NBSIR 78-895

EARTH TERMINAL MEASUREMENT SYSTEM MAINTENANCE MANUAL

John P. Wakefield

Electromagnetic Fields Division National Engineering Laboratory National Bureau of Standards Boulder, Colorado 80303

September 1978

Equipment developed for

Commanding General U.S. Army Communications Command Fort Huachuca, Arizona 85613

NBSIR 78-895

EARTH TERMINAL MEASUREMENT SYSTEM MAINTENANCE MANUAL

John P. Wakefield

Electromagnetic Fields Division National Engineering Laboratory National Bureau of Standards Boulder, Colorado 80303

Equipment developed for

Commanding General U.S. Army Communications Command Fort Huachuca, Arizona 85613

September 1978

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary Sidney Harman, Under Secretary Jordan J. Baruch, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

PREFACE

This manual is organized into ten sections. The first four sections present information related to the overall system. Each of the other sections, 5 through 9, is an instrument instruction manual for a particular unit. Section 10 contains information on the inter-connecting cables.

NOTICE

"Certain commercial equipment, instruments, or matertials are identified in this paper in order to adequately specify the experimental procedure. In no case does such identification imply recommendation or endorsement by the National Bureau of Standards, nor does it imply that the material or equipment identified is necessarily the best available for the purpose."

EARTH TERMINAL MEASUREMENT SYSTEM

MAINTENANCE MANUAL

TABLE OF CONTENTS

Page

	ABST	RACT		1
1.	GENE	RAL INFORM	ATION	3
	1.1	Introduct	ion	3
	1.2	Software		3
	1.3	Hardware		5
	1.4	Specifica	tions	5
•		1.4.1	System Specifications	5
		1.4.2	Individual Unit Specifications	8
2.	INST	ALLATION A	ND OPERATION	9
	2.1	Introduct	ion	9
	2.2	Unpacking	and Inspection	9
	2.3	Initial In	nstallation	11
		2.3.1	ETMS Control/RF Checkout	12
			2.3.1.1 Manual Control	12
			2.3.1.2 Calculator Control	14
			2.3.1.3 RF Circuitry Checkout	15
			2.3.1.4 Power Detector Checkout	16
		2.3.2	Temperature/Dew-Point Monitor Checkout	17
		2.3.3	Equipment Performance Checkout	18
	2.4	New Site	Equipment Setup	19
		2.4.1	Introduction	19
		2.4.2	Unpacking and Hookup	19
			2.4.2.1 Unpacking	19
			2.4.2.2 Power-Up	20
			2.4.2.3 Temperature/Dew-Point Probes	20
		2.4.3	Installation of Noise-Add Standard	21
			2.4.3.1 Positioning the Noise-Add Standard	21
			2.4.3.2 Control Room Cables	22
		2.4.4	ETMS-IF Patch Panel Connections	23
		2.4.5	Equipment Checkout on Station	23
3.	THEOR	RY OF OPER	ATION	24
	3.1	Introduct	ion	24
		3.1.1	Measurement Description	24
	3.2	Descriptio	on of System Equipment	25
	3.3	General S	ystem Theory	26
		3.3.1	Control/RF Unit	26
		3.3.2	Power Detector Module	27
		3.3.3	Digital Voltmeter	27
		3.3.4	Analog Multiplexer	28
		3.3.5	Temperature and Dew-Point Meters	29
		3.3.6	X-Band Dual Noise-Add Standard	29
	3.4	System Con	atrol Circuits	30
		3.4.1	Control Signals.	30
		3.4.2	Offset Voltage Control	32
		3.4.3	Noise-Add Control.	32

	3.5	System Flag Circuits
		3.5.1 ETMS Control/RF Console Flags
		3.5.2 DVM Data-Ready Flag
		3.5.3 Clock Data-Ready Flag
	3.6	System Data Circuits
		3.6.1 Control Data Paths
		3.6.2 Digital Voltmeter Data
		3.6.3 Date and Time Data Paths
	3.7	Input-Output Interfaces
4.	SYST	EM TROUBLESHOOTING
	4.1	Systematic Approach
		4.1.1 Preliminary Evaluation
5.	ETMS	CONTROL/RF: INSTRUCTION MANUAL.
	5.1	Introduction
	5.2	Specifications
	5.3	RF Circuits
	5.5	5.3.1 Input Circuits
		5.3.2 First Amplifier
		5.3.3 Attenuator Module
		5.3.4 Second Amplifier
		5.3.5 Monitor and Output Circuits
		5.3.6 Star Simulator Circuits
	5 /	Control and Flag Circuits
	7.4	5 / 1 Control /
		5.4.1 Control
	55	Power Distribution
	5.6	Digital Circuit Description
	2.0	5.61 7.700 Control Card
		5.6.2 7 400 Switch Driver Card 5
		5.6.3 7 500 PE Loval Processor Poard
		5.6.3.1 Adjustments of PE Level Processor 5
	57	Simulated Star Noise Sources
	5.8	Troubleshooting the ETMS Control/PE Unit
	5.0	5.8.1 RE Signal Diagnostics 5
		5.8.2 Control Circuitry Disgnostics
		5.8.3 Ready-Flag Diagnostics 5
	5 0	Parts List-Control/PE Unit
	5 10	Viring List
	5 11	FTMS Drawings
6	MITT	TPIEVER/DICITAL VOLTMETER CONTROLLER
0.	6 1	Introduction 9
	6 2	
	63	V 100 MUV/DVM Control Cord
	6.4	Y 200 Officet Reference Voltage Card
	0.4	6 / 1 Digital Circuita
		6 / 2 Reference Voltage Circuite
		6 4 2 Adjustment V 200 Offset Valters Defenses
	6 5	V 300 Input Channel Multiplaner
	0.5	6.5.1 Control Cincuite
		6.5.2 Applog Wultiployer
		6.5.2 Multiplexer
		0.5.5 Full Liptexer input Grannel Assignments

	6.6	Troubleshooting	101
	6.7	Parts List-MUX/DVM Controller	102
	6.8	Wiring List	112
	6.9	Drawings	119
7.	POWE	R DETECTOR INSTRUMENT MANUAL	131
	7.1	Description	131
	7.2	Specifications	131
	7.3	RF Power Detector Mount	131
	7.4	NBS Type IV Power Meter	131
	7.5	Parts List	133
	7.6	Wiring List	134
8.	CLOCI	K AND TEMPERATURE/DEW-POINT INSTRUMENT MANUAL	135
	8.1	Introduction	135
	8.2	Specifications	135
	8.3	Digital Clock.	135
	8.4	X3 Clock Inhibit/Flag Card	137
		8.4.1 Troubleshooting	137
	8.5	X1 Temperature/Dew-Point Sensors	137
		8.5.1 Alignment of Temperature Sensor	138
·		8.5.2 Alignment Dew-Point Sensor	139
		8.5.3 Troubleshooting	139
	8.6	X-2 Temperature/Dew-Point Power Supply	140
	8.7	AC Power Distribution	140
	8.8	Parts List-Clock/Temperature/Dew-Point	141
	8.9	Clock Wiring List	150
	8.10	Drawings	157
9.	NOISI	E-ADD STANDARD & POWER SUPPLY INSTRUCTION MANUAL.	170
	9.1	Introduction	170
	9.2	Specifications	170
	9.3	Noise-Add Module	170
	9.4	Noise-Add Power Supply	172
	9.5	Troubleshooting	172
	9.6	Parts List - Noise-Add Unit & Power Supply	173
	9.7	Drawings	181
10.	INTE	RCONNECTION CABLES.	191
	10.1	Cable List	191
	10.2	Cable Wiring List	193
ACKNO	WLED	GMENTS	201
REFEF	RENCES	5	202
APPEN	DIX A	A: SPARE PARTS AND SUPPLIES	203
APPEN	IDIX I	B: PARTS LIST MANUFACTURER'S CODE TABLE	204
APPEN	DIX (C: CONTROL CODES	211

LIST OF FIGURES

Page

Figure	1.	ETMS System Equipment
Figure	2.	Block Diagram of Earth Terminal and ETMS 4
Figure	3.	System Control
Figure	4.	Interface Signal Assignments
Figure	5.	Flag Handshake Timing
Figure	6.	ETMS Control/RF Unit
Figure	7.	ETMS Control/RF Unit RF Section
Figure	8.	2400 Schematic Circuits
Figure	9.	2400 PC Assembly Drawing
Figure	10.	2500 Schematic Circuits
Figure	11.	2500 PC Assembly Drawing
Figure	12.	2700 Schematic Circuits
Figure	13.	2700 PC Assembly Drawing
Figure	14.	2600 Block Diagram
Figure	15.	Front Panel Wiring
Figure	16.	Rear Panel Wiring
Figure	17.	Control/RF Unit Primary Power Distribution
Figure	18.	Multiplexer/DVM Unit
Figure	19.	Data Flow-DVM
Figure	20.	Y100 Schematic Circuits
Figure	21.	Y100 PC Assembly Drawings
Figure	22.	Y200 Schematic Circuits
Figure	23.	Y200 PC Assembly Drawing 125
Figure	24.	Y300 Schematic Circuits
Figure	25.	Y300 PC Assembly Drawing 129
Figure	26.	Power Detector Unit
Figure	27.	Clock and Temperature/Dew-Point Unit 136
Figure	28.	X3 Schematic Circuits
Figure	29.	X3 PC Assembly Drawing 159
Figure	30.	Xl Schematic Circuits
Figure	31.	X1 PC Assembly Drawing
Figure	32.	X2 Schematic Circuits
Figure	33.	X2 PC Assembly Drawing
Figure	34.	Clock/Temperature AC Power Distribution
Figure	35.	Noise-Add Standard Unit
Figure	36.	Noise-Add Schematic
Figure	37.	V800 Noise-Add Constant Current Schematic
Figure	38.	V800 PC Assembly Drawing
Figure	39.	V900 Power Supply Schematic
Figure	40.	V900 PC Assembly Drawing
Figure	41.	System Interconnection Cables
iv		

