QUALITY ASSURANCE PROGRAM FOR THE NBS C, K, and Q LASER CALIBRATION SYSTEMS

William E. Case

Optical Electronic Metrology Group
Electromagnetic Technology Division
National Engineering Laboratory
National Bureau of Standards
Boulder, Colorado 80303

Prepared for:
Department of the Air Force
Aerospace Guidance \& Metrology Center (AGMC)
Newark Air Force Station
Newark, Ohio 43055

August 1979

NBSIR 79-1619

QUALIIY ASSURANCE PROGRAM FOR THE NBS C, K, and Q LASER CALIBRATION SYSTEMS

William E. Case

Optical Electronic Metrology Group
Electromagnetic Technology Division
National Engineering Laboratory
National Bureau of Standards
Boulder, Colorado 80303

Prepared for:
Department of the Air Force
Aerospace Guidance \& Metrology Center (AGMC)
Newark Air Force Station
Newark, Ohio 43055

August 1979

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary Luther H. Hodges, Jr., Under Secretary Jordan J. Baruch, Assistant Secretary for Science and Technology
Page
I. INTRODUCTION 1
II. UNITED STATES (U.S.) NATIONAL STANDARDS 3
A. Electrical Traceability 3
B. Standard Resistors 3
C. Standard Cell -- Potentiometer Calibration Setup 4
D. Digital Voltmeter Test Sys̃tem 5
E. Time-Interval Counters 5
III. QUALITY ASSURANCE FOR C, K AND Q LASER CALIBRATION SYSTEMS 5
A. First-Time Operation of a System 5
B. First-Time Operation of a System at a New Wavelength 8
C. Re-Evaluation of a System at an 01d Wavelength 8
D. Quality Assurance Plans 1 and 2 8
E. Day-to-Day Check 9
F. Monthly or Special Check 12
G. Annual Check 12
H. NBS/AGMC MAP 12
IV. BLUE BOOK 13
A. TABLE A -- ELECTRICAL CALIBRATIONS 14
B. TABLE B -- ABSORPTION 15
C. TABLE C -- InEQUivalence 16
D. TABLE D -- WINDOW TRANSMISSION. 17
E. TABLE E -- TRACEABILITY 18
F. TABLE F -- D-FACTOR 19
G. TABLE G -- SCALE ÉRRORS. 20
H. TABLE H -- BEAMSPLITTER RATIO 21
I. TABLE I -- SUMMARY OF ERRORS 22
V. COMPUTER DOCUMENTATION FOR THE C, K AND Q CALIBRATING SYSTEMS 23
A. Electrical Calibration Files 23
B. Beamsplitter Files 23
C. Blue Book Matrix Files 23
VI. USING THE C, K AND Q CALIBRATING SYSTEMS 24
A. Transfer Standards 24
B. Conventional Calibrations 25
C. Measurement Assurance Programs (MAP) 26
VII. COMPUTER DOCUMENTATION AND QUALITY ASSURANCE OF LASER POWER
AND ENERGY TRANSFER STANDARDS 27
A. Format 27
B. Discrete Power and Energy Levels 27
C. Separate Calibration Coefficients for Each Scale and Wavelength 27

CONTENTS, continued
D. Direct Calibrations 27
E. Using Mean or Average Calibration Coefficients 28
F. Two-Sided 99 Percent Confidence Interval 28
G. Status Categories 28
VIII. CALIBRATION AND MAP REPORTS 29
A. Regular Calibration Reports 29
B. MAP (Measurement Assurance Program) Reports 29
IX. REFERENCES 31
X. APPENDICES
A. Computer Program /SL/ for Electrical Calibration Factor 32
B. Beamsplitter Ratio and D-Factor Derivation 38
C. Computer Program, /ST2C/ for Beamsplitter Ratio 41
D. Computer Program /S6/ Used to Separate Calibration Values According to Wavelength and/or Scale 48
E. Computer Program, /RU/, a RUNSUM Program to Detect Trends in Statistical Data 53
F. Computer Program, /PL/, a Plotting Routine for a Single Column of Data 57
G. Computer Program /ASTM/, an ASTM Program to Provide 2 Control Charts 63
H. Computer Program, /D2/, a Statistical Program to Provide Average, Standard Deviation 90\%, 95\%, and 99\% Confidence Interval Data 71
I. Computer Program, /S7B/, Used to Separate Beamsplitter Ratios for Different Code Numbers 76
J. Two Typical Electrical Calibration Files, /444/ and /44CC/, as Stored on the Computer 78
K. Computer File, /YT/, a Typical Beamsplitter File for a Given Laser Wavelength 81
L. Table L Defines Code Numbers for Different Beamsplitter Configurations 86
M. Computer File, /CMAT/, Contains All Required C-series Parameters 88

Abstract

This report is a detailed procedure of how to set up and operate a Measurement Assurance Program (MAP) for a laser power and energy calibration facility. Items such as traceability, methods of self-checking measurement consistency, computer documentation and statistical analysis are discussed.

Key words: Calorimetry; laser beamsplitter system; laser calibration system; laser measurements; laser power.calibration.

QUALITY ASSURANCE PROGRAM FOR THE NBS
C, K AND Q LASER CALIBRATION SYSTEMS

William E. Case

I. INTRODUCTION

This report contains information pertaining to several quality assurance programs used by NBS to provide statistical control of the NBS C, K and Q Laser Calibrating Systems. Duplicates of these systems were delivered previously to the Aerospace Guidance and Metrology Center (AGMC) by the Optical Electronic Metrology Group at the National Bureau of Standards in Boulder, Colorado.

Information, previously supplied by NBS, dealt on an individual basis with the use, calibration and maintenance of the C- and K-Series calorimeters. In contrast, this report emphasizes the use of the two-calorimeter/beamsplitter configuration with a system's approach for producing precisely known laser beams for calibrating purposes.

The report is organized into eight sections, which are briefly described here. Section I discusses some of the purposes and needs of C, K and Q laser calibrating systems. Sections II, III, IV and V are concerned with the internal calibration and quality assurance performance of the systems themselves. Sections VI, VII and VIII are concerned with the calibration and statistical performance of transfer instruments assigned to C, K and Q systems.

One purpose of the C, K and Q calibrating systems is to provide accurately known laser beams for determining the calibration coefficients of a number of transfer standards at several power and energy levels at several discrete laser wavelengths.

A second purpose of the systems is to provide data for determining accuracy or uncertainty values for each and every calibrated beam run that is delivered by the three systems. The above two purposes are best served by using the two-calorimeter/beamsplitter configuration, rather than the direct substitution method. Some advantages of this configuration are:
A. To provide calibrated beams over a greater range,
B. Less stringent requirements on laser-power stability,
C. Beamsplitter runs allow self-consistency checks of the whole system. The beamsplitter ratio of a good quality beamsplitter remains very stable at a given wavelength, over a long period of time,
D. Both calorimeters can be treated equally as reference standards and provide a check against each other, and
E. Simplifies preparation of uncertainty statements by using statistics of the whole system rather than piece-meal statistics on individual components.

Proper use of the calibrating systems is important as the certified reports with calibration values and statements of total uncertainty are based on the integrity of the calibrating systems. A complete check of a system's uncertainty involves a set of 20 to 30 measurements that are too time-consuming to do more often than once or twice a year.

While the C, K and Q Series calorimeters have demonstrated good instrument stability and retain their electrical and laser calibration values for long periods of time, a need still exists for a quick, simple, day-to-day check and for a slightly more comprehensive monthly test to ensure system integrity. Some examples of what can happen are as follows: (1) Occasionally a calorimeter temperature-control amplifier malfunctions and needs to be replaced. (2) A calorimeter window may get slightly dirty due to the vacuum system or some other source and needs to be cleaned. (3) A fingerprint on the beamsplitter will give an inaccurate ratio and require cleaning. (4) Reversing the direction a laser beam passes through a sapphire beamsplitter may give a different beamsplitter ratio. (5) The calorimeter absorbing surface may be damaged by laser beams with excessive power density and change the calibration of the cuiurimeter.

Section II deals with electrical traceability to U.S. National Electrical and Time Standards. Since the laser calorimeter measurements are considered to be absolute, rather than relative measurements of energy, it is necessary to establish traceability to fundamental national standards. The electrical measurements concern standard cells, potentiometers, digital voltmeters, standard resistors and time-interval counters.

Section III contains several short- and long-term quality control plans varying from day-to-day operation to yearly calorimeter interchange evaluations. Some advantages of a NBS Measurements Assurance Program (MAP) with AGMC are discussed, which would result in a time-saving, independent appraisal of the AGMC system.

Section IV describes the Blue Book procedure used by NBS to evaluate the calibrated beam uncertainty at the 99% confidence interval for each system and laser wavelength. The Blue Book contains quantitative estimates of the error uncertainty for the electrical calibration coefficients, absorbing values, window transmission values, electrical traceability, inequivalence, D-factors (disagreement between calorimeters), amplifier gains and beamsplitter ratios.

Computer documentation of the calibrating system in Section V completes the system analysis from an internal viewpoint. Electrical calibration files for each calorimeter are kept on the computer in chronological order. Beamsplitter files are stored on the computer for each beamsplitter, and for each laser wavelength being provided by the system. Computer programs are available to quickly ascertain the status of a calorimeter or beamsplitter.

Using the C, K and Q systems for calibrating transfer standards is discussed in Section VI. Some desirable characteristics of a good transfer standard are presented. The chronology of both NBS conventional and MAP-type calibrations are described.

Some guidelines used by NBS concerning documentation and quality assurance of laser transfer standards is discussed in detail in Section VII. Measurements at only discrete power and energy levels is emphasized to more effectively utilize the efforts of a limited staff.

Section VIII describes the procedure used to produce regular calibration reports and MAP intercomparison reports. The total uncertainty of a report is the sum of the system uncertainty plus the imprecision of the measurements made on the transfer instrument.

II. UNITED STATES (U.S.) NATIONAL STANDARDS

A. Electrical Traceability

Calorimeters are the key elements of our calibrating systems. They have had a stable history, they allow reasonable error analysis, and their special design allows easy documentation of traceability to electrical standards. References 1, 2, and 3 report on earlier work, using calorimeters for the measurement of laser power and energy. The calorimeters provide the link for relating laser power or energy to electrical and time standards. Traceability to electrical standards is established by means of electrical calibration runs. The calorimeters and electrical calibrating power supplies are constructed so that two digital voltmeters, a standard resistor and a time-interval counter are required to make an electrical calibrating run. A special plug-in arrangement allows removal and individual calibration of every standard resistor, digital voltmeter, and time-interval counter that is used in the electrical calibration of the C, K and Q systems.

B. Standard Resistors

Documented traceability is easy to obtain for standard resistors. For instance, a certified NBS calibration is available by sending the resistors to NBS, Washington, D.C. However, standard resistors could be sent or obtained from any laboratory that has documented traceability to national standards. Some advantages of standard resistors are:

1. Stable to a few parts-per-million, depending on the ambient temperature,
2. Wide range of values available (0.001 to $10,000 \Omega$) in decade steps,
3. Do not require a constant-temperature oil bath when operated under ordinary room conditions, if 10 to 20 parts-per-million variation is tolerable,
4. Long life (many years),
5. Re-calibration is not difficult because resistors are small, rugged and easily shipped,
6. Re-calibration is only necessary every few years, depending on stability required, and
7. Very useful because of four-terminal design.

At present, NBS uses approximately 20 standard resistors in the C, K and Q traceability programs.

C. Standard Cell - Potentiometer Calibration Setup

Traceability of digital voltmeters to national electrical standards is provided by using a standard cell/potentiometer combination. Certified NBS calibrations, to provide documented traceability, are available for both standard cells and potentiometers by sending the items to NBS, Washington, D.C. Such items could be sent to any laboratory that has traceability to national standards. Some advantages of standard cells are:

1. They give an accurate voltage reference value to within ± 0.005 percent,
2. They give a voltage of convenient magnitude ($\sim 1.019 \mathrm{~V}$),
3. Because of low temperature coefficient, they do not require a constant-temperature bath to maintain the output voltage to within 0.005 percent at normal laboratory temperatures,
4. The output voltage normally decreases only 20 to $40 \mu \mathrm{~V}$ per year,
5. Under normal temperature conditions ($23^{\circ} \mathrm{C}$), their practical life is 12 to 18 years, (if they are not abused),
6. They only require re-calibration every one to two years depending on required stability, and
7. Their re-calibration is easier because a cell is small and is easily shipped.

At present, NBS uses three standard cells in the C, K and Q traceability programs. Some features of a good standard potentiometer, such as the one used by NBS are:

1. The instrument has a high degree of accuracy (0.001 percent),
2. The instrument is very stable because it is passive and is based on only the ratio of resistances,
3. The instrument has its own temperature-controlled environment to improve accuracy, and
4. Re-calibration is necessary only every few years, depending on the stability required.

At present, the Optical Electronic Metrology Group uses a highly accurate, calibrated potentiometer with a recently calibrated standard cell to perform a check on the accuracy of a high-quality digital voltmeter, designated as the Standard Digital Voltmeter (DVM) for our Group.

D. Digital Voltmeter Test System

The DVM test system checks the accuracy over a dynamic range (-10 V to +10 V) of the digital voltmeters used in the data acquisition systems, against the Standard DVM that was discussed above. See reference 10 for details. The triangular wave output voltage from a function generator is sampled, simultaneously by the Standard DVM and one or two digital voltmeters being tested. The digital voltage to the Standard DVM is converted to ASCII code and punched out on Paper Tape No. 1 with the test system's own tape punch. At the same time, the above voltage is sampled by the digital test meters, converted to ASCII code, and punched out on Paper Tape No. 2, with the data acquisiton tape punch. The voltage level from the generator is set to vary from 0 to $\pm 10 \mathrm{~V}$, with a change rate of 0.002 Hz . The changing voltage goes through a complete cycle during a data acquisition period of eight or nine minutes. Paper Tapes No. 1 and 2 are then run on a computer program to calculate an overall systematic error for each test DVM. If the error is greater than the established specifications, the test meter is re-calibrated according to the manufacturer's instructions. NBS uses approximately ten digital voltmeters in the data acquisition systems.

E. Time-Interval Counters

The electrical calibration of calorimeters involves applying an accurately known amount of electrical power for a precise period of time to produce an amount of energy that can be accurately determined. Time-interval counters provide an accurate means of measuring the time periods since these counters are readily available with crystal oscillator stabilities of better than one part-per-million. Some methods using either standard frequencies or time signals from Radio Station WWV, are used to furnish a check of the accuracy of the timeinterval counter and provide traceability to the National Standards of time. At present, NBS uses four time-interval counters for time period measurements.

III. QUALITY ASSURANCE FOR C, K AND Q LASER CALIBRATION SYSTEMS

A. First-Time Operation of a System

The procedure for the first-time use of a laser calibrating system involves an evaluation of electrical calibration coefficients for each calorimeter and amplifier scale being used. It is assumed at this point that the digital voltmeters, standard resistors and timeinterval counters have all been calibrated with traceability to the national standards. Section II discusses in detail the traceability procedures used by the Optical Electronic Metrology Group at NBS, Boulder.

A first-time format for the electrical calibration of two C-Series calorimeters, Cl and C2, can be seen in Table I. One can determine the calibration coefficient for each scale by taking a simple average or by doing a least-squares routine, assuming that the best straightline fit through a plot of the corrected rise values versus energy values goes through the origin. (See Appendix A for a discussion of computer program, /SL/.) The least-squares method has the advantage that the greater scatter of the lower-level readings does not unduly influence the calibration coefficient.

TABLE I.

Run No.	Calorimeter	Amplifier Scale
1	C1	1 E 5
2	C1	1 E 5
*	*	*
*	*	*
*	*	*
6	C1	1 E 5
7	C1	1 E4
*	*	*
*	*	*
*	*	*
*	*	*
12	C1	1 154
13	C1	1 E 3
*	*	*
*	*	*
*	*	*
*	*	*
18	C1	1 E3
19	C2	1 E 5
*	*	*
*	*	*
*	*	*
*	*	*
24	C2	$1 \mathrm{E5}$
25	C2	1 E4
*	*	*
*	*	*
*	*	*
*	*	*
30	C2	1 E4
31	C2	1E3
*	*	*
*	*	*
36	C2	1 E3

In addition to providing the calibration coefficient, the program, /SL/, also provides the uncertainty of the calibration coefficient using t-statistics at the 99 percent confidence interval for a given data set. For instance, the C-Series calorimeters use chopped-stabilized amplifiers with gains (scales) of $1,000,10,000$ and 100,000 to cover the energy range of the calorimeters. For each calorimeter, a question arises whether to have individual calibration coefficients for each scale or to combine two or more scale values for a combined calibration coefficient. The goal is to make the confidence interval as small as practical, either by making more measurements or by combining or separating data according to scale.

A question arises as to how ofter the electrical calibration runs should be made and how often the calibration coefficient should be updated. Generally, beamsplitter ratio measurements are used as the control parameter to verify that the calibration system is operating correctly. When beamsplitter ratios do not fall within the normal range of scatter, a problem exists. One test that is usually made, is to make an electrical calibration run on each calorimeter and compare the electrical calibration coefficient values with previous data. If a trend or shift is suspected, several additional electrical runs should be made. Using the electrical coefficients in computer program, RUNSUM, (see Appendix E) is helpful in deciding whether a trend really exists. Plotting the coefficients with computer program /PL/, (see Appendix F) is also very helpful in determing whether a trend exists and when the trend or shift occurred. Some judgment must be exercised in determining what old data should be discarded, if a shift has taken place. The electrical calibration coefficient would be updated if it is decided that a shift has taken place.

A calibration system should be checked out at least one a year at some operating wavelength using Plan 1 and 2 which includes a set of electrical calibration runs. The electrical calibrations, beansplitter values and D factors would be updated as a result of these measurements.

Each calorimeter uses an electrical heater made of manganin-wire for the electrical calibrations. The heater resistance can be considered to have the properties of a standard resistor because:

1. The electrical resistance of the manganin-wire is very stable at room temperatures due to its very low-temperature coefficient,
2. The calorimeter is temperature-controlled and the heater resistance operates in an environment of nearly a constant temperature, and
3. The heater was constructed as a four-terminal network to permit very accurate readings of voltage and current and the calculation of the effective heater resistance.

A plot of resistance versus time, (see /44CC/ in Appendix J, for example) for each calorimeter heater is a check of heater leakage to ground and of the DVM's used to measure the voltage and current. The percent difference of the worst case from the average value is used in the summary of errors pertaining to traceability. See Section IV for further details.
B. First-Time Operation of a System at a New Wavelength

The initial use of a new wavelength involves checking several parameters for wavelength dependence. This is accomplished by using either Quality Assurance Plan 1 or Plan 2 as described in Part D.

