NBSIR 79-1735

Characterizing the Interfiber Bonding of Paper Pulps: Tensile Behavior of Some Mathematical Models of Paper Networks.

Jack C. Smith

Polymer Science and Standards Division National Measurement Laboratory National Bureau of Standards

September 1, 1978
Final Report Covering the Period
April 1, 1977 through September 30, 1977

Prepared for
U.S. Department of Energy

Washington, D.C. 20234

CHARACTERIZING THE INTERFIBER BONDING OF PAPER PULPS:
 TENSILE BEHAVIOR OF SOME MATHEMATICAL MODELS OF PAPER NETWORKS.

Jack C. Smith

Polymer Science and Standards Division
National Measurement Laboratory
National Bureau of Standards

September 1, 1978
Final Report Covering the Period
April 1, 1977 through September 30, 1977

Prepared for
U.S. Department of Energy

Washington, D.C. 20234
U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary Jordan J. Baruch, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS. Ernest Ambler, Director

TABLE OF CONTENTS

Page
SUMMARY AND CONCLUSIONS i
INTRODUCTION 1
THE PARALIEI-SPRING MODEL 2
THE SQUARE-NETWORK MODEL 6
SQUARE-NETWORK MODEL CAICULATIONS 12
DISCUSSION OF RESUITS 15
REFERENCES 26

SUMMARY AND CONCLUSIONS

The behavior of a thin web-like paper network during elongation has been approximately simulated by two simple mathematical models. One of these is a parallel-spring model consisting of a series of segments formed by connecting springs in parallel between two rigid bars. The other is a squarenetwork model consisting of a network with square meshes formed from springs of equal length. The square-network model provides the better simulation of an actual network, but a complicated computer program is required to calculate behaviors. The parallel-spring model is mathematically simple, and can be used to suggest general behaviors which can be verified by calculations for other more suitable models.

In these studies emphasis is placed on the effect of breakage of a central bond when the model is stretched. The resulting distorted mesh configurations, the drop in tensile force, and the energy lost by the network are calculated. An attempt is made to interpret the behavior of an actual paper network in the light of these results.

There is an energy parameter E obtained experimentally by averaging the energy losses incurred in a series of bond breaks when a web-like paper network is elongated. This energy parameter has been used to characterize the adhesive force between fibers constituting the network. The model studies suggest that the values of E are approximately independent of the size and shape of the test specimens, provided the mesh sizes of the specimen networks are the same.

The model studies indicate that a force drop parameter F, analogous to the energy parameter, would be feasible for characterizing adhesion. This parameter, which has not been tested experimentally, would be obtained as the average oi force drops resulting from bond breaks in a specimen as it
is elongated. According to the model studies the values of F are approximately inversely proportional to the initial lengths of the specimens, and approximately independent of the widths, provided the mesh sizes of the specimen networks are the same.

The two parameters E and F are sensitive to mesh size. The model studies suggest that if two test specimens have the same initial lengths but different mesh sizes, the values of E and F obtained will be approximately proportional to lengths characterizing the mesh size of each specimen network.

Results of calculations with a square-network model show that the energy loss incurred by any one bond break is not a linear function of the local force at the bond. It possibly is approximately proportional to f^{α}, where f is the local force, and α is a constant between 1 and 2. For a squarenetwork model α is close to 1.5 .

Calculations with a square-network model show that the force drop incurred by any one bond break is not a linear function of the force at the bond. It possibly is proportional to f^{β}, where β is a constant between 0 and 1 . For a squarenetwork model β is close to 0.5 .

One concludes from the model studies that the parameters E and F can characterize adhesive force between paper pulp fibers. The parameters, however, have some objectionable features. They are sensitive to mesh sizes and distribution of mesh sizes in the specimen network, and they are not linear functions of the average of the bond breaking forces. The value obtained for one of these parameters is a complicated function of mesh size and bond adhesive force. For instance a formulation for the parameter E based on the square-network model would be

$$
E=\frac{1}{n} \sum_{i=1}^{n} K_{i} f_{i}^{\alpha} g\left(x_{i}\right)
$$

Where n is the number of bond breaks. K is a constant of the
network, which may change slightly from break to break. f is a local bond breaking fonce, and a a constant. g is a quasi-linear function of a characteristic mesh length x. A formulation for the parameter F would be similar, but different constants and functions would be used.

IMTEODUSTIUN

 paper．This method consists or preparing ミhandsheet in the
 uミted．It a specimen from this hentisheev ís＝lonきミこミえ こo
 cunve containing numerous jaミs is cotained．Each jag iz caused by the breakage or a cond between ごミbers consutuujing the handsheet netronk．By ミntegrating unien this ounte in the vicinity of the ja天 it is possible to ietermine 引ch三reoterー istic energu ミ，こelated to the averase stoned enerai tian is lost per break，mostIy by zibers in the viainity cen the broker bond．This energy is used as a meesure oこ the bond adhesion between two fibers．

The selection of this parameten Mes an invuirive pこooミse．

 NeIl understood．Some questions that 三rise ミこe：Hon is the strain energy distriouted throughout the netwonk ミごさニど bond break？Fow is the energy loss releted to the Iocel
 mesh size？That is the optimum speciner size anえ shape こ゚on

 netwonk are describea，End thein behawion under eloneミJion
 add to an intuitive understanding of the enerey cerameちシュ．

THE PARALIEL-SPRING MODEL

The parallel-spring model is depicted schematically in figure l. It consists of a number of springs in a seriesparallel arrangement. The dots indicate where the springs are bonded to each other and to a series of rigid bars. There are $2 M-1$ junction points on each bar, and there are $2 N-1$ bars. In the unstrained state each spring has a length ℓ, called the mesh length. The spring constant is given by k / h. The model is elongated so that each spring is extended an amount l δ, where δ is the strain. The bond B then breaks, and the two springs previously joined at that point are inactivated. The initial foree sustained by the model before break is

$$
\begin{equation*}
F_{b}=(2 M-1) k \delta \tag{I.I}
\end{equation*}
$$

The initial elongation of the model is

$$
\begin{equation*}
\Delta I=2(N-I) l \delta \tag{1.2}
\end{equation*}
$$

The initial energy stored in the model is

$$
\begin{align*}
E_{b} & =\frac{1}{2}(2 M-I) k \delta \cdot 2(N-I) \ell \delta \\
& =2(N-I)(2 M-I) \ell \cdot \frac{1}{2} k \delta^{2} \tag{1.3}
\end{align*}
$$

After the break the elongation of the model is maintained constant, and the force drops to a value F_{a}. The horizontal bars to which the springs are attached remain horizontal. In the two segments of the model on either side of the broken bond the force F_{a} is sustained by $2 \mathbb{M}-2$ parallel springs, so that

$$
F_{a}=(2 M-2) k \frac{(\Delta I)_{I}}{2}
$$

or

$$
\begin{equation*}
(\Delta I)_{I}=\frac{F_{a} \ell}{(2 M-2) k} \tag{1.4}
\end{equation*}
$$

where $(\Delta I)_{1}$ is the elongation of the segment.

