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Analytical and numerical techniques
FOR analyzing AN ELECTRICALLY SHORT DIPOLE WITH A NONLINEAR LOAD

Motohlsa Kanda

Electromagnetic Fields Division
National Bureau of Standards

Boulder, Colorado 80303

An electrically short dipole with a nonlinear dipole load is analyzed
theoretically using both the analytical and numerical techniques. The
analytical solution is given in terms of the Anger function of imaginary
order and imaginary argument, and is derived from the nonlinear differ-
ential equation for the Thevenin's equivalent circuit of a dipole with
a diode. The numerical technique used was to solve the nodal equation
using a time-stepping finite difference equation method. The nonlinear
resistance of the diode is treated using an iteration technique. A
comparison between the analytical and numerical solutions is given.

Key words: Anger function; electrically-short dipole; iteration method;
nonlinear differential equation; nonlinear load; time-stepping finite
difference equation technique.

1. Introduction

It is well accepted that microwave radiation can produce biological effects. Although
it is very difficult to d(_Cermine the biological hazards associated with electromagnetic (KM)
fields, the biological effects resulting from the EM fields can be adequately described from
knowledge of one or more parameters that characterize the EM field. One of the advocated
field parameters for quantifying hazardous EM fields is an electric energy density which can
easily be calculated from the electric field strength [1]. For this reason, the National
Bureau of Standards has recently developed a broadband, isotropic electric energy density
meter (EDM). The EDM consists of three orthogonal, electrically short dipoles with diode
detectors between the arms of the dipoles. To synthesize sul i an EDM in terms of its fre-
quency response and its dynamic range, one needs to analyze theoretically an electrically
short dipole with a nonlinear load such as a diode.

Traditionally, the characteristics of an antenna with a nonlinear load have been
analyzed in the frequency domain by considering the spectral components the solutions at
harmonic frequencies [2]. For example, Sarker and Weiner [3] have used the Volterra series
analysis to obtain the scattering due to nonlinearly loaded antennas. The nonlinear
transfer function of a nonlinearly loaded antenna was determined at several harmonic fre-
quencies. However, the calculation of the nonlinear transfer function is generally very
tedious, particularly when the circuit model of the nonlinear load is complicated and its
nonlinearity is strong. For this reason, recent analyses of the nonlinearly loaded antennas
have been considered using direct time-domain techniques. Schuman [4] has described the
application of the time-domain method of moments technique to determine the scattering
current on a thin wire with discrete nonlinear resistive loadin^v Lin and Tesche [5,6] have
used frequency-domain data to compute the time-dependent currents and voltages across the
nonlinear load by means of the Laplace transform. A unified numerical procedure was
recently proposed by Landt [7]. The antenna characteristics were derived from a time-domain
electric field integral equation, whereas the nonlinear network analysis was performed in a
simple time-domain nodal analysis.

In this paper, two techniques for analyzing an electrically short dipole with a non-
linear load are described. The first technique, described in Section 2.1, gives an analyt-
ical solution to the first-order, nonlinear time-domain differential equation in terms of
Anger functions. The second technique, described in Section 2.2, is a time-stepping, finite
difference solution technique for obtaining the numerical solution to the time-domain non-
linear differential equation. The nonlinear effect due to a diode is solved by a conven-
tional iteration method. This numerical technique gives the physical insight for the



nonlinear load effects on antennas in terms of the time-domain waveform, and also permits

the consideration of certain problems which are too complicated to be treated by an analyti-

cal technique.

The nonlinear effects on an electrically short dipole are first investigated in

Section 3 in the time domain using a time-stepping, finite difference solution technique.
The frequency responses and the dynamic ranges of the dipole with a nonlinear diode are

then compared using the two different techniques described above.

2. Theory

Using the frequency-domain concept of the effective length and the driving point
Impedance of an electrically short dipole without a nonlinear load, the th^venin's equiv-
alent circuit for a diode with a nonlinear load is shown in Fig. 1. The element v^(t) is

the induced, open-circuit voltage at the dipole terminal and is given by

:: ,

•

V -i(^> = ^inc^^) • K •
<i>

where e. is the normal, incident electric field strength and h is the effective length
inc e

of the dipole. The element is the equivalent driving point capacitance of the dipole.