1. Calorimeter Absorption: Values of absorption have been determined by earlier measurements on the C, K and Q type calorimeter. Some of the results of these measurements are discussed in references 3, 4, 5, 6, and 7. For instance, the values of absorption for the C-Series calorimeters are independent of wavelength from 0.4 to $1.064 \mu \mathrm{~m}$.
2. Beamsplitter Ratios: All the beamsplitter ratios used in the C, K and Q systems are wavelength-dependent. Beamsplitters are discussed in some detail in References 3, 4, 7, 8, and 9. Both of the following plans, 1 and 2, are designed to determine the correct beamsplitter ratio to use for each wavelength being provided.
3. Calorimeter Windows: All windows used in the C-Series system are wavelength-dependent. A choice is available between Plan 1 or 2, depending on whether window transmission measurements are to be made with the calibrating system or were made before, by independent means. Proceed to Part D.
C. Re-Evaluation of a System at an 01d Wavelength

Either Plan 1 or 2 can be used for a periodic or special re-evaluation of a system at a previously used wavelength depending on whether the window transmission measurements were made independently or not.
D. Quality Assurance Plans 1 and 2

EL runs are defined as electrical calibration runs, where electrical energy is furnished to the calorimeter for determining the electrical calibration coefficient.

BS runs are defined as beamsplitter runs, where laser energy is furnished to both calorimeters via the beamsplitter to measure the beamsplitter ratio. Plans 1 and 2 assume that the electrical calibration measurements, as described in Section III.A. were completed sometime in the past and that the electrical calibration runs shown in Plan 1 and 2 are only to confirm the status quo. If the electrical measurements were recently completed, then the EL runs in Plan 1 and 2 could be deleted. Figure 1 in Appendix B shows the experimental arrangement for the beamsplitter and the low and high level calorimeter positions. The number of beamsplitter runs with $C 1$ in the low level position and $C 2$ in the high level position equals the number of beamsplitter runs with C2 in the low level position and C1 in the high level position.

Plan 1

Plan 1, the preferred plan, is either for those calorimeters that do not use windows at all, or those calorimeters that use windows, but where the window transmission values were measured independently. For instance, the window transmission measurements for six NBS, C-Series windows, were made by the the Optical Physics Division, NBS/Washington, D.C., from 400 to 1100 nm in 20 nm steps. Linear interpolation of these data provides the values of transmission for the laser wavelengths of interest. Plan 1 for a two-calorimeter/beamsplitter system is illustrated in Table II.

Plan 2

Plan 2 is for those calorimeters that use windows and where the window transmission values are to be measured at this time with the calibrating system. The plan is for a twocalorimeter/beamsplitter system. Each calorimeter has two windows assigned to it. The onwindow is presently mounted in the calorimeter and the off-window is presently not mounted in the calorimeter and is the window being measured in the high-level beam. Calorimeter C 1 has on-window 1A, and off-window 1B. Calorimeter C2 has on-window 2A, and off-window 2B. Plan 2 is shown in Table III.

Result

The main purpose of Plan 1 and 2 is to evaluate the correct beamsplitter ratio to use when producing an accurately known laser beam for calibration work. An average can be taken of all the beamsplitter ratios when calorimeter C1 is low, and calorimeter C2 is high. Another average can be taken of all the beamsplitter ratios when C 2 is $10 w$ and Cl is high. A derivation in Appendix B shows that the geometric mean of the two averages gives the correct beamsplitter ratio to use in future calculations.

Another purpose of Plan 1 or 2 is that if we have determined the correct values for electrical calibration, absorption, window transmission, etc., for both calorimeters, then the derivation in Appendix B will also give the best estimate of the disagreement between the two calorimeters. Since there is no reason to believe that one calorimeter is more accurate than another, the calorimeters are treated on an equal basis. A correction factor or D-factor for each calorimeter is determined by dividing the percent disagreement in half and adding this correction to the low-reading calorimeter and subtracting this correction from the high-reading calorimeter. When the beamsplitter data of Plan 1 or 2 is used with computer program, /ST2/, the program will calculate the absolute beamsplitter ratio and D-factor for each calorimeter as well as the 99 percent confidence intervals for the beamsplitter ratio and D-factors. See Appendix C for computer program /ST2C/.

E. Day-to-Day Check

The NBS C, K and Q Ca? icrating systems are mainly used to calibrate transfer standards that are used in the NBS MAP Programs. Measurements are done periodically on the transfer instruments to accumulate a calibration history. Measurements are taken on transfer instruments before they are shipped to MAP customers and after the instruments are returned to

TABLE II

	Plan 1				
Run No.	Lype of Run	CalorimeterScale	High Level Calorimeter		Scale

TABLE III

Plan 2

| Run No. | $\begin{array}{c}\text { Type of } \\ \text { Run }\end{array}$ | $\begin{array}{c}\text { Low Level } \\ \text { Calorimeter }\end{array}$ | | Scale | $\begin{array}{c}\text { High Level } \\ \text { Calorimeter }\end{array}$ | Scale |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Off-Window

In Beam\end{array}\right]\)
ensure a stable instrument during the MAP intercomparison. A plot of calibration values versus chronological order for each transfer instrument provides a quick check of instrument stability and the calibration system validity. For instance, if the calibration values for several instruments all changed in the same direction at the same time, one should suspect trouble.

Day-to-day checks are easier to accomplish if all calibration runs are stored in chronological order in the computer file assigned to that instrument. Data is coded for different scales and wavelength for a particular instrument so the values can be separated for analysis. Several computer programs such as /S6/, /RU/, /PL/, /ASTM/ and /D2/, as shown in the Appendices D through H, are available for separating, plotting and statistically analyzing the calibration factors for trends, shifts and excessive scatter.

F. Monthly or Special Check

Each month a beamsplitter run at each wavelength being maintained provides further proof that the system is performing properly. The ratio of an uncoated beamsplitter can provide a very stable parameter for control purposes. If anything happens to the beamsplitter. or electronics for either calorimeter, it is very likely to cause a change in the beamsplitter ratio. A beamsplitter run can be made anytime a special check of the system is desired. The results of the beamsplitter runs are appended in chronological order to the end of the computer file assigned to that beamsplitter. Computer Program, /S7B/, as shown in Appendix I, can be used to copy the old beamsplitter values to a single-column file so that the programs discussed above could be used to detect trends, shifts and excessive scatter. See Part A., First-Time Operation of a System, for a discussion of trends and shifts in beamsplitter and electrical calibration values.

G. Annual Check

At this point, we assume that a sufficient number of calorimeter interchanges have previously been done, as described in Section III.C., to establish the system capability at each wavelength that calibration service is being offered. Once established, a yearly interchange according to Part C would be made at each of the wavelengths to verify the D-factor and beamsplitter ratio and re-evaluate the calibrated beam uncertainty. Electrical calibration runs would be made at the same time to verify the electrical calibration coefficient for each calorimeter.

H. NBS/AGMC MAP

A high precision MAP between NBS and AGMC would include a plan where the National Bureau of Standards would send several transfer standards to Aerospace Guidance and Metrology Center (AGMC) on a semi-annual basis for a MAP intercomparison. Some advantages of such a program would be:

1. To provide an independent check of the three AGMC systems,
2. To provide AGMC with written documentation of the status of their measurement systems,
3. To detect and provide help in solving any measurement problems that may occur or exist, and
4. A time-saver for AGMC, by eliminating the need for so many yearly checks as discussed in Section G.

One possible yearly plan could be that the following number of intercomparisons would be accomplished at AGMC utilizing NBS transfer standards:

2-C-Series	$1 \mu \mathrm{~W}$,	$0.6328 \mu \mathrm{~m}$
2-C-Series	1 mW,	$0.6328 \mu \mathrm{~m}$
2-C-Series	50 mW,	$0.6471 \mu \mathrm{~m}$
2-C-Series	500 mW,	$1.064 \mu \mathrm{~m}$
2-Q-Series	1 to 5 J,	$1.064 \mu \mathrm{~m}$
2-K-Series	50 W,	$10.6 \mu \mathrm{~m}$

Some other wavelengths that are maintained on the C-Series, and would be available to AGMC in a MAP Program, are $0.4880,0.5145$, and $0.5309 \mu \mathrm{~m}$, in the 50 to 500 mW power level range.

IV. BLUE BOOK

A Blue Book is a designated loose-leaf notebook which contains a detailed account of all the parameters needed by the computer to calculate the power and energy in the calibrated beam output of a system. These parameters include values of electrical calibration, absorption, window transmission and D-factors for each calorimeter. In addition, the Blue Book contains a detailed system analysis of errors in measuring the values of electrical calibration, absorption, window transmission, SI traceability, inequivalence, D-factor and beamsplitter ratio. A summary of the errors at the 99 percent confidence interval level can be stored and used by the computer to produce a statement of system uncertainty for each calibration run.

A Blue Book exists for each calibration system and consists of a set of tables (forms) for each laser wavelength being provided by the system. A complete set of forms is filled out each time Plan 1 or 2 in Section III-D, is completed, either for setting up a new wavelength or re-evaluating an old wavelength. For examples of these tables, see Figures 1 through 9.

TABLE A. ELECTRICAL CALIBRATIONS

Date
Wavelength \qquad

A summary of electrical calibration data from program /SLOPE/ for each series calorimeter and scale setting.

Calorimeter Scale Measurements \begin{tabular}{cccc}

Electrical \& K \& | 99\% Confidence |
| :--- |
| Interval in $\%$ | \& For Period

\end{tabular} To

Worst \% Case on lE3 Scale
Worst \% Case on lE4 Scale
Worst \% Case on lE5 Scale

FIGURE 1.

TABLE B. ABSORPTION

Date
Wave length \qquad

A summary of errors associated with calorimeter absorption from previous absorption measurements on calorimeters \qquad , \qquad , and \qquad .

Absorption
\qquad
\qquad
\qquad

FIGURE 2.

TABLE C. INEQUIVALENCE
Date
Wavelength \qquad

Summary of the inaccuracy of the inequivalence between laser and electrical energy measurements, from previous measurements.

See \qquad .

FIGURE 3.

TABLE D. WINDOW TRANSMISSION
Date
Wavelength \qquad

The window transmission values at the 99% confidence interval level for the above wavelength, include the correction for the second transmitted beam.

Data Source

Data Source Date \qquad

	Window Presently On	Meas. Date	Main Transmission	Secondary Transmission	Total Transmission	99\% Conf. Interval in \%	
	-	-	-	-	-		-

Use Worst Case Value \qquad

FIGURE 4.

TABLE E. TRACEABILITY
Date
Wavelength \qquad

Summary of errors pertaining to the traceability of our electrical measurements to the United States (U.S.) National Standards. See Section II for further discussion.

Source of Error
Source of Information
\% Inaccuracy

Time Interval Measurement
Standard Resistor
Standard Cell
Potentiometer
Standard DVM
DVM \#1
DVM \#2
Calorimeter Resistance (Worst Case)
\qquad

Calibration Report	
Calibration Report	
Calibration Report	-

Total

FIGURE 5.

TABLE F. D-FACTOR
Date
Wavelength \qquad

Summary of the absolute laser energy standard corrections (D-factors) for each series calorimeter. See Section III for further discussion.

FIGURE 6.

TABLE G. SCALE ERRORS
Date
Wavelength \qquad

Additional errors due to using different scales on the calorimeter amplifiers from Table A.

Largest Inaccuracy on 1E4 Scale
Largest Inaccuracy on 1 E5 Scale

FIGURE 7.

TABLE H. BEAMSPLITTER RATIO
Date
Wavelength \qquad

Use \qquad to obtain the absolute beamsplitter ratio and the associated 99% confidence interval in percent.

Absolute	Estimated		
Beam Ratio	99\% Confidence	Polarization	Total
Interval	Error	Error	

FIGURE 8.

TABLE I. SUMMARY OF ERRORS
Date
Wavelength \qquad

Summary of Errors	Percent at the 99\% Confidence Interval		
	1 E3	1 E4	1 E 5
Table A Electricals Worst Case for Scale			
Table B Absorption			
Table C Inequivalence			
Table D Window Transmission			
Table E Electrical Traceability			
Table F D-Factors Greatest Range in Percent			
Greatest Percent Inaccuracy			
Table G 'Amplifier Scale Error	-	-	
Table H Beamsplitter Error	-_	-...-	-

FIGURE 9.

V. COMPUTER DOCUMENTATION FOR THE C, K AND Q CALIbRATING SYSTEMS

A computer is required to calculate the corrected rise value which is directly proportional to the joule energy input to a calorimeter. Since the use of a computer is required for part of the calculation anyway, there is a strong incentive to expand the use of the computer for all the calculations.

A computer with an interactive terminal and permanent file storage can be very effective for storing calibration data and for providing immediate access by the computer for evaluating some of the Blue Book parameters. Separate permanent computer files should be created for the following categories.

A. Electrical Calibration Files

Electrical calibration runs for each calorimeter and, in some cases, for each scale. See Appendix J for samples of electrical calibration files.
B. Beamsplitter Files

Beamsplitter runs for each beamsplitter for each wavelength are maintained. See Appendix K for samples of beamsplitter calibration files. Table L.l, as shown in Appendix L, can be used to supply code numbers which describe the different calorimeter/ beamsplitter configurations.

When an electrical or beamsplitter run is made, the calibration value and other pertinent information is appended to the end of the appropriate file. Code numbers are of ten used in individual files to identify and allow the separation of unique sets of data for plotting and statistical purposes. When a status report of a calorimeter or a beamsplitter at one of the laser wavelengths is desired, the computer can be used to query the file and print out information pertaining to data trends, shifts and scatter. For convenience, the deviation for each calibration value, in percent, from the average calibration value is usually plotted versus run number on an interactive terminal. Such a plot can then be used as a guide to determine whether the instrument is, or is not, in statistical control.
C. Blue Book Matrix Files

After assigning the Blue Book parameters, the values are stored in permanent matrix files which are then accessed by the computer for future calculations of power and energy in the calibrated beam. Blue Book values are kept in separate matrix files to allow for easier file updating. The size of the matrix varies with the calibrating system. A 4×6 matrix may be adequate for a two-calorimeter/beamsplitter system at one wavelength. On the other hand, a C-Series three-calorimeter/beamsplitter system at six different wavelengths may use a 4×20 matrix. Such a matrix is shown in Appendix M. In addition, a description of how the Blue Book parameters are represented by the matrix is shown in a run of computer program, /DOC/. A zero in the matrix means that this location is not being presently used.

As can be seen, the matrix contains values of electrical calibration, absorption, beamsplitter ratios, window transmission, delivered beam uncertainty and beamsplitter code numbers. There is less chance of error in the calculations if the parameter values are supplied by such a computer file rather than being supplied directly by an operator.
VI. USING THE C, K AND Q LASER CALIBRATING SYSTEMS

The first five sections of this report were involved in getting the calibration systems in order, so they could be used for calibrating Laser Power and Energy Transfer Standards. Some subjects to consider when using the above calibrating systems are:

A. Transfer Standards

Some desirable characteristics of a good transfer standard are:

1. Short-term stability should be good. The calibration constant should at least remain stable to a few tenths of a percent for a six to twelve month period.
2. The instrument should have a small temperature coefficient, relative to responsivity, at normal room temperatures.
3. The output responsivity should be as uniform as possible over the surface of the detector.
4. The detector response should be relatively insensitive to wavelength.
5. The detector response should be linear. At the very least, the response should be linear on each scale.
6. The effects of detector saturation are very small at the power density level of operation.
7. The detector response time is fast relative to the experiment time.
8. The instrument's response is relatively insensitive to environmental effects such as humidity, pressure, line voltage, temperature, etc.
9. A self-contained digital readout is desirable for ease in reading and for saving time in establishing calibration traceability.
10. The head and readout unit should be a convenient size for shipping.
11. The head and readout unit should be of rugged construction to prevent damage in shipping.
12. When possible, use commercially-made transfer standards which can be purchased and used by the general public.

B. Conventional Calibration

The following chronology of a regular NBS calibration is an example of how a standards laboratory such as AGMC may conduct a conventional calibration.

1. As pre-arranged, the customer sends their laboratory transfer standard to NBS. The instrument may include a head unit with attached readout meter, or with only the head unit, in which case NBS furnishes the readout meter.
2. Before making any calibration runs, the status of the calibrating system at the appropriate wavelength must be ascertained. If recent measurements on other transfer standards at this wavelength indicate statistical control, we would assume a ready system status. For an alternative check, a beamsplitter run could be used to confirm a ready status. For a new wavelength, see Section III.B.
3. Assuming a ready status, a set of at least five calibrated beam runs is made where a known power or energy beam is supplied to the transfer standard. The calibration factor is equal to the net meter reading of the test instrument divided by the calibrated beam power or energy.
4. Statistics at the 99 percent confidence interval level for the average of the calibration runs is then obtained and compared with the transfer standard meter specifications or with previous data. If needed, additional runs may be made to improve the precision of the measurements.
5. The transfer standard is sent back to the customer.
6. A signed calibration report is sent to the customer based on the NBS system beam uncertainty plus the 99 percent confidence interval level of the measurements taken in Step 3.
7. The customer uses the transfer standard as he sees fit. Since conventional calibrations do not involve any customer measurements, there is little opportunity for an intercomparison of measurements to detect trends, shifts, excessive scatter or other problems relating to the customer's measurements.

C. Measurement Assurance Program (MAP)

The following chronology of a typical NBS MAP Program is an example of how a standards laboratory such as AGMC may participate in a MAP Program with other standards laboratories.

1. Select state-of-the-art transfer instruments to be used as NBS transfer standards for the desired laser wavelengths and power or energy levels.
2. Using the appropriate NBS calibrating system, make at least ten runs at each wavelength and scale of interest, preferrably over a period of time (at least one month) to determine the average calibration coefficient.
3. Just before sending a NBS transfer standard to a MAP customer, make a calibration run, append the results to file, and use ASTM Control Chart Program /ASTM/ (see Appendix G) to verify that the transfer instrument is under statistical control.
4. Send transfer instrument to customer.
5. Customer then calibrates transfer instrument, using his own laboratory standards and techniques. NBS will respond to a customer's request for information pertaining to measurement format, precautions, etc.
6. Customer sends instrument back to NBS.
7. NBS makes another calibrating run on standard and appends these results to file.
8. NBS re-runs ASTM Control Chart Program to verify statistical control.
9. Customer sends company calibration data of individual runs to NBS.
10. NBS analyzes both customer and NBS data and, using program /D2/, produces a report of intercomparison with appropriate statistics and error statements.
11. NBS sends signed intercomparison report to customer.
12. If any problems exist and if the customer desires, NBS will provide consultation on measurement problems.

A computer with permanent file storage and an interactive terminal can provide a very useful tool for data management with computer assistance. When a calibrated beam run is made on a particular transfer standard, the calibration value and other pertinent information is appended to the end of the permanent computer file created for this particular instrument.

Some guidelines that have been used by NBS pertaining to laser transfer standards are:

A. Format

Arrange computer files so that the calibration data for each instrument, for each mode (power or energy), for each wavelength and for each meter scale can be identified, separated and treated statistically as an independent entity. This can be accomplished by having separate files for each instrument and when appropriate, separate files for power and energy measurement data for each instrument. Code numbers are used in the individual files to identify and separate sets of data according to wavelength and meter scale. A typical file is shown in Appendix D. Computer programs as described in Appendices D, E, F, G, H can be used to detect trends, shifts or excessive scatter for a specified set of data. Computer printouts in a neat, fixed and familiar format saves time in data analysis.
B. Discrete Power and Energy Levels

The power and energy levels used for calibration must be assessed by each individual laboratory, such as AGMC, according to their needs and capabilities.