The elongation in the other $2(N-2)$ segments is given by

$$
\begin{equation*}
(\Delta L)_{2}=\frac{F_{a} \ell}{(2 M-I) k} \tag{1.5}
\end{equation*}
$$

where $(\Delta L)_{2}$ is the elongation of the segment.

> The total elongation of all the segments is

$$
2(N-I) \ell \delta=\frac{2(N-2) F_{a} \ell}{(2 M-1) k}+\frac{2 F_{a} \ell}{(2 M-2) k}
$$

Thus

$$
(2 M-1)_{k} \delta=F_{b}=\left\{\frac{N-2}{N-1}+\frac{2 M-1}{2(M-1)(N-1)}\right\} F_{a}
$$

or

$$
\begin{aligned}
F_{b} & =\left\{1+\frac{2 M-1}{2(M-1)(N-I)}-\frac{1}{N-I}\right\} F_{a} \\
& =\left\{1+\frac{1}{2(M-1)(N-I)}\right\} F_{a}
\end{aligned}
$$

Hence

$$
\begin{equation*}
F_{a}=\overline{\mathrm{T}} F_{b} \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\overline{\mathrm{T}}=\frac{2(M-1)(N-1)}{2(M-1)(N-1)+1} \tag{1.7}
\end{equation*}
$$

\bar{T} is the fraction of the force remaining after a bond break. The force drop resulting from the break is given by

$$
\begin{equation*}
\Delta F=F_{b}(l-\bar{T}) \tag{1.8}
\end{equation*}
$$

The energy in the two segments of the model adjoining the broken bond is

$$
\frac{1}{2}(\Delta L)_{l} \cdot F_{a}=\frac{1}{2} \frac{F_{a}^{2} \ell}{(2 M-2) k}
$$

and the energy in the other $2(N-2)$ segments is

$$
\frac{1}{2}(\Delta \mathrm{~L})_{2} \cdot F_{a}=\frac{1}{2} \frac{F_{a}^{2} l}{(2 M-1) k}
$$

Thus the total energy is

$$
\begin{aligned}
E_{a} & =2(N-2) \cdot \frac{1}{2} \frac{\bar{F}_{a}^{2} \ell}{(2 M-I) k}+2 \cdot \frac{1}{2} \frac{\bar{F}_{a}^{2} \ell}{(2 N-2) k} \\
& =2\left\{\frac{N-2}{2 M-1}+\frac{1}{2 M-2}\right\} \cdot \frac{1}{2} \frac{F_{a}^{2} \ell}{k} \\
& \left.=\frac{2(N-1)}{2 M-1} \frac{N-2}{N-1}+\frac{2 N-1}{2(N-I)(N-I)}\right\} \frac{\ell}{2 k} \cdot \bar{T}^{2} \cdot(2 M-1)^{2} k^{2} \delta^{2} \\
& =2(N-1)(2 M-1) \ell \cdot \frac{1}{\bar{T}} \cdot \bar{T}^{2} \cdot \frac{1}{2} k \delta^{2}
\end{aligned}
$$

or

$$
\begin{align*}
E_{\bar{c}} & =2(N-I)(2 M-1) l \bar{T} \frac{1}{2} k \delta^{2} \\
& =\bar{T}^{2} E_{b} \tag{1.9}
\end{align*}
$$

In order to describe the way strain energy is distriburea in a model it is useful to associate energy with each of the junction points in such a way that the sum of the associated energies is equal to the total energy stored. At any given junction point the associated energy is equal to one-half the sum of the energies in the springs joined at that point. The factor of one-half is introduced because when the associated energies are summed over all the junction points, the energy of each spring is counted trice. At junction points on the top and bottom boundaries there is only one spring, but the factor of one-half is still necessary.
A. dimensionless average associated energy $\overline{\bar{E}}$ can be defined by means of the relation,

$$
\begin{equation*}
E_{\bar{a}}=(2 M-1)(2 N-1) \bar{E} \cdot \frac{1}{2} \cdot S^{2} \ell \tag{1.10}
\end{equation*}
$$

The factor ($2 \pi-1$) ($2 N-1$) gives the total number of points in the netrom. The factor $\frac{1}{2} k \delta^{2} l$ is the energy stored in
one spring before a bond break, and is introduced into the expression to make E dimensionless. Bu equating こelevions
(I.9) an ar (I.IO) an alternative relation,

$$
\begin{equation*}
\bar{E}=\frac{2 N-2}{2 N-I} \bar{T} \tag{I.1I}
\end{equation*}
$$

is obtained.
The energy loss resulting From a bond break is, from eq (1.9),

$$
\begin{equation*}
\Delta \mathrm{E}=\mathrm{E}_{0}-\mathrm{E}_{\mathrm{a}}=(I-\overline{\mathrm{T}}) E_{0} \tag{i.i2}
\end{equation*}
$$

An alternative form is obtained from eqs (I.3) and (1.10).

$$
\begin{equation*}
\Delta E=2(N-I)(2 M-I) l\left(1-\frac{2 N-I}{2 N-2} \bar{Z}\right) \cdot \frac{1}{2} \pi \delta^{2} \tag{1.13}
\end{equation*}
$$

The square-network model is depicted schematically in figure 2. It consists of springs forming a square network. There are $2 \mathrm{M}-1$ columns of junction points and $2 \mathrm{~N}-1$ rows of junction points. The depicted network has 7 columns ($M=4$) and 7 rows ($N=4$). The unstrained length of each spring is l, and the spring constant is given by k / l. The model is elongated by an amount $2(N-1) \ell \delta$. The bond at point B then breaks, and the four springs previously joined at that point are inactivated. The resulting configuration is calculated by a computer program described below.

In order to discuss the model it is convenient to identify junction points by the coordinates $i=0,1, . . . m ; j=0, l$, ... n. The corresponding numbers $I=1,2, \ldots \mathrm{M} ; \mathrm{J}=1,2$, ... N, however, are retained for use in the formulas for force and energy, as they are more convenient for counting purposes. Because of symmetry it is only necessary to calculate the configuration of the upper right-hand quadrant; i.e., the junction points corresponding to positive values of i and j.

