# CONTAINER BOARD

report no. 108 September 1978



NBS Collaborative Reference Program for Containerboard

Fourdrinier Kraft Board Group American Paper Institute, Inc. and U.S. Department of Commerce, National Bureau of Standards

# NBS COLLABORATIVE REFERENCE PROGRAMS

# TAPPI Paper and Board (6 times per year)

Bursting strength
Tearing strength
Tensile breaking strength
Elongation to break
Tensile energy absorption
Folding endurance

Folding endurance Stiffness

Air resistance Grammage

Surface pick strength
K & N ink absorption

K & N ink absorption pH

Opacity
Blue reflectance (brightness)

Specular gloss, 75°

Thickness

Smoothness

Concora (flat crush)

Ring crush

# FKBG-API Containerboard (48 times per year)

Mullen burst of linerboard Concora test of medium

# MCCA Color and Appearance (4 times per year)

Gloss at 60° Color and color difference Retroreflectivity

# Rubber (4 times per year)

Tensile strength, ultimate elongation and tensile stress Hardness Mooney viscosity Vulcanization properties

# ASTM Textiles (3 times per year)

Flammability (FF3-71 and FF5-74)

# ASTM Cement (2 times per year)

Chemical (11 chemical components)
Physical (8 characteristics)

# AASHTO Bituminous

Asphalt cement (2 times per year) Cutbacks (once a year)



Collaborative Reference Programs B360 Polymer Building National Bureau of Standards Washington, D.C. 20234

# CONTAINER BOARD

Collaborative Reference Program for Containerboard

report no. 108 September 1978

E.B. Randall, Jr., J. Horlick Office of Testing Laboratory Evaluation Technology, Office of Engineering Standards, National Engineering Laboratory

J.F. Stevenson NBS Research Associate Collaborative Testing Services, Inc.

U.S. Department of Commerce, National Bureau of Standards Fourdrinier Kraft Board Group American Paper Institute, Inc.



### Introduction

The Collaborative Reference Program for Containerboard is sponsored by the Fourdrinier Kraft Board Group (FKBG) of the American Institute of Paper, Inc., with the cooperation of the Technical Association of the Pulp and Paper Industry (TAPPI) and the Collaborative Testing Services, Inc. In this program, samples of three weights of linerboard, nominally 26 lb, 42 lb, and 69 lb and of corrugating medium (26 lb) are randomized separately from uniform narrow rolls and packaged for distribution to the participants. Each month, sufficient test material for four weekly tests, the material for each consisting of 20 test pieces of 42 1b board and 20 test pieces of 26 or 69 1b board, the latter in alternate months, is mailed to participants for Mullen bursting strength, or for each week five sheets of corrugating medium, each sheet for four tests of Concora flat crush strength. The participants return their test results to NBS for analysis and receive two monthly reports from NBS: a "preliminary" (individualized report) comparing a laboratory's results with the industrial mean, and a longer report (as illustrated by this report) showing the data from all participants.

Jeffrey Harlick

Jeffrey Horlick, Administrator Collaborative Reference Programs

Office of Testing Laboratory Evaluation Technology (301) 921-2946

January 17, 1979



# TABLE OF CONTENTS

| Page |                                                   |
|------|---------------------------------------------------|
| 1    | Explanation of Tables                             |
| 4    | Instrument of Codes                               |
| 5    | Use of Average Mean as a Reference Standard       |
| 6    | Bursting Strength, Linerboard 42H8, weeks 1 - 4   |
| 8    | Bursting Strength, Linerboard 6917, weeks 1, 2, 3 |
| 10   | Bursting Strength, Linerboard 6918, week 4        |
| 12   | Concora Flat Crush, Corrugating Medium 26C3       |



# EXPLANATION OF TABLES

Each table shows laboratory test results for Mullen bursting strength of linerboard or Concora flat crush strength of corrugating medium. The data are divided into three time spans. On the left of each table is an analysis for each week of the month. In the center is cumulative data for the month and on the right is cumulative data for up to 16 weeks.

Conservative statistical tests have been used in excluding extreme data from the analyses. Thus, where the mean (average) for one laboratory is compared with the average for many laboratories, limits have been used that would exclude only one laboratory in a hundred if all laboratories followed exactly the same testing procedure. Consequently, laboratories receiving "X" flags should review their testing procedures, instrument calibration, and control processes. Similar conservative criteria were used in flagging within-laboratory standard deviations and other statistics.

WEEKLY VALUES: CODE V WK-1 WK-2 WK-3 WK-4

- LAB CODE Confidential laboratory identification number known only to the participant and the Collaborative Reference Program staff.
  - V Code for indicating instrument type, units used, and any other variation in test procedure or conditions. A '+' in this column means a non-standard variation. Data marked '+' are not included in the combined averages for all laboratories. (see page 4).
- MEANS THIS MONTH For each laboratory each weekly mean is the average of individual test determinations, usually an average of 20 determinations.

FLAGS (following means and standard deviations) -

- X Data excluded from an AV MEAN or average standard deviation because value deviated from the AV MEAN or average standard deviation by more than 2.576 times the appropriate standard deviation. A laboratory following the prescribed test method could obtain such an extreme value by chance only one time in a hundred. Corrective action is almost certainly required.
- \* Data included in the CUMULATIVE AV MEAN but the value deviated from this mean by more than 1.960 and less that 2.576 times the SD CUM MEAN. A laboratory following the prescribed test method could obtain such an extreme value by chance only one time in twenty. Corrective action may be desired.

- S This is a warning to the laboratory but does not affect inclusion or exclusion of the laboratory's results from the corresponding AV MEAN. This flag indicates an extremely high or low within-laboratory standard deviation (SDR, not shown) that could occur by chance only one time in a hundred if the laboratory is following the prescribed test method.
- AV MEAN (at bottom of table) The average for the indicated week of the means for all laboratories, except those laboratories marked '+' in column V and those means marked with an 'X'.
- SDR (not shown) The standard deviation of within-laboratory measurements; i.e., the Standard Deviation of the Replicate measurements made at one time in one laboratory on one package of test pieces.
- AV SDR The average for the indicated week of the SDR's of all the laboratories, except those omitted from the AV MEAN. Also an extremely high or low SDR as compared with the AV SDR based on the remaining laboratories is omitted from the AV SDR and the letter 'S' is placed after the laboratory mean for that week. The AV SDR is an index of the within-laboratory precision for repeated measurements; i.e., a measure of the ability of an average laboratory to repeat its results over a short period of time. It includes measurement error and sample variation.
- SD LABS For each week the standard deviation of the means about the AV MEAN for that week after omitting those means marked with an 'X' or noted '+' in column V. The SD LABS is an index of the among-laboratory precision of the test method as applied by the participating laboratories; i.e., a measure of the ability of laboratories to get comparable results.
- NO. INCL The number of laboratory means included in the AV MEAN for that week.
- NO. OMIT The number of laboratory means reported but omitted from AV MEAN because of non-standard equipment, environment or procedure ('+' in column V) or because of extreme results (X following mean).
- NOT RCD The number of laboratories failing to report data on time or in usable form for this week (but who reported data for at least one of the other weeks of this month), or who received test pieces from a different sample of material and whose data therefore are shown in another table of this report.
- SD SHTS (Concora only) The average for the indicated week of the amongsheet within-laboratory standard deviations. The SD SHTS is an index primarily of the variability among sheets.

# VALUES THIS MONTH:

## THIS MONTH IEAN SDR SDWKS

- MEAN The average for the indicated laboratory of the reported weekly MEANS THIS MONTH.
- SDR The average for the indicated laboratory of the weekly SDRs for the current month.
- SDWKS For the indicated laboratory, the standard deviation among the laboratory's weekly MEANS THIS MONTH (including those means marked with an 'X').

# CUMULATIVE CUMULATIVE WEAN SDR SDWKS WKS

- MEAN The average for the indicated laboratory of all its weekly means for the number of weeks indicated, including those for the current month. An '\*' or 'X' following this CUMULATIVE MEAN indicates the laboratory is running consistently low or high. (See above for explanation of these flags).
- SDR The average for the indicated laboratory of the weekly SDRs for the indicated number of weeks.
- SDWKS For the indicated laboratory, the standard deviation among the laboratory's weekly means (including those means marked with an 'X'). SDWKS is an index of the week to week precision; i.e., a measure of the ability of a laboratory to repeat its results from week to week.
- WKS Number of weeks for which usable results have been reported by that laboratory. At most, 16 weeks of data are included.

# GRAND AVERAGES: THIS MONTH CUMULATIVE 12 WEEKS

THIS MONTH - Averages for the four weeks of the quantities shown to the left.

CUMULATIVE - Averages for the indicated number of weeks, including the four weeks of the current month.

- AV SDWKS The average of the SDWKS for all laboratories excluding those marked '+' in column V or with an 'X' following the corresponding THIS MONTH or CUMULATIVE MEAN or SDWKS.
- SD CUM MEAN The larger of either (1) the standard deviation of the CUMULATIVE MEANS about the average CUMULATIVE MEAN after omitting those CUMULATIVE MEANS marked with an 'X' or with a '+' in column V, or (2) the CUMULATIVE SD LABS divided by the square root of the number of weeks cumulated. The former will be appreciably larger than the latter only when there are persistent systematic differences among the laboratories.

# INSTRUMENT CODES

Company of the second

FOR

# MULLEN BURST TESTERS (Column V)

| Code | Description                                            |
|------|--------------------------------------------------------|
| A    | Model A, Manual Clamp                                  |
| Н    | Model AH, Hydraulic Clamp                              |
| Ι    | Model A, Hydraulic Clamp added                         |
| J    | Jumbo, Hand Clamp, Hand Driven                         |
| М    | Model AH, Hydraulic Clamp, Transducer                  |
| R    | Model A, Air Clamp added                               |
| X    | Other Model, Please Describe Instrument Make and Model |

If an incorrect instrument code has been assigned to your laboratory, please inform us.

# Use of Average Mean as a Reference Standard

A large supply of linerboard in three weights was randomized and placed in sealed packages ready for shipment. The supply for each weight of board was divided into several narrow "rolls" or cross-machine "positions" of a larger roll, and each position was separately randomized. Each package contains test pieces from one position only. The position is designated by the number following the letter in the code marked on the package. Thus 42H 1 indicates that this package contains 42 lb board from position 1 of lot H. Samples from the first position are distributed until exhausted, then from the second position, and so forth for each weight of board. Thus for short periods of time (several weeks to months), the samples that the participants test are from the same position of a lot, and for a longer period from the same lot.

