CONTAINER BOARD

report no. 108

September 1978

NBS Collaborative Reference Program for Containerboard

Fourdrinier Kraft Board Group American Paper Institute, Inc. and U.S. Department of Commerce, National Bureau of Standards

Bursting strength
Tearing strength
Tensile breaking strength
Elongation to break
Tensile energy absorption
Folding endurance
Stiffness
Air resistance
Grammage

Smoothness

Surface pick strength
$\mathrm{K} \& \mathrm{~N}$ ink absorption
pH
Opacity
Blue reflectance (brightness)
Specular gloss, 75°
Thickness
Concora (flat crush)
Ring crush

FKBG-API Containerboard (48 times per year)
Mullen burst of linerboard
Concora test of medium

MCCA Color and Appearance (4 times per year)

Gloss at 60°
Color and color difference
Retroreflectivity
Rubber (4 times per year)
Tensile strength, ultimate elongation and tensile stress Hardness
Mooney viscosity Vulcanization properties

ASTM Textiles (3 times per year)
Flammability (FF3-71 and FF5-74)
ASTM Cement (2 times per year)
Chemical (ll chemical components) Physical (8 characteristics)

AASHTO Bituminous
Asphalt cement (2 times per year) Cutbacks (once a year)

Collaborative Reference Programs B360 Polymer Building National Bureau of Standards Washington, D.C. 20234

CONTAINER BOARD

Collaborative Reference report no. 108 Program for Containerboard

E.B. Randall, Jr., J. Horlick
Office of Testing Laboratory
Evaluation Technology,
Office of Engineering Standards,
National Engineering Laboratory
J.F. Stevenson
NBS Research Associate
Collaborative Testing
Services, Inc.

U.S. Department of Commerce, Fourdrinier Kraft Board Group National Bureau of Standards American Paper Institute, Inc.

The Collaborative Reference Program for Containerboard is sponsored by the Fourdrinier Kraft Board Group (FKBG) of the American Institute of Paper, Inc., with the cooperation of the Technical Association of the Pulp and Paper Industry (TAPPI) and the Collaborative Testing Services, Inc. In this program, samples of three weights of linerboard, nominally $26 \mathrm{lb}, 42 \mathrm{lb}$, and 69 lb and of corrugating medium (26 lb) are randomized separately from uniform narrow rolls and packaged for distribution to the participants. Each month, sufficient test material for four weekly tests, the material for each consisting of 20 test pieces of 42 lb board and 20 test pieces of 26 or 69 lb board, the latter in alternate months, is mailed to participants for Mullen bursting strength, or for each week five sheets of corrugating medium, each sheet for four tests of Concora flat crush strength. The participants return their test results to NBS for analysis and receive two monthly reports from NBS: a "preliminary" (individualized report) comparing a laboratory's results with the industrial mean, and a longer report (as illustrated by this report) showing the data from all participants.

Jeffrey Horlick, Administrator Collaborative Reference Programs

Office of Testing Laboratory Evaluation Technology (301) 921-2946

[^0]
TABLE OF CONTENTS

Page	
1	Explanation of Tables
4	Instrument of Codes
5	Use of Average Mean as a Reference Standard
6	Bursting Strength, Linerboard 42H8, weeks 1 - 4
8	Bursting Strength, Linerboard 6917, weeks 1, 2, 3
10	Bursting Strength, Linerboard 6918, week 4
12	Concora Flat Crush, Corrugating Medium 26C3

Each table shows laboratory test results for Mullen bursting strength of linerboard or Concora flat crush strength of corrugating medium. The data are divided into three time spans. On the left of each table is an analysis for each week of the month. In the center is cumulative data for the month and on the right is cumulative data for up to 16 weeks.

Conservative statistical tests have been used in excluding extreme data from the analyses. Thus, where the mean (average) for one laboratory is compared with the average for many laboratories, limits have been used that would exclude only one laboratory in a hundred if all laboratories followed exactly the same testing procedure. Consequently, laboratories receiving "X" flags should review their testing procedures, instrument calibration, and control processes. Similar conservative criteria were used in flagging within-laboratory standard deviations and other statistics.

	LAB		MEANS THIS MONTH	
WEEKLY VALUES:	CODE V	WE-1	WK-2 WI-3	WI-4

LAB CODE - Confidential laboratory identification number known only to the participant and the Collaborative Reference Program staff.

V - Code for indicating instrument type, units used, and any other variation in test procedure or conditions. A ' + ' in this column means a non-standard variation. Data marked ' + ' are not included in the combined averages for all laboratories. (see page 4).

MEANS THIS MONTH - For each laboratory each weekly mean is the average of individual test determinations, usually an average of 20 determinations.

FLAGS (following means and standard deviations) -
X - Data excluded from an AV MEAN or average standard deviation because value deviated from the AV MEAN or average standard deviation by more than 2.576 times the appropriate standard deviation. A laboratory following the prescribed test method could obtain such an extreme value by chance only one time in a hundred. Corrective action is almost certainly required.