When the model is strained each of the junction points moves from its original position by an amount $\xi_{i j} l$ in the horizontal direction and $\eta_{i j} l$ in the vertical direction. Thus when the model is first extended and no bond break has occurred,
$\xi_{i j}=0 . j$
$\left.\eta_{i j}=j \delta\right\}$
Arter the bond break the values of $\xi_{i j}$, $\eta_{i j}$ readjust except for certain constraints at the boundary and the $i=0, j=0$ axes of symmetry. These are
$E_{i n}=c$ 。
$\eta_{i n}=n \delta$
$\eta_{i 0}=0$ 。
$\left.\begin{array}{rl}n_{i,-1} & =E_{i l} \\ \eta_{i,-1} & =\eta_{i 1}\end{array}\right\}$

$$
\left.\begin{array}{l}
\xi_{0 j}=0 . \\
\xi_{-I j}=-\xi_{I j} \tag{2.6}\\
\eta_{-I j}=\eta_{I j}
\end{array}\right\}
$$

The values of ξ, η attained after bond break are found by solving a system of equations in which the horizontal and vertical forces at each junction point are balanced out, plus the boundary conditions (2.2-2.6). To formulate the equations applicable at the point i, j, let

$$
\left.\begin{array}{l}
R_{A}=\sqrt{\left(1+\Delta_{A} \xi\right)^{2}+\Delta_{A} \eta^{2}} \\
R_{B}=\sqrt{\Delta_{B} \xi^{2}+\left(1+\Delta_{B} \eta\right)^{2}} \\
R_{C}=\sqrt{\Delta_{C} \xi^{2}+\left(1+\Delta_{C} \eta\right)^{2}} \tag{2.7}\\
R_{D}=\sqrt{\left(1+\Delta_{D} \xi\right)^{2}+\Delta_{D} \eta^{2}}
\end{array}\right\}
$$

Where Δ_{A} is a difference operator involving the indices (i, i-l), Δ_{B} the indices (j, j-l), Δ_{C} the indices ($j+1, j$) and Δ_{D} the indices ($i+1, i$). Thus, for instance, $\Delta_{i} \bar{F}_{\text {means }} \xi_{i j}-\xi_{i-1, j}$.
The quantities R2 are the distances from a point ij to an
adjacent point. The horizontal force balance equation is then

$$
\begin{aligned}
& \frac{k\left(R_{D}-1\right)\left(1+\Delta_{D} \xi\right)}{R_{D}}+\frac{k\left(R_{C}-1\right) \Delta_{C} \xi}{R_{C}} \\
& =\frac{k\left(R_{B}-1\right) \Delta_{B} \xi}{R_{B}}+\frac{k\left(R_{A}-1\right)\left(1+\Delta_{A} \xi\right)}{R_{A}}
\end{aligned}
$$

or

$$
\begin{align*}
& \left(1+\Delta_{D} \xi\right)\left(1-1 / R_{D}\right)+\Delta_{C} \xi\left(1-1 / R_{C}\right) \\
& -\Delta_{B} \xi\left(1-1 / R_{B}\right)-\left(1+\Delta_{D} \xi\right)\left(1-1 / R_{D}\right)=0 \tag{2.8}
\end{align*}
$$

Similarly for the vertical components

$$
\begin{align*}
& \Delta_{D} \eta\left(1-1 / R_{D}\right)+\left(1+\Delta_{C} \eta\right)\left(1-1 / R_{C}\right) \\
& -\left(1+\Delta_{B} \eta\right)\left(1-1 / R_{B}\right)-\Delta_{A} \eta\left(1-1 / R_{A}\right)=0 . \tag{2.9}
\end{align*}
$$

Equations（2．8！and（2．9）apply at the general junction point $i j$ ，but when $i=0, m$ on $j=0, n$ they must be modified to conform with boundary or symmetry conditions．

It should be noted that the horizontal forces acting ミこ a point jj \ddagger ae dependent mostly upon the values of $\varepsilon_{i-I, j}, \varepsilon_{i j}$ ana $\varepsilon_{i+i, j}$ ．Therefore eq（2．8）which has the form

$$
\begin{align*}
& =\bar{E}_{i-1, j}, \eta_{i-1}, i, 气_{i j}, \eta_{i j}, \xi_{i+1, j}, \eta_{i+1, j} \\
& \left.E_{-j, j-1}, \eta_{i}, \dot{i}-1, E_{i, j+1}, \eta_{i, j+1}\right)=0 . \tag{2.10}
\end{align*}
$$

has expresses as a Taylor＇s series expansion in terms of only these three most important variables to become

$$
\begin{align*}
& =(k) \div\left(\frac{\partial E_{i-1}, j}{\partial \sum_{i-1}}\right)^{(k)} \Delta E_{i-I, j} \div\left(\frac{\partial E}{\partial \xi_{i j}}\right)^{(k)} \Delta \xi_{i j} \\
& \div\left(\frac{\partial E}{\partial \xi_{i+i}, j}\right)^{(k)} \Delta \xi_{i+1, j}=0 . \tag{2.11}
\end{align*}
$$

where the $\Delta \tilde{\xi}_{i j}$ means $\xi_{i j}(k+1)-\xi_{i j}(k)$ and $\Delta \xi_{i-1, j}$ and $\therefore E_{i+1, j}$ hare similar meanings．$\hat{i}(k),\left(\frac{\partial f}{\partial \xi_{i j}}\right)^{(k)}$ etc．are evaluated as functions of $g^{(k)}$ ，$\eta^{(k)}$ ．The values of $\tilde{z}^{(k+1)}$ are obtained by solving the system of equations（2．11） corresponãing to different values of j ．

A set of five of these equations，for instance，would
100K Like

$$
\begin{array}{rlrl}
E_{1} x_{1}+c_{2} x_{2} & & K_{1} \\
A_{2} x_{1}+B_{2} x_{2}+c_{2} x_{3} & & K_{2} \\
A_{2} x_{2}-E_{3} x_{3}+c_{3} x_{4} & & =K_{3} \\
A_{4} x_{3}+B_{4} x_{4}+c_{4} x_{4} & =K_{4} \\
A_{5} x_{5}+B_{5} x_{5} & =K_{3}
\end{array}
$$

This sEt of equations is easily solved by a Gauss－Jordan reduction．

During the ceIculation orocess soluvions こor ミ and－

 removea are used in an ミluニrnミこも calculミこさon．
 other wajs．For instance＝us（2．3）and（2．9）coula oe exoanded in the variabies g．，クi．．Improreえ ミonrorimations

 the other hand the equations coula oe Evoenáe in tenms oご aiI 10 vaniabies．In Jhis naj a sjevem oz axorovimateivini

The method oİ solution むhat res used nes a compuomise cetween these tro extremes．It appe

 Which the initiEl strein δ is or the oncer of one oミvoent，

case to rewrite eqs (2.8) and (2.9), expressing terms of the form (l-l/R) as a truncated series, although this was not done for the calculations reported here.