The three weights of linerboard distributed in this program may be used as reference standards. The best reference values are the cumulative grand AV MEANs in the latest reports. These values are given at the bottom right of each table. For each weight of board, comparisons should be made first for measurements made on the same position, i.e., for checking your current measurement, use grand AV MEANs that have the same position code as on the packages being tested. The position is shown in the upper left corner of the table. If no report is yet available on the current position, grand AV MEANs from previously tested positions of the same lot may be used as approximate reference values.

Similarly a large supply of a 26 lb corrugating medium was randomized, after dividing into several narrow rolls or positions. The above discussion for linerboard also applies to the corrugating medium.

We are currently using the third lot of linerboard and the third lot of corrugating medium:

| Lot | Material           | Codes | Used                            |
|-----|--------------------|-------|---------------------------------|
| 1   | linerboard         | A,B,C | October 1969 - April 1973       |
| 2   | linerboard         | D,E,F | September 1972 - September 1976 |
| 3   | linerboard         | G,H,I | October 1976 -                  |
| 1   | corrugating medium | (A)   | May 1973 - March 1976           |
| 2   | corrugating medium | В     | April 1976 - February 1977      |
| 3   | corrugating medium | С     | March 1977 -                    |

### SEPTEMBER 1978

# COLLABORATIVE REFERENCE PROGRAM REPORT NG. 108 BURSTING STRENGTH (MULLEN), PSI

| LAB   |     | 1       | MEANS TE | IS MONTE |                                              |                                           | IS MON' |              |         | CUMULA?    | TIVE  |     |
|-------|-----|---------|----------|----------|----------------------------------------------|-------------------------------------------|---------|--------------|---------|------------|-------|-----|
| CODE  | v   | WK-1    | WE-2     | WK-3     | WE-4                                         | MEAN                                      | SDR     | SDWKS        | MBAN    | SDR S      | SDWKS | WKS |
|       |     |         |          |          |                                              |                                           |         |              |         |            |       |     |
| 100   | H   | 122.9   | 124.0    | 124.8    | 122.4<br>119.2<br>121.6<br>112.8X<br>123.1   | 123.6                                     | 6.6     | 1.1          | 123.7   | 7.9        | 1.5   | 10  |
| 101   | R   |         | 120.3    | 120.1    | 119.2                                        | 119.5                                     | 7.0     | . B          | 119.4   | 8.0        | - 8   | 10  |
| 102   |     |         | 118.9    | 121.4    | 121.6                                        | 121.0                                     | 7.9     | 1.4          | 121.5   | 7.8<br>7.9 | 1.2   | 8   |
| 103   |     |         | 116 7    | 116 0    | 112 0                                        | 116 6                                     | 6.7     | • •          | 110 6   | 7.0        | 7.6   | 10  |
|       |     |         | 110.3    | 110.9    | 112.0V                                       | 110.0                                     | 0.7     | 1.9          | 110.0   | 7.09       |       |     |
| 107   | A.  | 126.7   | 128.1    | 120.5    | 123.1                                        | 126.1                                     | 0.5     | 2.1          | 126.2   | 7.0        | 2.0   | 10  |
|       |     |         |          |          |                                              | € .                                       | ,       |              |         |            |       |     |
| 108   | M   | 124.75  | 127.9    | 125.8    | 124.9<br>119.1<br>118.0<br>120.8<br>117.8    | 125.8                                     | 10.8    | 1.5          | 124.2   | 10.0       | 2.5   | 10  |
| 109   | H   |         | 122.1    | 121.3    | 119.1                                        | 120.8                                     | 9.6     | 1.6          | 120.8   | 9.6        | 1.6   | 3   |
| 110   | М   | 120.4   | 116.1    | 119.5    | 118.0                                        | 118.5                                     | 8.5     | 1.9          | 122.3   | 8.5        | 3.8   | 3   |
| 111   | М   | 120.4   | 122.7    | 121.8    | 120.8                                        | 121.9                                     | 9.5     | . 8          | 122.9   | 9.6        | 1.5   | 10  |
|       |     | 221.9   |          | 118.9    | 117.8                                        | 119-5                                     | 7.8     | 1.8          | 119.1   | 8.0        | 1.7   | 10  |
|       |     |         |          |          |                                              |                                           |         |              |         |            |       |     |
| 4 4 7 | n   | 9 2 9   | 121 4    | 101 0    | 120 4                                        | 121 2                                     | 6. 4    | 6            | 120 3   | 6.0        | 1 2   | 10  |
|       | ĸ   | 121.0   | 121.4    | 121.8    | 120.4                                        | 123.2                                     | 0.4     |              | 120.5   | 0. 9       | 1.2   |     |
| 114   | A   | 126.4   | 121.5    | 128.6    | 132.3X                                       | 127.2                                     | 7.8     | 4.5          | 123.5   | 8.3        | 4.3   | 10  |
| 115   | R   | 114.5   | 114.7    | 115.0    | 112.4XS                                      | 114.2X                                    | 4.5     | 1.2          | 114.4*  | 5.6X       | 2.6   | 10  |
| 116   | H   | 119.0   | 120.8    | 119.5    | 117.1                                        | 119.1                                     | 8.7     | 1.5          | 119.4   | 8.6        | 1.3   | 10  |
|       | H   | 119.0   | 120.5    | 112.9    | 116.4                                        | 117.2                                     | 9.0     | 3.3          | 118.8   | 8.6        | 3.3   | 10  |
|       |     |         |          |          | 120.4<br>132.3X<br>112.4XS<br>117.1<br>116.4 |                                           |         |              |         |            |       |     |
| 110   | Ħ   | 125.5   |          | 117.2    | 116.9                                        | 119.9                                     | 8.4     | 4.9          | 121.7   | 8.3        | 5. 9X | 9   |
| 300   | 73  | 110 0   | 110 0    | 110.0    | 117 6                                        | 116 4                                     | 40 00   | 16 1 10 16 . | 110 6   | 9.3        | 2.0   | 10  |
| 220   | K   | 110.0   | 120.0    | 119.9    | 327.0                                        | 110.4                                     | 0.2     | 2.0          | 117.5   | 702        | 2.0   | 10  |
| 122   | м   | 126.2   | 129.0    | 124.0    | 121.1                                        | 125.1                                     | 10.7    | 3.3          | 127.4   | 10.3       | 2.9   | 10  |
| 823   | R   | 124.7   | 122.3    | 122.1    | 125.0                                        | 123.6                                     | 10.2    | 1.6          | 125.0   | 10.0       | 3.1   | 7   |
| 125   | I   | 127.7   | 128.8    | 124.2    | 116.9<br>117.6<br>121.1<br>125.0<br>125.3    | 126.5                                     | 7.4     | 2.1          | 124.9   | 7.4        | 3.2   | 10  |
|       |     |         |          |          |                                              |                                           |         |              |         |            |       |     |
| 127   | H   | 120.7   | 121.7    | 120.8    | 121.0                                        | 121.1                                     | 7.9     | .5           | 121.0   | 7.3        | .7    | 9   |
| 128   | Ħ   | 122.3   | 118.0    | 125.1    | 118.8                                        | 121.0                                     | 9.8     | 3.3          | 121.4   | 9.7        | 2.9   | 10  |
| 120   | D   | 110 4   | 117 4    | 110 4    | 110.00                                       | 110 0                                     | 6 0     | 1 1          | 121 7   | 6 4        | 3.2   | 10  |
| 127   | P.  | 88704   | 117.4    | 11004    | 117.75                                       | 110.0                                     | 0.0     | 1 • 1        | 121.5   | 0.4        | 3.2   |     |