EARTH TERMINAL MEASUREMENT SYSTEM MAINTENANCE MANUAL

By John P. Wakefield

This manual describes the equipment and maintenance procedures to support the earth terminal measurements system (ETMS) developed by the National Bureau of Standards for making measurements of earth terminal and satellite parameters such as figure of merit (G/T), antenna gain relative to a reproducible reference level, ratio of carrier power to the operating noise temperature (C/kT), and satellite effective isotropic radiated power (EIRP). System equipment specifications, site set-up instructions, equipment theory of operation, troubleshooting and maintenance are included. This manual does not include measurement theory nor measurement operating procedures that are described in the Earth Terminal Measurement System Operation Manual.

Key Words: Earth terminal measurement system; effective isotropic radiated power; figure of merit; noise temperature; satellite communication.

1. GENERAL INFORMATION

1.1 Introduction

The Earth Terminal Measurement System (ETMS) is a portable automated measurement system (figure 1) developed around the NBS Type IV self-balancing power meter [1]. The system measures pertinent power ratios used in determining various performance parameters of satellite receiving earth terminals.

The ETMS operates through the IF patch panel of the earth terminal. The Power Measurement and Control Console measures the power received from the patch panel and operates the remote rf solid-state noise source attached through a cross-guide coupler to the microwave front-end of the earth terminal as shown in figure 2. All measurements are made in pairs, one measurement with the noise source turned off and one measurement with the noise source turned on, and then the two measurements are normalized by the difference between the two powers to minimize the effects of gain variations of the earth terminal.

The measurement of Gain-Over-Noise Temperature (G/T) of an earth terminal is accomplished by pointing the antenna to a radio-star (essentially a point source) of known flux density, measuring the received power, and then pointing the antenna to "cold sky" and again measuring the power. Normally, the larger portion of the noise power "received" during the cold-sky measurement is generated by the "front-end" of the earth terminal. The G/T of the earth terminal is calculated knowing the cold-sky contribution to the measurement and the expected flux density of the star [2, 3, 4, 5, 6, 7].

1.2 Software

The software for the ETMS system consists of seven cassette tapes, four containing programs for specific tasks: equipment checkout, site-data preparation, data acquisition, and data rework. There are three support tapes, one of tabulated program variables, one of array variables, and one of special functions. The ETMS Operator's Instruction Manual [2], (not part of this manual), contains system operating instructions, including a sample input and printout for each measurement task.

Block Diagram of Earth Terminal and ETMS.

Figure 2.

1.3 Hardware

The ETMS unit consists of eight major components (figure 2): (1) The noise-add standard source with its power supply, which is attached to the crossguide coupler at the antenna low-noise amplifier input; (2) the ETMS control/rf console which plugs into the IF patch panel (this unit also requires two coaxial cables which go up to the antenna rf-plate to remotely control the noise-add source); (3) the power-detector unit which is a thermally-isolated commercial thermistor mount and an NBS type IV power-meter; (4) the multi-channel input digital-voltmeter which measures and digitizes the various measurement parameters and monitor voltages in the system; (5) the clock which provides time information to the calculator for predicting star locations; (6) temperature/dew point monitor for calculating water absorption corrections to the star flux, (the temperature and dew point sensors are attached to 30-meter (100-ft) cables so that they may be located outside to monitor outside ambient conditions); (7) the calculator with its printer which provides the operator control interface, control of the measurement process, and calculations of the measurement data; and (8) a cassette memory for storing measurement data.

1.4 Specifications

Introduction:

The various units of the ETMS systems will operate over different frequency ranges and power levels, so specifications are given for the overall system. The specifications for each individual unit are given in the section pertaining to that particular unit.

1.4.1 System Specifications

<u>General system specification size</u>: The ETMS is transported in six (6) foamrubber lined fiber glass transit cases each weighing between 25 and 35 Kg (55 and 75 pounds). Total shipping weight of system is approximately 210 Kg (460 pounds). These transit cases provide an easy shipping method by air freight and protect the units against damage.

<u>Power requirements</u>: The ETMS system will operate on either 50 or 60 Hz power line frequency and can be switched to operate from 115 VAC or 230 VAC. The system will operate on a reduced input voltage down to approximately 200 V at either 50 or 60 Hz. System power consumption at 60 Hz is 500 W.

<u>Control/RF Unit</u>: The control/rf unit houses the control and switching circuits to operate the system from calculator commands; the rf circuitry, input attenuator, band-pass filters, programmed attenuators and precision attenuators; rf amplifiers; rf level monitor and alarm; and an internal simulation noise source for verifying system performance.

RF input frequency: The ETMS includes four filters for 30 MHz, 2.5 MHz B.W.; 70 MHz, 5.5 MHz B.W., 2.5 MHz B.W., and 1.3 MHz B.W.; and also permits wideband operation. Wideband operation is useful when an external filter is used for establishing system bandwidth or when measuring a known cw signal.

Actual cw and noise bandwidths are:

Selected Bandwidth	cw Bandwidth	Noise Bandwidth
Wide Band	10-200 Hz	Undefined
30 MHz/2.5	2.5 MHz	2.8 MHz
70 MHz/5.5	5.6 MHz	5.4 MHz
70 MHz/2.5	2.6 MHz	2.65 MHz
70 MHz/1.0	1.4 MHz	1.26 MHz

Input power level: The input rf power is from 0.2 microwatts to 10 milliwatts. The ETMS input is a 0-70 dB attenuator followed by approximately 30 dB of amplification. The optimum power detector level is between 200 and 1000 microwatts for most accurate measurements.

Input impedance: The impedance of the rf input is 50 ohm.

Output impedance: The rf output port impedance is 50 ohms.

RF level meter: The centerscale zero-reading on the rf level meter represents approximately 500 microwatts (-3 dBm) at the detector when operating at 70 MHz. The meter scale is approximately 1 dB per division.

Simulated noise source: The ETMS control/rf unit includes a simulated noise source for testing ETMS system performance without connecting to an earth terminal. The frequency spectrum is approximately 10 to 100 MHz uncalibrated output level. This simulation source incorporates three noise generators, two which simulate the noice-add standard and the third which is manually adjustable over an eleven dB range.

<u>Noise-Add Standard</u>: The dual diode noise-add standard is a solid-state microwave dual noise source with its companion power supply. This unit is attached to the antenna port, through a directional coupler, to inject a known noise signal into the earth terminal receiver under ETMS calculator control.

Dual diode noise-add standard: The 7.0 to 7.4 GHz frequency noise-diode output level is approximately 300,000 K with both diodes on. Diode No. 1 is approximately 3 db less than diode No. 2.

Noise-add current supply: This external module contains a long-term stability voltage reference which is used to determine the constant-current to each noise-add diode.

Input power: 115/230 V 50/60 Hz.

Input control: Two coaxial lines from ETMS control console.

<u>Power Detector Unit</u>: The rf power detector unit is a thermister type rf detector which is in a thermally isolated enclosure, and an NBS type IV power meter. The output of the power meter is a dc voltage which can be measured with a digital-voltmeter.

<u>DVM and Analog Multiplexer Unit</u>: This unit provides eleven (11) input channels to the digital voltmeter for digitizing the various dc voltages involved in the equipment verification and measurement operation of the ETMS. One channel is a spare which can be used as an auxiliary input to the DVM. This module also houses the voltage-offset reference generator used to enhance the rf power measurement.

<u>Time, Temperature and Dew Point Unit</u>: This unit houses the system clock and temperature monitor circuits.

Time: The clock is a commercial module with a crystal time base. The unit has a power-outage, clock-failure signal that is used to initiate a program warning message. (See manufacturer's instruction manual.)

Date: Month and date information to calculator are input on the thumbwheel switches on the front panel.

Temperature monitor: The temperature monitor is a thermister sensor type meter, with a range of 0 to 100° F [10]. Extended ranging is available on the DVM reading only.

Dew point monitor: The dew point monitor is a heated lithuim-cloride element containing a thermister sensor type meter, range 12° to 96°F [10]. (See manufacturer's instruction manual.)

100-ft extension cables are supplied to remotely locate the temperature and dew point sensors to monitor outside conditions.

<u>Calculator Control Unit</u>: The calculator provides the automatic control and sequencing to operate the ETMS system. The functions are: keyboard input, thermal printer output, cassette tape program, and data storage. The software is in BASIC programming language. Four input/output channels are provided for instrument interfaces (see manufacturer's instruction manual).