After sufficiently accurate values of \mathcal{F} and η were obtained, the tensile force $T_{\text {in }}$ at the top of each column of springs was calculated using the formula

$$
\left.\begin{array}{l}
T_{i n}=k\left(1+n \delta-n_{i, n-1}\right)\left(1-1 / R_{B}\right) \tag{2.12}\\
R_{B}=\sqrt{\xi_{i, n-1}^{2}+\left(1+n \delta-n_{i, n-1}\right)^{2}}
\end{array}\right\}
$$

When $i=0$, the value of $T_{\text {On }}$ simplifies to

$$
\begin{equation*}
T_{0 n}=k\left(n \delta-\eta_{0, n-1}\right) \tag{2.13}
\end{equation*}
$$

The force after break F_{a} then becomes

$$
\begin{equation*}
F_{a}=T_{0 n}+2 \sum_{i=1}^{n} T_{i n} \tag{2.14}
\end{equation*}
$$

The fraction of the force remaining after a bond break $\overline{\mathrm{T}}$ is Given by the ratio F_{a} / F_{b}.

The average associated energy \bar{E} is found from its definition, eq (1.10), after calculating the associated energy for each junction point and summing over all the junction points to obtain the stored energy after break E_{a}.

The value of \bar{E} can be obtained by a different calculation, if F_{a} is known as a function of δ from a series of calculations on a given model. The energy after break E_{a} is found by integrating under the curve of F_{a} versus initial elongation $\Delta I=2(N-I) \ell \delta$. Thus,

$$
\begin{align*}
E_{a} & \left.=\int_{0}^{2(N-I) l} F_{a} \cdot d!2(N-I) l \delta\right] \\
& =2(N-I)(2 M-I) k \ell \int_{0}^{\delta} \bar{T} \delta a \delta \tag{2.15}
\end{align*}
$$

From the definition eq (1.10) \bar{E} is then given by
$\bar{E}=\frac{2 N-2}{2 N-1} \cdot \frac{2}{\delta^{2}} \int_{0}^{\delta} \bar{T} \delta d \delta$
In the square-network model $\overline{\mathrm{T}}$ is not a constant independent of δ as it is in the parailel-spring model. If \bar{T} were constant, eq (2.16) would reduce to the relation eq (l.ll) given for the parallel-spring model.

It should be noted that the behavior of the squarenetwork model is the same as that of the parailel-spring model before the central bond breaks. Therefore eqs (l.l), (1.2) and (1.3) are the same for both models. The quantity \bar{T} is defined by eq (1.6) and the quantity \bar{E} by eq (1.10) in both models. Thererore eqs (1.8) and (1.13) are valid ron both models. Relation (2.16) is a general definition valid for both models, but relations (1.7) and (I.II) apply to the parallel-spring model only. Therefore eqs (I.9) and (1.12) also are valid only for the parallel-spring model.

SQUARE-NETWORK MODEL CALCULATIONS

A number of calculations were carried out for different square-network models to determine the number of iterations required for accurate values of $\overline{\mathrm{T}}$ and $\overline{\mathrm{E}}$. The model for which $\mathrm{M}=11, \mathrm{~N}=21, \ell=1$ was studied the most extensively. Results of calculations for this model are given in table l. These results indicate that for values of δ greater than $0.05,100$ or 200 iterations are required to obtain values of \bar{T} and \bar{E} accurate to more than four significant digits. When δ is 0.05 or less, more than 200 iterations are desirable. Check calculations were also carried out on the other models studied, and 200 iterations were determined as sufficient.

Calculations were carried out on five different models. The initial strain δ for these models was 0.20 . A mesh length of $\ell=l$ was assumed for the calculations. Values of M and N were varied in order to study how \bar{T} and \bar{E} depended on the shape and on the number of junctions in the model. Results of the calculations for these models are given in table 2.

The configuration of the model for which $\mathbb{M}=11, N=21$ is plotted in figure 3. Only the upper right-hand quadrant of the model is shown, as the complete model is symmetrical with respect to this quadrant. The distortion due to the bond break is seen to be concentrated along the central column of springs ($I=I$). Buckling occurs ($\bar{R}<I$) in the regions where the springs are indicated by dotted lines. Although not easily discernable in the figure, the central width ($J=1$) has been reduced to 0.956 times the original width, as a result of bond break.

An energy map of the model for which $M=11, N=21$ is shown as an isometric plot in figure 4. As before only the upper right-hand quadrant of the model is shown. The dimensionless value plotted at each junction point is the ratio of the associated energy after bond break to the associated energy before bond break. According to this map the associated energy remains constant at most of the junction points, it increases at points immediately to the right and left of the broken bond
and decreases to a lower level at junction points above and below the broken bond.

Figure 5 shows the configuration after bond break, and figure 6 shows the energy map of the model for which $M=21$, $N=41$. This model, of the same shape as the previous model, has approximately four times as many junction points. The corresponding figures for the two models are similar.

Table 3 presents values of \bar{T} and \bar{E} as functions of initial strain δ in the case of the model for which $M=11, N=21$. A forceelongation curve for this model after one central bond has been broken can be plotted using data from table 3. The force has the value $(2 M-1) T k \delta$, and elongation the value $2(N-1) l \delta$. The essential characteristics of the curve are shown by figure 7 , which is a plot of $\bar{T} \delta$ vs δ for this model. Unfortunately the values of \bar{T} are so close to unity that this curve lies very close to the force-elongation curve, shown as a dashed line, of the model before the central bond was broken, and the nonlinear character of the curve is not readily apparent.

The non-linear character of the force-elongation curve can be demonstrated by plotting the difference in force before and after break as a function of δ. This is shown in figure 8 , in which (I-T) δ is plotted vs δ. As a matter of interest ($1-\bar{T}$) for the parallel-spring model ($M=11, N=21$) was calculat.ed. Its value was 0.0024938 . The linear function 0.0024938δ is shown as a dashed line on the plot. The value of \bar{T} for the parallel-spring model exceeds the values of \bar{T} calculated for the square-network model. Evidently the force drop incurred by a bond break in the square-network model is greater than the force drop incurred in the parallel-spring model.

The area under the $\bar{T} \delta$ curve in figure 7 is equal to $\int_{0}^{\delta} \frac{\delta}{T} \delta d$, and according to eq (2.16) the average associated $\overline{\mathrm{E}}$ is equal to $\frac{2 \mathrm{~N}-2}{2 \mathrm{~N}-1} \cdot \frac{2}{\delta^{2}}$ times this quantity. Thus values of

E can be calculated from \bar{T} and δ according to eq (2.16) and the result compared with the values of \bar{E} in table 3 , which were calculated from the associated energies present after break. This should provide a check on the accuracy of the computer calculations. The results of this calculation are given in the last column of table 3 . The values of \bar{E} obtained by the two methods are seen to be in fair agreement.