| 130   | н   | 323.7S  | 125.0    |          | 124.2                                        | 124.3                                     | 8.8     | • (          | 123.2   | 8. 9       | 2.3   | 9   |
| 131   | R   | 127.28  | 128.2    | 124.6    | 121.0<br>118.8<br>119.9S<br>124.2            | 125.3                                     | 11.2    | 3.2          | 124.6   | 11.4X      | 3.1   | 10  |
|       |     |         |          |          |                                              |                                           |         |              |         |            |       |     |
| 133   | A   | 320.5   | 122.6    | 124.7    | 127.2                                        | 123.8                                     | 7.7     | 2.9          | 124.4   | 7.3        | 2.2   | 8   |
| 336   | H   | 116.9   | 115.0    | 129.9    | 123.4                                        | 121.3                                     | 6.4     | 6.8          | 116.9   | 7.4        | 9.2X  | 10  |
| 2.37  | H   | 119.5   | 119.3    | 116.4    | 121.0                                        | 119.1                                     | 10.2    | 1.9          | 118.9   | 10.6       | 1.9   | 10  |
| 138   | H   | 129.5   | 126-6    | 123.7    | 127.6                                        | 126.8                                     | 8.7     | 2.4          | 128.90  | 9.5        | 4.3   | 10  |
| 130   | D   | 127 4   | 110 3    | 124 7    | 117 0                                        | 122 7                                     | 9.0     | A =          | 120 4   | 9 6        | 5 3   | 10  |
| 139   | R   | 82104   | 117.5    | 15401    | 127.2<br>123.4<br>121.0<br>127.6<br>117.8    | 122,0                                     | . 5.0   | 4.5          | 12004   | 0.0        | 3.3   | 10  |
|       |     |         |          |          |                                              |                                           |         |              |         |            |       |     |
| 140   | н   | 123.4   | 121.9    | 121.0    | 120.2                                        | 123.3                                     | 7.0     | 2.1          | 122.0   | 0.0        | 2.1   | 10  |
| 143   | н   | 220.3   | 120.1    | 120.8    | 119.0                                        | 120.0                                     | 6.0     | • 7          | 119.5   | 6.0        | • B   | 10  |
| 142   | A   | 125.7   | 121.6    | 122.4    | 124.5                                        | 123.6                                     | 9.4     | 1.9          | 124.8   | 8.3        | 4.0   | 10  |
| 143   | Ħ   | 122.1   | 122.0    | 122.8    | 123.3                                        | 122.6                                     | 8.4     | . 6          | 122.2   | 8.7        | 1.0   | 9   |
| 145   | H   | 107.5XS | 124.5    | 113.2    | 126.2<br>119.0<br>124.5<br>123.3             | 115.1                                     | 8.3     | 8.6          | 115.9*  | 6.8        | 6.0X  | 7   |
|       |     |         |          |          |                                              |                                           |         |              |         |            |       |     |
| 147   | H   | 121.1   | 117.0    | 118.4    | 120.5                                        | 119.2                                     | 9.1     | 1.9          | 120 - 8 | 9.5        | 2.1   | 10  |
| 140   | 12  |         | 128.6    | 127.0    | 130.19                                       | 128.0                                     | 10.8    | 1.1          | 128.54  | 9.1        | 2.6   |     |
| 150   | 77  | 107 60  | 110.6    | 105 1    | 100 4                                        | 12007                                     | 10.0    | 2 7          | 127 6   | 0.2        | 3.3   | 10  |
| 859   | n   | 125.05  | 117.0    | 125.1    | 122.4                                        | 1000                                      | 7.7     | 2.3          | 125.4   | 702        | 3.3   | 10  |
| 101   | TX. | 325.25  | 123.8    | 125.1    | 121.0                                        | 123.9                                     | 9.0     | 1.7          | 125.4   | 9.9        | 2.8   |     |
| 163   | H   | 124.35  | 118.5    | 118.8    | 120.5<br>130.1S<br>122.4<br>121.6<br>120.1   | 120.4                                     | 6.5     | 2.7          | 122.3   | 7.3        | 2.8   | 10  |
|       |     |         |          |          |                                              |                                           |         |              |         |            |       |     |
| 165   | R   | 122.6   | 120.2    | 124.0    |                                              | 122.3                                     | 8.7     | 1.9          | 123.3   | 8.4        | 1.6   | 9   |
| 266   | H   | 119.2   | 116.6    | 117.8    | 121.7                                        | 118.8                                     | 9.6     | 2.2          | 119.6   | 9.1        | 2.0   | 10  |
| 167   | н   | 122.6   | 122.7    | 123.5    | 126.8                                        | 123.9                                     | 8.4     | 2.0          | 119.7   | 7.7        | 5.0   |     |
| 169   | Т   | 117.8   | 126.8    | 123.8    | 119.9                                        | 122.1                                     | 9 . A   | A - O        | 120-3   | 0.2        | 3.8   |     |
| 578   | 14  | 117.0   | 117.1    | 122.3    | 121.7<br>126.8<br>119.9                      | 110 3                                     | 9.0     | 2 8          | 110 1   | 0 0        | 2 7   | 10  |
| 216   | 21  | 22107   | 88182    | 12200    | 110.0                                        | 110.3                                     | 7.0     | 2.0          | 11001   | 9.0        | 2.5   | 10  |
|       |     |         |          |          |                                              |                                           |         |              |         |            |       |     |
| 172   |     | 127.5   |          |          | 121.9                                        | 126.7                                     | 8.7     | 3.9          | 127.0   | 8.3        | 2.9   | 10  |
| 173   |     |         | 124.9    |          | 123.7                                        | 122.3                                     | 7.9     | 3.0          | 122.4   | 7.7        | 3.6   | 10  |
| 174   |     |         | 124.2    |          | 124.9                                        | 125.1                                     | 9.1     | 1.1          | 127.2   | 9.1        | 3.4   | 10  |
| 175   | H   | 128.2   | 119.4    | 114.5    | 122.3                                        | 121.1                                     | 9.1     | 5.7          | 126.2   | 8.7        | 5.9X  | 10  |
| 176   |     | 120.9   |          |          | 121.1                                        | 121.4                                     | 7.9     | • 5          | 123.7   | 9.3        | 3.6   |     |
|       |     |         |          |          |                                              | 126.7<br>122.3<br>125.1<br>121.1<br>121.4 |         |              |         |            |       |     |
| 377   | H   | 116-98  |          | 109.97   | 111.BY                                       | 112-9Y                                    | 6.3     | 3.6          | 112-6T  | 7.0        | 5.6   | 9   |
| 184   | Ħ   | 125-3   |          |          | 122.8                                        | 124.1                                     | 8.8     | 1.8          | 125 6   | 9.3        | 2.1   | 9   |
| 104   | T   | 121 7   | 121 2    | 127 5    | 121 0                                        | 122 0                                     | 0.5     | 1 0          | 121 0   | 7 7        | 4.5   | 10  |
| 100   | -   | 100     | 121.2    | 423.5    | 121.0                                        | 122.0                                     | 8.5     | 1.0          | 121.0   | / • /      | 1.5   | 10  |
| 188   | 1   | 122.0   | 121.7    | 121.2    | 111.8X<br>122.8<br>121.8<br>120.0<br>122.7   | 121.4                                     | 7.4     | 1.1          | 121.2   | 7.4        | 1.4   | 10  |
| 274   | H   | 122.5   | 122.3    | 122.8    | 122.7                                        | 122.6                                     | 7.3     | .2           | 122.1   | 7.1        | . 6   | 10  |
|       |     |         |          |          |                                              |                                           |         |              |         |            |       |     |