For example, the calibration runs for the NBS calibration and WAP Programs are usually made at discrete power and energy levels. The safety laws defining the four laser classifications, provide logical, discrete levels of nominal power at $1 \mathrm{H} \cdot \mathrm{H}, 1 \mathrm{~mW}$ and 500 mm .

The high interest in Q-Switched energy measurements at $1.064 \mathrm{\mu m}$ generates a need for calibration runs at the $0.1,1$ and 10 J level. Single-pulse measurements are usually made with the 0.1 J scale while multiple pulse runs require the higher scales.

A NBS MAP Program with AGMC could be tailored to match the needs of AGNC with the capability of NBS.
C. Separate Calibration Coefficients for Each Scale and Wavelength

To more effectively utilize a limited staff, NBS only makes measurements at discrete power and energy levels as needed. No attempt is made to combine scales or wavelengths or to study linearity effects on a particular scale or between scales. Generally, we prefer to use a separate calibration value for each scale and wavelength.
D. Direct Calibrations

When possible, we calibrate the transfer standards directly with C, K and Q systems. This eliminates at least one step of calibration and generally improves the precision of our measurements.
E. Using Mean or Average Calibration Coefficients

The simplest determination of the calibration coefficient for each scale is to take the mean or average of the individual calibration run values. A more complicated method is to use a least-squares fit of a straight line through a plot of meter readings versus energy or power levels, where the slope of the line equals the calibration coefficient. The least-squares method has the advantage that the greater scatter of the lower level readings will not unduly influence the calibration coefficient. However, this method has little advantage in calibrating our transfer standards where measurements on a particular scale are usually made at only one nominal power or energy level.
F. Two-Sided 99 Percent Confidence Interval

The NBS statistical analysis is based on the two-sided 99 percent confidence intervals of the average or least-squares calibration coefficient. The less conservative 95 percent interval would also be acceptable. Probably the most important thing is to state plainly what type of statistical analysis is being used. The equation for the 99 percent confidence interval, e, in percent for the calibration coefficient, K, is

$$
e(\%)= \pm \frac{100 \times t \times s}{K \times \sqrt{n}}
$$

where
n is the number of measurements,
K is the average calibration coefficient,
s is the standard deviation of n measurements, and
t is the t-value from the table for Percentiles of the t Distribution (see EXPERIMENTAL STATISTICS, NBS Handbook 91) for $t .975$ for $n-1$ degrees of freedom.

It is desirable to make e as small as reasonable, either by making more measurements, n, or by combining data in such a way as to make s / \sqrt{n} smaller. Of course, better instruments with better measuring techniques may give a smaller s in the first place. The above equation appears in computer program, /D2/, which is described in Appendix H. The above program will take any set of numbers (up to 150 values), calculate the mean, standard deviation and the 90,95 and 99 percent confidence interval for the mean in percent.
G. Status Categories

The status of a transfer standard at any given wavelength and scale will fall into one of several categories.

1. Insufficient data status. Insufficient number of calibration runs at this wavelength and scale. Desirable to have at least ten runs for each data set.
2. Inactive status. Sufficient number of calibration runs, but last run was taken over one year ago. This category may include old instruments, or wavelengths, no longer being maintained for the NBS calibration program.
3. Active status. This category includes the instruments at discrete wavelengths presently being used and maintained for our active calibration program. Generally, the last calibration run was made in the last three months. Measurements may be made periodically to maintain an active status.
4. Ready status. An instrument that, in the last few days, received a calibrating run, whose calibration value falls within the control chart limits of that instrument is considered to be in a ready status for that wavelength and scale. The instrument is ready to participate in a MAP program.
5. Repair status. An instrument needs repairs and is currently not available for calibration service.

Considering the different wavelengths and meter scales, it is highly probable that each instrument will fall into several status categories at the same time.

VIII. CALIBRATION AND MAP REPORTS

Calibration reports are provided to the customer for regular calibrations and formal MAP intercomparisons.
A. Regular Calibration Reports

For a regular NBS calibration, the customer sends his own transfer standard to NBS for measurement. NBS makes a number of calibration runs, N, and determines the mean value of the calibration coefficient. In addition, the uncertainty, A, of the mean, for N measurements is calculated at the 99 percent confidence interval using t-statistics. The uncertainty, B, of the NBS calibration system at the 99 percent confidence interval was determined, previously, as discussed in Sections II and III. The total uncertainty, C, for this calibration is the sum of A and B. A typical calibration report will contain the nominal energy or power, the number of measurements, N, the average (mean) calibration coefficient, the uncertainty, A, of N measurements, the NBS system uncertainty, B, and the total uncertainty, C, at the 99 percent confidence level. For convenience, the uncertainties, A, B and C are given in percent.
B. MAP (Measurement Assurance Program) Reports

For a NBS MAP intercomparison, NBS sends a well-evaluated NBS transfer standard to the customer (MAP participant) where he makes a number of measurements, N, using his calibration system to determine the mean calibration coefficient. The customer then
returns the transfer standard to NBS with his evaluation of the calibration coefficient. NBS makes another calibration run on the transfer standard, appends these results to the previous data, and then calculates the latest mean value of the calibration coefficient, using the total number of measurements. In addition, the uncertainty, D, of the mean is determined at the 99 percent confidence interval using t-statistics. The uncertainty, B, of the NBS calibration system at the 99 percent confidence interval was determined, previously, for each laser wavelength and scale as discussed in Sections II and III.

The total uncertainty, C, for this intercomparison is the sum of D and B. A typical MAP report will contain the designation of the NBS transfer standard, wavelength of intercomparison, nominal power or energy level, number of customer measurments, N, customer's reported value of calibration coefficient, NBS reported values of calibration coefficient, NBS total uncertainty, C, and percent difference between customer and NBS.

IX. REFERENCES

1. Jennings, C. A., West, E. D., Evenson, K. M., Rasmussen, A. L., and Simmons, W. R., NBS Tech. Note 382 (1969).
2. West, E. D. and Churney, K. L., Theory of isoperibol calorimetry for laser and power energy measurements, J. App1. Phys., 41, 2705-2712 (May 1970).
3. West, E. D., Case, W. E., Rasmussen, A. L., and Schmidt, L. B., A reference calorimeter for laser energy measurements, J. Res. Nat. Bur. Stand. (U.S.), 76A (Phys. and Chem.), No. 1, 13 (Jan.-Feb. 1972).
4. West, E. D. and Case, W. E., Current status of NBS low-power laser energy measurement, IEEE Trans. Instrum. Meas. IM-23, 722 (December 1974).
5. West, E. D. and Schmidt, L. B., Spectral-absorptance measurements for laser calorimetry, J. Opt. Soc. Am., 65, 573-578 (May 1975).
6. Franzen, D. L. and Schmidt, L. B., Absolute reference calorimeter for measuring high power laser pulses, Applieo Optics 15, 3225 (December 1976).
7. West, E. D. and Schmidt, L. B., A system for calibrating laser power meters for the range 5-1000 H , NBS Tech. Note 685 (May 1977).
8. Franzen, D. L., Precision beam splitters for CO_{2} laser, Applied Optics, 14, 647-652 (March 1975).
9. Danielson, B. L., Measurement procedures for the optical beam splitter attenuation device BA-1, NBSIR 77-858 (May 1977).
10. Miles, R. W. and Case, W. E., Verifying the accuracy of data acquisition system voltmeters, to be published as a NBSIR.

X. APPENDICES

APPENDIX A
Computer Program /SL/ for Electrical Calibration Factor

Computer program /SL/ uses electrical calibration data to find the best straight-line fit through zero and a plot of corrected rise values versus corresponding energy values using a linear least-squares calculation. The program calculates the electrical calibration factor (reciprocal of slope of line), standard deviation of residuals and 99 percent confidence interval for the slope according to Experimental Statistics, by M.G. Natrella, NBS Handbook 91 , Paragraph 5-4.2.1. To do a least-squares fit, the program requires two columns of input data, where the first column is corrected rise values in microvolts and the second column is the corresponding values for energy in joules. A print-out is shown for input data File /444/, a computer run of /SL/, using File /444/ and a listing of Program /SL/.

COPY /444/ TO TEL

198.743	0.967611
900.345	4.38715
88.4 .802	4.39903
1001.61	4.87603
623.318	3.03365
368.361	1.5149
383.745	1.86801
418.135	2.03697
832.416	4.05753
68.7373	0.335819
450.298	2.19321
130.44	0.637567
436.327	2.12373
190.161	2.925799
575.605	0.7200335
147.137	1.96238
402.746	2.63676
541.485	3.212199
534.266	2.76487
659.583	2.77135
568.536	3.00386
569.731	4.23512
616.301	3.90434
869.624	4.23512
617.519	3.004265
870.093	

- $B A$

BA SI C-5.15 73-11-13
>LOAD /SL/
>RUN
THIS IS 940 SLOPE PROGRAM. USES AN INPUT 2 COLUMN ELECTRICAL DATA FILE TO FIND SLOPE, B, OF LINE, $Y=E X$, THRU ORIGIN, STD. DEV. OF RESIDUALS, AND 99\% CONFIDENCE INTERVALS ON SLOPE ACCORDING TO
NA TRELLA 5-4.2.1
TYPE IN 2 COLUMN ELECTRICAL FILE IN / /? /444/
NO. OF RUNS IN INPUT FILE = 27

MI CROVOLTS	JOULES	THIS K (JOULES/MILLIVOLT)
192.743	. 967611	4.268654
900.345	4.38715	4.872743
884.802	4.30903	4.87005
1601.61	4.27603	4.868192
623.318	3.03365	4.866938
308.361	1.50149	4.86926
383.745	1.86801	4.867842
418.135	2.036697	4.871561
832.416	4.05753	4.874402
68.7373	. 335819	4.885542
450.298	2.19321	4.870575
130.44	. 637567	4.887818
436.327	2.12373	4.86729
190.161	. 925799	4.868501
575.605	2.80253	4.868842
147.137	. 720035	4.893637
402.746	1.96238	4.8725
541.485	2.63676	4.869498
534.266	2.60ด97	4.868305
659.583	3.21219	4.870032
568.536	2.76487	4.86314
569.731	2.77135	4.864313
616.301	3.00385	4.874014
869.624	4.23512	4.870059
617.519	3.00434	4.265178
870.003	4.23512	4.267937
617.9332	3.004265	4.861796
SLOPE, $B=$ ELECTRICAL	$\begin{aligned} & 205.3703 \\ & 4.269254 \end{aligned}$	

STANDARD DEVIATION OF SLDPE $=.2884916 E-91$
STANDARD DEVIATION OF RESIDUAL $\left(Y^{\circ} S\right)=.4311138$
DEGREES OF FREEDOM $=26$
I VALUE FOR ABOVE D.F. $=2.778818$
99% CONF. INT. FOR SLOPE $=+$ OR - . $08 \emptyset 1666$
$99 \$$ CONFIDENCE INTERVAL IN $\%=.3903513 \mathrm{E}-01$
RANGE FACTOR FOR ABOVE NO. OF MEASUREMENTS IS 3.828
99% IMPRECISION IN JOULES IS . $0893574 E-\emptyset 1$

```
10 PRINT" THIS IS 940 SLOPE PROGRAM. USES AN INPUT 2 COLUMN"
20 PRINT"ELECIRICAL DATA FILE TO FIND SLOPE, B, OF LINE,"*
30 PRINI"Y =BX, THRU ORIGIN, STD. DEV. OF RESIDUALS, AND 99%"
4 0 ~ P R I N T " C O N F I D E N C E ~ I N T E R V A L S ~ O N ~ S L O P E ~ A C C O R D I N G ~ T O " '
5 0 ~ F R I N T " ~ N A T R E L L A ~ 5 - 4 . 2 . 1 " '
50 DIM K(200),X(20|),Y(2ด|),Z(20日)
7\emptyset PRINT" TYPE IN 2 COLUMN ELECTRICAL FILE IN / /";
80 INPUTA$
90 OPENA$,INPUT
100 FORI = 1TO200
110 INPUT FILE Y(I),X(I)
120 IFEOF(9)=1THEN18ด
140 N=I
150 NEXTI
160 PRINT"OVER 2月も POINTS"
170 STOP
180 PRINT" NO. OF RUNS IN INPUT FILE =",N
190 IFN<>ดTHEN22ด
200 PRINT"NO DATA IN FILE ",A$
21% STOP
220 A =0
221 PRINT"MICROVOLTS JOULES THIS K (JOULES/MILLIVOLT)"
222 FOR I =1 ION
223 PRINTY(I),X(I),1000*X(I)/Y(I)
224 NEXII
225 PRINT
230 E=\emptyset
240 C=0
250 FORI =1 TON
260 A =A+X(I)*Y(I)
270 E=E+X(I)*X(I)
280 C =C+Y(I)*Y(I)
290 NEXTI
300 B =A/E
310 PRINT"SLOPE, B =",B
320 B1=1000/B
330 PRINT"ELECTRICAL K=", B1
335 PRINT
340 IFN<>1 THEN410
350 PRINT"ZERO DEGREES OF FREEDOM"
360 STOP
4| | W=(C-(A*A/E))/(N-1)
420 D=W/E
43D S=SQR(D)
4 3 2 ~ P R I N T " S T A N D A R D ~ D E V I A T I O N ~ O F ~ S L O P E ~ = " , S
434 WI=SQR(W)
4 3 6 ~ P R I N I " S I A N D A R D ~ D E V I A T I O N ~ O F ~ R E S I D U A L ~ ( Y ' S ) ~ = " , W ! ~
449V=N-1
450I FV <> 1 THEN480
460T=63.657
470GOT0660
480IFV<>2 THEN51D
490 T=9.925
500G0T0660
510IFV<>3 THEN54G
sen T=5.841
530GOT0660
540IFV<>\triangleTHEN570
550T=4.604
560GOTO660
5 7 0 I F V < > 5 ~ T H E N 6 0 0 ~ \ 0 0 , ~
580IT=4.032
```

590G0T0660
600G1=4.91699
610G2=8.83602
S20G3=12.1466
630G4=12.01578
640G=2.575914
650T=G+G1/V+G2/V \uparrow2+G3/V\uparrow3+G4/V\uparrow4
560PRINT" DEGREES OF FREEDOM=" V
670PRINT" T VALUE FOR ABOVE D.F.=" T
S8OPRINT"99% CONF. INT. FOR SLOPE=+ OR -"T*S
600PRINT
7\emptyset\emptysetPRINT"99\$ CONFIDENCE INTERVAL IN % ="(100*T*S)/B
710PRINT
720K(2)=242.3
730K(3)=29.055
740K(4)=14.527
750K(5)=10.26
760K(6)=8.301
770K(7)=7.187
780K(8)=6.468
790K(9)=5.966
8月ดK(10)=5.594
810K(11)=5.308
820K(12)=5.079
830K(13)=4.893
840K(14)=4.737
850K(15)=4.605
860K(16)=4.492
870K(17)=4.393
880K(18)=4.307
390K(19)=4.23
900K(20)=4.161
910K(21)=4.1
929K(22)=4.044
930K(23)=3.993
940K(24)=3.947
950K (25)=3.904
960K(26)=3.865
970K(27)=3.828
98ดK(30)=3.733
990K(35)=3.611
1月ดดK(40)=3.518
1010K(45)=3.444
1020K(50)=3.385
1030K(55)=3.335
1040K (60) =3.293
1050K(65)=3.257
1060K(70)=3.225
1070K(75)=3.197
1080K(80)=3.173
1090K(85)=3.15
1100K(90)=3.13
1110K(95)=3.112
1120K(10@)=3.096
1130K(150)=2.983
1140K(200)=2.921
1150IFN>27THEN1180
1160Q=K(N)
1170GOTO1670
1180IFN>32 THEN1210
11900=K(30)

```
```

1200GOT01670
1210IFN>37THENI240
1220Q=K(35)
1230GOTO1670
124%IFN>42 THEN127@
12500=K(4*)
1260GOTO1670
12701 FN>47THEN1300
12800=K(45)
1290GOTO1670
1300IFN>52 THEN133N
1310Q=K(5%)
1320GOTO1670
1330I FN>57THEN1360
134ดQ=K(55)
1350GOTO1670
1360IFN>62 THEN1390
1370Q=K(60)
1380GOTO1670
1390IFN>67IHEN1420
1400Q =K(65)
1410GOTO1670
14201FN>72 THEN1450
1430Q=K(70)
1440GOTO1676
1450I FN>77IHEN1480
1460Q =K(75)
1470GOTO1670
1480I FN>82 THEN1510
1490Q =K(80)
1500GOTO167@
151日I FN>87THEN1540
1520Q = K(85)
1530GOTO1670
1540IFN>92 THEN1570
1550Q =K(90)
1560GOTO1670
1570IFN>97THEN1600
1580Q =K(95)
1590GOTO1670
1600IFN>120 THEN1630
1610Q = K(10日)
162.0GOTO1670
1630I FN>170 THEN1660
1640Q=K(150)
1650GOTO1670
1660Q =K(200)
1670GOTO1680
168@PRINT"RANGE FACTOR FOR ABOVE NO. OF MEASUREMENTS IS "Q
1690PPRIN I
1692P=SQR(W)*Q/B
1694PRINT"99% IMPRECISION IN JOULES IS "P
17日0STOP

```

\section*{APPENDIX B}

\section*{Beamsplitter Ratio and D-Factor Derivation}

A two-calorimeter beamsplitter configuration is shown in Fig. 1. In Experiment 1, Calorimeter 1 is in the low-level position and Calorimeter 2 is in the high-level position. In Experiment 2, the calorimeters are interchanged with Calorimeter 2 in the low-level position and Calorimeter 1 in the high-level position.

We assume for each beamsplitter run that the system is linear and stable over the energy range of the experiment. Let
\[
\begin{equation*}
\mathrm{R} 12=\frac{\mathrm{U} 2}{\mathrm{UT}}, \tag{1}
\end{equation*}
\]
and
\[
\begin{equation*}
R 21=\frac{U 1^{\prime}}{U 2^{\prime}}, \tag{2}
\end{equation*}
\]
where

R12 -- beamsplitter ratio for Experiment 1.
R21 -- beamsplitter ratio for Experiment 2.
U1 -- energy to low-level calorimeter for Experiment 1.
U2 -- energy to high-level calorimeter for Experiment 1.
U2' -- energy to low-level calorimeter for Experiment 2.
U1' -- energy to high-level calorimeter for Experiment 2.

Say we assume a small error, \(\alpha\), between the two calorimeters, where \(\alpha\) may be plus or minus. We also assume the two calorimeters perform equally well, and we will split the error, \(\alpha\), equally between them. For very small \(\alpha\), let the correction for Calorimeter 1 be \(1+\alpha\), and the correction for Calorimeter 2 be \(1-\alpha\) where we assume that for a very small \(\alpha\)
\[
\begin{equation*}
1+\alpha \simeq \frac{1}{1-\alpha} . \tag{3}
\end{equation*}
\]

If we define the absolute beamsplitter ratio as B9, Eq. (1) then becomes
\[
\begin{equation*}
B 9=\frac{(1-\alpha) U 2}{(1+\alpha) U 1}, \tag{4}
\end{equation*}
\]
and Eq. (2) becomes
\[
\begin{equation*}
B 9=\frac{(1+\alpha) U 1^{1}}{(1-\alpha) U 2^{1}} . \tag{5}
\end{equation*}
\]

We have two unknowns, B9 and \(\alpha\).

If we eliminate \(\alpha\) by multiplying Eq. (4) by Eq. (5), the absolute beamsplitter ratio, B9, becomes
\[
\begin{gather*}
B 9^{2}=\frac{U 2(1-\alpha) U 1^{\prime}(1+\alpha)}{U 1(1+\alpha) U 2^{\prime}(1-\alpha)},  \tag{6}\\
B 9=\sqrt{\frac{U 2 U 1^{\prime}}{U 1 U 2^{\prime}}} \tag{7}
\end{gather*}
\]

As can be seen, we can find the ratio, B9, without evaluating the error \(\alpha\). To find \(\alpha\), we eliminate B9 by setting Eq. (4) equal to Eq. (5) to obtain
\[
\begin{equation*}
\frac{U 2(1-\alpha)}{U 1(1+\alpha)}=\frac{U 1^{\prime}(1+\alpha)}{U 2^{\prime}(1-\alpha)} . \tag{8}
\end{equation*}
\]

Substituting Eq. (3) in Eq. (8), we get
\[
\begin{align*}
& \frac{\mathrm{U} 2}{U 1(1+\alpha)^{2}}=\frac{U 1^{1}(1+\alpha)^{2}}{\mathrm{U} 2^{\prime}}  \tag{9}\\
& (1+\alpha)^{2}=\sqrt{\frac{U 2 \mathrm{U} 2^{\prime}}{U 1 U 1^{\prime}}} . \tag{10}
\end{align*}
\]

Expanding \((1+\alpha)^{2}\) we obtain
\[
\begin{equation*}
(1+\alpha)^{2}=1+2 \alpha+\alpha^{2} \tag{11}
\end{equation*}
\]

For small \(\alpha\), we neglect \(\alpha^{2}\) and Eq. (10) becomes
\[
\begin{equation*}
\alpha=\frac{1}{2}\left(\sqrt{\frac{U 2 U 2^{\prime}}{U 1^{\prime} U 1}}-1\right) \tag{12}
\end{equation*}
\]

As can be seen, \(\alpha\) may be either plus or minus. In Program /ST2C/ we define \(D=\alpha\).


Experiment No. 1


Figure 1.

\author{
APPENDIX C \\ Computer Program, /ST2C/ for Beamsplitter Ratio
}

Appendix \(C\) includes a listing of Program /ST2C/ and the print-out of a computer run of /ST?C/ using input data files, /C/ and /D/. A listing of similar programs for a threecalorimeter intercomparison is also shown for Program /ST12/.
```