DISCUSSEON OE RESULIS

1．Conf゚isuretional Distortions and the Redistrioution of Associated Enersies as the Resuit of E Eonc Breat．

It has been assumed that in a jow－density こaper eemonk Of the type testea experimentally［l－3］，in most cases a bonk break resulus cnly in local disturtions，and most uf jine enereu loss is also concentrajed Iocally．I＇noula be desirable to demonstrate this with a mathematical model，but the suuare－ netivonk model is not suitable for this puppose．The distcntions and energy losses are concentrated alone the oclumn of springs airectivy in line with the oroken bond．Possinly a better mokel woula be one in which the meshes mere of a diflerent shape， such as a hexagon，and so arnengea thet load bearing ficeごう could not be easily aligned in the direction of stretch．Such a model would require less stretching foree，have a nonlinean fonce－elongation curve，and probabiy have a greater tenciency to buckle laterally．It would better simulate the benavion of a thin paper network，but at the price of greeter mathe－ matical complexity．

In the enersy maps，figures 4 ana \equiv ，there is an increase in associated energy at the junctions to either sicie $0=$ the broken bona．These bonảs therefore should break immeaiately after breakage of the centrai bond，and conds farther out shoula break successively in a tearing action tina proceecas across the model netwonk．This tearing action is probaioly common to many models，and actually occuins in real paper nej－ works．In the paper networks homever it seliom goes to com－ oletion，because the density of fibers is not sufficienこlu uniform．

2．The Effect of Mesh－ength
In experimental wonk specimens of standara aimensions （usually 2xI cm）are elongated，and the appİed force recondei as a function of the elongation．Wherever a bond breaks the
force decreases sharply, and the energy loss resulting from the bond break can be determined by integrating under the force-elongation curve in the vicini=j of the force drop. Certain of these energy losses are averaged to obtain a parameter characterizing bond strength.

If it is assumed that all of the breaks occur at approximately the same local force level, and the specimens have uniform mesh size, this energy parameter might provide a reliable indication of tine relative bond strength. For instance bonding could be studied in thin handsheets of the same mass per unit area made from a pulp that had been subjected to various beating treatments. However if one attempts to compare bonding in standard handsheets made from different pulps, a difficulty arises. One pulp may be coarser than the other. Thus a handsheet of a standard mass per unit area made from a coarse pulp would have fewer bonded junctions and larger meshes on the average than would a handsheet made from a finer pulp. In order to compare energy parameters for these different pulps it is necessary to znow what is the effect of mesh size.

To study this effect in models, consider two parallelspring models: model $A ; M=11, N=21, l=1$ and model $B ; M=21$, $N=41, \ell=0.5$. These models have the same external dimensions, but the mesh lencth of model B is half that of model A. Let the two models be extended the same amount, so that δ and therefore the lucal force $k \delta$ is the same in each. From eqs (1.1), (1.7) and (1.8) the force drop in model A is $21 k \delta / 401 \sim 0.05 k \delta$, and in model B is $41 k \delta / 1601 \sim 0.026 k \delta$. From eqs (1.3), (1.7) and (1.12) the energy loss in model A is $\frac{840}{401} \cdot \frac{1}{2} k \delta^{2} \sim 2.1 \cdot \frac{1}{2} K \delta^{2}$, and in model B is $\frac{1640}{1601} \cdot \frac{1}{2} k \delta^{2} \sim 1.02 \cdot \frac{1}{2} k \delta^{2}$. Eviciently model B with half the mesh size of model A also has approximately half the force drop and half the energy loss.

In any parallel-spring model, from eqs (1.1), (1.7) and (1.8)

$$
\Delta F=\frac{(2 M-1) k \delta}{2(M-1)(N-1)+1}=\frac{2(M-1)+1}{2(M-1)(N-1)+1} k \delta
$$

which for large M becomes

$$
\Delta F \sim \frac{1}{N-1} k \delta
$$

Substituting the initial length $I=2(N-1)$ into this expression gives

$$
\begin{equation*}
\Delta F \sim \frac{2 l}{L} k \delta \tag{4.1}
\end{equation*}
$$

From eqs (1.3), (1.7) and (1.12)

$$
\begin{aligned}
\Delta E & =\frac{2(N-1)(2 M-1) l}{2(M-1)(N-1)+1} \cdot \frac{1}{2} k \delta^{2} \\
& =\frac{2(N-1)(2 M-2)+2(N-1)}{2(M-1)(N-1)+1} 2 \cdot \frac{1}{2} k \delta^{2}
\end{aligned}
$$

which for large M becomes

$$
\begin{equation*}
\Delta E \sim 2 l \cdot \frac{1}{2} k \delta^{2} \tag{4.2}
\end{equation*}
$$

According to eqs (4.1) and (4.2), if any two parallel-spring models for which M is large are extended so that the local force $k \delta$ is the same in each model, the ratio of the energy losses $\Delta E_{1} / \Delta E_{2}$ in the two models will be the same as the ratios of the respective mesh lengths h_{1} / h_{2}. If in addition the initial lengths of the two models are the same; i.e., $2\left(\mathbb{N}_{1}-1\right) l_{1}=2\left(N_{2}-1\right) l_{2}$, the ratios of the force drops will be equal to l_{1} / ℓ_{2}.

Table 4 gives the results of calculations for a number of parallel-spring models, all of which have the same initial length. According to these results the force drops and energy losses are almost linearly proportional to the mesh length ℓ, despite the relatively low value of M in some of these models. It is interesting to observe that values of total force before break F_{b} and the total energy before break E_{b} do not influence these results significantly. The values of F_{b} and E_{b} are proportional to $2 \mathrm{M}-1$ however, so this is just a manifestation
of the near independence of the values of ΔF and ΔE on the values $0=\mathrm{M}$ ，for N sufficiently Iarge（egg．，MoIl）．

Table j sires results of calculations for some square－ network models having the same initial length．The M, N and i parameters for these models are the same as those in table 4. The force drops and energy losses for these models decrease as the mesh length i decreases，but are not linearly propor－ tonal to the mesh length．For instance the three models for which V＝II have 2 ratios of 1．0：0．50：0．25，ΔF ratios of I：0：0．57：0．$\overline{\text { I }}$ and ΔE ratios of 1．0：0．64：0．37．The two models for which M＝EI have l ratios of I．0：0．50，ΔF ratios of 1．0：0．5－and ΔE ratios of $-2: 0.58$ ．Apparently the dependence of $\angle E$ and ΔE upon 2 becomes more linear as M increases．

Results for the parailei－spring and square－network models suggest that the force drops and energy losses observed in a paper fiber network have an approximately linear dependence on a characteristic mesh length．The actual dependence， however，must be determined experimentally．