LINERBOARD 42H8

## COLLABORATIVE REFERENCE PROGRAM REPORT NO. 100 BURSTING STRENGTE (MULLEN), PSI

SEPTEMBER 1976

| LAB  |                                                             |                                                               | MEANS TI                                                                                                                            | IS MONTH                                                                                                                                                                                       | ı                                                                                                                                                                                                                                                           | 711                                                                                                                                                                                                                                                                                                                     | IS MON                                                                                                                                                                                                                                                                                                                                                                               | TE                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                    | CUMUL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ATIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------|-------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CQDZ | S V                                                         | W K - 1                                                       | WE-2                                                                                                                                | WK-3                                                                                                                                                                                           | WX-4                                                                                                                                                                                                                                                        | MEAN                                                                                                                                                                                                                                                                                                                    | EDR                                                                                                                                                                                                                                                                                                                                                                                  | SDWES                                                                                                                                                                                                                                                                                                                                                                        | MBAN                                                                                                                                                                                                                                                                                                                                                                                               | SDR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SDWES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WES                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 283  | H                                                           | 120.2                                                         | 120.5                                                                                                                               | 120.8                                                                                                                                                                                          | 121.0                                                                                                                                                                                                                                                       | 120.8                                                                                                                                                                                                                                                                                                                   | 5.3                                                                                                                                                                                                                                                                                                                                                                                  | .7                                                                                                                                                                                                                                                                                                                                                                           | 121.4                                                                                                                                                                                                                                                                                                                                                                                              | 5.2X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 287  | A                                                           | 131.9XS                                                       | 132.0                                                                                                                               | 132.1X                                                                                                                                                                                         | 120.5                                                                                                                                                                                                                                                       | 131.21                                                                                                                                                                                                                                                                                                                  | 10.5                                                                                                                                                                                                                                                                                                                                                                                 | 1.6                                                                                                                                                                                                                                                                                                                                                                          | 129.4*                                                                                                                                                                                                                                                                                                                                                                                             | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 327  | М                                                           | 118.1                                                         | 116.8                                                                                                                               | 118,2                                                                                                                                                                                          | 120.7                                                                                                                                                                                                                                                       | 118,5                                                                                                                                                                                                                                                                                                                   | 7.6                                                                                                                                                                                                                                                                                                                                                                                  | 1.6                                                                                                                                                                                                                                                                                                                                                                          | 118.5                                                                                                                                                                                                                                                                                                                                                                                              | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 350  | H                                                           | 120.6                                                         | 122.4                                                                                                                               | 120.9                                                                                                                                                                                          | 123.5                                                                                                                                                                                                                                                       | 121.0                                                                                                                                                                                                                                                                                                                   | 9.7                                                                                                                                                                                                                                                                                                                                                                                  | 1.4                                                                                                                                                                                                                                                                                                                                                                          | 119.9                                                                                                                                                                                                                                                                                                                                                                                              | 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 553  | M                                                           | 125.4                                                         | 128.3                                                                                                                               | 126.1                                                                                                                                                                                          | 124.3                                                                                                                                                                                                                                                       | 126.0                                                                                                                                                                                                                                                                                                                   | 8.1                                                                                                                                                                                                                                                                                                                                                                                  | 1.7                                                                                                                                                                                                                                                                                                                                                                          | 123.9                                                                                                                                                                                                                                                                                                                                                                                              | 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 562  | A                                                           | 130.9                                                         | 132.3                                                                                                                               | 120.9                                                                                                                                                                                          | 118.0                                                                                                                                                                                                                                                       | 125.5                                                                                                                                                                                                                                                                                                                   | 0.3                                                                                                                                                                                                                                                                                                                                                                                  | 7.1                                                                                                                                                                                                                                                                                                                                                                          | 128.3                                                                                                                                                                                                                                                                                                                                                                                              | 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 568  | I                                                           | 127.2                                                         | 130.7                                                                                                                               | 128.0                                                                                                                                                                                          | 126.3                                                                                                                                                                                                                                                       | 120.1                                                                                                                                                                                                                                                                                                                   | 8.9                                                                                                                                                                                                                                                                                                                                                                                  | 1.9                                                                                                                                                                                                                                                                                                                                                                          | 126.8                                                                                                                                                                                                                                                                                                                                                                                              | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 569  | A                                                           | 122.7                                                         | 124.4                                                                                                                               | 121.1                                                                                                                                                                                          | 124.4                                                                                                                                                                                                                                                       | 123,2                                                                                                                                                                                                                                                                                                                   | 7.6                                                                                                                                                                                                                                                                                                                                                                                  | 1.6                                                                                                                                                                                                                                                                                                                                                                          | 122.4                                                                                                                                                                                                                                                                                                                                                                                              | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 590  | + X                                                         | 125.5                                                         | 130.2                                                                                                                               | 132.9X                                                                                                                                                                                         | 137.1X                                                                                                                                                                                                                                                      | 131.4X                                                                                                                                                                                                                                                                                                                  | 5.6                                                                                                                                                                                                                                                                                                                                                                                  | 4.9                                                                                                                                                                                                                                                                                                                                                                          | 134.5X                                                                                                                                                                                                                                                                                                                                                                                             | 4.5X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 658  | H                                                           | 108.9X                                                        | 114.7                                                                                                                               | 108.6X                                                                                                                                                                                         | 100,1X                                                                                                                                                                                                                                                      | 110.1X                                                                                                                                                                                                                                                                                                                  | 9.1                                                                                                                                                                                                                                                                                                                                                                                  | 3.1                                                                                                                                                                                                                                                                                                                                                                          | 111.9X                                                                                                                                                                                                                                                                                                                                                                                             | 8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | 283<br>287<br>327<br>350<br>553<br>562<br>568<br>569<br>590 | CODE V 283 H 287 A 327 M 350 H 553 M 562 A 568 I 569 A 590 •X | CODE V WI-%  283 H 120.2  287 A 13%.9XS  327 M 118.1  350 H 120.6  553 M 125.4  562 A 130.9  568 I 127.2  569 A 122.7  590 •X 125.5 | CODE V WE-1 WE-2  283 H 120.2 120.5  287 A 131.9XS 132.0  327 M 118.1 116.8  350 H 120.6 122.4  553 M 125.4 128.3  562 A 130.9 132.3  568 I 127.2 130.7  569 A 122.7 124.4  590 *X 125.5 130.2 | CODE V WK-1 WK-2 WK-3  283 H 120.2 120.5 120.8  287 A 131.918 132.0 132.1X  327 M 118.1 116.8 118.2  350 H 120.6 122.4 120.9  553 M 125.4 128.3 126.1  562 A 130.9 132.3 120.9  568 I 127.2 130.7 128.0  569 A 122.7 124.4 121.1  590 *X 125.5 130.2 132.9X | CODE V WK-1 WK-2 WK-3 WK-4  283 H 120.2 120.5 120.8 121.6  287 A 131.9X8 132.0 132.1X 128.8  327 M 118.1 116.8 118.2 120.7  550 H 120.6 122.4 120.9 123.5  553 M 125.4 128.3 126.1 124.3  562 A 130.9 132.3 120.9 118.0  568 I 127.2 130.7 128.0 126.3  569 A 122.7 124.4 121.1 124.4  590 *X 125.5 130.2 132.9X 137.1X | CODE V WI-1 WK-2 UK-3 WK-4 MEAN  283 H 120.2 120.5 120.8 121.8 120.8  287 A 131.9X8 132.0 132.1X 120.8 131.2X  327 M 118.1 116.8 110.2 120.7 110.5  550 H 120.6 122.4 120.9 123.5 121.6  553 M 125.4 128.3 126.1 124.3 126.0  562 A 130.9 132.3 120.9 110.0 126.5  568 I 127.2 130.7 120.0 126.3 120.1  569 A 122.7 124.4 121.1 124.6 123.2  590 •X 125.5 130.2 132.9X 137.1X 131.4X | CODE V WK-1 WK-2 UK-3 UK-6 MEAN EDR  283 H 120.2 120.5 120.8 121.8 120.8 130.2 10.5  287 A 131.9X8 132.0 132.1X 120.8 131.2X 10.5  327 M 118.1 116.8 110.2 120.7 110.5 7.6  550 H 120.6 122.4 120.9 123.5 120.8 9.7  553 M 125.4 128.3 126.1 124.3 126.0 8.1  562 A 130.9 132.3 120.9 110.0 125.5 0.3  568 I 127.2 130.7 128.0 126.3 120.1 20.1 20.1 20.1 20.1 20.1 20.1 20. | CODE V WX-1 WX-2 UX-3 WX-6 MEAN EDR EDWES  283 H 120.2 120.5 120.8 121.8 120.8 5.3 .7  287 A 131.9XS 132.0 132.1X 120.8 131.2X 10.5 1.6  327 M 118.1 116.8 110.2 120.7 110.5 7.6 1.6  350 H 120.6 122.4 120.9 123.5 121.8 9.7 1.4  553 M 125.4 128.3 126.1 124.3 126.0 0.1 1.7  562 A 130.9 132.3 120.9 110.0 125.5 0.3 7.1  568 I 127.2 130.7 128.0 126.3 120.1 20.1 20.1 20.1 20.1 20.1 20.1 20. | CODE V WK-1 WK-2 WK-3 WK-4 MEAN SDR SDWES MEAN  283 H 120.2 120.5 120.8 121.6 120.8 5.3 .7 121.4  287 A 131.9XS 132.0 132.1X 120.8 131.2X 10.5 1.6 129.4*  327 M 118.1 116.8 110.2 120.7 110.5 7.6 1.6 118.5  350 H 120.6 122.4 120.9 120.5 121.6 9.7 1.4 119.9  553 M 125.4 128.3 126.1 124.3 126.0 8.1 1.7 123.9  562 A 130.9 132.3 120.9 110.0 125.5 8.3 7.1 128.3  568 I 127.2 130.7 120.0 126.3 120.1 8.9 1.9 126.8  569 A 122.7 124.4 121.1 124.4 123.2 7.6 1.6 122.4  590 *X 125.5 130.2 132.9X 137.1X 131.4X 6.6 4.9 134.5X | CODE V WK-1 WK-2 UK-3 UK-4 MEAN EDR SDWES MEAN SDR  283 H 120.2 120.5 120.8 121.8 120.8 120.6 5.3 .7 121.4 5.2X  287 A 131.9XS 132.0 132.1X 120.8 131.2X 10.5 1.6 129.4* 10.0  327 M 118.1 116.8 110.2 120.7 110.5 7.6 1.6 118.5 7.6  350 H 120.6 122.4 120.9 123.5 120.8 9.7 1.4 119.9 9.7  553 M 125.4 128.3 126.1 124.3 126.0 8.1 1.7 123.9 8.8  562 A 130.9 132.3 120.9 110.0 125.5 8.3 7.1 128.3 8.7  568 I 127.2 130.7 120.0 126.3 120.1 8.9 1.9 1.9 126.8 8.6  569 A 122.7 124.4 121.1 124.4 123.2 7.6 1.6 122.4 7.9  590 *X 125.5 130.2 132.9X 137.1X 131.4X 5.6 4.9 134.5X 4.5X | CODE V WK-1 WK-2 UK-3 UK-4 MEAN EDR SDWES MEAN SDR SDWES  283 H 120.2 120.5 120.8 121.8 120.8 130.8 131.2 | CODE V WK-1 WK-2 WK-3 WK-4 MEAN SDR SDWES WES  283 H 120.2 120.5 120.6 121.6 120.6 5.3 .7 121.4 5.2X 1.0 10  287 A 131.9XS 132.0 122.1X 120.8 131.2X 10.5 1.6 1220.4* 10.0 3.7 10  327 M 118.1 116.8 110.2 120.7 110.5 7.6 1.6 118.5 7.6 1.6 4  350 H 120.6 122.4 120.9 123.5 121.8 9.7 1.4 119.9 9.7 2.4 10  553 M 125.4 128.3 126.1 124.3 126.0 8.1 1.7 123.9 8.8 2.6 9  562 A 130.9 132.3 120.9 110.0 125.5 8.3 7.1 128.3 8.7 5.1 10  568 I 127.2 130.7 128.0 126.3 128.1 8.9 1.9 1.9 126.0 8.6 2.7 10  569 A 122.7 124.4 121.1 124.4 123.2 7.6 1.6 122.4 7.9 2.5 8  590 *X 125.5 130.2 132.9X 137.1X 131.4X 5.6 4.9 134.5X 4.5X 6.7X 10 |

|          | WK - 8 | WE-2  | WE-3  | WK -4 | GRAND<br>THIS MONTH | AVERAGES<br>CUMULATIVE 10 WEEKS |
|----------|--------|-------|-------|-------|---------------------|---------------------------------|
| AV NEAN  | 122.4  | 122.2 | 121.9 | 121.9 | AV NEAN 122.1       | 122.3                           |
| AV SDR   | 7.8    | 8.2   | 8.2   | 8.7   | AV SDR . 6.2        | 8.3                             |
| SD LABS  | 3.6    | 4.5   | 3.7   | 3,2   | SD L'ABS 3.8        | 3.9                             |
| NO. INCL | 58     | 60    | 58    | 56    | NO. INCL 58.0       | 59.7                            |
| NO. CHIT | 5      | 2     | 5     | 7     | AV SDWKS 2.3        | 2.5                             |
| NOT RCD  | 2      | 3     | 2     | 2     | SD CUM MEAN         | 3.1                             |