-COPY /C/ TO TEL
11.45573
11.44578
11.45999
11.45646
-COPY /D/ TO TEL
11.44814
11.44431
11.45393
11.45447
BA
BASIC-5.15 73-11-13
>LOAD /ST2C/
*UN
THIS IS 940 PROGRAM /STZC/ DESIGNED TO FIND THE
ABSOLUTE BEAM SPLITTER RATIO AND D FACTOR FOR EACH
CALORIMETER WITH THE 99% CONFIDENCE INTERVAL, USING
2 C SERIES CALORIMETERS IN A REGULAR BEAM
SPLITTER SETUP. BEFORE RUNNING THE PROGRAM, PUT IN
SCRATCH FILE /C/, A SINGLE COLUMN OF BEAM SPLITTER
RATIOS FOR C41 LOW LEVEL AND C46 HIGH LEVEL
POSI TION. PUT IN FILE/D/, A SINGLE COLUMN
OF RATIOS FOR C46 LOW AND C4I HIGH.
THE NO. OF VALUES IN EACH FILE SHOULD EXCEED }
AND THE RATIO OF/C/ PTS. TO /D/ PTS. SHOULD
LIE BETWEEN . 8 AND 1.2
IF BEAM SPLITTER VALUES IN FILES /C/ AND /D/ ARE
IN ORDER, TYPE 1. OTHERWISE TYPE O.? 1
NO. IN /C/ =
NO. IN /D/ = 4
DEGREES OF FREEDOM = 6
99% T VALUE FOR ABOVE DEG. OF FREEDOM = 3.728768
ESTIMATE OF SIGMA = .4817674E-03
ABSOLUTE BEAM SPLITTER RATIO = 11.45235
99% OF THE TIME, THE BEAM SPLITTER RATIOS WILL BE
WITHIN A + OR - PERCENTAGE RANGE OF
.0635123
D FACTOR FOR C41 CALORIMETER = 1.000093
D FACTOR FOR C46 CALORIMETER = .9999066
IREATED EQUALLY, 99% OF THE TIME, THE D FACTORS WILL LIE
WITHIN A + OR - PERCENTAGE RANGE OF .3175615E-Ø1
TYPE IN WAVELENGTH? . 5309
DATE IS 79/01/05 16:47:36
BEAM SPLITTER RATIOS IN FILE /C/
LOW LEVEL CAL. HIGH LEVEL CAL. BEAM SPLIT. RATIOS RUN NO.
C41 C46 11.45573 1
C41 C46 11.44578 2
C41 C46 11.45999 3
C41 C46 11.45646 4

```

BEAM SPLITTER RATIOS IN FILE /D/
LOW LEVEL CAL. HIGH LEVEL CAL. BEAM SPLIT. RATIOS RUN NO.
C46 C41 11.44814 1
C46 C41 11.44431 2
C46 C41 11.45393 3
C46 C41 11.45447 4

COPY /ST2C/ TO TEL
10 PRINT" THIS IS 940 PROGRAM /ST2C/ DESIGNED TO FIND THE"
\(2\}\) PRINT"ABSOLUTE BEAM SPLITTER RATIO AND D FACTOR FOR EACH"
30 PRINT"CALORIMETER WITH THE 99\% CONFIDENCE INTERVAL, USING"
4 PRINT"2 C SERIES CALORIMETERS"IN A REGULAR BEAM"
50 PRINT"SPLITTER SETUP. PEFORE RUNNING THE PROGRAM, PUT IN"
6 PRINT"SCRATCH FILE /C/, A SINGLE COLUMN OF BEAM SPLITIER"
70 PRINT"RATIOS FOR CA! LOW LEVEL AND C46 HIGH LEVEL'
80 PRINT"POSITION. PUT IN FILE/D/, A SINGLE COLUMN"
90 PRINT"OF RATIOS FOR CA6 LOW AND C41 HIGH."
100 PRINT" THE NO. OF VALUES IN EACH FILE SHOULD EXCEED \(4^{\prime \prime}\)
105 PRINT"AND THE RATIO OF /C/PTS. TO /D/PTS. SHOULD"
107 PRINT"LIE BETWEEN . 8 AND \(1.2^{\prime \prime}\)
110 PRINT"IF REAM SPLITTER VALUES IN FILES /C/ AND /D/ ARE"
120 PRINT"IN ORDER, TYPE 1. OTHERWISE TYPE Ø.";
130 INPUTA3
140 I FA3 \(=1\) THEN160
150 STOP
\(160 \mathrm{OPEN} / \mathrm{C} /\), INPUT
170 DIMW \((100), X(10 \varnothing), Y(10 \varnothing), Z(100)\)
18月 FORI =1TO10日
190 INPUT FILEY(I)
\(200 \operatorname{IFEOF}(9)=1\) THEN230
\(210 \mathrm{~N}=\mathrm{I}\)
220 NEXTI
225 GOT031ø
230 PRINT"NO. IN /C/ ='",N1
232 IFNI>3 THEN240
236 PRINT"LESS THAN 5 VALUES I IN /C/"
238 STOP
2.40 CLOSE

250 OPEN/D/,INPUT
260 FOR I =1 TO100
270 INPUTFILEZ (I)
280 IFEOF(9)=1 THEN33
290 N2=I
30Ø NEXTI
310 PRINT"OUER \(10 \emptyset\) POINTS IN /C/ OR /D/"
320 STOP
330 PRINT" NO. IN /D/ \(={ }^{\circ \prime}\), N2
332 IFN2>3 THEN34 4
336 PRINT"LESS THAN 5 VALUES IN /D/"
338 STOP
340 S1=0
341 N9 = N1/N2
342 IFN9>1.2 THEN3 45
343 IFN9 <. 8 THEN345
344 GOT0350
345 PRINT"NO. OF PTS. RATIO OUT OF RANGE"
346 STOP
350 FORI \(=1\) TON!
\(360 X(I)=\operatorname{LOG}(Y(I))\)
370 S \(1=\) S \(1+X(I)\)
38 NEXTI
```

390 S2=0
4n0 FORI = 1 TON2
4l| W(I)=LOG(Z(I))
42ด S2=S2+W(I)
430 NEXTI
4 4 0 ~ N 3 = N 1 + N 2
450 N4=N1-N2
460 S3=S1+S2
470 S4=S 1-S2
480 D3=(N3) \uparrow2-(N4) \uparrow2
490}\textrm{Bl}=(N3*S3-N4*S4)/D
500 D1=(N3*S4-N4*S3)/D3
510 S=0
526 FORI =1 TON 1
530 S =S+(B1+DI-X(I)) \uparrow2
540 NEX II
550 FORI =1 TON2
560 S=S+(B1-DI-W(I)) \uparrow2
570 NEX TI
580 S8=S/(N3-2)
590B=EXP(B1)
G|D D=EXP(D1/2)
610 B2=(S8*N3*(2*N1) \uparrow2)/(D3) \uparrow2
620 D2=(S8*N3* (2*N2) \uparrow2)/(D3) \uparrow2
6 3 0 V = N 3 - 2
640 T=V/(-0.715572179161+0.387490270184*V)+6.0E-4
650 B4=T*SQR(B2)*100
660 D4=(T*SQR(D2)*10日)/2
670 S7=SQR(S8)
700 PRINT
710 PRINT" DEGREES OF FREEDOM = ",V
720 PRINT"99% I VALUE FOR ABOVE DEG. OF FREEDOM = ", I
730 PRINT" ESTIMATE OF SIGMA = " , S7
740 PRINT
7 5 0 ~ P R I N T " A B S O L U T E ~ B E A M ~ S P L I T T E R ~ R A T I O ~ = " , B ~ B
760 A$="99% OF THE TIME, THE BEAM SPLITTER RATIOS WILL BE"
770 B$="WITHIN A + OR = PERCENTAGE RANGE OF "
780 C $="D FACTOR FOR C }41\mathrm{ CALORIMETER ="
790 D$="D FACTOR FOR C46 CALORIMETER ="
800 E$=" TREATED EQUALLY, 99% OF THE TIME, THE D FACTORS WILL LIE"
81D PRINTA$
820 PRINTB$,B4
830 PRINT
840 PRINTC$,D
850 PRINTD$,1/D
860 PRINT
870 PRINTE$
880 PRINTB$,D4
890 PRINT
900 PRINT" TYPE IN WAVELENGTH "*;
910 INPUTW8
920 F$=" DA TE IS"
930 G$=DAT(X)
940 PRINTF$,G\$
950 H\$="LOW LEVEL CAL. HIGH LEVEL CAL. BEAM SPLIT. RATIOS RUN NO."
960 I $="BEAM SPLITTER RATIOS IN FILE /C/"
970 J$="BEAM SPLITTER RATIOS IN FILE /D/"
980 K$="C41 C46"
990 L$="C46 C41"
1000 PRINT
1010 PRINTI\$
1020 PRINTH\$

```

1030 FORI =1 TONI
1040 PRINTK\$,Y(I), I
1050 NEXTI
1060 PRINT
1070 PRINTJ\$
1880 PRINTH\$
1090 FORI =1 TON2
1100 PRINTL\$,Z (I), I
1110 NEXTI
1200 END

COPY／STIZ／TO TEL
10 PRINT＂THIS IS \(94 \emptyset\) PROGRAM STAT12 FOR C SERIES CALORIMEIERS＂
20 PRINT＂THIS PROGRAM IS DESIGNED ONLY FOR 12 BEAM SPLITTER＂
3＠PRINT＂RUNS OF 2 EACH FOR THE 6 POSSIBLE CONFIGURATIONS＂
4 PRINT＂OF 3 C SERIES CALORIMETERS TAKEN 2 AT A TIME＂
50 PRINT＂IN A BEAM SPLITTER SETUP＂
55 GOTO12
60 PRINT＂FOR INSTRUCTIONS FOR INPUT VALUES，TYPE 1．ELSE \(\Omega^{\prime \prime}\) ；
70 INPUTAI
80 IFAI＝ 1 THEN1 円П
96 GOTO300
106 PRINT＂TYPE BEAM SPLITTEP VALUES IN A SINGLE COLUMN＂
110 PRINT＂TO SCRATCH DATA FILE／B／，USING THE FOLLOWIVG ORDER＂
115 GOT0252
\(120 \mathrm{P} \$=" \mathrm{SET}\) LOW LEVEL CALORIMETER HIGH LEVEL CALOR．BEAM SPLITTER R．＂
14 I \(\$=015 T\) C444 C413
\(150 \mathrm{~J}=\)＝＂15T C414 C443
16 K \(\$=\)＂1ST C464 C413＂
17 L \(\mathrm{L}=\)＂1ST C414 C463
\(180 \mathrm{MS}=\mathrm{Cl} 15 \mathrm{C}\) C464 C443

\(2000 \$=\) C4 2 ND C4．
\(210 \mathrm{R} \$=\mathrm{CND}\) C414 C443
22日 \(5 \$=" 2 N D C 464 C 413\)
23日 T\＄＝＂2ND C414 C464＂
24 US＝＂2ND C464 C443＂
250 V\＄＝＂2ND C444 C463＂
251 GOT060
252 PRINT
255 PRINTP\＄
260 PRINTI\＄
262 PRINTJ\＄
264 PRINTK\＄
266 PRINTL\＄
27 PRINTM\＄
272 PRINTN\＄
274 PRINTO\＄
276 PRINTR\＄
278 PRINTS\＄
280 FRINTT\＄
282 PRINTU\＄
290 PRINTV\＄
295 PRINT
300 PRINT＂IF REAM SPLITTER VALUES IN FILE／B／ARE IN＂
3 3 5 PRINT＂ORDER，TYPE 1．ELSE \(\emptyset^{\prime \prime}\) ；
310 INPUTA3
32． 1 IFA3 \(=1\) THEN34の
33 S SOP
340 OPEN／B／．INPUT
350 DIMV（15），W（12）
36月 FORI＝1 TO 15
370 INPUTFILEV（I）
\(380 \operatorname{IFEOF}(9)=1\) THEN410
\(390 \mathrm{VI}=\mathrm{I}\)
\(40 \square\) NEXTI
410 IFNI \(=12\) THEN 440
420 PRINT＂NO．OF VALUES DOESN \({ }^{\circ} T=12^{\prime \prime}\)
430 STOP
\(440 \quad\) FORI \(=1\) TO 12
```

45G W(I)=LOG(V(I))
460 NEXTI
470. T=W
48@ FORI = 1 TO12
490 T=T+W(I)
5NG NEXTI
510) Z =T/12
52G B =EXP(Z)
5 3 0 X = (W (1) + W (7) - W (2) - W (8) - W (5) - W (1 1) + W (6) + W (1 2)) / 1 2
540 Y = W(3)+W(9)-W(4)-W(10)+W(5)+W(11)-W(6)-W(12))/12
55@ Y2=EXP(Y)
560 Y3 = EXP(Y)
57@ Y1=1/(Y2*Y3)
580 S =0
590 FORI = 1 TO:12
*)W(I)=-1*W(I)
614 NEX TI
(2.) }\textrm{S}=\textrm{S}+(W(1)+2*X+Y+Z)+2+(W(7)+2*X+Y+Z)\uparrow
630}S=S+(W(2)-2*X-Y+Z)\uparrow2+(W(8)-2*X-Y+Z)\uparrow
64@ S =S (W(3)+X+2*Y+Z) \uparrow2+(W(9)+X+2*Y+Z) \uparrow2
650 S =S+(W(4)-X-2*Y+Z) \uparrow2+(W(1@)-X-2*Y+Z)\uparrow2
660 S =S+(W(5)-X+Y+Z) +2+(W(11)-X+Y+Z) +2
670}S=S+(W(6)+Y-Y+Z)\uparrow2+(W(12)+X-Y+Z)\uparrow
580 SI=SQR(S)/3
590 59=100*3.25*S1/SQR(12)
70月 EI=100*3.25*S!/SGR(18).
705 PRINT
710 AS="AESOLUTE BEAM SPLITTER RATIO ="
72@ PRINTAS,B
73@ B\$="D FACTOR FOR C4! CALORIMETER ="
742 C $="D FACTOR FOR C44 CALORIMETER ="
75% D$="D FACTOR FOR C46 CALORIMETER ="
760 ES="99% OF THE TIME, THE REAM SPLITTER RATIOS WILL BE"
770 FS="WITHIN A + OR - PERCENTAGE RANGE OF "
780 PRINTES
79% PRINTFS,E9
80% PRINT
810 PRINTBS,Y1
82औ PRINTCS,Y2
830 PRINTDS,Y3
340 PRINT
850 G$=" TREATED EQUALLY, 99% OF THE TIME, THE D FACTORS WILL LIE"
860 PRINTG$
870 PRINTFS,El
38@ PRINT" TYPE IN WAVELENGTH";
890 INPUTW\&
900 WS=DAT(X)
9I| PRINT" DATE IS ",W\$
912 PRINT
916 PRINTP\$
920 PRINTIS,V(1)
930 PRINTJ$,V(2)
940 PRINTK$,V(3)
950 PRINTL$,V(4)
960 PRINTM$,V(5)
976 PRINTNS,V(6)
980 PRINTO$,V(7)
99| PRINTR$,V(8)
1006 PRINTS$,V(9)
1010 PRINTT$,V(10)
1020 PRINTU$,V(11)
1|3| PRINTV$,V(12)
9999 PRINT"DONE"
10ด00 END

```

APPENDIX D
Computer Program /S6/ Used to Separate Calihration Values According to Wavelength and/or Scale

Appendix D gives an example of how Program / \(\mathrm{S} 6 /\) can be used to separate and print out the Code 9 values from a typical power meter file to single column, File /A/. A listing of /S6/ is also included.

\section*{COPY／15／TO TEL}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\square 1\) & 74 & 3 & 28 & 64 & 9 \\
\hline 9．60122E－01 & 7801275 & \(0.96904 \mathrm{E}-93\) & ． 6328 & 3464 & 9 \\
\hline 9．6ら756E－01 & 7801311 & \(1.02274 \mathrm{E}-03\) & ． 6328 & 3464 & \\
\hline \(9.64984 \mathrm{E}-101\) & 7802012 & 1．92965E－23 & ． 6328 & 3464 & \\
\hline \(9.66780 \mathrm{E}-01\) & 7892022 & 1．02753E－03 & ． 6328 & 3464 & \\
\hline \(9.61246 \mathrm{E}-01\) & 7802033 & \(0.98318 \mathrm{E}-03\) & ． 6328 & 3464 & \\
\hline \(9.63326 \mathrm{E}-01\) & 7802061 & 1．10347E－03 & ． 6328 & 3464 & \\
\hline 9.62 .951 E－01 & 7802092 & \(0.97222 E-03\) & ． 6328 & 3.464 & \\
\hline 9.52048 E － 11 & 7882172 & 1．09669E－．16 & ． 6328 & 3465 & \\
\hline \(9.56879 \mathrm{E}-01\) & 78.2173 & 1．06399 5－06 & ． 6328 & 3465 & \\
\hline 9.55321 E－01 & 7802212 & 1．05054E－06 & ． 6328 & 3465 & \\
\hline 9.54587 E －01 & 7802242 & 1．13033E－96 & ． 6328 & 3465 & \\
\hline \(9.48927 \mathrm{E}-11\) & 7802271 & \(1.14445 E-06\) & ． 6328 & 3465 & \\
\hline \(9.54925 E-\square 1\) & 7803011 & 1．08595E－06 & ． 6328 & 3455 & \\
\hline 9.60889 E －91 & 7803623 & \(0.88009 \mathrm{E}-03\) & ． 6328 & 3464 & \\
\hline \(9.63434 \mathrm{E}-1\) & 78015041 & の．82995E－03 & ． 6328 & 3464 & \\
\hline \(9.49678 \mathrm{E}-01\) & 7885042 & \(1.36646 \mathrm{E}-06\) & ． 6328 & 3465 & \\
\hline \(9.51282 \mathrm{E}-01\) & 7806021 & 1．072．2．4E－ด6 & ． 6328 & 3465 & \\
\hline \(9.59383 \mathrm{E}-\) ด1 & 780，602．2 & \(0.99335 \mathrm{E}-03\) & ． 6328 & 3464 & \\
\hline \(9.61943 \mathrm{E}-01\) & 7896023 & \(0.95848 \mathrm{E}-83\) & ． 6328 & 3464 & \\
\hline \(9.62947 \mathrm{E}-\) の1 & 7866261 & \(0.95590 E-03\) & ． 6328 & 3464 & \\
\hline 9．48390 E－01 & 7806264 & 1．2657EE－06 & ． 6328 & 3465 & \\
\hline S．62273E－01 & 7807061 & \(0.91824 \mathrm{E}-03\) & ． 6328 & 3464 & \\
\hline \(9.52719 \mathrm{E}-01\) & 7827962 & 1.28443 E －06 & ． 6328 & 3465 & \\
\hline \(9.60248 \mathrm{E}-01\) & 7809141 & \(0.95642 \mathrm{E}-83\) & ． 6328 & 3464 & \\
\hline 9．50383E－61 & 7809142 & 1．12828E－06 & ． 6328 & 3465 & \\
\hline
\end{tabular}
```