* - Data included in the CUMULATIVE AV MEAN but the value deviated from this mean by more than 1.960 and less that 2.576 times the SD CUM MEAN. A laboratory following the prescribed test method could obtain such an extreme value by chance only one time in twenty. Corrective action may be desired.

S - This is a warning to the laboratory but does not affect inclusion or exclusion of the laboratory's results from the corresponding AV MEAN. This flag indicates an extremely high or low within-laboratory standard deviation (SDR, not shown) that could occur by chance only one time in a hundred if the laboratory is following the prescribed test method.

AV MEAN - (at bottom of table) - The average for the indicated week of the means for all laboratories, except those laboratories marked '+' in column V and those means marked with an ' X '.

SDR - (not shown) - The standard deviation of within-laboratory measurements; i.e., the Standard Deviation of the Replicate measurements made at one time in one laboratory on one package of test pieces.

AV SDR - The average for the indicated week of the SDR's of all the laboratories, except those omitted from the AV MEAN. Also an extremely high or low SDR as compared with the AV SDR based on the remaining laboratories is omitted from the $A V$ SDR and the letter ' S ' is placed after the laboratory mean for that week. The AV SDR is an index of the within-laboratory precision for repeated measurements; i.e., a measure of the ability of an average laboratory to repeat its results over a short period of time. It includes measurement error and sample variation.

SD LABS - For each week the standard deviation of the means about the AV MEAN for that week after omitting those means marked with an ' X ' or noted '+' in column V. The SD LABS is an index of the among-laboratory precision of the test method as applied by the participating laboratories; i.e., a measure of the ability of laboratories to get comparable results.

NO. INCL - The number of laboratory means included in the AV MEAN for that week.

NO. OMIT - The number of laboratory means reported but omitted from AV MEAN because of non-standard equipment, environment or procedure ('+' in column V) or because of extreme results (X following mean).

NOT RCD - The number of laboratories failing to report data on time or in usable form for this week (but who reported data for at least one of the other weeks of this month), or who received test pieces from a different sample of material and whose data therefore are shown in another table of this report.

SD SHTS - (Concora only) The average for the indicated week of the amongsheet within-laboratory standard deviations. The SD SHTS is an index primarily of the variability among sheets.

THIS MONTH

VALUES THIS MONTH:
MEAN SDR SDWRS

MEAN - The average for the indicated laboratory of the reported weekly MEANS THIS MONTH.

SDR - The average for the indicated laboratory of the weekly SDRs for the current month.

SDWKS - For the indicated laboratory, the standard deviation among the laboratory's weekly MEANS THIS MONTH (including those means marked with an ' X ').

MEAN - The average for the indicated laboratory of all its weekly means for the number of weeks indicated, including those for the current month. An '*' or ' X ' following this CUMULATIVE MEAN indicates the laboratory is running consistently low or high. (See above for explanation of these flags).

SDR - The average for the indicated laboratory of the weekly SDRs for the indicated number of weeks.

SDWKS - For the indicated laboratory, the standard deviation among the laboratory's weekly means (including those means marked with an ' X^{\prime}). SDWKS is an index of the week to week precision; i.e., a measure of the ability of a laboratory to repeat its results from week to week.

WKS - Number of weeks for which usable results have been reported by that laboratory. At most, 16 weeks of data are included.

GRAND AVERAGES

GRAND AVERAGES: THIS MGNTH CUMULATIVE 12 WEEKS

THIS MONTH - Averages for the four weeks of the quantities shown to the left.
CUMULATIVE - Averages for the indicated number of weeks, including the four weeks of the current month.

AV SDWKS - The average of the SDWKS for all laboratories excluding those marked '+' in column V or with an ' X ' following the corresponding THIS MONTH or CUMULATIVE MEAN or SDWKS.

SD CUM MEAN - The larger of either (1) the standard deviation of the CUMULATIVE MEANS about the average CUMULATIVE MEAN after omitting those CUMULATIVE MEANS marked with an ' X ' or with a '+' in column V, or (2) the CUMULATIVE SD LABS divided by the square root of the number of weeks cumulated. The former will be appreciably larger than the latter only when there are persistent systematic differences among the laboratories.

INSTRUMENT CODES

FOR
MULLEN BURSTT TESTERS
(Columin V)

Code

A

H

I

J

M

R

X

Description
Model A, Manual Clamp
Model AH, Hydraulic Clamp
Model A, Hydraulic Clamp added
Jumbo, Hand Clamp, Hand Driven
Model AH, Hydraulic Clamp, Transducer
Model A, Air Clamp added
Other Model, Please Describe Instrument Make and Model

If an incorrect instrument code has been assigned to your laboratory, please inform us.