# LINERBOARD 6917 COLLABORATIVE REPERENCE PROGRAM REPORT, NO. 108 = BURSTING STRENGTH (MULLEN), PSI

| LAB    |        |        | IS MONTH |                                    |         | IS MON |            |                         | CUMUL |       |     |
|--------|--------|--------|----------|------------------------------------|---------|--------|------------|-------------------------|-------|-------|-----|
| CQDE A | WE-1   | WK-2   | WK-3     | WK-4                               | MEAN    | SDR    | SDWKS      | MEAN                    | SDR   | SDWKS | WES |
|        |        |        |          |                                    |         |        |            |                         |       |       |     |
| 100 H  |        | 161.8  |          |                                    | 160.7   |        |            | 159.9                   |       | 3.4   | 7   |
|        |        | 160.4  |          |                                    |         |        | 2.6        |                         | 14.5  |       | 7   |
| 102 H  | 859.2  | 162.2  |          |                                    | 160.7   |        | 1.5        | 160.8                   | 9.9   |       | 5   |
|        | 150.3  | 151.7  | 159.4    |                                    | 153#8   |        |            | 157.1                   | 16.2  | 6.7   | 7   |
| 107 A  | \$59.7 | 170.6  | 165.2    |                                    | 165.2   | 10.5   | 5.4        | 161.0                   | 14.1  | 6.0   | 7   |
| 108 M  | 155.8  | 155.9  | 152.0    |                                    | 154.6   | 16.8   | 2.2        | 158.5                   | 16.5  | A . B | 7   |
| 109 H  | 2000   | 159.3  |          |                                    |         |        |            | 158.2                   |       |       |     |
|        | 977 47 | 149.8  |          |                                    | 1,46.8X |        |            | 151.6*                  |       |       |     |
|        |        | 154.9  |          |                                    | 1.56-2  |        |            | 156.1                   |       |       | 7   |
| 111 M  | 143.8X | 154.9  | 101.7    |                                    | 147.41  |        |            | 152.9                   |       |       | 7   |
| 112 H  | 243.0A | 134.7  | 143.4X   |                                    | 141041  | 12.7   |            |                         |       | 7.2   | ,   |
| 113 R  | 154.4  | 156.2  | 155.3    |                                    | 155.3   | 11.1   | • 9        | 157.1                   | 11.7  | 2.0   | 7   |
| 134 A  | 155.8  | 151.6  | 167.5    |                                    | 158.3   | 10.2   | 8.2        | 156.9                   | 13.3  | 5.1   | 7   |
| 115 R  | 156.48 | 151.9  | 146.7    |                                    |         |        |            | 151.7                   |       |       | 7   |
|        |        | 168.0  |          |                                    | 169.0X  |        |            | 161.5                   |       | 7.0   | 7   |
|        | 156.3  |        | 148.0    |                                    | 153.3   |        |            | 155.4                   |       |       | 7   |
| 85. 1  |        |        |          |                                    | 7.      |        |            |                         |       |       |     |
| 119 H  | 163.2  |        | 159.8.   | ाव परिका के प्राप्त कर्मा<br>विकास | 161.5   | 16.2   | 2.4        | 160.0<br>160.2          | 13.6  | 6.3   | 5   |
| 520 R  | 155.0  | 171.7  | 150.0    | Auto - Math saide                  | 158.9   | 16.3   | 11.4       | 160.2                   | 14.8  | 6.8   | 7   |
|        |        | 168.2  |          | *                                  | 164.8   | 19.0   | 4.1        | 164.8                   |       |       | 7   |
|        |        | 156.2  |          |                                    | 160.4   | 15.3   |            | 160.4                   | 15.3  |       | 3   |
|        | 161.5  |        | 157.4    |                                    | 158.0   |        | 3.4        | 158.0                   | 13.5  | 2.2   | 7   |
|        |        |        |          |                                    |         |        | -          |                         |       |       |     |
| 327 H  |        | 158.2  | 154.9    |                                    | 156.2   | 10.4   | 1.7<br>1.9 | 155.6<br>158.3<br>153.6 | 9.2   | 1.7   | 6   |
| 328 H  |        |        | 159.3    |                                    |         |        |            | 158.3                   | 14.0  | 2.0   | 7   |
| 129 R  | 153.0  | 147.2  | 140.7X   |                                    | 147.0X  | 12.5   | 6.1        | 153.6                   | 11.9  | 9.6X  | 6   |
| 330 H  | 158.9  | 157.6  |          |                                    | 158.3   | 17.4   | . 9        | 158.4                   | 18.0  | 2.8   | 6   |
| 131 R  | 59.9   | 179.5X | 161.8    |                                    | 167.1   | 18.1   | 10.8       | 167.3*                  | 19.6  | 6.6   | 7   |
| 133 A  | 154.8  | 158.7  | 151.0    |                                    | 154.8   | 13.7   | 3.8        | 155.0                   | 16.1  | 2.7   | 7   |
| 136 H  |        | 153.5  | 153.0    |                                    | 153. 4  |        |            | 153.4                   | 17.0  | 3.2   | 7   |
|        |        |        |          |                                    |         |        |            | 155.4                   | 13.0  | 3.2   | 7   |
|        |        |        | 154.9S   |                                    | 160.1   |        |            | 160.6                   |       |       | 7   |
|        | 154.9  | 163.0  | 157.0    |                                    | 161.0   |        | 2.4        | 163.1<br>159.7          |       |       | 7   |
| 209 K  | 204.   | 207.   | 20.00    |                                    | 13141   | 2004   |            |                         |       |       |     |
| 246 H  | 157.4  | 153.3  | 154.8    |                                    | 155.2   |        | 2.1        | 154.1<br>157.8          | 10.9  | 3.0   | 7   |
| 141 H  | 157.8  | 158.3  | 158.35   |                                    | 158.1   | 7.9    | .3         | 157.8                   | 9.5   | . 9   | 7   |
| 142 A  | 264.5  | 162.8  | 162.8    |                                    | 163.3   | 14.2   | . 8        | 163.0                   | 14.0  | 3.1   | 7   |
| 143 H  |        | 157.2  |          |                                    | 157.4   |        |            |                         |       |       | 6   |
|        |        | 154.5  |          |                                    | 158.1   |        |            | 156.7                   |       |       |     |
| 147 H  | 155.3  | 164.3  | 156.4    |                                    | 158 7   | 13.6   | A 0        | 150 2                   | 15.6  | 3.1   | 7   |
| 549 H  | 100.0  | 162.5  |          |                                    | 150.7   | 15.0   | 2.3        | 158.2<br>164.3<br>156.3 | 16.4  | 3.8   | 6   |
| 159 H  | 157 4  |        |          |                                    | 100.0   | 15.1   | 2.3        | 104.3                   | 10.4  | 3.5   |     |
| 161 *X | 157.6  | 159.1  | 152.3    |                                    | 150.4   | 10.4   | 5.0        | 150.5                   | 15.0  | 2.8   | 7   |
|        | 155.3  |        | 159.1    |                                    | 160.4   |        | 5.8        | 162.5                   | 17.8  | 4.8   |     |
| 163 H  | 154.1  | 157.6  | 158.7    |                                    | 1 56.8  | 18.3   | 2.4        | 156.2                   | 10.8  | 3.3   | 7   |
| 165 R  | 155.6  | 162.7  | 166.1    |                                    | 161.5   | 12.8   | 5.4        | 158.7                   | 13.5  | 4.4   |     |
| 266 H  | 162.2  | 165.4  | 169.7    |                                    | 161.5   | 14.7   | 3.7        | 164.2                   | 14.5  | 3.6   | 7   |
| 167 H  | 168.7  | 165.2  | 161.8    |                                    | 165.2   | 13.5   | 3.4        | 164.1                   | 10.5  | 5.1   | 7   |
| 169 I  | 155.4  | 154.0  | 153.4    |                                    | 154.3   |        | 1.0        | 152.9                   |       | 4.0   | 6   |
|        | 161.2  | 153.5  | 157.4    |                                    | 157.4   |        |            | 157.9                   |       | 2.6   | 7   |
|        |        |        |          |                                    |         |        |            |                         |       |       | ·   |
| 172 H  |        | 159.4  | 170.8X   |                                    |         |        | 6.0        |                         |       |       | 7   |
|        |        | 160.4  | 158.5    |                                    | 161.0   |        |            | 161.5                   |       |       | 7   |
|        |        | 159.5  | 150.6    |                                    | 157.0   |        |            | 161.7                   |       | 7.2   | 7   |
|        | 164.2  | 158.9  | 152.3    |                                    | 158.5   |        |            |                         | 15.7  | 6.3   | 7   |
| 176 H  | 160.5  | 166.4  | 161.6    |                                    | 162.8   | 13.7   | 3.1        | 161.4                   | 14.2  | 4.2   | 7   |
| :77 H  | 168.3  |        | 157.8    |                                    | 163.0   | 10.0   | 7.4        | 156.6                   | 11.2  | 6.3   | 6   |
| 184 H  | 159.0  |        |          |                                    | 159.0   |        |            | 160.5                   |       |       | 5   |
| 286 I  | 155.3  | 157.0  | 161.1    |                                    | 157.8   |        |            | 156.4                   |       |       |     |
| 188 I  |        | 150.3  |          |                                    | 152.7   |        |            | 154.5                   |       | 2.1   |     |
| 274 H  |        | 158.7  | 157.8    |                                    | 158.2   |        | •5         | 158.5                   |       | .4    | 7   |
|        |        |        | -        |                                    |         |        | -          |                         |       |       |     |

LINERBOARD 6917

### COLLABORATIVE REPERENCE PROGRAM REPORT NO. 108 BURSTING STRENGTE (MULLEN), PSI

SEPTEMBER 1978

|             |     |         | IS MONTE |         | TH   | IS MON | TH   |       | CUMUL | ATIVE |       |     |
|-------------|-----|---------|----------|---------|------|--------|------|-------|-------|-------|-------|-----|
| CODI        | e v | W K - 2 | MK-S     | WE-3    | WE-4 | MEAN   | SDR  | SDWES | MBAN  | SDR   | SDWKS | WES |
| 283         | H   | 154.9   | 155.3    | 154.6   |      | 154.9  | 8.0  | .4    | 156.8 | 9.9   | 2.8   | 7   |
| 287         | A   | 157.9   | 167.8    | 154.7   |      | 160.2  | 16.2 | 6.8   | 158.3 | 15.8  | 5.4   | 7   |
| 327         | М   | 150.4   | 156.3    | 158.7   |      | 155.1  | 15.0 | 4.3   | 155.1 | 15.0  | 4.3   | 3   |
| 350         | H   | 152.0   | 151.1    | 153.0   |      | 152.0  | 18.8 | 1.0   | 154.4 | 17.5  | 4.2   | 7   |
| 5 <b>53</b> | М   | 158.6   | 154.3    | 157.7   |      | 156.9  | 13.0 | 2.3   | 157.4 | 17.1  | 1.4   | 7   |
| 562         | A   | 366.3   | 163.2    | 157.2   |      | 162.2  | 14.3 | 4.5   | 164.5 | 13.4  | 4.6   | 7   |
| 568         | 1   | 163.6   | 164.3    | 152.9   |      | 160.3  | 13.0 | 6.4   | 154.8 | 13.3  | 7.1   | 7   |
| 569         | A   | 155.3   | 164.3    | 161.5   |      | 160.4  | 12.6 | 4.6   | 159.5 | 13.1  | 4.7   | 5   |
| 590         | * X | 159.9   | 169.58   | 173.1XS |      | 167.5  | 5.1  | 6.8   | 163.7 | 4.6X  | 5.6   | 7   |
| 658         | H   | 167.7   | 168.9    | 157.8   |      | 164.8  | 16.2 | 6.1   | 164.8 | 16.2  | 6.1   | 3   |

|          | WK-1  | WK-2  | WK-3  | WE-4 | THIS         | GRAND<br>MONTH | AVERAGES<br>CUMULATIVE | 7 WEEKS |
|----------|-------|-------|-------|------|--------------|----------------|------------------------|---------|
| AV MEAN  | 158.8 | 159.0 | 157.7 |      | AV MEAN      | 158.5          | 158.4                  |         |
| AV SDR   | 34.4  | 14.4  | 14.1  |      | AV SDR       | 14.3           | 14.2                   |         |
| SD LABS  | 4.8   | 5.5   | 5.0   |      | ' ' SP 'LABS | 5.1            | 4.7                    |         |
| NO. INCL | 59    | 59    | 58    |      | NO. INCL     | 58.7           | 59.4                   |         |
| NO. OMIT | 4     | 3     | 5     |      | AV SDWES     | 3.9            | 3.8                    |         |
| NOT RCD  | 2     | 3     | 2     |      | SD CUM ME    | IN             | 3.4                    |         |