BA
BASIC-5.15 73-11-13
*LOAD /S6/
*UN
USE TO COPY 1ST COLUMN DATA FROM A 6 COL. PONER OR ENERGY
FILE SPECIFIED ACCORDING TO WAVELENGTH AND SCALE
TO SCRATCH DATA FILE /A/
TYPE IN 6 COLUMN INPUT FILE IN / /? /15/
NO. OF VALUES IN FILE = 26
TYPE 30 FOR ALL WAVELENGTHS; 1 FOR 1.06; 2 FOR .6471;
3 FOR . 6328; 4 FOR .5145; 5 FOR. . 4880; 6 FOR . 5309? 3
TYPE 36 FOR ALL CODE NOS. EXCEPT 99; 1 FOR CODE 1;
2 FOR CODE 2, ETC.?? 9
NO. OF SELECTED POINTS = 15
TO PRINT SELECTED POINTS TO TELETYPE, TYPE 1. ELSE 0? l
.961527
.960122
.950756
.964984
.96678
.961246
.963326
.962951
.960809
.963434
.959383
.961943
.962947
.962273
.960248
TO PRINT SELECTED POINTS TO FILE /A/, TYPE 1. ELSE Ø? 1
NO. OF VALUES IN /A/=
1 5
END

```
*QUI T
```

120 REM THIS IS PROGRAM STRIPG
13\emptyset PRINT "USE TO COPY IST COLUMN DATA FROM A 6 COL. FOWER OR ENERGY"
140 PRINT "FILE SPECIFIED ACCORDING TO WAVELENGTH AND SCALE"
150 PRINT " TO SCRATCH DATA FILE /A/"
160 DIM A (1D日),Y(1DD),D(1|D),F(1|D)
170 DIM B(100),C(100),E(100)
180 PRINT " TYPE IN 6 COLUMN INPUT FILE IN / /";
190 INPUT Q\$
200 GO TO 470
210 PRINT " TYPE 30 FOR ALL WAVELENGTHS; 1 FOR 1.06; 2 FOR .6471:"
226 PRINT "3 FOR .6328; 4 FOR . 5145; 5 FOR . 4888; 6 FOR .5309";
236 INPUT W9
240 PRINT "TYPE 30 FOR ALL CODE NOS. EXCEPT 99; 1 FOR CODE 1;"
250 PRINT "2 FOR CODE 2, ETC.?";
260 INPUT C9
27@ IF WY<>30 THEN 290
280 GO TO 46@
29ด IF W9<>1 THEN 32ด
300 W9=1.06
310 GO TO 460
320 IF W9 <-2 THEN 350
330 W9=0.6471
340 GO TO 460
350 IF W9<>3 THEN 380
360 W9=0.6328
37% GO TO 460
380 IF W9<>4 THEN 41%
390 W9=0.5145
400 GO TO 460
41风 IF W9<>5 THEN 432
420 W9=0.488
436 GO TO 460
4 3 2 ~ I ~ F W 9 ~ < > 6 ~ T H E N 4 4 0] ~
434 W9=0.5309
4 3 6 GOTO460
44D PRINT "NO SUCH WAVELENGTH. TRY AGAIN"
450 GO TO 210
46多 GO TO 65a
47(OPEN Q $,INPUT
480 A$= "CALIBRATION RUN NO. POW. OR ENER. WAVE. CAL. SCALE"
50日FORI = 1TO100
51风 INPUTFILEA(I),B(I),C(I),D(I),E(I),F(I)
52@IFEOF(9)=1THEN570
530 N=I
5407 NEXT I
550 PRINT "OVER 10日 POINTS"
56月 STOP
576 PRINT "NO. OF VALUES IN FILE =",N
580:\#.\#\#\#\#\#!!!!!\#\#\#\#\#\#\#\#\#.\#\#\#\#\#!!!!!\#\#.\#\#\#\#\#\#\#\#\#\#\#
20 NI=0
640 GO TO 210
650 FOR I=1 TO N

```
```

560 IF F(I)=99 THEN 730
670 IF W9=30 THEN 690
580 IF D(I)<>WY THEN 730
690 IF CS=30 THEN 71D
70@ IF F(I)<>C9 THEN 730
710 NI=NI+1
720 Y(N1)=A(I)
730 NEXI I
740 PRINT "NO. OF SELECTED POINTS = "NI
741 PRINT" TO PRINT SELECTED POINTS TO TELETYPE, TYPE 1. ELSE G";
742INPUTQ
743 I FQ =1 THEN745
744 GOTO75@
745 FORI = 1 TON I
746 PRINTY(I)
7 4 7 NEXTI
75@PRINT" TO PRINT SELECTED POINTS TO FILE /A/, TYPE 1. ELSE |";
755INPUT P
760 IF P=1 THEN 78%
770 GO TO 850
780 OPEN/A/,OUTPUT
310 FOR I =1 TO N1
820 PRINTFILEY(I)
830 NEXT I
840 PRINT "NO. OF VALUES IN /A/= ",N1
850 PRINT "END"
860 END

```

APPENDIX
Computer Program, /RU/, a RUNSUM Proaram to Detect Trends in Statistical Data

Program /RU/ is a RUNSUM program to detect trends in statistical data. The difference (residual) between each data point and the mean is compared with the standard deviation starting with the first point. As the program progresses point-by-point, a running total, RUNSUM, is kept according to the following rules.
1. A residual less than \(1 \sigma\), add 0. .
2. \(A\) " " " \(2 \sigma\), " 1 .
3. A " " " \(3 \sigma\), " 2.
4. \(A\) " " " \(4 \sigma\), " 3 .
5. A " " " \(5 \sigma\), " 4 .
6. A " greater" 50, " 5.
7. When a residual changes sign, RUNSUM is set to 0 , before proceeding to Steps 1 through 6.

When the RUNSUM value equals 5 or greater, a trend is indicated. A listing of /RU/ is shown in Appendix \(E\), as well as a printout of a typical computer run on Program /RU/.
```

QUI T

```
－COPY／RU／TO TEL
12月 REM THIS IS PROGRAM RUNSUM
136：PRINT＂A RUNSUM TEST PROGRAM TO DETECT TRENDS IN A SINGLE＂
140 PRINT＂COLUMN DATA FILE／A／＂
145 OPEN／A／，INPUT
\(150 \quad N=0\)
180 DIM S（200），T（200），Z（200）
190 FOR I＝1 T0200
2＠ด INPUT FILE Z（I）
210 IFEOF \((9)=1\) THEN270
\(230 \mathrm{~N}=\mathrm{I}\)
240 NEXT I
250 PRINT＂OVER 2めด POINTS＂
260 STOP
27\＆FOR I＝ 1 TO N
280 IF I \(=1\) THEN 310
\(290 S(I)=S(I-1)+Z(I)\)
30月 GO TO 32の
\(318 \mathrm{~S}(\mathrm{I})=\mathrm{Z}(\mathrm{I})\)
320 NEX T I
\(330 \mathrm{~J}=\mathrm{S}(\mathrm{N}) / \mathrm{N}\)
340 FOR I＝1 TO N
350 IF \(1=1\) THEN 380
\(360 \quad T(I)=T(I-1)+(Z(I)-J) \uparrow 2\)
370 GO TO 390
380 \(T(I)=(Z(I)-J) \uparrow 2\)
390 NEXT I
\(40 \quad V 3=\operatorname{SQR}(T(N) /(N-1))\)
410 \(\mathrm{F} \$=" \mathrm{AVERAGE:}\)＂
420 GOTO111日
430 PRINTF\＄，J
440 G\＄＝＂STANDARD DEVIATION：＂
450 PRINTG\＄，V3
46ด \(\mathrm{H} \$=" P E R C E N T\) STANDARD DEVIATION：＂
\(47 \emptyset\) PRINTH\＄，1ØQ＊V3／J
\(480 \quad V 5=V 3\)
49 K K1＝J
5月0 \(P=0\)
\(510 \mathrm{R}=0\)
520：\＃\＃\＃\＃．\＃\＃\＃\＃\＃！！！！\＃．\＃\＃\＃\＃\＃！！！！\＃\＃\＃\＃\＄\＄\＄
\(53 \emptyset E \$="\) I \(Z(I)\) RESIDUAL \(>S I G M A\) RUNSUM TREND＂
540 PRINT
550 PRINT E \(\$\)
56 FOR \(I=1\) TO N
\(578 \mathrm{D}=\mathrm{Z}(\mathrm{I})-\mathrm{KI}\)
58＠IF \(Z(I)>K 1\) THEN 640
59 IF \(P=-1\) THEN 620
sun \(R=\varnothing\)
\(610 P=-1\)
थの \(Q=K 1-Z(I)\)
630 GO TO 68．
640 IF P＝1 THEN 678
650 R＝Ø
\(660 \quad P=1\)
\(670 \mathrm{Q}=\mathrm{Z}(\mathrm{I})-K 1\)
680 IF \(Q>V 5\) THEN 710
\(590 \mathrm{G}=\mathrm{Q}\)
790 GO TO 930
71め IF \(Q>2 *\) V5 THEN 750
72 G＝1
\(730 \mathrm{R}=\mathrm{R}+1\)
740 GO TO 93日
750 IF \(Q>3 * V 5\) THEN 79の
76 G \(=2\)
\(776 \mathrm{R}=\mathrm{R}+2\)
78の GO TO 93の
790 IF \(Q>4 *\) V5 THEN 830
\(80 \mathrm{G}=3\)
81ด \(R=R+3\)
82の GO TO 93日
830 IF \(Q>5 *\) V5 THEN 87Q
\(840 \mathrm{G}=4\)
\(850 R=R+4\)
860 GO T0 930
87ด IF \(Q>6 *\) V5 THEN 91の
880 \(G=5\)
\(89 R=R+5\)
900 GO TO 930
\(910 G=6\)
\(920 R=R+6\)
930 IF R＞4 THEN 970
940 T\＄＝＂NO＂
960 GO TO 990
970 T\＄＝＂YES＂
99の PRINT USING 52の，I，Z（I），D，G，R，T\＄
1030 NEXT I
1040 GOTO1360
1110 A \(\$="\) THE DATE IS＂
112 C \(\$="\) THIS IS FILE＂
1130 PRINT＂TYPE IN FILE REMARKS＂
1140 INPUT D\＄
\(1150 \mathrm{~B} \$=\mathrm{DAT}(X)\)
1180 PRINT
1200 PRINTA\＄，B\＄
1210 PRINT
1220 GOTO430
1360 PRINT＂END＂
1370 END

BA
BASIC-5.15 73-11-13
>LOAD /RU/
*UN
A RUNSUM TEST PROGRAM TO DETECT TRENDS IN A SINGLE COLUMN DATA FILE/A/
TYPE IN FILE REMARKS
? SILI5 AT 1 MILLIWATT AT . 6328
THE DATE IS 79/01/08 16:40:33
AVERAGE: .9621819
STANDARD DEVIATION:
PERCENT STANDARD DEVIATION:
\(.1966743 \mathrm{E}-02\)
.2044045
\begin{tabular}{|c|c|c|c|c|c|}
\hline I & Z (I) & RESIDUAL & >SIGMA & RUNSUM & TREND \\
\hline 1 & \(9.61527 E-01\) & -.06549 E-02 & \(\emptyset\) & \(\square\) & NO \\
\hline 2 & \(9.60122 \mathrm{E}-01\) & -. 200599 E-02 & 1 & 1 & NO \\
\hline 3 & \(9.60756 \mathrm{E}-61\) & -. 14259 E-022 & 0 & 1 & NO \\
\hline 4 & \(9.64984 \mathrm{E}-01\) & \(2.80207 \mathrm{E}-03\) & 1 & 1 & NO \\
\hline 5 & 9.66780 E - 11 & 4.59807E-03 & 2 & 3 & NO \\
\hline 6 & \(9.61246 \mathrm{E}-01\) & -.09359E-02 & 0 & \(\emptyset\) & NO \\
\hline 7 & \(9.63326 E-01\) & 1.14407E-03 & 0 & \(\emptyset\) & NO \\
\hline 8 & \(9.62951 \mathrm{E}-01\) & Ø. 76907 E -03 & 0 & \(\emptyset\) & NO \\
\hline 9 & \(9.60809 \mathrm{E}-01\) & -. 13729 E - 12 & \(\emptyset\) & \(\emptyset\) & NO \\
\hline 10 & \(9.63434 \mathrm{E}-011\) & 1.25207E-03 & \(\square\) & 0 & NO \\
\hline 11 & \(9.59383 \mathrm{E}-\varnothing 1\) & -. 27989 E - 12 & 1 & 1 & NO \\
\hline 12 & \(9.61943 \mathrm{E}-01\) & -. \(23893 \mathrm{E}-03\) & 0 & 1 & NO \\
\hline 13 & \(9.62947 \mathrm{E}-01\) & \(0.76507 \mathrm{E}-03\) & 0 & 0 & NO \\
\hline 14 & 9.62273E-01 & \(0.91067 \mathrm{E}-04\) & \(\emptyset\) & \(\emptyset\) & NO \\
\hline 15 & \(9.60248 \mathrm{E}-01\) & -. 19339 E-02 & \(\emptyset\) & g & NO \\
\hline END & & & & & \\
\hline
\end{tabular}

\section*{APPENDIX F}

Computer Program, /PL/, a Plottina Routine for a Single Column of Data

Appendix \(F\) contains a listing and a sample run of Plot Program /PL/.
```

COPY /PL/ TO TEL

```
```

120 REM THIS IS PROGRAM PLOT
130 PRINT "A PLOT OF PERCENT DIFFERENCE FROM THE AVERAGE OF A SINGLE"
140 PRINT "COLUMN OF DATA IN FILE /A/ "
15(0) N9=200
160 DIM T(N9),W(N9),P(N9),Q(N9),R(N9)
17\emptyset PRINT " TI TLE OF PLOT"
180 INPUT L\$
190 OPEN/A/,INPUT
2\emptyset\emptyset FOR I =1 TO2\emptyset\emptyset
210 INPUT FILEP(I)
22\emptyset IF EOF(9)=1 THEN2 7\emptyset
230 N=I
240 NEXT I
250 PRINT "OVER 20日 POINTS"
260 S IOP
27\emptyset S=\emptyset
280 FOR I =1 TO N
290 S=S+P(I)
300, NEXT I
310 Al=S/N
32\emptyset FOR I=1 TO N
330 R(I)=100*(P(I)-A1)/A1
340 NEXT I
350 AS="NO. OF POINTS:"
360 PRINT A$,N
37\emptyset B$="AVERAGE:"
39() PRINTB$,A1
400 FOR I =1 TO N
4l\emptyset IF I=1 THEN 440
420 W(I)=W(I-1)+R(I) \uparrow2
430 G0 T0 450
440 W(I)=R(I) \uparrow2
450 NEXT I
460 IF N=1 THEN 2290
470 V=SQR(W(N)/(N-1))
480 CS="STANDARD DEVIATION:"
49| V9=V*A1/1月\emptyset
500 PRINTCS,V9
510 D$="1 SIGMA IN PERCENT ="
5 2 0 ~ P R I N T D \$, V ~
530 E$="3 SIGMA IN PERCENT ="
540 PRINTE$,3*V
550 FOR K=1 TO N
560 IF K>1 THEN 59@
570 C=R(K)
580 GO TO 62\emptyset
590 IF R(K)>C THEN 610
600 GO TO 620
610 C=R(K)

```

620 NEX．T K
\(630 \mathrm{~F} \$={ }^{\prime \prime} Y\) MAX．PERCENT \(={ }^{\prime \prime}\)
640 PRINTF\＄，C
650 FOR K＝1 TO N
660 IF \(K>1\) THEN 690
670 D \(=R(K)\)
68 GO TO 728
690 IF \(R(K)<D\) THEN 710
790 GO TO 72め
\(710 \mathrm{D}=\mathrm{P}(\mathrm{K})\)
72 N NEXT K
730 G\＄＝＂Y MIN．PERCENT＝＂
740 PRINTG\＄，D
750 PRINT＂FOR INSTRUCTIONS，TYPE 1．ELSE 日？＂；
760 INPUT M1
77日 IF \(171=0\) THEN 860
780 PRINT＂SCALE IS DIVIDED INTO 6 LARGE INTERVALS WHICH ARE＂
790 PRINT＂SCALED IN PERCENT．AN INPUT OF 1 ，GIVES A SCALE FROM＂
800 PRINT＂－3 SIGMA IO＋3 SIGMA IN PERCENT．AN INPUT OF 2 GIVES＂
810 PRINT＂A SCALE OF \(-N\) TO \(+N\) ．AN INPUT OF 3 GIVES A SCALE＂
820 PRINT＂FROM－N TO＋M PERCENT．＂
836 PRINT＂USE 1 FOR A SCALE IN TERMS OF SIGMA PERCENT＂
840 PRINT＂USE 2 FOR A SCALE IN TERMS OF－N TO＋N PERCENT＂
850 PRINT＂USE 3 FOR A SCALE FROM－P TO＋Q PERCENT＂
860 PRINT＂TYPE 1，2，OR 3？＂；
870 INPUT R
38日 IF MR \(=1\) THEN 93Д
890 IF R2 \(=2\) THEN 980
900 IF \(\mathrm{M}=3\) THEN 1080
910 PRINT＂INVALID NO．TRY AGAIN＂
926 GO TO 830
930 PRINT＂TYPE 3 FOR 3 SIGMA．TYPE 6 FOR 6 SIGMA？＂；
940 INPUT M3
950 Q1 \(=M 3 * V\)
\(960 Q 0=-Q 1\)
S70 GO TO 1ø2日
980 PRINT＂TYPE ．3，．6，．9，1．2，ETC．OR A MULTIPLE OF ．3？＂；
99の INPUT MA
1600 Q \(1=\mathrm{MA}\)
\(1010 Q 0=-M 4\)
\(1020 \mathrm{Fl}=Q 日+\mathrm{Q} 1 / 3\)
1030 F2＝QQ \(+2 * Q 1 / 3\)
\(1040 \mathrm{FB}=\mathrm{Q} 日+3 * Q 1 / 3\)
1050 F4＝Q \(0+4 * Q 1 / 3\)
1060 F5 \(=\) QQ \(+5 *\) Q1／3
1070 GO TO 1120
1ø8ด PRINT＂TYPE IN Y MIN．WITH MINUS SIGN＂；
1090 INPUT QØ
1100 PRINT＂TYPE IN Y MAX．？＂；
\(111 \varnothing\) INPUT Q1
1120 Q2＝1
1130 Q3 \(=N\)
\(1140 Q 4=1\)
1150 Q \(5=(Q 1-Q \varnothing) / 60\)
1160 Q6＝0
1170 IF \(N=10\) THEN 1176
1172 E＝2
1174 GOTO1190
1176 IF \(N>16\) THEN1 182
\(1178 \mathrm{E}=1\)

1180 GOT01190
```