A large supply of linerboard in three weights was randomized and placed in sealed packages ready for shipment. The supply for each weight of board was divided into several narrow "rolls" or cross-machine "positions" of a larger roll, and each position was separately randomized. Each package contains test pieces from one position only. The position is designated by the number following the letter in the code marked on the package. Thus 42 H 1 indicates that this package contains 42 lb board from position 1 of lot H. Samples from the first position are distributed until exhausted, then from the second position, and so forth for each weight of board. Thus for short periods of time (several weeks to months), the samples that the participants test are from the same position of a lot, and for a longer period from the same lot.

The three weights of linerboard distributed in this program may be used as reference standards. The best reference values are the cumulative grand AV MEANs in the latest reports. These values are given at the bottom right of each table. For each weight of board, comparisons should be made first for measurements made on the same position, i.e., for checking your current measurement, use grand AV MEANs that have the same position code as on the packages being tested. The position is shown in the upper left corner of the table. If no report is yet available on the current position, grand AV MEANs from previously tested positions of the same lot may be used as approximate reference values.

Similarly a large supply of a 26 lb corrugating medium was randomized, after dividing into several narrow rolls or positions. The above discussion for linerboard also applies to the corrugating medium.

We are currently using the third lot of linerboard and the third lot of corrugating medium:

Lot	Material	Codes	Used
1	linerboard	A, B, C	October 1969 - Apri1 1973
2	linerboard	D, E, F	September 1972 - September 1976
3	linerboard	G, H, I	October 1976 -
1	corrugating medium	(A)	May 1973 - March 1976
2	corrugating medium	B	April 1976 - February 1977
3	corrugating medium	C	March 1977 -

LAB		MEANS TEIS NONTH				THIS MENTH			CUMULATIVB			
CODE	v	W $\mathbf{x}-8$	國处2	WE-3	WE-4	MBAN	SDR	SDWES	MBAN	SDR	SDVES	WES
800	H	822.9	124.0	124.8	122.4	123.6	6.6	1.1	123.7	7.9	1.5	10
101	H	588.6	120.3	220.1	119.2	189.5	7.0	- 8	189.4	8. 0	- 8	10
102	H	122.2	118.9	121.4	121.6	128.0	7.9	1.4	221.5	7.8	1.2	8
803	I	816.0	116.3	186.9	112.8X	125.5	6.7	1.9	188.6	7.9	3.6	10
807	A	826.7	128.1	226.5	123.1	826.1	, 6.5	2.1	126.2	7.0	2.0	10
108	M	824.75	127.9	125.8	824.9	125.8	10.8	1.5	124.2	80.0	2.5	10
$1 C 9$	H		822.8	121.3	189.8	120.8	9.6	1.6	120.8	9.6	1.6	3
810	\pm	820.4	116.1	119.5	128.0	188.5	8.5	1.9	122.3	8.5	3.6	9
181	M	822.2	122.7	121.8	120.8	128.9	9.5	- 8	122.9	9.6	1.5	10
182	H	228.9	119.2	118.9	117.8	889.5	7.8	1.8	129.8	8.0	1.7	10
113	R	128.0	821.4	121.3	120.4	821.2	6.4	-6	220.3	6.9	2.2	10
184	A	826.4	121.5	128.6	132.3x	127.2	7. 8	4.5	123.5	8. 3	4.3	10
815	R	824.5	114.7	185.0	112.4 xs	114.2x	4.5	1.2	114.4 \%	5.6X	2.6	10
116	H	889.0	120.8	119.5	117.1	119.1	8.7	1.5	819.4	8. 6	1.3	10
137	H	819.0	120.5	112.9	116.4	117.2	9.0	3.3	118.8	8. 6	3.3	10
189	H	:25.5		117.2	\& 86.9	119.9	8.	4.9	121.7	8. 3	5.9x	9
$\Sigma 20$	R	118.0	818.0	119.9	187.6	118.4	8.2	8.0	119.5	9.2	2.0	10
22\%	M	126.2	829.0	124.0	128.1	125.1	10.7	3.3	127.4	10.3	2.9	10
823	R	124.7	122.3	122.1	125.0	123.6	10.2	1.6	125.0	10.0	3.1	7
125	I	827.7	328.8	824.2	125.3	126.5	7.4	2.1	824.9	7.4	3.2	10
827	H	820.7	121.7	820.8	121.0	128.1	7.9	. 5	121.0	7. 3	- 7	9
128	H	822.3	118.0	125.8	118.8	121.0	9.8	$3 \cdot 3$	128.4	9.7	2.9	10
129	R	889.4	117.4	118.4	119.9 S	188.8	6.0	1.1	121.3	6.4	3.2	10
130	H	523.75	825.0		124.2	124.3	8. 8	- 7	123.2	8.9	2.3	9
139	R	127.2 S	828.2	124.6	128.0	125.3	11.2	3.2	124.6	11.4 X	3.1	10
833	A	320.5	122.6	124.7	127.2	823.8	7.7	2.9	124.4	7.3	2.2	8
336	H	116.9	885.0	129.9	123.4	121.3	6.4	6.8	116.9	7.4	9.2X	10
237	H	119.5	129.3	116.4	121.0	119.1	10.2	2.9	118.9	10.6	8.9	10
838	H	± 29.5	126.6	123.7	127.6	126.8	8.7	2.4	$128.9 *$	9.5	4.3	10
839	R	827.4	119.3	124.7	117.8	122,3	9.0	4. 5	120.4	8.6	5.3	10
140	H	823.4	121.9	821.6	126.2	123.3	7.0	2.1	122.0	6.6	2.1	10
148	H	$\therefore 20.8$	120.1	120.8	119.0	120.0	6.0	- 7	119.5	6.0	- 8	10
142	A	:25.7	121.6	122.4	124.5	123.6	9.4	1.9	124.8	8.3	4.0	10
143	H	122.2	122.0	122.8	123.3	122.6	8.4	- 6	122.2	8.7	1.0	9
145	H	207.5×5	124.5	113.2		115.1	8.3	8.6	115.9 *	6.8	6.0 x	7
147	H	121.8	117.0	118.4	120.5	119.2	9.1	1.9	120.8	9.5	2.1	10
149	H		128.6	127.9	130.85	128.9	10.8	1.1	128.5	9.1	2.6	9
159	H	123.65	119.6	125.8	122.4	122.7	9.9	2.3	123.8	9.2	3.3	10
168	* X	325.2S	123.8	125.1	121.6	123.9	9.6	1.7	125.4	9.9	2.8	10
163	H	124.35	118.5	218.8	120.1	120.4	6.5	2.7	122.3	7.3	2.8	10
165	R	122.6	120.2	124.0		122.3	8.7	1.9	123.3	B. 4	1.6	9
266	H	119.2	116.6	117.8	121.7	118.8	9.6	2.2	119.6	9.1	2.0	10
567	H	822.6	822.7	123.5	126.8	123.9	8.4	2.0	119.7	7.7	5.0	10
± 69	I	117.8	226.8	123.8	119.9	122.1	9.8	4.0	120.3	9.2	3.8	10
57\%	H	117.9	117.1	122.3	116.0	118.3	9.0	2.8	118.1	9.0	$2 \cdot 3$	10
$\$ 72$	H	827.5	131.4	126.1	121.9	126.7	8.7	3.9	127.0	8.3	2.9	10
173	H	118.0	124.9	122.4	123.7	122.3	7.9	3.0	122.4	7.7	3.6	10
874	H	124.7	124.2	126.7	124.9	125.1	9.1	1.1	127.2	9.1	3.4	10
875	H	128.2	119.4	114.5	122.3	121.1	9.1	5.7	126.2	8.7	5.9X	10
876	H	820.9	121.4	122.1	121.2	121.4	7.9	- 5	123.7	9.3	3.6	10
377	H	116.9 S		109.9X	S11.8X	112.9x	6.3	3.6	112.6X	7.0	5. 6	9
184	H	125.3			122.8	124.1	8. 8	8.8	125.6	9.3	2.1	8
186	I	121.7	121.2	123.5	121.8	122.0	8.5	1.0	121.0	7.7	1.5	10
188	I	122.6	121.7	121.2	120.0	121.4^{\prime}	7.4	1.1	121.2	7.4	1.4	10
274	H	822.5	122.3	122.8	122.7	122.6	7.3	- 2	122.1	7.8	. 6	10