# COLLABORATIVE REFERENCE PROGRAM SEPTEMBER 1978 REPORT NO. 108 BUESTING STRENGTH (MULLEN), PSI

| LAB   |     |      | MEANS THIS MONTH<br>WE-2 WE-3 |                                           | TH     | IS MONTH                             |                         | CUMULATIVE   |     |
|-------|-----|------|-------------------------------|-------------------------------------------|--------|--------------------------------------|-------------------------|--------------|-----|
| CODE  | ٧   | WK-2 | WE-2 WE-3                     | WE-4                                      | MEAN   | SDR SDWKS                            | MBAN                    | SDR SDWKS    | WES |
|       |     |      |                               |                                           |        |                                      |                         |              |     |
| 100   |     |      |                               | 160.5                                     | 160.5  | 16.0                                 | 160.5                   |              | 1   |
| 805   |     |      |                               | 158.2                                     | 158.2  | 14.2                                 | 158.2                   | 14.2<br>13.6 | 1   |
| 102   |     |      |                               | 160.9                                     | 160.9  | 14.2<br>13.6<br>12.9<br>10.2         |                         |              | 1   |
| 103   |     |      |                               | 158.3                                     | 158.3  | 12.9                                 | 158.3                   |              | 1   |
| 107   | A   |      |                               | 154.7                                     | 154.7  | 10.2                                 | 154.7                   | 10.2         | 1   |
|       |     |      |                               |                                           |        |                                      |                         |              |     |
| 108   | M   |      |                               | 152.8                                     | 152.8  | 23.2                                 | 152.8                   |              | 1   |
| 209   | H   |      |                               | 162.1                                     | 162.1  | 17.0                                 | 162.1                   |              | 1   |
| 210   | М   |      |                               | 144.1X                                    | 144.1X | 15.1                                 | 144.1X                  |              | 1   |
| 112   | M   |      |                               | 166.8                                     | 166.8  | 14.0                                 | 166.8                   | 14.0         | 1   |
| 112   | Ħ   |      |                               | 159.1                                     | 159.1  | 23.2<br>17.0<br>15.1<br>14.0<br>13.6 | 159.1                   | 13.6         | 1   |
|       |     |      |                               |                                           |        |                                      |                         |              |     |
| 113   | R   |      |                               | 157.1                                     | 157.1  | 13.8                                 | 157.1                   | 13.8         | 1   |
| 114   | A   |      |                               | 163.7                                     | 163.7  | 12.6                                 | 163.7                   | 12.6         | 1   |
| 115   | R   |      |                               | 145.4                                     | 145.4  | 17.9                                 | 145.4*                  | 17.9         | 1   |
| 116   | H   |      |                               | 172.1                                     | 172.1  | 18.9                                 | 172.1=                  | 18.9         | 1   |
| 117   | H   |      |                               | 150.4                                     | 150.4  | 13.8<br>12.6<br>17.9<br>18.9<br>17.5 | 150.4                   | 17.5         | 1   |
|       |     |      |                               |                                           |        |                                      |                         |              |     |
| 119   | H   |      |                               | 167.9                                     | 1,67.9 | 14.9<br>13.4<br>18.8<br>11.1         | .167.9                  | 14.9         | 1   |
| 120   | R   |      |                               | 150.7                                     | 156.7  | A SAB HALL                           | 150.7                   | 18.8         | 1   |
| 121   | M   |      |                               | 159.2                                     | 159.2  | 13.4                                 | 159.2                   | 13.4         | 1   |
| 123   |     |      |                               | 162.6                                     | 162.6  | 18.8                                 | 162.6                   | 18.8         | 1   |
| 125   |     |      |                               | 158.8                                     | 158.8  | 11.1                                 | 158.8                   | 11.1         | 1   |
|       |     |      |                               |                                           |        |                                      |                         |              |     |
| 127   | H   |      |                               | 161.2                                     | 161.2  | 9.1<br>20.3<br>3.1<br>19.4<br>10.5   | 161.2                   | 9.1          | 1   |
| 128   |     |      |                               | 149.0                                     | 149.0  | 20.3                                 | 149.0                   | 20.3         | 1   |
| 129   |     |      |                               | 150-15                                    | 150.1  | 3.1                                  | 150.1                   | 3.1 X        | 1   |
| 130   |     |      |                               | 157.1                                     | 157.1  | 19.4                                 | 157.1                   | 19.4         | 1   |
|       | R   |      |                               | 168.8                                     | 168.8  | 10.5                                 | 168.8                   | 10.5         | ī   |
| 200   | ••  |      |                               |                                           |        |                                      |                         |              | -   |
| 133   | A   |      |                               | 148.9                                     | 148.9  | 11.2                                 | 148.9                   | 11.2         | 1   |
| 136   |     |      |                               | 157.7                                     | 157.7  | 15.4                                 | 157.7                   | 15.4         | 1   |
|       | Ħ   |      |                               | 160.2                                     | 160.2  | 19.1                                 | 160.2                   | 19.1         | 1   |
| \$38  |     |      |                               | 158.9                                     | 158.9  | 13.7                                 | 158.9                   | 13.7         | 1   |
| 139   |     |      |                               | 157.2                                     | 157.2  | 11.2<br>15.4<br>19.1<br>13.7<br>15.4 | 157.2                   | 15.4         | 1   |
| 400   | Ex. |      |                               | 10112                                     | 19/02  | 1044                                 | . 51.62                 | 10.4         | •   |
| 14C   | п   |      |                               | 150.5<br>157.4<br>161.9<br>159.7<br>163.1 | 150.5  | 8.0                                  | 150.5                   | 8.0          | 1   |
|       | H   |      |                               | 157.4                                     | 157.4  | 10.3                                 | 157.4                   | 10.3         | i   |
| 142   |     |      |                               | 161.0                                     | 161.0  | 15.2                                 | 161.9                   | 15.2         | î   |
| 143   |     |      |                               | 150.7                                     | 150.7  | 17.5                                 | 157.4<br>161.9<br>159.7 | 17.5         | î   |
| 147   |     |      |                               | 163.1                                     | 163 1  | 16.5                                 | 163.1                   | 16.5         | î   |
| 141   | 11  |      |                               | 10341                                     | 103.1  | 10.5                                 | 20001                   | 1015         | •   |
| 149   | ш   |      |                               | 150.1                                     | 150.1  | 1.8.7                                | 150.1                   | 18.7         | 1   |
| 159   |     |      |                               | 162.3                                     | 162 3  | 10.1                                 | 162.3                   | 10.1         | 1   |
| 161 • |     |      |                               | 167 4                                     | 162.5  | 19.0                                 | 163 4                   | 10.0         | î   |
| 163   |     |      |                               | 157 4                                     | 157 4  | 11 2                                 | 157 A                   | 11.2         | 1   |
| 166   |     |      |                               | 162.0                                     | 162 0  | 18.7<br>19.1<br>18.0<br>11.2<br>18.4 | 162 0                   | 10 4         | 1   |
| 100   | 23  |      |                               | 102.0                                     | .02.0  | 1014                                 | 102.0                   | 4 U 4 4      | •   |
| 567   | н   |      |                               | 169.3                                     | 169.3  | 14.0                                 | 169.3                   | 14.0         | 1   |
| 169   |     |      |                               | 158.0                                     | 158.0  | 15.8                                 | 158.0                   |              | 1   |
|       |     |      |                               | 158.7                                     | 158.7  | 14.0<br>15.8<br>13.3<br>18.2<br>10.3 | 158.7                   | 13.3         | 1   |
| 172   |     |      |                               | 167 0                                     | 163 0  | 10.3                                 | 167 0                   | 13.3         | î   |
| 173   |     |      |                               | 160 0                                     | 160.8  | 10.2                                 | 160.8                   |              | 1   |
| 2.0   | **  |      |                               | 158.0<br>158.7<br>163.8<br>160.8          | 100.0  | 1000                                 | 10000                   | 1003         |     |
| 174   | н   |      |                               | 165.1                                     | 155 1  | 18.7                                 | 156 1                   | 18.7         | 1   |
| 175   |     |      |                               | 163.3                                     | 163.7  | 14.8                                 | 163.3                   | 14.8         | 1   |
|       |     |      |                               | 164.9                                     | 164 0  | 17.6                                 | 164 0                   | 17.6         | 1   |
|       | H   |      |                               | 165.6                                     | 165.6  | 14.1                                 | 165.6                   | 14.1         | 1   |
|       | H   |      |                               | 161.4                                     | 161 4  | 18.7<br>14.8<br>17.6<br>14.1<br>21.0 | 161 4                   | 21.0         | 1   |
| 204   | а   |      |                               |                                           |        |                                      |                         |              | •   |
| 186   | т   |      |                               | 159.2                                     | 150 2  | 18.0                                 | 159.2                   | 18.0         | 1   |
| 188   |     |      |                               | 153.3                                     | 153.3  | 10.4                                 | 153.3                   | 10.4         | 1   |
| 274   |     |      |                               | 150.3                                     | 158.3  | 10.3                                 | 150.3                   | 10.3         | 1   |
|       |     |      |                               | 155.3                                     | 155.3  | 10.2                                 | 155 7                   | 10.2         | 1   |
|       | A   |      |                               | 154.3                                     | 154.3  | 18.0<br>10.4<br>10.3<br>10.2<br>14.4 | 154.3                   | 14.4         | 1   |
|       |     |      |                               | -00                                       | 2040   | - ***                                | 20400                   |              |     |

