of:

- a. photogrammetrically surveying target coordinates on the inside surface of the tank;
- b. constructing a mathematical model of the tank geometry;
- c. developing a mathematical technique for computing volumes below specified heights in the tank; and
- d. determining effects on tank shape (and therefore tank volume) of tank loading, cooling, liquid loading, sagging, sloshing, etc.

Each stage of calculation has associated with it an error bound on the accuracy of the result. These error bounds can be calculated using the appropriate statistical analysis; this can always be done and is straightforward. Difficulties arise only in regard to the "tightness" of those bounds, i.e.,

their balance between realism and conservatism. These error bounds will be discussed later in this section. First, we present our analysis and the resulting sounding tables.

Exploratory Statistical Analysis

Here we present the results of an exploratory statistical analysis of the target coordinate data for Aquarius Tank Number 4 obtained from the photogrammetric consultants. A best-fitting sphere is obtained by using linear least squares to minimize the sum of the squares of the radial residuals. Analysis of these residuals then provides information on how the tank wall deviates from a true sphere, information of value to the numerical integration procedure described later.

In fitting a sphere, if the usual concept of a distance measure $(d=\sqrt{x^2 + y^2 + z^2})$ is used, the distance between a point and the surface of a sphere is a nonlinear function of the unknown parameters of the sphere. This complexity results in a nonlinear least squares problem for finding the best-fitting sphere. Witzgall [7] has developed a technique that avoids this complexity and reduces the problem to a linear one, allowing the use of linear least squares.

Below, we summarize the approach suggested by Witzgall and show how to remove its bias. The formulation is for an arbitrary n-dimensional space and thus applies equally well to circles in 2-space, spheres in 3-space, and hyperspheres in n-space (R^n) .

Calculation of the Best-fitting Sphere

Here we present a summary of the mathematics used in calculating the bestfitting sphere. Although condensed, it remains technical, thereby necessitating a warning: the reader who is uninterested in the mathematical foundations for subsequent results can skip over this section without loss of information.

A sphere consists of all points $x \in \mathbb{R}^n$ satisfying

 $x'x - 2a'x - \gamma = 0,$

where x and a are nxl vectors, γ is a scalar, and x' is the transpose of x. The vector a represents the coordinates of the center. This equation can be written

$$(x-a)'(x-a) = a'a + \gamma,$$

from which it is seen that the radius of the sphere is

$$r = \sqrt{a'a + \gamma},$$

where we restrict γ to satisfy $\gamma \ge -a^{\dagger}a$.

The Euclidean distance between a point $y \in \mathbb{R}^n$ and the surface of the sphere S(a, r) having center a and radius r is the modulus of the difference of the radius and the distance, ρ , between y and a, i.e.,

$$\Delta_{\text{eucl}} (\mathbf{y}, \mathbf{S}) = |\mathbf{r} - \rho|$$

where $\rho^2 = (\mathbf{y} - \mathbf{a})^{\dagger} (\mathbf{y} - \mathbf{a})$.

The technique proposed by Witzgall for avoiding the nonlinearity is to use a different distance measure (or metric) instead of the usual Euclidean measure. He calls this a "square" metric and defines it as follows:

$$\Delta_{\text{square}}(y,S) = |r^2 - \rho^2|.$$

Using this metric we have

$$r^2 - \rho^2 = 2y'a + \gamma - y'y$$

or

$$y'y = \gamma + 2a'y + \rho^2 - r^2$$
.

This equation is suitable for the applications of linear least squares where

y'y is the dependent variable; $2y_1$, $2y_2$, ..., $2y_n$ are the independent variables; γ , a_1 , a_2 , ..., a_n are the unknown parameters; and $\rho^2 - r^2$ is the residual.

Thus, any linear least squares computer program can be used to find the sphere which minimizes

$$\sum_{l=1}^{m} (\rho_{1}^{2} - r^{2}),$$

where m is the number of observations and where ρ is now indexed by i over the set of data points.

Furthermore, we note that

$$\rho_{i}^{2} - r^{2} = (\rho_{i} + r)(\rho_{i} - r),$$

so that we can transform Δ_{square} to Δ_{eucl} and conversely. In particular,

$$\sum_{i=1}^{m} (\rho_i^2 - r^2)^2 = \sum_{i=1}^{m} (\rho_i + r)^2 (\rho_i - r)^2$$

so that the least squares formulation using square distance is equivalent to weighted least squares in Euclidean distance with weights ρ_1 +r. Thus, using "square distance," points outside the sphere receive more weight than points inside, and the sphere will be larger than the "Euclidean distance" sphere. This bias can be reduced by first using unweighted linear least squares and then recomputing using weights $1/(\rho_1 + \hat{r})$, where \hat{r} is the estimate of r obtained from the previous unweighted analysis. This could be iterated in an obvious manner; the convergence of this numerical process has not been checked. In the present example, with ral8 meters and $\rho_1 - r_1 \approx .03$ meters, the recomputation reduces the radius by 6×10^{-6} meters, which is negligible. However, if the residuals were large relative to the radius, the correction and its iterative properties could be important.

The Best-fitting Sphere

Using the technique described above, the radius of the best-fitting sphere for Aquarius Tank Number 4 was determined to be: with a standard error of

SE
$$\simeq$$
 .0071 meters.

With respect to the coordinate system defined by the consultants, the coordinates of the center are:

^a 1	=	х	=	.0005	meters,	SE	=	.0013	meters;
a ₂	=	у	=	0009	meters,	SE	=	.0013	meters;
a ₂	=	z	=	0137	meters,	SE	=	.0011	meters.

The standard errors given above are computed using the usual least squares theory that assumes the radial residuals from a perfect sphere are random. As shown below, this assumption is incorrect. The purpose of the best-fitting sphere, however, is only to serve as a reference surface for further analysis.

Analysis of Residuals

With the calculation of the best-fitting sphere, we are now in a position to perform the exploratory analysis of residuals that provides specific information on tank shape. A thorough residual analysis, such as was performed here, typically includes many types of graphical displays; in the interest of brevity, we present here only a selected few examples. Nevertheless, the discussion includes all important highlights.

The targets are arranged in 21 rows around the sphere: 1 row on each of the top and bottom polar plates; 3 rows on the equatorial ring; and 4 rows on each of the four strakes. On each plate there are 4 targets arranged and numbered as indicated in figure 2.

Figure 3 shows the residuals (in Euclidean distance) plotted versus their height along the vertical axis in the tank. (In that graph and subsequent ones, a dot indicates one value while a number as plot symbol indicates the frequency of the data value.) This clearly shows the general nature of the tank distortion. The bottom polar plate and the bottom edge of the #1 strake are flattened (as if the tank were free-standing on a flat surface) and lie internal to the sphere by as much as 6 cm. The #1 strake must have a "sharp"

(Note: plot symbols other than dot indicate frequency of data value.) Figure 3. Tank residuals displayed as a function of height.

bend near the second row of targets, because the residuals for the upper three rows of targets on the #1 strake and all points on the #2 strake average 0.8 cm outside the sphere. Figure 4 is an enlargement showing the residuals from the equatorial ring and the adjacent rows on the strakes. As is clearly shown, the equatorial ring is curved inward.

Figures 5-10 show plots of the amplitude of each of the 21 horizontal rows of residuals versus angle around the tank. Table 1 summarizes the residuals by row. The most interesting fact is that in some regions the residuals are following some major distortion of the tank and are thus not random. In other areas (at joints between strakes), the residuals appear random but have standard deviations similar to those in the nonrandom regions. In particular, the regions of randomness are adjacent to the seams where 42 plates are joined. However, in only one case (bottom polar plate) do the "nonrandom" residuals appear to be such that they could be approximated by a simple surface or polynomial. In fact the first strake, row 1 residuals can be fitted well by a sine curve, though not nearly as well as those for the bottom polar plate.

(mm) elsubises (mm)

(m) suley leubiss?

			Standard	Degrees of	
Rov	J #	Average (cm)	Deviation (cm)	Freedom *	Random
1 F	Bottom plate	-5.75	.70	7	No
21		-2.67	.76	15	No
3	First	.72	.31	17	No
4	Strake	.54	.33	17	No
5)		.66	.53	17	Yes
61		.81	.84	25	Yes
7	Second	.97	.38	23	No
8	Strake	.72	.70	23	No
9		1.11	.66	26	No
10	1	.14	1.05	8	No
11	Equatoria	¹ -1.45	.90	26	No
12	Ring	.06	.82	8	No
13	1	1.03	.73	27	No
14	Third	.30	.49	23	No
15	Strake	.33	.38	23	Yes
16)	.28	1.20	23	Yes
17	1	62	.89	21	Yes
18	Fourth	94	.70	17	Yes
19	Strake	. 32	.42	17	No
20	J	43	.69	17	No
21	Top Plate	-1.98	.77	7	No
	Poole	d Standard Deviatio	on .71	387	

Table 1. Summary of target residuals by horizontal row.

Figure 11 shows the set of four residuals for each plate. The zero lines for the 18 plates on the #1 and #4 strakes are indicated in the left margin and for the 24 plates on the #2 and #3 strakes in the right margin. A 1-cm amplitude mark is given in the lower right corner. The plates are adjacent vertically and may also be matched from one set (column) to the next. The plot is intended to show patterns in the "curvature" of the plates. If the curvature of a plate were perfect, the line connecting the four points would be flat. Note, for example, that the first residual from all plates in the #1 strake is large

"Degrees of freedom" is equal to one less than the number of targets in a row.

and negative, indicating a sharp curvature. Furthermore, the second, third, and fourth residuals for each plate in the #4 strake form a concave pattern, indicating a sharp degree of curvature.

Target Measurement Errors

Errors in the volume tables result in part from random and systematic errors in the target coordinate measurements. We next analyze the experimental evidence available so as to place bounds on the measurement errors. Later, the effects of the errors on the volume tables are considered.

We are concerned with two types of error: random and systematic (sometimes called bias). Systematic errors, e.g., scaling error, are the types that result in non-zero values for certain average errors: specifically, average error in target location and average error in length of a gauge rod. Random errors, e.g., photographic plate resolution error, cause errors in individual target coordinates that vary about the average error.

Systematic error thus refers to an average error for a given survey. Causes of systematic error may be the same for many surveys; for example, errors in photo equipment, computer programs, or survey techniques. On the other hand, the value of the systematic error in each survey may vary randomly from one survey to the next due, for example, to errors in setting the scale. Since we have only one survey, we cannot study this possibility; the limits to be set on systematic error apply to this survey alone and cannot be extended to other surveys.

The lack of a second independent survey also limits our analysis of random error, but we have two approaches. First, the residual standard deviation from a fitted model provides an upper bound to the measurement error standard deviation. However, it may not be a "sharp" bound because it includes the effects of model error (in this case, actual deviations in the tank surface from the circular cross section assumed by the model). The second approach involves using the internal estimates of the standard error of the estimated coordinates derived from the estimation algorithm. There may, however, be sources of random error that are not included in these internal estimates.

No definitive analysis is possible without two or more independent surveys. Random fluctuations due to model error will be common to all surveys

and could perhaps be separated from the measurement random error by variancecomponent analysis methods.

Random Errors: Analysis of Residuals

An upper bound to the standard deviation of the random errors of the photogrammetric survey in the <u>radial</u> direction can be obtained from table 1. The standard deviation given for each horizontal row of targets is computed from the deviations of individual residuals from the average for that row. It is thus the standard deviation from the best-fitting circle at each height on the sphere. Each standard deviation includes both the target measurement error and the local deviations of the sphere from a circle at each level. These two error components cannot be separated without analyzing repeated independent surveys.

The standard deviations for each row appear to be reasonably consistent from top to bottom of the tank. The pooled value (rms weighted by the number of degrees of freedom*) is 7.1 mm. We will use 7 mm as the upper bound to the standard deviation of the target coordinates in the radial direction.

Random Errors: Internal Estimates of Target Coordinate Error

The standard errors of the x-, y-, and z-coordinate values for each target were provided by the contractor. These standard errors were plotted against the x, y, and z coordinates, and several patterns emerged. First, all plots showed two ranges of values: a sparse distribution of high values and a more dense distribution of low values. These distributions are illustrated in figures 12 and 13. As will be seen later, the upper group probably comes from groups of targets masked by the central tower, and which therefore appear on one fewer photograph than the others. The standard errors of the estimated coordinate values are proportional to $1/\sqrt{m}$, where m is the number of measurements.

The second pattern to emerge results from studying the plots of the standard error of x (s_x) vs. x and the standard error of y (s_y) vs. y. (For brevity, we have included in figure 12 only the first of these plots.) Both plots show U-shaped patterns with the standard errors being highest at coordinate values ±18 meters. This shows that the precision of measurement is poorest in the radial direction (parallel to the plane containing the cameras)

^{*&}quot;Pooling" is a well-known technique; see p. 297 of [2] for an explanation.

and best in the tangential direction (perpendicular to the camera plane). It appears that there is a factor of about 3 relating the radial and tangential errors. This is significant since errors in the radial direction have the most effect on the volume of the tank.

Figure 13 shows the third important pattern observed: standard errors increase with increasing values of z. (The same pattern appears in plots of s_y vs. z and s_z vs. z; but, again for brevity, we include only one as an illustration.) This demonstrates that precision grows poorer with increasing distance from the cameras to the targets.

The standard error of the radius determined for each target can be determined from the standard errors of the three coordinate values using standard propagation of error techniques (see [6]).

The standard error of the radius is:

$$\mathbf{s_r} = \left(\frac{x^2 \ \mathbf{s_x^2 + y^2 \ s_y^2 + z^2 \ s_z^2}}{x^2 + y^2 + z^2} \right)^{1/2},$$

if the x-, y-, and z-coordinate estimates are independent. If the coordinate estimates are correlated (which is likely since they are derived from the same data), then

$$\mathbf{s}_{r} = \left[\frac{x^{2} \mathbf{s}_{x}^{2} + y^{2} \mathbf{s}_{y}^{2} + z^{2} \mathbf{s}_{z}^{2} + 2xy\mathbf{s}_{x} \mathbf{s}_{y} \mathbf{\rho}_{xy} + 2xz\mathbf{s}_{x} \mathbf{s}_{z} \mathbf{\rho}_{xz} + 2yz\mathbf{s}_{y} \mathbf{s}_{z} \mathbf{\rho}_{yz}}{x^{2} + y^{2} + z^{2}} \right]^{1/2},$$

where ρ_{xy} is the correlation coefficient of x and y, etc.

There is potential for a significant increase in s_r if the correlation coefficients are large and the signs are such that the contribution is positive. We may place an upper bound on s_r by assuming all the correlation coefficients are ±1 with the sign chosen so that the contribution is positive.

Figures 14, 15, and 16 show the upper bounds for s_r vs. x, y, and z respectively. All the plots show the clustering of higher values, and figure 16 shows the increase in s_r with the z coordinate noted earlier. If independence is assumed, the appearance of the plots remains similar; but the maximum value becomes 1.5 mm instead of 2.0 mm. The effect of correlation among the coordinate estimates on the radial standard deviation is thus not more than +30%. (A reduction in this estimate is possible if the sign of the correlation is favorable.)

(mm) suibsi and to rore bishing (mm)

Standard error of the radius (mm)

Standard error of the radius (mm)

Plot of z coordinate vs. the standard error of the radius. Figure 16. These results are consistent with the residual standard deviation. The upper bound to the total radial-direction, random-error, standard deviation is 7 mm while the internal estimate is on the order of 1 mm. The peak value is 2 mm. The difference may be due to other sources of random error, random fluctuations in the tank surface, or a combination of the two. Regardless, the question cannot be resolved until a second independent survey is available.

Another informative method of displaying the internal estimates of random error is to plot the target z coordinate on the vertical axis against θ (= tan⁻¹(y/x), where $-\pi < \theta < \pi$), the angle in the horizontal plane. The plot is thus a projection of the target coordinates on a plane surface. Different plotting symbols are then used to display the desired characteristics.

Figures 17 and 18 use the symbols A and B to indicate whether the s_r value for each target is in the lower or upper group respectively (see fig. 16). It can be seen that the B's are arranged in nine narrow vertical groups. Presumably, these targets are masked by the central column from one camera position and thus appear on one less photographic plate, as mentioned earlier.

In an effort to determine more precisely the factor relating the magnitude of errors in the radial and tangential directions, s_x vs. x and s_y vs. y were also plotted separately for narrow ranges of z, and also for the two groups of high- and low-error targets.

The ratio could not be determined from the low-error group because the standard errors provided by the consultants contained only one significant digit. For the high standard-error group, the only z range for which there was an adequate number and distribution of targets was the group that was on, and adjacent to, the equatorial ring. The factor of three holds there. We are not able to determine if the factor changes with height.

Systematic Error

As a check for systematic error in the survey, seven gauge rods with targets at each end were placed in the tank during the survey. The rods were constructed from two-inch square 5093 aluminum tubing in two pieces joined by a flange in the center.

Rods 1-5 were placed around the bottom of the tank while rods 6 and 7 were placed near the top. The x, y, and z coordinates locating the ends of each rod are given in table 2.

Rod	x	у	Z	
1	2.1885	-8.9500	-15.7102	
	1.3089	-5.1156	-17.4291	
2	4.6285	-6.3103	-16.4456	
	7.1239	-2.8493	-16.5168	
3	7.5256	.7120	-16.5691	
	5.8784	4.6593	-16.5997	
4	3.0506	7.0377	-16.5191	
	-1.1255	7.3089	16.6504	
5	-4. 0084	5.7746	-16.8055	
	-6.6706	2.4913	-16.7619	
6	.9479	-2.4609	17.8288	
	-2.6246	1752	17.8466	
7	2.6472	.0806	17.8384	
	8601	2.4881	17.8441	

Table 2. Rod end-point coordinates (m).

All rods were placed with the targets against the tank surface so that length is in the tangential direction. The exact rod orientations can be determined from the above coordinates.

The first six rods were measured by the NBS Dimensional Technology Division. Each rod was broken down, reassembled, and measured three times. The average length for each rod, corrected to 68° F, is given in table 3. The pooled standard deviation from the reassemblies of the rods was 0.024 mm (12 degrees of freedom), and a 95% tolerance interval for 95% of future reassembled lengths is 0.074 mm. It follows that the random error in the rod lengths (due to reassembly, primarily) is a negligible component of the standard deviation of the differences between NBS measurements and the photo survey (s = 0.85 mm). The limit to systematic error in the NBS measurements is ± 0.001 mm, which is a negligible fraction of the systematic difference observed.

Rod Number	NBS Measurement at 68°F (m.)	Consultants' Measurement Converted to 68°F (m.)	Consultant NBS Difference (mm.)	Average Temp. During Measurement
1	4.2927	4.2937	1.0	34.6
2	4.2664	4.2680	1.6	35.0
3	4.2783	4.2779	4	33.5
4	4.1881	4.1876	5	34.2
5	4.2278	4.2277	- 1	36.0
6	4.2405	4.2416	1.1	38.0
7	4.2534	4 .25 45	1.1	37.8

Table 3. Gauge rod data.

Rod 7 is a special case since it was measured only in Boulder. The Boulder group also measured all 6 other rods. A bias between Boulder and Washington (due in part to the measurement of the halves separately?) of 0.452 mm (S.E. = 0.086 mm) was observed. The length given for rod 7 is the Boulder length minus the estimated bias.

The lengths obtained by the photo survey and their differences from the NBS values are also given in table 3. The photo survey lengths have been adjusted from those supplied by the contractors. The contractors originally corrected the lengths to 68°F assuming a common starting temperature, but NBS temperature measurements showed that the rods were actually at different temperatures (shown in table 3) when measured. The differences between the NBS and photo survey results originally showed a systematic error, which was removed by correcting the lengths for the actual temperature at measurement.

The length differences range from -0.5 mm to ± 1.6 mm with an average of 0.54 mm (S.E. = 0.32 mm). A 99% confidence interval for bias in the rod lengths is thus 0.54 ± 1.19 mm, or the interval (-0.65, 1.73) mm.

This bound, however, applies only to the tangential direction. We assume that the appropriate factor for degrading this to the radial direction is the same factor 3 observed for between-measurement standard error in the radial and tangential directions. This leads to bounds on the bias of (-2.0, 5.2) mm in the radial direction. While every effort has been made in the above analysis to make the bound on possible bias a conservative one, there are several factors which could cause it to be an underestimate.

- 1. Most of the rods were at the bottom of the tank where measurement errors (and perhaps bias) are smallest.
- 2. The rods were very short. Targets close together may have highly correlated measurement errors which cancel in the length computation. In addition, there may be additional errors that accumulate in length measurement when the targets involved span several photographic plates.
- 3. The factors that resulted in a bias of 0.54 mm on this survey could vary randomly between independent surveys and have a standard deviation much larger than the standard deviation of the errors within a single survey.

The above bound on the bias applies uniquely to this survey and does not apply to the surveys of any other tanks.

These points suggest several concepts to consider in any future efforts to evaluate the precision and accuracy of photo surveys.

- 1. An additional survey, independent of the first, is essential.
- 2. Gauge rods should be distributed more uniformly throughout the tank.
- 3. Some longer rods should be used.
- 4. Some rods should be placed perpendicularly to the tank surface so that measurement errors in the radial direction can be evaluated directly.
- 5. The covariances of the coordinate estimates are a necessary part of the analysis and should be supplied by the contractor.

Calculation of Sounding Tables

The sounding tables constructed here are tables of volume versus elevation for the unloaded tank. The use of the term "elevation" requires comment. The term is intended to represent the depth of the LNG in the tank at a particular moment. That is, assuming that the tank is in its standard position (it has the same orientation with respect to the true vertical direction as it had while being measured), and assuming that the liquid surface is a horizontal plane, the elevation should be the distance from that horizontal plane to the (inside) bottom of the tank. However, that last point is apparently not accessible to measurement. It has been assumed that what is, in fact, measured is the distance from the liquid surface plane to the pedestal probe point (P^3), and the elevation is then determined by adding to that measured distance the known vertical distance of the P^3 above the bottom of the tank.

The elevation of the P³, however, is not obtained through direct measurement. The photogrammetric consultants estimated the location of the tank bottom by using a mathematical model. After determining a "sphere of best fit," they determined a second, concentric sphere that best fit the bottom-most ring of targets on the bottom cap of the tank. They then took the bottom of this second sphere as the bottom of the tank.

In the present analysis, the elevation of the P³ was also determined from a mathematical model of the bottom region of the tank. However, the model used here is more complicated, and felt to be more reasonable. It is described below in the description of Model 3.

Three different sounding tables were constructed, based on two different mathematical models and one system of volume corrections applied to the second model. The three tables are based on increasingly sophisticated analyses, but the final results differ only slightly.

Tank Model 1

The first model developed was a simple mathematical sphere. The sphere that best fit the target location measurements (at ambient temperature) was found earlier in this section to have center (.005, -.0009, -.0137) and radius

18.2682. We assumed that an isotropic contraction occurs and converted this to the average temperature of LNG, -160°C, by use of the following linear thermal expansion coefficient obtained from the 1967 edition of the Alcoa Aluminum Handbook:

 $L_{t}(0 \text{ to } -320^{\circ}\text{F}) = L_{0}(1 + C(11.74t - .00125t^{2} - .0000248t^{3})10^{-6}),$ $L_{t}(0 \text{ to } 1000^{\circ}\text{F}) = L_{0}(1 + C(12.19t + .003115t^{2})10^{-6}),$

where

L_o = length at 0°F, L_t = length at t°F within range indicated, C = alloy constant (1.020 for 5083 Aluminum).