The effect of mesh length can also be deduced by a different argument as follows：Select a model（M，N）for which calculations have been made so that $\overline{\mathrm{T}}$ and $\overline{\mathrm{E}}$ are known for a given δ ；ie．， $\bar{T}=\bar{T}(\delta)$ ，$\overline{\bar{E}}=\bar{E}(\delta)$ ．Select a mesh length l ．The initial length of the model then is $2(N-I) \ell$ ．For each mesh length selected the model is elongated an amount $\Delta I=2(N-I) l \delta$ ． This assures that the local tension at the bond break is Einays the same（r．δ ）．From eos（I．I），（1．8）and（1．13）

$$
\begin{align*}
& \Delta==(2 N-I)(I-T) k \delta \\
& \Delta E=2(N-I)(2 N-I) l\left(1-\frac{2 N-I}{2 N-2}\right) \cdot \frac{2}{2} \delta^{2} \tag{4.4}
\end{align*}
$$

As 示 and \bar{E} are functions of δ which is Vent constant，ΔF is a constant independent of mesh length and ΔE is áirectiy proportional to the mesh length．This conclusion is veii for Either the parallel－sprins on scuare－networl type of model．

The conclusion just obtained seems to conflict with that found by the analysis presented above．However in that analysis
a number of models of different mesh Iength but having the same initial length were elongated, whereas in the peesent analysis the initial length of the model deperds on the mesh. length.

This latter deauction may be userul in experimental work, as illustrated in the following situation: Suopose that tro handsheets have been manuractured from the same pulp stock. Let the iirst handsheet have twice the areal density as the second, so that its characteristic mesh length is one-naif as large. According to the analusis above, bond breaks in both handsheets should occur at the same force level, but a specimen from the second handsheet must be extended twice as much as one from the first in orcier to attain this force. Thus the average energy loss per bond break in the second handsheet should be twice that in the first. This suggests that energy parameters found by tests on handsheets of different areal density can be scaled to find the value comesponding to a standard mesh length.
3. The Effect of Sample Size and Shape

If several models, each with the same mesh length l., are elongated to the same tension, the force droos and energy losses are given by eqs (4.3) and (4.4). Fon square-netirom models it is necessary to know the approoriate values of \bar{T} and \bar{E} before the effects of sample size can de preaicted. For parallel-spring models however, simple expressions for \bar{T} and \bar{E} are known, so that for large vaiues of M eqs (ب.I) and (4.2) apoly. Equation (4.1) predicts that the product or the force drop by the length of the specimen, I $\Delta \bar{F}$, is a constant for all models having the same mesh length i, and eq (4.2) then states that the energij losses are constant. Table 6 gives values of the force drop and energy loss fon some parallel-spring models. Note that the quantities $I \Delta F / k \delta \ell$ and $\Delta E / 0.5 k \delta^{2} \hat{\ell}$ have the same value in this table
because of the choice of units. It is apparent that ΔF and ΔE for parallel-spring models are closely predicted by eqs (4.1) and (4.2). The three models for which $M=11$ (and width $W=2(M-I) l=20 l$) have values for $I \Delta F$ and ΔE of approximately 2.095, and the two models for which $M=21$ ($W=40 \ell$) have values of approximately 2.048. Evidently $L \Delta F$ and ΔE approach a value of 2.0 with increasing M, as they should according to eqs (4.1) and (4.2).

Table 7 gives values of the force drop and energy loss for some square-network models. The values of $I \Delta F$ and ΔE for these models are roughly constant, but there seems to be some dependence upon both M and N. For instance the three models for which $M=11$ ($W=20$ l) have lengths that increase in the ratio 20:40:80. The LUF values for these models are :0.27:11.79:12.80. The two models for which $\mathrm{M}=21 \quad(W=40 l)$ have length ratios of $40: 80$ and LAF values of 11.30:12.27. Similar results are obtained for the ΔE values.

The results for the square-network models suggest that various values of $I \Delta F$ and ΔE obtained by tests on specimens of the same characteristic mesh length but of different size and shape, are roughly comparable. For most accurate results however all test specimens should have the same standardized dimensions.

For the parallel-spring models, from eqs (l.l), (l.3), (1.8) and (1.12)

$$
\begin{equation*}
\frac{\Delta E}{\Delta F}=\frac{E_{b}}{F_{b}}=\frac{2(N-1) 2 \delta}{2}=\frac{L \delta}{2} \tag{4.5}
\end{equation*}
$$

This equation states that for the parallel-spring models the ratio $\Delta E / \Delta F$ is proportional to the average elongation at which bond breaks occur, regardess of the value of M. Experimentally it is desirable to have significantly large force drops for a given energy loss, so the ratio $\Delta E / \Delta F$ should be kept small by making I as small as feasible.

For the square-network models, from eqs $(4,3)$ and $(4,4)$

$$
\begin{equation*}
\frac{\Delta E}{\Delta \bar{F}}=\left[\left(1-\frac{2 N-1}{2 N-2} \bar{E}\right) /(1-\bar{T})\right] \frac{I \delta}{2} \tag{4.6}
\end{equation*}
$$

Table 8 gives values for the ratio $\Delta E / \Delta F$ for some squarenetwork models. Parallel-spring models have values of $\Delta E / \Delta F$ that are proportional to the initial length L in accordance with eq (4.5), but for the square-network models the dependence of $\Delta E / \Delta F$ upon L is not quite linear, and there also seems to be a small dependence upon M. This is best shown by comparing values of the quantity $\frac{2}{L S}\left(\frac{\Delta E}{\Delta F}\right)$, which for parallel-spring models is equal to unity but for the square-network models in table 8 varies between 1.2 and 1.5 depending upon the model.

Of most importance, however, is the confirmation that the quantity $\Delta E / \Delta F$ can be kept low by choosing a small value of L. This situation is limited somewhat in experimental tests. A specimen length at least twice the specimen width is preferred, in order to avoid excessive stress distortion near the clamps.

Although the results of tables 7 and 8 indicate that the values of $L \Delta F, \Delta E$ and $\Delta E / L \Delta F$ are insensitive to the value of M, there are circumstances where it is advantageous to vary the width of the specimen, as in the following experimental situation: Suppose that tests are being conducted on a given specimen, but the force drops observed are small, so that they cannot be measured with much certainty. The calculation of energy loss requires that the force drop be known as accurately as possible. Thus the experimental length should be small in order that the force drop be large. Further improvement is then achieved by decreasing the specimen width. This decreases the value of force at break F_{b} without significantly affecting the value of the force drop. The amplification of the recording instrument can then re increased and the force drop better resolved.
4. Dependence of Energy Ioss Upon the Local Breaking Force. Accoraing to eq (4.4) the energy loss ΔE is proportional to the product of the quantity $\left(1-\frac{2 N-I}{2 N-2}\right)$ by the square of the local breakins force kd. For parallel-spring models \bar{E} and thereiore the quantity $\left(1-\frac{2 N-1}{2 N-2} \bar{E}\right)$ is independent of the value oi this force. Thus for these models energy loss is proportional to the square of the local force at break. For square-network models however the value of \bar{E} depends upon the velue of 5 , so this simple quadratic relationship no ionger appiies.