LAB			MSANS TTIA MaMT			TwIs Mowte			CUMULATIVB			
CODB	V	WE-8	WE-2	- E- 3	vieb	M18	昒员	8DEE8	MBAN	SDR		-18
283	H	320.2	120.5	180.8	121.0	880.8	5.3	- 7	121.4	5. 2 I	1. 0	80
287	A	838.9 S	132.0	152. 12	124.8	131.85	10.8	1.6	229.4*	10.0	3.7	10
327	M	128.8	116.8	$180 \cdot 3$	120.7	118	7.6	2.6	118.5	7.6	1.6	4
350	H	120.6	122.4	120.9	133.8	183.8	9.7	1.4	119.9	9.7	2. ${ }^{\text {d }}$	10
553	M	125.4	128.3	126.1	184.3	186.0	8.1	2.7	123.9	8.8	2.6	9
562	A	830.9	132.3	120.9	110.0	188	- 3	7.1	128.3	8.7	5.1	10
568	I	827.2	130.7	128.0	126.3		-9 9	1.9	126.8	8. 6	2.7	10
569	A	122.7	124.4	121.1	124.6	12308	7.6	1.6	122.4	7.9	2.5	8
590	* X	225.5	130.2	132.9x	137.18	$131 \cdot 45$	5.6	4.9	134.5X	$4.5 \overline{ }$	6.71	10
658	H	108.9X	184.7	108.65	108.85	110.18	$9 \cdot 1$	3.1	111.9X	B.4	4.5	8