This resulted in a sphere with the same center but a radius of 18.20485 m. However, it was felt that for the purposes of building tank models a modification to this "contracted" best-fitting sphere was necessary. The first modification considered was one that resulted in a sphere which would best fit the data if the points on the top and bottom caps of the tank, and those on the equatorial ring, were excluded. This resulted in a sphere with the same center but with a radius of 18.2113.

In this model the height of the P^3 above the bottom of the tank is 0.2352 meters. However, it has been assumed that elevation is determined by the users of the sounding tables by measuring liquid level height above the P^3 , and adding to that number the "known" height of the P^3 above the tank bottom. It has furthermore been assumed that this known height will be taken to be 0.1705 m, as given in the report from the photogrammetric consultants. So in the sounding table for Model 1, elevation is defined as: (recorded depth - 0.2352 m + 0.1705 m), which makes the tables reported here directly comparable to those produced by the photogrammetric consultants.

The table for Model 1 is given by the column headed VOLUME 1 in appendix A.

Tank Model 2

In this case, Model 1 is modified by replacing the top and bottom regions of the nominal sphere with segments (caps) of other, flatter spheres. (The nominal sphere is now the sphere of Model 1.) Each such flatter (higher radius) sphere was taken to have its center on the polar axis of the nominal sphere, but not to be concentric with the latter. (If they were concentric and touched somewhere--which they must for the model not to be discontinuous--they would coincide.)

Since Model 2 is still a surface of revolution about the polar axis of the nominal sphere, we can describe it via its (x,z)-plane cross section. Using the coordinates of the center of the best-fitting sphere, the nominal sphere becomes the circle

$$x^{2} + (z+.0137)^{2} = r_{0}^{2}$$
 (r_{0}=18.2113m.),

and each of the model caps is given by the equation:

$$x^{2} + (z+.0137-a)^{2} = (r_{0}+b)^{2}.$$

(The fact that the x coordinate of the center of the nominal sphere is actually .0005 rather than 0 is irrelevant to the calculation of the sounding tables and has been ignored.)

Using this model, the parameters for the bottom model cap are

$$a = 2.37 m.$$
, $b = 2.30 m.$

and for the top model cap

$$a = -2.37 m$$
. $b = 2.30 m$.

This bottom model cap locates the bottom of the tank at z=-18.1550; the consultants' model described above located it at -18.1603.

Each model cap extends for a vertical distance of 0.537 m and a horizontal distance of 4.389 m before meeting the nominal sphere. Comparing the VOLUME 1 figures with the VOLUME 2 figures in appendix A, we see that the model caps together subtract 2.41 cubic meters from the volume of the tank. The difference between the consultants' model tank bottom and this one, while possibly of interest in connection with the location of the bottom of the tank, is much smaller than the difference between Model 2 and Model 3. It is not significant for the sounding table.

The calculation of the first two sounding tables involved another topic: accounting for the volume displaced by the tower structure inside the tank. This was called "tank internals" by the consultants, and the calculation was based on blueprint specifications rather than on direct measurement. This seems valid; the total volume of the tower structure is about 7.6 cubic meters, so that high accuracy is not needed.

However, in their tank internals figures the consultants also included an estimate of the inward bulge of the equatorial ring relative to their own sphere of best fit. The graph in figure 19 represents the consultants' tank internals figures for tank number 4; the near-vertical part in the middle is the equatorial ring contribution. In the NBS analysis, that part was eliminated and the tank internals were represented by the formula*

 $V_{I}(a) = \begin{cases} 0.7345a, & 0 \le a \le 2.316, \\ 0.7345x2.316+0.1744(a-2.316), & 2.316 \le a \end{cases}$

This represents the volume of the tower, as a function of altitude, a (in meters), above the bottom of the tank, to an accuracy of ±0.3 cubic meters.

Tank Model 3

In this case the table is constructed by a numerical integration of the discrepancy between the actual measurements and Model 2. The procedure is as follows.

- 1. For each horizontal ring of targets, a mean z-coordinate value is established and the mean radial residual is determined. (This is the same as integrating the radial residuals around each ring of targets by the trapezoid rule, which is the best rule for integrating around a circle.) These radial residuals are displayed in table 4.
- 2. By linear interpolation between adjacent targets on a horizontal ring, a piecewise-linear function of z is constructed, approximating the mean radial residual at all values of z; at the top and bottom of the model tank, the radial residuals are taken to be zero for this purpose.

^{*}The coefficients in this formula were obtained from table V-1 of the consultant's final report.

Figure 19. Volumes of tank internals.

3. Calling the piecewise-linear function e(z), the volume corrections are calculated from the formula:

$$V_{\text{CORR}}(z) = \begin{cases} 2\pi r_1 \int_{-18.155}^{z} e(t)dt, & z \leq -17.61815; \\ V_{\text{CORR}}(-17.61815) + 2\pi r_0 \int_{-17.61815}^{z} e(t)dt, -17.61815 \leq z \leq 17.59075; \\ V_{\text{CORR}}(17.59875) + 2\pi r_1 \int_{16.59075}^{z} e(t)dt, & z \leq 17.59075; \end{cases}$$

t

where $r_0 = 18.2113$ and $r_1 = 20.5113$. All units are meters. (The three parts are for the bottom model cap, the nominal sphere, and the top model cap.) The constants are derived as the vertical limits of the top and bottom caps from tank model 2. V_{CORR} is added to the values in VOLUME 2 to give values for VOLUME 3, as listed in the appendix.

It should be noted that the above expression for V_{CORR} is not an exact formula for the change in volume resulting from radial distortion of model 2 in accordance with function e(t). It is an approximation of sufficient accuracy for the present purpose.

Target Row	Mean z Coordinate, z(i)	e(z)
1	-18.1550	0
2	-18.0329	0099
3	-17.9533	+.0106
4	-16.9947	+.0008
5	-14.9747	0010
6	-12.5078	+.0002
7	-11.7968	+0017
8	- 8.6966	+.0033
9	- 4.6732	0003
10	9500	+.0047
11	- 2460	0050
12	- 0189	0050
13	0189	0209
14	0107	0038
14		+.0039
15	4.0301	0034
16	8.6699	0031
17	11.7571	0036
18	12.4686	0126
19	14.6601	0158
20	16.5733	0032
21	17.6457	0035
22	17.8109	+.0025
23	17.9894	0117
24	18.1276	0

Table 4. Mean radial target residuals in meters.

Comparison of NBS' and Consultants' Results

The data from the VOLUME 3 table will be regarded as the "NBS results." These figures are higher than the consultants' by 0.05% to 0.07%, which is probably due to the different methods used for the last numerical integration: where we fitted the data with a piecewise-linear function, the consultants used a polynomial of high degree. The other obvious difference, locating the bottom of the tank, does not account for more than a small fraction of the final differences in the sounding tables.

Sounding Table Error: Target Coordinate Error Contribution

Errors in the sounding tables may arise in four different ways: photo survey systematic error or bias, photo survey random coordinate error, approximation error in the numerical integration procedure, and tank model failure. The first two sources are statistical in nature and can be analyzed directly.

It has been established that an upper bound to the survey bias in the radial direction is 5 mm. We are now concerned with the volume of a spherical segment below a plane at height h above the bottom of the sphere:

$$V_{\rm h} = \frac{1}{3} \pi {\rm h}^2 (3r - {\rm h}).$$

It follows that

$$dV_{h} = \pi h^{2} dr,$$

and that the percentage error in volume is

$$\Delta V_h \% = \frac{100 \text{ dV}_h}{V_h}$$
$$= \frac{300 \text{ }\Delta r}{3r - h} .$$

For $\Delta r = 0.005$ m and r = 18.2 meters, we obtain the results shown in table 5.

h	ΔV _h
2	0.029% (0.064 m ³)
6	0.031%
10	0.034%
14	0.037%
18	0.041%
22	0.046%
26	0.052%
30	0.061%
34	0.073%
36	0.092% (20.7 m ³)

Table 5. Volume error as a function of meters of height.

Recall that the bound to possible bias used applies to this tank survey uniquely and need not apply to photo-surveying any other tanks. While the analysis is intentionally conservative, there are several unknown factors that could cause the bias to be underestimated.

Analysis of the coordinate random errors established an upper bound of 7 mm for the standard error of the radius to a target. It is believed that this is predominantly real tank surface fluctuations and that the random errors of measurement are smaller, perhaps as small as a 1-2 mm standard deviation. This implies that the appropriate method for computing volume tables is to integrate through each target as if it were without error rather than to use a fitted surface (Model 3 as opposed to Model 1 or 2). The effects of random error can be approximated as follows.

First, assume that the 408 targets are uniformly distributed over the surface of the sphere and that the effect of one target error on the integration is to displace a neighborhood of the target, equal in area to 1/408th of the surface, in or out. The differential effect on the volume is then

$$dV = \frac{4}{408} \pi r^2 dr.$$

It follows that if we let V_i be the volume error associated with the ith target, then

$$sd(V_{i}) = \frac{4}{408} \pi r^{2} sd(r_{i}).$$

We have sufficient information to let $sd(r_i)$ vary with the z coordinate and with the number of plates involved. However, to obtain an upper bound, we will use the worst-case value, $sd(r_i) = 7$ mm.

Let ${\tt V}_{\rm h}$ be the volume below the plane at height h. The error in ${\tt V}_{\rm h},\; {\tt \Delta V}_{\rm h},$ is the sum

$$\Delta V_{h} = \sum_{i=1}^{K} V_{i},$$

where the sum is over the K targets below h. It follows that

$$sd(\Delta V_h) = \frac{\sqrt{K} 4 \pi r^2 sd(r)}{408}$$

If the targets are uniformly distributed on the surface, K can be determined from

$$\frac{K}{408} = \frac{2 \pi rh}{4 \pi r^2}$$

or

$$K = \frac{204 h}{r}$$

The standard deviation of ΔV_h as a percentage of V_h is thus

$$\frac{100 \text{ sd}(\Delta V_{h})}{V_{h}} = \frac{100 [204 (h/r)]^{\frac{1}{2}} 4 \pi r^{2} \text{ sd}(r)}{408 (1/3) \pi h^{2} (3r - h)}$$

$$=\frac{42.008 \text{ r}^{3/2} \text{ sd(r)}}{h^{3/2} (3r - h)}$$

If we take the values sd(r) = 0.007 m and r = 18.2 m, we obtain the results shown in table 6.

h	sd(ΔV _h) %	$3sd(\Delta V_h)\%$	
1	0.42	1.26	
2	0.15	0.45	
6	0.032	0.096	
10	0.016	0.048	
14	0.011	0.033	
18	0.0082	0.025	
22	0.0068	0.020	
26	0.0060	0.018	
30	0.0056	0.017	
34	0.0056	0.017	
36	0.0057	0.017	

Table 6.	Percentage standard	deviation of	the error :	in the volume
	of the tank below	the plane at	height h.	

Note that the percentage error for shallow depths is very large because of the large tank-bottom surface involved with a small volume.

In actual use (custody transfer of the contents between the 95% and 5% levels), the top and bottom surfaces are not involved. The following computations apply.

Between the 31.4-meter and 5-meter heights, the surface area is 72.5% of the total, thus

$$sd(\Delta V_{s}) = \frac{\sqrt{K} * 4 \pi r^{2} sd(r)}{408}$$

where ΔV_s is the error in the volume sold and K* = 0.725 x 408 = 295.8. Then $sd(\Delta V_s)$ is 1.2 m³. As a percentage of the volume sold, this is 0.0053%. The $\pm 3\sigma$ uncertainty in the volume sold is then $\pm 3.6 \text{ m}^2$ or $\pm 0.016\%$. This result is conservative, being based on an upper bound to the actual random error. However, it is small compared to the possible error due to bias in the radius of the tank.

Earlier in this section, it was pointed out that, since there are no replicate measurements of the target coordinates, it is not possible to provide conclusive statements about target coordinate accuracy. That problem plagues us again in this discussion. We are not in a position to provide definitive, mathematically sound error bounds on model error contribution to sounding table error. We can, however, provide judgments that are sure to be conservative upper bounds. In this section, we offer such judgments.

The accuracy of the final volume corrections (difference between VOLUME 2 and VOLUME 3 values) is the first item of interest. These values are derived from the table of mean radial residuals, which are obtained by integrating (averaging) the individual radial residuals that appear in table 1. It is clear from figures 5 through 10 that the individual residuals varied widely on many rings of targets. How accurately does the mean radial residual represent the integral of the radial residuals for the given "latitude"? The representation is probably not within 10%.

Still more serious is the question of how well the tabulated mean radial residuals--tabulated for just those z-coordinate values that are the mean z values for the several rings of targets--indicate what occurs at intermediate values of z. Not well, we suppose, since the tabulated values of e vary considerably. A graph of the piecewise-linearized e is given in figure 20. Even if the erratic behavior of e at the top, bottom, and equator is removed, the remaining nontabular e values could easily be off by 50% or more.

This last leads to the conclusion that one should not fit a high-degree polynomial to such data. For integration purposes, a piecewise-linear fit is best; it has the effect of localizing the variations of e at the top, bottom, and equator to where they occur. A high-order fit, if used with the unmodified e's, distributes these effects throughout the table. The photogrammetric consultants apparently did remove the equatorial-ring variations before doing their integration. In the piecewise-linear integration, the total effect of these variations is limited to approximately 0.75 cubic meters. The consultants estimate the (negative) volume contribution of the equatorial ring at 1.4 cubic meters. The difference (-0.65 m^3) is less than 0.01% of the volume of the half-full tank and is insignificant. (In a comment on an earlier version of this report, the consultants stated that the sharp fluctuations of the e values in the cap region were also eliminated from the polynomial fit.)

Another question about accuracy which must be addressed is: To what degree is the behavior (i.e., the size and variation of the radial residuals) of the target points typical of the tank as a whole? One way of looking at this is to consider the question of bowing out (or bowing in = flattening) of the individual tank plates relative to the nominal sphere.

In an attempt to gain a clearer picture of this, a sphere was fit to each plate that had four target points, and a "local radius of curvature" was for that plate. The difference, $r-r_{LOC}$, where r is the radius of the sphere of best global fit, indicates the bowing or flattening of the plate. To summarize the results: for the lowest ring of plates (just above the bottom cap of the tank), the difference ranges from +35 cm to +66 cm, averaging +48 cm; for the next ring, $r-r_{LOC}$ ranges from -34 to +15 cm, averaging -2 cm; for the next ring (just above the equatorial ring), the range is from -50 to +17, averaging -7 cm; for the topmost ring of plates, the range is from -10 to +48, averaging +17 cm. A positive value for $r-r_{LOC}$ indicates bowing, a negative value flattening.

From these facts we concluded that the average flattenings of the two middle rows of plates were too small to matter, and probably valueless as averages, considering what the ranges were. For comparison, the flattening of the caps in Model 2 had $r-r_{LOC} = -230$ cm, and each produced a volume difference of only about 2 cubic meters. As for the top and bottom rings of plates, the larger positive average values of $r-r_{LOC}$ are probably due to the rapid change in curvature where those rings connect to the top and bottom caps of the tank (the "sharp bend" noticed in the exploratory statistical analysis). That volume effect is taken into account in Model 2. So the bowings seem to have no significant effect on the corrected volume calculation.

The final volume corrections, obtained by integrating in the manner described above, ranged from approximately +3 to -7 cubic meters. Figuring that e did not fluctuate between the "tabular" values of z more than twice the amount of fluctuation displayed in those values, and that in any case, these fluctuations are not likely to be in the same direction, we concluded, conservatively, that these final corrections are not off by more than 200%.

Since the correction amounts to no more than 0.03% of the volume, we conclude that the VOLUME 3 values are accurate to $\pm 0.06\%$ or ± 2 cubic meters, whichever is the larger for each elevation. Since the consultants' figures

are lower than ours, the worst possible case would be that in which our own figures are low by the full amount of our upper estimate. That would make the consultants' figures low by as much as 0.12%.

It should be stressed that these figures are intended as conservative upper bounds on the magnitude of the errors; the actual errors are probably much smaller. (For example, another possibility consistent with our estimate is as follows. The largest inaccuracy in our own table could be only 0.03%, in the direction of overestimation; and the consultants' largest error would then be also about 0.03%, in the opposite direction.)

One further question remains, however: could the target points be atypical? Notice on figure 2 that the points are all near edges (welding seams) of plates, not in the centers. Could it be that the welding seams are "close to" the nominal sphere but the interior of a plate is much farther away (bowed in or bowed out)? This would mean total plate curvature is not that calculated on the basis of the locations of the four target points. We have not been able to discover any reasons why this would be the case. In fact, there is some support for it not being so.

The plates are given their curvature in a hot press and then checked by template and welded into place, with seams that fit well to the design specifications judging from the nearby target points. It would be surprising for this to be the result of a coincidence in which the edges of all the plates possessed the correct curvature while the interiors of the plates had a different one. (It is not unreasonable that the caps came out with a different curvature from the plates because their geometry is different.) The other fairly large deviation from the design--the "sharp bend" referred to above--is presumably the effect, in the completed sphere, of the difference between the caps and the plates, as worked out through the internal stresses of the tank.

More quantitatively, we calculated the effect on the volume of the most extreme flattening, in which the plates would be quite straight in the side-toside direction and curved only in the z direction (so that a cross section of the tank by a horizontal plane would be a polygon). That would reduce the volume of the tank by about 400 cubic meters. Such bowing would be obvious to the eye. However, visual inspection of the tank, including following the motion of light reflections in its surface, did not reveal any. We conclude, therefore, that there is little or no systematic bowing, and that the volume effect of whatever bowing exists is probably no greater than the errors previously discussed.

REFERENCES

- Brown, D. C., Close-range camera calibration, Photogrammetric Engineering, 37, 855-866 (1971).
- [2] Brownlee, K. A., Statistical Theory and Methodology in Science and Engineering, John Wiley and Sons, New York (1965).
- [3] Collier, R. S., Ellerbruch, D., Cruz, J. E., Stokes, R. W., Luft, P. E., Peterson, R. G., Hiester, A. E., Mass quantity gauging by rf mode analysis, NBS Report NBSIR 73-318, National Bureau of Standards, Boulder, Colo. (1973).
- [4] Collier, R. S., Ellerbruch, D., RF total mass gauging in large storage containers: Empty tank modes, NBS Report NBSIR 73-346, National Bureau of Standards, Boulder, Colo. (1973).
- [5] Jelffs, P. A., Calibration of containers and gauges, J. Inst. Pet., <u>53</u>, No. 561, 117-125 (1972).
- [6] Ku, H. H., Precision measurement and calibration: Statistical concepts and procedures, NBS Special Publication 300, 1, 331-363 (1969).
- [7] Witzgall, C., Best approximating sphere in Rⁿ, unpublished working paper, Center for Applied Mathematics, National Bureau of Standards, Washington, D.C.

APPENDIX A: NBS SOUNDING TABLES

	ELEVATION	VOLUME 1	- VOLUME -2	VOLUME 3
* ••	1705	2.97856	1.63252	7 1.53643
•• = =	• 2	3.79401	- 2.29199	2.20887
	• 3	7.29895	5.35397	5,40005
	• 4	11.9094		- 9,84914
	• 5	17.6459	15+2797	15.549
* •	• 6	24.4822	22.1077	22,4627
	• 7	32.4260	30,3515	36.4760
	• 8	41.4659	39.8715	3 1 • 5737
	• 9	51.5958	49.2714	40,7407
	1.5	62,8094	50-4349	671. 9976
	1 + 1	75.1032	72 . 7258	73.3111
m a - 1444	1.2	88.4622	86.0277	F.6.5347
	1+3	102.889	100.514	101.120
	1.1.4	118.374	116+30	116.612
	12.24			
		energy and a second sec	 Billion is and periodic symplectic to the second second symplectic design of the second se	

. . .

~ ·

-

.

ELEVATION	VOLUME 1	VOLUME 2	VOLUME 3
1.5	134.912	132.537	133.156
1.1	152.475	-150.121	- 153, 905
1	171.119	168.746	1/4.372
1 - St	104.774	199-40	1071072
	211.459	200 102	265 717
2.1	211.070	207 • 105	
2.1	255,801		251 175
2.2	2320001 7 7979 . Aag	227.238	277 948
2 • 7	304.374	301-963	382.595
2.4	334146	327-731	328.361
2.5	356,915	354,502	355,127
2.4	324.668	382.255	782,875
2.7	413.398	411.785	411.599
2.8	443 5 99	445.585	······································
2.9	473.744	471.35	471.949
3.6	595,387	502.973	533.553
3.1	537.9/1	535 547	53/ 128
3 • 2	571.481	569.067	569.636
3.3	605.940	613-526	624.094
3.4	641.332	638.918	639,44.6
3.5	677.65	675.236	675.774
3.6	714.889	712.475	713.003
3.7	753,341	750 = 628	751.147
3 . 8	792.102	789.688	790,199
3.9	832.054	829.650	830.153
4.0	872.921	878-507	871.003
4.1	914.666	912-253	912.742
4.2	957,295	954.931	955,324
4 • 3	1000.80	998.386	998.843
4 . 4	1 145 . 17	1042.76	1043.23
4.5	1079-41	1088.00	1089.47
4.6	1136-51	1134.09	1134.56
4 + 7	1183.46	1181.34	1191-5
4 • 8 ge	1231.25	1228.83	1229.29
4 - 9 5	1279.98	1277.46	1277.42
5.00	1329.34	1326.93	1327.39
5.10	1379.43	1377.22	1377.67
5.20	1430.74	1428.32	1428.78
5.30	1482.66	1483.25	1490.70
5.40	1535:39	1532.97	1533.43
5.50	1588°9Z	1586.5	1586.95
5•60	1643+24	1649.83	1641.79
	1076+35		1676+4
5.80	1/24+25		1752+3
2+70	1010+72		18118.78
			1000 - 73
	1740+27	1727.15	1771+01
6 • 2 U 6 • 3 O	2045.24	上7回3・11 2回42、8つ	2043.35
6+30	2195-29	21012002	29.50
6-50	2166.99	2164 . 07	2165 03
6.49	2225 81	27274.346	······································
6.70	2291.46	2289.85	2289.65
6.80	2354193	2352.42	2353.04
6.90	2918.91	2416.5	2417-15
7.00	2483.7	2481.29	2481.96
7.10	2549.19	2546.78	2547.47
7.20	2615.38	2612.96	2613.58