Sisure 9 is a plot of the quantity $\left(1-\frac{2 N-1}{2 N-2} \bar{E}\right) \delta^{2}$ as a function of δ. The orainate in this case is proportional to the energy loss in a square-network mociel for which Mi=ll and $N=21$. This relationship, calculated from the data oi table 3 , is show by the solid line. A relationship having the same value for $\delta=0.10$, but for which the ordinate is of the form - δ^{2}, where K is a constant, is shown by the dashea line. A corresponding relationship of the form $K^{1} \delta^{7.5}$ is given by the cottea Iine. This latter relationship proviaes a better fit to the data than coes the quadratic relationship.

The relationship between enerey loss ana local breaking force in an experimental test specimen is not known, and it coes not seem feasible to determine it experimentally. It is possible that further stuaies with other more realistic mathematical models may provide more information on this relationship.
5. Interpretation of the Energy Parameter.

In the introduction an energy parameter Ξ for characteṙzing the adinesion between pulp ilibers was described. This energy parameter is obtainea experimentally by elongating thin Web-like specimens in a sensitive tensile tester, and measuring the energy loss incurrea each time a bond breaks, as denoted y_{y} a sharp arop in the force-elongation curve. The energy losses for a selected number of bond breaks are then averaged.

The parameter Ξ is supposed to provide a measure of the adhesive force between fibers, but the previous điscussion shows that E depends on the structure of the specimer networy as well. The meshes in a specimen netwonk range over a variety or sizes, and the energy loss incurred by a break depends upon the sizze of the hole that opens up. Ir aII the bonas in the neighborhood were of the same strength the parameter E would roughly measure that strength, but could still take on a range of values depending on the size distribution of the meshes in the specimen netwonk.

The force of adhesion between fibers in the network varies Irrom bond to bond. It has just been shown that the erergy loss incurred as the result of a bond break is not linearly related to the local breaking force at the bonc. Therefore the average of a number of energy losses coes not reflect a simple average of the local breaking forces.

Results of calculations with square-netwonk models suggest that the energy loss has oniy an approximate Iinean relationship to the mesh length. This introduces a siight additional complication in the interpretation of what the E parameter actually measures.

The interoretation of the Ξ parameter may pernaps be better expressed by the foliowing formuiation: Iet the enersy Iosses be measured for each of a series of n breaks, and leu the energy loss $\Delta \bar{E}_{i}$ for the $i^{\text {th }}$ break be given by

$$
\Delta E_{i}=K_{i} i_{i}^{\alpha} g\left(x_{i}\right)
$$

K_{i} is a constant of the network that may vary from breah to break if the network is significantly altered by the breaks. i_{i} is the local force on the bond at break, and a is a constant having a value probably between land 2. For a square-network model α has a value close to I.j. $g\left(x_{i}\right)$ represents the functional dependence of Δ_{i} upon a characteristic mesh length x_{i} associated with the bond i. This
relationship is probably almost a linear one．
Under these assumptions the characteristic energy \equiv is Even by

$$
\begin{equation*}
\equiv=\frac{1}{n} \sum_{i=1}^{i=r} x_{i}=\alpha_{i} g\left(x_{i}\right) \tag{4.7}
\end{equation*}
$$

This formula gives an approximate idea of the nature of the parameter E．However one should remember that this formula is based on the results of square－netrork model calculations，

 I二 is likely that work with more appropriate models will provide an improved understanding of the nature of Ξ 。

6．An ́IIたとnative Force Drop Parameter．
Adhesion between pulp fibers could be characterized alternatively by means of a force drop parameter E．This ミニとぇmミむer coula be obtained by averaging force drops incurred in a series of bona breaks when a test specimen is elongated．

> In oràer to calculate an Energy parameter E it is necessary to know the slope of the force－eiongetion curve in the vicinity of a force drop．The force drop parameter F could be calculated more simply，as only tine force drops are useci．

In crier that the force drop parameters be comparaicle， the test specimens must ail have the same initial length．In other respects the force crop parameter F is similar to the Enerきü ご三rameter E。Both parameters are sensitive to mesh size
 liたさther parameter is linearly related to the average of the local bond breaking force．However the functional dependence of upon the average bon え breaking force is jiごさ゚erent from だったでき。
\therefore mooring to eq（ 4. ）the local force drop resulting from

 With increase of locai adhesive Ionce as moula be iesineえ． Panameter ミ nith its possible fl．j jepencience maj ce superoon in this respect．
 and upon mesh size is somerhat like that of゚ つ三そニmeさeで 三．\therefore suggestea formula to exoress this iependence rould oe similan to eq（ 4.7 ）vith different vaiues ニ゚on different quasiifnear Iunction 玉．

REFERENCES

I. J. C. Smith and E. L. Graminski, Characterizing the Interfiber Bond Strengths of Paper Pulps in Terms of a Breaking Energy, Progress report covering the period Jan. I, 1976 to June 30, 1976, NBSIR 76-1148. Available from National Technical Information Service, PB 264,689.
2. J. C. Smith and E. L. Graminski, Characterizing the Interfiber Bond Strength of Paper Pulps in Terms of a Breaking Energy: Effect of Beating, Progress report covering the period July l, 1976 through Sept. 30, 1976, NBSIR 77 - 1286. Available from National Technical Information Service, PB 276,473.
3. J. C. Smith and E. L. Graminski, Characterizing the Interfiwer Bonding of Paper Pulps: Effect of Preparation Pressure on Tensile Test Specimens, Progress report covering the period Oct. 1, 1976 through March 31, 1977, NBSIR 78 - 1459. Avaliable from National Technical Information Service, PB 280,279.

Table 1.
Values of $\overline{\mathrm{T}}$ and $\overline{\mathrm{E}}$ as Functions of Number of Iterations for a Square-Network Model

$$
M=11, \quad N=21,2=1
$$

No. OI

δ	Iterations	\bar{T}	$\overline{\mathrm{E}}$
0.01	100	0.95227	0.92923
	200	0.95254	0.92923
0.03	100	0.95779	0.93112
	200	0.95714	0.93100
0.05	20	0.96738	0.93606
	50	0.96679	0.93383
	100	0.96614	0.93567
	200	0.96564	0.93561
0.10	20	0.97806	0.94643
	100	0.97829	0.94638
	20	0.97827	0.94637
	100	0.98316	0.95270
	10	0.98330	0.95263
	10	0.98332	0.95262
	20	0.93787	0.97979
	100	0.98371	0.95679
	200	0.98594	0.95644
	100	0.98595	0.95641

Table 2.

Values of \bar{T} and \bar{E} for Some Square-Network Models $\delta=0.20, \ell=1,200$ iterations

M	N	\bar{T}	\bar{E}
11	$I I$	0.97554	0.92306
11	21	0.98597	0.95640
21	21	0.99311	0.96639
11	41	0.99238	0.97634
21	41	0.99626	0.98221

Table 3.
Values of $\overline{\mathrm{T}}$ and $\overline{\mathrm{E}}$ as Functions of Initial
Strain for a Square-Network Model $\mathrm{M}=11, \quad N=21, \ell=1$

δ	$\overline{\mathrm{T}}$	$\overline{\mathrm{E}}$	$\overline{\mathrm{E}}$
			eq (2.16)
0.01	0.95254	0.92923	0.92931
0.03	0.95714	0.93100	0.93230
0.05	0.96564	0.93561	0.93658
0.08	0.97477	0.94270	0.94328
0.10	0.97827	0.94637	0.94683
0.13	0.98173	0.95052	0.95078
0.15	0.98332	0.95262	0.95273
0.18	0.98507	0.95510	0.95503
0.20	0.98597	0.95640	0.95626

Note: \bar{T} for the parallel-spring model is 0.99751 \bar{E} for the parallel-spring model is 0.97318

Note: Values for $\delta=0.01,0.03,0.05$ and 0.20 were obtained after 200 iterations. All other values were obtained after 100 iterations.

$$
\sum \vec{H} \vec{H} \vec{N} \vec{H}
$$

Table 6.

N	L/3	$\triangle F / \mathrm{k} \delta$	L $\triangle F / \mathrm{F} \delta \mathrm{S}$,	$\Delta E / 0.5 x z^{2}$
11	20	0.1045	2.090	2.090
21	40	0.0524	2.095	2.095
21	40	0.0512	2.047	2.047
41	80	0.0262	2.097	2.097
41	80	0.0256	2.049	2.049

Table 7 .
Values of Force Drop ΔF and Energy Loss ΔE for Some Square-Network Models.

M	N	L / ℓ	$\Delta F / K \delta$	$I \Delta F / K \delta i$	$\Delta E / 0.5 \mathrm{~K} \delta^{2} i$
11	11	20	0.5137	10.27	12.93
11	21	40	0.2946	11.79	16.54
21	21	40	0.2825	11.30	15.50
11	41	80	0.1600	12.80	19.25
21	41	80	0.1533	12.27	18.08

Table 8.
Values of $\Delta E / \Delta F$ for Some Square-Network Models.

M	N	$I / 2$	$\frac{1}{i \delta} \frac{\Delta E}{\Delta F}$	$\frac{2}{L \delta} \frac{\Delta E}{\Delta F}$
11	11	20	12.59	1.259
11	21	40	28.07	1.403
21	21	40	27.43	1.372
11	41	80	60.14	1.503
11	41	80	58.96	1.474

Figure 1.
Schematic representation of parallel-spring model. Model has 2M-l parallel columns of springs attached to 2N-l rigid transverse bars.

Figure 2。
Schematic representation of square-network model. Model has $2 \mathrm{M}-1$ parallel columns of springs. Each column has $2 \mathrm{~N}-1$ junction points which, excepting the end points, are attached to transverse springs.

Figure 3.
Conîiguration of the positive quadrant of a square-network model for which $M=11, N=21$, after a central bond break. The broken bond is designated by the open circle in the lower left corner. Springs in which buckling occurs are designated by dashed lines.

Figure 5. Configuration of the positive quadrant of a square-network model for which $M=21, N=41$, after a central bond break. The broken bond is designated by the open circle in the lower left corner. Springs in which buckling occurs are designated by dashed lines.

Figure 7.
Force-elongation curve after central bond break in a squarenetwork model for which $M=11, N=21$. T δ is plotted vs δ, where δ is the elongation per unit length. Dashed line shows forceelongation curve before bond break.

Figure 8.
Curve of force drop due to bond break vs elongation of a square-network model for which $M=11, N=21$. ($1-\bar{T}) \delta$ is plotted vs δ, where δ is the elongation per unit length. Dashed line shows force drop for equivalent parallel-spring model.

LOCAL FORCE , ARBITRARY UNITS

Figure 9.
Curve of energy loss due to bond break vs bond breaking force for a square-network model with $M=11, N=21$. ($\left.1-\frac{2 N-1}{2 N-2} \bar{E}\right) \delta^{2}$ is plotted vs elongation per unit length δ, which is proportional to bond breaking force. Dashed line is plot of $K \delta^{2}$ vs δ, and dotted line a plot of $K^{\prime} \delta^{1.5}$ vs δ. The constants K and K^{\prime} are adjusted so that ordinates of the plots are equal at $\delta=0.10$.

NBS-114A (REV. 7-73)

U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. NBSIR 79-1735	2. Gov't Accession No.	3. Recipient's Accession No.
4. TITLE AND SUBTITLE Characterizing the Interfiber Bonding of Paper Pulps: Tensile Behavior of Some Mathematical Mode1s of Paper Networks.			5. Publication Date
7. AUTHOR(S) Jack C. Smith 9. PERFORMING ORGANIZATION NAME AND ADDRESS NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20234			8. Performing Organ. Report No.
			10. Project/Task/Work Unit No. 11. Contract/Grant No.
12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP) U.S. Department of Energy Washington, D. C. 20234			13. Type of Report \& Period Coyrinal $4 / 1 / 77-9 / 30 / 77$ 14. Sponsoring Agency Code

16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.)

The tensile behavion of a thin web-like paper network was simulated by two simple mathematical models. The mesh distortion, drop in tensile force and energy loss resulting from breakage of a network junction were calculated. These results were used to formulate two parameters for characterizing interfiber adhesion: a parameter averaging the network losses incurred in a series of bond breaks when the network is elongated, and a parameter averaging the force drops. The effect of mesh size, local bond adhesive force, and size and shape of the specimen network were calculated. These results based on model studies were used to interpret behavior observed in an actual paper network.
17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolons)
Mathematical modeling, network; network, tensile properties; paper, interfiber bonding; paper, low-density handsheets; paper, pulp properties.
18. AVAILABILITY

Unlimited

X For Official Distribution. Do Not Release to NTISOrder From Sup. of Doc., U.S. Government Printing Office Washington, D.C. 20402, SD Cat. No. C13
\square Order From National Technical Information Service (NTIS) Springfield, Virginia 2215 I

19. SECURITY CLASS (THIS REPURT)	21. NO. OF PAGES		
UNCL ASSIFIED		\quad	20. SECURITY CLASS (THIS PAGE) UNCLASSIFIED
:---			