A parallel combination of a linear capacitance and a nonlinear resistance represents

a simplified model of a diode.

For an electrically short dipole antenna (i.e., kh<l where k is free-space wave number),
the effective length h and the driving point capacitance C of the antenna are given
by [81 ,

^
.

^

•
:

^
^
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and
,
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^a " 4)
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The symbols have the following meanings: h is half the physical length of a dipole antenna

in meters, is the free-space permittivity in farads/meter, and J2 is the antenna thickness

factor (i.e., f2 = 2 £.n(2h/a) where a is the antenna radius in meters).

When h = 0.02 m and a = 2.84 x 10 ^ m (i.e., the antenna thickness factor Q = 14.50),
the effective length h and the equivalent antenna input capacitance of the antenna C

^ -3 -12
^

become, respectively, 9.72 x 10 m and 0.2 x 10 F.

When an electrically short dipole is terminated with a nonlinear load such as a beam
lead Schottky barrier diode, the effect of loading on the antenna can be analyzed using the

simple equivalent circuit shown in Fig. 1, which consists of a parallel combination of a
nonlinear resistance R, and a linear capacitance C.. Here, the nonlinear resistance R. ofad d
the diode is characterized by its V-i characteristic, i.e.,

i(t) = I^(e«''°^^> - 1) (4>
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The symbols have the following meanings: i(t) is the current (ampere) and V^(t) is the

voltage (volt) across the diode Junction; is the saturation current which is assumed to

be 2 X 10 ^ A; and a => = 38 V ^ where q is the electronic charge (1.6 x 10 ^ coulomb),

n is the diode ideal ity factor ('v 1.05), k is Boltzmanr.'s constant (1.38 x 10~^^ J/K) , and

T is the temperature (-v 290 K)

.

The Junction capacitance and the package capacitance are combined and are shown

as C, in Fig. 1. The exact value of C, varies from diode to diode and is very difficult to
d cl

determine. In this paper, is assumed to be constant and equal to 0.34 pF for the beam

lead Schottky barrier diode. In a more elaborate diode model, the Junction capacitance

is nonlinear and is a function of the built-in potential V, as
D

C (0)

^ (1-f-)^^
b

for a step Junction. The package capacitance is generally constant. The more general

treatment of an antenna with linear and nonlinear loads, such as a nonlinear resistance and
a nonlinear junction capacitance as well as a linear package inductance and a linear series
resistance of a diode, is being pursued.

In this paper, a sf.mple nonlinear resistance with a constant diode capacitance

for the beam lead Schottky barrier diode shown in Fig. 1 is used in the following sections
for analyzing the loading effect of an electrically short dipole with a nonlinear diode
using analytical and numerical techniques.

2.1. Analytical Technique

Using th^venln's equivalent nonlinear circuit shown in Fig. 1, the voltage equation and
the corresponding current equation are given below:

q.(t) q.(t)
v,(t) = ^= v^(t) (6)

and

d

dq (t) dq (t)

^f— + -^+i(t) - 0 , (7)

where q and q, are the charges on C and C. , respectively, and i is the current through

the nonlinear resistance R,
d'

By substituting
av (t)

y(t) - e ° , (8)

one gets

+ ay^(t) + y(t)f(t) - 0 (9)
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where

al

a d

f = -
^

(1 + c,/c )
d a

I dv.

- - -^j (11)

a

Equation (9) given above is a first-order, nonlinear differential equation. The

detailed mathematical steps for solving the equation have been performed by P. F. Wacker.

When the induced voltage v^ft) is a periodic sinusoid, i.e., v^(t) = V^sin oit the detected

dc voltage averaged over a complete cycle is given by

,
2iT T J._ (jU)

V - - - an „ ^ •

'^
, (12)

e - 1

where Jj^(jU) is the Anger function of imaginary order (jT) and imaginary argument (jU);

T is the normalized period as

cil
s

03(C + C.)
a d

(13)

and U is the normalized induced voltage as

aV C

a d

Using the series representation for the Anger function, one gets

where

and

S, - 1 + I (16)

"^'^
n (k^ + T^)

^^^"k=2
even

S .
I

K
. (17)

m-1 /, 2
,

^2.

odd >

k-l

odd
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At high frequencies where

T =
al

s

aj(C + C.)
a a

<< 1 (18)

then one can show that, for small V.

1 + C,/C
d a

(19)

and, for large

V = -
1 + C,/C

Q a
(20)

Equation (19) indicates that, for the small induced steady-state voltage V^, the output dc

voltage is a square-law function of the induced voltage On the other hand, eq (20)

indicates that, for large induced voltage V., the output dc voltage is proportional to the

induced voltage V^.

2.2 Numerical Technique

A time-stepping difference equation technique can be used for solving the nonlinear
network, shown in Fig. 1. The basic idea of a time-stepping, finite difference equation
technique is briefly discussed below. More detailed discussion on this subject is given
by Calahan [9]

.

The linear and nonlinear elements are converted into resistance-current source
equivalent networks in the nodal equation method. For instance, in a regular R, C, and

L circuit, we have

J = R i
n n

(21)

n+1
(22)

and

n+1

n+1
(23)

where t is a sampling time interval. Once initial v^ or i^ is given, one can determine v^

and i.|, then and etc.; such a method is, therefore, called a time-stepping, finite

difference equation method.

In order to deal vjlth nonlinear equations which result from nonlinear elements such as

a diode, the general approach to a solution of such problems is by iteration. The basic
technique used is discussed below. Given a nonlinear system f(i,v), the solution of
f(i,v) = 0 yields the solution for the system response.

5



First f(i,v) is expanded at an initial solution

that is.

f(i,v) = f (i^.v"") + J[f (i,v)]

where J is the Jacobian of f and has the form

(24)

'3f, 3f

,

3i, 3v
n+m

J =

3f
r

3i,

n-hn
3f,

3v

n+m

n+m

(25)

Now f(i,v) = 0 determines

Ai^

J[f(i°,v°)]
- , . o o

.

f(l ,v )

Av
(26)

The solution of

fAi°

updates the initial value of

f.n+1
1

n+1
Av

(27)
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The operation is repeated for n = 0, ••• until the change

Ai

is significantly small.

Results

In this section the time-domain waveforms of a sinusoidal wave at various nodes are

shown first using the time-stepping difference equation technique discussed in Section 2.2.

Here, a single time-domain sinusoidal wave is divided into 16 discrete digitized points

(17 points including both ends) in the analysis. Then, the detected sinusoidal wave, aver-

aged over many cycles which corresponds to dc output of the electrically short dipole with
the beam lead Schottky barrier diode, is given.

Figure 2 shows the time-domain waveform of the first sinusoidal wave at 100 MHz at

various nodes. At node 1, an applied sinusoidal wave Vj^ is shown with unit amplitude. At

node 2, the detected sinusoidal wave, which is skewed or distorted due to nonlinearity of

the diode, is shown. It is obvious that, at node 2, the detected voltage starts developing
in the negative polarity, which eventually leads to dc negative output for the dipole with
the diode.

Figure 3 shows the time-domain waveform of the dipole with the diode due to the 10th
sinusoidal wave driving voltage. Again, a sinusoidal wave at node 1 is an applied driving
voltage with unit amplitude. The detected time-domain waveform at node 2 after diode detec-
tion indicates a much more pronounced negative charge accumulation. Finally, an almost dc
detected voltage starts appearing in the negative polarity after 10 cycle time average.

Figure 4 shows the time-domain waveforms of the dipole with the diode due to the 100th

sinusoidal wave induced voltage. The negative charge accumulation is much more pronounced,
and constant detected dc voltage appears after 100 cycle time average.

To arrive at the steady-state time average of these sinusoidal wave excitations using
the time-stepping, finite difference equation technique along with the iteration method,
400 sinusoidal waves, which correspond to 6400 discrete points (16 points per one cycle),
are applied successfully to compute 6400 discrete output voltages, which are then nximer-

Ically time-averaged.

Figure 5 shows the detected dc voltage from the dipole with the diode as a function

of Induced voltage V.(= e, x |h I, where e, is the normal incident electric field and* 1 inc ' e ' inc
h^ Is the dipole effective length). The detected dc voltages as a function of the

Induced voltage are calculated using both the analytical technique given in Section 2.1

and the numerical technique described in Section 2.2 Generally, the agreement between the
analytical and numerical solutions is very good. Below an induced voltage of about 0.1

volt, the detected dc voltage is equal to square of the induced voltage V^. On the

other hand, above an induced voltage V of about 0.1 volt, the detected dc voltage V is
• 1 o

proportional to the induced voltage V^. Thus, the diode detection is square-law at a small

signal level, but becomes linear at a large signal level.

Figure 6 shows the transfei function of an electrically short dipole with the beam lead
Schottky barrier diode as a function of frequency. Here, the transfer function is defined
as a ratio of the detected dc voltage to the amplitude of the induced voltage

V.("= s<ri„*h ) expressed in dB when e Is equal to 1 V/ra. Thus, the transfer function so

7



defined is for a detected dc voltage of several mV, which corresponds to a square-law

signal level. As indicated in eq (2), the effective length of an electrically short dipole
is independent of frequency. The transfer functions of the dipole with the diode are
caldulated both analytically and numerically. Except at frequencies below 10 KHz, the
analytical and numerical transfer functions agree to within 8 dB, and are constant with
frequency up to several gigahertz.

The discrepancy between the analytical and numerical results of the transfer function at

the extremely low-frequency range could be due to insufficient time-averaging in the numer-
ical solution; that is, although successive 400 sinusoidal waves are used in the numerical
computation, the convergence at the extremely low-frequency range may still be poor.

The sharp cut-off (20 40 dB per octave) below 10 kHz in the transfer function
predicted from both analytical and numerical results can be explained as follows. Figure 7

shov7s the detected time-domriin sinusoidal waveforms at node 2 at various frequencies. It is

clearly indicated that, for example the detected time-domain sinusoidal waveform at 1 kHz
(whose amplitude is magnified by a factor of 10) is very similar to the original sine wave
excitation, whereas the time-domain waveforms at I and 100 MHz are more skewed (or distorted)
compared to the original sinusoidal wave. The detected time-domain sinusoidal waveform is

less strongly skewed (or distorted) at lower frequencies than at higher frequencies. Since
the skewness of the detected waveform and the rate of charge accumulation decrease in the
lower frequency range below 10 kHz, so does the transfer function of the dipole with the
diode, as shown in Fig. 6.

4. Conclusion

This paper introduces two independent techniques to analyze the electrically short
dipole with a nonlinear load. The nonlinear load considered in this paper is a beam lead
Schottky barrier diode. The analytical solution, given in Section 2.1 in terms of the x\nger

function of imaginary order and imaginary argument, was derived from the nonlinear differen-
tial eqation for the thevenin's equivalent circuit of the dipole with the diode. The
numerical technique, explained in Section 2.2, is basically to solve nodal equations using
the timestepping finite difference equations technique. The nonlinear resistance of a

diode was treated by an iteration method.

Both analytical and numerical solutions basically agree very well. The transition from
the square-law detection region to the linear detection region was observed as the induced
voltage was varied. The transfer function of the electrically short dipole with a diode was
also investigated. The decrease in the transfer function at frequencies Helow 10 kHz was
explained through the time-domain sinusoidal waveforms obtained from the time-stepping,
finite difference equation technique.

One of the advantages of using the analytical solution in terms of the Anger function
of imaginary order and imaginary magnitude is that the solution is given in the closed form,

and is very easy to evaluate. However, it is very difficult, or may be even impossible, to

find the closed-form solution of a nonlinear differential equation for much more complicated
models of an antenna and a diode, e.g., including a nonlinear capacitance, a linear induc-
tance, as well as nonlinear and linear resistances, and a linear capacitance. In such
cases, a time-stepping finite difference equation technique along with an iteration method
provides an accurate time-domain solution for more general nodal equations.

The analysis of a linear antenna with a nonlinear load, in which a diode model consists
of a parallel combination of a nonlinear resistance and a nonlinear junction capacitance
along with a linear series inductance, a linear series resistance, and a linear package
capacitance, has been carried out using a time-stepping, finite difference equation technique
along with an iteration method and will be presented in the future.
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