ELEVATION	VOLUME 1	VOLUME 2	VOLUME 3	
7.30	2682.25	2679.83	268D.C3	
7.40	2749.8-	- 2747.39	2748.16	
7.50	2818-03	2815.62	2316-41	
7.69-	2886.93	2884.51	2885.33	
7.70	2956.49	2954.17	2954 . 42	
7.80	3026.7	3024.29	3025.17	
7.90	3097.57	3095.16	31396.66	
8.00	3169.08	3166.57	3147.40	
8.10	3241-23	3238.81	3239.79	
. 8.20	3314.01	3311.59	3312.59	
00	3387+41	3385.00	3386.07	
8.50	3761.43	3457.002	3460+974	
0.0.0	3611221	00000000000000000000000000000000000000	3616-01	
8.70	3687.15	3684.74	3485,99	
8.80	3763.59	3761-17	3762.35	
8.90	3840+61	3838.19	3979.41	
9.00	3918-21	3915.80	3917.05	
9.10	3996 - 39	3993.97	3995.26	
9.20	4075-13	4672.72	4974.04	, ~
9+30	4154.44	4152.03	4153.39	
.9 • 40	4234.31	4231.89	4233.29	
9.50	4314.72	4312.31	4313.74	
9.50	4395.68	4393.26	4394.73	
9.70	4477 • 17	4474.76	4476.26	
9.80	4559+19	4556.78	4558.32	
9.90 00-00	4724.01	4637.33	9690+71 	
10.00	4000.20	4005 00		
10.10	4892.47	4890.06	4891.73	1147.0
10.30	4977.06	4974.64	4976.35	
10.40	5062.13	5059.72	5061.45	
10.50	5147.70	5145.28	5147.04	
10.60	5233.74	5231.33	5233.11	~
10.70	5320+26	5317.85	5319.66	
10.80	5407+25	5404.83	5406.67	
10.90	5494.69	5492.28	5494.14	
11.00	5582.60	5580.18	5582.04	
11.ID	5670+95	. 5668.53	5670.44	
11.20		5/5/•33 EQUA EL	5/57°25 E680 E	
11.30	5938.64	5936-22	5938-18	
11.50	6928 • 72	6026.31	6023.29	
11.60	6119.22	6116.81	6118.8	
11.70	6210.14	6207.72	6209.73	
11.80	6301-46	6299.04	6301.07	
11.90	6393.17	6390.76	6392 . 86	
12.00	6485.29	6482.87	6484.92	
12.10	6577.78	6575.37	6577.43	
12.20	6670.66	6668.25	6670.32	
12.30	6/63.91	6761.50	6763.58	
12.40	085/+53 4051 51	6855.11	6857.2	
12.50	7042204	0447.09 042 - 40	6951.19 7045 551	
12.00	7140.52	7138.11	7145-22	
12.80	7235.54	7233.13	7235.24	
12.90	7330.91	7328.49	7330.61	
13.00	7426.59	7424-18	7426.30	

ELEVATION	VOLUME 1	VOLUME 2	VOLUME 3
13.10	7522.61	7523.19	2522.31
13.20	7618.84	7616.52	7618.64
13.30	7715-58	7713.17	7715,28
13.40	7812-52	7910-11	7912.23
13.50	7909.77	7977.36	7919.47
13.60	8097.3	8504.89	8047.0
13.70	8165-13	8192.71	8104.92
13.80	P203-23	8290.81	9202.92
13,90	8301+6	8299.19	8301.30
14.00	8450 • 24	3397.83	R399.94
14.10	8499 . 14	8496.73	9498,95
14.20	6598.30	3595.08	0598.(1
14.30	8697.7	8695.29	8697.42
14.4U 10 EG	8/9/035	8724043	
11.50	0007 20	0004 07	0070.Y/
	0777437	005 01	5777 6 57
14.83	707/+0/ 0+96,77	9195,01	2122.01
14.20	9298.98	9296.57	0298.78
15.00	9399.94	9397.53	9379.76
15.10	9501+1	9498.69	9500.95
15.20	9692-46	9666.04	9602.32
15.30	9703.49	9751.58	9703.28
15,40	9805.71	9823-38	9805.62
15.50	9947:60	9905.19	99四7。54
15.60	19.09.7	16067.2	10009.6
15.70	10111.9	10109.5	10111.9
15.80	19214.2	16211.8	15214.3
15.90	10316.8	10314.3	10316.8
16.00	10419.4	10417.0	16419.5
16.10	10524+2	10519.8	10522•3
10.40	19020+1	1004267	
14.46	10720-2	1072000	10931 4
10.10	10934.6	10932.2	10001+0
16.50	11838.8	11:35.6	11038.3
16.70	11141.4	11139.0	11141.8
16.80	11245.0	11247.6	11245.4
16.90	11348.6	11346.2	11349.1
17.00	11452.4	11459.0	11452.9
17.10	11556.2	11553.8	11556.7
17.20	11660.0	11657.6	11666.7
17.30	11764.0	11761.5	11764.6
17.40	11867.9	11865.5	11968.6
17.50	1197109	11969.5	11972.7
17.00	121000	12073+6	
17.80	12284.2	12281.8	12160+5
17.20	12388 4	12386-0	12389.0
18.00	12492.5	12490.1	12493.1
18.10	12596.7	12594.3	12597.1
18.20	12799.9	12699.5	12701.0
18.30	12805+0	12862.6	12005-1
18.40	12909.2	12906.8	12909.1
18.50	13013.4	13010.9	13013+2
18.50	13117.5	13115-1	13117.3
18.70	13221.6	13219.2	13221.4
18.80	13325.6	13323.2	13325+4

ELEVATION	VOLUME 1	VOLUME 2	VOLUME 3
18,97	13429.6	13427.2	13829.5
19.00 -	13523.6	13531.2	13533.4
19.13	13/37.5	1363571	13437.4
19.20	13741.4	13739.0	13741.3
19.30	13845.2	13542.5	13245.1
- 19.40	13948.9	13944.5	13248.9
19.50	14052.5	14051.1	14052.6
19.60	1415611	1915397	1415662
19.70	14259.6	14257.1	14259 - 7
19.80	14362.9	14360251	14363.1
19.93	14466.2	14463.8	14466.3
20+00	14557.3	14566.9	14569.5
Zu+10	14674.4	δ 13 65 A − 5 ± 5 ± δ 13 65 A − 5 ± 5 ± 5 ± 5 ± 5 ± 5 ± 5 ± 5 ± 5 ± 5	1957225
20.20	14878.4	1117767	14873.3
20.00	14995.7	10070.3	14981.0
20.50	15083.2	15380-8	15083.5
20.60	15185.6	15183.2	15185 9
20,70	15267.8	15285.4	15285.1
20.80	15389.8	15387.4	15390.1
20.90	15491.7	15487.3	15492.0
21.00	15593.4	15591.0	15593.7
21.10	15694.9	15692.5	15695.2
21.20	15796.3	15793.9	15796.6
21.30	15897.4	15895.0	15897.7
21.40	15998.4	15996 . 3	15998.7
21.50	16599.1	16396.7	16099.4
21.60	15199.7	161972	15199.9
21.00	16350.6	1627146	16300+2
21.50	16499.9	16377.5	16593.2
22.00	16599.6	16597.2	16599.8
22.18	16699.0	16696.5	16699.1
22.20	16798.1	16795.7	16798.2
22.30	16897.0	16894.5	16897.1
22.40	16995.6	16993.2	16995.7
22.50	17094.0	17691.5	17594.0
22.60	17192.0	17189.6	17192.1
22.70	1/289.8	17287,4	17289.8
22.09	17404 2	1/30767	1738703
22.79	17581.5	17579-1	1/703.5
23.10	17678.1	17675.7	17678.8
23.20	17774.4	17772.0	17774.2
23.30	17879.4	17868.0	17970.2
23.40	17966.1	17933.7	17965.8
23.50	18061.4	1'8059.0	18661.1
23.60	18156-4	18154.0	18154.1
23.70	18251.1	18248.7	18250.7
23.80	18345.4	18343.0	18345-0
23.90	16437.4	18436.9	18438.9
21.10	18626.2	10130-5	18532.4
24.20	18719	18716.6	19822+6
24.30	18811.5	18809-1	188111.9
24.40	189:3.6	18951.2	13902.9
24.50	18975.3	18992.9	18994.6
24.60	19086-6	19684-1	19895.9

447 1998 No. 1998 F.

ELEVATION	VOLUME 1	VOLUME 2	VOLUME 3
24.70	19177.4	12175.2	19176.7
24.85	19257.9	19265.3	17247.1
24,50	19358.0	19355.6	:9357 . 1
25+00	19447.6	19440.2	19446.7
25.10	19536.8	19534.4	19535+9
25.20	19625.6	19623.2	19624.6
25+30	19713.9	19711.5	19712 . 9
25.40	19801.8	19794.4	1990168
25+50	19889.2	19887.0	12888.1
25.60	19976.1	19973.7	19975.2
25.70	20062.6	20-36 3.2	20061.5
25.80	20148.5	20146.2	20147.5
25.90	20234.2	20231+8	28233+0
26.03	20319.2	2031628	20318+0
25.10	23433.8 	Z0401.44	2114 UZ 35
26+20	2018/00 20571 A	20105.4	201570 5
	20664.4	2020467	26571241
26.10	2003711	20734 5	20735.5
26.50	20818.9	2979340	20817.4
26.78	28918.4	26897.9	23898.9
26.80	20981.3	2:978.9	20079.7
26.90	21061.6	21115912	21061,1
27.00	21141.5	21137.1	21139.9
27.10	21220.7	21218.3	21219.1
27.20	21299.5	21297 .	21297.8
27.30	21377.6	21375.2	21375.9
27.40	21455.2	21452.7	21453.4
27.50	21532.1	24527.7	21530.4
27.60	21608+5	21384+1	21606.7
27.70	21684.3	21681.9	21682.5
	21234 1	21/2/01	21/5/+6
28.00	21037+1	21031+7	21002+2
28.10	21981.5	21979.1	21979.5
28.20	22054-2	22051.8	22:52.2
28.30	22126.3	22123.9	22124.2
28.40	22197.8	22195.4	22195.7
28.50	22268.6	22266.2	22266.4
28.60	22338.8	22336.4	22336.6
28.70	22458+3	22405.9	22406.1
28.80	22477.1	22474.7	22474.9
28.90	22545+3	22542.9	22543+0
29.00	22612.8	2261.3+4	22610.5
27+10	220/10/	226/ sed	226//+3
	22211243	220.0 0	22000 0
29,40	22876-0	22873.6	22873.5
29.50	22948-0	22937.6	22937.5
29.60	23003.3	23003.9	23600.7
29.70	23365.9	23963.5	23063.3
29.80	23127.8	23125.4	23125+1
29.90	23189.0	23186.5	23186.2
30.00	23249.4	23246.9	23246.6
30.10	23319.0	23306.6	23396.2
30.20	23347.7	23355.5	23365.0
34.30	23426.1	23423.7	2342201
30.40	73483.5	23481.1	23480.4

•

ELEVATION	VOLUME 1	VOLUME 2	VOLUME 3
30.40	23540.1	23537 .7	23536.2
30.75	23525.0	23693.6	23592.6
30.70	23651.0	23649.5	23647.5
30.00	23765.3	23732.8	23701.6
30.90	23759.7	23756.3	23755.6
31.00	23811.4	23909.6	23807.5
31.10	23863.3	23861 . 9	23859.2
31.20	23414.3	23911.9	23710.1
31.20	23964+6	23962.1	23943.2
31,90	24014.0	24211.6	24007.4
31.50	24052.5	24061.1	24057.8
31.60		之性 \$ 55 / 。 9 22 / 1 是 7 / 。 9	2319943
31.70	21457・2 	2415401	2015201
21.00	アフィーシーで つほうはなー母	2 コインシーク 3 4 3 5 7 - 5	
37.00	24292.7	2429 . 3	24267.2
32.10	24336-1	24333.7	24333.5
32.20	24378.7	24376.3	24372.9
32,30	24420.4	24418.0	24414.4
32.40	24441.2	24458.8	24455.0
32.50	24501.1	24498.7	24494.7
32.60	24546.1	24537.7	24533.6
32.70	24578.2	24575.3	24571.5
32.80	24615.4	24612.7	24608.5
32.90	24651.6	24649.2	24644.5
33.00	24686.9	24684 \$ 5	24679.7
33.10	24721.3	24718.9	24713.9
33.20	24754.8	24752.4	24747.2
33.3()	24787+3	24784.9	24779.6
33.70	27010 • 7 74247 . S	24967 1	24531.03
33.40	24879.1	24876-7	24871 8
33.70	24947.8	24965-4	24099.5
33-80	24935.5	24933.5	24927.1
33.90	24962.2	24959.7	24953.7
34.00	24987.9	24985.5	24979-3
34.10	25012+6	25910.2	25004.0
34.20	25036.3	25033.9	25027.6
34.30	25659.0	25056.6	25050.2
34.40	2508G•7	25978.3	25071.8
34.50	25101.4	25199+0	25092.5
34.60	25121.0		25112-0
37.70		2513/+2	25130+6
34.90	25157+2	25171.3	20170+1
35.00	25189.2	25186.8	25181.0
35.10	25293.6	25201.2	25194.4
35.20	25216.9	25214.5	25287.7
35.30	25229.2	25226.8	25220.0
35.40	25240.4	25238.0	25231.1
35.50	25250.5	25248.1	25241+2
35.60	25259.5	25257.1	25250.2
35.70	25267.5	25265.1	25258.1
35.80	25274.3	25271.9	25764.8
35.90	25286.0	25277.4	25270.4
36.00	イン/81 · 6 ラニフロロ · i	25281.0	25274.7
20-10	42400 · L	2 7 2 0 °C • 8	2577.7.
20.40	73270.1	2020000	13/14.3

APPENDIX B: PORTIONS OF PHOTOGRAMMETRIC CONSULTANTS' SOUNDING TABLES

SOUNDING TABLE AT -160 DEGREES C, TANK NO. 4

ELEV. (M)	VOL. (S)	DIFF •		ELEV.(M)	VOL: (S)	DIFF.
BOTTOM				•50	15.344	+582
•0000	• 000			•51	15.929	•585
		`		*52	16.524	•595
PEDESTAL				• 53	17.130	.606
•1705	2.213	43 49 66 69 49		• 54	17.748	•618
				• 55	18.378	•630
•18	2+438	•225		•56	19.019	•641
•19	5.665	•224		+57	19.671	• 652
•20	2.897	* 235		• 58	20+335	• 664
•21	3 • 144	•247		• 59	21+010	+675
•22	3.403	•259		•60	21.697	•687
•23	3+673	•270		*61	22.395	•698
• 24	3.955	•282		•62	23.104	•709
•25	4.248	•293		*63	23+825	•721
*26	4 • 553	•305		• 6 4	24.557	•732
•27 ==	4.870	•317		+65	25+301	e/44
•28	5.198	0328		*66	26:055	. /54
•29	5.538	•340		•67	26+822	• 767
• 30	5+890	• 352		• 68	27.599	• / / 7
•31	6+253	*363 275		*69	28.268	•789
* 52	6+628	•3/5		• / 0	29+188	•800
+33	7.014	• 386		•/1	30.000	• 812
• 34	/ • 412	• 398		*72	301063	* 823
• 35	1.821	•409		9/3 1	31:00/	+034 010
* 30	2 × 2 × 2 × 2		••	• / 4	32.002	+045 957
63/	8.6/4	• 4 3 4		• / 5	33+309	- CO+
• 38 jje	, J•118 0 574	• 4 4 4		*/6	34+667	6000
\$35	10.0/1	-450		······································	20:10/	• 0 0 U
640	10+041	# TO / 。 ム フ 오		· / c	30+220	1000
**1	11-009	.490		.80	37.813	.912
, • T C	11.511	.502		*81	38.741	.928
443 .44	12.024	-513		-82	39.683	.940
.45	12.549	.525		- 32	40.637	.954
445	13.085	•536		•84	41.602	.965
.47	13.632	.547	3	• 85	42.578	.976
.48	14.191	•559		•86	43.566	.988
.49	14.762	•571		.87	44.564	.998
				• 88	45.574	1.010
				•89	46.596	1.022
				• 90	47.628	1.032
				•91	48.672	1.044
				.92	49.726	1.054
	· · · · · · · · · · · · · · · · · · ·			•93	50.792	1.066
				.94	51-869	1.077
				. 95	52.958	1.089
				• 96	54.057	1.099
				• 97	55-168	1.111
				• 98	56.290	1.122
				• 99	57.423	1.133

SOUNDING TABLE AT -160 DEGREES C. TANK NO. 4

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ELEV + (M)	VOL. (S)	DIFF.	ELEV.(M)	VOL. (S)	DIFF +
	ELEV.(N) 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.34 2.35 2.36 2.37 2.38 2.39 2.40 2.37 2.38 2.39 2.36 2.37 2.38 2.39 2.40 2.41 2.35 2.36 2.37 2.38 2.39 2.40 2.41 2.42 2.37 2.38 2.39 2.40 2.41 2.42 2.44 2.45 2.46 2.47 2.47 2.46 2.47 2.46 2.47 2.46 2.47 2.47 2.47 2.46 2.47 2.47 2.46 2.47 2.47 2.46 2.47 2.47 2.46 2.47 2.47 2.46 2.47 2.47 2.47 2.46 2.47 2.47 2.46 2.47 2.47 2.47 2.47 2.47 2.46 2.47 2.47 2.47 2.46 2.47 2.47 2.	V0L. (S) 228.718 230.950 233.186 235.431 237.686 239.951 242.227 244.512 246.807 249.113 251.428 253.754 256.090 258.435 260.791 263.157 265.533 267.918 270.314 272.720 275.136 277.562 279.997 282.443 284.899 287.365 289.840 292.326 294.821 297.327 299.842 302.365 289.840 292.326 294.821 297.327 299.842 302.365 315.184 317.778 320.382 322.996 325.619 328.253 330.896 333.549 336.213 338.885 341.568 344.261	DIFF. 2.221 2.232 2.236 2.245 2.255 2.265 2.265 2.295 2.295 2.295 2.326 2.326 2.326 2.326 2.336 2.406 2.426 2.446 2.446 2.446 2.446 2.446 2.5539 2.5539 2.554 2.5594 2.664 2.663 2.664 2.663 2.664 2.663 2.664 2.663 2.664 2.663 2.664 2.663 2.664 2.663 2.664 2.663 2.664 2.663 2.664 2.664 2.663 2.664	ELEV • (M) 2 • 50 2 • 51 2 • 52 2 • 53 2 • 55 2 • 55 2 • 55 2 • 57 2 • 58 2 • 60 2 • 61 2 • 62 2 • 63 2 • 64 2 • 65 2 • 65 2 • 65 2 • 65 2 • 65 2 • 65 2 • 67 2 • 71 2 • 72 2 • 73 2 • 74 2 • 75 2 • 76 2 • 77 2 • 78 2 • 79 2 • 80 2 • 81 2 • 82 2 • 83 2 • 84 2 • 85 2 • 86 2 • 87 2 • 88 2 • 89 2 • 90 2 • 91 2 • 92 2 • 96 2 • 97	Vol. (S) 352 · 397 355 · 129 357 · 871 360 · 622 366 · 154 368 · 935 371 · 726 374 · 526 377 · 336 382 · 985 385 · 824 388 · 673 391 · 532 394 · 400 397 · 278 403 · 063 403 · 063 403 · 063 403 · 063 411 · 813 414 · 750 420 · 651 422 · 569 435 · 575 435 · 575 435 · 576 455 · 867 455 · 948 466 · 137 469 · 246 475 · 493 475 · 493 475 · 493 475 · 493 478 · 631 481 · 778 484 · 935 485 · 107	DIFF. 2.732 2.742 2.751 2.761 2.751 2.761 2.7790 2.810 2.819 2.819 2.830 2.8499 2.88499 2.8859 2.8993 2.8993 2.8993 2.8993 2.8993 2.8993 2.8993 2.8993 2.8993 2.8993 2.8993 2.8993 2.8993 2.8993 2.8993 2.9935 2.993 2.993 2.993 2.993 2.993 2.9999 2.993 2.9999 2.993 2.9999 2.993 2.9999 2.9999 2.9999 2.9999 2.9999 2.9999 2.9999 2.9999 2.9999 2.9999 2.9999 2.9999 2.9999 2.9999 2.99999 2.9999 2.9999 2.9999 2.9999 2.9999 2.9999 2.99999 2.99999 2.99999 2.99999 2.99999999 3.1099999 3.10999999 3.1128 3.11266 3.11266 3.11266 3.11266 3.11266 3.11266 3.11266 3.11266 3.11266 3.11266 3.11266 3.112666 3.112666 3.112666 3.112666 3.112666 3.112666 3.112666 3.112666 3.112666 3.11266666 3.11266666 3.1126666 3.11266666 3.11266666 3.11266666 3.11266666 3.11266666 3.112666666 3.112666666 3.11266666666666666666666666666666666666

in me wan po

SOUNDING TABLE AT #160 DEGREES C, TANK NO. 4

ELEV:(M)	VOL. (S)	DIFF +	ELEV (M)	VOL. (S)	DIFF
4 • 00 4 • 01	868•218 872•351	4•123 4•133	4•50 4•51	1085+605 1090+174	4•561 4•569
4.03	0/0+47C 880+643	4 • 1 5 1	4402	1034+/02	4+5/8
4.04	884+802	4 • 159	4+55	1103+933	4.595
4.05	888+970	4 • 168	4.55	1108:537	4.604
4.06	893+146	4.176	4 • 56	1113-149	4.612
4.07	897+332	4.186	4.57	1117.770	4.621
4 • 08	901 • 527	4 • 195	4 • 58	1122-399	4.629
4.09	905+730	4 • 203	4=59	1127:036	4.637
4 • 10	909.942	4.212	4.60	1131+683	4 = 647
4 • 11	914 • 163	4.221	4.61	1136-337	4.654
4 • 12	918+393	4 • 230	4 = 62	1141 • 001	4.654
4 • 1 3	9220536	4 • 2 3 7	4=63	1145+6/2	4=0/1
4 . 15	931.135	4.256	4+04	1100+303	4.689
4.16	935+400	4.265	4+65	11-0+0+2	4.697
4 • 17	939+674	4 . 274	4+67	1164 4445	4.706
4.18	943.957	4 • 283	4 • 68	1169+159	4.0714
4.19	948.248	4.291	4 • 69	1173.882	4.723
4.20	952+549	4.301	4+70	1178-613	4.731
4.21	956 • 858	4 = 309	4 • 7 1	[™] 1183+352	4.739
4.22	961+175	4+317	4 * 72	1188+101	4.749
4.23	965+502	4.327	4 = 73	1192+857	4.756
4.24	969 • 837	4.335	4 . 74	1197.622	4 = 765
4.25	974+181	40344	4 • 75	1202.396	40//4
4 • 20	2/8:234	40333	40/6	120/*1/8	4+102
4.28	987.265	4.370	4+77	1214.767	4.799
4.29	991.644	4+379	4.79	1221.574	4.807
4.30	996.032	4.388	4:80	1226+389	4.815
4.31	1000+428	4.396	4.81	1231-213	4.824
4.32	1004 • 833	4.405	4 • 82	1236+046	4.833
4 . 33	1009.247	4 . 4 1 4	4 • 83	1240.887	4 . 841
4 • 34	1013:670	4.423	4 = 84	1245.736	4.849
4.35	1018 • 101	4.431	4 • 85	1250+593	4.857
4.36	1022.540	4 • 439	4.86	1255.459	4.266
4.37	1026.989	4 • 4 4 9	4 • 87	1260.334	4+875
4 • 38	1031+446	4 • 4 5 /	4+88	1265+216	4.082
4=39	1030+912	4 • 400	4.89	12/0•10/	4+321
4 . 4 1	1044.869	4.483	4+50	1270.007	4+200
4.42	1049+361	4.492	4.92	1284+230	4.916
4.43	1053 • 861	4.500	4.93	1289.755	4.925
4 . 4 4	1058+370	4.509	4.94	1294 • 687	4 + 932
4.45	1062 • 888	4.518	4.95	1299.628	4.941
4.46	1067 • 414	4.526	4.96	1304 - 578	4 : 950
4.47	1071.949	4.535	4.97	1309.535	4.957
4 • 48	1076 • 492	4.543	4+98	1314.501	4.966
4.49	1081.044	4.552	4 • 99	1319.475	4.974

.