1.4.2 Individual Unit Specifications

Refer to each respective equipment section of this manual for particular specifications for each unit.

2.1 Introduction

Installation procedures are usually performed on arrival at each site. In short, this amounts to first unpacking the system units; calculator, printer, external cassette unit, control/rf unit, DVM, power detector and clock, then interconnecting the various cables between units, verifying that the power line supply voltage selectors and fuses match the available power, turning on the system, and running the equipment check-out program.

2.2 Unpacking and Inspection

Figure 1 is a photograph of the units of the ETMS system. The system is shipped in six (6) transit cases labeled as follows:

Box No. 1 - Calculator Box No. 2 - Printer Box No. 3 - EMTS control/rf unit Box No. 4 - DVM Box No. 5 - Clock & power detector Box No. 6 - Supplies & spare parts

Itemized lists of the contents of each case provide a guide for repacking equipment for transit.

Packing list:

Box No. 1 - Calculator

Calculator with special keys template attached ac power cord

Tall dust cover for calculator

Box No. 2 - Printer

Thermal printer Printer I/O cable (interface cable) ac inter-connect power cord Box No. 3 - ETMS control/rf unit

control/rf unit
ac power cord
5-short BNC cables
2-type N cables
1-IF patch panel to type "N" adapter cable
2-6 meter (20 ft) BNC cables
2-90 cm (3 ft) BNC cables

Box No. 4 - DVM

DVM with input multiplexer

2-ac power cords

1-I/O cable (rf unit)

1-I/O cable (clock)

1-I/O cable (DVM)

1-I/O cable (cassette unit)

1-control cable (rf to DVM)

3-analog cables

a) rf/control cable

b) power detector cable

c) temp/dew point cable

1-DVM top cover (under foam padding)

Box No. 5 - Clock/Power meter

Clock & temperature-dew point meter Power detector External cassette memory Dual diode noise-add standard 1-SMA/Type "N" simi-rigid line Noise-add power supply Hydrometer (temp/humidity) 4-ac power cords 2-SMA noise-add supply cables

Box	No.	6	-	Supplies	&	Spare	Parts
-----	-----	---	---	----------	---	-------	-------

Temperature/dew point probe enclosure 3 cartons printer paper (6 rolls) 2 cartons cassettes (20 cassettes, program

and data tapes)

Spare parts l-NBS type IV power meter
 l-rf power thermister mount
 l-misc components and printed circuit boards

ETMS Accessories:

The manufacturer's accessory packages and instruction manuals for the various equipment are shipped under separate cover to facilitate item check-out upon initial delivery. Some of them will be incorporated into the system transit cases while others probably will not be needed "on the road."

2.3 Initial Installation

After unpacking the system and visually checking for damage, check the position of the 115/230 V selector card in the ac power receptacle for each instrument to make sure it is set to the proper power line voltage. The selected voltage setting is visible beneath the fuse cover.

Connect the calculator, printer, and external cassette unit and proceed through the manufacturer's performance check-outs as directed in the individual manufacturer's instruction manuals. The calculator accessories include a calculator user's training tape, if needed, in addition to the performance test tape.

Clock Check-out:

When satisfied with the calculator's and peripheral's operation, connect the clock I/O cable and set the time and date. Type the following commands on the calculator keyboard:

Type "ENTER (3,*) M,T" Press "EXECUTE" key Type "DISP M,T" Press "EXECUTE" key The calculator display should show two numbers; the left one should be the left (most significant) digit of the month and the right-hand number should be the least digit of the month, the day of the month (2 digits) followed by the time in hours (00 to 23), minutes, and seconds, all combined together as one long number string. The decimal point should be between the minutes and seconds, e.g., December 14, 12:36:04 = 1 2141236.04.

Voltmeter Checkout:

Connect the digital voltmeter I/O cable. Turn on the digital voltmeter and the input multiplexer power switch. Perform the instrument checkout listed in the manufacturer's instruction manual. Rotate the DVM rate control knob fully counter-clockwise to the ext. position. Press the "output data" button and release the "program control" button. Turn the mode selector to dc volts and the range selector to auto range.

Type the following commands into the calculator:

Type "ENTER (2,*) M,V" Press "EXECUTE" key Type "DISP M, V" Press "EXECUTE" key

The calculator should display a 9 (dc mode) and the right-hand number should coincide with the voltmeter display reading.

2.3.1 ETMS Control/RF Checkout

2.3.1.1 Manual Control

Connect the I/O cable from the calculator to the control/rf console, and the interconnecting cable between control/rf console and DVM multiplexer, and turn on ac power to all units. Set each of the control codes in binary (1,2,4,8,16,32, and 64 code) into the programming switches on the front of the control/rf unit, press the "load" button and check for the conditions listed in the table below.

The complete list of control codes used by the calculator is given in Appendix B.

Control Code	Switches Up	Results On Indicator Lights
		· · · ·
48	32+16	15 dB Programmed Attenuation
63	32+16+8+4+2+1	0 dB Programmed Attenuation
62	32+16+8+4+2	1 dB Programmed Attenuation
61	32+16+8+4+1	2 dB Programmed Attenuation
59	32+16+8+2+1	4 dB Programmed Attenuation
55	32+16+4+2+1	8 dB Programmed Attenuation
		- · ·
66	64+2	Standard Attenuator In
67	64+2+1	Standard Attenuator Out
68	64+4	rf Off
69	64+4+1	rf On
82	64+16+2	Noise ADD #1 On
83	64+16+2+1	Noise ADD #1 Off
84	64+16+4	Noise ADD #2 On
85	64+16+4+1	Noise ADD #2 Off

The following codes control digital voltmeter functions. Press in the "program" button on the DVM and execute the control codes via the programming switches on the ETMS control/rf unit.

Control Code	Switches Up	Results On Indicator Light
Innut Channels		
Input Channels		
111	64+32+8+4+2+1	Input Channel O
110	64+32+8+4+2	Input Channel 1
109	64+32+8+4+1	Input Channel 2
107	64+32+8+2+1	Input Channel 4
103	64+32+4+2+1	Input Channel 8
100	64+32+4	Input Channel 11
DVM MODES		
33	32+1	dc Volts/w Filter In
32	32	dc Volts/w Filter Out
DVM Ranges		
27	16+8+2+1	0.1 Volt Range
28	16+8+4	1 Volt Range
29	16+8+4+1	10 Volt Range
30	16+8+4+2	100 Volt Range
31	16+8+4+2+1	1000 Volt Range
24	16+8	Auto Range

2.3.1.2 Calculator Control

After checking the control functions listed in the tables above, output the same commands from the calculator by performing the following sequence:

First, set the output format of the calculator by entering one line of program into the calculator by typing "10 FORMAT B" on the keyboard. Then press the "END OF LINE" key.

Now, each of the control codes in the tables above may be executed from the calculator by typing "WRITE (4,10) WBYTEXX;" Where XX is the control code

listed in the table. Then press the EXECUTE key. Note: The semicolon on the end of the direct command above must be included or the calculator waits for an end-of-message flag signal from the instrument and none is generated by this equipment, only a "command completed" flag is returned.

When the EXECUTE key is pressed, the instrument should respond with the results listed in the table. Check each command in the table by repeating the "WRITE (4,10) WBYTEXX;" and EXECUTE for each of the command codes.

The "RECALL" key can be used to avoid retyping the WRITE statement in repeatedly. Refer to the calculator instruction manual as to the use of the RECALL and editing keys.

This completes the preliminary checkout of the control circuitry.

2.3.1.3 RF Circuitry Checkout

Set up the following conditions on the control panel:

- a. Manual attenuator (input) set to 60 dB.
- b. Connect the simulated noise output coax cable to the input, if not already connected.
- c. Execute the command code 65 either from the front panel program switches or through the calculator keyboard as described in the previous section. Command code number 64 switches the standard attenuator in and turns the rf to the power detector "OFF."
- d. Set the programmable attenuator to "zero" dB by executing command code
 63 as above.
- e. Turn the simulated noise-add "OFF" by executing command code 81.
- f. Set the hold-bypass switch to the bypass position.
- g. Set the meter range selector to X1.
- h. Select the 70 MHz/5.3 MHz bandwidth filter on the filter selector control.
- i. Set the simulated STAR level attenuator to 3.5 dB.

Adjust the manual input attenuator to increase the input signal (noise) level until the signal level meter reads approximately -3.0 by reducing the manual input attenuator. This should be around 20 dB input attenuation.

Turn each noise-add source on and off using command codes 83 and 82 (NA#1), respectively, or 85 and 84 (NA#2), noting that the signal level meter indicates an increase or decrease in signal. Noise-add #1 is a smaller signal than noise-add #2.

Verify the operation of the programmable attenuator and the standard attenuator by observing the change in level on the meter when each of the following control codes are executed (either manually or through the calculator keyboard).