LINERBOARD 6918

# Collaborative reference program report no. 108

SEPTEMBER 1978

|   | BURSTING | STRENGTE | (MULLEN), | PSI |  |
|---|----------|----------|-----------|-----|--|
| ı | MONIE    |          | THIS MON  | ги  |  |
| - |          |          |           |     |  |

| I | LAB |     |         | MEANS TH | IS MONTE |        | TH    | IS MON | TH    |       | CUMUL | ATIVE |     |
|---|-----|-----|---------|----------|----------|--------|-------|--------|-------|-------|-------|-------|-----|
| ( | ODE | V   | W E - 1 | WE-2     | WK-3     | WE-4   | MEAN  | SDR    | SDWKS | MBAN  | SDR   | SDVES | VKS |
| 3 | 327 | M   |         |          |          | 153.4  | 153.4 | 15.5   |       | 153.4 | 15.5  |       | 1   |
| 3 | 350 | H   |         |          |          | 153.4  | 153.4 | 16.2   |       | 153.4 | 16.2  |       | 1   |
| 6 | 553 | М   |         |          |          | 162.7  | 162,7 | 18.7   |       | 162.7 | 18.7  |       | 1   |
| 5 | 562 | A   |         |          |          | 152.0  | 152.0 | 16.9   |       | 152.0 | 16.9  |       | 1   |
| 5 | 68  | I   |         |          |          | 164.7  | 164.7 | 14.7   |       | 164.7 | 14.7  |       | 1   |
| 6 | 569 | A   |         |          |          | 167.9  | 167.9 | 13.5   |       | 167.9 | 13.5  |       | 1   |
| 5 | 590 | * X |         |          |          | 166.48 | 166.4 | 4.5    |       | 166.4 | 4.51  |       | 1   |
| 6 | 558 | H   |         |          |          | 150.2  | 150.2 | 14.9   |       | 150.2 | 14.9  |       | 1   |
|   |     |     |         |          |          |        |       |        |       |       |       |       |     |

|          | WK-3 | WE-2 | WE-3 | WE-4    |     | THIS   | GRAND<br>MENTH | AVERAGES<br>CUMULATIVE | 1 WEEKS |
|----------|------|------|------|---------|-----|--------|----------------|------------------------|---------|
| AV MEAN  |      |      |      | 158.8   | AV  | MBAN   | 158.8          | 158.8                  |         |
| AV SDR   |      |      |      | 15.1    | AV  | SDR    | 15.1           | 15.1                   |         |
| SD LABS  |      |      |      | 5.7     | SD  | LABS   | 5.7            | 5.7                    |         |
| NO. INCL |      |      |      | 60      | NO. | INCL   | 60.0           | 60.0                   |         |
| NO. GMIT |      |      |      | 3       | AV  | SDVKS  | .0             | .0                     |         |
| NOT RCD  |      |      |      | 0 1 * * | SD  | CUM ME | AN             | 5.7                    |         |

CORRUG. MEDIUM 26C3 COLLABORATIVE REFERENCE PROGRAM SEPTEMBER 1978
REPORT NO. 108
FLAT CRUSE STRENGTH (CONCORA), LB

| LAB        |         | EANS THI      | S MONTE              |                      | THI                                  | S MON |                   |                               | CUMULAT |       |     |
|------------|---------|---------------|----------------------|----------------------|--------------------------------------|-------|-------------------|-------------------------------|---------|-------|-----|
| CQDE A     | W K - 1 | WK-2          | WE-3                 | ₩E -4                | MEAN                                 | SDR   | SDWKS             | MBAN                          | SDR S   | BDWES | WES |
|            |         |               |                      |                      |                                      |       |                   |                               |         |       |     |
| 100        |         | 64.3          | 64.4                 | 64.1                 | 64.3                                 | 3.1   | •1                | 63.7                          | 2.9     | .9    | 16  |
| 102        |         | 63.4          | 63.1                 | 63.0                 | 63.1                                 | 2.7   | • 2               |                               | 2.8     | . 6   | 13  |
| 106        | 63.0    | 62.6          | 65.3                 | 64.0                 | 63.8                                 |       |                   |                               |         | 1.8   | 16  |
| 110        | 64.6    |               | 63.3                 | 63.6                 | 63.8                                 | 3.1   | .7                | 64.2                          | 3.1     | 1.4   | 13  |
| 113        | 63.6    | 63.7          | 62.6                 | 63.2                 | 63.3                                 | 2.8   | . 5               | 63.2                          | 2.8     | •6    | 16  |
|            |         |               |                      |                      |                                      |       |                   |                               |         |       |     |
| 114        | 59.9    | 60.0          | 59.6                 | 59.8                 | 59.8                                 | 2.3   | • 2               | 60.8                          | 2.6     | 1.1   | 16  |
| 115        | 62.4    | 65.8          | 64.7                 | 65.9                 | 64.7                                 | 2.5   | 1.6               | 63.6                          | 2.5     | 1.9   | 16  |
| 116        | 60.4    | 60.3          | 60.9                 | 60.4                 | 60.5                                 | 1.3   | .3                | 60.8                          | 1.5X    | . 4   | 16  |
| 119        | 63.8S   |               | 63.5                 | 62.1                 | 63.2                                 | 4.0   | . 9               | 62.6                          | 3.2     | 1.8   | 14  |
| 120        | 63.5    | 63.2          | 62.8                 | 65.2                 | 63.7                                 | 2.9   | 1.1               | 64.7                          |         | 1.2   | 15  |
|            |         |               |                      |                      |                                      |       |                   |                               |         |       |     |
| 125        | 66.4    | 69.1X         | 68.0                 | 68.2                 | 67.9                                 | 2.9   | 1.1               | 69.0X                         | 3.1     | 1.6   | 16  |
| 128        | 61.9    | 62.2          | 62.8                 | 61.6                 | 62.2                                 | 2.1   | .5                | 62.2                          | 2.3     | •7    | 16  |
| 136        | 68.4    | 68.0          | 65.9                 | 65.6S                | 62.2<br>67.0<br>65.6                 | 3.5   | 1.4               | 67.1*                         | 3.6     | 1.2   | 16  |
| 138        | 63.2    | 66.5          | 66.7                 | 65.9                 | 65.6                                 | 3.1   | 1.6               | 66.6                          | 3.0     | 1.6   | 16  |
| 140        | 64.4    | 61.6          | 61.9                 | 62.3                 | 67.9<br>62.2<br>67.0<br>65.6<br>62.6 | 3.2   | 1.3               | 62.6                          | 3.0     | 1.1   | 16  |
|            |         |               |                      |                      |                                      |       |                   | -                             | -       |       |     |
| 143        | 63.0    | 62.8          | 62.5                 | 62.9                 | 62.8                                 | 2.3   | 2                 | 62.6                          | 2.2     | .7    | 15  |
|            | 66.1    | 65.9          | 66.2                 | 68-15                | 66.6                                 | 3.4   | 1.0               | 65.9                          | 3.6     | 4.2X  |     |
|            | 58.8    | 59.5          | EO A                 | ED AV                | 59.0                                 | 3.1   |                   | 62.1                          |         | 2.6X  | 16  |
| 167        | 66.1    | 66.1          | 65.8                 |                      |                                      | 3.2   | . 2               | 65.5                          | 2.9     | 2.0   | 16  |
| 177        | 64.6    | 00.1          | 65.4                 | 66.2                 | 64.8                                 |       | .6                | 64.7                          |         | .8    | 13  |
| 2          | 04.0    |               | 0004                 | 04.0                 | 04.0                                 |       | ••                |                               |         | •     |     |
| 188        | 64.7    | 63.5          | 62.7                 | 65.1                 | 64.0                                 | 2.4   | 1.1               | 63.4                          | 2.3     | 1.4   | 15  |
| 237        |         | 62.8          | 62.5                 | 62.2                 | 62.6                                 |       |                   |                               | 3.4     | 1.2   |     |
| 269        |         |               | 62.1                 | 62.2<br>62.8         | 62.4                                 |       |                   |                               | 2.8     | •7    |     |
| 274        |         |               | 63.4                 | 63.3                 | 63.4                                 |       |                   | 63.6                          |         | .2    | 16  |
| 283        | 63.8    | 63.8          | 64.2                 | 64.4                 |                                      | 2.0   |                   | 63.8                          | 2.1     | .4    | 16  |
| 203        | 03.0    | 05.0          | 04.2                 | 0404                 | 04.1                                 | 2.0   | • 5               | 05.0                          | 200     | • *   |     |
| 284        | 69.08   | 62.4          | 61 7                 | 63 A                 | 64.2                                 | 3 0   | 3.3               | 64.5                          | 3.0     | 2.3   | 16  |
| 287        | 63.7    | 64 0          | 61.7<br>67.7         | 63.4<br>67.3         | 65.9                                 | 3 3   | 1.0               | 65.3                          |         | 1.3   | 16  |
| 289        | 58.4    | 62.1          | 57.6                 | 60.7                 | 59.7                                 |       |                   | 56.5X                         |         | 4.6X  |     |
| 292        | 64.1    | 62.8          |                      | 64.3                 | 64.0                                 |       |                   | 62.8                          | 2.8     | 2.6X  |     |
| 327        | 64.1    | 64.4          | 62.9                 | 61.9                 | 63.3                                 |       | 1.2               | 63.3                          |         | 1.2   | 8   |
| 321        | 04.1    | 04.4          | 62.9                 | 01.9                 | 03,3                                 | 2.4   | 1.2               | 03.3                          | 2.6     | 104   | 0   |
| 350        | 65.8    | 66.8          | 67.1                 | 65.2                 | 66 7                                 | 2 5   | oʻ                | 66.2                          | 2.4     | . 9   | 16  |
| 351        | 50 3    | 61.2          | 61 0                 | 65.2<br>63.0<br>65.2 | 60.0                                 | 2.7   | .9'<br>1.9<br>1.4 | 61.6                          | 1 0     | 1.5   | 16  |
| 353        | 64.4    | 64.6          | 61.0                 | 65.0                 | 64.1                                 | 2 4   | 1.9               | 63.1                          |         |       | 16  |
| 355        |         | 61.5          | 63.2                 | 61 4                 | 62.1                                 | 3.1   | .8                | 62.3                          |         | .8    |     |
| 357        | 62.7    |               | 62.6                 | 61.4<br>62.5         | 62.6                                 |       |                   | 62.3                          |         | • 0   | 16  |
| 357        | 02.1    | 62.4          | 02.0                 | 02.5                 | 02.0                                 | 201   | • 1               | 02.3                          | 2.4     | . 8   | 10  |
| 363        | 61.9    | 44 7          | 40.4                 | 60.7                 |                                      | 2 6   |                   |                               | 0.5     | 1.0   | 16  |
| 365        | 50.4    | 61.7<br>55.6% | 50.0                 | 60.3                 | 61.1<br>58.1X<br>67.7                | 2.5   |                   | 61.4<br>59.6*<br>66.5<br>62.7 | 2.5     |       | 16  |
|            | 66.8    | 22.01         | 68.2                 | 60.3                 | 20.1A                                | 2.0   | 1.9               | 59.0W                         | 3.2     | 1.8   | 13  |
|            | 61.8    | 61 7          | 61.2                 | 62.2                 | 67.7<br>61.7                         |       | . 4               | 62.7                          | 2.8     | 1.6   | 16  |
| 377        | 65.5    | 65.3          | 64.3                 | 62.98                |                                      |       | 1.2               | 64.6                          |         |       | 15  |
| 311        | 05.5    | 02.3          | 04.5                 | 02.95                | 04.5                                 | 3.3   | 1.2               | 04.0                          | 2.9     | • 9   | 15  |
| 379        | 63.7    | 62.8          | 62.3                 | 63.6                 | 63.1                                 | 3.1   | . 8               | 63.2                          | 3.0     | .7    | 16  |
| 381        | 63.1    | 63.2          | 62.8                 | 62.9                 |                                      |       | .2                | 62.6                          |         | . 9   | 15  |
| 383        | 62.8    | 63.2          |                      |                      |                                      | 2.2   |                   |                               | 2.6     | • •   | 11  |
| 385        | 61.9    | 59.8          | 64.4                 | 63.5<br>60.3         | 63.5<br>60.5                         |       |                   |                               | 3.1     | .9    |     |
| 387        | 64.8    |               |                      |                      |                                      |       |                   | 61.5                          |         | 1.9   | 16  |
| 387        | 04.8    | 63.7          | 64.3                 | 65.0                 | 64.4                                 | 3.1   | .6                | 63.0                          | 3.3     | 1.4   | 15  |
| 704        | 44 0    | 50.0          |                      | 57 AV                |                                      |       |                   | 50 7×                         | 7.0     | 4 0   |     |
| 391        | 61.8    | 59.9<br>62.6  | 57.7<br>64.9<br>63.9 | 57.0X<br>64.5        | 59.1<br>64.3                         | 3.2   | 2.2               | 59.3*                         |         | 1.9   | 12  |
| 393<br>395 | 65.0    | 02.0          | 47.0                 | 04.5                 | 0.00                                 |       | 1.1               | 66.3                          | 2.4     | 1.9   | 16  |
| 395<br>397 | 66.0    | 65.9          | 03.9                 | 64.7                 |                                      | 3.4   |                   | 65.9                          | 3.1     | 1.7   | 16  |
| 397<br>399 |         |               | 63.0                 | 63.0                 | 63.0                                 |       |                   | 63.9                          |         | 1.5   | 16  |
| 379        | 60.2    | 61.6          | 62.6                 | 62.7                 | 61.8                                 | 3.0   | 1.2               | 61.7                          | 2.7     | 1.1   | 16  |
| 557        |         |               |                      |                      |                                      |       |                   |                               |         |       |     |
|            | 61.2    |               |                      | 62.1                 | 61.8                                 |       |                   | 62.0                          |         | .6    | 15  |
| 555        | 65.0    | 64.8          | 64.1                 | 63.4                 | 64.3                                 |       |                   |                               |         | 1.4   | 16  |
| 562        | 66.8    | 64.6          | 64.0                 | 63.5                 | 64.8                                 | 3.2   | 1.5               | 64.0                          | 3.3     | 1.0   | 16  |
| 568        | 64.5    | 68.2          |                      | 65.7                 | 66.1                                 | 3.2   |                   | 64.5                          | 3.0     | 1.8   | 16  |
| 578        | 58.3    | 62.2          | 60.8                 | 67.6                 | 62.2                                 | 3.1   | 3.9               | 64.0                          | 3.4     | 3.7X  | 15  |