. 62

~

-

SOUNDING TABLE AT -160 DEGREES C, TANK NO. 4

ELEV.(M)	VƏL. (S)	DIFF +	ELEV.(M)	vel. (s)	DIFF.
6.00	1863.497	5.780	6.50	2162 • 125	6+155
6+01	1869•285	5•788	6+51	2168+288	6+163
6.02	1875+080	5+795	6.52	2174 • 457	6.169
6.03	1880+883	5+803	6.53	2180.634	6.1/7
6.04	1886+693	- 5+8 <u>10</u>	6+54	2186+819	6+185
0+05	1892+516	0.015	6.55	2193+010	6.191
6.05	1098+33/	5.824	6+56	21990209	6-199
6.08	1910-012	5.8/1	6907	22000710	6.217
6.00	1916-840	5.8/8	6.50	2211-029	6-221
6.10	1921.717	5.857	6.60	221/+000	6.228
6.11	1927.580	5.863	6+61	22244015	6.236
6+12	1933-452	5+872	6+62	2236:557	6.243
6+13	1939+331	5.879	6.63	2242.807	6.250
6.14	1945 • 217	5.886	6.64	2249.064	6.257
6 . 15	1951 • 111	5.894	6+65	2255+328	6.264
6 = 16	1957.013	5+902	6.66	2261.600	6.272
6 • 17	1962.922	5.909	6.67	2267+879	6.279
6 = 18	1968 • 839	5.917	6+68	2274+165	6.286
6 • 19	1974.763	5.924	6.69	2280+459	6.29%
6.20	1980+695	5+932	6•70	2286+759	6.300
6+21	1986 • 635	5.940	6+71	2293+067	6.308
6.22	1992+582	5.947	6.72	5566.385	6±315
6+23	1998 • 536	5:954	6+73	2305+704	6.355
6.24	2004 • 498	5.962	6.74	2312.034	6.330
6+25	2010+468	5.970	6•75	2318:371	6+337
6+26	2016•444	5.976	6•/6	2324=/14	6:343
6.27	2022•429	0 0 7 8 0 5 - 0 0 0	64//	5331.005	6.301
0 + 28	2028 • 421	5.999	61/8	233/0424	6 # 3 0 ½ 7 - 27 E
6.30	2034 420	6.007	6+79	23931/09	6,370
6.31	2046.442	6.015	6+81	2356.541	6.380
6.32	2052.463	6.021	6.82	5365*858	6.387
6.33	2058.493	6+030	6.83	2369.322	6.394
6.34	2064.522	6 • 036	6+84	2375.723	6+401
6.35	2070.574	6.045	6.85	2382+131	6+408
6,36	2076 . 625	6.051	6+86	2388+546	6.415
6.37	2082 • 684	6.059	6+87	2394+969	6.423
6+38	2088 • 751	6.067	6+88	2401.398	6.429
6.39	2094 • 825	6 • 074	6+89	2407+835	6.437
6.40	2100.905	6.081	6.90	2414.279	6.444
6 • 41	2106 • 995	6.089	6+91	2420.729	6+450
6 • 42	2113.091	6.096	6.95	2427 • 187	6.458
6=43	2119 • 194	6.103	6.93	2433.652	6.465
6 = 4 4	2125+305	6+111	6.94	2440.124	6.472
6+45	2131 + 423	0=110	6.95	2446+603	6.479
6.46	2137+549	6+126	6.96	2453+089	6 . 486
6.47	2143+682	0133	6197	2459.582	6 - 493
0.40	2143.822	6.1/8	6+38	2466+083	6.001
0.49	5100+310	0 = 140	0123	24/2.090	6+20/

SOUNDING TABLE AT +160 DEGREES C. TANK NO. 4

ELEV.(M)	VOL: (S)	DIFF +	ELEV.(M)	VOL. (S)	DIFF.
00•3	3164.911	7.184	8+50	3532+129	7.495
8.01	3172 • 102	7 • 191	8+51	3539+631	7.502
8+02	3179.299	7 • 197	8•52	3547,138	7.507
8+03	3186+503	7.204	8 • 53	3554-652	7 + 514
8+04	3193.713	7.210	8 = 54	3562.171	7.519
8 • 05	3200+929	7+216	8 • 55	3569+697	7+526
8 • 06	3208+152	1.223	8 = 56	3577+229	7.532
8.07	3215+381	7+229	8 * 57	3584 • 766	7.537
8.08	3222+616	7.235	8 * 58	3592.310	7.544
8+09	3229+857	70241	8:59	3599.859	7.549
8.10	323/0100	70248	8+60	3607+415	7+006
0 e 11	3244+360	7+200	8:01	361403//	7.002
0.12	3651.660	7 * 200	8:02	36661044	7:00/
0+13	3238 887	1+60/	8:03	3630 • 118	7.570
0 - 15	3200+100	7.220	0.65	303/102/	7.586
- OF10 8-16	3280 725	7.285	8+60	3640*203	7.591
8.17	3288+017	7.292	2 = 67	3650+472	7.598
8.18	3295.315	7.298	8:68	3668:075	7.603
8.19	3302+620	7 • 305	8+69	3675+684	7.609
8+20	3309+931	7.311	8+70	3683.300	7.616
8+21	3317 . 248	7.317	8 + 7 1	3690.921	7.621
8 • 22	3324+571	7:323.	8+72	3698+548	7.627
8.23	3331.900	7:329	8:73	3706 • 181	7+633
8.24	3339+236	7 • 336	8.74	3713+820	7.639
8 • 25	3346 - 578	7.342	8:75	3721.464	7.644
8 • 26	3353.926	7 . 348	8 • 76	3729+115	7.651
8.27	3361 . 281	7.355	8.77	3736+772	7.657
8 • 28	3368+641	7.360	8 • 7 8	3744 . 434	7.662
8.29	3376+008	7 • 367	8+79	3752.103	7.669
8+30	3383+381	7:373	8 • 80	3759+777	7.674
8 • 31	3390.760	7.379	8 = 81	3767 • 457	7.680
8+32	3398 • 145	7 • 385	8.82	3775+143	7.686
8 * 33	3405+537	7 • 392	8 • 83	3782.834	7.691
8.34	3412 934	7 • 397	8 * 84	3790.532	7.698
<u> </u>	3420+338	7.404	8 * 85	3798•235	7.703
8+36	3427+748	/•410	8+86	3805.945	7./10
8.37	3435+164	7.416	8+87	3813+660	7:/15
6 + 38 0 00	3442+585	7 • 422	8+88	3821+381	7.721
8.39	3450+015	7.423	8.89	3829+107	7+720
8 • 4 ()	3457+449	7 • 4 3 4	8+90	3836.040	70/33
0041	3404+030	78491	8.21	3844+078	7.744
8.40	3479,709	7.453	8.92	3002 022	7.750
5 . 4 h	3487.048	7.459	0 4 2 3	3867,828	7.754
8.45	3494-743	7.465	RADE TOT	3007 020	70750
8.46	3502.184	7 . 471	8.94	30/01007	7.769
8.47	3509.641	7.477	8 97	3891.130	7.773
8-48	3517.145	7.484	8.98	3898.908	7.778
8-49	3524 634	7.489	8.99	3906+693	7.785
0 - 72	JVGT UJT	,		57007075	, , , , , , , , , , , , , , , , , , , ,

4.50

a and a construction of a gap of gap of gap of any of the second of the
ELEV.(N)	V8L. (S)	DIFF.	ELEV.(M)	V9L. (S)	DIFF.
10.00 10.01 10.02 10.03 10.04 10.05 10.06	4721 • 386 4729 • 723 4738 • 065 4746 • 412 4754 • 764 4763 • 121 4771 • 484	8 • 332 8 • 337 8 • 342 8 • 347 8 • 352 8 • 357 8 • 363	10*50 10*51 10*52 10*53 10*54 10*55 10*56	5144.340 5152.924 5161.512 5170.105 5178.703 5187.306 5195.913	8 • 579 8 • 584 8 • 588 8 • 593 8 • 598 8 • 603 8 • 603
10.07 10.08 10.09 10.10 10.11 10.12 10.13	4779.851 4788.223 4796.601 4804.983 4813.371 4821.763 4830.161	8 + 367 8 + 372 8 + 378 8 + 382 8 + 388 8 + 392 8 + 398	10.57 10.58 10.59 10.60 10.61 10.62 10.63	5204 • 525 5213 • 142 5221 • 764 5230 • 390 5239 • 021 5247 • 657 5256 • 297	8+612 8+617 8+622 8+626 2+631 8+636 8+640
10 • 14 10 • 15 10 • 16 10 • 17 10 • 18 10 • 19	4838.563 4846.971 4855.384 4863.801 4872.224 4880.651	8 • 402 8 • 408 8 • 413 8 • 417 8 • 423 8 • 427 8 • 427	10•64 10•65 10•66 10•67 10•68 10•69	5264.942 5273.592 5282.246 5290.905 5299.569 5308.238	8 • 6 4 5 8 • 6 5 0 8 • 6 5 4 8 • 6 5 9 8 • 6 6 4 8 • 6 6 9
10.20 10.21 10.22 10.23 10.24 10.25 10.26	4897.521 4905.964 4914.411 4922.863 4931.321 4939.783	8 • 437 8 • 443 8 • 443 8 • 447 8 • 452 8 • 458 8 • 462	10•71 10•72 10•73 10•74 10•75 10•76	5325.589 5334.271 5342.958 5351.650 5360.346 5369.047	8 673 8 678 8 682 8 687 8 692 8 696 8 696 8 701
10.27 10.28 10.29 10.30 10.31 10.32	4948 • 250 4956 • 722 4965 • 199 4973 • 681 4982 • 168 4990 • 659	8 • 467 8 • 472 8 • 477 8 • 482 8 • 482 8 • 487 8 • 491 8 • 497	10.77 10.78 10.79 10.80 10.81 10.82	5377.753 5386.463 5395.178 5403.897 5412.621 5421.350	8 • 706 8 • 710 8 • 715 8 • 719 8 • 724 8 • 729
10.33 10.34 10.35 10.36 10.37 10.37 10.38 10.39	5007.657 5016.164 5024.675 5033.191 5041.712 5050.238	8 • 5 C 1 8 • 5 C 1	10*83 10*84 10*85 10*86 10*87 10*88 10*89	5430.003 5438.821 5447.563 5456.310 5465.061 5473.817 5482.577	8 • 7 3 3 8 • 7 3 8 8 • 7 4 2 8 • 7 4 7 8 • 7 5 1 8 • 7 5 6 8 • 7 6 0
10.40 10.41 10.42 10.43 10.43 10.44 10.45	5058.769 5067.304 5075.844 5084.389 5092.939 5101.494	8 • 531 8 • 535 8 • 540 8 • 545 8 • 550 8 • 555	10:90 10:91 10:92 10:93 10:94 10:95	5491:342 5500:112 5508:886 5517:665 5526:448 5535:235	8 • 765 8 • 770 8 • 774 8 • 779 8 • 783 8 • 783
10•45 10•47 10•48 10•49	5110.054 5118.618 5127.187 5135.761	8 • 560 8 • 564 8 • 569 8 • 574	10*96 10*97 10*98 10*99	5544•027 5552•824 5561•625 5570•430	8+792 8+797 8+801 8+805

65

FLEVALMA	VAL (C)	DIFE	FL CV. (M)		DYFE .
	1000 (5)	O I I I I		AGE (2)	oli
12.00	6481+737	9.559	12.50	6947.772	9.410
12.01	6490.966	9,229	12.51	6957 • 185	9.413
12.02	6500+199	9.233	12+52	6966+602	9.417
12:03	6509 • 436	9+237	12:53	6976+022	9.420
12+04	6518+677	9.241	12:54	6985+446	9.404
12:05	6527 . 921	9.244	12.55	6994+873	9.427
12.06	6537 • 169	9.248	12.56	7004.304	9.431
12.07	6546 • 422	9.253	12+57	7013+739	9.435
12.08	6555 • 678	9.256	12.58	7023+176	9.437
12.09	6564 • 937	9.259	12.59	7032.618	9.442
12:10	6574 . 201	9 • 264	12.60	7042+062	9 - 444
12.11	6583+468	9+267	12+61	7051.511	9.449
12.12	6592+739	9.271	12+62	7060.962	9:451
12.13	6602+014	9.275	12:63	7070+417	9.455
12.14	6611+292	9.278	12.64	7079.876	9.459
12:15	6620+575	9.283	12.65	7089+338	9.462
12:16	6629+861	9+286	12+66	7098+803	9.465
12.17	6639:151	9 • 290	12+67	7108.272	9.469
12.18	6648 • 444	9 • 293	12+68	7117.745	9.473
12.19	6657 • 742	9:298	12:69	7127.220	9.475
12.20	6667:043	9+301	12+70	7136.700	9+480
12.21	6676 • 347	9+304	12.71	7146.182	9.482
12.22	6685+656	9.309	12:72	7155+668	9.486
12.23	6694 • 968	9.312	12+73	7165 • 157	9.489
12.24	6704 • 284	9.316	12.74	7174+650	9+493
12.25	6713.603	9.319	12.75	7184 • 146	9+496
12.26	6722 926	9•323	12.76	7193.646	9.500
12.27	6732 • 253	9.327	12.77	7203.148	9.502
12+28	6741 • 584	9+331	12+78	7212+655	9+507
12.29 at	6750+918	9.334	12:79	7222 • 164	9.509
12.30	6760+256	9.338	12.80	7231 • 677	9.513
12:31	6769+597	9.341	12+81	7241,193	9.516
12+32	6778 942	9.345	12.82	7250 • / 13	9.520
12.33	6788 • 291	9.349	12:83	7260+236	9+523
12+34	6/9/0644	9.353	12.84	7269+762	9.526
12+35	6807 000	7:355 9.350	12:85	7279.292	9.530
12:30	6016:359	7:357	12:06	7288+825	9.033
12+3/	60250/25	2:304	12:0/	7298+301	9+230
12:30	6033 (070	9.370	12:08	7307+200	9.539
12-40	4852,924	9,374	12.03	731/173	0.545
12040	6862.212	9.378	12+20	7320 700	0.540
12.42	6872.593	9.381	12+92	7346.091	9.549
12.43	6881+978	9.385	12.93	7355.647	9.556
12.44	6891 . 367	9.389	12.94	7365.206	9.559
12.45	6900+759	9+392	12.95	7374.768	9.562
12.46	6910-154	9.395	12.96	7384 .334	9.566
12.47	6919.553	9.399	12.97	7393.903	9.569
12.48	6928 956	9.403	12.98	7403 • 475	9.572
12:49	6938 • 362	9.406	12.99	7413.050	9.575

- -----

** * ****

en 118/

ELEV.(M)	VeL. (S)	DIFF.	ELEV . (M)	VOL. (S)	DIFF.
14.00	8395•708	9.870	14+50	8892.379	9.992
14.01	8405+580	9.872	14 • 51	8902+373	9.994
14:02	8415+455	9 • 875	14.52	8912+370	9:997
14.03	8425+332	9.877	14+53	8922+369	8.999
14.04	8435+212	. 9+880	14 • 54	8932+370	10.001
14+05	8445+095	9+883	14.55	8942.373	10+003
14:06	8454 • 980	9•885 0 000	14.56	8952+379	16:006
14+07	8404 e 808 91.771 - 750	70000	1400/	8962+367	10.008
14.09	8484.451	9.892	14400	0972-110	10.012
14.10	2191.517	9.896	14.50	0002-424	10:015
14-11	8504.445	9.898	14.61	9002,441	10.017
14.12	8514.345	9.900	14=62	9012.460	10=019
14+13	8524 . 249	9.904	14+63	9022.482	10.022
14 . 14	8534 • 154	9.905	14:64	9032+505	10.023
14+15	8544 • 062	9.908	14.65	9042.531	10.026
14 • 16	8553+973	9.911	14.66	9052+559	10=028
14 = 17	8563+886	9.913	14.67	9062:589	10+030
14 • 18	8573 801	9.915	14+68	9072.621	10:032
14+19	8583+719	9.918	14.69	9082.656	10.035
14.20	8593+640	9.921	14+70	9092.695	10.036
14+21	8603+563	9+923	14 • 71	9102.731	10.039
14+22	8613+488	9.925	14+72	9112.772	1C * 041
14+23	8623+416	9.958	14:73	9122+815	10:043
14+24	8633+347	7:731	14*/4	9132+860	10.045
14+20	8043 COU	71733	1.4 + 75	9142.908	10:048
14.27	8662.153	9.938	149/0	9152+557	10.052
14.28	8673.093	9.940	14.78	9173-063	10.054
14.29	8683+035	9.942	14+79	9183.119	10:056
14:30	8692.980	9.945	14 • 80	9193+177	10:058
14.31	8702 • 928	9:948	14 • 81	9203+237	10.060
14.32	8712 . 878	9.950	14 . 82	9213+299	10.062
14+33	8722+830	9+952	14.83	9223+363	10.064
14.34	8732 • 785	9.955	14.84	9233+430	10+067
14:35	8742.742	9.957	14.85	9243+498	10=068
14=36	8752 701	9.959	14 • 86	9253.569	10.071
14:37	8762+663	9.962	14.87	9263.641	10.072
14+38	8//2+62/	20264	14*88	92/3+/16	10.0/5
14.39	8782+593	7 7 7 6 0	14.89	92830792	10.076
14040	8/32+30C	9.971	14+20	9293:0/1	10.079
14.40	8812-507	9.974	14 92	9214-025	10-022
14.42	8822.483	9.976	14.92	9324-120	10-085
14.44	8832-461	9.978	14.94	9334.206	10+086
14 . 45	8842.442	9.981	14.95	9344+295	10.089
14.46	8852 424	9.982	14.96	9354 . 386	16+091
14.47	8862.410	9.986	14.97	9364+479	10.093
14 • 48	8872 . 397	9.987	14.98	9374 . 574	10.095
14.49	8882•387	9.990	. 14.99	9384+671	10.097

67

ELEV.(M)	VƏL: (S)	DIFF.	ELEV.(M)	vol. (s)	DIFF.
16.00	10413.592	10.266	16.50	10928 • 460	10.325
16.02	10424-127	10+505	10-01	10338+700	10.320
10.02	10444.397	10.270	16:02	10949+114	10-328
16.04	10454+668	10+271	16+54	10969.772	10.330
16.05	10464.940	10.272	16.55	10980.102	10.330
16:06	10475+213	10.273	16.56	10990+434	10.332
16.07	10485+488	10.275	16.57	11000.766	10.332
16.08	10495 . 764	10.276	16.58	11011+100	10.334
16+09	10506=042	10.278	16.59	11021.434	10.334
16+10	10516+321	10.279	16+60	11031.770	10.336
16+11	10526+601	10.280	16+61	11042.106	10.336
16+12	10536.882	10.281	16+62	11052 . 444	10.338
16.13	10547 • 164	10.282	16+63	11062.782	10.338
16.14	10557+448	10.284	16.64	11073.121	10.339
16015	1056/+/33	10.285	16.65	11083+462	10:341
10+10	105/8:020	10+287	16+66	110930803	10+341
16.18	10598-596	10.288	16807	111040190	10.342
16.19	10608+887	10.291	16.69	11124.832	101344
16.20	10619+178	10.291	16.70	11135.177	10.345
16.21	10629.470	10.292	16+71	11145.523	10.346
16.22	10639+764	10.294	16.72	11155.869	10.346
16.23	10650.059	10.295	16+73	11166+217	10.348
16.24	10660+355	10.296	16 • 74	11176.566	10.349
16.25	10670 • 653	10.298	16 • 75	11186.915	10.349
16.26	10680.952	10-299	16.76	11197.265	10.350
16.27	10691.251	10.299	16.77	11207-616	10+351
16.28	10/01+552	10.301	16+78	11217.968	10.352
10.29	10/11:854	10.302	16¢/9	11228+321	10.353
10030	10722+100	101304	16*00	11238.075	10:304
10:33	10742+768	10.304	16001	112790030	10:305
16:33	10753+075	10:307	10.02	11259.305	10:355
16.34	10763+383	10.308	16+84	11280.098	10.357
16.35	10773+692	10.309	16,85	11290+456	10+358
16:36	10784.002	10.310	16.86	11300-815	10.359
16.37	10794.313	10.311	16+87	11311 • 175	10.360
16.38	10804 • 626	10:313	16.88	11321.535	10.360
16+39	10814 939	10.313	16.89	11331.896	10.361
16.40	10825.254	10:315	16+90	11342+258	10.362
16.41	10835+570	10+316	16+91	11352.621	10:363
16.42	10845+887	10.317	16+92	11362+984	10.363
16.43	10856+204	10.31/	16+93	113/3+349	10.365
10+44	10876-044	10-317	16.94	11303+/14	10:365
10145	10887.1/5	10*351	10+25	11324.079	10.365
16.47	10897-487	10.322	16.20	114040445	10.367
16.42	10907-810	10.323	16.98	11425-181	10-368
16.49	10918-135	10.325	16+99	11435+550	10.369
20112	* 0 - 1 0 + 1 0 0	10.000	10-22	11,00,000	101000