Control Code	Action
62	Programmable Attenuator = 1 dB
61	Programmable Attenuator = 2 dB
59	Programmable Attenuator = 4 dB
55	Programmable Attenuator = 8 dB
63	Programmable Attenuator = 0 dB
66	Standard Attenuator "IN" (6 dB)
67	Standard Attenuator "OUT" (0 dB)

Overload trip & warning:

Decrease the input attenuator while observing the signal increase on the level meter. The overload light should turn on and the warning buzzer sound when the meter reads approximately + 8 to + 10 dB.

Adjust the input attenuator to reduce the input signal; then press the overload reset button to reset the overload monitor and silence the buzzer. Readjust the input attenuator for a mid-scale (zero) reading on the meter. Set the meter range selector to X 0.1 and adjust the meter offset knob to return the meter to approximately mid-scale.

Vary the simulated star attenuator noting the signal level change on the meter. The meter scale will be approximately 0.1 dB per small division.

Move the meter range selector to X 0.01 again adjusting the meter offset knob to midscale. Varying the simulated star attenuator should provide a signal level change of approximately 0.01 dB per small division. Return the meter range selector to the X 1 position.

2.3.1.4 Power Detector Checkout

Connect the ac power cord to the power detector unit after selecting the correct line voltage setting and fuse for the power line. Note: Make certain

the ground selector switch on the back panel of the unit is in the ungrounded position, and that the bolometer cable is connected. On the front panel, check that the inter-connect links are not connected and that the 100 Ω /remote/200 Ω switch is in the 200 Ω position (this switch is blocked in the 200 Ω position on some models). Turn "ON" the ac power switch on the front panel of the power detector unit.

The meter should move up to about mid scale. Connect the analog voltage cable (J364) between the power detector and the voltmeter. Connect the type "N" coaxial cable between the control/rf unit and the power detector.

Adjust the input manual attenuator for approximately + 3 reading on the <u>rf</u> <u>LEVEL METER</u> on the control/rf unit. While alternately using control codes 69 and 68 (rf "ON" and rf "OFF"), observe that the reading on the current meter on the power detector changes a definite but very small amount.

Execute control code 103 (64+32+4+2+1) either manually or through the calculator keyboard to select DVM input channel 8 (power detector voltage). Execute control code 68 (rf OFF) last.

Set the DVM range selector to auto-range and the rate knob fully clockwise (free-run). Release the program button on the DVM. The DVM reading should be between 2.2 and 2.6 volts depending on the temperature of the power detector unit.

2.3.2 Temperature/Dew-Point Monitor Checkout

Caution:

The lithium cloride bobbin for the dew-point temperature probe is stored in a sealed test tube containing a drying agent. When in operation, the dew-point instrument heats the moisture absorbing bobbin to establish an equilibrium. When not heated, the bobbin will absorb moisture and in some instances can overheat and burn out when turned back on. For this reason the bobbin is kept dry by storing it in the sealed test tube with the drying compound. Refer to the manufacturer's instruction sheet included with the instruction manual for further information.

Unplug the dew-point probe, carefully remove the lithium-cloride bobbin from the dry test tube being careful not to touch the wicking material, and install the bobbin onto the dew-point probe. Replace the probe shield and plug the probe cable back in. After about thirty minutes the dew-point reading and DVM reading will indicate actual dew-point temperature.

Connect the temperature and dew-point probes to the chrono-met unit and the analog cable J656/J356. Within a few minutes, the temperature meter should indicate the probe temperature in degrees Fahrenheit. Executing control code 110 (DVM input channel 1) should read approximately the same temperature reading in millivolts times 10. The dew point should indicate between 0 and 50° F. depending on the probe temperature. Executing control code 109 (DVM input channel 2) should cause the DVM to read the indicated dew-point temperature in millivolts times 10.

2.3.3 Equipment Performance Checkout

The previous section described individual manual checks on each piece of equipment. In the system performance check, the equipment check program (cassette #1, Equipment Check) is loaded into the calculator and the operation of all the functions and the quality of the performance of the entire system is tested. This program is the equipment check, which is performed first each time a setup is made at a new site. It can also be used as a troubleshooting aid.

Place the tape labeled Equipment Check in the cassette transport on the calculator keyboard. Rewind the tape if necessary. Turn the calculator power switch off for a few seconds and then back on. Press the LOAD key then the EXECUTE key. The calculator will load in the program from the tape. After the calculator has loaded the program (|- showing on the calculator display), press the RUN key and then the EXECUTE key. The program will begin execution and will request location of input data tape after a minute. Type 10 on the keyboard, then press the EXECUTE key; the calculator will load several data files off the cassette and begin execution of the program. Proceed through the equipment check program following the instructions described in the ETMS Operator's Manual.

On completion of these tests the ETMS system is operational in the simulated mode.

2.4.1 Introduction

The ETMS equipment is normally shipped to an Earth Terminal site in the six transit cases. This section of this manual presents assembly of the system, connection to the earth terminal, and performance checkout routines assuming that the ETMS system was fully functional when it was packed for shipping. The normal procedure is to unpack and set up the equipment, execute the equipment check program recognizing that the units are cold, and then allowing the system to warm up and stabilize for at least 24 to 36 hours before attempting to make measurements.

2.4.2 Unpacking and Hookup

2.4.2.1 Unpacking

The ETMS can be set up on a small table adjacent to the IF patch panel and within sight of the antenna control console. Figure 1 shows a convenient arrangement of the ETMS equipment.

Unpack the control/rf console, DVM, power detector and clock units. Be sure that the proper power-line voltage is selected on each unit. Note that the DVM unit has ac line voltage selectors on both the input multiplexer and the DVM. Connect the ac power cords but do not turn the equipment "ON." Unpack the calculator and printer, placing them beside the equipment, and check that the printer has paper in it. Unpack the external cassette unit and check the ac line voltage settings of these three units. Connect the ac power cords to these units. The printer and cassette unit can be powered from the calculator. Leave all ac power off until the interconnecting cables are hooked up.

Connect the printer I/O cables (see figure 41), matching the jack numbers on the equipment and cables. The four I/O cables can be plugged into the calculator in any of the four locations.

Connect the control cable J352/J652 between the control/rf console and the DVM; and the three analog cables between the DVM input channels and the control/rf console, the power detector, and the chrono-met (clock) unit.

Connect the type N cable between control/rf console input and the power detector; and the short BNC cable between the simulated noise output and the signal input. Set the input manual attenuator to 70 dB attenuation. Be sure

that all the BNC connectors on the short cables on the front of the control/rf console are properly connected. An intermittent signal cable can wipe out a set of measurements.

Check that all control cable connectors are properly seated and locked.

2.4.2.2 Power-Up

Turn on all the ac power switches. Press the overload reset button on the control/rf console if the overload alarm is tripped. Set the GMT date (number of month and day) into the thumb-wheel switches on the front of the clock. Switch the run/set switch on the clock to the "set" position and set the clock to the GMT time using the seconds, minutes, and hours buttons. Restart the clock by returning the set switch to the run position. The time should be correct within one second of GMT time in order to track stars accurately.

The power-fail warning on the clock is automatically reset when the set switch is moved to set.

2.4.2.3 Temperature/Dew-Point Probes

Unpack the temperature/dew-point probe enclosure and the probe extension cables. There are three extension cables, two cables 15 meter (50 ft.), and one cable 30 meter (100 ft.) in length, all having the same pin connections. Connect the cables as needed to run from the temperature/dew-point meter to a location outside the building away from building air conditioners or heat reflecting walls. Remove the dew-point sensor bobbin from its "dry" test tube and install the bobbin on the dew-point probe in the enclosure. Replace the bobbin shield over the probe and adjust the lid on the enclosure so that the air can circulate freely unless the weather includes gusty winds.

Hang or support the enclosure as high off the ground as possible after connecting the extension cables.

Connect the respective cables to the temperature/dew-point meters. The temperature meter should stabilize in a few minutes; however, the dew-point meter may cycle for an hour before stabilizing.

The temperature meter display will go out of range if the outside temperature exceeds 100° F., however, the analog data to the DVM will still remain valid. The temperature display can be internally switched to a higher range if desired by opening the clock module. (See the temperature/dew-point instruction manual).

S

The dew-point meter may go out of its operating range in very severe cold weather. If this happens the temperature and humidity can be manually entered into the calculator by placing the thermometer/hydrometer furnished with the system up on the antenna base and monitoring it periodically.

2.4.3 Installation of Noise-Add Standard

The noise-add standard module is mounted in the antenna rf room near the input to the low-noise amplifier where it can be connected to the input coupler through a short semi-rigid coaxial line, and is controlled from the ETMS rf console located in the earth terminal control room.

2.4.3.1 Positioning the Noise-Add Standard

Locate the noise-add standard on a bracket or waveguide near the directionalcoupler at the input of the low-noise amplifier where the standard can be connected to the pilot-inject or noise-add input of the directional coupler with the short 45 cm (18 inch) semi-rigid coaxial line. Tape the noise-add module securely with reinforced tape so that the semi-rigid coaxial line may be connected. The noise-add module must move with the low-noise amplifier as the antenna changes elevation. Be sure that sufficient clearance exists.

Transfer the earth terminal receiver to the low-noise amplifier (PARAMP) which will be tested;* disable the pilot detect warnings by switching to maintenance status and carefully disconnect the pilot-inject line from the directional coupler.

Unpack the short semi-rigid coaxial line and connect the noise-add standard into the directional-coupler where the pilot line was removed. Note: If antenna gain over a period of time is to be measured, an individual semi-rigid coaxial line should be made for each antenna, and this semi-rigid line used only for this particular antenna.

The noise-add standard is referenced through this line to the antenna so that every attempt possible must be made to keep the losses repeatable. This

^{*}If the LNA with the pilot disconnected is switched out, the earth terminal control logic may not switch back to the LNA automatically so that the switches must either be manually switched or the pilot temporarily reconnected while switching.

includes reducing wear and tear on the semi-rigid line and SMA connector by having a line for each antenna; connecting and disconnecting the SMA connectors carefully and as few times as possible; and minimizing bending and reshaping the semi-rigid line. In other words, treat the semi-rigid line with TLC (tender, loving care). Connecting the noise-add standard power-supply and remote cables: Unpack the noise-add power supply and ac power cord, the two miniature coax cables having SMA connectors, and the two, 90 cm (3 ft.) BNC cables.

Locate the noise-add power supply on a bracket where the SMA cables will connect between the noise-add standard and the power supply, and the ac power cord will reach a power outlet. Secure the power supply with tape after checking that all cables and modules have sufficient clearance in all antenna positions. Make sure the power supply has the correct supply voltage setting, turn the switch off and connect the ac power cord and SMA cables. Note that the SMA connectors are labled No. 1 and No. 2 on the respective ends.

Locate two coaxial lines running from the earth terminal control room to the antenna rf room which can be used temporarily. For example, on the AN/FSC-78, the frequency reference lines W103 and W203 for the 1 MHz and 5 MHz.

These are labeled J11 and J23 above the frequency control cabinet in the control room and W7 on J7, W8 on J8 in the antenna rf room. Verify that these are the correct unused cables using an ohm meter. Connect the cables in the rf room to the noise-add power supply control J853 and J854 using the three-ft BNC cables and coaxial adapters as needed.

Turn the ac power switch on.

2.4.3.2 Control Room Cables

Unpack the two, 6-meter (20-ft.) BNC cables and connect them between the temporary lines and the ETMS control/rf console, Jacks J653 and J654. Observe the low-noise amplifier output on the downlink spectrum-analyzer monitor. Switch the noise-add diodes off and on to see that they are properly controlled and that No. 2 is larger than No. 1. Execute program control code No. 81 in the ETMS to turn off both noise-add diodes.

Note the noise level rise as noise diode No. 1 is switched on and off using control codes No. 82 and No. 83. Then turn noise-add diode No. 1 off, control code No. 83, then switch noise-add diode No. 2 on and off by executing control codes No. 84 and No. 85. The rise in noise level from noise-add No. 2 should

be larger than the noise from No. 1. If not, interchange the two BNC cables at J653 and J654 on the back of the ETMS control/rf console.

If neither or only one noise-add diode is working, recheck continuity of the temporary control cables between the ETMS and the antenna rf room. Also, verify that the downlink monitor is looking at the same low-noise amplifier to which the noise-add standard is connected.

2.4.4 ETMS IF Patch Panel Connections

Unpack the IF patch panel to type N adapter cable and four-foot coaxial type N cable. Turn the input attenuator on the ETMS to 70 dB and connect the ETMS input to the selected down-connector IF patch. Switch the hold-bypass switch to bypass. Set up the desired down converter frequency and phase-lock control. Switch the ETMS filter selector to 5.3 MHz and then decrease the input attenuation until the signal level meter reads about mid-scale 0 (-3 dBm).

Watch the signal level meter for each change as the noise-add standard is switched off and on using control codes No. 80 (off), No. 83 (NA No. 1) and 84 (NA No. 2) (on).

2.4.5 Equipment Checkout on Station

Load the equipment check program if it is not already in the calculator and proceed with the equipment/station checkout as described in the ETMS Operator's Manual under equipment check (section 6.1).

3. THEORY OF OPERATION

3.1 Introduction

This section describes the equipment which makes up the ETMS System hardware, the requirements on this equipment and evaluation of particular characteristics of the system. Theory of individual units are contained in later chapters of this manual.

The measurement of the pertinent power ratios along with real-time star location predictions is accomplished using a measurement system developed by NBS and known as the earth terminal measurement system (ETMS). The ETMS is an automated measurement system developed around the most accurate power measurement instrument known--the NBS Type IV self-balancing power meter [1]. This meter as implemented in the ETMS, measures the ratio of stable noise powers to an accuracy of better than ± 0.1%.

3.1.1 Measurement Description

The ETMS system is a noise radiometer, capable of high-resolution rf power measurements, which has been combined with a programmable calculator, a clock, and a temperature/dew-point monitor. The calculator has been programmed to automatically operate the radiometer. The system is used to measure the antenna gain to system noise temperature ratio (G/T) of an earth terminal antenna system. The program reads the time from the clock and calculates the predicted pointing azmuth and elevation for the antenna toward a selected radio-star. Then, as the earth rotates, the system records repeated measurement data of received noise-power when the radio-star drifts through the beam of the antenna. This "drift" routine is repeated five times with a different offset in declination angle each time, forming a set of data which cuts the radio-star into six slices. One pass is offset a couple of degrees away from the star to a quiet area to establish a "sky background" noise-level.

The program then reprocesses these data using curve-fitting routines to calculate the maximum intensity of noise power (star flux) at the center of the star, even if none of the five cuts passed exactly through the center of the star. The G/T ratio of the earth-terminal is evaluated using measured data on the background noise temperature, including the receiver system noise and the

star-flux noise temperature as seen by the antenna. It also applies corrections for atmospheric attenuation based on the temperature, dew point, and various antenna parameters. Refer to the ETMS Operator's Manual for a rigorous analysis of the measurement theory and procedures.

3.2 Description of System Equipment

A simplified block diagram of the ETMS is shown in figure 2. The ETMS contains eight subsystems: (1) the control/rf unit which provides signal conditioning, system test signals, precision programmable attenuators, signal monitoring, alarm circuits, and interface circuits which allow the calculator to control the various measuring instruments; (2) and NBS type IV self-balancing power bridge used to measure noise power; (3) a dual X-band solid-state noise source (noise-add) to provide a stable reference signal needed to eliminate the effects of gain fluctuations in the earth terminal; (4) a programmable voltmeter with an analog multiplexer (scanner) which connects the digital voltmeter to the various measurement points of interest; (5) a temperature and dew-point monitor with remote probes to measure the water content of the atmosphere at ground level; (6) a digital clock to provide time information required to determine current star coordinates; (7) a calculator which provides computation capability, and a means of controlling each of the remaining subsystems under automatic sequence control, a keyboard to control the measurement procedures or to enter program modifications, and a means of storing the measurement results on magnetic cassette tape in order to rework the data at a later time; and (8) an external cassette memory which allows redundant recording of measurement data.

The Dual Standard Noise-Source (noise add) and its power supply are connected at the input to the low noise amplifier through a directional coupler. The noiseadd control signals are brought up from the ETMS in the earth terminal control room through two auxiliary coaxial lines. The remote temperature and dew-point probes are suspended out near the base of the antenna and connected to the ETMS with long extension cables. The ETMS input signal is picked off at the 70 MHz IF patch panel in the earth terminal control room. The ETMS calculator displays pointing azmuth and elevation angles which the operator sets on the earth terminal control console. Then the calculator automatically measures and records the received noise power as the star drifts through the antenna beam as the earth rotates.

3.3 General System Theory

3.3.1 Control/RF Unit

The 70 MHz IF signal from the down connecter is applied to the input of the ETMS control/rf unit through a level-set attenuator to adjust the input level and then a band-pass filter to limit the bandwidth of the signal fed to the amplifiers. A 3-dB attenuator (not shown in figure 2) isolates the input of the first amplifier from the impedance variations of the filters. The internal filters, which are selectable by a front panel control knob, are 70 MHz center frequency with 1 MHz, 2.5 MHz and 5.5 MHz bandwidths or at 30 MHz center frequency with 2.5 MHz bandwidth. A non-filtered wideband position is also available. The signal path is brought out to the front panel so that an external filter can also be connected.

The first low noise broadband (10-200 MHz) amplifier has 30-dB gain followed by a 10-dB fixed attenuator (not shown) for a net gain of about 17 dB (including the 3-dB input pad). A 0-15 dB programmable attenuator with high repeatability is controlled by the calculator to maintain the signal at an optimum level. The "6 dB reference attenuator" is switched in and out during the measurements and the attenuation value of this step verified as a check on system linearity and accuracy.

The second low noise broadband amplifier (10-200 MHz), which is padded with 10-dB attenuation in its input (not shown), has a gain of 30 dB so the net gain is 20 dB. The + 20 volt dc supply voltage to the amplifiers is monitored on input channel No. 3 of the DVM so that any significant change in supply voltage (which would effect amplifier gain) will be detected at setup time.

The output of the second amplifier is monitored through a directionalcoupler and crystal diode detector so that should a signal be high enough to damage the power detector, the rf off/on coaxial relay (not shown) in the rf output will be switched off, protecting the power detector.