1182 E=|
1190 PRINT" FOR PLOT MOVE PAPER AND TYPE 1. ELSE \&";

```
1200 INPUT EQ
1210 IF E9=6 THEN 2300
1230 L9 = ロ
1250 FOR \(X=Q 2\) TO Q3 STEP Q4
1260 Y \(=R(X)\)
1270 IF E=0 THEN 1370
128月 IF E=1 THEN 1340
1300 PRINT
1340 PRINT
1370 IF Q6: 1 THEN179Ø
1380 IF Q6:20 THEN 1450
1400 PRINT X;
1430 GO TO 1490
1450 PRINT X;
1480 Q \(6=10\)
1490 Q \(7=Q 6+2 * Q 5\)
\(1500 Z=Q 7+0.5 * Q_{0}\)
1510 IF \(Z<Y\) THEN 1700
1520 Q \(6=06+1\)
1530 IF \(Z-Y>2 * Q 5\) THEN 1660
1540 IF \(Z-Y>Q 5\) THEN 1610
1560 PRINT " +"
1570 GO TO 2090
1610 PRINT" +"
1620 GO TO 2090
1660 PRINT "+"
1670 GO TO 2090
1700 Q7=Q7+3*Q5
1720 PRINT " ";
1730 GO TO 1500
1760 Q \(6=\) Q \(6+1\)
1770 GC TO 2090
1790 PRINT" ",LS
1792 T\$=DAT(X)
1794 PRINT" DATE IS ",T\$
1800 GO TO 1830
1830 H \(\$=" P E R C E N T\) STANDARD DEVIATION: "
1850 PRINTH \(\$, V\)
1860 GO TO 189月
1880 IF LS \(=1\) THEN 1910
1890 PRINTB\$,A1
19め1 GO TO 1930
1930 I \(\$=" \quad\) PERCENT DIFFERENCE FROM AVERAGE"
1950 PRINT I \$
1960 GO TO 1980
1980:\#\#\#.\#\#\#\#\#,\#\# \#\#\#\#.\#\# \#\#\#\#.\#\# \#\#\#\#.\#\#\#\#\#\#.\#\# \#\#\#\#.\#\#
2000 PRINT USING \(1980, Q 1, F 1, F 2, F 3, F 4, F 5, Q 1\)
2010 GO TO 2030
2030 ل\$=" I............I...........I.............
2050 PRINT J\$
2080 GO TO 1450
2090 NEXT X
2100 GOT0230日
2290 PRINT" ONLY O VALUE IN FILE /A./ "
2300 PRINT" END"
2310 END

BA
BA SIC-5.15 73-11-13
>LOAD /PL/
PRUN
A PLOT OF PERCENT DIFFERENCE FROM THE AVERAGE OF A SINGLE COLUMN OF DATA IN FILE /A/
II TLE OF PLOT
? SILI5 AT 1 MILLIWATT AT . 6328
NO. OF FCINTS: 15
AVERAGE:
.9621819
STANDARD DEVIATION:
\(.1966743 E-02\)
1 SIGMA IN PERCENT =
3 SIGMA IN PERCENT =
Y MAX. PERCENT =
Y MIN. PERCENT =
.2044《45

FOR INSTRUCTIONS
.6132136

SCALE IS DIVIDED INTO 6 LARGE INTERVALS WHICH ARE
SCALED IN PERCENT. AN INPUT OF 1 , GIVES A SCALE FROM -3 SIGMA TO +3 SIGMA IN PERCENT. AN INPUT OF 2 GIVES
A SCALE OF -N TO + N. AN INPUT OF 3 GIVES A SCALE FROM - \(N\) TO + M PERCENT.
USE 1 FOR A SCALE IN TERMS OF SIGMA PERCENT
USE 2 FOR A SCALE IN TERMS OF - N TO + N PERCENT
USE 3 FOR A SCALE FRCM -P TO +Q PERCENT
TYPE 1, 2, OR 3?? 2
TYPE . \(3, .6, .9,1.2\), ETC. OR A MULTIPLE OF .3?? .6
FOR PLOT MOVE PAPER AND TYPE 1. ELSE \(\theta\) ? 1
```

DATE IS 79/01/69 बह:14:27
PERCENT STANDARD DEVIATION: . 2044045
AVERAGE: .9621819
PERCENT DIfFERENCE FROM AVERAGE

-. 60	-. 49	. 20	. 40	611
	.	I .		

2 +
3
4
5
6 +
7
8 +
9 +
10
11 +
12 +
13 +
1 4
15
END

```
\(>\)

APPENDIX G
Computer Program /ASTM/, an ASTM Proaram to Provide 2 Control Charts
Appendix G contains a listing and a sample run of Program /ASTM/.
```

COPY /ASTM/ TO TEL

```
```

1| PRINT" TYPE 1 TO SKIP DIRECTIONS. ELSE Q";
20 INPUT A9
30 IFA9=1 THEN150
4% PRINT" THIS PROGRAM PROVIDES 2 CONTROL CHARTS; ONE FOR INDIVIDUALS, X",
50 PRINT"AND ONE FOR MOVING RANGE, R, OF TWO OBSERVATIONS. SEE ASTM"
60 PRINT"MANUAL ON QUALITY CONTROL OF MATERIALS, PAGE 105, FOR DETAILS."
7\emptyset PRINT"CONTROL CHART \#1 DISPLAYS INDIVIDUAL RESIDUAL READINGS"
\&\emptyset PRINT"IN PERCENT WITH CONTROL LIMITS VERSUS RUN NO.
9\emptyset PRINT"CONTROL CHART \#2 DISPLAYS MOVING RANGE VALUES WITH"
92 PRINT"CONTROL LIMITS VERSUS RUN NO."
1%ด PRINT"CONTROL LIMITS SHOULD EE BASED ON AT LEAST 15 INDIVIDUAL"
110 PRINT" MEASUREMENTS. THIS PROGRAM NEEDS AT LEAST 10 POINTS TO RUN.**
12@ PRINT"SINGLE COLUMN INPUT DATA MUST BE IN FILE /A/ BEFORE RUNNING."
150 N9=200
160 DIM P(N9),R(N9),G(N9)
176 PRINT " TITLE OF PLOT"
180 INPUT L\$
190 OPEN/A/,INPUT
200 FOR I =1TO20%
210 INPUT FILEP(I)
220 IF EOF(9)=1THEN270
230 N=I
240 NEXT I
25@ PRINT "OVER 200 POINTS"
26\ STOP
27\& S=\emptyset
280 FOR I=1 TO N
290 S=S+P(I)
300 NEXT I
310 Al=S/N
320 FOR I=1 TO N
33月 R(I)=100*(P(I)-A1)/A1
340 NEXT I
350 AS="NO. OF POINTS:"
360 FRINT AS,N
362 IFN>9 THEN365
3 6 3 PRINT"PROGRAM NEEDS AT LEASI 1风 POINTS TO RUN."'
364 STOP
365 IFN>14 THEN370
366 PRINT"PROGRAM SHOULD HAVE AT LEAST 15 POINTS TO SET GOOD CONTROL LIT
370 B5="AVERAGE:"
390}\mathrm{ PRINTB\$,A1
42N T=0
4 2 2 ~ F O R I ~ = 2 ~ T O N ~
424G(I)=ABS(P(I)-P(I-1))
4 2 6 ~ T = T + G (I)
4 2 . 7 ~ N E X T I ~
4 2 8 R = T / (N - 1)
4 2 9 ~ R ~ 5 = 1 0 D * R / A 1 ~
43月 U=2.66*R
440 H=3.267*R
8@\emptyset FRINT" TO PLOT \#1, TYPE 1. TO PLOT \#2, TYPE 2. ELSE Ø";
8 1 0 ~ I N P U T A 5
815 IFA5=15THEN2300
816 FOR I =1 TO1\varnothing

```
817 PRINT

818 NEXTI
820 IFA \(5=1\) THEN84 4
825 IFA \(5=2\) THEN85
836）PRINT＂INVALID NO．TRY AGAIN．＂
835 GOT0800
840 VR＝2
845 GOTOR90
850 R \(=3\)
360 GOTOR9の
890 IF MR＝2 THEN 98ด
90日 IF \(2=3\) THEN 108
980 P1＝1ดの＊U／A！
\(990 \mathrm{M} 4=3 * \mathrm{P} 1 / 2\)
1の日も \(Q 1=M 4\)
1005 Q9 \(=Q 1\)
1010Q \(0=-14\)
1020 F1 \(=Q(1+Q 1 / 3\)
\(1030 \quad F 2=Q ด+2 * Q 1 / 3\)
\(1040 \mathrm{~F} 3=\mathrm{Q} 0+3 * \mathrm{Q} 1 / 3\)
\(1050 \quad F 4=Q D+4 * Q 1 / 3\)
1060 F5＝QU \(5+5 * Q 1 / 3\)
1970 GO TO 1120
\(1080 \quad Q 日=6\)
1106 Q \(1=3 * H / 2\)
\(1111 \mathrm{Fl}=100 * \mathrm{Q} 1 / 6\)
\(1112 \mathrm{~F} 2=100 * \mathrm{Q} 1 / 3\)
\(1113 F 3=100 * Q 1 / 2\)
1114 F4＝200＊G1／3
\(1115 \quad F 5=500 * Q 1 / 6\)
\(1116 Q 9=100 * Q 1\)
1120 IFA 5＝1 THEN 1123
1121 IFA 5＝2 THEN 1126
1122 STOP
\(112362=1\)
\(1124 C 9=1\)
1125 GOTO1130
\(112602=2\)
\(1127 \mathrm{C9}=2\)
1130 Q3 \(=\mathrm{N}\)
1140 Q4＝1
1150 Q \(5=(Q 1-Q(1) / 60\)
1160 Q6＝
1176 IF \(N>16\) THEN1 182
1178 E＝1
1186 GOTO125
\(1182 \mathrm{E}=\mathrm{a}\)
125ด FOR X＝Q2 TO Q3 STEP Q4
1252 IFA \(5<>1\) THENI26日
1254 Y \(=R(X)\)
1256 GOTO 1270
\(1260 Y=G(X)\)
1276 IF E＝Ø THEN 1376
1280 IF \(E=1\) THEN 1340
1300 PRINT
1346 PRINT
1370 IF Q6＝9THEN179日
138 IF Q6：20 THEN 1450
1450 PRINT＂＂；
1480 Q \(6=10\)
```

149ด Q7=QQ+2*Q5
150@Z =Q 7+0.5*Q5
1510 IF Z<Y THEN 1700
1520 Q6=Q6+1
1530 IF Z-Y>2*Q5 THE目 1645
1540 IF Z-Y>Q 5 THEN 1595
1545 IFC9<6THEN156\Omega
155% PRINT " !"
1555 GOTO2096
1560 PRINT " +"
157% GO TO 2ด9^
1595 IFC9<6THEN161月
160日 PRINT " !"
1605 GCTC2090
1610 PRINT " +*
1620 GO TO 2090
1645 I FCS < 6THEN1660
1650 PRINT"!"
1655 GOTO2M9%
1660 PRINT "+"
1670 GO TO 2090
17@Q Q7=Q7+3*Q5
1720 PRINT " ";
1730 GO TO 1500
176% Q6=G6+1
1770 GO TO 2090
1790 PRINT " ",L\$
1792. T$=DAT(X)
1794 PRINT" DATE IS ",TS
1800 GO TO 1830
1830 H$="AVERAGE RANGE IN PERCENT"
1 8 5 0 ~ P R I N T H \$, R 5
1860 IFA 5=2 THEN190月
1890 PRINTBS,A1
19ดด I FA 5=1 THEN1936
1910 I FA 5=2 THEN1940
19363 I \$=" PERCENT DIFFERENCE FROM AVERAGE"
1935 GOTO1950
1940 I $=" MOVING PANGE, R"
1950 PRINT IS
1960 GO TO 1980
1980:###.######.######.######.######################
20@0 PRINT USING 19&0,Q0,F1,F2,F3,F4,F5,Q9
2010 GO TO 2030
2030 J$=" II.........I.........I.........I..........I..........I"
2050 PRINT J\$
2080 GO TO 1450
2090 C9=CS+1
2095 I FC9<6THEN2290
2200 IFA 5<> 1 THEN2250
2205 I FC9 =6THEN22.15
2210 IFC9=7THEN2225
2212 IFC9 = 8 THEN228%
22.15 Y =-P1
2220 GMT0127%

```
\(2225 \quad Y=P 1\)
2235 GOTO127日
2250 IFC9 \(=6\) THEN2260
2255 IFC9＝7 THEN2265
2257 IFC9 \(=8\) THEN2280
2260 Y＝
2262 GOT0127日
2265 Y＝H
2275 GOTO1270
\(2280 \quad\) C9＝ 1
2290 NEXIX
2292 FORI＝ 1 T02 6
2293 PRINT
2294 NEXTI
2295 GOT08日の
2300 PRINT＂END＂
2310 END
```

EA
BASIC-5.15 73-11-13
*LOAD /ASTM/

```
*RUN
TYPE 1 TO SKIP DIRECTIONS. ELSE \(\emptyset ?\)
THIS PROGRAM PROVIDES 2 CONTROL CHARTS; ONE FOR INDIVIDUALS, \(X\), AND ONE FOR MOVING RANGE, R, OF THO OBSERVATIONS. SEE ASTM MANUAL ON QUALITY CONTROL OF MATERIALS, PAGE 105, FOR DETAILS. CONTROL CHARI \#I DISPLAYS INDIVIDUAL RESIDUAL READINGS
IN PERCENT WITH CONTROL LIMITS VERSUS RUN NO.
CONTROL CHART \#2 DISPLAYS MOVING RANGE VALUES WITH
CONTROL LIMITS VERSUS RUN NO.
CONTROL LIMITS SHOULD BE BASED ON AT LEAST 15 INDIVIDUAL MEASUREMENTS. THIS PROGRAM NEEDS AT LEAST \(1 \varnothing\) POINTS TO RUN. SINGLE COLUMN INPUT DATA MUST BE IN FILE /A/ BEFORE RUNNING. TI TLE OF PLOT ? SILI5 AT 1 MILLIWATT AT . 6328 NO. OF POINTS: 15
AVERAGE: .9621819
TO PLOT \#1, TYPE 1. TO PLOT \#2, TYPE 2. ELSE 日? 1
```

 SILI5 AT 1 MILLINATT AT . }632
 DATE IS
79/01/09 Ø8:50:36
AVERAGE RANGE IN PERCENT .231119
AVERAGE: .9621819
PERCENT DIFFERENCE FROM AVERAGE
-.92 -.61 -.31 0.096 .31
f

$+$

$$
\begin{gathered}
+ \\
+ \\
+ \\
+ \\
+ \\
+ \\
+ \\
+ \\
+ \\
+ \\
+ \\
+
\end{gathered}
$$

!

Computer Program, /D2/, a Statistical Program to Provide Average, Standard Deviation 90\%, 95\%, and 99\% Confidence Interval Data

Appendix H contains a listing and a sample run of Program /D2/.