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ELEV.(M)	VOL. (S)	DIFF.	ELEV.(M)	VOL: (S)	DIFF:
	18.00 18.01	12485•112 12495•507	10•395 10•395	18•50 18•51	13004+686 13015+077	10•393 10•391
	18.02	12505+903	10.396	18+52	13025 . 469	10.392
	18.03	12516+298	10.395	18.53	13035+860	10.391
16.0512537.08910.39518.5513056.64210.39118.0612547.48510.39618.5613067.03310.39118.0712557.88110.39618.5713077.42310.39018.0812578.77210.39518.5913077.42310.39018.0912578.77210.39618.5913087.81310.39018.1012589.06810.39618.6013108.59310.39018.1112599.46410.39618.6113129.37110.38518.1312620.25610.39618.6213139.75910.38818.1412630.65210.39618.6413150.14810.38918.1512641.04810.39618.6613170.92310.38718.1612651.44210.39418.6613170.92310.38718.1712661.82510.38318.6713222.90310.40118.2112703.35610.38318.7713222.90310.40118.2112703.35610.38318.7713224.372410.40118.221274.12110.38318.7713264.50410.40118.221274.42110.38318.7713264.50410.40118.221274.420410.38318.7713264.50410.40118.2112703.35610.38218.7713264.50410.40118.221274.420410.38318.7713264.50410.40118.241274.420410.38318.7713264.504 <td>18.04</td> <td>12526+694</td> <td>10.396</td> <td>18.54</td> <td>13046.201</td> <td>10.391</td>	18.04	12526+694	10.396	18.54	13046.201	10.391
1 8. 061 2547.4851 0.3961 8.561 0.67.6331 0.3911 8. 071 2557.8811 0.3961 8.571 3077.4231 0.3901 8. 091 2572.6721 0.3951 8.591 3098.2031 0.3901 8. 101 2589.681 0.3961 8.601 3118.9821 0.3891 8. 111 2599.4641 0.3961 8.611 3118.9321 0.3891 8. 121 2609.8601 0.3961 8.631 319.7591 0.3891 8. 131 2620.2561 0.3961 8.641 3150.1481 0.3891 8. 141 2630.6521 0.3961 8.641 3150.1481 0.3891 8. 151 2641.0481 0.3961 8.651 3160.5361 0.3891 8. 161 2651.4421 0.3941 8.661 3170.9231 0.3871 8. 171 2661.8251 0.3831 8.671 3181.3111 0.3881 8. 161 2672.2071 0.3821 8.691 3202.1001 0.4021 8.201 2692.9731 0.3831 8.771 3222.9031 0.4001 8.211 2703.3561 0.3831 8.771 3224.9741 0.4001 8.221 2713.781 0.3821 8.771 3254.1741 0.4011 8.221 2734.5041 0.3831 8.771 3264.5241 0.4001 8.221 274.9031 0.4821 8.771 3264.5241 0.4001 8.231 274.9031 0.3821 8.771 3264.5241 0.4001 8.241 274.5031 0.3821 8.77	18:05	12537 089	10.395	18+55	13056-642	10.391
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.06	12547 . 485	10.396	18.56	13067.033	10:391
18:0812668:2710:39618:581302/*81310:39018:0912572:67210:39518:5913028:20310:39018:1112589:66810:39618:6013108:59310:39018:121260:86010:39618:6213129:37110:38518:1312620:25610:39618:6313139:75910:38818:1412630:65210:39618:6413160:14810:38918:1512641:04810:39618:6413170:92310:38718:1612651:44210:39418:6613170:92310:38718:1712661:82510:38318:6713181:31110:38818:1912682:59010:38318:6913202:10010:40218:2012672:97310:38318:711322:50110:40018:211270:375610:38218:721323:30310:40018:221271:373810:38218:731324:70410:40118:2312724:12110:38318:7413254:10210:39918:241273:50410:38218:7513264:50410:40018:251274:88610:38218:761326:50210:39918:261275:26910:38218:761326:50210:39918:251274:88610:39518:811326:85510:39918:261275:26910:38218:7713245:30210:39918:271276:65110:39518:8113326:89510:399<	18.07	12557 • 881	10+396	18 • 57	13077 • 423	10.390
18:09 $12578 \cdot 672$ 10:395 $13:659$ $13:6523$ $10:390$ 18:10 $12588 \cdot 628$ $10:396$ $18:60$ $13108 \cdot 523$ $10:390$ 18:11 $12599 \cdot 464$ $10:396$ $18:62$ $13129 \cdot 711$ $10:389$ 18:12 $12609 \cdot 860$ $10:396$ $18:62$ $13129 \cdot 751$ $10:389$ 18:13 $12620 \cdot 256$ $10:396$ $18:63$ $13139 \cdot 759$ $10:383$ 18:14 $12630 \cdot 652$ $10:396$ $18:64$ $13150 \cdot 148$ $10:389$ 18:15 $12641 \cdot 048$ $10:396$ $18:65$ $13160 \cdot 536$ $10:383$ 18:16 $12651 \cdot 442$ $10:394$ $18:66$ $13170 \cdot 923$ $10:383$ 18:16 $12672 \cdot 207$ $10:382$ $18:68$ $13191 \cdot 698$ $10:387$ 18:19 $12682 \cdot 590$ $10:383$ $18:70$ $13222 \cdot 903$ $10:402$ 18:21 $12703 \cdot 356$ $10:383$ $18:71$ $13222 \cdot 903$ $10:402$ 18:22 $12713 \cdot 738$ $10:382$ $18:73$ $13243 \cdot 724$ $10:400$ 18:23 $1274 \cdot 121$ $10:383$ $18:74$ $13254 \cdot 10:402$ 18:24 $12734 \cdot 504$ $10:382$ $18:75$ $13264 \cdot 524$ $10:402$ 18:25 $1274 \cdot 813$ $10:382$ $18:74$ $13254 \cdot 10:402$ 18:26 $12755 \cdot 269$ $10:383$ $18:76$ $13274 \cdot 923$ $10:399$ 18:27 $12765 \cdot 651$ $10:382$ $18:77$ $13285 \cdot 322$ $10:399$ 18:28 $12776 \cdot 033$ $10:395$ $18:83$ $1337 $	18.08	12568+277	10.396	18+58	13087.813	10.390
18:1012589.668 $10*396$ 18:601318.93210*39018:1112599.464 $10*396$ $18*61$ 1318.932 $10*389$ 18:1212609.860 $10*396$ $18*64$ 1319.759 $10*389$ 18:1312620.256 $10*396$ $18*64$ 13150.148 $1c*389$ 18:1412630.652 $10*396$ $18*64$ 13170.923 $1c*387$ 18:15 12641.048 $10*394$ $18*66$ 13170.923 $1c*387$ 18:14 $12651.*42$ $10*394$ $18*66$ 13170.923 $1c*387$ 18:15 12641.048 $10*394$ $18*66$ 13170.923 $1c*387$ 18:17 $12651.*42$ $10*383$ $18*67$ $1322.*501$ $1c*387$ 18:19 $12682.*590$ $10*383$ $18*71$ 13222.903 $1c.400$ 18:21 12703.356 $10*383$ $18*71$ 13224.903 $1c*402$ 18:22 12713.728 $10*383$ $18*73$ 13243.704 $1c.400$ 18:23 1274.904 $10*383$ $18*74$ 13254.104 $1c*400$ 18:24 12734.504 $10*382$ $18*77$ 13285.322 $1c*399$ 18:25 12744.866 $10*382$ $18*77$ 13265.322 $1c*399$ 18:24 1276.651 $10*385$ $18*76$ 13274.923 $1c*399$ 18:25 12746.861 $10*395$ $18*81$ 13326.853 $1c*399$ 18:30 12766.811 $10*395$ $18*81$ 13326.858 $10*396$ 18:31	18.09	12578+672	10.395	18*59	13098+203	10.390
18:11 12539:4:64 10:336 18:01 13129:271 10:369 18:12 12609:860 10:396 18:62 13129:271 10:389 18:13 12620:256 10:396 18:63 13139:759 10:388 18:14 12630:652 10:396 18:64 13160:6536 10:388 18:15 12641:048 10:394 18:66 13170:923 10:387 18:15 12661:825 10:383 18:67 13181:311 11:338 18:19 12682:550 10:383 18:67 13212:501 10:402 18:20 12692:973 10:383 18:71 1322:503 10:402 18:21 12703:356 10:383 18:71 1324:376 10:401 18:22 12713:728 10:383 18:73 1324:376 10:401 18:23 12724:121 10:383 18:73 1324:376 10:401 18:24 12734:504 10:383 18:77 1326:502 10:401 18:25 1274:486 10:382 18:75 1326:4564 10:400 18:2	18.10	12589+068	10:396	18.00	13106*073	10:370
18.1212009.00010.30018.0213.09.75910.38018.1412630.65210.39618.6313139.75910.38818.1512641.04810.39618.6413150.14810.38918.1512641.04810.39418.6613170.92310.38718.1612651.44210.39418.6613170.92310.38718.1912682.59010.38318.6713181.31110.38818.1912682.59010.38318.6713212.50110.40218.2012692.97310.38318.701322.90310.40018.2112703.56610.38318.711322.90310.40018.221271.77810.38318.721323.33310.40018.2312724.12110.38318.741326.40010.40018.241275.26910.38318.771326.450410.40018.251274.86610.38218.771326.450410.40018.261275.26910.38318.771326.450410.40018.251274.86610.38218.771326.450410.39918.281276.63310.38218.771326.450410.39918.291276.63110.39518.801316.49710.39818.3012796.81110.39518.821337.60510.39818.321287.60110.39518.821337.62210.39818.321287.90610.39518.821337.87510.395 <td>10.11</td> <td>12000.860</td> <td>10.396</td> <td>12+01</td> <td>131100202</td> <td>10.389</td>	10.11	12000.860	10.396	12+01	131100202	10.389
18.14 12630.652 10.396 18.63 13150.148 10.389 18.15 12641.048 10.396 18.65 13160.536 10.389 18.16 12651.442 10.394 18.66 13170.923 10.387 18.16 12651.442 10.394 18.66 13170.923 10.387 18.17 12661.825 10.383 18.67 13181.311 10.388 18.19 12682.590 10.383 18.69 13202.100 10.402 18.21 12703.356 10.383 18.71 13222.903 10.402 18.21 12703.356 10.383 18.71 13222.903 10.402 18.22 1273.738 10.383 18.71 13224.904 10.401 18.23 12724.121 10.383 18.74 13254.104 10.401 18.25 1274.486 10.382 18.73 13254.104 10.400 18.25 1274.486 10.382 18.71 13254.104 10.400 18.25 1274.486 10.382 18.77 13285.302 10.399 18.2	18.13	12620+256	10+396	18:63	12129.759	10.388
18.15 12641.048 10.396 18.65 13160.536 10.388 18.16 12651.442 10.394 18.65 13160.536 10.387 18.17 12661.825 10.383 18.67 1311.311 10.388 18.19 12682.590 10.383 18.69 13202.100 10.402 18.20 12692.973 10.383 18.70 13212.501 10.402 18.21 12703.356 10.383 18.71 13222.903 10.402 18.22 12713.738 10.382 18.72 1323.303 10.402 18.23 12724.121 10.383 18.73 13243.704 10.401 18.23 1274.121 10.383 18.74 13254.104 10.401 18.24 12734.504 10.383 18.74 13265.502 10.399 18.25 12744.886 10.382 18.77 13265.302 10.399 18.26 12755.269 10.383 18.79 13306.099 10.399 18.26 12764.861 10.382 18.77 13285.302 10.399 18.	18.14	12630+652	10.396	18:64	13150.148	10.389
18.1612651.44210.39418.6613170.92310.38718.1712661.82510.38318.6713181.31110.38718.1812672.20710.38218.6813120.10010.40218.1912682.59010.38318.6913202.10010.40218.2012692.97310.38318.7013212.50110.40118.2112703.35610.38318.7113222.90310.40018.2212713.73810.38318.731324.50410.40118.231274.12110.38318.731324.50410.40118.241273.50410.38318.731324.50410.40018.251274.88610.38218.7513274.90310.39918.251274.88610.38218.7513274.90310.39918.2712765.65110.38218.7713285.30210.39918.2812776.03310.38218.7713264.50410.39918.2912786.41610.38518.7913306.09910.39918.2912786.41610.39518.8013316.49710.39818.3112807.20610.39518.8113326.89510.39618.3112807.20610.39518.821337.82710.39518.3112807.96810.39518.8213347.68810.39618.331287.99610.39518.8513368.46810.39618.331287.99610.39518.84513368.46810	18+15	12641.048	10.396	18+65	13160+536	10.388
18.17 12661.825 10.383 18.67 13181.311 $1C.338$ 18.18 12672.207 10.382 18.68 13191.698 10.387 18.19 12682.590 10.383 18.69 13202.100 10.402 18.20 12692.973 10.383 18.70 13212.501 10.402 18.21 12703.356 10.383 18.71 13222.903 10.402 18.22 1274.121 10.383 18.73 13243.704 10.400 18.23 12724.121 10.383 18.73 13243.704 10.400 18.24 12734.504 10.382 18.75 13264.504 10.400 18.25 12744.886 10.382 18.75 13264.504 10.399 18.26 12755.269 10.383 18.76 13274.903 10.399 18.27 12765.651 10.382 18.77 13285.302 10.399 18.28 12776.033 10.382 18.77 13285.9701 10.399 18.29 12786.416 10.395 18.80 13316.497 10.398 18.33 1287.996 10.395 18.83 13347.688 10.396 18.33 1287.996 10.395 18.83 13347.688 10.396 18.33 12879.968 10.394 18.89 13347.6875 10.395 18.33 12879.968 10.394 18.89 13410.058 10.394 18.39 12890.362 10.394 18.891 1343	18.16	12651 • 442	10.394	18+66	13170.923	10+387
$18 \cdot 18$ $12672 \cdot 207$ $10 \cdot 382$ $18 \cdot 68$ $13191 \cdot 698$ $10 \cdot 387$ $18 \cdot 19$ $12682 \cdot 590$ $10 \cdot 383$ $18 \cdot 69$ $13202 \cdot 100$ $10 \cdot 402$ $18 \cdot 20$ $12692 \cdot 973$ $10 \cdot 383$ $18 \cdot 70$ $13212 \cdot 501$ $10 \cdot 402$ $18 \cdot 21$ $1273 \cdot 356$ $10 \cdot 383$ $18 \cdot 70$ $13212 \cdot 501$ $10 \cdot 402$ $18 \cdot 22$ $12713 \cdot 738$ $10 \cdot 383$ $18 \cdot 71$ $13222 \cdot 903$ $10 \cdot 400$ $18 \cdot 23$ $12724 \cdot 121$ $10 \cdot 383$ $18 \cdot 72$ $13233 \cdot 303$ $10 \cdot 400$ $18 \cdot 24$ $12734 \cdot 504$ $10 \cdot 383$ $18 \cdot 74$ $13254 \cdot 10 \cdot 400$ $18 \cdot 25$ $1274 \cdot 486$ $10 \cdot 382$ $18 \cdot 75$ $1326 \cdot 504$ $10 \cdot 400$ $18 \cdot 25$ $1274 \cdot 486$ $10 \cdot 382$ $18 \cdot 75$ $13274 \cdot 903$ $10 \cdot 399$ $18 \cdot 27$ $12765 \cdot 651$ $10 \cdot 382$ $18 \cdot 77$ $13285 \cdot 322$ $10 \cdot 399$ $18 \cdot 28$ $1276 \cdot 651$ $10 \cdot 382$ $18 \cdot 78$ $13295 \cdot 701$ $10 \cdot 399$ $18 \cdot 29$ $12786 \cdot 416$ $10 \cdot 395$ $18 \cdot 80$ $13316 \cdot 497$ $10 \cdot 398$ $18 \cdot 31$ $12807 \cdot 206$ $10 \cdot 395$ $18 \cdot 81$ $13326 \cdot 895$ $10 \cdot 396$ $18 \cdot 31$ $12807 \cdot 206$ $10 \cdot 395$ $18 \cdot 82$ $1337 \cdot 688$ $10 \cdot 396$ $18 \cdot 31$ $12807 \cdot 968$ $10 \cdot 395$ $18 \cdot 82$ $1337 \cdot 292$ $10 \cdot 396$ $18 \cdot 32$ $1287 \cdot 968$ $10 \cdot 395$ $18 \cdot 85$ $13368 \cdot 480$ $10 \cdot 396$ $18 \cdot 35$	18+17	12661 • 825	10.383	18.67	13181-311	10:388
18.19 12682.590 10.383 18.69 13202.100 10.402 18.20 12692.973 10.383 18.70 13212.501 10.401 18.21 12703.356 10.383 18.71 13222.903 10.401 18.21 12703.356 10.382 18.72 13233.303 10.401 18.22 12724.121 10.383 18.72 13233.303 10.400 18.23 12724.121 10.383 18.73 13243.704 10.400 18.24 12734.504 10.383 18.73 13243.704 10.400 18.25 12744.886 10.382 18.75 13264.504 10.400 18.25 12744.886 10.382 18.77 13255.302 10.399 18.26 12765.651 10.382 18.77 13265.302 10.399 18.28 12776.033 10.382 18.77 1336.099 10.399 18.29 12786.416 10.395 18.80 13316.497 10.398 18.30 12796.811 10.395 18.82 1337.292 10.397 18.33 12807.996 10.395 18.82 1337.292 10.397 18.33 1287.996 10.395 18.82 1337.292 10.395 18.33 1287.996 10.394 18.84 13358.084 10.396 18.34 12836.390 10.394 18.85 13368.460 10.395 18.33 1287.9968 10.394 18.89 13440.055	18.18	12672.207	10.382	18:68	13191.698	10.387
18.20 12692.973 10.383 18.70 13212.501 10.401 18.21 12703.356 10.383 18.71 13222.903 10.402 18.22 12713.738 10.382 18.72 13233.303 10.402 18.23 12724.121 10.383 18.73 13243.704 10.401 18.24 12734.504 10.383 18.73 13243.704 10.401 18.25 12744.886 10.383 18.74 13254.104 10.400 18.25 12744.886 10.382 18.75 13264.504 10.400 18.25 12744.886 10.382 18.77 13285.302 10.399 18.26 12755.269 10.382 18.77 13285.302 10.399 18.28 1276.651 10.382 18.77 13285.302 10.399 18.29 12786.416 10.382 18.77 1326.895 10.398 18.30 12796.811 10.395 18.80 13316.497 10.398 18.31 12807.206 10.395 18.81 1326.895 10.396 18.31 1287.996 10.395 18.83 13347.688 10.396 18.33 1287.996 10.395 18.82 1337.292 10.396 18.35 12848.785 10.394 18.86 13378.875 10.396 18.37 12849.574 10.394 18.86 13378.875 10.394 18.39 12890.362 10.394 18.89 13410.058	18.19	12682.590	10.383	18.69	13202.100	10.402
18.21 12703.356 10.383 18.71 13222.903 $1c.402$ 18.22 12713.738 10.382 18.72 13233.303 10.400 18.23 12724.121 10.383 18.73 13243.704 10.401 18.23 12734.504 10.383 18.74 13254.104 10.400 18.25 12744.886 10.382 18.75 13264.504 10.400 18.25 12744.886 10.382 18.77 13285.302 10.399 18.26 12755.269 10.382 18.77 13285.302 10.399 18.27 12765.651 10.382 18.77 13226.903 10.399 18.28 12776.033 10.382 18.77 $13226.895.701$ 10.399 18.29 12786.416 10.395 18.80 13316.497 10.398 18.30 12796.811 10.395 18.80 13316.497 10.398 18.31 12807.206 10.395 18.83 1337.292 10.397 18.33 1287.996 10.395 18.83 1337.292 10.396 18.33 1287.996 10.395 18.83 1337.292 10.396 18.33 1287.996 10.394 18.83 1337.292 10.396 18.33 1287.996 10.394 18.85 13368.480 10.396 18.33 1287.9968 10.394 18.89 13410.058 10.394 18.39 12890.362 10.394 18.89 13410.05	18.20	12692.973	10.383	18:70	13212.501	10-401
18.22 12713.738 10.382 18.72 13233.303 10.400 18.23 12724.121 10.383 18.73 13243.704 10.401 18.24 12734.504 10.383 18.74 13254.104 10.401 18.25 12744.886 10.382 18.75 13264.504 10.400 18.25 12744.886 10.382 18.75 13264.504 10.400 18.26 12755.269 10.382 18.77 13285.302 10.399 18.27 12765.651 10.382 18.77 13265.302 10.399 18.28 12776.033 10.382 18.77 13265.302 10.399 18.29 12786.416 10.395 18.80 13316.497 10.398 18.30 12796.811 10.395 18.80 13316.497 10.398 18.31 12807.206 10.395 18.81 1326.895 10.396 18.33 12827.996 10.395 18.83 13347.688 10.396 18.33 12827.996 10.395 18.83 13347.688 10.396 18.34 12838.390 10.394 18.86 13378.875 10.395 18.37 12848.785 10.395 18.87 13368.480 10.396 18.37 12890.754 10.394 18.89 13410.058 10.394 18.39 12890.362 10.394 18.891 13430.844 10.392 18.42 12990.756 10.394 18.991 134	18.21	12703.356	10.383	18+71	13222.903	10.402
18.23 12724.121 10.383 18.73 $13243.7C4$ 10.401 18.24 12734.504 10.383 18.74 $13254.1C4$ 10.401 18.25 12744.886 10.382 18.75 $13264.5C4$ 10.401 18.25 12755.269 10.382 18.76 $13274.9C3$ 10.399 18.27 12765.651 10.382 18.77 $13285.3C2$ 10.399 18.27 12765.651 10.382 18.77 $13285.3C2$ 10.399 18.28 12776.033 10.382 18.77 $13285.3C2$ 10.399 18.29 12786.416 10.395 18.79 13306.099 10.398 18.30 12796.811 10.395 18.80 13316.497 10.398 18.32 1287.601 10.395 18.82 1337.292 10.397 18.33 12827.996 10.395 18.83 13347.688 10.396 18.32 12817.601 10.395 18.83 13347.688 10.396 18.33 12827.996 10.395 18.83 13347.688 10.396 18.33 1287.996 10.395 18.83 1336.484 10.396 18.34 12848.785 10.394 18.86 13378.875 10.395 18.37 12848.785 10.394 18.89 13410.058 10.394 18.39 12879.968 10.394 18.891 13430.844 10.392 18.42 12900.756 10.394 18.991 $13430.$	18.22	12713.738	10.382	18+72	13233.303	10-400
$18 \cdot 24$ $12/34 \cdot 504$ $10 \cdot 383$ $18 \cdot 74$ $13254 \cdot 1C4$ $10 \cdot 400$ $18 \cdot 25$ $12744 \cdot 886$ $10 \cdot 382$ $18 \cdot 75$ $13264 \cdot 5C4$ $10 \cdot 400$ $18 \cdot 26$ $12755 \cdot 269$ $10 \cdot 382$ $18 \cdot 76$ $13274 \cdot 9C3$ $10 \cdot 399$ $18 \cdot 27$ $12765 \cdot 651$ $10 \cdot 382$ $18 \cdot 77$ $13285 \cdot 3C2$ $10 \cdot 399$ $18 \cdot 28$ $12776 \cdot 033$ $10 \cdot 382$ $18 \cdot 77$ $13285 \cdot 3C2$ $10 \cdot 399$ $18 \cdot 29$ $12786 \cdot 416$ $10 \cdot 383$ $18 \cdot 79$ $13306 \cdot 099$ $10 \cdot 398$ $18 \cdot 30$ $12796 \cdot 811$ $10 \cdot 395$ $18 \cdot 80$ $13316 \cdot 497$ $10 \cdot 398$ $18 \cdot 31$ $12807 \cdot 206$ $10 \cdot 395$ $18 \cdot 81$ $13326 \cdot 895$ $10 \cdot 398$ $18 \cdot 31$ $12807 \cdot 206$ $10 \cdot 395$ $18 \cdot 82$ $1337 \cdot 292$ $10 \cdot 397$ $18 \cdot 32$ $12817 \cdot 601$ $10 \cdot 395$ $18 \cdot 83$ $13347 \cdot 688$ $10 \cdot 396$ $18 \cdot 32$ $1287 \cdot 996$ $10 \cdot 395$ $18 \cdot 83$ $13347 \cdot 688$ $10 \cdot 396$ $18 \cdot 34$ $12838 \cdot 390$ $10 \cdot 394$ $18 \cdot 86$ $13378 \cdot 875$ $10 \cdot 395$ $18 \cdot 36$ $12859 \cdot 574$ $10 \cdot 394$ $18 \cdot 86$ $13378 \cdot 875$ $10 \cdot 394$ $18 \cdot 39$ $12890 \cdot 362$ $10 \cdot 394$ $18 \cdot 89$ $13410 \cdot 058$ $10 \cdot 394$ $18 \cdot 41$ $12911 \cdot 150$ $10 \cdot 394$ $18 \cdot 91$ $13430 \cdot 844$ $10 \cdot 392$ $18 \cdot 42$ $12921 \cdot 543$ $10 \cdot 393$ $18 \cdot 92$ $13441 \cdot 237$ $10 \cdot 393$ <td< td=""><td>18.23</td><td>12724 • 121</td><td>10.383</td><td>18.73</td><td>13243+704</td><td>10-401</td></td<>	18.23	12724 • 121	10.383	18.73	13243+704	10-401
$12 \cdot 25$ $12744 \cdot 886$ $10 \cdot 382$ $18 \cdot 75$ $13264 \cdot 50.4$ $10 \cdot 400$ $18 \cdot 26$ $12755 \cdot 269$ $10 \cdot 383$ $18 \cdot 76$ $13274 \cdot 90.3$ $10 \cdot 399$ $18 \cdot 27$ $12765 \cdot 651$ $10 \cdot 382$ $18 \cdot 77$ $13285 \cdot 30.2$ $10 \cdot 399$ $18 \cdot 28$ $12776 \cdot 033$ $10 \cdot 382$ $18 \cdot 78$ $13295 \cdot 70.1$ $10 \cdot 399$ $18 \cdot 29$ $12786 \cdot 416$ $10 \cdot 383$ $18 \cdot 79$ $13306 \cdot 099$ $10 \cdot 398$ $18 \cdot 30$ $12796 \cdot 811$ $10 \cdot 395$ $18 \cdot 80$ $13316 \cdot 497$ $10 \cdot 398$ $18 \cdot 31$ $12807 \cdot 206$ $10 \cdot 395$ $18 \cdot 82$ $13337 \cdot 292$ $10 \cdot 397$ $18 \cdot 32$ $12817 \cdot 601$ $10 \cdot 395$ $18 \cdot 82$ $13337 \cdot 292$ $10 \cdot 396$ $18 \cdot 32$ $12879 \cdot 996$ $10 \cdot 395$ $18 \cdot 83$ $13347 \cdot 688$ $10 \cdot 396$ $18 \cdot 33$ $12827 \cdot 996$ $10 \cdot 395$ $18 \cdot 85$ $13368 \cdot 480$ $10 \cdot 396$ $18 \cdot 34$ $12838 \cdot 390$ $10 \cdot 395$ $18 \cdot 85$ $13368 \cdot 480$ $10 \cdot 396$ $18 \cdot 35$ $12848 \cdot 785$ $10 \cdot 395$ $18 \cdot 85$ $13368 \cdot 480$ $10 \cdot 396$ $18 \cdot 36$ $12879 \cdot 968$ $10 \cdot 394$ $18 \cdot 88$ $13399 \cdot 664$ $10 \cdot 394$ $18 \cdot 39$ $12890 \cdot 362$ $10 \cdot 394$ $18 \cdot 89$ $13410 \cdot 058$ $10 \cdot 394$ $18 \cdot 40$ $12900 \cdot 756$ $10 \cdot 394$ $18 \cdot 90$ $13420 \cdot 452$ $10 \cdot 392$ $18 \cdot 41$ $12911 \cdot 150$ $10 \cdot 394$ $18 \cdot 93$ $13451 \cdot 629$ $10 \cdot 392$ <	18.24	12/34 - 504	10.383	180/4	13254+104	10.400
$18 \cdot 26$ $12755 \cdot 269$ $10 \cdot 383$ $18 \cdot 76$ $13274 \cdot 933$ $16 \cdot 399$ $18 \cdot 27$ $12765 \cdot 651$ $10 \cdot 382$ $18 \cdot 77$ $13285 \cdot 302$ $10 \cdot 399$ $18 \cdot 28$ $12776 \cdot 033$ $10 \cdot 382$ $18 \cdot 79$ $13206 \cdot 029$ $10 \cdot 399$ $18 \cdot 29$ $12786 \cdot 416$ $10 \cdot 395$ $18 \cdot 79$ $13306 \cdot 029$ $10 \cdot 398$ $18 \cdot 30$ $12796 \cdot 811$ $10 \cdot 395$ $18 \cdot 80$ $13316 \cdot 497$ $10 \cdot 398$ $18 \cdot 31$ $12807 \cdot 206$ $10 \cdot 395$ $18 \cdot 81$ $13326 \cdot 895$ $10 \cdot 398$ $18 \cdot 32$ $12817 \cdot 601$ $10 \cdot 395$ $18 \cdot 82$ $13337 \cdot 292$ $10 \cdot 397$ $18 \cdot 33$ $12827 \cdot 996$ $10 \cdot 395$ $18 \cdot 83$ $13347 \cdot 688$ $10 \cdot 396$ $18 \cdot 34$ $12838 \cdot 390$ $10 \cdot 395$ $18 \cdot 83$ $13378 \cdot 875$ $10 \cdot 396$ $18 \cdot 35$ $12848 \cdot 785$ $10 \cdot 395$ $18 \cdot 85$ $13368 \cdot 480$ $10 \cdot 396$ $18 \cdot 36$ $12859 \cdot 179$ $10 \cdot 395$ $18 \cdot 867$ $13378 \cdot 875$ $10 \cdot 395$ $18 \cdot 36$ $12879 \cdot 968$ $10 \cdot 394$ $18 \cdot 88$ $13379 \cdot 664$ $10 \cdot 394$ $18 \cdot 39$ $12890 \cdot 362$ $10 \cdot 394$ $18 \cdot 90$ $13420 \cdot 452$ $10 \cdot 394$ $18 \cdot 40$ $12900 \cdot 756$ $10 \cdot 394$ $18 \cdot 91$ $13430 \cdot 844$ $10 \cdot 392$ $18 \cdot 41$ $12911 \cdot 150$ $10 \cdot 393$ $18 \cdot 92$ $13441 \cdot 237$ $10 \cdot 392$ $18 \cdot 42$ $12924 \cdot 543$ $10 \cdot 393$ $18 \cdot 92$ $13442 \cdot 262$ $10 \cdot 392$	18+25	12744+886	10.382	180/5	13264.504	10.400