The ETMS control unit provides a simulated star noise source and simulated noise-add sources which can be connected to the signal input to simulate earth terminal conditions, so that, with the exception of the X-Band Noise-Add Standard, the performance of the entire system can be checked out.
A commercial rf thermistor mount is used with the NBS Type IV dc substitution, self-balancing power meter to measure the noise power. The thermally isolated thermister mount is a 200 ohm negative temperature coefficient unit which detects rf power levels up to 10 mW over the frequency range of 1 MHz to 1000 MHz.

The NBS Type IV power meter is a dc substitution type self-balancing meter which will measure rf power ratios to better than 0.1% accuracy. The output voltage of the meter is the dc voltage which appears across the thermister element as the self-balancing action varies the dc current through the thermister element (and therefore the heating energy) to maintain the element at 200 ohms. As rf power is absorbed by the thermister, thereby heating it, the selfbalancing action decreases the dc power by an equal amount.

See the NBS Type IV Instruction Manual [8] and article [1] by N. T. Larsen for a complete theory and operation for the type IV power detector.

3.3.3 Digital Voltmeter

The digital voltmeter is connected to a twelve-channel input multiplexer (scanner) to measure various voltages of interest. Rf power is measured by switching the rf coaxial relay "off" then measuring the power meter dc output voltage on channel 8, switching to channel 9 and measuring the difference between the coarse offset voltage and the power meter voltage. This sets the programmable digital to analog converter (DAC) to this difference in voltage so that the sum of the coarse offset plus the DAC output (called the corrected offset voltage hereafter) is equal to the bridge voltage within ± 1 mv. The DVM input is then switched to input channel 10 which is the difference between the power meter voltage and the corrected offset voltage; the offset difference (less than 1 mv) is measured; the rf coaxial relay is switched "on"; and the new offset voltage difference (on channel 10) is read. The dc voltage across the thermister will have decreased to compensate for the rf power which has been dissipated in the rf thermistor mount. As the rf heats the thermistor element, its resistance tries to decrease, but the self-balancing action reduces the dc current just enough to maintain the resistance at 200 ohms. The decrease in dc power to the thermistor is equal to the rf power introduced into the thermistor.

$$P_{rf} = P_{dc}$$
 (with no rf) - P_{dc} (with rf)

so that

 $P = \frac{E_1^2}{R} - \frac{E_2^2}{R} ,$

where E_1 is the dc voltage with no rf and E_2 is the power meter dc voltage with the rf applied to the power detector.

The form of the equation normally used for the type IV is

$$P_{rf} = \frac{1}{1000 R} [\Delta V (2E - \Delta V)],$$

where P is the rf power in milliwatts, E is the power meter dc voltage (across the thermister with no rf applied, and ΔV is the change in power meter voltage $(E_1 - E_2)$. R = 200 Ω for the detector mount used in the ETMS.

3.3.4 Analog Multiplexer

The analog multiplexer is controlled from the ETMS control unit to provide twelve input channels into the digital voltmeter. These inputs are connected to the DVM input through two-pole reed relays to provide for floating both the high and low inputs to the DVM.

The channel assignments are:

Channel	0	Shorted DVM inputs
Channel	1 .	Temperature
Channel	2	Dew point
Channel	3	+ 20 volt supply
Channel	4	+ 12 volt supply
Channel	5	DAC output
Channel	6	Diode detector voltage
Channel	7	DAC reference voltage
Channel	8	Power bridge voltage
Channel	9	Offset voltage
Channel	10	Δ Volts power-measure
Channel	11	Spare or auxillary input

3.3.5 Temperature and Dew-Point Meters

The temperature and dew-point sensors are bridge circuits having a remote composite thermister probe in one leg. The bridge outputs are followed by instrument amplifiers to provide a 10 mV per degree Fahrenheit scaled output. These outputs (temperature and dew point) are connected to DVM input channels No. 1 and No. 2; and to the temperature and dew-point panel displays.

The dew-point probe has a thermister surrounded by a wick bobbin containing (LiCl) lithium chloride. Electrodes are connected to the lithium chloride so that an electric current can be conducted through it, thus heating it.

The LiCl absorbs moisture from the surrounding atmosphere, decreasing its electrical resistance. The electrical current heats the LiCl bobbin until an equilibrium is established between the vapor pressure of the moisture in the LiCl and the ambient humidity. The thermister senses the probe temperature so that the bridge output is proportional to the dew-point temperature.

3.3.6 X-Band Dual Noise-Add Standard

The dual noise-add source injects a reference level noise power into the earth terminal system between the receive-output of the antenna and the input to the low noise amplifier. This noise source acts as a stable reference level which is turned on and off remotely by the ETMS control/rf unit.

Measurements are repeated with the noise-add source both off and on and the calculated results corrected so as to keep the measured noise-added power constant. This effectively removes the effects of receiver gain changes from the measurements.

The two individual sources differ in power output by approximately 3 dB and they can be used singly or together. Software can be implemented to utilize the power step difference between the two as a receiver system linearity verification check.

This is accomplished by using two coaxial noise diodes which are combined through two, 3-dB hybrids resulting in a circuit which attenuates the output of noise diode No. 1 by 3 dB more than the output of diode No. 2. The combined noise output is connected to the insertion directional coupler through a semirigid coaxial line.

The noise diodes are biased by two constant current generators whose reference is a very stable, precision, solid-state voltage standard. The noise outputs are adjusted for best temperature stability and 3 dB difference by selected trim resistors in the constant current source circuits.

Each diode is switched off by shunting the diode bias current to ground through a transistor switch. The transistor switch is connected to the input control line through an optical coupler.

3.4 System Control Circuits

The calculator controls the ETMS system via I/O-Select Code #4 through the TTL 8-bit bi-directional interface to the ETMS Control/rf unit. The control signals are the function-select code (MSB 4 bits), data (LSB 4 bits), the control command (CTL 1), and the auxillary interface control signal (I/O). These are processed in the ETMS control/rf unit and distributed to the various sub-systems or to the voltmeter control (refer to figure 3). The system answer-back signal called the return flag (or just flag), is collected in the control/rf unit from the various sub-systems and the voltmeter control and sent back to the calculator via this control/rf unit interface cable.

The voltmeter data, voltmeter read command, and flag signal are connected to the calculator via a BCD input interface cable on I/O-select code #2. The clock, month, and day data are connected to the calculator through a BCD input interface cable on I/O-select code #3.

3.4.1 Control Signals

The signals that control the ETMS are divided into two classifications, the function select lines (data bits) 5,6, and 7 having binary weights 16, 32, and 64 respectively, and the four data bits 1, 2, 3, and 4 having binary weights 1, 2, 4, and 8. The function-select information (lines 5, 6, and 7) are combined with the function data (lines 1, 2, 3, and 4) to form a seven-bit control code to activate or deactivate any function in the ETMS. This control code can be selected on the programming switches on the ETMS ccntrol/rf unit and the LOAD button pressed to generate a control pulse or the code can be programmed on the calculator using the WBYTE command, and output to I/O-select code #4. NOTE: If WBYTE is used, the form must be WBYTE XX; where XX is the control code suffixed by the semicolon. The semicolon tells the calculator not to wait for a second flag or "end of data" signal from the interface.

The control function select codes (bits 5, 6, and 7) are listed in the following table.

Function	Switch Codes						
	8	7	6	· 5	Decimal Cod		
DVM Range	х	0	0	. 1	16+		
DVM Function (DCV)	х	0	1	0	32+		
Programmable Attn	х	0	1	1	48+		
Step Attn & RF On	х	1	0	0	64+		
Noise-add	Х	1	0	1	80+		
Voltmeter Input Channel	х	1	1	0	96+		
(X represents a "don't care" position.)							

A complete list of the command codes is given in section 2.3.1.1 of this manual.

3.4.2 Offset Voltage Control

The offset reference voltage is used to increase the digital voltmeter resolution of the power meter measurement. This reference offset voltage from the DAC must be set equal to the bridge voltage (within one MV) while the rf signal is turned off in the ETMS. The output of a DAC is wired in series with a fixed voltage offset. When DVM channel 9 is selected, the DVM low input is connected to the fixed voltage offset and the DVM high input is connected to the power bridge so that the DVM reading is the difference voltage. This DVM reading is the input data to the DAC. The DAC strobe is enabled when the DVM channel 9 is decoded so that the DVM flag pulse strobes the DAC, storing the DVM reading.

3.4.3 Noise-Add Control

The X-Band Solid-State Dual Noise-add Standard is remotely controlled by the ETMS control/rf unit through auxillary coaxial cables already installed between the earth terminal control room and the rf room at the antenna. The ETMS console turns the noise-add source off by effectively shorting the coaxial line with a transistor switch. The control inputs of the noise-add power supply (constant current sources) are coupled to the incoming control lines through optical couplers.

3.5 System Flag Circuits

There are three independent flag circuits; the DVM data-ready flag on I/O select code #2, the time and date data-ready flag on I/O select code #3, and the ETMS control-ready flag on I/O select code #4. Select codes #2 and #3 are input only I/O channels. The control-ready flag on #4 includes control commands to the DVM (range, function, etc.) and the return flag for the break-point switches on select code #4 input. The output or input return flags on the control/rf unit is selected depending on the interface auxiliary control line called I/O signal on select code #4.