BORSTING STRENGTE（MOLLEN），PSI

LAB			MEANB THIB MeNTH		THIS MONTH			CUMULATIVE			
CADE	V	WE－1	WE－2	WIX－3	包－4 MRAN	SDP	SDWES	MBAN	SDP	SDTES	－ $\mathbf{W}^{\text {S }}$
100	H	856．4	161． 8	163．9	160．7	12.6	3． 8	159.9	12．3	3． 4	7
101	H	855.6	160．4	159.8	158．6	13.2	2.6	157.1	14.5	2.1	7
102	H	\＄59．2	162．2	160．8	160.7	11．1	1.5	160.8	9.9	8.4	5
803	1	150．3	151．7	159.4	153.8	17．6	4.9	157.1	16.2	6.7	7
107	A	559.7	170.6	165．2	$165: 2$	10.5	5．4	161.0	14.1	6.0	7
508	M	855.8	155．9	152.0	154．6	15.8	2.2	158.5	16.5	4.8	7
109	H		859.3	158．0	188．6	14.3	－ 9	158．2	13.5	1.0	3
880	M	837．6x	849.8	152．9	：1．46．8X	84.5.	8.1	151．6＊	14.6	8．7X	5
888	M	852.1	154.9	161．7	1．56．2	16.7	5.0	156.1	15.9	4．3	7
182	H	843.8 x	154.9	$143.4 x$	147．4X	12.4	6.5	152.9	13.1	7.2	7
883	R	854．4	156.2	155．3	155．3	12.1	－ 9	157.1	11．7	2．0	7
114	A	155．8	151．6	167．5	158.3	10.2	8.2	156.9	13.3	5.1	7
185	R	256．4S	151.9	146.7	151.7	15.3	4.9	151.7	12.7	4.1	7
116	H	869.8	168.0	169．8	169．0X	16.5	－ 9	161．5	12.4	7．0	7
137	H	156.3	155.5	148.0	253.3	18.6	4． 6	155.4	10.6	3.7	7
119	H	2 63.2		159．8	＋．r．utl ${ }^{3} 61 a^{5}$	16.7	2.4	160.0	13.6	6． 3	5
：20	R	S55．0	171．7	150.0	隹碞，9	16.3	11.4	160.2	14．8	6.8	7
121	y	265.9	168．2	160.2	，164．8	19.0	4.8	164.8	17．9	3.1	7
223	R	262.1	156． 2	162．8	160.4	15.3	3.6	160.4	15.3	3.6	3
825	I	851．5	154.9	157.4	158.0	13.2	3.4	158.0	13.5	2.2	7
327	H	155．5	858.2	154.9	256.2	10.4	1.7	155．6	9.2	1.7	6
S28	H	155.5	156.5	159.3	157．1	13.1	1.9	158．3	14.0	2.0	7
829	R	253．0	147.2	840.7 I	147．0X	12.5	6.1	153．6	11.9	9．6X	6
≤ 30	H	158.9	857.6		158．3	17.4	－ 9	158．4	18.0	2.8	6
131	R	\＆59．9	179．5X	161．8	167．1	18.1	10．8	167．3荋	19.6	6.6	7
133	A	S54．8	158.7	151.0	154．8	13.7	3.8	155.0	16.1	2.7	7
136	H	553.6	153.5	153.0	153.4	15.8	－ 3	153.4	13.8	3.2	7
137	H	863.9	161.5	154.9 S	160.1	20.2	4.7	160.6	19．8X	3.0	7
138	H	269.3	163.0	150.6	161.0	17.5	9.5	163.1	16.5	6.0	7
839	R	854.9	159.7	157．0	157.2	16.4	2.4	159.7	15.5	3.0	7
840	H	157．4	153．3	154．8	155.2	11.3	2.1	154.1	10.9	3.0	7
141	H	§57．8	158．3	158.3 S	158.1	7.9	－ 3	157.8	9.5	－ 9	7
142	A	¢640\％	162．8	162.8	$1 \in 3.3$	14.2	－ 8	163．0	14.0	3.1	7
143	H	158．0	157．2	157.8	157．4	15.4	． 5	157.4	14.5	－ 6	6
145	H	โ59．3	154.5	160.3	158.1	12.6	3.1	156.7	13.4	3.2	6
847	H	155．3	164.3	156.4	158.7	13.6	4．9	158．2	15.6	3.1	7
\＆49	H		162.5	159.2	160.8	15.1	2． 3	164．3	16.4	3.8	6
159	H	257．6	159．1	152.3	156.4	15.4	3.6	156．3	15.0	2.8	7
261	＊X	155．3	166.7	159.1	160.4	18.1	5．8	162．5	17.8	4.8	7
863	H	154.1	157.6	158.7	156.8	18.3	2.4	856.2	16.8	3.3	7
165	R	155.6	162．7	166．2	161.5	12．8	5.4	158.7	13.5	4.4	7
266	H	162.2	165.4	169.7	165．8	14.7	3.7	164．2	14.5	3.6	7
167	H	168.7	165．2	161．8	165．2	13.5	3.4	164.1	10.5	5.1	7
269	I	15E．4	154.0	153.4	154．3	18.7	1.0	152.9	15.6	4.0	6
171	H	161．2	153.5	157.4	157.4	17.2	3.8	157．9	17．7	2.6	7
872	H	161．5	159.4	170．8X	163.9	18.3	6.0	163．4	17.5	5.1	7
173	H	164.0	160．4	158.5	161.0	11.0	2．8	161．5	12.8	2.8	7
174	H	161.0	159.5	150.6	157．0	15.3	5.6	161．7	14.0	7.2	7
175	H	164.2	158.9	152.3	158．5	15.9	6.0	162.5	15.7	E． 3	7
176	H	860.5	166.4	161.6	162.8	13.7	3.1	161.4	14.2	4.2	7
$\because 77$	H	168.3		157.8	163．0	10．0	7．4	156.6	11.2	6.3	6
184	H	≤ 59.0			159．0	18.3		160.5	15.2	4．0	5
$\bigcirc 86$	I	855.3	157．0	168.1	157.8	14.4	3.0	156.4	14．0	2.5	7
188	I	154.7	150.3	153．2	152．7	11.8	2.2	154．5	12.1	2.1	7
274	H	\＄58．2	158．7	157．8	158．2	12.1	－ 5	158.5	11.1	－ 4	7