$16 \cdot 27$ $12763 \cdot 631$ $10 \cdot 382$ $18 \cdot 77$ $13263 \cdot 302$ $10 \cdot 379$ $18 \cdot 29$ $12776 \cdot 033$ $10 \cdot 382$ $18 \cdot 78$ $13295 \cdot 701$ $10 \cdot 399$ $18 \cdot 29$ $12786 \cdot 416$ $10 \cdot 395$ $18 \cdot 79$ $13306 \cdot 099$ $10 \cdot 398$ $18 \cdot 30$ $12796 \cdot 811$ $10 \cdot 395$ $18 \cdot 80$ $13316 \cdot 497$ $10 \cdot 398$ $18 \cdot 31$ $12807 \cdot 206$ $10 \cdot 395$ $18 \cdot 81$ $1326 \cdot 895$ $10 \cdot 398$ $18 \cdot 32$ $12817 \cdot 601$ $10 \cdot 395$ $18 \cdot 82$ $1337 \cdot 292$ $10 \cdot 397$ $18 \cdot 32$ $12817 \cdot 601$ $10 \cdot 395$ $18 \cdot 82$ $1337 \cdot 292$ $10 \cdot 397$ $18 \cdot 33$ $12827 \cdot 996$ $10 \cdot 395$ $18 \cdot 83$ $13347 \cdot 688$ $10 \cdot 396$ $18 \cdot 34$ $12838 \cdot 390$ $10 \cdot 394$ $18 \cdot 84$ $13358 \cdot 084$ $10 \cdot 396$ $18 \cdot 35$ $12848 \cdot 785$ $10 \cdot 395$ $18 \cdot 87$ $13368 \cdot 480$ $10 \cdot 396$ $18 \cdot 36$ $12859 \cdot 179$ $10 \cdot 395$ $18 \cdot 87$ $13389 \cdot 270$ $10 \cdot 395$ $18 \cdot 36$ $12879 \cdot 968$ $10 \cdot 394$ $18 \cdot 89$ $13410 \cdot 058$ $10 \cdot 394$ $18 \cdot 40$ $12900 \cdot 756$ $10 \cdot 394$ $18 \cdot 90$ $13420 \cdot 452$ $10 \cdot 394$ $18 \cdot 41$ $12911 \cdot 150$ $10 \cdot 394$ $18 \cdot 93$ $13451 \cdot 629$ $10 \cdot 392$ $18 \cdot 44$ $12942 \cdot 330$ $10 \cdot 393$ $18 \cdot 93$ $13451 \cdot 629$ $10 \cdot 392$ $18 \cdot 44$ $12963 \cdot 116$ $10 \cdot 393$ $18 \cdot 95$ $13472 \cdot 411$ $10 \cdot 391$	10.27	12/00-207	10:303	18.76	132/40203	10.399
$18 \cdot 29$ $12778 \cdot 033$ $10 \cdot 383$ $18 \cdot 79$ $13203 \cdot 06$ $10 \cdot 398$ $18 \cdot 30$ $12796 \cdot 611$ $10 \cdot 395$ $18 \cdot 80$ $13316 \cdot 497$ $10 \cdot 398$ $18 \cdot 31$ $12807 \cdot 206$ $10 \cdot 395$ $18 \cdot 81$ $13326 \cdot 895$ $10 \cdot 398$ $18 \cdot 32$ $12817 \cdot 601$ $10 \cdot 395$ $18 \cdot 82$ $13337 \cdot 292$ $10 \cdot 397$ $18 \cdot 32$ $12817 \cdot 601$ $10 \cdot 395$ $18 \cdot 82$ $13337 \cdot 292$ $10 \cdot 397$ $18 \cdot 33$ $12827 \cdot 996$ $10 \cdot 395$ $18 \cdot 82$ $13347 \cdot 688$ $10 \cdot 396$ $18 \cdot 34$ $12838 \cdot 390$ $10 \cdot 394$ $18 \cdot 83$ $13347 \cdot 688$ $10 \cdot 396$ $18 \cdot 35$ $12848 \cdot 785$ $10 \cdot 395$ $18 \cdot 85$ $13368 \cdot 480$ $1c \cdot 396$ $18 \cdot 36$ $12859 \cdot 179$ $10 \cdot 394$ $18 \cdot 86$ $13378 \cdot 875$ $10 \cdot 395$ $18 \cdot 36$ $12879 \cdot 968$ $10 \cdot 394$ $18 \cdot 88$ $13399 \cdot 664$ $1c \cdot 394$ $18 \cdot 39$ $12890 \cdot 362$ $10 \cdot 394$ $18 \cdot 89$ $13410 \cdot 058$ $1c \cdot 394$ $18 \cdot 40$ $12900 \cdot 756$ $10 \cdot 394$ $18 \cdot 90$ $13420 \cdot 452$ $1c \cdot 394$ $18 \cdot 41$ $12911 \cdot 150$ $10 \cdot 393$ $18 \cdot 91$ $13430 \cdot 844$ $1c \cdot 392$ $18 \cdot 42$ $12921 \cdot 543$ $10 \cdot 393$ $18 \cdot 93$ $13451 \cdot 629$ $10 \cdot 392$ $18 \cdot 44$ $12942 \cdot 330$ $10 \cdot 393$ $18 \cdot 95$ $13472 \cdot 411$ $1c \cdot 391$ $18 \cdot 45$ $12952 \cdot 723$ $10 \cdot 393$ $18 \cdot 97$ $13493 \cdot 192$ $10 \cdot 399$ <t< td=""><td>18.28</td><td>12774-023</td><td>10.382</td><td>10.70</td><td>10295.701</td><td>10-399</td></t<>	18.28	12774-023	10.382	10.70	10295.701	10-399
$18 \cdot 30$ $12796 \cdot 811$ $10 \cdot 395$ $18 \cdot 80$ $13316 \cdot 497$ $10 \cdot 398$ $18 \cdot 31$ $12807 \cdot 206$ $10 \cdot 395$ $18 \cdot 81$ $13326 \cdot 895$ $10 \cdot 398$ $18 \cdot 32$ $12817 \cdot 601$ $10 \cdot 395$ $18 \cdot 82$ $13337 \cdot 292$ $10 \cdot 397$ $18 \cdot 33$ $12827 \cdot 996$ $10 \cdot 395$ $18 \cdot 82$ $13337 \cdot 292$ $10 \cdot 397$ $18 \cdot 33$ $12827 \cdot 996$ $10 \cdot 395$ $18 \cdot 83$ $13347 \cdot 688$ $10 \cdot 396$ $18 \cdot 34$ $12838 \cdot 390$ $10 \cdot 394$ $18 \cdot 84$ $13358 \cdot 084$ $10 \cdot 396$ $18 \cdot 35$ $12848 \cdot 785$ $10 \cdot 395$ $18 \cdot 85$ $13368 \cdot 480$ $10 \cdot 396$ $18 \cdot 36$ $12859 \cdot 179$ $10 \cdot 394$ $18 \cdot 86$ $13378 \cdot 875$ $10 \cdot 395$ $18 \cdot 36$ $12879 \cdot 968$ $10 \cdot 394$ $18 \cdot 88$ $13399 \cdot 664$ $10 \cdot 394$ $18 \cdot 39$ $12890 \cdot 362$ $10 \cdot 394$ $18 \cdot 89$ $13410 \cdot 058$ $10 \cdot 394$ $18 \cdot 40$ $12900 \cdot 756$ $10 \cdot 394$ $18 \cdot 90$ $13420 \cdot 452$ $10 \cdot 394$ $18 \cdot 41$ $12911 \cdot 150$ $10 \cdot 393$ $18 \cdot 92$ $13441 \cdot 237$ $10 \cdot 393$ $18 \cdot 42$ $12921 \cdot 543$ $10 \cdot 393$ $18 \cdot 92$ $13441 \cdot 237$ $10 \cdot 392$ $18 \cdot 44$ $12942 \cdot 330$ $10 \cdot 393$ $18 \cdot 95$ $13472 \cdot 411$ $10 \cdot 391$ $18 \cdot 45$ $12952 \cdot 723$ $10 \cdot 393$ $18 \cdot 95$ $13472 \cdot 411$ $10 \cdot 391$ $18 \cdot 46$ $12963 \cdot 116$ $10 \cdot 392$ $18 \cdot 98$ $13503 \cdot 581$ $10 \cdot 399$ <	18.29	12786+416	10+383	18.79	13306+099	10.398
$18 \cdot 31$ $12807 \cdot 206$ $10 \cdot 395$ $18 \cdot 81$ $13326 \cdot 895$ $10 \cdot 398$ $18 \cdot 32$ $12817 \cdot 601$ $10 \cdot 395$ $18 \cdot 82$ $13337 \cdot 292$ $10 \cdot 397$ $18 \cdot 33$ $12827 \cdot 996$ $10 \cdot 395$ $18 \cdot 83$ $13347 \cdot 688$ $10 \cdot 396$ $18 \cdot 34$ $12838 \cdot 390$ $10 \cdot 394$ $18 \cdot 84$ $13358 \cdot 084$ $10 \cdot 396$ $18 \cdot 35$ $12848 \cdot 785$ $10 \cdot 395$ $18 \cdot 85$ $13368 \cdot 480$ $10 \cdot 396$ $18 \cdot 36$ $12859 \cdot 179$ $10 \cdot 394$ $18 \cdot 85$ $13368 \cdot 480$ $10 \cdot 396$ $18 \cdot 36$ $12859 \cdot 179$ $10 \cdot 395$ $18 \cdot 85$ $13368 \cdot 480$ $10 \cdot 396$ $18 \cdot 36$ $12859 \cdot 179$ $10 \cdot 395$ $18 \cdot 87$ $13389 \cdot 270$ $10 \cdot 395$ $18 \cdot 36$ $12879 \cdot 968$ $10 \cdot 394$ $18 \cdot 88$ $13399 \cdot 664$ $10 \cdot 394$ $18 \cdot 39$ $12890 \cdot 362$ $10 \cdot 394$ $18 \cdot 89$ $13410 \cdot 058$ $10 \cdot 394$ $18 \cdot 40$ $12900 \cdot 756$ $10 \cdot 394$ $18 \cdot 91$ $13430 \cdot 844$ $10 \cdot 392$ $18 \cdot 41$ $12911 \cdot 150$ $10 \cdot 393$ $18 \cdot 92$ $13441 \cdot 237$ $10 \cdot 393$ $18 \cdot 42$ $12921 \cdot 543$ $10 \cdot 393$ $18 \cdot 92$ $13441 \cdot 237$ $10 \cdot 392$ $18 \cdot 44$ $12942 \cdot 330$ $10 \cdot 393$ $18 \cdot 95$ $13472 \cdot 411$ $10 \cdot 391$ $18 \cdot 45$ $12952 \cdot 723$ $10 \cdot 393$ $18 \cdot 95$ $13472 \cdot 411$ $10 \cdot 391$ $18 \cdot 46$ $12963 \cdot 116$ $10 \cdot 392$ $18 \cdot 98$ $13503 \cdot 581$ $10 \cdot 399$ <	18.30	12796.811	10:395	18:80	13316.497	10.398
$18 \cdot 32$ $12817 \cdot 601$ $10 \cdot 395$ $18 \cdot 82$ $13337 \cdot 292$ $10 \cdot 397$ $18 \cdot 33$ $12827 \cdot 996$ $10 \cdot 395$ $18 \cdot 83$ $13347 \cdot 688$ $10 \cdot 396$ $18 \cdot 34$ $12838 \cdot 390$ $10 \cdot 394$ $18 \cdot 83$ $13347 \cdot 688$ $10 \cdot 396$ $18 \cdot 35$ $12848 \cdot 785$ $10 \cdot 395$ $18 \cdot 85$ $13368 \cdot 480$ $10 \cdot 396$ $18 \cdot 36$ $12859 \cdot 179$ $10 \cdot 395$ $18 \cdot 85$ $13368 \cdot 480$ $10 \cdot 396$ $18 \cdot 36$ $12859 \cdot 179$ $10 \cdot 394$ $18 \cdot 86$ $13378 \cdot 875$ $10 \cdot 395$ $18 \cdot 37$ $12869 \cdot 574$ $10 \cdot 395$ $18 \cdot 87$ $13389 \cdot 270$ $10 \cdot 395$ $18 \cdot 37$ $12869 \cdot 574$ $10 \cdot 395$ $18 \cdot 87$ $13389 \cdot 270$ $10 \cdot 395$ $18 \cdot 37$ $12890 \cdot 362$ $10 \cdot 394$ $18 \cdot 89$ $13410 \cdot 058$ $10 \cdot 394$ $18 \cdot 39$ $12890 \cdot 362$ $10 \cdot 394$ $18 \cdot 90$ $13420 \cdot 452$ $10 \cdot 394$ $18 \cdot 40$ $12900 \cdot 756$ $10 \cdot 394$ $18 \cdot 91$ $13430 \cdot 844$ $10 \cdot 392$ $18 \cdot 42$ $12921 \cdot 543$ $10 \cdot 393$ $18 \cdot 92$ $13441 \cdot 237$ $10 \cdot 392$ $18 \cdot 42$ $12921 \cdot 543$ $10 \cdot 393$ $18 \cdot 93$ $13451 \cdot 629$ $10 \cdot 392$ $18 \cdot 44$ $12942 \cdot 330$ $10 \cdot 393$ $18 \cdot 95$ $13472 \cdot 411$ $10 \cdot 391$ $18 \cdot 45$ $12963 \cdot 116$ $10 \cdot 393$ $18 \cdot 96$ $13482 \cdot 802$ $10 \cdot 391$ $18 \cdot 47$ $12973 \cdot 509$ $10 \cdot 392$ $18 \cdot 98$ $13503 \cdot 581$ $10 \cdot 389$ <	18.31	12807.206	10.395	18+81	13326+895	10.398
$18 \cdot 33$ $12827 \cdot 996$ $10 \cdot 395$ $18 \cdot 83$ $13347 \cdot 688$ $10 \cdot 396$ $18 \cdot 34$ $12838 \cdot 390$ $10 \cdot 394$ $18 \cdot 84$ $13358 \cdot 084$ $10 \cdot 396$ $18 \cdot 35$ $12848 \cdot 785$ $10 \cdot 395$ $18 \cdot 85$ $13368 \cdot 480$ $10 \cdot 396$ $18 \cdot 36$ $12859 \cdot 179$ $10 \cdot 394$ $18 \cdot 86$ $13378 \cdot 875$ $10 \cdot 395$ $18 \cdot 36$ $12859 \cdot 574$ $10 \cdot 395$ $18 \cdot 87$ $13389 \cdot 270$ $10 \cdot 395$ $18 \cdot 37$ $12869 \cdot 574$ $10 \cdot 395$ $18 \cdot 87$ $13399 \cdot 664$ $10 \cdot 395$ $18 \cdot 38$ $12879 \cdot 968$ $10 \cdot 394$ $18 \cdot 88$ $13399 \cdot 664$ $10 \cdot 394$ $18 \cdot 39$ $12890 \cdot 362$ $10 \cdot 394$ $18 \cdot 89$ $13410 \cdot 058$ $10 \cdot 394$ $18 \cdot 40$ $12900 \cdot 756$ $10 \cdot 394$ $18 \cdot 90$ $13420 \cdot 452$ $10 \cdot 394$ $18 \cdot 41$ $12911 \cdot 150$ $10 \cdot 394$ $18 \cdot 91$ $13430 \cdot 844$ $10 \cdot 392$ $18 \cdot 42$ $12921 \cdot 543$ $10 \cdot 393$ $18 \cdot 92$ $13441 \cdot 237$ $10 \cdot 393$ $18 \cdot 42$ $12921 \cdot 543$ $10 \cdot 393$ $18 \cdot 93$ $13451 \cdot 629$ $10 \cdot 392$ $18 \cdot 44$ $12942 \cdot 330$ $10 \cdot 393$ $18 \cdot 94$ $13462 \cdot 020$ $10 \cdot 391$ $18 \cdot 45$ $12952 \cdot 723$ $10 \cdot 393$ $18 \cdot 95$ $13472 \cdot 411$ $10 \cdot 391$ $18 \cdot 46$ $12963 \cdot 116$ $10 \cdot 392$ $18 \cdot 98$ $13482 \cdot 802$ $10 \cdot 391$ $18 \cdot 47$ $12973 \cdot 509$ $10 \cdot 392$ $18 \cdot 98$ $13503 \cdot 581$ $10 \cdot 389$ <	18.32	12817.601	10+395	18.82	13337 . 292	10.397
$1 \& \cdot 34$ $12838 \cdot 390$ $10 \cdot 394$ $18 \cdot 84$ $13358 \cdot 084$ $10 \cdot 396$ $18 \cdot 35$ $12848 \cdot 785$ $10 \cdot 395$ $18 \cdot 85$ $13368 \cdot 480$ $10 \cdot 396$ $18 \cdot 36$ $12859 \cdot 179$ $10 \cdot 394$ $18 \cdot 86$ $13378 \cdot 875$ $10 \cdot 395$ $18 \cdot 36$ $12859 \cdot 574$ $10 \cdot 395$ $18 \cdot 87$ $13389 \cdot 270$ $10 \cdot 395$ $18 \cdot 37$ $12869 \cdot 574$ $10 \cdot 394$ $18 \cdot 87$ $13389 \cdot 270$ $10 \cdot 395$ $18 \cdot 38$ $12879 \cdot 968$ $10 \cdot 394$ $18 \cdot 89$ $13410 \cdot 058$ $10 \cdot 394$ $18 \cdot 39$ $12890 \cdot 362$ $10 \cdot 394$ $18 \cdot 89$ $13410 \cdot 058$ $10 \cdot 394$ $18 \cdot 40$ $12900 \cdot 756$ $10 \cdot 394$ $18 \cdot 90$ $13420 \cdot 452$ $10 \cdot 394$ $18 \cdot 41$ $12911 \cdot 150$ $10 \cdot 394$ $18 \cdot 91$ $13430 \cdot 844$ $10 \cdot 392$ $18 \cdot 42$ $12921 \cdot 543$ $10 \cdot 393$ $18 \cdot 92$ $13441 \cdot 237$ $10 \cdot 393$ $18 \cdot 43$ $12931 \cdot 937$ $10 \cdot 393$ $18 \cdot 93$ $13451 \cdot 629$ $10 \cdot 392$ $18 \cdot 44$ $12942 \cdot 330$ $10 \cdot 393$ $18 \cdot 94$ $13462 \cdot 020$ $10 \cdot 391$ $18 \cdot 45$ $12952 \cdot 723$ $10 \cdot 393$ $18 \cdot 95$ $13472 \cdot 411$ $10 \cdot 391$ $18 \cdot 46$ $12963 \cdot 116$ $10 \cdot 393$ $18 \cdot 97$ $13493 \cdot 192$ $10 \cdot 390$ $18 \cdot 48$ $12983 \cdot 901$ $10 \cdot 392$ $18 \cdot 98$ $13503 \cdot 581$ $10 \cdot 389$ $18 \cdot 49$ $12994 \cdot 293$ $10 \cdot 392$ $18 \cdot 99$ $13513 \cdot 970$ $10 \cdot 389$ <td>18.33</td> <td>12827 • 996</td> <td>10.395</td> <td>18+83</td> <td>13347+688</td> <td>10.396</td>	18.33	12827 • 996	10.395	18+83	13347+688	10.396
$18 \cdot 35$ $12848 \cdot 785$ $10 \cdot 395$ $18 \cdot 85$ $13368 \cdot 480$ $10 \cdot 396$ $18 \cdot 36$ $12859 \cdot 179$ $10 \cdot 394$ $18 \cdot 86$ $13378 \cdot 875$ $10 \cdot 395$ $18 \cdot 37$ $12869 \cdot 574$ $10 \cdot 395$ $18 \cdot 87$ $13389 \cdot 270$ $10 \cdot 395$ $18 \cdot 38$ $12879 \cdot 968$ $10 \cdot 394$ $18 \cdot 88$ $13399 \cdot 664$ $10 \cdot 394$ $18 \cdot 39$ $12890 \cdot 362$ $10 \cdot 394$ $18 \cdot 89$ $13410 \cdot 058$ $10 \cdot 394$ $18 \cdot 40$ $12900 \cdot 756$ $10 \cdot 394$ $18 \cdot 90$ $13420 \cdot 452$ $10 \cdot 394$ $18 \cdot 41$ $12911 \cdot 150$ $10 \cdot 394$ $18 \cdot 91$ $13430 \cdot 844$ $10 \cdot 392$ $18 \cdot 42$ $12921 \cdot 543$ $10 \cdot 393$ $18 \cdot 92$ $13441 \cdot 237$ $10 \cdot 393$ $18 \cdot 43$ $12931 \cdot 937$ $10 \cdot 394$ $18 \cdot 93$ $13451 \cdot 629$ $10 \cdot 392$ $18 \cdot 44$ $12942 \cdot 330$ $10 \cdot 393$ $18 \cdot 94$ $13462 \cdot 020$ $10 \cdot 391$ $18 \cdot 45$ $12963 \cdot 116$ $10 \cdot 393$ $18 \cdot 95$ $13472 \cdot 411$ $10 \cdot 391$ $18 \cdot 46$ $12963 \cdot 116$ $10 \cdot 393$ $18 \cdot 97$ $13493 \cdot 192$ $10 \cdot 390$ $18 \cdot 48$ $12983 \cdot 901$ $10 \cdot 392$ $18 \cdot 98$ $13503 \cdot 581$ $10 \cdot 389$ $18 \cdot 49$ $12994 \cdot 293$ $10 \cdot 392$ $18 \cdot 99$ $13513 \cdot 970$ $10 \cdot 389$	18+34	12838 - 390	10.394	18+84	13358:084	10.396
18:36 $12859:179$ $10:394$ $18:86$ $13378:875$ $10:395$ $18:37$ $12869:574$ $10:395$ $18:87$ $13389:270$ $10:395$ $18:38$ $12879:968$ $10:394$ $18:87$ $13399:664$ $10:394$ $18:39$ $12890:362$ $10:394$ $18:89$ $13410:058$ $10:394$ $18:40$ $12900:756$ $10:394$ $18:90$ $13420:452$ $10:394$ $18:41$ $12911:150$ $10:394$ $18:91$ $13430:844$ $10:392$ $18:42$ $12921:543$ $10:393$ $18:92$ $13441:237$ $10:393$ $18:42$ $12931:937$ $10:394$ $18:93$ $13451:629$ $10:392$ $18:43$ $12931:937$ $10:393$ $18:94$ $13462:020$ $10:391$ $18:44$ $12942:330$ $10:393$ $18:95$ $13472:411$ $10:391$ $18:45$ $12952:723$ $10:393$ $18:95$ $13472:411$ $10:391$ $18:46$ $12963:116$ $10:393$ $18:97$ $13493:192$ $10:390$ $18:48$ $12983:901$ $10:392$ $18:98$ $13503:581$ $10:389$ $18:49$ $12994:293$ $10:392$ $18:99$ $13513:970$ $10:389$	18+35	12848 • 785	10+395	18 • 85	13368 • 480	10.396
$18 \cdot 37$ $12869 \cdot 574$ $10 \cdot 395$ $18 \cdot 87$ $13389 \cdot 270$ $10 \cdot 395$ $18 \cdot 38$ $12879 \cdot 968$ $10 \cdot 394$ $18 \cdot 88$ $13399 \cdot 664$ $10 \cdot 394$ $18 \cdot 39$ $12890 \cdot 362$ $10 \cdot 394$ $18 \cdot 89$ $13410 \cdot 058$ $10 \cdot 394$ $18 \cdot 40$ $12900 \cdot 756$ $10 \cdot 394$ $18 \cdot 90$ $13420 \cdot 452$ $10 \cdot 394$ $18 \cdot 41$ $12911 \cdot 150$ $10 \cdot 394$ $18 \cdot 91$ $13430 \cdot 844$ $10 \cdot 392$ $18 \cdot 42$ $12921 \cdot 543$ $10 \cdot 393$ $18 \cdot 92$ $13441 \cdot 237$ $10 \cdot 393$ $18 \cdot 42$ $12931 \cdot 937$ $10 \cdot 394$ $18 \cdot 93$ $13451 \cdot 629$ $10 \cdot 392$ $18 \cdot 44$ $12942 \cdot 330$ $10 \cdot 393$ $18 \cdot 94$ $13462 \cdot 020$ $10 \cdot 391$ $18 \cdot 45$ $12952 \cdot 723$ $10 \cdot 393$ $18 \cdot 95$ $13472 \cdot 411$ $10 \cdot 391$ $18 \cdot 46$ $12963 \cdot 116$ $10 \cdot 393$ $18 \cdot 96$ $13482 \cdot 802$ $10 \cdot 391$ $18 \cdot 47$ $12973 \cdot 509$ $10 \cdot 392$ $18 \cdot 98$ $13503 \cdot 581$ $10 \cdot 389$ $18 \cdot 49$ $12994 \cdot 293$ $10 \cdot 392$ $18 \cdot 98$ $13503 \cdot 581$ $10 \cdot 389$ $18 \cdot 49$ $12994 \cdot 293$ $10 \cdot 392$ $18 \cdot 99$ $13513 \cdot 970$ $10 \cdot 389$	18:36	12859 • 179	10.394	18.86	13378+875	10.395
$18 \cdot 38$ $12879 \cdot 968$ $10 \cdot 394$ $18 \cdot 88$ $13399 \cdot 664$ $10 \cdot 394$ $18 \cdot 39$ $12890 \cdot 362$ $10 \cdot 394$ $18 \cdot 89$ $13410 \cdot 058$ $10 \cdot 394$ $18 \cdot 40$ $12900 \cdot 756$ $10 \cdot 394$ $18 \cdot 90$ $13420 \cdot 452$ $10 \cdot 394$ $18 \cdot 41$ $12911 \cdot 150$ $10 \cdot 394$ $18 \cdot 91$ $13430 \cdot 844$ $10 \cdot 392$ $18 \cdot 42$ $12921 \cdot 543$ $10 \cdot 393$ $18 \cdot 92$ $13441 \cdot 237$ $10 \cdot 393$ $18 \cdot 43$ $12931 \cdot 937$ $10 \cdot 394$ $18 \cdot 93$ $13451 \cdot 629$ $10 \cdot 392$ $18 \cdot 44$ $12942 \cdot 330$ $10 \cdot 393$ $18 \cdot 94$ $13462 \cdot 020$ $10 \cdot 391$ $18 \cdot 45$ $12952 \cdot 723$ $10 \cdot 393$ $18 \cdot 95$ $13472 \cdot 411$ $10 \cdot 391$ $18 \cdot 46$ $12963 \cdot 116$ $10 \cdot 393$ $18 \cdot 96$ $13482 \cdot 802$ $10 \cdot 391$ $18 \cdot 47$ $12973 \cdot 509$ $10 \cdot 393$ $18 \cdot 97$ $13493 \cdot 192$ $10 \cdot 390$ $18 \cdot 48$ $12983 \cdot 901$ $10 \cdot 392$ $18 \cdot 98$ $13503 \cdot 581$ $10 \cdot 389$ $18 \cdot 49$ $12994 \cdot 293$ $10 \cdot 392$ $18 \cdot 99$ $13513 \cdot 970$ $10 \cdot 389$	18+37	12869 • 574	10.395	18.87	13389+270	10-395
$18 \cdot 39$ $12890 \cdot 362$ $10 \cdot 394$ $18 \cdot 89$ $13410 \cdot 038$ $10 \cdot 394$ $18 \cdot 40$ $12900 \cdot 756$ $10 \cdot 394$ $18 \cdot 90$ $13420 \cdot 452$ $10 \cdot 394$ $18 \cdot 41$ $12911 \cdot 150$ $10 \cdot 394$ $18 \cdot 91$ $13430 \cdot 844$ $10 \cdot 392$ $18 \cdot 42$ $12921 \cdot 543$ $10 \cdot 393$ $18 \cdot 92$ $13441 \cdot 237$ $10 \cdot 393$ $18 \cdot 43$ $12931 \cdot 937$ $10 \cdot 394$ $18 \cdot 93$ $13451 \cdot 629$ $10 \cdot 392$ $18 \cdot 44$ $12942 \cdot 330$ $10 \cdot 393$ $18 \cdot 94$ $13462 \cdot 020$ $10 \cdot 391$ $18 \cdot 45$ $12952 \cdot 723$ $10 \cdot 393$ $18 \cdot 95$ $13472 \cdot 411$ $10 \cdot 391$ $18 \cdot 46$ $12963 \cdot 116$ $10 \cdot 393$ $18 \cdot 96$ $13482 \cdot 802$ $10 \cdot 391$ $18 \cdot 47$ $12973 \cdot 509$ $10 \cdot 393$ $18 \cdot 97$ $13493 \cdot 192$ $10 \cdot 390$ $18 \cdot 48$ $12983 \cdot 901$ $10 \cdot 392$ $18 \cdot 98$ $13503 \cdot 581$ $10 \cdot 389$ $18 \cdot 49$ $12994 \cdot 293$ $10 \cdot 392$ $18 \cdot 99$ $13513 \cdot 970$ $10 \cdot 389$	18.38	128/9+968	10.394	88*81 09 80	13399.004	10.354
$12900 \cdot 738$ $10 \cdot 394$ $18 \cdot 90$ $13420 \cdot 432$ $10 \cdot 394$ $18 \cdot 41$ $12911 \cdot 150$ $10 \cdot 394$ $18 \cdot 91$ $13430 \cdot 844$ $10 \cdot 392$ $18 \cdot 42$ $12921 \cdot 543$ $10 \cdot 393$ $18 \cdot 92$ $13441 \cdot 237$ $10 \cdot 393$ $18 \cdot 42$ $12931 \cdot 937$ $10 \cdot 394$ $18 \cdot 93$ $13451 \cdot 629$ $10 \cdot 392$ $18 \cdot 44$ $12942 \cdot 330$ $10 \cdot 393$ $18 \cdot 94$ $13462 \cdot 020$ $10 \cdot 391$ $18 \cdot 45$ $12952 \cdot 723$ $10 \cdot 393$ $18 \cdot 95$ $13472 \cdot 411$ $10 \cdot 391$ $18 \cdot 46$ $12963 \cdot 116$ $10 \cdot 393$ $18 \cdot 96$ $13482 \cdot 802$ $10 \cdot 391$ $18 \cdot 47$ $12973 \cdot 509$ $10 \cdot 393$ $18 \cdot 97$ $13493 \cdot 192$ $10 \cdot 390$ $18 \cdot 48$ $12983 \cdot 901$ $10 \cdot 392$ $18 \cdot 98$ $13503 \cdot 581$ $10 \cdot 389$ $18 \cdot 49$ $12994 \cdot 293$ $10 \cdot 392$ $18 \cdot 99$ $13513 \cdot 970$ $10 \cdot 389$	10+35	12070+300	10+394	18+07	13410-008	10.394
18.4112911.13010.39318.9113430.81410.39218.4212921.54310.39318.9213441.23710.39318.4312931.93710.39418.9313451.62910.39218.4412942.33010.39318.9413462.02010.39118.4512952.72310.39318.9513472.41110.39118.4612963.11610.39318.9613482.80210.39118.4712973.50910.39318.9713493.19210.39018.4812983.90110.39218.9813503.58110.38918.4912994.29310.39218.9913513.97010.389	19,41	12911+150	10,394	10.01	13460+996	10.392
18.43 12931.937 10.394 18.93 13451.629 10.392 18.44 12942.330 10.393 18.94 13462.020 10.391 18.45 12952.723 10.393 18.95 13472.411 10.391 18.46 12963.116 10.393 18.96 13482.802 10.391 18.46 12963.116 10.393 18.96 13482.802 10.391 18.47 12973.509 10.393 18.97 13493.192 10.390 18.48 12983.901 10.392 18.98 13503.581 10.389 18.49 12994.293 10.392 18.99 13513.970 10.389	18.42	12921.543	10.393	18.92	134441.237	10.392
18.44 12942.330 10.393 18.94 13462.020 10.391 18.45 12952.723 10.393 18.95 13472.411 10.391 18.46 12963.116 10.393 18.96 13482.802 10.391 18.47 12973.509 10.393 18.97 13493.192 10.390 18.48 12983.901 10.392 18.98 13503.581 10.389 18.49 12994.293 10.392 18.99 13513.970 10.389	18.47	12931.937	10.394	12.92	13451 . 629	10.392
18.4512952.72310.39318.9513472.41110.39118.4612963.11610.39318.9613482.80210.39118.4712973.50910.39318.9713493.19210.39018.4812983.90110.39218.9813503.58110.38918.4912994.29310.39218.9913513.97010.389	18.44	12942 . 330	10.393	18.94	13462.020	10.391
18.4612963.11610.39318.9613482.80210.39118.4712973.50910.39318.9713493.19210.39018.4812983.90110.39218.9813503.58110.38918.4912994.29310.39218.9913513.97010.389	18.45	12952.723	10.393	18.95	13472.411	10.391
18.4712973.50910.39318.9713493.19210.39018.4812983.90110.39218.9813503.58110.38918.4912994.29310.39218.9913513.97010.389	18.46	12963 • 116	10.393	18.96	13482-802	10.391
18.4812983.90110.39218.9813503.58110.38918.4912994.29310.39218.9913513.97010.389	18.47	12973.509	10.393	18.97	13493.192	10.390
18.49 12994.293 10.392 18.99 13513.970 10.389	18.48	12983+901	10:392	18.98	13503.581	10.389
	18.49	12994 • 293	10.392	18,99	13513+970	10.389

69

the strip

a manager of the spectra of the second secon

.

- ----

ELEV.(M)	VOL: (S)	DIFF	ELEV.(M)	Val. (S)	DIFF.
20.00	14559 • 417	10.303	20.50	15072.956	10.237
20:01	14569.719	10+302	20.51	15083+192	10+236
20.05	14580.020	10.301	50.55	15093+426	10+234
20.03	14590+320	10+300	20+53	151030008	10,232
20404	14600.618	10.298	20+54	15113.009	10.231
20:05	14010.910	10.296	CU#00	101641119	10.230
20.00	140210212	10.295	20.57	10104+04/	10.220
20.07	14031000	10.293	20.57	10144.073	10.225
20:08	14691000	10+293	20.59	15165.022	10.224
20.10	14662.384	10+291	20+60	15175.244	10.222
20.11	14672.674	10.290	20:61	15185.464	10.220
20,12	14682.963	10.289	20.62	15195+683	10.219
20.13	14693.250	10.287	20.63	15205+900	10.217
20.14	14703.537	10.287	20+64	15216.116	10.216
20:15	14713.822	10+285	20:65	15226.330	10.214
20.16	14724 • 105	10+283	20.66	15236.543	10.213
20.17	14734 • 388	10.283	20.67	15246.754	10.211
20:18	14744.669	10.281	20.68	15256.963	10.209
20.19	14754 • 949	10.280	20,69	15267 • 171	10.208
50.50	14765 • 227	10.278	20.70	15277.377	10.206
50.51	14775+505	10.278	20.71	15287.582	10.205
50+55	14/85+781	10.276	50.15	15297 • 785	10.203
20.23	14/96.055	10.275	20•73	153070000	10+201
20=24	140000327	10.272	20+74	10310+100	10+200
20.26	1401010001	10.271	20175	15320 304	10.197
20.27	14020+072	10.269	CU170	15356+501	10-194
20.28	14847.409	10+268	20.78	15358+969	10.194
20.29	14857.676	10.267	20.79	15369+160	10.191
20.30	14867:941	10.265	20.080	15379+350	10.190
20.31	14878.206	10.265	20+81	15389+538	10.188
20.32	14888 • 468	10.262	20.82	15399.725	10+187
20.33	14898.729	10.261	20.83	15409.909	10-184
20.34	14908 989	10.260	20.84	15420.093	10-184
20:35	14919+248	10.259	20.85	15430+274	10.181
20.36	14929 • 505	10.257	20 • 86	15440=454	10.180
20.37	14939•761	10.256	20.87	15450.632	10.178
20.38	14950.015	10.254	20.88	15460+808	10.176
20+39	14960 • 268	10+253	20.89	154/0+283	10.175
20 • 40	149/0.520	10.252	20.90	15481+105	10+172
20.41	14980 1/0	10.249	20.91	15491+327	10+1/2
20.42	15001-266	10+247	20.92	15511.664	10.169
20.44	15011.512	10.246	20.94	15521-830	10-166
20.45	15021.756	10.244	20.95	15531.994	10-164
20.46	15031.999	10.243	20.96	15542+156	10.162
20.47	15042.240	10.241	20.97	15552+317	10.161
20.48	15052+480	10.240	20.98	15562.475	10.158
20.49	15062.719	10.239	20.99	15572+632	10.157

44.64

E	LEV.(M)	vel. (s)	DJFF.	ELEV.(M)	VAL. (S)	DIFF.
	22.00	16588 • 203 16598 • 145	9•945 9•942	22+50 22+51	17 <u>0</u> 82•225 17092•039	9.816 9.814
	22.05	16608.085	9.940	22.52	17101.850	9.811
	22+03	16618.022	9+937	55.53	17111.657	9.807
	22.04	16627 • 958	9+936	22.54	17121-463	9.806
	22.02	16637.890	9,932	22+55	17131.265	9.802
	55.06	16647 • 820	9+930	22.56	17141.065	9:800
	22.07	16657 • 748	9.958	22:57	17150-862	9:197
	22.08	15657+673	9.925	22.28	17160-556	9.794
	22.09	100//4090	21223	22+29	1/1/0+94/	9:791
•	22.11	1000/2010	2:220	22000	17100+230	20/00
	22.12	14707.249	9,915	22062	1/120*061	21/00
	22.13	16717 262	9.913	22+63	17209-584	9.780
	22.14	16727 172	9,910	22:64	17219.362	9.778
	22:15	16737+080	9.908	22.65	17229+136	9.774
	22.16	16746+986	9.0906	22:66	17238+908	9.772
	22.17	16756+888	9+902	22+67	17248-677	9.769
	22:18	16766.789	9.901	22:68	17258 • 443	9.766
	22.19	16776+686	9 897	22,69	17268.206	9.763
	22.20	16786 • 581	9 • 8 9 5	22.70	17277+966	9.760
	22.21	16796+474	9.893	22+71	17287.724	9•758
	55+55	16806.364	9.890	22+72	17297 • 478	9.754
	55.53	16816 • 252	9.888	22.73	17307.230	9.752
	22.24	16826 • 137	9.885	22.74	17316+979	9 • 7 4 9
	22.25	16836+019	7:002	- 22075	17326•725	9+746
	22.20	16845+892	2.000	22+76	1/336+408	9+743
	22.28	16865+651	9.875	22+78	17340+200	21/40
	22.29	16875.523	9.872	22.79	17365+680	9.735
	22+30	-16885+392	9.869	22.80	17375+411	9.731
	22.31	16895+259	9.867	22+81	17385 • 140	9.729
	22.32	16905 • 123	9.864	22.82	17394 • 865	9.725
	22.33	16914.985	9.862	22 • 83	17404 . 588	9.723
	22.34	16924 • 844	9 + 859	22.84	17414.308	9.720
	22:35	16934 • 700	9.856	22+85	17424.025	9.717
	22.36	16944 • 554	9+854	55.86	17433•738	9.713
	22.37	16954 • 405	9+851	22.87	17443+449	9+711
	22+38	16964 • 253	9.848	22+88	17453+157	9.708
	55+39	16974+099	9+846	22.89	17462+862	9.705
	22.40	16983+942	9 6 4 3	22.90	174/2.564	9.105
	22+41	16993+/83	2.041	22+21	174824683	2.622
	22.42	17003+021	9.825	22.92	174214209	9.690
	22.44	17023-288	9.832	22.94	17511.342	9.690
	22.45	17033-118	9+830	22.95	17521.029	9+687
	22.46	17042.945	9.827	22.96	17530.713	9.684
	22.47	17052.769	9.824	22.97	17540.394	9.681
	22.48	17062.591	9.822	86+55	17550.072	9.678
	22.49	17072.409	9.818	22:99	17559.747	9.675

71

41- 54- Pr

ELEV.(M)	V6L. (S)	DIFF.	ELEV.(M)	VOL. (S)	DIFF.
24.00	18520+203	9.337	24 • 50	18982+231	9 • 1 4 5
24:01	18529 • 536	9+333	24 • 51	18991•373	9.142
24 • 02	18538+865	8+35 8	24=52	19000-511	9.138
24.03	18548+191	9.326	24 • 53	19009-644	9+133
24+04	18557+513	9.322	24 = 54	19018 . //4	9.130
24.05	18566 831	9.318	24 • 55	19027+900	9+126
24.05	18576 • 146	9.315	24 • 56	19037.021	9.121
24.07	18585 • 457	9+311	24 = 57	19046:139	9.118
24.08	18594.764	9.307	24.058	19055+252	9.113
24.09	18604 • 068	9+304	24 • 59	19064+362	9.110
24.10	18613.367	9.299	24*60	19073×468	9+106
24:11	18622+663	9+296	24 • 61	19082-569	9-101
24.12	18631.956	9.293	24 • 62	19091+667	9.098
24 • 13	18641.244	9•288	- 24 • 63	19100.760	9:093
24 • 14	18650.529	9.285	24 • 64	19109-849	9.089
24 • 15	18659+810	9+281	24 • 65	19118-934	9+085
24 € 16	18569+087	9.277	24+66	19128+016	9.082
24+17	186/8:361	96214	24.067	1913/093	9+077
24 • 18	18687+630	3.562	24:68	19146 • 166	9.0/3
24 • 19	18696+896	9.266	24.69	19105-235	9.069
24 • 20	18/06+159	9+263	24 • 70	19164+299	9+064
24.21	18/15+41/	9+258	24 • / 1	191/3.360	9.061
24.22	18/24+671	9+254	24 • 72	19182+417	9+057
24+23	18733+922	9+251	24.73	19191 • 469	9.052
24 • 24	18743.169	9.247	24 • 74	19200+518	9.049
24.25	18752+412	9.243	24 • 75	19209 • 562	9.044
24.26	18/61+652	9.240	24 • 76	19218+602	9.040
24+27	18//0+88/	9+235	24 • 77	19227+638	9.036
24.28	18/80+119	9+232	24 • 78	19236+670	9+032
24+29	18/89+346	9.221	24 = 79	19245+697	9.027
24+30	18/98+5/0	9:224	24 • 80	19254 • 721	9.024
24.31	18807+791	9.221	24.81	19263 • / 40	9.019
24:32	18817:00/	9.216	24 • 82	192/20/55	9.015
24 . 33	18826+219	9:212	24+83	19281 • / 66	9+011
24.34	18835+428	3.203	24 * 84	19290+773	9.007
24=35	18844.632	9.204	24,85	19299+775	9.002
24:35	18853+833	9.201	24 * 85	19308 • 774	8.399
24+37	18863:030	9•197	24.87	1931/*/68	8:394
24+38	18872.223	9.193	24 • 88	19326+/08	8.990
24.39	18581+412	9+189	24.89	19335+/43	8+785
24+40	18890+597	9 185	24 • 90	19344+725	8.582
24+41	18899+778	7+181	24.91	19353-702	8.3//
24.42	18208+322	7 1 / /	24.72	19302+0/5	6.013
24043	10710 127	9.449	24.93	193/1+044	0.001
24 • 4 4	1092(10238	9.445	24.94	19300+008	0.04
24.45	10730 403	9-163	24125	19309:009	0.051
C4+40	10740+020	9.457	24.76	19328+225	0.0EA
24+4/	18954 182	2110/	2499/	1940/1476	S+201
24 • 48	10020 001	9,154	24138	194100424	8+248
64+49	182/3+080	2.120	24+39	19460030/	6+243

.....