COPY /D2/ TO TEL

```
12ด REM THIS IS PROGRAM DEVZ
130 REM LAST REVISED ON JAN. 9, 1978
1 4 0 \text { PRINT "A PROGRAM TO GIVE AVERAGE, STANDARD DEVIATION, 90\%, 95\% AND"}
    150 PRINT "99% CONFIDENCE INTERVALS FOR A SINGLE COLUMN OF DATA"
160 PRINT "IN FILE /A/"
1707 DIM X(150),K(150),S(150),H(150)
175 DIMY(150)
180 OPEN/A/,INPUT
196 FORI =1 TO150
200 INPUTFILEX(I)
210 IFEOF(9)=1 THEN260
220 N1=I
230 NEXT I
240 PRINT "OVER 150 POINTS IN FILE /A/"
250 STOP
260 A$="NO. OF POINTS IN /A/ =''
261 PRINT"FOR STATISTICS ON RECIPROCALS, TYPE 1. ELSE |";
262 INPUTA9
2 6 3 ~ I F A 9 = 1 ~ T H E N 2 6 5 ~
264 GOT0280
265 PRINT" VALUES IN /X/ RECIPROCALS"
266 FOR I =1 TONI
267 Y(I) =X(I)
268 X(I) =1/Y(I)
269 PRINT Y(I),X(I)
270 NEXTI
280 IF N1<>1 THEN 310
29@ PRINT "ZERO DEGREES OF FREEDOM"
300 STOP
310 B$="FIRST VALUE IN FILE /A/= ="
330 C $="LAST VALUE IN FILE /A/= ="
350 FOR I=1 TO NI
360 IF I=1 THEN 390
37\emptyset S(I)=S(I-1)+Y(I)
380 GO TO 400
39\emptyset S(I)=X(I)
```



```
410 J=S(N1)/N1
440 J\emptyset=」
45ด D$="AVERAGE = "
4 7 0 ~ F O R ~ I = 1 ~ T O ~ N 1 ~
480 IF I=1 THEN 510
490 H(I)=H(I-1)+(X(I)-J)\uparrow2
500 GO TO 520
510 H(I)=(X(I)-J)\uparrow2
520 NEX T I
5 3 \| ~ R = S Q R ( H ( N 1 ) / ( N 1 - 1 ) )
560 RO=R
570 E$="STANDARD DEVIATION = "
590 F$="PERCENT STANDARD DEVIATION = "
5 9 2 ~ T \$ = " P E R C E N T ~ S T A N D A R D ~ E R R O R ~ = ~ " ~ '
5 9 4 ~ U \$ = " E S T . ~ O F ~ S T D . ~ E R R O R ~ = ~ S Q R ~ R O O T ~ ( S T D . ~ D E V ~ S Q U A R E D / N O . ~ O F ~ M E A S . ) " '
596 V$="SEE NBS SPECIAL PUB. 300, VOL. 1, PAGE 71-1203"
```

```
OnC Pl=100*R/J
630 P\emptyset=P1
G4| P9=SQR(P\emptyset\uparrow2/N1)
660 V=N1-1
670 GOSUB 2070
7n\varnothing S0=T\varnothing
710 GOSUB 2129
740 M=T5
750 GOSUB 2170
```



```
79@ F=100*R/(SQR(N1)*J)
80日 N$=" DEGREES OF FREEDOM = "
820 G$=".95% T VALUE .975% T VALUE .995% T VALUE"
860 C0=T0*F
90日 H$="90 % OF THE TIME THE ABOVE AVERAGE WILL LIE"
910 I$="95 % OF THE TIME THE ABOVE AVERAGE WILL LIE"
920 J$="99 % OF THE TIME THE ABOVE AVERAGE WILL LIE"
930 K$="WITHIN A + OR - PERCENTAGE RANGE OF "
940 C5=T5*F
980 C9=T9*F
1620 QS=" DATE : "
163. RS=DAT(X)
1640 PRINTQ$,R$
165\varnothing PRINT "TYPE IN REMARKS FOR THIS RUN"
1660 INPUT SS
1730 PRINT
1740 FOR I=1 TO NI
1750 PRINTX(I)
1760 NEXT I
1 7 7 0 ~ P R I N T
1780 PRINT AS,N1
1790 PRINTB$,X(1)
1800 PRINTC$,X(N1)
1810 PRINT
1820 PRINTDS,Jリ
1830 PRINTES,R\varnothing
184| PRINTF$,P\emptyset
185| PRINT
1852PRINTUS
1 8 5 4 ~ P R I N T V \$ ~ \$
1856 PRINTT$,P9
1858 PRINT
1860 PRINTN$,V
1870 PRINTG$
1880 PRINTS日,Ma, L\varnothing
1890 PRINT
190\varnothing PRINTH$
1910 PRINTK$,C\emptyset
1920 PRINT
1936 PRINTI$
1946 PRINTK$,C5
1956 PRINT
196% PRINTJ$
    1970 PRINTK$,C9
    1980 PRINT
    2060 GO TO 2250
```

```
207\emptyset IF V>4 THEN 210\emptyset
2\emptyset8\emptyset T\emptyset=15.ด16+V*(-12.1829+V*(3.8945-@.4135*V))
2090 RETURN
2100 T0=V/(-Ø.559925368278+\emptyset.60784409253*V)+6.0E-4
2110 RETURN
2120 IF V>4 THEN 2150
2130 T5=34.958+V*(-31.3655+V*(10.208-1.0945*V))
2140 RETURN
2150 T5=V/(-0.6115993191+0.5101102332*V)+6.0E-4
2160 RETURN
2170 IF V>1 THEN 2200
218ด T9=63.657
2190 RETURN
2200 IF V>5 THEN 2230
2210 T9=35.362+V*(-20.6568+V*(4.6965-0.36367*V))
2220 RETURN
2230 T9=V/(-\emptyset.715572179161+\emptyset.387490270184*V)+6.\emptysetE-4
2240 RETURN
2250 PRINT" DONE"
2260 END
```

$-B A$
BASIC-5.15 73-11-13
*LOAD /D2/

* UN

A PROGRAM TO GIVE AVERAGE, STANDARD DEVIATION, 96\%, 95\% AND 99\% CONFIDENCE INTERVALS FOR A SINGLE COLUMN OF DATA IN FILE /A/
FOR STATISTICS ON RECIPROCALS, TYPE 1. ELSE Q ? a
DATE: 79/01/ด9 日9:0日:54
TYPE IN REMARKS FOR THIS RUN
? SILI5 AT 1 MILLIWATT AT . 6328
.961527
.966122
.960756
.964984
.96678
. 961246
. 953326
.962951
.960809
.963434
. 959383
.961943
. 962947
. 962273
.961248

```
NO. OF POINTS IN /A/ =
1 5
FIRST VALUE IN FILE /A/=
.961527
LAST VALUE IN FILE /A/ =
.960248
AVERAGE = .9621819
STANDARD DEVIATION = .1966743E-02
PERCENT STANDARD DEVIATION = .2044845
EST. OF STD. ERROR = SQR ROOT (STD. DEV SQUARED/NO. OF MEAS.)
SEE NBS SPECIAL PUB. 300, VOL. 1, PAGE 71-1203
PERCENT STANDARD ERROR = .5277702E-01
DEGREES OF FREEDOM = 14
.95% T VALUE .975% T VALUE
    1.76163
        2.144569
        .995% I vaLUE
    2.973445
    90% OF THE TIME THE ABOVE AVERAGE WILL LIE
    WITHIN A + OR - PERCENTAGE RANGE OF
        .0929736
    95 % OF THE TIME THE ABOVE AVERAGE WILL LIE
    WITHIN A + OR - PERCENTAGE RANGE OF
    99 % OF THE TIME THE ABOVE AVERAGE WILL LIE
    WITHIN A + OR - PERCENTAGE RANGE OF

DONE
```

APPENDIX I
Computer Program, /S7B/, Used to Separate Beamsplitter Ratios for Different Code Numbers

```

Appendix I contains a listing of Program, \(/ S 7 B /\), that is used to separate and print to Scratch File /A/ those beamsplitter ratios of interest.

120 REM THIS IS PROGRAM STRIP7P
130 PRINT＂USE TO COPY ALL REAM SPLITTER RATIOS OR ACCORDING TO CODE＂
140 PRINT＂NO．FROM A 7 COLUMN BEAM SPLITTER CONTROL FILE FROM＂
150 PRINT＂SPECFIED FILE TO SCRATCH DATA FILE／A／＂
\(160 \quad N=150\)
170 DIM \(A(N), P(N), C(N), D(N), E(N)\)
\(180 \operatorname{DIM} F(N), G(N), Y(N)\)
190 N2二处
2月0 PRINT＂TYPE IN 7 COLUMN．EEAM SPLITTER FILE IN／／＂；
210 INPUT Q \(\$\)
220 OPENQS，INPUT
230 AS＝＂TOTAL NO．OF PCINTS IN FILE＝＂
\(240 \mathrm{~B} \$={ }^{\circ}\) NO．OF POINTS IN FILE／A／＝＂
250 FOR I＝ 1 TO 150
260 INPUT FILEA（I），B（I），C（I），D（I），E（I），F（I），G（I）
270 IF \(\operatorname{EOF}(9)=1\) THEN32ด
\(280 N=I\)
29の NEXT I
3月0 PRINT＂OVER 150 POINTS＂
310 STOP
320：\＃\＃。\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃。\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃，\＃\＃\＃\＃\＃
360 PRINTA\＄，N
370 PRINT
38 VI＝N
430 PRINT＂TYPE CODE NUMBER．OTHERWISE TYPE 999 FOR ALL CODE NOS．＂；
440 INPUT R9
480 FOR \(I=1\) IO N1
490 IF R9 \(=999\) THEN 510
5610 IF \(B(I)<>R 9\) THEN 540
\(510 \quad \mathrm{~N} 2=\mathrm{N} 2+1\)
\(520 \quad Y(N 2)=A(I)\)
540 NEXI I I
55ด PRINT＂NO．OF SELECTED POINTS＝＂N2
560 PRINT＂TO PRINT SELECTED PCINTS TO TELETYPE，TYPE 1．ELSE \(0^{\circ}\) ；
57® I NPUTQ
58 I I \(F Q=1\) THENG0日
590 GOT0630
606 FORI＝1 TON2
510 PRINTY（I）
Q．C NEXTI
630 PRINT＂TO PRINT SELECTED POINTS TO FILE／A／，TYPE 1．ELSE \(0^{* \prime}\) ：
640 INPUTP
65の I FP \(=1\) THEN670
66 GOT0999
678 OPEN／A／，OUTPUT
6e 8 FORI＝1 TON2
590 PRINTFILEY（I）
700 NEXTI
71 P PRINTBS，N2
999 PRINT＂END＂
1日めด END

\section*{APPENDIX J}

Two Typical Electrical Clibration Files, /444/ and /44CC/, as Stored on the Computer

Two typical electrical calibration files are shown in Appendix J. File /444/ is a twocolumn file, where the first column has corrected rise values and the second column has corresponding values of energy (joules). Such a file is kept for each calorimeter for each scale that is maintained.

The /44CC/ file is for all the electrical calibration runs for \(C 44\), regardless of scale. Going from left to right, the values are energy in joules, calibration coefficient in joules-per-millivolt, resistance of the calibrating heater, cooling constant, time of energy input, residual data fit in percent, and run number.
6.0405
6.6409
0.9676
8.5957
4.3871
9.8613
4.3090
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
4.8760
3.0337
1.5015
0.3459
1.8680
6.9985
8.0690
2.0370
4.0575
7.6321
0.3358
2.1932
0.6376
2.1237
0.9258
0.6199
0.7568
2.8025
20.8002
22.8723
0.2516
0.2516
0.7057
0.7200
1.9624
2.6368
2.6010
24.3503
3.2122
31.6862
2.7649
21.6656
21.6014
2.7713
0.1051
23.1403
25.1744
0.2856
0.3213
4.87637

100．857の 凸．001119 100.85000 .001117
2.72
1.11
\(272 \quad 0.68\)
208． 0.66
112 あ．2め
\(240 \quad 0.83\)
2880.39

88 Ø．78
122.53
122.44

12． 2.47
122.25
123.04
121.90
122.57

92 6）． 92
72 ＠． 44
\(92 \quad 0.31\)
2041.21
2040.31
2480.28
\(268 \quad 0.28\)
360.34
1401.78
1480.21
1480.94

268 ด． 31
2280.32
1520.36
\(172 \quad 0.34\)
1481.60
\(76 \quad 1.06\)
\(176 \quad 0.27\)
400.51
\(44 \quad\) ด． 44
\(84 \quad 1.47\)
84 月． 70
2081.03
1640.35
1640.34
2200.30
320.30
3000.26

300 6． 6.64
250 日． 43
3000.41
1800.20
1840.26
30015.33

3日月 1．18 2200.35

20 月．41
22.010

618278.73

68：27073
6028073
60129073
70120073
7013873
7月09073
7610673
7810073
7010073
7010073
7010073
7010073
7818073
7819073
8023673
9011073
11011073
11011073
11030073
12007073
1007874
1031074
1031074
2014074
2014074 3020074 3020074 4016074 4016074 5020074 5028074 6010074 60101074 6011074 6011074 6011074 7825074 7025074 8027074 ع027074 9827074 11007074 11007074 1015075 1020075 1024075 1028075 80165075 8の135075 8011075 8012075 1016076
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & & \\
\hline 51 & 7066 & 100.850 & 0.001160 & 45 & \(\emptyset\) & 019076 \\
\hline 23.2933 & 4.86271 & 100.8506 & 0.001179 & 220 & 0.00 & \\
\hline - 321 & . 85913 & 100.8541 & ด.001108 & 30 & 0.0 & 7508131 \\
\hline 3.0043 & 4.86517 & 100.8671 & 0.001123 & 300 & Ø.00 & 7608132 \\
\hline 4.2351 & 4.86794 & 100.8568 & 0.001129 & 40 & \(\emptyset\). & 33 \\
\hline 3. 2926 & 4.85935 & 100.8475 & 0.001138 & 220 & \(\emptyset .0\) & 34 \\
\hline 13 & 4.86283 & 100.8446 & 0.001056 & 3 ดด & \(\emptyset .01\) & 711081 \\
\hline 3.90143 & 4.86180 & 100.843 & わ. 101083 & 300 & & \\
\hline 1.1637 & 4.85518 & 100.827 & 0.001097 & 200 & 0.8 & 7711 \\
\hline
\end{tabular}

\section*{COPY /444/ TO TEL}
\begin{tabular}{ll}
198.743 & 0.967611 \\
900.345 & 4.38715 \\
884.802 & 4.30933 \\
1001.61 & 4.87693 \\
623.318 & 3.03365 \\
308.361 & 1.50149 \\
383.745 & 1.86801 \\
418.135 & 2.03697 \\
832.416 & 4.05753 \\
68.7373 & 0.335819 \\
450.298 & 0.19321 \\
130.44 & 2.637567 \\
436.327 & 0.925799 \\
190.161 & 2.80253 \\
575.605 & 1.720935 \\
147.137 & 2.63676 \\
402.746 & 2.60097 \\
541.485 & 3.21219 \\
534.266 & 2.76487 \\
659.583 & 2.77135 \\
568.536 & 3.00386 \\
569.731 & 4.23512 \\
616.301 & 3.00434 \\
869.624 & 4.23512 \\
617.519 & 3.004265 \\
870.003 &
\end{tabular}

\section*{Computer File, /YT/, a Typical Beamsplitter File for a Given Laser Wavelength}

A typical beamsplitter file, /YT/, is shown in Appendix K. From left to right, the columns are beamsplitter ratio, code number, run number, wavelength, low-level calorimeter, high-level calorimeter, and energy (joules) to high-level calorimeter. Such a file exists for each beamsplitter and for each wavelength being maintained. Also shown is a run of Program /S7B/, which can be used to separate and print first column beamsplitter ratio to Scratch File /A/. In addition, a plot of all the beamsplitter values is shown in a computer run of /PL/.

COPY／YT／TO TEL
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1.64580 & 12 & 76030501 & 1.06000 & 3464 & 3413 & 12.84050 \\
\hline 64710 & 12 & 76030502 & 1．060に & 3464 & 3413 & 27.18790 \\
\hline 11.64140 & 10 & 76035 & 1.0600 & 3464 & 34 & 21.86820 \\
\hline 1．66460 & 10 & 7603504 & 1.0600 & 3464 & 3413 & 20.69950 \\
\hline 11.64220 & 10 & 7603082 & 1.0600 & 3464 & 3413 & 15.8659 の \\
\hline 1.64660 & 10 & 7603083 & 1.00601 & 3464 & 3413 & 16.25350 \\
\hline 1.65060 & 12 & 7603151 & 1.0600 & 3464 & 3413 & 21.21800 \\
\hline 1.64770 & 12 & 7603152 & 1.0600 & 3464 & 3413 & 20．80770 \\
\hline ， & 12 & 7604021 & 1．0600 & 3464 & 3413 & 10．9反9 \({ }^{\text {a }}\) \\
\hline 1.64920 & 12 & 7604022 & 1．8600 & 3464 & 3413 & 13.88940 \\
\hline ． 66210 & 9 & 7604281 & 1.0600 & 3414 & 3463 & 13.21360 \\
\hline 1.66290 & 9 & 7604282 & 1．0600 & 3414 & 3453 & 13.29796 \\
\hline 1.66840 & 9 & 7604283 & 1．0600 & 3414 & 3463 & 13.47280 \\
\hline 1.66470 & 9 & 7604284 & 1．0600 & 3414 & 3463 & 13.26110 \\
\hline 1.64023 & 15 & 7608091 & 1.0600 & 3414 & 3443 & 18.35203 \\
\hline 1.63604 & 15 & 7608093 & 1．0600 & 3414 & 3443 & 16.44810 \\
\hline 1.66714 & 17 & 7608112 & 1．0600 & 3414 & 3463 & 15.52333 \\
\hline 11.65580 & 17 & 7508114 & 1.0600 & 3414 & 3463 & 16.76773 \\
\hline 1.67485 & 16 & 7608161 & 1.0600 & 3444 & 3413 & 13.77973 \\
\hline 11.70825 & 16 & 7608163 & 1．0600 & 3444 & 3413 & 23.40371 \\
\hline 1.68597 & 19 & 7608172 & 1．0600 & 3444 & 3463 & 18.85713 \\
\hline 11.65184 & 19 & 7608174 & 1.06000 & 3444 & 3463 & 19.84209 \\
\hline 1.66475 & 20 & 7608255 & 1．0600 & 3464 & 3443 & 19.84584 \\
\hline ． 62801 & 20 & 7608257 & 1．0600 & 3464 & 3443 & 17.80859 \\
\hline 1.64934 & 18 & 7608262 & 1.06000 & 3464 & 3413 & 17.44419 \\
\hline 11.64213 & 18 & 7608264 & 1.0600 & 3464 & 3413 & 22.51588 \\
\hline 1.66588 & 8 & 7609241 & 1.0600 & 3464 & 3413 & 15.12832 \\
\hline 11.66757 & 8 & 7610073 & 1.0600 & 3464 & 3413 & 18.52174 \\
\hline 1.67301 & 8 & 7610262 & 1.6600 & 3464 & 3413 & 16.24837 \\
\hline 11.66211 & 8 & 7611221 & 1．0500 & 3464 & 3413 & 16.72545 \\
\hline 1.66426 & 8 & 7612301 & 1.0600 & 3464 & 3413 & 12.33115 \\
\hline 1.65047 & 8 & 7701262 & 1．0600 & 3464 & 3413 & 10.68418 \\
\hline 1.61917 & 10 & 7703181 & 1.0600 & 3464 & 3413 & 20．07786 \\
\hline 1.69477 & 9 & 7801691 & 1．0600 & 3414 & 3463 & 16.91940 \\
\hline 1.69418 & 9 & 7802072 & 1.0600 & 3414 & 3463 & 22.47015 \\
\hline 11.69004 & 9 & 7803131 & 1.0600 & 3414 & 3463 & 22.51866 \\
\hline 11.66568 & 9 & 7804182 & 1.0600 & 3414 & 3463 & 7.43130 \\
\hline 11.68531 & 9 & 7804183 & 1.06018 & 3414 & 3463 & 22.04359 \\
\hline 11.68272 & 9 & 7815163 & 1.0600 & 3414 & 3463 & 15.53490 \\
\hline 11.69516 & 9 & 7806052 & 1.0600 & 3414 & 3463 & 23.16932 \\
\hline 1.69019 & 9 & 78100 & 1.06 & 341 & 3463 & 21 \\
\hline
\end{tabular}

USE TO COPY ALL BEAM SPLITTER RATIOS OR ACCORDING TO CODE NO. FROM A 7 COLUMN BEAM SPLITTER CONTROL FILE FROM
specfied file to scratch data file /a/
TYPE IN 7 COLUMN BEAM SPLITTER FILE IN //? /YT/ TOTAL NO. OF POINTS IN FILE =
41
TYPE CODE NUMBER. OTHERWISE TYPE 999 FOR ALL CODE NOS.? 999 NO. OF SELECTED POINTS =
41
TO PRINT SELECTED POINTS TO TELETYPE, TyPE 1. ELSE 日? 1 11.6458
11.6471
11.6414
11.6646
11.6422
11.6466
11.6506
11.6477
11.6477
11.6492
11.6621
11.6629
11.6684
11.6647
11.64823
11.63604
11.66714
11.6558
11.67485
11.70825
11.68597
11.65184
11.66475
11.62801
11.64934
11.64213
11.66588
11.66757
11.67301
11.65211
11.66426
11.65047
11.61917
11.69477
11.69418
11.69004
11.66568
11.68531
11.68272
11.69516
11.69019

TO PRINT SELECTED POINTS TO FILE /A/, TYPE 1. ELSE 8? 1
NO. OF POINIS IN FILE /A/ =
41
END

\section*{QUI T}
-BA
BA SIC-5.15 73-11-13
*LOAD /PL/
PUN
```