BUEETINO GTREMOTE (MULLEN), PMI

LAB			MEANS THIS MONTY			TEIA MONTE			CUMOLATIVE			
Code	v	W-2	WK-2	- 5 - 3	-	Hen	aDR	8DEE8	184N	SDR	SDEES	- 18
283	H	154.9	155.3	154.6		154.9	8.0	-4	156.8	9.9	2.8	7
287	A	157.9	167.8	154.7		160.2	16.2	6.8	158.3	15.8	5.4	7
327	M	150.4	156.3	158.7		155.1	15.0	4.3	155.1	15.0	4.3	3
350	H	152.0	151.1	153.0		152.0	18.8	1.0	854.4	17.5	4.2	7
553	M	858.6	154.3	157.7		156.9	13.0	2.3	157.4	17.1	1.4	7
562	A	366.8	163.2	157.2		162. 2	14.3	4.5	164.5	13.4	4.6	7
568	I	863.6	164.3	152.9		160.3	13.0	6.4	154.8	13.3	7.1	7
569	A	855.3	164.3	161.5		160.4	12.6	4.6	159.5	13.1	4.7	5
590	- X	859.9	169.53	173.158		167.5	5.1	6.8	163.7	4.6I	5.6	7
658	H	: 67.7	168.9	157.8		164.8	16.2	6.3	164.8	16.2	6.1	3

		WE-2	WE-3	WE-4		TEI 8	$\begin{aligned} & \text { GRAND } \\ & \text { MENTE } \end{aligned}$	AVBRAGES CUMULATIVE	7	WEEES
AV MEAN	158.8	159.0	157.7		AV	MEAN	158.5	158.4		
AV SDR	14.4	14.4	14.1		4∇	adR	14.3	14.2		
SD LABS	4.8	5.5	5.0	*	-•180	'LABa	5.1	4.7		
NG. INCL	59	59	58		NO.	INCL	58.7	59.4		
NG.OMIT	4	3	5		4 V	ADvEs	3.9	3.8		
NGT RCD	2	3	2		8 D	CUM MBA		3.4		

Lab			MEANS TAIS monta		this menth			cumulative			
CADE	∇	- E $^{\text {- } 2}$	vE-2 WE-3	WE-4	nean	SDR	SDEIS	mban	SDR	SDEES	WIS
100	H			160.5	160.5	16.0		160.5	16.0		1
805	H			158.2	158.2	14.2		158.2	14.2		1
802	H			160.9	160.9	13.6		160.9	13.6		1
103	1			158.3	158.3	12.9		158.3	12.9		1
107	A			154.7	154.7	10.2		154.7	10.2		1
808	M			152.8	152.8	23.2		152.8	23.2		1
809	H			162.1	162.1	17.0		162.1	17.0		1
280	4			244.1 I	144.1 X	15.1		144.3 x	15.1		1
188	M			266.8	166.8	14.0		166.8	84.0		1
112	H			159.1	159.1	13.6		159.1	83.6		1
113	R			157.1	157.1	13.8		157.1	13.8		1
114	A			163.7	163.7	12.6		163.7	12.6		1
115	R			145.4	145.4	17.9		145.4.	17.9		1
116	H			878.8	172.1	18.9		872.8*	18.9		1
127	H			150.4	\$50.4	17.5		150.4	17.5		1
119	H			167.9	167.9	14.9	-	187.9	14.9		1
120	R			150.7	150.7			150.7	18.8		1
:28	M			159.2	159.2	13.4		859.2	13.4		
123	R			162.6	162.6	18.8		162.6	18.8		
825	I			158.8	158.8	11.1		158.8	11.1		1
: 27	H			161.2	161.2	9.1		161.2	9.1		1
828	H			149.0	149.0	20.3		149.0	20.3		1
229	R			150.1 s	150.1	3.1		150.8	3.11		1
830	H			157.1	157.1	19.4		157.1	19.4		1
\&3	R			: 68.8	168.8	10.5		268.8	10.5		1
233	A			148.9	148.9	11.2		148.9	88.2		1
136	H			157.7	157.7	1 E.4		157.7	15.4		1
137	H			160.2	160.2	19.8		160.2	19.1		1
538	H			158.9	158.9	13.7		158.9	13.7		1
839	R			157.2	157.2	15.4		157.2	15.4		1
$14 C$	H			150.5	150.5	8.0		150.5	8.0		1
14 \%	H			157.4	157.4	10.3		157.4	10.3		
142	A			161.9	151.9	15.2		161.9	15.2		1
143	H			159.7	159.7	17.5		159.7	17.5		
147	H			163.1	163.1	16.5		163.1	16.5		1
849	H			159.1	159.1	18.7		159.1	18.7		1
159	H			162.3	162.3	19.1		162.3	19.1		
161	* x			163.4	163.4	18.0		163.4	18.0		1
163	H			157.4	157.4	11.2		157.4	£ 1.2		
866	H			162.0	162.0	18.4		162.0	18.4		1
¢ 67	H			169.3	169.3	14.0		169.3	14.0		1
169	1			158.0	158.0	15.8		158.0	15.8		
171	H			158.7	158.7	13.3		158.7	13.3		1
172	H			163.8	163.8	18.2		163.8	18.2		1
873	H			160.8	160.8	10.3		160.8	10.3		1
174	H			155.1	155.1	18.7		155.1	18.7		1
175	H			163.3	163.3	14.8		163.3	14.8		1
176	H			164.9	164.9	17.6		164.9	17.6		1
177	H			165.6	165.6	14.1		165.6	14.1		1
284	H			161.4	161.4	21.0		161.4	21.0		1
186	1			159.2	159.2	18.0		159.2	18.0		1
188	I			153.3	153.3	10.4		153.3	10.4		1
274	H			158.3	158.3	10.3		158.3	10.3		1
283	H			155.3	155.3	10.2		155.3	10.2		
287	A			154.3	154.3	14.4		154.3	14.4		1

LAB			MEANS THIA MoMTE			THIS MGNTH			COMOLATIVE			
Cede	V	WE-8	WE-2	vr-3	-x-4	MRAN	SDR	SDilis	MBAN	sDP	SDPES	- ${ }^{\text {es }}$
327	M				153.4	153.4	15.5		153.4	15.5		1
350	H				183.4	153.4	16.2		153.4	16.2		1
553	M				862.7	162.7	18.7		162.7	18.7		1
562	A				182.0	152.0	16.9		152.0	16.9		1
568	I				164.7	164.7	14.7		164.7	14.7		1
569	A				167.9	167.9	13.5		167.9	13.5		1
590	* X				166.43	186.4	4.5		866.4	4.51		1
658	H				150.2	850.2	14.9		150.2	14.9		1