# CORRUG. MEDIUM 26C3 COLLABORATIVE REFERENCE PROGRAM ESPORT No. 108

SEPTEMBER 1978

|          | MOLONI    | MO.  | 100          |   |
|----------|-----------|------|--------------|---|
| FLAT CRU | SH STRENC | TH ( | CONCORA), LE | 3 |

| LAB      | h       | EANS THE | MONTE |      |       | TH           | S MONT | H     |         | CUMUL | ATIVE  |     |
|----------|---------|----------|-------|------|-------|--------------|--------|-------|---------|-------|--------|-----|
| CODE V   | W E - 2 | WK-2     | WK-3  | WK-4 |       | MBAN         | SDR    | SDWES | MBAN    | SDR   | SDWES  | WES |
| 579      | 67.2    | 67.6     | 66.0  | 67.6 |       | 67.1         | 3.3    | •7    | 67.3*   | 3.5   | 1.2    | 16  |
| 609      | 61.6    | 63.9     | 60.0  | 62.2 |       | 6 <b>2.0</b> | 3.0    | 1.6   | 61.6    | 3.0   | 2.0    | 15  |
|          |         |          |       |      |       |              |        | GRAND | AVERAGE | ts.   |        |     |
|          | WK - 2  | WK-2     | WE-   | 3    | WK -4 |              | THIS   | MONTH |         |       | 16 WEE | ES  |
| AV WEAN  | 63.4    | 63.4     | 63.2  | 2    | 63.8  | AV           | MEAN   | 63.4  | 6       | 3.5   |        |     |
| AV SDR   | 2.8     | 2.8      | 2.0   | 8    | 2.6   | AV           | SDR    | 2.7   |         | 2.8   |        |     |
| SD LABS  | 2.4     | 2.1      | 2.4   | 4    | 2.1   | SD           | LABS   | 2.3   |         | 2.2   |        |     |
| NG. INCL | 57      | 51       | 57    |      | 55    | NO.          | INCL   | 55.0  |         | 54.9  |        |     |
| NO GNIT  | o       | 2        | 0     |      | 2     | AV           | SDWES  | 1.0   |         | 1.2   |        |     |
| NOT RCD  | 0       | 4        | 0     |      | 0     | SD           | CUM ME | IAN   |         | 1.8   |        |     |
| SD SHTS  | 1.6     | 1.8      | 1.0   | 6    | 1.7   |              |        |       |         | -     |        |     |

. . . .

| NBS-114A (REV. 9-78)                                                                                      |                                                                                                                                                                                                                                                      |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U.S. DEPT. OF COMM.                                                                                       | 1. PUBLICATION OR REPORT NO. 2.Gov                                                                                                                                                                                                                   | L Accession No. 3. Recipient's                                                                                           | Accession No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BIBLIOGRAPHIC DATA SHEET                                                                                  | FKBG CRP 108                                                                                                                                                                                                                                         |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4. TITLE AND SUBTITLE                                                                                     |                                                                                                                                                                                                                                                      | 5. Publication                                                                                                           | n Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                           | 1/17/79                                                                                                                                                                                                                                              |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CONTAINERBOARD Collaborative Refe                                                                         |                                                                                                                                                                                                                                                      | Organization Code                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report #108                                                                                               | Tonco Hogiam for containcreate                                                                                                                                                                                                                       | SA CARVISIAN                                                                                                             | Commerce to the state of the st |
| 7. AUTHOR(S)                                                                                              |                                                                                                                                                                                                                                                      | 8. Performing                                                                                                            | Organ, Report No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                           |                                                                                                                                                                                                                                                      |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| J. Horlick, J. F.                                                                                         | NBSIR 7                                                                                                                                                                                                                                              |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9. PERFORMING ORGANIZATIO                                                                                 | IN NAME AND ADDRESS                                                                                                                                                                                                                                  | 78º 1-10 lect/ 13                                                                                                        | sk/Work Unit No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NATIONAL BUREAU OF<br>DEPARTMENT OF COMM<br>WASHINGTON, DC 20234                                          |                                                                                                                                                                                                                                                      | 11. Contract/C                                                                                                           | Grant No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12. SPONSORING ORGANIZATION                                                                               | ON NAME AND COMPLETE ADDRESS (Street, City, St.                                                                                                                                                                                                      | ate, ZIP) 13. Type of Re                                                                                                 | eport & Period Covered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                           | ting Services, Inc., 9241 Wood G1                                                                                                                                                                                                                    |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                           | 22066; and American Paper Institu                                                                                                                                                                                                                    | te/                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fourdrinier Ki                                                                                            | raft Board Group                                                                                                                                                                                                                                     | 14. Sponsoring                                                                                                           | Agency Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| means for checking<br>in comparison with<br>by-product of the<br>of the testing art<br>for each participa | erence Programs provide participally periodically the level and unifing that of other participating labeled programs is the provision of react. This is one of the periodic react, within and between laborator articipants and standards committed. | formity of their test<br>oratories. An impor-<br>listic pictures of t<br>reports showing avera<br>by variability, and co | ring<br>rtant<br>the state<br>ages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Collaborative refe                                                                                        | erence program; Containerboard; L<br>ncce samples, Testing calibration                                                                                                                                                                               |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18. AVAILABILITY                                                                                          | Unlimited                                                                                                                                                                                                                                            | 19. SECURITY CLASS (THIS REPORT)                                                                                         | 21. NO. OF<br>PRINTED PAGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| For Official Distribution.                                                                                | Do Not Release to NTIS                                                                                                                                                                                                                               | UNCLASSIFIED                                                                                                             | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Order From Sup. of Doc.,<br>20402, SD Stock No. SNO                                                       | U.S. Government Printing Office, Washington, DC 03-003-                                                                                                                                                                                              | 20. SECURITY CLASS<br>(THIS PAGE)                                                                                        | 22. Price                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Order From National Tec<br>VA. 22161                                                                      | hnical Information Service (NTIS), Springfield,                                                                                                                                                                                                      | UNCLASSIFIED                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |