NBSIR 78-897

NBS PUBLICATIONS

ELECTRICAL CHARACTERISTICS OF CORN, WHEAT, AND SOYA IN THE 1 – 200 MHz RANGE

- R. N. Jones
- H. E. Bussey
- W. E. Little
- R. F. Metzker

Electromagnetic Fields Division Center for Electronics and Electrical Engineering National Bureau of Standards Boulder, Colorado 80303

.

NBSIR 78-897

ELECTRICAL CHARACTERISTICS OF CORN, WHEAT, AND SOYA IN THE 1 – 200 MHz RANGE

MATIONAL BUREAU OF STANDARDS LIBRARY

r + c.

1981

10 110195

Lin

OCT 5

. 15

R. N. Jones

H. E. Bussey

W. E. Little

R. F. Metzker

Electromagnetic Fields Division Center for Electronics and Electrical Engineering National Bureau of Standards Boulder, Colorado 80303

October 1978

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary Sidney Harman, Under Secretary Jordan J. Baruch, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

-

CONTENTS

Page

1.	INTRODUCTION AND BACKGROUND	1
	1.1 U.S.D.A. Approved Method	1
	1.2 Dielectric Parameters as Related to Moisture Content	2
2.	SOURCES OF VARIATION IN MOISTURE MEASUREMENT	2
3.	SOURCES OF ERROR IN CAPACITANCE METHODS	2
	3.1 Correlation of Percent Moisture Content with Dielectric Constant	2
	3.2 The Effect of Other Parameters on Dielectric Constant	2
	3.3 Difficulty in Measuring the Dielectric Constant of Particulate Material	2
4.	SCOPE	3
5.	TECHNIQUE AND APPARATUS	3
6.	MEASUREMENT THEORY	8
7.	HIGHER FREQUENCY MEASUREMENT THEORY AND COMPUTATION PROCEDURE	. 8
8.	ACCURACY OF ε AND TAN δ MEASUREMENTS	10
9.	UNSETTLED AND SETTLED VALUES	10
10.	DATA AND DISCUSSION	15
	10.1 ϵ' and Tan δ as a Function of Percent Moisture Content	15
	10.2 Density Versus Dielectric Constant	41
	10.3 Temperature Coefficient of ϵ^{*} and Tan $\delta^{}$	42
	10.4 Effect of Sample Holder Size and Kernel Dimensions	43
	10.5 Sample Size (Fill Level in Holder)	44
	10.6 Contact Impedance	45
	10.7 Drop Test of Corn, Wheat, and Soya (Standard Deviation)	45
	10.8 Overburden Effect on ϵ' and Tan $\delta-\!-\!-\!-\!-$	45
	10.9 Glass Bead Experiments	45
11.	CONCLUSIONS	46
12.	ACKNOWLEDGMENT	49
13.	BIBLIOGRAPHY	50

IN THE 1 - 200 MHz RANGE

R. N. Jones, H. E. Bussey, W. E. Little, R. F. Metzker

A set of coaxial sample holders together with a measurement and data reduction technique has been developed and applied to the study of the dielectric properties ($\varepsilon^{*=\varepsilon'-j\varepsilon''}$) of wheat, corn, and soya over the 1 to 200 MHz range. Particular attention was given to the behavior of the dielectric properties as a function of percent moisture content, frequency, and packing density. Data were also taken to evaluate the dependence of dielectric properties on temperature and sample holder configuration. Some study was also devoted to the correlation between dielectric constant (ε'), loss factor (ε''), loss tangent ($\varepsilon''/\varepsilon'$), and percent moisture content. Particular emphasis was devoted to a study of high moisture corn (up to 40%).

Key words: Dielectric properties; grain; loss tangent; moisture.

1. INTRODUCTION AND BACKGROUND

One of the most important parameters in the handling, storing, marketing, and use of grain is the moisture content. At every phase, including seeding and harvest, through marketing and transport to its final use as human and animal food, the moisture content needs to be repeatedly and accurately monitored. There are many methods available for measuring moisture content. In reference [1]* is a compilation of ten methods, together with the advantages and disadvantages of each. Even if the same grain sample were tested by each method and the measurement procedure were carried out perfectly, it is probable that there would be a range of disagreement among the results. This is caused by the fact that the various methods do not measure precisely the same phenomena and that the moisture characteristics are sometimes altered by the measurement processes. There is general agreement that moisture in grain is present in several forms, and complete understanding of the processes of moisture gain and moisture loss is lacking [1]. Thus, the measurement of moisture content is sometimes difficult, and no single ideal method has been developed. Furthermore, there is considerable disagreement as to which methods should be used for a specific purpose, and a variety of methods and instruments are in use in the United States and throughout the world.

Present methods of grain moisture measurement are unsatisfactory because they are inaccurate, inconvenient, or slow. A desirable method would be a quick one capable of achieving accuracies of \pm 0.5 percent or better without the necessity for special preparation of the grain.

1.1 U.S.D.A. Approved Method

A system widely used in the United States and the one adopted by the U.S. Department of Agriculture utilizes an electric capacitance type of moisture meter which is referred, through a series of calibration charts, to specific grain samples whose percentage moisture content has been determined by the oven-dry method [2]. The electric meters are used because they provide a rapid method of measurement that is easily adapted to field use. In essence, the electrical method uses a capacitance cell to provide an indication of percent moisture content based upon the dielectric constant of grain. The electric meter reading, which is some function of the dielectric constant, is converted to moisture content by means of U.S.D.A. calibration charts.

*Figures in brackets indicate the literature references at the end of this paper.

1.2 Dielectric Parameters as Related to Moisture Content

It should be clear that the present work is a straight-forward measurement of dielectric constant and loss versus moisture content. The packing density of the grain samples was measured at the same time as the dielectric constant. A literature search did not reveal a previous extensive effort of this type.

Most commercial electrical moisture meters give a reading approximately proportional to dielectric constant with some allowance for density. This reading may be combined with calibration tables (or more correctly, correlation tables) which convert the reading into a percentage moisture content. This being so, tables can also be made that convert the fundamental physical quantities, dielectric constant and/or loss, into moisture content. The present research is a start in examining the usefulness of absolute dielectric measurements per se for agricultural moisture measurements.

2. SOURCES OF VARIATION IN MOISTURE MEASUREMENT

Some of the difficulty in achieving accurate measurements of moisture content is attributable to the grain itself and therefore is not controllable by the measurement method. Included in this category is the fact that moisture content is not a stable condition, but one which will vary with other conditions, such as temperature and humidity. There is evidence that different hybrid types of grain may give varying results both on the electric meters and by the oven-dry process, and it is well known that grain samples from the same stand taken at the same time will show variations in moisture content. Thus the complexity of an unstable material is added to the variations existing between different measurement methods.

3. SOURCES OF ERROR IN CAPACITANCE METHODS

When relying on the capacitance method to measure percent moisture content, several sources of error are encountered. They are mentioned here because the work to be described is directed toward their evaluation and possible elimination or reduction.

3.1 Correlation of Percent Moisture Content with Dielectric Constant

The principle of capacitance-type meters is predicated on the assumption that dielectric constant is a reliable indicator of moisture content. This assumption is generally correct, but other factors such as packing density, temperature, and measurement frequency affect the relationship. This report will provide data resulting from experiments designed to study the influence of these parameters. In addition to the influencing factors considered here, there are probably others such as protein and starch content, hybrid variety, growing conditions and others; however, they are not included in the work described.

3.2 The Effect of Other Parameters on Dielectric Constant

The scope of the work described in this report includes experiments which show the effect of several other parameters upon the observed dielectric constant of various grain samples. These other parameters include measurement frequency, density of the grain being measured, temperature, sample holder configuration, and overburden.

3.3 Difficulty in Measuring the Dielectric Constant of Particulate Material

The measurement of a homogeneous material, such as a liquid or a solid, is relatively simple compared to the problems encountered in measuring the dielectric constant of an inhomogeneous sample. In measuring the dielectric constant of grain we are dealing with a mixture of grain and air with the proportions of these two constituents being unknown. As this proportion changes, the observed dielectric constant will also change. This is not only true for a grain and air mixture, but it is true for any other mixture, such as air and glass beads or for a liquid-solid mixture. This is a serious problem which is detrimental to any dielectric measurement approach and one which will impose a limit on the (attainable) accuracy. This problem is of course related to the variation of dielectric constant with density as mentioned in section 3.2 above, but is probably more complex when the solid matter is itself inhomogeneous as is the case with grain or other organic materials. The work described in this report has been done by the Electromagnetic Fields Division of the National Bureau of Standards in cooperation with the Grain Standardization Laboratory of the U.S. Department of Agriculture in Beltsville, Maryland. The thrust of the work has been the study of the dielectric properties of grain as a function of several variables including moisture content, frequency, and temperature. Because the electric capacitance type of moisture meter is a fast, inexpensive and convenient means for percent moisture content determination and because it is widely used, it is desirable to study the factors which contribute to measurement inaccuracy in the hope of bringing about improvement. Of particular concern is the measurement of high moisture corn above about 26 percent. This is brought about by changes in farming methods and the use of pickersheller equipment to harvest the grain in the very early stages of maturity when moisture percentages are large.

A clear cut solution to the moisture measurement problem was not the expected result of this work; indeed, that would be far too ambitious. But, recognizing the need for a data base which will provide quantitative information related to the problem of measuring the moisture content of grain by electrical or electromagnetic methods, we have developed measurement techniques and accumulated a quantity of data which may prove to be of value as work continues. Presented here are only some initial findings, and it is recognized that there is more to be done and improvements which could be made.

The data presented is for wheat, corn, and soya over the frequency range from 1 to 200 MHz, and the specific parameter investigated was the apparent or measured complex dielectric constant as a function of several influencing parameters including frequency, percentage moisture content, packing density, and temperature. Capacitance variation with sample holder configuration is also examined briefly. An attempt has been made to correlate percent moisture content with dielectric characteristics, and it is apparent that this relationship is affected by several other variables. Data are needed to show quantitatively what effect the other variables have. This work is a beginning in the development of such a data base.

5. TECHNIQUE AND APPARATUS

Three coaxial sample holders were constructed for use in the study of grain as well as other materials; one each for 5.04 cm(2"), 7.62 cm(3"), and 10.16 cm(4") diameters of the outer cylinder. To provide adequate space for large kernel grains, the sample holding portions of the holders have a 75 ohm characteristic impedance (see table 1) instead of the usual 50 ohms where the space between center and outer electrodes would have been smaller. Figure 1 is a photograph of the 10.16 cm (4") holder along with a sample dropping mechanism and a depth gauge for measuring the depth to which the holder was filled with grain. Construction details of the sample holders are shown in figure 2.

At low frequencies (less than 1 MHz) where an electrostatic approximation is adequate, the sample holder may be regarded as a coaxial capacitor with capacitive sections 1 through 4 (see figure 2) connected in parallel. In addition, changes in diameter of the tubing and/or the center conductor must be represented by shunt capacitors at the changes [3]. At higher frequencies the holder must be treated as a coaxial transmission line terminating in an open circuit. The exact location of the open circuit is somewhat beyond the end of the center conductor [3,4] as indicated in figure 2. Alternatively, a shunt capacitor may be used exactly at the end of the center conductor. We used the former representation.

The open circuited holder is convenient because inserting the sample consists simply in pouring the sample into the open end. Also, such a holder works at any low frequency and at higher frequencies if the criterion of equation (12) is obeyed. The sample space, section 1 in figure 2, extends beyond the end of the center conductor, as will be discussed.

Table 1. Sample holder characteristics						
Holder	Overall	* of Grain	Length of outer	Center Conductor		
Diameter	Length	Sample Section	Tube, Section 1.	Length (Section 1)		
5.08 cm(2")	17.0 cm(6.68")	75 ohms	13.3 cm(5.25")	8.176 cm(3.219")		
7.62 cm(3")	16.8 cm(6.60")	75 ohms	11.4 cm(4.495")	4.214 cm(1.659")		
10.16 cm(4")	15.6 cm(6.13")	75 ohms	12.6 cm(4.962")	3.386 cm(1.333")		
*7 represents	the characteristi	c impedance of S	ection 1 when empty.			

*Z represents the characteristic impedance of Section I when empty.

4. SCOPE

FIGURE 2. CROSS SECTION OF DIELECTRIC SAMPLE HOLDER SHOWING COAXIAL SECTIONS 1, 2, 3, AND 4.

FIGURE 3. BRIDGE SET UP FOR MEASUREMENTS AT 1 MHz

FIGURE 4. BRIDGE SET UP FOR MEASUREMENTS FROM 5 TO 200 MHz

6. MEASUREMENT THEORY

At low frequencies, 1 MHz or below, we may use electrostatics; then the admittance of a capacitive circuit such as a sample holder containing a dielectric material can be expressed as

$$Y_{c} = G + j\omega \varepsilon^{*}C$$
(1)

where G = the effective conductance between the electrodes including the series resistance of the structure,

 ω = angular frequency,

C = capacitance in vacuum between electrodes of the sample holder,

and $\varepsilon^* = \varepsilon' - j\varepsilon''$, the complex dielectric constant of the dielectric material in the sample holder. Using the complex form of the dielectric constant, expression (1) becomes

$$Y_{a} = G + j\omega C(\varepsilon' - j\varepsilon'')$$
⁽²⁾

which reduces to

$$Y_{c} = (G + \omega \varepsilon''C) + j\omega \varepsilon'C .$$
(3)

To determine the complex dielectric constant of the material in the sample holder, the admittance of the empty (air filled) sample holder is subtracted. Assuming the structure losses are unchanged from the filled condition and the complex dielectric constant of air is 1, the empty admittance is

$$Y = G + j\omega C .$$
 (4)

This gives, for the admittance difference between the full and empty conditions

$$\Delta Y = Y_{s} - Y_{e} = \Delta G + j\omega\Delta C = \varepsilon''\omega C + j\omega C(\varepsilon'-1) .$$
(5)

Equating real and imaginary parts from each side of the equation gives

$$\varepsilon' = 1 + \frac{\Delta C}{C}$$
 for dielectric constant, (6)

and
$$\varepsilon'' = \frac{\Delta G}{\omega C}$$
 for loss factor. (7)

By definition, the loss tangent of the material in the sample holder is $\tan \delta = \frac{\varepsilon}{\varepsilon}$, (8) Thus the dielectric properties of a material, such as grain, can be determined from the difference between the admittances of the full and empty sample holder.

At low frequencies where the dimensions of the sample holder are sufficiently small with respect to a quarter wavelength, the computation procedure is simple, and the dielectric properties are easily obtained by simply substituting measured admittance values for the empty and full sample holder into eqs (6) and (7). However, this assumption leads to large errors as the measurement frequency is increased and a modified computation procedure is used in the 1 to 200 MHz range. This procedure is described in the following section.

7. HIGHER FREQUENCY MEASUREMENT THEORY AND COMPUTATION PROCEDURE

At higher frequencies the concept of simple coaxial capacitors does not apply. The measurable quantity at the interface with the measuring instrument (bridge), or at any transverse plane, is the admittance, reference [5], defined as the ratio of longitudinal current to transverse voltage for the TEM mode of a coaxial line. This definition reduces to the admittance used in equations (1) and (5) as the frequency approaches zero.

In order to calculate the dielectric constant and loss of the sample from the measured admittance, Y_m , we must obtain the theoretical admittance as a function of the propagation constant, the distance, d, and the TEM characteristic admittance,

$$Y_{c} = 2\pi \left(\varepsilon_{o}\varepsilon^{*}/\mu_{o}\right)^{\frac{1}{2}}/\ln(b/a), \qquad (9)$$

where b and a are radii of the tube and the center conductor respectively, μ_0 and ε_0 are the permeability and permittivity of vacuum, and ε^* was defined for (1).

The theoretical admittance at the plane of measurement is predicted by transforming the admittance from the plane of the open circuit of section 1 to the bottom of section 4. The relative admittance, y_e , at the top (output) end of any section of line is transformed to the input (generator) end of the same section by the equation

$$y_{in} = (1 + y_{\rho} \coth \gamma d) / (\coth \gamma d + y_{\rho}), \qquad (10)$$

where y_{in} is the relative input admittance, γ is the complex propagation constant in the section, and d is the length of the section. The term relative admittance means that the absolute admittance has been divided by the characteristic admittance, eq (9). Both $Y_{c'}$ and $\gamma = (-\omega^2 \mu_o \varepsilon_o \varepsilon^*)^{\frac{1}{2}}$, depend upon the complex permittivity ε^* of the section. ω is the radian frequency.

Equation (10) is applied four times to transform the admittance from the open circuit to the measurement plane. The absolute admittance at a dielectric interface is continuous except when changes in radii a and b occur. Then the shunt admittance of the step $Y_{step} = j\omega C_{step} \varepsilon^*$ must be added. C_{step} is given in reference [3]. With air in section 1 the measured admittance Y_{step} , is used to check that all quantities, e.g., section lengths, m_{step} dielectric constants, Y_{c} , Y_{step} , are correct, and that the known $\varepsilon^* = 1$ results for air.

To evaluate ε^* of an unknown dielectric in section 1 we use eq (10) with $y_e = 0$ at the plane of the effective open circuit, $d = d_1 + d'$, where d' is the added distance [4] beyond the end of the center conductor to the effective open circuit, and y_{in} is obtained from measured Y_m of section 4 by transforming backward from the bridge measurement plane to the input of section 1, using eq (10) in the known invariant sections, 4, 3, 2. The transcendental equation to be solved using (10) again is

$$y_{in} = Y_m'/Y_C = \tanh \gamma(d_1 + d'),$$
 (11)

where the complex unknown ε^* appears both in Y_C and in γ . Y'_m is the admittance that would have been measured at the input of section 1. To find a solution we start with an estimated ε^* in (11) and iterate by Newton's method until the equation is satisfied. The equation has multiple roots but at low frequencies, with grain as the dielectric, only the lowest root is reasonable.

A correction is required in d₁ of eq (11) for the spherically tapered end. Only the flatly truncated center conductor is treated in references [3] and [4]. We assume that the terminating capacitance [3] and the equivalent extension [4] are still just the same as for the flat ended conductor, and then we subtract a small quantity from the true physical length of section 1. The amount subtracted is approximately 37% of the radius of the center conductor. This method was found to be valid experimentally (over the required frequency range), i.e., dielectric measurements of known materials, e.g., air and carbon tetrachloride, were correct and were the same as when a flat ended termination was used.

The electric field which extends beyond the end of section 1 interacts with the dielectric sample and contributes to the measured admittance Y. This is correctly taken into account in the above method. Not only does γ contain ε' but also the extended distance d' in d depends on ε' . d' was adjusted for the value of ε' during the Newton iterations. A correction for the loss ε'' was not used in d'. More work would be required to find the effect of ε'' , and this remains to be done.

Finally, since the field extends beyond the center termination, we need to calculate how far the grain sample should extend. Theoretically it should extend to infinity. Practically, if the hollow tube is well below cutoff, i.e.,

$$\varepsilon^{<<} [.387c/(bf)]^2$$
, (12)

where f is the frequency in hertz, b is the radius of the hollow tubing, and c is the velocity of light in the same length units, then the sample needs to extend beyond the center conductor only a distance of 1.5 b. The evanescent field in the tube decays as exp(-2.405z/b)where z is distance beyond the end of the center conductor. To a good approximation, the material in the region beyond z = 1.5 b is unimportant if eq (12) is true.

Table 1 gives some dimensions of the three holders. The impedance Z_0 may be obtained from the inverse of Y_0 in eq (9).

8. ACCURACY OF ϵ ' AND TAN δ MEASUREMENTS

To verify the measurement data from the sample holders, standard liquids were measured. These included carbon tetrachloride (CCl₄) and chlorobenzene (C₆H₅Cl). These liquids have for their ε ' values 2.232 and 5.656 respectively at 23°C according to Buckley and Maryott [8]. Measurements from 1 kHz to 200 MHz yielded results which agreed with accepted values to within ± 0.3 percent.

An assessment of the error in ε' due to the error in bridge admittance was carried out by computing the changes in ε' resulting from inputting known admittance increments into the computer program. This yielded very nearly a one-to-one correspondence between the percentage capacitance error and the resulting percentage change in the value arrived at for ε' -1 (see eq 6).

A characteristic of the high frequency Twin-T bridge [6] is that the sensitivity is somewhat reduced near the low end of its frequency range and circuit residual immittances introduce uncertainties at the upper end of its frequency range. As a result, the capacitance uncertainty is considered to be \pm 0.2 percent at 5 MHz and also in the region above 100 MHz, with uncertainties of \pm 0.1 percent in the intermediate region. The Twin-T bridge used for the 1 MHz measurements [7] has an uncertainty of \pm 0.1 percent.

Tan δ values are generally not measurable to the same accuracy, especially as the value of tan δ becomes smaller. In general the tan δ values of the samples ranged from 0.1 to 1. Over this region, for the bridges used, the uncertainties for tan δ would vary from \pm 0.15 percent to 1 percent in the frequency range where the bridge uncertainty was \pm 0.1 percent, and from \pm 0.3 percent to 2 percent in the frequency range where the bridge uncertainties apply to the smaller values of tan δ and vice versa.

As a generalized conclusion to the foregoing uncertainty discussion, it is believed that the absolute uncertainty of the values for ε' and tan δ given in the data are approximately \pm 0.5 percent for ε' , \pm 1 percent for tan δ from 10 to 100 MHz, and \pm 2 percent for tan δ at 5 MHz and above 100 MHz. The uncertainty of the tan δ values at 1 MHz is approximately \pm 1 percent. These error bounds of course do not include the nonrepeatability due to packing density variations.

9. UNSETTLED AND SETTLED VALUES

To examine the effect of density (or settling) upon the values for dielectric constant and loss tangent, a procedure was adopted for adding the grain to the sample holder and also for settling the grain in a consistent manner. The center object in figure 1 is a dropping container arranged to set atop the sample holder (shown on the left). Inside the dropping container is a collapsible metal diaphragm which, upon release, allows the grain sample to drop into the sample holder. All values in this report that are designated "unsettled" were taken immediately after the sample was dropped into the holder in this manner. After the grain was dropped into the holder and an admittance measurement was taken, the grain-filled holder was removed from the bridge and subjected to a vibration procedure which was performed in two stages. The first stage consisted of bumping the side of the sample holder with the heel of the operator's hand one hundred times in quick succession. This was followed by the application of a small vibrator to the side of the sample holder for a period of 30 seconds. Following this procedure the grain-filled sample holder was reconnected to the bridge, and a second admittance measurement was taken. Values in the report designated "settled" were obtained after this procedure was performed.

The wooden plug with attached scale (shown on the right) was used to measure the level of the grain in the holder, both before and after the settling procedure. All admittance values were taken with the wooden plug removed from the holder. It is noted here that the presence of the plug in the holder made no significant difference in the bridge admittance reading because the grain samples were made large enough so that the electric field region inside the holder was entirely filled by grain. In a later portion of this report the effect of adding weight to the grain surface is discussed.

The settling procedure just described was repeated several times on various samples of corn, wheat, and soya, and after the first settling procedure, repeated vibrating did not bring about significant additional changes in the observed values of ε ' and tan δ .

A logarithmic mixing rule by Lichtenecker, which is discussed in Von Hippel [9], is used to determine the permittivity ε' of a mixture from ε'_1 and ε'_2 and the volume fractions θ_1 and θ_2 of the components:

$$\log \varepsilon' = \theta_1 \log \varepsilon_1' + \theta_2 \log \varepsilon_2' . \tag{13}$$

In this instance one of the components is air which essentially has a relative permittivity of 1. Unfortunately, there is no convenient or accurate method of determining the volume ratios of the air and the grain so this rule is of no direct benefit in determining the permittivity of the grain. However, it is assumed that the dielectric properties of an average kernel of grain, at a given time are constant. Therefore, from equation (9) we can write for the relationship between dropped and settled conditions:

$$\frac{\log \varepsilon'_{d}}{P_{d}} = \frac{\log \varepsilon'_{s}}{P_{s}} , \qquad (14)$$

where P_d and P_s are the dropped and settled densities, respectively. This being true, it would be possible to arrive at a consistent value for the permittivity provided the packing density of the mixture were measured, and in this way errors due to density variations could be removed.

To test the foregoing hypothesis, data from measurements at 1 and 30 MHz on wheat, corn, and soya at various percentage moisture levels were examined. These data are shown in tables 2 through 7. In the tables the values shown under the "%" heading are the percentage moisture levels as determined by the oven-dry process. In all cases, in tables 2 through 7, the settled values were derived after one execution of the settling procedure. As previously mentioned the values P1 and P2 were the density values determined before and after settling. The percentages shown in the right-hand column of tables 2 through 7 are uncertain by an estimated ± 1.5. This uncertainty includes a measurement uncertainty of \pm 0.5 percent in the measured values for ϵ_1^1 and ϵ_2^1 , and an uncertainty of \pm 0.25 cm (0.1 inch) in the depth gauge measurement of the fill level in the sample holder. The depth measurement was hampered by the uneven grain surface, but to reduce error the gauge plug was rotated through 360° while setting on the grain to smooth and level the surface. If the relationship of eq (10) were perfectly valid, the numbers in the right-hand columns of tables 2 through 7 would all have been zero. The fact that the variations from zero are fairly evenly distributed in both magnitude and direction shows no definite departure from eq (10). However, it does not present a reliable method for density corrections when measuring an individual sample. The reason for the one very large value in table 4 may be due to an erroneous data point.

Another aspect of the question of settling is whether a settling procedure, such as the one described, improves the ability to reproduce a given sample density. The data in tables 8, 9, and 10 pertain to this question. Here the average density values and their standard deviations are tabulated for all of the settling operations performed. The three tables give data for corn, wheat, and soya. Overall, the standard deviations are smaller for the density of the dropped grain than for the settled grain, and the dropping procedure, in addition to being more convenient, is probably superior in obtaining repeatable measurements of dielectric constant.

log ei	log e	Table	2.		
$C_1 = \frac{P_1}{P_1};$	$r_2 = \frac{P_2}{P_2}$	_		C ₂ -C ₁	100
Grain	%	C ₁	C ₂	C ₁	x 100
Corn	17.7	1.121	1.164	3.8 ±	1.6
Corn	23.3	1.409	1.391	-1.3	
Corn	26.0	1.378	1,395	1.2 /	All Data
Corn	29.0	1.820	1.745	-4.1 1	taken at 1 MHz
Corn	30.9	1.902	1.850	-2.7	
Corn	34.0	2.140	2.130	-0.47	
Corn	8.5	0.762	0.769	0.92	
Corn	10.4	0.804	0.834	3.7	
Corn	12,9	0.910	0.919	0.9 /	All Data
Corn	15.8	1.032	1.028	-0.3	taken at 1 MHz
Corn	19.1	1.213	1.216	0.25	
Corn	22.4	1.409	1.397	-0.85	
Corn	25.7	1.604	1.549	-3.4 1	Data taken in
Corn	28.6	1.727	1.740	0.7	reverse order
Corn	30.9	1.943	1.909	-1.7	(bottom to top)
Corn	33.7	2.126	2.086	-1.9 a	as grain dried
Corn	39.0	2.481	2.469	-0.4	from 39% to 8.5%

log ε.	log	; ε <mark>'</mark> 2	Table 3.		
$C_1 = \frac{P_1}{P_1}$	$-; c_2 = - p_1$	2		C ₂ -C ₁	
Grain	%	<u>c</u> 1	C ₂	$\frac{C_1}{C_1} \times 100$	
Wheat	10.7	0.769	0.768	-0.13	
Wheat	13.4	0.827	0.849	2.6	
Wheat	14.3	0.866	0.859	-0.81	
Wheat	16.0	0.939	0.955	1.7	All Data
Wheat	16.6	0.973	0.970	-0.31	taken at 1 MHz
Wheat	18.4	1.012	0.980	-3.3	
Wheat	18.5	1.089	1,096	0.64	
Wheat	21.2	1.194	1.202	0.67	

.

C =	$\frac{1}{2} \cdot C = -$	2			
1 P ₁	, ⁰ 2 P	2		$C_2 - C_1 = 100$	
Grain	%	<u>c</u> 1	<u>C</u> 2	$\frac{c_1}{c_1}$ × 100	
Soya	10.4	0.842	0.835	-0.84	
Soya	10.4	0.755	0.831	10	
Soya	11.4	0.908	0.937	3.1	
Soya	11.4	0.917	0.948	3.3	
Soya	13.1	0.951	0.992	4.3	All Data
Soya	13.9	1.098	1.104	0.55	taken at 1 MHz
Soya	145	1.032	1.078	4.5	
Soya	14.8	1.116	1.149	3.0	
Soya	16.1	1.200	1.250	4.2	
Soya	16.9	1.278	1.310	2.5	

			Table 5.		
log ε	log	ε 1			
$C_1 =$	$C_2 =P$			C. –C	
- 1	-	2		$\frac{2}{2}$ $\frac{1}{1}$ x 100	
Grain	%	° ₁	^C 2	с ₁	
Corn	17.7	0.983	0.974	-0.91	
Corn	23.3	1.082	1.100	1.7	
Corn	26.0	1.113	1.155	3.8	All Data
Corn	29.0	1.203	1.250	3.9	taken at 30 MHz
Corn	30.9	1.380	1.332	-3.5	
Corn	34.0	1.356	1.377	1.5	
Corn	8.5	0.679	0.677	29	
Corn	10.4	0.728	0.741	1.8	
Corn	12.9	0.814	0.834	2.5	
Corn	15.8	0.908	0.899	-0.99	
Corn	19.1	0.999	1.004	0.50	
Corn	22.4	1.071	1.077	0.56	All Data
Corn	25.7	1.164	1.154	-0.86	taken at 30 MHz
Corn	28.6	1.221	1.231	0.82	
Corn	30.9	1.302	1.303	0.08	
Corn	33.7	1.355	1.343	-0.89	
Corn	39.0	1.524	1.528	0.26	

100.5	1 109	c 1	Table 6.		
$C_1 = \frac{10g}{P_1}$	$\frac{1}{2}$; $C_2 = \frac{10g}{P}$	2		$- c_{2} - c_{1}$	
Grain	<u>%</u>		<u>c</u> 2	$\frac{C_1}{C_1} \times 100$	
Wheat	10.7	0.684	0.687	0.44	
Wheat	13.4	0.757	0.764	0.92	
Wheat	14.3	0.765	0.775	1.3	
Wheat	16.0	0.834	0.843	1.1	All Data
Wheat	16.6	0.868	0.857	-1.3	taken at 30 MHz
Wheat	18.4	0.890	0.891	0.11	
Wheat	18.5	0.889	0.891	0.22	
Wheat	21.2	0.991	0.985	-0.61	

			Table 7.		
log ε.	log	ε 1			
$C_1 =$; C ₂ =			$C_2 - C_1$	
т Р ₁	Z P	2	0	$\frac{2}{C} = \frac{1}{1} \times 100$	
Grain	%	c_1	C ₂	^c 1	
Soya	10.4	0.701	0.725	3.4	
Soya	10.4	0.682	0.713	4.5	
Soya	11.4	0.745	0.775	4.0	
Soya	11.4	0.746	0.750	0.54	
Soya	13.1	0.796	0.808	1.5	All Data
Soya	13.9	0.853	0.873	2.3	taken at 30 MHz
Soya	14.5	0.832	0.858	3.1	
Soya	14.8	0.886	0.919	3.7	
Soya	16.1	0.918	0.955	4.0	
Soya	16.9	0.956	1.003	4.9 .	
	$C_{1} = \frac{\log \epsilon_{1}}{P_{1}}$ Grain Soya	$C_{1} = \frac{\log \epsilon'_{1}}{P_{1}}; C_{2} = \frac{\log p}{P}$ <u>Grain</u> <u>%</u> Soya 10.4 Soya 10.4 Soya 10.4 Soya 11.4 Soya 11.4 Soya 13.1 Soya 13.9 Soya 14.5 Soya 14.8 Soya 16.1 Soya 16.9	$\begin{array}{c} c_1 = \frac{\log \ \varepsilon_1'}{P_1} \ ; \ c_2 = \frac{\log \ \varepsilon_2'}{P_2} \\ \hline c_1 & \frac{\chi}{P_1} \\ \hline c_2 & \frac{1}{P_2} \\ \hline c_1 \\ c_1 \\ \hline c_1 \\ c_1 \\ \hline c_1 \\ \hline c_1 \\ \hline c_1 \\ c_1 \\ \hline c_1 \\ c_1 \\ \hline c_1 \\ c_1 \\$	$\begin{array}{c} \text{Table 7.}\\ \textbf{C}_1 = \frac{\log \ \varepsilon_1'}{\textbf{P}_1} \ ; \ \textbf{C}_2 = \frac{\log \ \varepsilon_2'}{\textbf{P}_2}\\ \hline \textbf{Grain} & \frac{\chi}{2} & \frac{\textbf{C}_1}{\textbf{P}_2}\\ \hline \textbf{Grain} & \frac{\chi}{2} & \frac{\textbf{C}_1}{\textbf{P}_2}\\ \hline \textbf{Soya} & 10.4 & 0.701 & 0.725\\ \hline \textbf{Soya} & 10.4 & 0.682 & 0.713\\ \hline \textbf{Soya} & 11.4 & 0.745 & 0.775\\ \hline \textbf{Soya} & 11.4 & 0.746 & 0.750\\ \hline \textbf{Soya} & 13.1 & 0.796 & 0.808\\ \hline \textbf{Soya} & 13.9 & 0.853 & 0.873\\ \hline \textbf{Soya} & 14.5 & 0.832 & 0.858\\ \hline \textbf{Soya} & 14.8 & 0.886 & 0.919\\ \hline \textbf{Soya} & 16.1 & 0.918 & 0.955\\ \hline \textbf{Soya} & 16.9 & 0.956 & 1.003\\ \end{array}$	$\begin{array}{c} \text{Table 7.}\\ \text{C}_1 = \frac{\log \ \varepsilon_1'}{P_1} \ ; \ \text{C}_2 = \frac{\log \ \varepsilon_2'}{P_2} & \frac{\text{C}_2 - \text{C}_1}{C_2} & \frac{\text{C}_2 - \text{C}_1}{C_1} \times 100\\ \hline \\ \hline \\ \text{Grain} & \frac{\mathbb{Z}}{2} & \frac{\text{C}_1}{C_1} & \frac{\text{C}_2}{C_2} & \frac{100}{C_1} \times 100\\ \hline \\ \text{Soya} & 10.4 & 0.701 & 0.725 & 3.4\\ \hline \\ \text{Soya} & 10.4 & 0.682 & 0.713 & 4.5\\ \hline \\ \text{Soya} & 11.4 & 0.745 & 0.775 & 4.0\\ \hline \\ \text{Soya} & 11.4 & 0.746 & 0.750 & 0.54\\ \hline \\ \text{Soya} & 13.1 & 0.796 & 0.808 & 1.5\\ \hline \\ \text{Soya} & 13.9 & 0.853 & 0.873 & 2.3\\ \hline \\ \text{Soya} & 14.5 & 0.832 & 0.858 & 3.1\\ \hline \\ \text{Soya} & 14.8 & 0.886 & 0.919 & 3.7\\ \hline \\ \text{Soya} & 16.1 & 0.918 & 0.955 & 4.0\\ \hline \\ \text{Soya} & 16.9 & 0.956 & 1.003 & 4.9 \end{array}$

Table 8. The effect of settling on the density of corn.

	%	No. of Drops	Average Density in g/cc	± Standard Deviation
Grain	Moisture	& Settlings	Dropped	Settled
Corn	17.7	8	0.668 ± 0.0075	0.715 ± 0.010
Corn	23.3	8	0.608 ± 0.0028	0.678 ± 0.0028
Corn	26.0	8	0.638 ± 0.0053	0.690 ± 0.010
Corn	29.0	8	0.522 ± 0.0072	0.578 ± 0.010
Corn	30.9	8	0.510 ± 0.0065	0.574 ± 0.011
Corn	34.0	8	0.510 ± 0.0059	0.570 ± 0.0057
Corn	8.5	7	0.611 ± 0.0032	0.637 ± 0.0088
Corn	10.4	8	0.616 ± 0.0077	0.640 ± 0.0058
Corn	12.9	8	0.619 ± 0.0057	0.648 ± 0.0097
Corn	15.8	7	0.608 ± 0.0081	0.651 ± 0.0054
Corn	19.1	7	0.587 ± 0.0051	0.639 ± 0.0039
Corn	22.4	7	0.556 ± 0.0049	0.617 ± 0.0037
Corn	25.7	7	0.534 ± 0.0035	0.599 ± 0.0047
Corn	28.6	8	0.517 ± 0.0058	0.580 ± 0.0037
Corn	30.9	8	0.510 ± 0.0063	0.570 ± 0.0061
Corn	33.7	8	0.503 ± 0.0064	0.564 ± 0.0087
Corn	39.0	8	0.504 ± 0.0036	0.569 ± 0.0038

Table 9. The effect of settling on the packing density of wheat.

Grain	% Moisture	No. of Drops & Settlings	Average Density in g/ Dropped	cc ± Standard Deviation Settled
Wheat	10.7	6	0.828 ± 0.0015	0.889 ± 0.0044
Wheat	13.4	5	0.809 ± 0.0035	0.862 ± 0.0093
Wheat	14.3	6	0.798 ± 0.0090	0.842 ± 0.0018
Wheat	16.0	5	0.777 ± 0.0046	0.832 ± 0.0018
Wheat	16.6	6	0.721 ± 0.0032	0.789 ± 0.0035
Wheat	18.4	5	0.745 ± 0.0068	0.818 ± 0.0036
Wheat	18.5	6	0.731 ± 0.0134	0.781 ± 0.0122
Wheat	21.2	5	0.692 ± 0.0043	0.762 ± 0.0078

	%	No. of Drops	Average Density in g	/cc ± Standard Deviation
Grain	Moisture	& Settlings	Dropped	Settled
Soya	10.4	8	0.710 ± 0.0104	0.755 ± 0.0081
Soya	10.4	8	0.723 ± 0.0038	0.756 ± 0.0047
Soya	11.4	8	0.716 ± 0.0060	0.750 ± 0.0086
Soya	11.4	8	0.721 ± 0.0043	0.763 ± 0.0078
Soya	13.1	8	0.700 ± 0.0025	0.740 ± 0.0104
Soya	13.9	8	0.703 ± 0.0049	0.746 ± 0.0094
Soya	14.5	8	0.714 ± 0.0057	0.754 ± 0.0056
Soya	14.8	8	0.681 ± 0.0072	0.728 ± 0.0104
Soya	16.1	8	0.677 ± 0.0049	0.720 ± 0.0052
Soya	16.9	8	0.673 ± 0.0035	0.720 ± 0.0081

Table 10. The effect of settling on the packing density of soya.

10. DATA AND DISCUSSION

To provide an accessible quantity of data for future use, the tables of Appendix 1 containing essentially all of the data accumulated during this phase of the project are provided. The data are for corn, wheat, and soya at various moisture levels, and values of ε ', tan δ and ε " are given for both the dropped and settled condition at various frequencies, including 1, 5, 10, 30, 50, 100, 150, and 200 MHz.

It should be noted that the grain samples were cycled through the dropping and settling procedure at each frequency at which data are given. Had an automated measurement system been available covering this frequency range and providing comparable accuracy and resolution, rehandling of the grain between each measurement frequency would not have been necessary and much time could have been saved. Although this would have been beneficial in one respect, it would likely have shown a different set of results than appears here because the data from all of the measurement frequencies would have been taken after one dropping and settling procedure so that the plots of a single run would have shown less inconsistency. The data tabulated here do not provide smooth curves because of the nonrepeatability of the dielectric parameters from one time the grain is put into the holder to another. Nevertheless, the value of an automated impedance measurement system would have been appreciable because much more data could have been accumulated in the same time period.

An estimate of the uncertainty in the moisture content (by oven drying) of the various grain samples is not given. Upon examination of the various plots included on the succeeding pages, it is evident that errors in measurement of moisture content may be present. This is discussed in greater detail in 10.1.

10.1 $\,\epsilon^{\,\prime}$ and Tan δ as a Function of Percent Moisture Content

A particular effort was made with respect to high moisture corn, and these results will be discussed first. Experiments were carried out in two phases. In one phase a sizeable sample of corn was gathered shortly before harvest from a field in central Colorado. When gathered, this corn was at approximately 40 percent. Measurements from this corn sample were made every few days at a number of frequencies as the corn was allowed to air dry down to a moisture level of 8.5 percent. Figures 5 and 6 show ε' for eleven moisture levels between 39 percent and 8.5 percent for frequencies of 1, 5, 10, 30, and 200 MHz for both dropped and settled samples. Although the plots are neither linear nor log normal, they do appear to yield a fairly smooth curve over this moisture range.

As mentioned earlier, the standard for grain moisture measurement is an oven-dry process which has been developed to its present state by the U.S.D.A. Grain Standardization Laboratory in Beltsville, Maryland. All of the percentage moisture levels given in this report were determined by the Beltsville laboratory prior to shipment to the NBS labs in Boulder, Colorado, where the dielectric measurements were performed. For shipment the grain samples were sealed in 0.015 cm (0.006") thick plastic bags to retard moisture gain or loss. Once received at Boulder, the grain was weighed out in appropriate sample sizes

Figure 5.

Figure 6.

and the dielectric characteristics measured as quickly as possible. The dielectric measuring procedure often required a day or more to complete, and during this time the grain samples were kept in sealed glass jars and under refrigeration when not actually being subjected to the measurement process. In spite of these precautions against change in sample moisture content following the oven-dry determination, some changes may have occurred during shipment of the samples from one laboratory to the other. The shipping time duration was generally from two to five days; and, while in transit through the mails, they could have been subjected to some fairly wide temperature excursions. Future experiments should include precautionary procedures which would preclude errors in the values finally used for percent moisture content. The advisability of having the oven-dry facility located at the same place as the electrical measurement facilities seems obvious. This would avoid the need for shipping, packing, extra handling, and time lapse between the two experiments which may have resulted in some errors in the final data.

A similar experiment was carried out using six corn samples supplied by the U.S.D.A. These samples came from random locations around the country and were of various hybrid varieties. Figures 7 and 8 show ε' as a function of moisture content for the same five frequencies as before, but there is much less tendency for the results to follow a predictable pattern or behavior law. There is probably very little that can be definitely concluded from these relatively brief experiments, except that different hybrid characteristics or growing conditions add an extra dimension of uncertainty to the dielectric behavior of the grain. Figures 9 through 12 show similar plots for randomly gathered samples of wheat and soya. These also exhibited some inconsistent behavior of ε' as a function of percent moisture content.

Figures 13 through 28 are plots of loss tangent and loss factor which correspond to the dielectric constant data in figures 5 through 12. In general this data supports previous observations by other researchers indicating that grain coming from different locations does not demonstrate the consistent dielectric constant versus percent moisture characteristics. This brings about the need for local control and is currently being done by the U.S.D.A.

A notable phenomenon in the loss tangent data is the crossover of the frequency plots in the 10 to 20 percent moisture region, which is noticeable in the corn and wheat data. This would make it imperative that all moisture testing be done at the same frequency if loss tangents were to be employed as the indicating parameter.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

LOSS TANGENT OF DROPPED CORN VS PERCENT MOISTURE CONTENT AT VARIOUS FREQUENCIES CORN SAMPLES FROM JOE SMITH FARM NIWOT, COLO. NOV. 1976

Figure 13.

LOSS TANGENT OF SETTLED CURN VS PERCENT MOISTURE CONTENT AT VARIOUS FREQUENCIES CORN SAMPLES FROM JUE SMITH FARM, NIWUF, CULO. NUV. 1976

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.

Figure 22.

LOSS FACTOR OF DROPPED CORN VS PERCENT MOISTURE AT VARIOUS FREQUENCIES CORN SAMPLES FROM VARIOUS LOCATIONS THROUGHOUT U.S.A. 1 MH7 10 MHz 77 30 MH7 - 100 MHz \odot - 200 MHz . . e, . : 11

30

Figure 23.

Figure 25.

PERCENT MUISTURE CUNTENT

Figure 28.

Figure 27.

Figure 28.

10.2 Density Versus Dielectric Constant

As mentioned earlier, a settling process was employed in the measurement procedure and data were gathered to indicate the dependence of the measured values of dielectric parameters upon the density or packing characteristics of the various grains. A summary of this data is provided in tables 11, 12, and 13.

Table 11.	Ratio of settled t	o dropped par	ameters of var	ious corn sampl	es at l MHz.
	Percent	Density	ε1	Tan ó	ε"
Grain	Moisture	Ratio	Ratio	Ratio	Ratio
Corn	17.7	1.04	1.16	1.08	1.25
Corn	23.3	1.12	1.23	1.06	1.31
Corn	26.0 -	1.11	1.28	0.97	1.25
Corn	29.0	1.12	1.16	1.08	1.26
Corn	30.9	1.13	1.25	1.09	1.36
Corn	8.5	1.05	1.07	1.06	1.13
Corn	10.4	1.02	1.07	1.05	1.13
Corn	12.9	1.06	1.10	1.07	1.17
Corn	15.8	1.08	1.12	1.08	1.21
Corn	19.1	1.09	1.16	1.06	1.23
Corn	22.4	1.11	1.19	1.04	1.25
Corn	25.7	1.13	1.20	1.06	1.27
Corn	28.6	1.10	1.25	1.07	1.33
Corn	30.9	1,11	1.23	1.00	1.23
Corn	33.7	1.12	1.27	1.05	1.34
Corn	39.0	1.13	1.44	1.13	1.62

Table 12.	Ratio of settled	to dropped para	ameters of vari	ous wheat sampl	es at l MHz.	
Grain	Percent Moisture	Density Ratio	ε' <u>Ratio</u>	Tan δ Ratio	ε" <u>Ratio</u>	
Wheat	10.7	1.08	1.12	1.09	1.21	
Wheat	13.4	1.05	1.13	1.07	1.20	
Wheat	14.3	1.06	1.09	1.07	1.16	
Wheat	16.0	1.06	1.15	1.10	1.26	
Wheat	16.6	1.09	1,15	1.09	1.26	
Wheat	18.4	1.11	1.13	1,10	1.24	
Wheat	18.5	1.08	1.18	1.13	1.33	
Wheat	21.2	1.12	1.27	1.16	1.47	

Table 13.

Grain	Percent Moisture	Density Ratio	ε' <u>Ratio</u>	Tan δ Ratio	ε" <u>Ratio</u>
Soya	10.4	1.12	1.16	1.11	1.29
Soya	10.4	1.04	1.21	1.03	1.25
Soya	11.4	1.07	1.17	1.10	1.29
Soya	11.4	1.06	1.16	1.10	1.27
Soya	13.1	1.07	1.20	1.10	1.33
Soya	13.9	1.09	1.19	1.10	1.31
Soya	14.5	1.05	1.17	1.09	1.28
Soya	14.8	1.07	1.21	1.10	1.32
Soya	16.1	1.06	1.21	1.05	1.26
Soya	16.9	1.08	1.23	1.09	1.34

In tables 11-13 only the data from measurements at 1 MHz have been tabulated, and similar comparisons may be made at other frequencies by referring to the tabulation in the data section of this report. A few things seem immediately apparent from this data. Evidently the settling process produces the greatest change in the loss or conductivity portion of the complex dielectric constant since the ratios of settled to unsettled values are higher for ε " than for ε '. This might allow ε " to be used as a packing denisty indicator, which could in turn be used to correct ε ' for the density effect. Regarding ε ', it appears that the higher moisture levels of all three materials are more subject to packing density variations than the low moisture levels. This effect is most noticeable in the second corn sample in table 11, because of the wider moisture range (8.5 to 39 percent). However, over similar moisture ranges, the effect is about the same for the three materials tested.

10.3 Temperature Coefficient of $\epsilon\,{}^{\prime}$ and Tan δ

A few experiments were performed on corn, wheat, and soya to determine the temperature coefficient of the dielectric parameters over the approximate range from 4 to 38°C. Samples of each of these materials having different moisture contents were tested, and moisture meter measurements were made before and after the tests to assure that significant changes in percentage moisture content had not occurred. The following tables 14, 15, and 16 provide a summary of the test results. Most of the data taken were at 30 MHz. The results are similar for wheat and soya. There was not adequate opportunity to work extensively enough with corn, and therefore the data are minimal. However, the tentative results do suggest that the temperature coefficient for both ϵ' and tan δ is larger at lower frequencies. This is a topic needing more investigation for a wider variety of frequencies and more samples of different moisture content. The technique used in these measurements was to begin with the grain sample either at the low or the high temperature, and allow it to simply warm or cool to room temperature. For each measurement the grain was transferred back and forth between the storage container and the dielectric sample holder, so that essentially the sample holder was kept near room temperature at all times during the test. As might be expected, the grain temperature changes fairly rapidly at the beginning of a test when the temperature difference between the sample and the laboratory environment is large. The later stages of a run proceed slowly, however; and as many as three hours were required for the sample to finally reach laboratory ambience. A possible source of error in determining temperature coefficient in the region below room temperature is condensation of moisture onto the grain from the surrounding air. Because additional moisture would tend to raise the dielectric constant, it follows that the temperature coefficient determined in this manner would be larger than that observed in the range above room temperature if such errors were present. This did not appear to happen for ϵ ' of wheat and soya as tables 14 and 16 show.

		Table 14.	Wheat measurement.		
Moisture Content %	Measurement Frequency MHz	ε'	Temper Temp range(°C)	cature Coefficio Units/°C tan δ	ent Temp range(°C)
13.4	30	+ 0.020	4.5°C to 37°C	- 0.0005	
16.0	30	+ 0.022	6.4°C to 40°C	+ 0.0003	4°C to 22.5°C
				+ 0.0015	22.5°C to 40°C
18.4	30	+ 0.022	5.2°C to 40°C	- 0.0003	5°C to 23°C
				+.0047	23°C to 36°C
21.2	30	+ 0.019	3.2°C to 36.7°C	+ 0.0012	7°C to 34°C

Table	15.	Corn	measurement.
-------	-----	------	--------------

Moisture Content	Measurement Frequency	Temperature Coefficient Units/°C			ent
%	MHz	ε'	Temp range(°C)	<u>tan δ</u>	Temp range(°C)
34.6	1	(+)0.15	7 to 22	(+)0.02	7 to 22
34.6	30	(+)0.0003	7 to 22	(+)0.004	7 to 22

Table 16. Soya measurement.

Moisture Content %	Measurement Frequency MHz	ε '	Temp range(°C)	erature Coefficie Units/°C <u>tan δ</u>	nt Temp range(°C)
10.4	30	+ 0.028	25.5°C to 40°C	+ 0.0015	25.5°C to 40°C
11.4	30	+ 0.028	2°C to 22°C	+ 0.0011	2°C to 22°C
13.9	30	+ 0.028	25°C to 36°C	+ 0.0015	25°C to 36°C
16.1	30	+ 0.034	2°C to 22°C	+ 0.0022	2°C to 22°C

10.4 Effect of Sample Holder Size and Kernel Dimensions

Using the three sample holders described in table 1, a series of measurements was made to determine what effect the ratio of sample holder size to kernel size would have on measured ε' , and tan δ . The grain samples included wheat (16.6% moisture content), corn (12.7% moisture content), and soya (9.8% moisture content). Data were obtained by dropping the samples into the holder with no settling procedure employed. Each sample was dropped ten times. Table 17 shows the average values for ε' and tan δ together with the standard deviations. Also shown in the table is the A/K ratio. A is the annular distance in the holder between the outer surface of the center conductor, and the inner surface of the outer conductor. K is an average "diameter" dimension for a typical kernel of wheat, corn, or soya. In the case of wheat and soya, K is the average of two measurements (largest and smallest) of a seed; and, in the case of corn, it was taken as the average of three measurements (length, width, and thickness). These values of K were used to represent an average dimension that could be used to compare with the sample holder dimension, recognizing that the kernels of the various materials will be in random orientations when dropped into the holder.

These observations indicate a definite relationship between holder diameter and the A/K ratio, and percentage differences for both ε' and tan δ are greater between the 2" and 3" holders than between the 3" and 4" holders (see table 18). The percentage change is similar for ε' and tan δ , but it appears to be more pronounced in the ε' values for corn. This is perhaps related to the larger kernel size compared to wheat or soy beans.

From this brief experiment we see that there is a systematic variation in measured values for ε' and tan δ which depends on the ratio of sample holder diameter to kernel size. We hypothesize that the measured effect is due to the packing geometry near the metallic walls. The dielectric values should approach an upper bound asymptotically as A/K increases. The fact that the apparent dielectric constant varies with A/K does not necessarily lead to a required diameter of the holder; but, when tables of moisture correlated to apparent dielectric constant are constructed, the holder diameter should be specified or A/K must be uniformly large for independence of diameter.

Table 17. Effect of sample holder and kernel dimensions on observed values of ε ' and tan δ at 30 MHz, and standard deviation of 10 drops.

Holder	A/K				Parameter	
Diameter	Ratio	Grain	ε'	σει	Tan δ	^σ tanδ
5.08cm(2")	3.3	Wheat(16.6%)	4.084	0.023	0.0884	0.0005
7.62cm(3")	5.0	Wheat(16.6%)	4.192	0.021	0.0903	0.0005
10.16cm(4")	6.7	Wheat(16.6%)	4.233	0.020	0.0915	0.0008
5.08cm(2")	2.1	Corn(12.7%	3.490	0.028	0.0781	0.0007
7.62cm(3")	3.1	Corn(12.7%)	3.573	0.038	0.0799	0.0007
10.16cm(4")	4.2	Corn(12.7%)	3.702	0.020	0.0815	0.0011
5.08cm(2")	2.8	Soya(9.8%)	2.820	0.026	0.0682	0.0008
7.62cm(3")	4.2	Soya(9.8%)	2.873	0.021	0.0693	0.0007
10.16cm(4")	5.6	Soya(9.8%)	2.913	0.017	0.0711	0.0004
	Da	ata taken Septem	ber 30, 19	76		
Sept.	30 data (anodized center	conductor	and large	r sample size)	
5.08cm(2")	3.3	Wheat (~16%)	4.034	0.011	0.0866	0.0008
7.62cm(3")	5.0	Wheat (~16%)	4.150	0.018	0.0878	0.0010
10.16cm(4")	6.7	Wheat (~16%)	4.214	0.021	0.0917	0.0018

Data taken August 18, 1976

Table 18.	Variation of ε ' and based on results in	tan δ with sample holder table 17.	size,
Holders		% Differences Between	Holders at 30 MHz
Larger-Smaller	Grain	ε'	<u>Tan δ</u>
7.62cm-5.08cm	Wheat	2.6	2.1
$(3^{11} - 2^{11})$	Corn	2.4	2.3
	Soya	1.9	1.6
10.16cm - 7.62cm	Wheat	1.0	1.3
(4'' - 3'')	Corn	3.6	2.0
	Soya	1.4	2.6
10.16cm - 5.08cm	Wheat	3.6	3.5
(4'' - 2'')	Corn	6.0	4.4
	Soya	3.3	4.3

10.5 Sample Size (Fill Level in Holder)

Referring again to the lower portion of table 17, additional data, taken at a later date, are tabulated for the same wheat sample ($^{2}16\%$) as was used for the earlier observations of 8/18/76. The 9/30/76 data were taken using a larger sample size, thus filling the holder to a greater depth, to determine if this would yield different values for ε and and tan δ . Had the earlier sample size not been adequate to completely fill the electric field region of the sample holder, larger values for ε ' should have resulted. Because this was not the case (smaller values were observed because even in capped jars the grain dried out a little), it is concluded that the sample sizes were adequate to yield accurate values for ε '.

10.6 Contact Impedance

Also during the 9/30/76 observations an anodized center electrode was used in the 3" sample holder to test whether contact impedance with the grain significantly affected the measured dielectric values. Because the measured value of tan δ only dropped from 0.0903 to 0.0878 and the standard deviation in tan δ remained nearly unchanged, it is concluded that variation of contact impedance is not a problem up to this moisture level. However, more testing should be done to verify this at higher moisture levels.

10.7 Drop Test of Corn, Wheat, and Soya (Standard Deviation)

The data in table 17 also provide a means of estimating the standard deviation of moisture meter measurements. To use an example, take the ε' value for the 12.7 percent corn obtained using the 4" sample holder. The standard deviation of the ten drops was ± 0.02 in ε' , or ± 0.5 percent. Referring to figure 6 and the percent moisture content versus ε' plot at 30 MHz, the resulting error in determining the moisture content would have been ± 1.7 percent. Similar evaluations can be derived from this data for the other materials and for other measurement frequencies and levels of moisture content.

10.8 Overburden Effect on $\epsilon^{\,\prime}$ and Tan δ

During the process of taking data on ε^* versus percent moisture content of the various materials, it was noticed that some change occurred as a result of setting the depth gauge on top of the grain after it was dropped into the holder. Some further data were taken which appear to confirm that the value of ε' is affected by pressure on the sample. Using the 3" sample holder and a wheat sample of 16.6 percent moisture content, the following results were obtained as static weight was added to the surface of the grain:

		Table 19.	· · · · · · · · · · · · · · · · · · ·
Weight on Sample(grams)	<u> </u>	<u>Tan δ</u>	Depth Guage Reading inches
0	4.1253	0.0880	
171.4	4.1406	0.0888	1.13
318.9	4.1544	0.0896	1.16
613.9	4.1884	0.0892	1.17
318.9	4.1866	0.0885	1.17
171.4	4.1875	0.0877	1.17
0	4.1864	0.0871	

Although there was practically no change in the depth gauge reading as a result of adding the weight, a noticeable increase occurred in the value observed for dielectric constant; but the change was not reversible upon removal of the weight as the table of data shows. Such an effect might be important in an in situ measurement where, because of overburden, grain moisture would artificially appear to increase at greater depths in a container.

10.9 Glass Bead Experiments

In order to gain some appreciation for the uniqueness of the dielectric behavior of grain as opposed to any other particulate matter, some experimentation was done using a sample of glass beads in the 2" sample holder. The beads were not uniform in shape or size although they were generally spherical having diameters averaging approximately 0.424 cm (0.167") and variations of the order of 0.025 cm (\pm 0.01"). Dropping the sample of beads into the holder eleven times produced a value for ε' of 3.311 with a standard deviation, σ , of 0.017 and a value for tan δ of 0.0057 with σ of 0.0008. Thus the repeatability of the bead sample is comparable with the repeatability of the various samples of corn, wheat, and soya.

Considering the possibility that some stable particulate material such as glass beads could be useful as a standard for electric moisture meter calibration, some further experimentation was done to learn what effect settling would have on the value obtained for ε' . The sample was first dropped into the holder and values for ε' and tan δ observed, followed by remeasurement of ε' and tan δ after repeated settling.

	Sample Condition	ε	tan δ	Density g/cc
	Dropped	3.315	0,0048	1.507
	Settled	3.470	0.0045	1,577
Repeated Settling	Settled	3,492	0.0062	1.591
	Settled	3.504	0.0050	1.591
	Settled	3.506	0.0047	1.591

After repeated settling the bead sample in the holder appeared to reach a limiting value for ε '. To see how reliable this limiting value might be, a different settling technique was used. Instead of dropping the entire charge of beads into the sample holder at one time and vibrating them afterward, the beads were poured into the holder in small increments with settling done between each increment. This produced the following result which can be compared to the previous data:

5	tan §	g/cc
3,665	0.0057	1,618

Thus by settling the sample incrementally the value of ε' increased 10.5 percent compared to the original dropped value. Comparing the change of density to the change in ε' shows that a density change of 7.4 percent was accompanied by a 10.5 percent change in the observed value of ε' . This is shown in more detail by the graph in figure 29. After some initial settling the relationship between ε' and density appears to be linear as shown by the solid portion of the graph. The lower portion is shown as a broken line because of the absence of data points in this region.

To utilize some material such as glass beads as a standard for electric moisture meters would require careful research to determine such information as optimum bead material and size, required degree of uniformity of bead size and shape, and application techniques to be followed. Certainly any bead material selected would have to have an ε ' value in the same range as grain. Such material in the form of beads is difficult to locate.

11. CONCLUSIONS

Based upon the data accumulated using the equipment and methods described in this report, the following conclusions have been reached:

- 1. In utilizing dielectric constant, ε' , as an indicator of percent moisture content for the three materials tested, frequencies in the vicinity of 1 MHz or below provide greater sensitivity or measurement resolution than frequencies in the vicinity of 200 MHz. This is illustrated in figures 5 and 6 where the sensitivity is 0.6 ε' units per one percent change in moisture content at 1 MHz compared to 0.12 ε' units per one percent change in moisture content at 200 MHz.
- 2. The measured value of ε' is a function of the packing density of the sample of material in the holder. For measurement repeatability it is important that density be kept constant from one sample to another. From these experiments the dropping technique appeared to provide better density repeatability than the settling process devised for this experiment.
- 3. The measured value of ε ' approaches a limiting maximum value as the density increases and also approaches a maximum value.

Figure 29.

- 4. The ratio of sample holder diameter to kernel size has an apparent effect upon the observed value of dielectric constant up to an A/K ratio of approximately 5.
- 5. The sample volumes used in these experiments permitted the sample holder center conductor to be covered to a depth equal to about two center conductor diameters and were adequate to permit ε' measurement which was free from errors due to underfilling.
- 6. Adding an anodized coating to the center conductor of a sample holder produced no significant change in the measured value of complex dielectric constant for wheat at 16% moisture content.
- 7. The effect of temperature on the observed values for dielectric constant was small at frequencies of 1 and 30 MHz. Temperature coefficients of the order of + 0.02 ε ' units per degree centigrade and 0.01 tan δ units per degree centigrade were observed for wheat, corn, and soya over the range from 4 to 40 degrees centigrade.
- 8. An apparent increase in dielectric constant, ε' , due to surface weight on the grain sample was observed. The addition of approximately 600 grams to the surface of the sample produced a change in dielectric constant change of + 1.5%. This change was not accompanied by a measurable change in tan δ , and only a very small change in density. Also the change in dielectric constant was not reversible upon removal of the weight.
- 9. The ε' versus percent moisture relationship at higher moisture levels (>25%) for corn was continuous with the data at levels below 25%, and did not pose a problem for the passive circuit equipment used. For meters utilizing an active oscillator circuit, the low Q values of a test cell when filled with high moisture grain could be a problem.
- 10. There is an apparent difference in the behavior of the dielectric parameters depending on growing conditions and hybrid seed type. This conclusion is weak, however, because of the doubt as to the accuracy of the moisture level percentages in the test samples.

Much of this work supports the practices in current use by the U.S.D.A. in its grain inspection procedures. Of specific note are the practice of dropping the sample into the holder, and the development of special calibration charts for particular geographic areas.

Areas of possible future interest not covered by this report include a study of the effects of other parameters on the accuracy of moisture measurement. Included among the other parameters are kernel shape, and the presence of other constitutents including protein, carbohydrate, fat, and fiber content, bound and unbound water, and possible changes due to enzymatic processes. Another approach might also be the study of dielectric constant as a function of the density of a single kernel as distinguished from bulk density.

It also appears desirable to extend the work to include measurments at frequencies below 1 MHz because the values for ε ' are continuing to increase with decreasing frequency. This enhances the prospect for still higher resolution which is an important consideration in choosing the optimum measurement frequency.

12. ACKNOWLEDGMENT

We would especially like to thank Mr. Hayward Hunt and his staff at the U.S. Department of Agriculture Grain Standardization Laboratory in Beltsville, Maryland, for their support in providing grain samples to us which had been analyzed by their oven-dry facility. Also their cooperation and advice were very helpful.

It is appropriate to acknowledge the work of others whose labors have preceded ours in this subject area. Many have contributed, and a complete bibliography of their work would be a project in itself. However, because of the similarity of effort and the nearly common objectives, we would especially like to reference the work of those at the Agricultural Research Service of the U. S. Department of Agriculture at the University of Nebraska, specifically S. O. Nelson, R. E. Stetson, J. L. Jorgensen, and A. R. Edison [10,11]. In many respects our work has been similar, and their papers have been most valuable. A recent paper [12] by Nelson gives a good bibliography.

Also allow us to make special mention of two Laboratory assistants whose work was so vital. Jocelyn Spencer and Douglas Tamura both put forth excellent work through some long and tedious hours.

- Young, James H., Moisture, Chapter 7, Instrumentation and Measurement for Environmental Sciences, Zachery A. Henry, editor, Spec. Pub. <u>0375</u>, pp. 7-01-7-10 (American Society of Agricultural Engineers, 1975).
- [2] Zeleny, L., and Hunt, W. H., Moisture Measurement in Grain, (American Society of Agricultural Engineers, Proc. of 1962 Winter Meeting, Paper No. 62-926).
- [3] Whinnery, J. R., Jamison, H. W., and Robbins, T. E., Coaxial-line Discontinuities, Proc. I.R.E., pp. 695-709 (Nov. 1944).
- [4] Somlo, P. I., The Discontinuity Capacitance and the Effective Position of a Shielded Open Circuit in a Coaxial Line, Proc. Inst. Radio and Elec. Eng., Australia, 28, No. 1, pp. 7-9 (Jan. 1967).
- [5] Ramo, S., Whinnery, J. R., Van Duzer, L., Fields and Waves in Communication Electronics (John Wiley & Sons, Inc., New York, 1965, Library of Congress No. 65-19477), Table 8.09, after p. 444.
- [6] Woods, D., A Precision Dual Bridge for the Standardization of Admittance at Very High Frequencies, Proc. IEE (London), 104C, Mono. 244R, pp. 506-521 (June 1957).
- [7] Huntley, L. E., A Self-calibrating Instrument for Measuring Conductance at Radio Frequencies, J. Res. Nat. Bur. Stand. (U.S.), <u>69C</u> (Eng. and Instr.), No. 2, 115-126 (April-June 1965).
- [8] Buckley, F., and Maryott, A. A., Tables of Dielectric Dispersion Data for Pure Liquids and Dilute Solutions, Nat. Bur. Stand. (U.S.), Circular <u>589</u> (Issued Nov. 1, 1958).
- [9] Von Hippel, A. R., Dielectrics and Waves (John Wiley & Sons, Inc., New York, 1954, p. 231, Library of Congress Card No. 54-11020).
- [10] Jorgenson, J. L., Edison, A. R., Nelson, S. O., and Stetson, L. E., A Bridge Method for Dielectric Measurements of Grain and Seed in the 50-250 MHz Range, Trans. A.S.A.E. 13(1), pp. 18-20, 24 (1070).
- [11] Nelson, S. O., Dielectric Properties of Grain and Seed in the 1 to 50 MG Range, Trans. A.S.A.E., <u>8(1)</u>, pp. 38-48 (1965).
- The following paper by S. O. Nelson provides an extensive bibliography.
- [12] Nelson, S. O., Use of Electrical Properties for Grain-moisture Measurement, Journal of Microwave Power, 12(1), pp. 67-72 (1977).

Remarks	/ MHL. Deta of 11/1/76 Serples fran Verious pearts of U.S.P.	/MHz Oster of 12/15/16 All Semples from Seame freid on cob from 39% to 8.5%
ž	Settled 1.465 4.948 5.391 11.65 13.69 27.05	0.1317 0.1538 0.1538 1.979 1.979 1.973 1.93 1.93 1.93 1.93 1.93 1.93 1.93 1.9
V	Dropped 1.174 3.776 3.776 3.776 9.272 10.08 17.76	0.1164 0.2180 0.2180 1.615 1.615 1.615 1.615 1.615 1.615 1.615 1.615 1.615 1.615 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.
Ś	Settlad 0.2219 0.5563 0.5563 1.123 1.157 1.157	0.0424 0.0458 0.3323 0.3323 0.3323 0.3324 7.200 1.200 1.200 1.742
tan	Diapped 0.2055 0.5709 1.038 1.061 1.370	0.0435 0.0435 0.0610 0.3143 0.3143 0.3143 0.3143 0.3143 0.3143 0.3143 0.3143 0.3143 1.537 1.537 1.537 1.537
	Settled 6.603 8.824 9.690 70.37 7.83 7.6.62	3.107 3.357 2.357 7.329 7.329 7.329 7.329 7.329 7.329 7.26.30 7.329 7.26.30
	Droped 5.714 7.162 7.551 7.551 7.551 9.498 9.498	2.911 2.73 2.573 2.573 2.573 7.2.02 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8
	Density Rafio Settled to Dropped 1.12 1.12 1.13 1.13 1.10	1.05 1.05 1.05 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.1
SITY cubic cm.	Settled 0.704 0.680 0.582 0.582 0.533	0.631 0.631 0.637 0.637 0.575 0.575 0.575
DEN	Drapped 0.675 0.675 0.637 0.521 0.520 0.520	0.500 0.559
	Percent Moisture 17:7 23:3 23:0 30.9 30.9 32.0	25.14 25.27 33.99 33.99 25.14
	GRAIN	Carr

Remarks		IMHZ Derta of II/4/76 Semples from Western Kenses Berts of U.S.A.	I MH'z Deta Semples from Verrieus perts of U.S.A.
\$	Settled	0.2455 0.3391 0.4534 1.004 1.394 1.394 1.394 3.396	0.6049 0.5349 1.752 1.752 1.752 1.752 1.752 1.752 1.752 1.752 2.439
V	Dropped	0.2029 0.2823 0.3894 0.3894 0.7962 0.7387 1.125 1.125 1.125 1.360 2.310	0.4699 0.4288 0.9572 0.8049 1.1337 1.173 1.733 1.733 1.733 1.733
6	Settled	0.0510 0.0642 0.0655 0.1613 0.1613 0.2226 0.2550 0.3973	0.1372 0.1372 0.1883 0.2508 0.2304 0.2757 0.2758 0.2755
tan	Dropped	0.0470 0.0602 0.0800 0.1469 0.1469 0.2030 0.2266 0.3426	0.1235 0.1710 0.2512 0.2535 0.2535 0.2535 0.2535 0.2535
(1)	Settled	6.273 6.273 6.273 7.071 8.548	4.409 5.316 6.586 7.255 8.852 8.852
V	Droped	4.3% 4.3% 4.8% 4.8% 5.54 6.003 6.003 6.144	7.181 7.181 7.181
	Density Ratio Settled to Drapped	/.08 /.05 /././ /./2	2000 000 000 000 000 00 00 00 00 00 00 0
SITY subic cm.	Settled	0.889 0.851 0.832 0.832 0.775 0.775	0.772 0.757 0.757 0.757 0.757 0.757 0.757 0.723
DEN	Dapped	0.826 0.811 0.794 0.782 0.782 0.735 0.715 0.715	0.689 0.728 0.728 0.679 0.679 0.670
	Percent Moisture	10.7 12.3 18.6 18.6 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5	0,0////
	GRAIN	Wheaf	52

Remarks		5 MHz Data Sangles from Various parts of U.S.A. 11/1/76	5 MHZ DEFE Of 12/15/76 All SEmples from SEme field. Air dried on ceb from 39% down fo 8.5%.
2	Settled	0.8004 2.152 3.663 4.075 6.830	0.2846 0.2942 0.3275 1.688 1.688 1.688 2.375 3.431 5.026 6.509 6.509
W	Dropped	0.6318 1.5401 1.5401 2.978 3.431 6.019	0.4213 0.2734 0.2734 0.8221 1.773 2.745 3.706 5.696 5.696
~0	Settlad	0.1409 0.3211 0.3211 0.3448 0.5448 0.58748	0.577 0.0876 0.1263 0.2046 0.3043 0.85341 0.8534 0.8536 0.8536
fan	Dropped	0./270 0.2925 0.3028 0.5202 0.5598 0.8571	0.1439 0.0669 0.1220 0.12797 0.2797 0.2797 0.20599 0.7605 0.8599
- (1)	Settled	5.680 6.722 6.724 6.724 8.426	3.073 3.826 5.546 7.976 7.951 7.951
	Droped	4.975 5.265 6.097 5.723 6./29 7.072	6.637 6.6377 6.6377 6.6377 6.6377 6.6377 6.6377 6.6377 6.6377 6.63777 6.63777 6.63777 6.6377777 6.637777777777
	Density Ratio Settled to Drapped	80% 70% 70% 71% 71%	/. 20 20 20 20 20 20 20 20 20 20 20 20 20
SITY cubic cm.	Settled	0.715 0.682 0.680 0.577 0.565 0.565	0.635 0.646 0.635 0.637 0.637 0.562 0.562 0.562 0.562
DEN	Drapped	0.661 0.611 0.520 0.512 0.512	0.616 0.619 0.538 0.538 0.559 0.521 0.521 0.521 0.521
	Percent Moisture	17.7 28.0 30.9 32.0	8.8 79.9.7 39.9.7 39.9.7 39.1 22.4 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7
	GRAIN	Corn	Corr

Remarks		Whear dafa nat measurad at 5 mHz.	5 MHZ Data of 12/15/76 Samples from Various poorts of U.S.A.	5 MHL Deta of 1/19/77 Recest mesuremuts an Elone semples
2	Settled		0.4628 0.4628 0.7055 0.7055 1.70 1.70 1.70 1.538 1.672 1.672	0.431
Ψ	Dropped		0.378 0.378 0.5777 0.577 0.57700 0.57700 0.57700 0.57700 0.57700 0.57700 0.577000 0.577000 0.5770000000000	0.346
<u>\</u> 0	Settled		0.197 0.197 0.197 0.197 0.197 0.197 0.197 0.197 0.2293 0.2293	0.1117 0.1517 0.1449
fan	Dropped		0.782 0.7720 0.7720 0.7720 0.7720 0.77200 0.7720 0.77200 0.7720000000000	8/0/.0 885.0 705/0
U	Settled		5.837 6.422 6.425 6.425 6.425 6.425 6.425	3.858 4.372 4.469
	Droped		55.020 55.072 56.072 57	3.911
	Density Ratio Settled to Dropped			/.08 /.07
SITY cubiccm.	Settled		0.751 0.757 0.758 0.758 0.728 0.728	0.769 0.769 0.769
DEN	Drapped		0.673 0.773 0.770 0.673 0.673 0.673	0.710 0.723 0.717
	Percent Moisture	10.7 13.4 18.6 18.6 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5	60%%. 60 2 4 4 4 9 10 4 4 4 4 - 0 10 00 - 0-	6// 4.4//
	GRAIN	Wheaf	54	South

Remarks	10 MHZ Oata of 11/1/76 Semples from Verious ports of U.S.A	10 MHz Ozelo All Semples from Seme Field. Air dried on cobfrom 39% fo 8.5% 12/15/76
8	Settled 0.6746 1.555 1.581 2.584 2.758 4.364	0.21482 0.2482 0.2482 0.2682 1.629 2.172 2.172 2.172 2.172 2.172 2.172 2.172 2.172 2.172 2.172 2.172
V	Dropped 0.5641 1.102 1.260 2.015 2.241 3.116	0.1954 0.2922 0.3059 1.242 1.725 1.725 2.242 6.207 6.207
S	Settled 0.1256 0.2475 0.2475 0.2475 0.2475 0.2475 0.2475 0.2475 0.4205 0.4360	0.0754 0.0781 0.0789 0.2734 0.2734 0.2734 0.2734 0.2734 0.2734 0.2734 0.2734 0.2734 0.2734
, fan	Dicepted 0.1/65 0.292 0.3969 0.4101 0.4101	0.0724 0.0728 0.0738 0.2020 0.2535 0.2535 0.2535 0.2535 0.56728 0.56728
	5.371 5.371 6.345 6.345 6.325 6.325 6.325 7.203	2.870 3.78 3.78 4.063 7.68 7.089 7.62 7.089 7.62
	Dropped 5.471 5.785 5.785	2.699 3.362 3.362 5.723 7.194 7.194
	Density Ratio Settled to Dropped // /.08 /.08 /.19 /.14	1.02 1.02 1.12 1.12 1.12 1.12 1.12 1.12
SITY cubic cm.	Settled 0.723 0.675 0.675 0.675 0.675 0.575 0.575	0.625 0.633 0.667 0.577 0.577 0.577 0.577 0.582 0.582 0.582
DEN	Dropped 0.661 0.530 0.500 0.500 0.500	0.615 0.629 0.528 0.547 0.547 0.504 0.504
	Percent Moisture 23.3 29.0 30.9 34.0	33.9 5.7 4 1 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	GRAIN	Com

Remarks		10 MML Data of 11/4/76 Semaks from western Konses and vericus other poorts of U.S.A.	Io MHz Denta of 12/13/76 Semples fram Verious peerts of U.S.A.	10, MHz. Data af 1/19/171 Report measurements on Blove semples.
8	Settled	0.3514 0.4533 0.4533 0.4753 0.7735 0.7735 0.7735 0.6807 7.006	0.6119 0.99441 0.99441 0.99599 0.99538 0.9538 1.133 1.312	0.3690 0.5376 0.6220
Ŵ	Dropped	0.2958 0.3839 0.3373 0.4070 0.3839 0.6299 0.6299 0.5417 0.5417	0.5224 0.7122 0.7122 0.73797 0.73797 0.73379 0.73359 0.7435 0.7435	0.3111 0.4481 0.5009
Ś	Settlad	0.0608 0.0921 0.0928 0.0958 0.1342 0.1222 0.1697	0.7505 0.2046 0.2051 0.1412 0.1940 0.1940 0.1903 0.2109 0.2109 0.2308	0.1001 0.1316 0.1477
fan	Dropped	0.0752 0.0864 0.0872 0.0872 0.175 0.1114 0.1775	0.1452 0.0815 0.751 0.1751 0.1751 0.1710 0.1710 0.1710 0.1710 0.2123	0.0939
	Settled	4.347 4.920 4.974 5.294 4.976 5.362 5.362 5.362	4.067 4.667 4.67 4.680 5.672 5.672 5.672 5.672 5.672 5.672	3.685 4.210 4.210
V	Dropped	3.915 4.442 4.442 4.465 4.465 5.031 5.031 5.119 5.119	2.3.30 2.3.30 2.3.30 2.3.32 2.32 2.32 2.	3.3.128
	Density Ratio Settled to Dropped	/ 0/ / 0/ / //// / ////////////////////	.05 .05 .05 .05 .05 .05 .05 .05 .05 .05	
SITY cubic cm.	Settled	0.883 0.862 0.879 0.791 0.797 0.797	0.751 0.751 0.751 0.736 0.738 0.751 0.751 0.753	0.754 0.765 0.762
DEN	Drapped	0.826 0.811 0.811 0.779 0.779 0.779 0.779 0.776 0.776	0.770 0.725 0.725 0.7725 0.7725 0.7725 0.7725 0.7725 0.7725 0.7725 0.680	0.717 0.723 0.720
	Percent Moisture	10.7 14.3 16.6 18.5 18.5 18.5	0011120044000 44.01112000 101100000000000000000000000000	00/// 44//
	GRAIN	Wheat	56	sha

Remarks		30 MHC Oata of 11/11/76 Samples from Various poorts of U.S.A.	Reperted measur- ments of 3dave (3) semples	30 MHz DEFE of 12/15/76 All SEmples from Seme Field. Air dried on cob from 39 % to 8.5 %
\$	Settled	0.5247 0.9221 1.025 1.475 2.092	0.8753 1.361 1.405 2.158	0.2098 0.2321 0.3394 0.6949 1.233 1.684 2.950 3.940 3.940
Ψ	Dropped	0.4319 0.6772 0.6772 0.8175 0.9602 1.226 2.098	0.7/60 1.028 1.148 1.818	0.1922 0.2355 0.2355 0.2373 0.7176 0.5373 0.7176 0.5373 0.5373 0.5373 0.5373 0.5373 0.5373 0.5373 0.5373 0.5373 0.5373 0.5373 0.5373 0.5373 0.5376
Ś	Settled	0.1036 0.1660 0.7692 0.2533 0.2533 0.3432	0.1569 0.2575 0.2538 0.3681	0.0774 0.0768 0.0781 0.1222 0.12390 0.2390 0.5300 0.5300
tan	Dropped	0.0957 0.1997 0.1585 0.2228 0.2286	0.1465 0.2313 0.2403 0.3566	0.0743 0.0738 0.0738 0.725 0.725 0.725 0.725 0.725 0.725 0.725
	Pelles	5.065 5.555 5.5797 5.797 6.095	5.579 5.536 5.863	2.710 3.870 5.566 7.296 7.296
V	Droped	4.5/3 4.5/3 5./58 4.3/0 4.930 4.930	4.887 4.443 4.778 5.097	2.587 3.761 5.761 5.741 5.741
	Density Ratio Settled to Dropped	/.09 /.12 /.15 /.14 /.11		1.05 1.03 1.13 1.13 1.13 1.13 1.13 1.13 1.13
SITY cubic cm.	Settled	0.723 0.677 0.677 0.587 0.587 0.573		0.640 0.648 0.639 0.679 0.568 0.573 0.568 0.555 0.555
DEN	Drapped	0.666 0.606 0.572 0.572 0.572		0.608 0.608 0.572 0.572 0.576 0.576 0.576 0.576 0.576
	Rencent Moisture	17.7 23.0 30.9 34.0	26.0 30.9 32.9	33.9.9 1.0.00
	. GRAIN	Can		Can

Remarks		30 MHz Data. of ///4/16 Semples from western Kanses and various offer ports of U.S.A.	30 MHz Data of 12/15/76 58mples from Verious perts of U.S.A.	30 MHz. Data of 1/19/77 Repet measurements on Ebare 5 Brugles
٤ ال	Settled	0.4361 0.4361 0.4361 0.4466 0.5370 0.5370 0.551	0.3097 0.2976 0.4241 0.4968 0.7760 0.7760 0.7760 1.007	0.3271
Ŵ	Dropped	0.3858 0.3566 0.3858 0.3858 0.3784 0.3858 0.4344 0.5633	0.2509 0.3550 0.3550 0.3739 0.5735 0.5735 0.5696 0.5635 0.5635 0.5635	0.2579
~	Settind	0.0994 0.0970 0.0970 0.0976 0.0976 0.038	0.0884 0.0863 0.1723 0.1723 0.1769 0.1769 0.1769 0.1769	0.09 36 0.1120 0.1147
fan	Dropped	0.0912 0.0904 0.0904 0.0951 0.0951 0.0950 0.1181	0.0805 0.0778 0.0778 0.1040 0.1473 0.1473 0.1473 0.1473 0.1473 0.1473 0.1752	0.0832 0.1020 0.1053
	Settled	4.096 4.594 5.023 5.386 5.666 5.666	3.503 3.772 4.5975 5.755 5.755 5.755 5.755 5.755	3.756 3.849 3.849
U	Dapped	3.689 4.151 4.151 4.573 4.573 4.573 4.786	3.112 3.112 3.437 3.447 3.544 4.032 4.032 4.061 4.166	3.389
	Density Ratio Settled to Dropped	/ 08 / 06 / 06 / 07 / 07 / 07	/ 07 / 05 / 05 / 05 / 05 / 05 / 05 / 05 / 05	1.00 2007
SITY cubic cm.	Settled	0.854 0.854 0.854 0.832 0.791 0.796 0.796	0.751 0.754 0.754 0.745 0.745 0.717 0.717 0.717	0.765 0.769 0.769
DEN	Drapped	0.827 0.803 0.772 0.772 0.772 0.772 0.772 0.772	0.704 0.723 0.723 0.697 0.697 0.697 0.697 0.675	0.7/2 0.723 0.723
	Rencent Moisture	21.2 8.5 16.6 16.6 16.0 16.0 16.0 16.0 16.0 16.0	60%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	4.0/ 4.//
	GRAIN	wheat	Souta	. sources

.

Remarks		50 MHL Deta. of 11/1× Semples from Various perts of U.S.A.	50 Mile Data "Of 12/15/76 All Samples from Some Fredd. Air dried on cob from 39% fo 8.5 %	
Ł	Settled	0.4694 0.7412 0.7567 0.9826 1.074 1.673	0.1962 0.2420 0.2883 0.3400 0.9463 0.9463 0.9463 1.295 1.295 1.295 1.295 1.71	
e	Dropped	0.4163 0.5926 0.5879 0.7609 0.8684 7.323	0.1779 0.2103 0.2415 0.2415 0.2913 0.2973 0.2973 0.2973 0.2975 0.2975 0.2975 0.2975 0.2975 0.2975 0.2975 0.2975 0.2975 0.2975 0.2975	
8	Settled	0.0985 0.1434 0.1390 0.2019 0.2027 0.2972	0.0743 0.0621 0.0672 0.0673 0.1565 0.1962 0.1962 0.2804 0.4761	
, tan	Dropped	0.0748 0.1334 0.1273 0.1849 0.18649 0.18622	0.0710 0.0765 0.0785 0.0785 0.179 0.179 0.1738 0.1738 0.1738 0.1738 0.2761 0.2761	
	Settled	5.44 5.44 5.298 5.298 5.630	2.640 2.948 3.306 6.632 6.632 6.632	
~	Droped	4.391 4.442 4.618 4.115 4.115 4.566 4.566	2.506 3.977 3.977 5.471 5.471 5.471	
	Density Ratio Settled to Dropped	/. 07 /. /28 /. /5 /. /2	7.07 7.07 7.17 7.17 7.17 7.17 7.17 7.17	
SITY cubic cm.	Settled	0.712 0.677 0.677 0.657 0.557 0.553	0.631 0.632 0.633 0.633 0.633 0.633 0.633 0.573 0.573 0.573	
DEN	Drapped	0.664 0.604 0.576 0.576 0.500	0.608 0.608 0.615 0.554 0.554 0.554 0.554 0.508 0.508	
	Renent Moisture	777 230.9 30.9 30.9 32.9	22.22.22 22.22.22 22.22.22 2.22 2.22	
	GRAIN	Corn	Com	

Remarks		SO MHL Deta	of 11/4/16 Semples from	Westen Kenses and various offer	person usa.	50 MHz Data of 12/15/72 Semples from various pearts of U.S.A.
2	Settled	0.4/39	0.4159	0.4682	0.4745	0.3139 0.4079 0.4552 0.4558 0.4558 0.4558 0.4558 0.9745
Ŷ	Dropped	0.3454	0.3652	0.3778	0.4/98	0.254 0.3457 0.3457 0.3468 0.3468 0.3468 0.326 0.5221 0.5228
S	Settled	0.1053	0.0959	0.10/8	0.0994	0.0909 0.1102 0.1102 0.1517 0.184 0.1851 0.1851 0.1851
tan	Dropped	0.0971	0.0901	0.0933	0.0937	0.0817 0.0817 0.0783 0.1373 0.1373 0.1373 0.1373 0.1373 0.1373
	Setted	3.931	4.336	4.598	4.773	3.328 3.328 3.328 4.349 4.593 4.593 4.593
U	Droped	3.555	4.053	4.050	4.479	3.978 3.978 3.978 7.290 7.290 7.290 7.290 7.290
	Density Ratio Settled to Dropped	1.07	1.07	1.09	1.05	
SITY cubiccm.	Settled	0.885	0.837	0.791	0.779	0.757 0.757 0.758 0.757 0.757 0.725 0.725
DEN 9rams/	Drapped	0.829	0.782	0.723	0.739	0.725 0.725 0.725 0.723 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725
1	Rencent Moisture	10.7	4.07	10.0	10:4	001 4.0 4.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2
	GRAIN	Wheef				Eho

Remarks		100 MHz Deta of 11/176 Semples from Verious perts of U.S.A.	100 mtr Data of 12/15/76 All Samples from Seme freid. Air dried on cob from 39% to B.S %
2	Settled	0.4967 0.6100 0.6520 0.7242 0.8833 1.078	0.1984 0.2557 0.2955 0.3569 0.4443 0.3569 0.6790 0.6790 0.6790 0.6790 0.8561 1.166
V	Dropped	0.4180 0.5164 0.5164 0.5357 0.6677 0.8703	0.835 0.2660 0.3081 0.4042 0.422 0.422 0.422 0.422 0.422 0.423 0.473
δ	Settled	0.1257 0.1227 0.1232 0.1232 0.1232 0.2093	0.0777 0.0894 0.0937 0.147 0.147 0.1276 0.1513 0.1782 0.1782 0.3720
tan	Dropped	0.0992 0.1158 0.1385 0.1385 0.19537 0.1957	0.0749 0.0828 0.0965 0.1965 0.1979 0.1979 0.1979 0.1979 0.2907 0.2907
	Settled	4.699 4.971 5.293 5.149	2.554 3.682 3.682 3.683 4.203 5.984 5.984 5.984 5.984
V	Dreped	4.24 4.24 3.868 4.357 4.357 4.447	2.450
	Density Ratio Settled to Drapped	1.05 1.11 1.12 1.13 1.13 1.13 1.13 1.13 1.13	/.06 /.05 /.//3 /.//3 /.//3 /.//3 /.//3
SITY ubic cm.	Settled	0.710 0.675 0.589 0.589 0.589	0.640 0.640 0.655 0.578 0.578 0.578 0.578 0.578
DEN 9rams/	Drapped	0.673 0.607 0.534 0.533 0.509	0.615 0.606 0.512 0.570 0.570 0.570 0.570 0.570 0.572
- C Provintence of Marco Andrew	Reneat	22.23.37	22.27.0 22.27.0 22.27.0 22.27.0 22.27.0 22.27.0 2.27.0000000000
	GRAIN	Corn	Com

Remarks		loomith Deb of 11/4/76 Samples from westem Kansas and various other parts of U.S.A.	100 MHE DEHO 04 12/15/76 58mpts from Verious poorts 04 U.S.A.
*	Settled	0.4220	0.3037 0.2883 0.9948 0.9948 0.5805 0.5805 0.5805 0.5805 0.7846 0.7846 0.7846
U	Dropped	0.3610 0.3510 0.3576 0.4201 0.4201 0.4087 0.4087 0.4087	0.2468 0.3354 0.3354 0.43548 0.43548 0.43548 0.43548 0.43548 0.43548 0.43548 0.43548 0.44700
8	Settled	0.1139 0.1079 0.1079 0.1125 0.1132 0.1078 0.1132 0.1078	0.0923 0.116 0.116 0.1187 0.1353 0.1353 0.1353 0.1353 0.1707 0.1707
tar.	Dropped	0.1056 0.1053 0.1053 0.1066 0.1066 0.10662 0.0962 0.0962	0.0835 0.035 0.037 0.737 0.737 0.737 0.737 0.737 0.737 0.737 0.737 0.737 0.737 0.737 0.737 0.737
(1)	Settled	3.764 4.208 4.46 4.370 4.370 4.370 4.370 5.105	4.021 4.021 4.021 4.021 4.021 4.021 4.021
V	Dapped	3.913 3.913 3.913 3.913 3.913 3.875 3.875 4.44 4.44	2.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7
	Density Ratio Settled to Dropped	/ 07 / 08 / 08 / 08 / 08 / 07 / 08	/.05 /.05 /.07 /.07 /.07 /.08
SITY cubic cm.	Settled	0.889 0.871 0.832 0.782 0.782 0.768 0.768	0.751 0.751 0.757 0.757 0.757 0.757 0.751 0.731
DEN	Drapped	0.829 0.808 0.772 0.772 0.772 0.772 0.772	0.775 0.720 0.770 0.770 0.675 0.675
	Percent Moisture	21.27 21.27	60///2014 4 19 19 19 19 19 19 19 19 19 19 19 19 19
	GRAIN	Wheat	Ethas

Remarks		150 MMz Data of 11/1/16 Semples from Various parts of U.S.A.	150 Mitz D ata bf /2/15/76 All Samples from Same freidi Air dried on ceb from 39 % fo 8.5 %		150 MHz. Data Repeated measure- ments on above Semples from Verious parts of U.S.A.	150 MHz Defe Repeebed mesure- rrents on service Itom Serve treld Listed zbowe.
é "	Settled	0.5263 0.6093 0.4709 0.4971 0.4971 0.4971 0.495	0.3207	0.6228 0.7439 0.8804 1.438	0.5963 0.6126 0.6184 0.7239 0.7239	0.2497 0.3098
	Dropped	0.4597 0.4530 0.2989 0.2571 0.4617 0.4617 0.5599	0.2268 0.2903	0.4519 0.5437 0.6450 1.075	0.4302 0.4772 0.4896 0.5817 0.5617	0.2157
tan S	Settled	0.1142 0.1226 0.0895 0.1062 0.1267 0.1267	0.09%	0.1383 0.1557 0.1774 0.2400	0.1218 0.177 0.1346 0.1853 0.1853	0.0913 0.0996
	Dropped	0.1079 0.100 0.0689 0.0877 0.0877 0.0877 0.0877 0.1325	0.0860	0.1177 0.1380 0.1596 0.2222	0.1072 0.1078 0.1254 0.1746	0.0924 0.0924
, É	Settled	4.609 5.261 5.261 5.027 5.026	2.772 3.141	4.502 4.777 4.908 5.994	4. 895 5.205 4.595 4.996 5.122	2.735 3.//0
	Droperd	4.177 4.179 4.339 3.931 4.279 4.279	2.637	3.838 3.941 4.042 4.837	4.012 4.427 3.904 4.180	2.867
	Density Ratio Settled to Dropped	/. 08 /. / 08 /. / 09 /. 09 /. 09	1.05 1.05	//// ////	1.00 1.10 1.13 1.13 1.13 1.13 1.13 1.13	/. 05
SITY subic cm.	Settled	0.734 0.680 0.582 0.562 0.562	0.655	0.577 0.565 0.562 0.570	0.664 0.585 0.582 0.565	0.657 0.657
DEN	Drapped	0.682 0.682 0.644 0.524 0.520 0.576	0.621	0.5/8 0.5/3 0.505 0.502	0.611 0.623 0.520 0.506	0.615 0.621
	Percent Moisture	17.7 28.0 39.9 34.0	00/0/00 2000/00/00 2000/00/00/00/00/00/00/00/00/00/00/00/00	20.79 6 20.79 6 20.79 6	23.3 29.0 34.0 34.0	10:4 12:9
	GRAIN	Corn	Com		Carn	Corr

Remarks		Wheat not neosured of 150 MHz.	150 MHz Defe of 12/15/76 Semples from Verious parts of U.S.A.
ě V	Dropped Settled		0.2467 0.2960 0.1969 0.2349 0.3157 0.3847 0.3172 0.3847 0.4179 0.3719 0.4600 0.5796 0.37340 0.5796 0.5736 0.5736 0.5736
tan S	Dropped Settled		0.0844 0.0922 0.0682 0.0922 0.1012 0.103 0.10738 0.1051 0.1756 0.1323 0.1756 0.1323 0.1276 0.1282 0.1386 0.1497
e'	Drepped Settled		2.923 3.213 3.198 3.457 3.198 3.457 3.199 3.457 3.493 3.920 3.654 4.978 3.654 4.978 3.654 4.978 3.654 4.978
	Density Ratio Settled to Dropped		20. 20. 20. 20. 20. 20. 20. 20. 20. 20.
ENSITY ms/cubiccm.	and Settled		0.022 0.757 0.757 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.7777 0.77777 0.77777 0.77777 0.77777 0.77777 0.777777 0.77777777
0 2006	Percent Dropp	20.5 18.6 18.6 18.6 18.6 18.6 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7	6.0 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4
	GRAIN	Wheat	Source

Remarks		Loo MHz Data. of 11/176 Semples from Various parts of U.S.A.	200 mm/2 Data of 12/15/76 All Samples from Same fred. Air dried on ceb from 39% fo B.S %
è U	Settled	0.5338 0.5781 0.6154 0.6891 0.6891 0.8740	0.1923 0.2476 0.3087 0.3087 0.4527 0.4528 0.4568 0.45768 0.45768 0.45768 0.45768 0.45768 0.45768 0.45768 0.45768
	Dropped	0.4519 0.44519 0.4778 0.4777 0.5278 0.6608	0.1744 0.2186 0.2186 0.3825 0.3863 0.4539 0.4539 0.5241 0.5241 0.5241 0.5241
tan S	Settled	0.1196 0.195 0.195 0.1378 0.1378 0.1702	0.0779 0.0918 0.1055 0.1143 0.1215 0.1282 0.1282 0.1282 0.1282 0.1282 0.12331
	Dropped	0.1/25 0.1/02 0.1/08 0.1/34 0.1/548	0.0742 0.0861 0.0963 0.1096 0.1796 0.1309 0.1309 0.1309 0.2044
¢,	Settled	4.463 5.150 4.698 4.698 5.135 5.135	2.468 3.959 3.966 4.171 4.171 5.923 5.923
	Droped	4.0% 4.009 4.307 3.628 4.269 4.269	2.351 2.539 3.222 3.222 2.795 4.223 4.223 4.223
	Density Ratio Settled to Drapped	% % % % % % % % % % % % % % % % % % %	//////////////////////////////////////
SITY cubic cm.	Settled	0.704 0.675 0.582 0.573 0.577	0.651 0.651 0.652 0.557 0.557 0.557 0.557 0.557 0.557
DEN 9rams/	Drapped	0.664 0.613 0.578 0.509 0.509	0.608 0.679 0.587 0.587 0.502 0.504 0.504
	Reneat	22.0.0	90,000 90,00,00 90,00,00 90,00,00 90,000 90,0000 90,0000 90,0000 90,00000000
	GRAIN	Corn	Com

Remarks		- 200 MH2 OBta of 11/4/74 Samples from Westem Kanses Brd verious other Parts of U.S.A.	Loo Mile Data of 12/15/76 Samples from Warious rants of U.S.A.		
ě	pped Settled	597 04231 153 0.5004 1367 0.4881 1367 0.4881 143 0.5560 143 0.5560 1477 0.5102 1477 0.5102	420 0.2944 146 0.3692 213 0.3867 381 0.3174 381 0.3174 776 0.6236 776 0.6236 776 0.6236 776 0.6236		
S 12	ed Settled Dro	22 0.125 23 0.125 24 0.125 24 0.125 25 0.125 25 0.125 25 0.125 25 0.2 25 0.2 25 0.2 25 0.4 25 0.4 25 0.5 25 0.5	77 0.0933 28 0.1/29 29 0.0897 20 0.1/29 20 0.1/29 20 0.1/29 20 0.1/29 20 0.033 20 0.1/29 20 0.03 20 0.1/29 20 0.1/20		
× 	Settled Drogg	5.633 3.995 3.995 4.77 4.77 5.081 0.112 5.081 0.112 0.112	A. 17 A.		
	Dropped	3.524 3.574 3.774 3.774 3.774 4.115 4.383	2.857 3.677 3.5743 3.862 3.866 3.866 3.866 3.866 3.866 3.866 3.866 3.866 3.8777 3.8777 3.8777 3.8777 3.8777 3.8777 3.8777 3.87777 3.87777 3.87777 3.87777777 3.87777777777		
	Density Ratio Settled b Dropped	/ 03 / 03 / 03 / 03 / 03 / 03 / 03	102 202 202 202 202 202 202 202 202 202		
SITY Cubiccm.	Settled	0.871 0.871 0.824 0.789 0.772 0.772 0.757	0.751 0.751 0.751 0.751 0.751 0.751 0.723		
DEN	Drapped	0.826 0.81 0.777 0.777 0.723 0.723 0.723 0.723 0.692	0.717 0.731 0.775 0.697 0.697 0.697 0.675		
	Percent Moisture	2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00////////// 4444-0000-00		
	GRAIN	vnear	Bhas		
NBS-114A (REV. 7-73)					
--	---	--	--	---	--
U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. NBSIR 78-897	2. Gov't Accession No.	3. Recipient	's Accession No.	
4. TITLE AND SUBTITLE			5. Publicatio	on Date	
			October 1978		
ELECTRICAL CHARACTERISTICS OF CORN, WHEAT, AND SOYA IN THE 1-200 MHz RANGE			6. Performing	3 Organization Code	
7. AUTHOR(S) R. N. Jones, H. E. Bussey, W. E. Little, and R. F. Metzker			8. Performing	8. Performing Organ. Report No.	
9. PERFORMING ORGANIZATION NAME AND ADDRESS			10. Project/1 2762	10. Project/Task/Work Unit No. 2762275	
DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20234			11. Contract/Grant No.		
12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)			13. Type of Report & Period Covered		
			14. Sponsoring Agency Code		
15. SUPPLEMENTARY NOTES				<u>,</u>	
A set of c reduction techn dielectric prop 200 MHz range. dielectric prop quency, and pac dependence of d configuration. dielectric cons percent moistur of high moistur	oaxial sample holders toget ique has been developed and erties (ε*=ε'-jε") of wheat Particular attention was g erties as a function of per king density. Data were al ielectric properties on tem Some study was also devote tant (ε'), loss factor (ε") e content. Particular emptre corn (up to 40%).	ther with a measure applied to the , corn, and soya given to the beha cent moisture co so taken to eval apperature and same d to the correla , loss tangent hasis was devoted	first key word	1 data the 1 to he e- r een nd dy	
17. KEY WORDS (six to twelve name; separated by semicolo	entries; alphabetical order; capitalize on ons)	ly the first letter of the	first key word	unless a proper	
Dielectric properti	es; grain; loss tangent; mo	isture.			
18. AVAILABILITY	X Unlimited	19. SECURIT (THIS RE	TY CLASS EPORT)	21. NO. OF PAGES	
For Official Distribution	a. Do Not Release to NTIS	UNCL AS	SIFIED	70	
Order From Sup. of Doc. Washington, D.C. 20402	, U.S. Government Printing Office P, <u>SD Cat. No. C13</u>	20. SECURI (THIS P.	FY CLASS AGE)	22. Price	
T Order From National Technical Information Service (NTIS) Springfield, Virginia 22151		UNCLASS	SIFIED	\$4.50	

.

•