flat cruse strencth (Concera), Lb

LAB		MRANS THIS MONTE				THIS MENTH			COMULATIVB			
CODE	V	W	WE-2	내ํㄷ-3	WI-4	MEAN	SDR	SDTES	MBAN	SDR	SDWES	WES
100		64.3	64.3	64.4	64.1	64.3	3.1	-1	63.7	2.9	- 9	16
802		62.9	63.4	63.1	63.0	63.1	2.7	- 2	63.2	2.8	- 6	13
106		63.0	62.6	65.3	64.0	63.8	3.2	1.2	64.8	3.5	1.8	16
110		64.6		63.3	63.6	63.8	3.1	- 7	64.2	3.1	8.4	13
113		63.6	63.7	62.6	63.2	63.3	2.8	- 5	63.2	2.8	. 6	16
114		39.9	60.0	59.6	59.8	59.8	2.3	- 2	60.8	2.6	1.1	16
815		62.4	65.8	64.7	65.9	64.7	2.5	1.6	63.6	2.5	1.9	16
216		60.4	60.3	60.9	60.4	60.5	8.3	. 3	60. 8	8.5X	-4	16
189		63.85		E3. 5	62.1	63.2	4.0	. 9	62.6	3.2	1. 8	14
220		63.5	63.2	62. 8	65.2	63.7	2.9	1.1	64.7	3.0	1.2	15
25		66.4	69.1x	68.0	68.2	67.9	2.9	1:8	69.0X	3.1	1.6	16
228		61.9	62.2	62.8	61.6	62.2	2.1	- 5	62.2	2.3	- 7	86
236		68.4	68.0	65.9	65.65	67.0	3.5	1.4	67.1.	3.6	1.2	16
238		63.2	66.5	66.7	65.9	65.6	3.1	1.6	66.6	3.0	1.6	16
140		64.4	61.6	61.9	62.3	62.6	3.2	1. 3	62.6	3.0	1.1	16
143		63.0	62.8	62.5	62.9	-	2	$9 \cdot 2$	62.6	2.2	- 7	15
868		66.1	65.9	66.2	68.15	66.6	5.4	1.0	65.9	3.6	4.2x	16
$\Sigma 64$		58.8	59.5	59.4	58.0X	59.0	3.1	. 7	62.1	2.6	2.6X	16
167		66.1	66.1	65.8	66.2	56.1	3.2	- 2	65.5	2.9	2.0	16
277		64.6		65.4	64.3	64.8	3.0	. 6	64.7	2.9	- 8	13
188		64.7	63.5	62.7	65.1	64.0	2.4	1.1	63.4	2. 3	1.4	15
237		62.8	62.8	62.5	62.2	62.6	3.3	- 3	63.3	3.4	1.2	16
269		63.0	61.6	62.8	62.8	62.4	3.2	- 6	61.8	2.8	- 7	16
274		63.5	63.3	63.4	63.3	63.4	2.1	. 1	63.6	2.1	- 2	16
283		63.8	63.8	64.2	64.4	64.1	2.0	- 3	63.8	2.1	. 4	16
284		69.08	62.4	61.7	63.4	64. 2	3.8	3.3	64.5	3.0	2. 3	16
287		63.7	64.9	67.7	67.3	65.9	3.3	1.9	65.3	3.1	1.3	16
289		58.4	62.1	57.6	60.7	59.7	2.8	2.0	56.5X	3.1	4.6x	14
292		64.1	62.8	64.8	64.3	64.0	2.4	. 8	62.8	2.8	2. 6 X	16
327		64.1	64.4	62.9	61.9	63.3	2.4	1.2	63.3	2.6	1.2	8
350		E5.8	66.8	67.1	65.2	66. 3	2.5	. 9	66.2	2.4	- 9	16
351		58.3	61.2	62.0	63.0	60.9	2.1	1.9	61.6	1.9	1.5	16
353		64.4	64.6	61.9	65.2	64.1	3.1	1.4	63.1	3.0	1.6	16
355		62.4	61.5	63.2	61.4	62.1	2.4	- 8	62.3	2.8	- 8	16
357		62.7	62.4	62.6	62.5	62.6	2.7	-1	62.3	2.4	. 8	16
363		61.9	61.7	60.6	60.3	61.1	2.5	- 8	61.4	2.5	1.0	16
365		58.3	55.6x	58.2	60.3	58.1x	2.5	1.9	59.6*	2.6	1.8	16
367		66.8		68.2	68.1	67.7	2. 8	- 8	66.5	3.2	1.6	13
369		61.8	62.7	61.2	62.2	61.7	2.7	. 4	62.7	2.8	1.0	16
377		65.5	65.3	64.3	62.95	64. 5	$3 \cdot 3$	1.2	64.6	2.9	- 9	15
379		63.7	62.8	62.3	63.6	63.1	3.1	- 8	63.2	3.0	. 7	16
381		63.1	63.2	62.8	62.9	63.0	2.2	- 2	62.6	2.6	. 9	15
383		62.8	C3. 2	64.4	63.5	63.5	3.2	- 7	63.8	3.1	- 9	11
385		61.9	59.8	60.0	60.3	60.5	2.9	. 9	61.5	3.2	1.9	16
387		64.8	63.7	64.3	65.0	64.4	3.1	. 6	63.0	3.3	1.4	15
391		68.8	59.9	57.7	57.0x	59.1	3.2	2.2	59.3*	3.0	1.9	12
393		65.0	62.6	64.9	64.5	64.3	2.1	1.1	66.3	2.4	1.9	16
395		C6.0	65.9	63.9	64.7	65.1	3.4	1.0	65.9	3.1	1.7	16
397		62.7	63.0	63.0	63.0	63.0	2.5	. 1	63.9	2.5	1.5	16
359		60.2	61.6	62.6	62.7	61.8	3.0	1.2	61.7	2.7	1.1	16
553		61.2	61.3	62.5	62.1	61.8	2.2	. 6	62.0	2. 5	. 6	15
555		65.0	64.8	64.1	63.4	64.3	1.4	. 7	64.4	2.1	1.4	16
562		66.8	64.6	64.0	63.5	64.8	3.2	1.5	64.0	3. 3	8.0	16
568		64.5	68.2	65.8	65.7	66.1	3.2	1.5	64.5	3.0	1.8	16
578		58.3	62.2	60. 8	67.6	62. 2	3.1	3.9	64.0	3.4	$3.7 x$	15

LAB			MBANS TEIS MONTE			THIE MONTE			CUMULATIVE			
Cede	V	W $\mathbf{T}-8$	WK-2	WE-3	-	MBA\%	8DR	aDwes	MBAN	SDR	SD ${ }_{\text {Wes }}$ E	wrs
579		67.2	67.6	66.0	67.6	67.1	3.3	- 7	67.3管	3. 5	1.2	16
609		61.6	63.9	60.0	62.2	62.0	3.0	1.6	61.6	3.0	2.0	15

GRAND AVBRAGBS

[^0]: January 17, 1979