A PLOT OF PERCENT DIFFERENCE FROM THE AVERAGE OF A SINGLE
COLUMN OF DATA IN FILE /A/
II TLE OF PLOT
? S72 BEAM SPLITTER RATIOS AT 1.064
NO. OF POINTS: 41
AVERAGE: 11.66209
STANDARD DEVIATION: .2@@7786E-D!
1 SIGMA IN PERCENT = .1721635
3 SIGMA IN PERCENT = .5164904
Y MAX. PERCENT = .3957746
Y MIN. PERCENT = -.3680676
FOR INSTRUCTIONS, TYPE 1. ELSE 0?? 1
SCALE IS DIVIDED INTO 6 LARGE INTERVALS WHICH ARE
SCALED IN PERCENT. AN INPUT OF l, GIVES A SCALE FROM
-3 SIGMA TO +3 SIGMA IN PERCENT. AN INPUT OF 2 GIVES
A SCALE OF - N TO +N. AN INPUT OF 3 GIVES A SCALE
FROM - N TO +M PERCENT.
USE 1 FOR A SCALE IN TERMS OF SIGMA PERCENT
USE 2 FOR A SCALE IN TERMS OF -N TO +N PERCENT
USE 3 FOR A SCALE FROM -P TO +Q PERCENT
TYPE 1, 2, OR 3?? 2
TYPE .3,.6,.9,1.2, ETC. OR A MULTIPLE OF .3?? .45
FOR PLOT MOVE PAPER AND TYPE 1. ELSE Ø? l

```

S72 BEAM SPLITTER RATIOS AT 1.064
DATE IS 79/01/09 09:15:16
PERCENT STANDARD DEVIATION: . 1721635
AVERAGE: 11.66209
PERCENT DIFFERENCE FROM AVERAGE


APPENDIX L
Table L Defines Code Numbers for Different Beamsplitter Configurations

Table L.1, as shown in Appendix L, defines the code numbers used in the beamsplitter files to designate the various combinations of windows and calorimeters used by NBS in a three-calorimeter/beamsplitter configuration.

TABLE L.
\(\left.\begin{array}{cccc}\text { Code No. } \begin{array}{c}\text { Low Leve1 } \\
\text { Calorimeter }\end{array} & \begin{array}{c}\text { Low Leve1 } \\
\text { Window }\end{array} & \begin{array}{l}\text { High Leve1 } \\
\text { Calorimeter }\end{array} & \begin{array}{c}\text { High Level } \\
\text { Window }\end{array} \\
\hline 1 & \text { C44 } & \text { BK7A-3 } & \text { C46 }\end{array}\right]\)\begin{tabular}{l} 
FS-12 \\
2
\end{tabular}

\section*{APPENDIX M}

Computer File, /CMAT/, Contains All Required C-series Parameters

In Appendix M, a copy of File /CMAT/ is shown that contains all the parameters needed by the \(C\)-Series calibrating system to calculate the value of the calibrating beam. Also shown is a computer run and listing of Program /DOC/, which documents the values found in /CMAT/.
\begin{tabular}{|c|c|c|c|}
\hline 10 & 41 & 44 & 46 \\
\hline 12 & 0.9999 & 1 & 1 \\
\hline 11 & 4.24443 & 4.86211 & 4.94741 \\
\hline 3 & 4.25255 & 4.86926 & 4.94878 \\
\hline 4 & 4.25675 & 4.87806 & 4.95214 \\
\hline 9 & 1.0日647 & 0.999886 & 0.999649 \\
\hline 11.6587 & 6.9321 & 0.9331 & 0.9301 \\
\hline 11.545 & 0.9365 & 0.9314 & 0.9294 \\
\hline 11.5288 & 0.9304 & 0.9312 & 0.9293 \\
\hline 11.4270 & 0.9285 & 0.9291 & 0.9281 \\
\hline 11.4372 & 6.9291 & 0.9296 & 0.9286 \\
\hline 1.06 & 1.23 & 1.29 & 1.42 \\
\hline . 6471 & . 93 & .96 & 1.09 \\
\hline . 5328 & .90 & . 96 & 1.09 \\
\hline . 5145 & . 94 & . 97 & 1.17 \\
\hline . 4880 & . 92 & . 95 & 1.15 \\
\hline 4 & 1.27 & 0 & \(\emptyset\) \\
\hline \(\square\) & 0 & \(\square\) & 0 \\
\hline . 5309 & . 93 & . 96 & 1.16 \\
\hline 11.45235 & 0.9293 & 0.9299 & 0.9287 \\
\hline
\end{tabular}
\(>R\) UN
THIS 940 PROGRAM /DOC/ IS USED TO DEFINE AND DOCUMENT THE ELEMENTS IN /CMAT/ MATRIX.

\begin{tabular}{llr} 
CALORIMETER & ABSORPTION & D FACTOR \\
C41 & .9999 & \(1.0 \emptyset \emptyset 47\) \\
C44 & 1 & .999886 \\
C46 & 1 & .999649
\end{tabular}
\begin{tabular}{lll} 
GEOMETRIC MEAN & BEAM SPLI TTER RATIOS \\
WAVELENGTH & BEAM SPLIITER RATIO \\
1.06 & 11.6587 & \\
.6471 & 11.545 & \\
.6328 & 11.5288 & \\
.5309 & 11.45235 & \\
.5145 & 11.4372 & \\
.488 & 11.427 & 90
\end{tabular}

WINDOW TRANSMISSION VALUES WAVELENGTH 1.06
\begin{tabular}{llc} 
CALORIMETER & WINDOW & TOTAL TRANSMISSION \\
C41 & FS7 & .9321 \\
C44 & FS6 & .9331 \\
C46 & FS8 & .9301
\end{tabular}
\begin{tabular}{llc} 
WAVELENGTH & .6471 & \\
CALORIMETER & WINDOW & TOTAL TRANSMISSION \\
C41 & FS7 & .9305 \\
C44 & FS6 & .9314 \\
C46 & FS8 & .9294
\end{tabular}
WAVELENGTH .6328
CALORIMETER WINDO'W.

C4!
C44
C46
WA VELENGTH
CA LORIMETER
C41
C44
C46
WA VELENGTH
CA LORIME TER
C4!
C4 4
C46
WA VELENGTH
CALORIMETER C41
C44
C46

WINDOW
FS 7
FS6
FS8
.6471
WI NDOW
FS6
FS8

WINDO'W.
FS7
FS6
FS8
.5309
WI NDOW
FS 7
FS6
FS8
.5145
WINDOW
FS7
FS6
FS8
. 488
WI NDOW
FS 7
FS6
FS8

TOTAL TRANSMISSION .9293
. 9299
. 9287

TOTAL TRANSMISSION .9291
.9296
.9286

TOTAL TRANSMISSION . 9285
. 9291
. 9281

DELIVERED BEAM UNCERTAINITY VALUES
\begin{tabular}{lccc} 
AT THE 99\% CONFIDENCE INTERVAL & & \\
WAVELENGTH & 1 I & IEA & 1 E5 \\
1.06 & 1.23 & 1.29 & 1.42 \\
.6471 & .9 & 1.96 & 1.09 \\
.6328 & .9 & .96 & 1.09 \\
.5369 & .93 & .96 & 1.16 \\
.5145 & .94 & .97 & 1.17 \\
.488 & .92 & .95 & 1.15
\end{tabular}

DELIVERED BEAM UNCERTAINITY•AT THE 99\% CONFIDENCE LEVEL AT THE 1 MICROWATT LEVEL IS 1.27

TABLE A－BEAM SPLITTER CODE NUMBERS
\begin{tabular}{lcccc} 
CODE NO． & \multicolumn{2}{c}{ LOW LEVEL } & \multicolumn{2}{c}{ HIGH LEVEL } \\
& CALORIMETER & WINDOW & CALORIMETER & WINDOW \\
3 & C41 & FS7 & C44 & \\
12 & C44 & FS6 & C46 & FS8 \\
10 & C46 & FS8 & C41 & FS7 \\
11 & C46 & FS8 & C44 & FS6 \\
4 & C44 & FS6 & C41 & FS7 \\
9 & C41 & FS7 & C46 & FS8
\end{tabular}

COPY／DOC／TO TEL
16 PRINT＂THIS 940 PROGRAM／DOC／IS USED TO DEFINE AND DOCUMENT＂
20 PRINT＂THE ELEMENTS IN／CMAT／MATRIX．＂
25 PRINT
26 PRINT
27 PRINT
\(30 \operatorname{DIMB}(20,4)\)
4 OPEN／CMAT／，INPUT
50 FORI \(=1\) TO2の
63）FOR J＝1T04
78 INPUT FILE B（I，J）
8 （1）NEXTJ
90 NEXTI
55 MAT PRINT B
100 A \(\$(1)={ }^{*} C 41^{\circ}\)
110 AS（2）\(=\)＂C44＂
\(120 \mathrm{~A} \$(3)=" C 46^{\prime \prime}\)
\(130 \mathrm{~B} \$(1)=153^{\circ}\)
\(140 B \$(2)=" 1 E 4 "\)
\(150 \mathrm{BS}(3)=" 1\) E5＂
\(160 \mathrm{C} \$={ }^{\circ}\) CALORIMETER＂
17日 DS＝＂SCALE＂
172 E \(\$={ }^{\prime \prime}\) ELECTRICAL K＂
174 F\＄＝＂ABSORPTION＂
176 G\＄＝＂D FACTOR＂
178 IS＝＂WAVELENGTH＂
180 J\＄＝＂BEAM SPLITTER RATIO＂
182 K\＄＝＂WINDOW＂
184 L\＄＝＂TOTAL TRANSMISSION＂
186 M\＄＝＂FS7＂
188 NS＝＂FS6＂
\(190 \mathrm{P} \$={ }^{2} \mathrm{FS} 8^{\prime \prime}\)
192 ZS（1）＝＂FS7＂
194 Z \(\$(2)=" F S 6^{\prime \prime}\)
196 ZS（3）＝＂FS8＂
2の日 PRINT＂ELECTRICAL CALIBRATION CONSTANTS，K，IN JOULES PER MILLIVOLT＂ 204 PRINT＂SEE LATEST PLUE BOOK TABLE A．1．1＂
```

210 PRINTCS,DS,ES
22.D FORJ=1 TO3
23@ FORI=1 TO3
235 K=I+2
240 L=J+1
250 PRINTA$(J),ES(I),E(K,L)
26分 NEXII
265 PRINT
270 NEXIJ
300 PRINT
310 PRINT
320 PRINT
330 FRINTCS,F$,G\$
340 FORI =1TO3
345 J=I +1
350 PRINTAS(I),E(2,J),B(6,J)
360 NEXTI
3 7 8 ~ P R I N T
38\ PRINT
390 PRINT
4W% W(1)=R(12,1)
410W(2)=B(13,1)
42.6 W(3)=R(14,1)
436 W(4) =P(19,1)
440) W(5)=B(15,1)
45W W(5)=E (16,1)
460 R(1)=B(7,1)
47(R. R(2)=E (8,1)
480 R(3)=B(9,1)
490; R(4)=R(20,1)
500 R(5)=E(11,1)
510 R(6)=B(10,1)
52N PRINT"GEOMETRIC MEAN BEAM SPLITTER RAIIOS"
53@ PRINIIS,JS
540 FORI =1 T06
556 PRINTW(I),R(I)
56% NEXII
570 PRINT
580 PRINT
590 PRINT
600 PRINT"WINDOW TRANSMISSION VALUES"
61@ FORJ=1 T06
NG PRINTI$,W(J)
S30 PRINTC$,K$,L$
640 FORI =1 T03
645 L=I+1
S50 IFJ<4THEN680
56\ IFJ=4THEN73%
670 IFJ>4THEN75@
580 K=J+6
70\ PRINTAS(I),Z$(I),E(K,L)
71月 GOT0770
73| PRINTA$(I),Z\$(I), E(2@,L)
740 GOTO770

```
```

750 IFJ<>5THEN764
760 PRINTA$(I),Z$(I),B(11,L)
7 6 2 ~ G O T O 7 7 0 ~ \ , ~
764 PRINTA$(I),Z$(I),B(10,L)
77@ NEXTI
78% PRINT
790 NEXIJ
792. PRINT
794 PRINT
7 9 6 PRINT
8NO PRINT" DELIVERED BEAM UNCERTAINITY VALUES"
805 PRINT"AT THE 99% CONFIDENCE INTERVAL"
810 PRINTI$,B$(1),B$(2),B$(3)
820 PRINTW(1),R(12,2),B(12,3),P(12,4)
830 PRINTW(2),B(13,2),B(13,3),B(13,4)
840 PRINTW(3),B(14,2),B(14,3),B(14,4)
850 PRINTW(4),B(19,2),B(19,3),P(19,4)
860 PRINTW(5),E(15,2),B(15,3),B(15,4)
870 PRINTW(6), B(15,2),B(16,3),B(16,4)
880 PRINT
890 PRINI
9(b PRINT
91ø PRINT" DELIVERED BEAM UNCERTAINITY AT THE 99% CONFIDENCE LEVEL"
92Ø PRINT"AT THE 1 MICROWATT LEVEL IS ",B(17,2)
930 PRINI
94 PRINT
950 PRINI
1ดG\emptyset PRINT" TABLE A - BEAM SPLITIER CODE NUMBERS"
1010 PRINT"CODE NO.
1015 PRINT"
1020 N9=1
1040 X$="C41"
1045 U$=M\$
1048 V$=N$
1050 Y$="C44"
1060 GOT01738
1070 X$="C44"
1075 U$=N$
1078 V\$=P \$
1080 Y \$ = " C46"
1090 GOT01738
1100 X$="C46"
1105U$=PS
1108 V$=M$
1110 Y\$ ="C41"
1120 GOT01738
1130 X$="C46"
1135 U$=P\$
1138 V$=N$
1140 Y \$="C44"
1150 GOTO1738
1160 X \$ ="C44"
1165 U$=N$
1168 VS=M\$
1170 YS="C41"

```
```

1180 GOT01738
1196 X$="C41"
1195 U$=M\$
1198 VS=P\$
1200 Y $="C46"
1210 GOT01738
1738 IFX$="C41" THEN1750
1742 IFXS="C44" THEN1774
1746 I FXS="C46" THEN1798
1750 IFX$="C44" THEN1758
1754 IFYS="C46" THEN1766*
1758 G5=B(4,1)
1 7 6 2 \text { GOTO1824}
1766 G5=B (6,1)
1770 GOT01824
1774 IFY$="C41" THEN1782
1778 IFYS="C46" THEN179@
1782 G5=E (5,1)
1786 GOT01824
1790 G5=B(2,1)
1794 GOT01824
1798 IFY$="C41" THEN1806
1 8 0 2 ~ I F Y \$ = " C 4 4 " ~ T H E N 1 8 1 4 ~
1806 G5=B(1,1)
1810 GOT01824
1814 G5=E (3,1)
1818 GOT01824
182.4 PRINTG5,X$,U$,Y$,V\$
183\emptyset N9=N9+1
1840 IFN9=2 THEN1070
1850 I FN9=3 THEN1100
1860 IFN9=4THEN1130
1870 I FN9=5THEN1160
1880 IFN9=6THEN1190
1890 I FN9>6THEN190日
1900 PRINT
1910 PRINT" THE MATRIX IS NEARLY FULL. ONLY LINE 18 IS OPEN"

```

NBS.114A (REV. \(9-78\) )
\begin{tabular}{|c|c|c|c|}
\hline U.S. DEPT. OF СОMM. BIBLIOGRAPHIC DATA SHEET & 1. PUBLICATION OR REPORT NO. NBSIR 79-1619 & 2. Gov't. Accession No & 3. Hecimem's's Aceessiom No: \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
4. TITLE AND SUBTITLE \\
Quality Assurance Program for the NBS C, K, and Q Laser Calibration Systems
\end{tabular}}} & 5. Publication Date August 1979 \\
\hline & & & 6. Performing Organization Code \\
\hline \multicolumn{3}{|l|}{7. AUTHOR(S) W. E. Case} & 8. Performing Organ. Report No. \\
\hline \multicolumn{3}{|l|}{9. PERFORMING ORGANIZATION NAME AND ADDRESS} & 10. Project/Task/Work Unit No. \\
\hline \multicolumn{3}{|l|}{NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, DC 20234} & 11. Contract/Grant No. \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{12. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ziP)}} & 13. Type of Report \& Period Covered \\
\hline & & & 14. Sponsoring Agency Code \\
\hline \multicolumn{4}{|l|}{15. SUPPLEMENTARY NOTES} \\
\hline \multicolumn{4}{|l|}{\(\square\) Document describes a computer program; SF-185, FIPS Software Summary, is attached.} \\
\hline \multicolumn{4}{|l|}{16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.)} \\
\hline \multicolumn{4}{|l|}{This report is a detailed procedure of how to set up and operate a Measurement Assurance Program (MAP) for a laser power and energy calibration facility. Items such as traceability, methods of selfchecking measurement consistency, computer documentation and statistical analysis are discussed.} \\
\hline
\end{tabular}
17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolons)

Calorimetry; laser beamsplitter system; laser calibration system; laser measurements; laser power calibration.

\section*{18. AVAILABILITY \\ XXUnlimited}

For Official Distribution. Do Hot Release to NTIS
\(\square\) Order From Sup. of Doc., U.S. Government Printing Office, Washington, DC 20402, SD Stock No. SN003-003-

XX Order From National Technical Information Service (NTIS), Springfield, VA. 22161
\begin{tabular}{|l|c|}
\hline \begin{tabular}{c} 
19. SECURITY CLASS \\
(THIS REPORT) \\
UNCLASSIFIED
\end{tabular} & \begin{tabular}{c} 
21. NO. OF \\
PRINTED PAGES \\
102
\end{tabular} \\
\hline \begin{tabular}{l} 
20. SECURITY CLASS \\
(THIS PAGE) \\
UNCL_ASSIFIED
\end{tabular} & \begin{tabular}{c} 
22. Price \\
USCOMM.DC
\end{tabular} \\
\hline
\end{tabular}
-```