3.5.1 ETMS Control/RF Console Flags

The control interface cable, I/O select code #4, is a bidirectional buss. Control data is transferred to the ETMS and the break-point switch input data is transferred from the ETMS control/rf unit to the calculator on this interface. A device ready flag is required for both input and output. On the input command, the auxiliary control line I/O is high, thus directing or steering the control signal to the input ready-flag one-shot, which sends a flag pulse back to the calculator.

The I/O signal remains low on output commands in order to steer the control signal to the various controlled functions.

Each of the particular functions: Programmable attenuator/RF ON, noiseadd, and multiplier/DVM control generate a ready-flag in response to the control signal when selected. These flag pulses are combined along with the break-point input flag to generate the interface answer-back flag for I/O select code #4 to the calculator.

3.5.2 DVM Data-Ready Flag

The digital voltmeter generates a data-ready flag in response to the control (read) signal upon completion of the digital conversion. This data-ready flag is sent back to the calculator on I/O select code #2 and to the DAC strobe input if analog input channel #9 has been selected.

3.5.3 Clock Data-Ready Flag

The time clock inhibit circuit locks the clock reading for a one-shot duration of 70 ms in response to a control signal (CTL1) on I/O select code #3. The data-ready flag is returned to the calculator at the beginning of the oneshot pulse allowing time for the calculator to input the time and date before the time data is allowed to update.

3.6 System Data Circuits

Digital data circuits are divided into four separate non-interacting circuits: (1) Control and command data output on I/O select code #4, (2) Breakpoint switch input data input on I/O select code #4, (3) Digital voltmeter data input to the calculator on I/O select code #2, and (4) Month, day and time clock data input on I/O select code #3.

3.6.1 Control Data Paths

Control data is sent from the calculator to the ETMS control/rf unit on eight (8) parallel lines. These signals are distributed to the function-select decoders in the control/rf unit and in the multiplexer/DVM control chassis and to the various data latches throughout the system. The decoded function will enable the control pulse to strobe the selected function latches. All other latches will remain unchanged since their strobe pulse is not selected by the decoders.

3.6.2 Digital Voltmeter Data

The digital voltmeter data is output in parallel BCD data-lines and is connected to the calculator through a BCD interface cable. This DVM BCD data is also connected to the digital inputs of the DAC used to generate the offset reference voltage. When the analog multiplexer channel #9 is selected, the DVM flag strobes this DVM reading into the DAC data latches. The DVM exponent (range) is corrected to a BCD number before being sent to the calculator by adding +13 in base 16 without carry. Then a decimal point is inserted in the BCD data stream to properly position the exponent.

3.6.3 Date and Time Data Path

The month, day, and clock data are parallel BCD lines connected to the calculator through a BCD interface cable.

The month and day are manually set into BCD coded thumb-wheel switches. These four BCD digits are combined with the clock hours, minutes, and seconds BCD data. The exponent is hard wired to minus two (-2) to locate the decimal point between the minutes and seconds.

The power fail flag from the clock converts the exponent to +80 so that the software program can detect erroneous time data.

3.7 Input-Output Interfaces

Two types of calculator interface cables are used in the ETMS system. The TTL interface cable provides eight parallel control output data lines and eight parallel input data lines. The BCD interface cable is an input-only type which accepts up to 10 parallel BCD digits, a polarity line, exponent digit and sign, and an over-range line. Refer to the manufacturer's instruction manuals for information related to the interface cables.

The signal assignments for the ETMS control/rf unit interface TTL cable and the BCD cables for the DVM and clock are shown in figure 4. The programming format for each type of interface is listed on the lower portion of the figure. ETMS INTERFACE SIGNALS

This section of this instruction manual addresses troubleshooting from the complete system viewpoint, attempting to present guidelines which will lead to identifying the malfunctioning unit. Troubleshooting for each individual unit is included in the section on that particular unit.

4.1 Systematic Approach

Normally a system malfunction will be <u>suspected</u> when operating in a complete system mode, either during an equipment check or during a measurement sequence.

4.1.1 Preliminary Evaluation

FIRST--STOP, LOOK, and THINK.

Note where the program failed or halted, then proceed carefully.

a. Write down the values of all ETMS, and DVM/MUX controller LED lights, the ETMS meter reading, and the DVM reading, mode and range.

b. Look over the printed output and try to deduce where the measurement went wrong.

c. If program is hung up, press stop button once or twice to recover a display character on the calculator. If a line number is displayed instead of stop, write down the line number. If the line number is in a subroutine, press the "step" button to advance the program one line at a time. Note: "step" will hang up on input/output commands and the "stop" must be pressed again to recover. Repeat the "step" process until the line numbers return to the main part of the program. This should identify where in the program the system is in trouble.
d. Now, again look over the results in the printed output and attempt to isolate the problem by looking for bad answers. Check the current values of any pertinent program variables in use at the time of the malfunctions.

e. Attempt to analyze the clues and deduce whether the problem is an rf signal level failure, a control command failure, or a flag failure.

f. Manually execute a few of the program codes (programmable attenuator, step attenuator, noise-add, DVM input channel, function and range) and observe if the instrument responds to the command and that the ETMS control/rf unit signal level meter or DVM respond as expected.

g. Manually program any condition which looks questionable and then measure the power level using the FNP3 command or FNDO + FND1 + FNP3 (assuming that these subroutines are loaded into the computer memory) if the ETMS needs initializing. h. When appropriate, check the manual attenuator and filter selector control settings and that the correct rf input coaxial cable and noise-add control cables are properly connected. Make sure that all coaxial connectors on the ETMS system are tight.

i. In case of control and flag problems, carefully inspect all I/O and control cables to be sure they are fully connected in the proper jacks AND THAT ALL CONNECTOR LOCKS ARE PROPERLY LOCKED.

j. If the trouble still has not been isolated to a particular unit, load the equipment check program into the calculator, change the rf input back to the Simulated Star output if connected to the earth terminal, and proceed through the systematic check provided. If the calculator seems to act unpredictably, turn the calculator and printer ac power switches off and back on, then load and run the equipment check program again.

k. The various instruments can be checked from the calculator keyboard without relying on program software.

1) Voltmeter - Enter the command ENTER (2,*) Q, Q1 on the calculator keyboard and press execute. The voltmeter should take a reading and the " - " return to the calculator display. Then type Q, Ql and press execute. Two numbers should appear on the display. The first is the DVM mode code and the second the DVM voltage reading. If the calculator did not return an " -" when the enter command was executed* and the voltmeter did read, then no data-ready flag was received back at the calculator. 2) Repeat the enter test on the clock using ENTER (3,*) Q, Q1. 3) Command control can be checked without program software by entering a format line, 9700 Format B, and pressing the end of line key. Then type the direct command: WRITE (4,9700) WBYTE XX; where XX is the desired control code to actuate a particular function. Note: The semicolon must be included. Then press the execute key. The ETMS should respond with the prescribed command. If the ETMS does respond properly, but the lazy T does not return to the calculator display, no ready flag is being returned. Figure 5 shows the hand-shaking timing interaction of the control signal and the return flag in the calculator input or cutput interface. Figure 3 shows the distribution of the control signals, data signals and latches and the return flags in the ETMS system.

COMPUTER/DEVICE HANDSHAKE SIGNALS

1. When the problem has been isolated to a particular unit, refer to the troubleshooting section of the equipment manual for the particular unit.

m. If the calculator, printer or cassette units are suspect, turn the ac power off on these three units and then back on again. Load the System Test Tape furnished with the calculator accessories and run the test programs as described in the instruction booklet, "System Test Instructions," furnished with the calculator.

*One unexpected result can be that the calculator appears hung-up for a short time (5 seconds to 2 minutes) and then gives an ERROR 2 (out of memory). The internal BCD I/O software attempts to input BCD digits until a line-feed is received. When the ERROR 2 occurs, the calculator did not recognize the 16th and last character (LF) transmitted by the BCD interface card. The BCD I/O card is programmed for either high-true or low-true logic input signals by grounding one of two lines in the interface cable. The ETMS uses high-true logic, requiring that line 917 in the interface cable be connected to ground. Without this ground connection the ERROR 2 occurs.

To check, read the 16 characters (see pages 1-5 of 12203-A BCD Interface Installation and Service Manual) using the following program:

> 9600 FOR I= 1 TO 16 9610 FRINT I, RBYTE 2 (or 3 for clock) 9620 NEXT I 9630 STOP

The sixteenth character should be 10 (line feed). If not, wire 917 on pin 49 of J352 is not grounded. Use RBYTE 3 in above program to check the clock. If the sixteenth digit is not 10, check wire 917 on pin 47 of J400 of clock for ground connection.

5. ETMS CONTROL/RF: INSTRUCTION MANUAL

5.1 Introduction

The ETMS control/rf unit (fig. 6) serves as a system controller as well as the rf signal precessor to amplify and control the level and establish the bandwidth for optimum rf power detector measurements.