-

ELEV.(M)	VOL. (S)	DIFF+	ELEV.(M)	VGL. (S)	D1FF.
26.00	20305 • 443	8 • 478	26.50	20722.922	8.223
26.01	20313+916	8.4/3	26 * 51	20731+141	8.219
26.05	20322 • 384	8+468	26+52	20739+354	8.213
26.03	20330+847	8+463	26+53	20747.562	8.208
26+04	20339+306	8.459	26.54	20755+764	8.202
26.05	20347 • 759	8 # 4 5 J	26+55	20763.962	8 198
26.06	20356+207	8 4 4 8	26.56	20172-154	8+192
26.07	20364+650	0 = 4 4 3	26+57	20780.341	
20+08	203/3.089	0 + 4 3 7		20/00.000	6.101
25+09	40301+02c	0 433	26+59	20726+628	C+1/0
26.10	20389-950	0 • 4 2 0	26+50	208044603	8+1/1
20+11	20398+374	0 * 4 6 4	26+01	20813:033	6+100
20:12	20406 192	0 6 4 1 0	26 202	2002101250	6°10U 9.155
20.13	20422.614	8.408	20:03	20823.500	0.150
26.15	20423+017	8.403	26.65	20245.644	8.1kk
26.16	20440+416	8.399	26.66	20853.783	8.139
26-17	20448 809	8.393	26.67	20861.916	8.133
26+18	20457 • 197	8.388	26.68	20870.045	8.129
26.19	20465.580	8.383	26.69	20878 167	8:122
26.20	20473+958	8,378	26,70	20886.285	8.118
26.21	20482+331	8.373	26.71	20894+397	8.112
26.22	20490+699	8.368	26+72	20902+504	8.107
26.23	20499.062	8.363	26.73	20910+605	8 - 101
26.24	20507 • 420	8.358	26.74	20918.701	8.096
26.25	20515.773	8.353	26+75	20926.791	8.090
56.56	20524 • 121	8.348	26.76	20934.877	8:086
26.27	20532+463	8.342	26:77	20942+956	8:079
56+58	20540.801	8+338	26+78	20951.031	8.075
26.29	- 20549 • 133	8+332	26+79	20959.099	8.068
26.30	20557 • 461	8+328	26+80	20967+163	8:064
26+31	20565+783	8+322	26.81	20975+221	8.058
56.35	205/4+100	0+31/	26.95	20983+213	8.025
26+33	20582+412	0.312	26+83	50221+351	8.048
26+34	20590:/18	0.300	26+04	50333+305	8+041
20.35	20599.020	0 + 3UZ	26,62	21007.338	8.030
20:30	20515-608	8,292		210101767	C+U3] 8:035
20:37	20623-894	8.286	26+88	210231454	8.020
26.39	20632.175	8.281	26.89	21031-474	8.014
26.40	20640+451	8.276	26.90	21047.497	8.009
26.41	20648.721	8.270	26.91	21055.500	8.003
26.42	20656+987	8.266	26, 92	21063-498	7.998
26.43	20665.247	8.260	26:93	21071+490	7.992
26.44	20673.502	8.255	26:94	21079.477	7,987
26.45	20681 • 752	8.250	26.95	21087.458	7.981
26+46	20689.996	8.244	26.96	21095.434	7.976
26.47	20698.236	8.240	26.97	21103.404	7.970
26.48	20706 • 470	8.234	26:98	21111.368	7.964
26.49	20714.699	8.229	. 26.99	21119.327	7.959

73

ELEV.(M)	VOL: (S)	DIFF.	ELEV.(M)	VOL. (S)	DIFF:
28+00	21893+436	7.364	28.50	22253-633	7.047
20+01	24202.442	7:307		22200+0/3	7:040
20102	2404E, /0/	7.303	28,52	2220/ 10/	7.034
20:03	21923.834	7.340		202199129	7.020
28.05	21930-168	7.334	20 * 3 * 22 * 55	20288.768	7.015
28.06	21937.495	7:327	28.56	22200-700	7:008
28.07	21944 817	7+322	28.57	22302.776	7.000
28:08	21952 132	7.315	28.58	22309+771	6.995
28.09	21959 . 440	7.308	28*59	22316:758	6.987
28.10	21966 . 743	7.303	28+60	22323-739	6.981
28+11	21974 . 039	7+296	28:61	22330-714	6.975
28 • 12	21981.329	7.290	28+62	22337.682	6:968
28.13	21988+613	7.284	28 • 63	22344.643	6.961
28 • 14	21995 • 890	7.277	28+64	22351+598	6+955
28+15	55003 • 165	7.272	28+65	22358+546	6.948
28:16	22010.426	7 . 264	28.66	22365.487	6=94.1
28 • 17	22017 • 685	7+259	28*67	22372+422	6.935
28 • 18	22024+937	7+252	28+68	22379+350	6+928
28.19	22032+183	7+240	28.69	22306+2/2	60281
20.20	22044.456	7.224	20170	22323:100	6,900
26+27	22052.992	7.226	20.72	22400-025	6.901
28.23	22061+103	7.221	29.73	22400*220	6.895
28.24	22068.317	7.214	28.74	22420.779	88864
28.25	22075+525	7.208	28:75	22427+661	6+832
28.26	22082 • 726	7.201	28:76	22434.536	6.875
28.27	22089 921	7 • 195	28.77	22441+404	6-868
28+28	22097:110	7•189	28:78	22448:265	6.861
28+29	··· 22104+292	7:182	28.79	22455-120	6+855
28.30	22111.468	7.176	28+80-	22461.968	6.848
28+31	22118+638	7 • 170	28.81	22468+809	6.841
58*35	22125+801	7 * 163	58.85	22475.644	6+835
28 • 33	22132+957	7.156	28.83	22482+472	6.858
28.34	22140.107	7.150	28 • 84	55482+533	6+821
28 • 35	22147.251	/ • 1 44	28 • 85	22496 . 107	6.014
20:30	221240382	7.130	20,00	22502+215	60008
20+3/	22462-644	7 • 1 3 1	28 # 9 / 29 - 99	22509+718	6:001
20+30	22175.762	7.118		22310-310	6.787
28.40	22182.874	7 • 1 1 2	28.90	22525+277	6.781
28.44	22189.979	7.105	22.91	22530-078	6.774
28.42	22197+077	7.098	28.92	22543.618	6.766
28.43	22204 170	7.093	28+93	22550+379	6.761
28.44	22211.255	7.085	28.94	22557 • 132	6.753
28.45	22218 . 335	7.080	28,95	22563.879	6.747
28+46	22225 . 407	7.072	28.96	22570.618	6.739
28.47	22232.473	7.066	28+97	22577:351	6.733
28.48	22239.533	7.060	28+98	22584.077	6.726
28.49	22246 • 586	7:053	28+99	22590+797	6.720

74

a a sector and the sector of t

n an anton a generalmanen en erne en haj erte en entre en en alte atte

- a spectrumber on our opt lite ph

ELEV.(M)	Vel. (s)	DIFF+	ELEV.(M)	VeL. (S)	DIFF.
30.00 30.01 30.02	23233•122 23239•111 23245•092 23251•046	5.997 5.989 5.981	30 • 50 30 • 51 30 • 52	23523+282 23528+890 23534+489 2354+489	5+615 5+608 5+599
30.04 30.05 30.06	23257 • 033 23262 • 992 23268 • 943	5.967 5.959 5.951	30 • 54 30 • 55 30 • 56	23545+664 23551+240 23556+809	5+583 5+583 5+576 5+569
30.07	23274 * 887.	5•944	30+57	23562+369	5.560
30.08	23280 * 824	5•937	30+58	23567+921	5.552
30.09	23286 * 753	5•929	30+59	23573+466	5.545
30.10	23292 * 674	5•921	30+60	23579+003	5.537
30+11	23298+588	5,914	30*61	23584+532	5,529
30+12	23304+494	5,906	30*62	23590+053	5,521
30+13	23310+393	5,899	30*63	23595+566	5,513
30+14	23316+284	5,891	30*64	23601+072	5,506
30+15 30+16 30+17	23322+168 23325+044 23333+913	5 • 8 7 6 5 • 8 6 9	30+65 30+65 30+65	23606 • 569 23612 • 059 23617 • 541	5 • 497 5 • 490 5 • 482
30+18	23339•774	5 * 8 5 3	30+68	23623.015	5 • 4 7 4
30+19	23345•627	5 * 8 5 3	30+69	23628.481	5 • 4 6 6
30+20	23351•473	5 * 8 4 6	30+70	23633.939	5 • 4 5 8
30+21	23357•311	5 * 8 3 8	30+71	23639.389	5 • 4 5 0
30+22	23363•141	5.830	30 • 72	23644 • 831	5.442
30+23	23368•964	5.823	30 • 73	23650 • 265	5.434
30+24	23374•780	5.816	30 • 74	23655 • 692	5.427
30+25	23380•587	5.807	30 • 75	23661 • 110	5.418
30.25 30.26 30.27 30.28	23386+387 23392+180 23397+964	5.800 5.793 5.784	30 • 76 30 • 77 30 • 78	23666+521 23671+923 23677+318	5.411 5.402 5.395
30+29	23403•742	5 • 778	30+79	23682•704	5×386
30+30	23409•511	5 • 769	30+80	23688•083	5×379
30+31	23415•273	5 • 762	30+81	23693•454	5×371
30+32	23421•027	5 • 754	30+82	23698•817	5×363
30 • 33	23426 • 773	5.746	30 • 83	23704 • 171	5.354
30 • 34	23432 • 512	5.739	30 • 84	23709 • 518	5.347
30 • 35	23438 • 243	5.731	30 • 85	23714 • 857	5.339
30+36	23443•967	5 • 724	30+86	23720 • 188	5.331
30+37	23449•682	5 • 715	30+87	23725 • 510	5.322
30+38	23455•390	5 • 708	30+88	23730 • 825	5.315
30+39	23461•090	5 • 700	30+88	23736 • 132	5.307
30+40	23466 • 783	5 • 693	30+90	23741.430	5+298
30+41	23472 • 468	5 • 685	30+91	23746.721	5+291
30+42	23478 • 145	5 • 677	30+92	23752.004	5+283
30+43 30+44 30+45 30+46	23483•814 23489•476 23495•130 23500•776	5.662 5.654 5.646	30+93 30+94 30+95 30+95	23762+545 23767+803 23773+053	5.274 5.267 5.258 5.250
30 • 4 7	23506•414	5.638	30+97	23778+296	5.243
30 • 48	23512•045	5.631	30+98	23783+530	5.234
30 • 49	23517•667	5.622	30+99	23788+756	5.226

75

....

ELEV:(M)	VeL. (s)	DIFF .	ELEV.(M)	val. (s)	DIFF.
32.00	24273 • 879	4.379	32.50	24481.571	3.936
32.01	24278+248	4 • 369	32.51	24485.498	3.927
32.05	24282+609	4.361	35.25	24489•416	3.918
32:03	24286+961	4+352	32+53	24493:324	3.908
32+04	24291.0305	40344	32+54	24497.224	3.900
32+05	24295+640	4.335	32:55	24501.115	3.891
32.06	24299 • 966	4.326	32+56	24504.996	3.881
32:07	24304 • 283	4.317	32:57	24508,869	3.873
32+08	24308 • 591	4.308	32.58	24512.732	3.863
32.09	24312•891	4.300	32.59	24516.587	3.855
32+10	24317=182	4.291	32.60	24520-432	3.845
32.11	24321•464	4 • 282	32.61	24524.268	3:836
32.12	24325•738	4.274	32+62	24528.096	3+858
32+13	24330.003	4.265	32+63	24531.914	3.818
32.14	24334 • 258	4.255	32.64	24535.723	3.809
32+15	24338 • 506	4.248	32.65	24539.523	3.800
-32+16	24342.744	4 • 238	32.66	24543.314	3 . 791
32+17	24346:973	4.6229	32 = 67	24547+096	3 • 782
32.18	24351 • 194	4.221	32.68	24550.868	3.772
32+19	24355+406	4.212	32+69	24554+632	3+/64
32.20	24359+609	4.203	32.70	24558.386	3=/54
32.21	24363+803	4 • 194	32•/1	24562+132	3=746
32.022	2436/1989	40180	35+15	24565+868	3+/36
32+23	243/2+165	401/6	32.73	24569+595	3+727
32+24	243/6:333	40168	32 • 74	245/3+313	3=/18
32.025	24380=492	4.159	32.75	245//022	3.709
32+26	24354+642	4 • 150	32+76	24580 1/21	3+699
32.021	242081/03	イイムケム ル - 4 つつ	32 11	243041412	3:031
3C+C0	243221310	4.100	32.78	24000 020	3.001
32.029	24404 454	4416	321/9	24571 105	3.662
32:30	24405.259	4.105	32.400	24070 720	3.654
35,33	24409.256	4.097	33.83	24322+002	3.644
	244074356	4.088	32+82	24002 720	3.635
35.37	24417.523	4079	32 . 84	24609.987	3.626
32,35	24421 593	4.070	32.85	24613.604	3.617
32+36	24425.654	4.061	32.86	24617.212	3.608
32,37	24429.707	4:053	32.87	24620.811	3.599
32.38	24433.750	4 • 0 4 3	32+88	24624.400	3.589
32.39	24437 . 784	4.034	32:89	24627.980	3.580
32.40	24441.810	4.026	32.90	24631+551	3.571
32.41	24445 826	4.016	32.91	24635 • 112	3.561
32.42	24449 . 834	4.008	32+92	24638 • 664	3.552
32.43	24453 832	3.998	32 • 93	24642.207	3.543
32.44	24457 . 822	3.990	32+94	24645.741	3.534
32.45	24461.803	3.981	32+95	24649+265	3.524
32.46	24465 . 774	3.971	32.96	24652.781	3.516
32.47	24469 .737	3.963	32.97	24656.286	3.505
32.48	24473+691	3.954	32+98	24659.783	3.497
32.49	24477 • 635	3 • 944	35+33	24663.270	3.487

1

......

بالمحمد المراجد الم

....

ELEV.(M)	VOL. (S)	DIFF.	ELEV.(M)	VƏL. (S)	DIFF.
34.00	24966 • 509	2.516	34.50	25079.539	2.012
34+01	24969+016	2.507	34.51	25081+541	5.005
34.02	249/1+513	2+497	34+52	25083.532	1.991
34.03	24973+999	2+486	34+53	25085+514	1.982
34 • 04	24976 • 476	2.477	34+54	25087.485	1.9/1
34.05	24978+943	2.46/	34+55	250894445	1+960
34.06	24981+400	2+45/	34 • 56	25091 • 396	1.951
34:07	24983+846	2 • 4 4 6	34 \$ 57	25093+336	1.740
34.08	24986+283	2:43/	34+28	20030+206	10330
34.09	24988 • /10	C+421	34.59	2509/+105	1.519
34+10	24991+127	2.41/	34+60	25099.095	1+310
34+11	24993+534	2.207	34+01	25100.393	1+070
34 • 12	24775+731	2.297	34=02	251020002	1.870
34 • 1 3	25000 (05	2.277	34 03	251044700	1 840
34+14	25002-042	2.367	34.04	20100-020	1.850
34+10	25005-062	2.356	34000	201004400	4.847
34.17	25007.745	2.347	34900	25112.170	1.837
34+17	25010-102	2.337	34407	20112-996	1-826
34 10	25012-429	2.327	34400	20110-220	1.816
34:15	25014-745	2.316	24:09	20110+012	1.804
34.21	25017.052	2.307	34*70	2511/010	1.795
34.22	25019.349	2.297	24.77	201121-198	1.785
34.23	25021.435	2.286	34472	25121+170	1.775
34.24	25022.044	2.276	344/3	20162 2737	4.764
34.25	25026+178	2.267	34.75	25126.491	1.754
34.26	25028-434	2.256	34475	25120101	1.742
34.27	25030.680	2.246	34.77	25120+204	1.733
34.28	25032.916	2.236	34.78	25131+689	1.722
34.29	25035 142	5.226	34.79	25133.401	1.712
34.30	25037 . 358	2.216	34+80	25135.103	1.702
34.31	25039.563	2.205	34.481	25136.794	1 . 691
34.32	25041.759	2:196	34+82	25138:475	1.681
34.33	25043.944	2.185	34+83	25140.145	1.670
34.34	25046 120	2.176	34 = 84	25141.805	1.660
34+35	25048.285	2.165	34 . 85	25143.454	1.649
34.36	25050.440	2.155	34 . 86	25145+093	1.639
34.37	25052 . 584	2.144	34 . 87	25146.721	1.628
34.38	25054 . 719	2+135	34 • 88	25148+338	1.617
34.39	25056 . 844	2.125	34.89	25149 946	1.608
34 = 40	25058+958	2 . 114	34+90	25151 • 542	1.596
34.41	25061.062	2.104	34.91	25153.129	1.587
34.42	25063.156	2.094	34.92	25154.704	1.575
34.43	25065 239	2.083	34+93	25156.269	1.565
34.44	25067 . 313	2.074	34 . 94	25157.824	1.555
34.45	25069:376	2.063	34.95	25159+368	1.544
34.46	25071 . 429	2.053	34.96	25160.901	1+533
34.47	25073.472	2.043	34.97	25162.424	1.523
34 . 48	25075.505	2.033	34.98	25163.937	1.513
34.49	25077.527	2+022	34+99	25165+438	1.501

77

41

A

and the standard address of the

ELEV.(H)	VOL+ (S)	DIFF.	ELEV.(M) VOL. (S) DIFF.
36.00 36.01 36.02 36.03 36.03 36.04	25261 • 639 25262 • 023 25262 • 395 25262 • 755 25263 • 103 25263 • 103	•397 •384 •372 •360 •348	
36+05 36+06 36+07 36+08 36+09 36+10	25263 • 763 25264 • 074 25264 • 374 25264 • 661 25264 • 936	•338 •324 •311 •300 •287 •275	<pre>#***</pre>
36 • 11 36 • 12 36 • 13 36 • 14 36 • 15 36 • 16	25265 • 198 25265 • 449 25265 • 687 25265 • 914 25266 • 128 25266 • 128	•262 •251 •238 •227 •214 •201	ne a la companya de l La companya mangaggagagagagagagagagagagagagagagagaga
36+17 36+18 36+20 36+20 36+22 36+23	25266+519 25266+696 25266+861 25267+012 25267+143 25267+261 25267+261	•190 •177 •165 •151 •131 •118	na napana na da premeter e element o constructor antenno de senso de la senso de la senso de la senso de la sen nomen de la campa y generala por la companyago da la companya da familia estermente elemente de la campa de la s
36+24 36+25 36+25 36+26 36+27 36+28 36+29	25267 • 481 25267 • 575 25267 • 656 25267 • 725 25267 • 781	•105 •094 •081 •069 •056 •044	nen ben in sinder som enderne som den en andersom inder som en
36.30 36.31 36.32	25267 • 857 25267 • 877 25267 • 884	•032 •020 •007	landeen fannen som sånsgande skapenskenen en det en sagete som en store som som som som en som en en en en en e Transminge og 4. Dete som som som geföre som som en som en som en som en som en som en en en en en en en en en s
36.3209	25267 • 884	•000	en semente and en a company e english e english e english se an and same same same same same same same same
		a na sanatsaya da	
	a a construction de la construcción	in transmission of the second s	
an i amir i te a	in a second and the second	et – Lagresse, Brazan – H <mark>istan</mark> e Bry 19 1	and and and a share of a second and a second a second a second a second as a second as a second as a second as

S. 1. 1. 1. 1. 1. 1.

- --

NBS-114A (REV. 9-76)		a hard a state of the state of					
U.S. DEPT. OF COMM.	1. PUBLICATION OR REPORT NO.	2. Racipient's /	Accession No.				
BIBLIOGRAPHIC DATA	NRSIR 79-1751						
	NDSIN /0 1/01	5 Dublication	Data				
4. TITLE AND SUBTILE	5. Fublication	Date					
Custody Transfer S	ystems for LNG Ships: Tank S	Survey May 1	979				
Techniques and Sour	nding Tables	S. Porthening C	mentization Code				
7. AUTHOR(S)		8. Performing C	Irgan. Report No.				
R. H. F. Jackson,	R. S. Collier, S. Haber, P.	7. Tryon					
9. PERFORMING ORGANIZATIO	ON NAME AND ADDRESS	ALL MARKED	Morte Unit No.				
NATIONAL BUREAU OF	STANDARDS	11. Contract/Gr	ant No.				
DEPARTMENT OF COMM	ERCE						
12. SPONSORING ORGANIZATIO	ON NAME AND COMPLETE ADDRESS (Street,	City, State, ZIP) 13. Type of Rep	ort & Period Covered				
The Maritime Admin	istration						
Department of Comm	erce	The second s					
washington, DC		where the property of the second s	Reach room				
15. SUPPLEMENTARY NOTES							
Document describes a co	mputer program; SF-185, FIPS Software Summary	, is attached.					
literature survey, mention it i	less factual summary of most significant informa hers.)	ition. If document includes a significant l	bibliography or				
	- of liquefied notwork and ((NC) for everyody there for	D1177D0565				
Static measurement	s of liquefied natural gas (and) for custody transfer	he volume-				
height relationshi	me and precise knowledge of the	tures of LNG (less than	150° K)				
proclude in situ s	p. me excremely fow compete	ing value of the cargo re	uires				
more precise and a	courate measurements than pro-	eviously used for bulk ma:	rine cargoes.				
more precise and a	ecarace measurements that pr		6				
A description and	assessment of the application	n of photogrammetric tech:	niques to the				
ambient temperatur	e survey of a 35-meter diame	ter spherical aluminum com	ntainer are				
presented. Sample	sounding tables (height-vol	ume) are calculated, and a	an estimate				
of error is given.							
17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name;							
Accuracy; statistical analysis; cryogenic; error estimation; liquefied natural gas;							
LNG; marine; mathe	ematical modeling; measuremen	t; photogrammetric; preci-	sion; ship				
cargo; strapping; survey							
18. AVAILABILITY	Dulimited	19. SECURITY CLASS	21. NO. OF				
		(THIS REPORT)	PRINTED PAGES				
For Official Distribution	. Do Not Release to NTIS		84				
			22 Price				
20402 SD Stock No. SNG	, U.S. Government Printing Office, Washington, 003-003-	DC (THIS PAGE)	aa. riice				
Order From Matineet To	hele lefermation Service (NTIS) Seriesticid		\$6.00				
VA, 22161 UNCLASSIFIED							
		A REAL PROPERTY AND A REAL	and the second se				

ŕ