The ETMS control/rf unit is the controller for the entire ETMS system. All control signals from the calculator are distributed to the various units through this unit. Manual programming switches are provided on the front panel to exercise the various functions. The rf level monitor protects the power dectector unit by switching the rf power off if 5 mW (+7 dBm) is exceeded.

Simulated star and sky noise and noise-add sources are built into this unit to permit self-checks of the system without connecting to an earth terminal.

Remote controls for the X-Band noise-add sources allow injection of a known added-noise at the throat of the antenna so that the gain of the earth terminal receiver can be monitored and the measurements corrected to compensate for gain changes.

5.2 Specifications

The input frequency range is limited to 10 to 200 MHz, by the internal amplifiers

Input impedance: The input impedance is 50 ohms.

<u>Power level</u>: The maximum output power into 50 ohms is limited to 1.2 milliwatts to prevent amplifier compression and nonlinearity. The internal programmable attenuators, 0-15 dB, and an internal check-standard attenuator, approximately 6 dB, are controlled by the calculator.

<u>Simulated noise source</u>: These noise sources have a frequency output of 10 to 100 MHz, bandwidth limited by an rf combining amplifier. There are three programmed noise-add generators, two controlled by the calculator which are approximately 3 dB apart, and one manually controlled through an 11 dB manual attenuator.

ca ca

in

SW

at

се

sy pe si

po

се

st

cu ba

ce

Me. fr

5.3 RF Circuits

5.3.1 Input Circuits

The rf input of the ETMS system is connected to the TF patch panel (downconverter output) which is normally 30 or 70 MHz. For self-checks, this input can be connected to the built-in star simulator output via a short coaxial cable (see block diagram in figure 7).

A high quality manual attenuator (zero to 70 dB) adjusts the level of the incoming signal (or noise).

The output of the attenuator is connected through a bandpass filter selector switch permitting selection of wideband (through connection) or 2.5 MHz bandpass at 30 MHz center frequency, or 5.3 MHz, 2.5 MHz or 1 MHz bandpass at 70 MHz center frequency.

The noise-bandwidth of each of these filters has been measured in the system so that measurements requiring known bandwidths such as C/kT can be performed. The quantity referred to as the noise bandwidth and measured in situ for the four bandpass filters in the ETMS is given by the area under the power-gain curve normalized by the power gain of the filter at the defined center frequency (e.g., 30 MHz or 70 MHz). This definition differs from the standard definition of noise bandwidth which is the area under the power-gain curve normalized by the maximum power gain of the filter. If B is the noise bandwidth, and g(f) is the power-gain function of the filter with g as the center frequency gain of the filter. Then

$$B = \frac{\int_{0}^{\infty} g(f) df}{g}$$

Measuring the power gain $g(f_i)$ at each step frequency f_i , and stepping the frequency across the bandpass in uniform steps Df,

$$B = \frac{Df}{g} \sum_{i=1}^{N} g(f_i) .$$

44

It st E

i

a t

n

a

Ve

of ga

ad ab

co in po Ov

This process is repeated for each filter in the ETMS.

5.3.2 First Amplifier

The output from the bandpass filter selector module is padded with a 3-dB attenuator to stabilize the impedance seen by the first amplifier. This prevents the amplifier from oscillating when the rf input is open circuited. This low noise amplifier has a gain of approximately 30 dB and is padded with 10 dB of attenuation in its output.

5.3.3 Attenuator Module

A highly repeatable programmable attenuator having 0 to 15 dB attenuation is used to optimize the measurement power level under calculator control. Immediately following is a step attenuator which is used as a reference or standard check which is inserted and removed automatically during each measurement. The attenuation value of this attenuator is checked in the program to verify that the second amplifier and power detector are working linearly.

5.3.4 Second Amplifier

The input of the second amplifier is padded by 10 dB to minimize effects of small impedance changes in the attenuator switching. This amplifier has a gain of 30 dB. There is no padding in the output of this amplifier. In addition, the output power is kept below two milliwatts to avoid any detectable compression or clipping in the amplifier response.

5.3.5 Monitor and Output Circuits

A directional coupler samples the amplifier output and a diode detector and comparator monitors the signal (or noise) level and switches a coaxial relay off in the rf output line, avoiding possible damage to the thermistor mount in the power detector unit. Normal power to the power detector is under one milliwatt. Overload threshold is adjusted to 5 milliwatts (+7 dBm).

5.3.6 Star Simulator Circuits

The simulator is three identical solid state noise sources (two of which are switched simultaneously with the remote noise-add controls). The three outputs are combined, amplified, and made available at the front panel.

The background and star noise source is connected through a 0 to 11 dB attenuator so that its level may be manually adjusted over this range, but cannot be turned off. The other two noise sources NA#1 and NA#2 are attenuated 6 dB and 3 dB, respectively, so that their output levels are similar to the noise-add received through the earth terminal. NA#1 and NA#2 simulated sources are controlled simultaneously with the earth terminal noise-add standard, however, only one set of noise sources is connected ETMS input at any one time.

5.4 Control and Flag Circuits

5.4.1 Control

The distribution of the control signals is shown in figure 3. The calculator command data (8 bits parallel) and Manual program data are connected to two, 4-bit digital input multiplexers. When the "LOAD" button is pressed, the multiplexer changes to the programming switches and the program switch data is placed on the data lines. The least significant four bits are distributed to the inputs of the various data latches. The next three bits (5, 6, and 7) are used as inputs to the function--select decoders. The decoded function is used to enable the desired latches so that the low four bits of data are strobed into the latch by the CTL pulse.

The CTL pulse is generated by a one-shot, triggered by the "LOAD" button or by the calculator interface. In normal operation the data from the calculator is fed through the digital multiplexers and to the data and function buss. The control pulse strobes the data into the selected function latches. These data busses are connected to the DVM/multiplexer control via an interconnecting cable so that the program switches can also control the DVM functions.

5.4.2 Ready Flags

After the calculator sends out data on the buss lines and the control pulse (CTL), it waits for a ready-flag signal to be answered back from the device, or when the calculator requests input data by switching the I/O signal to input and sending a CTL pulse, it waits for a data-ready flag to be returned (from the break-point switches, for example). This is the flag hand-shaking between devices and the calculator. Each command function generates its own flag pulse and they are combined in the ETMS control/rf unit to return to the calculator.

When the front panel break-point switches are read, the CTL pulse triggers a one-shot pulse which is sent back as the flag.

5.5 Power Distribution

The ac primary power circuits are dual-voltage circuits capable of operation on either 120 or 230 volts, either 50 or 60 Hz. The small printed circuit card below the fuse holder connects the power leads for the correct voltage. The selected voltage label is visible in the fuse holder. The two fans are operated in parallel for 120 volts and in series for 230 volts.

5.6 Digital Circuit Description

This unit contains three printed circuit boards: the control board (Z 700), the switching board (Z 400), and the rf processor board (Z 500).

5.6.1 Z 700 Control Card (Schematic, Figure 12)

The control card has an eight-bit digital multiplexer (IC's 6 and 7) which selects the input signals either from the calculator I/O cable or from the front panel programming switches when the load push button is pressed. The output signals from these multiplexers are distributed to data latches on this board, the Z 400 driver, and the Y 100 voltmeter/scanner control board. For manual operation, a code set in the programming switches is transferred into various data latches when the "load" push button is pressed. When the normally closed

contacts of the load switch are open, the multiplexer is switched from calculator input to the manual programming switches. The "load" switch is debounced by F/F gates in IC-1 and initiates a one-shot pulse in IC-3. The length of the pulse is determined by the RC combination of Cl and Rl3. This pulse is the manual entry control signal (CTL).

Data from the calculator is entered through the I/O cable and multiplexer. The calculator control signal (CTL) is coupled through steering gates IC-1 and IC-2 into a CTL one-shot (IC-4) or into the "input flag" one shot IC-5 depending on the state of the I/O signal from the calculator. When this I/O signal is high, the calculator interface is in the input mode and is inputting the status of the break point switches on the instrument panel. When the I/O signal is low the calculator is outputting control data to the system.

The manual load pulse is "ORed" with the calculator "CTL" signal in gate IC-8 to provide a load strobe to the system central logic.

The eight bits of the control data word are divided into two functions, while the most significant bit (MSB), bit eight (H), is not used. The lower four bits, one, two, three, and four (A, B, C, & D), program the function, and bits five, six, and seven (E, F, & G) select the device to be controlled, such as the programmable attenuator or the DVM range or the noise-add generators. The noise-add data are selected by the steering logic gates IC-2, IC-9 and IC-8 so that the function data on the lower four bits are enabled and strobed into the noise-add data latches IC-10. The steering logic combines the device select bits with the CTL signal to produce the strobe for these data latches. IC-8 and IC-1 provide a noise-add flag for the calculator.

The noise-add control circuitry is also on this card. Noise-add switching signals are connected to jacks on the rear panel to remotely switch the noiseadd standards placed at the antenna feed. In addition, two TTL logic level noise-add control signals are provided on the rear panel. These are switch selectable for high true or low true logic.

The remote cables to the noise-add generators at the antenna are driven by transistors Q_1 and Q_2 which are driven by open collector gates in IC-12. The transistors switch +24 VDC through 2 kilohms load resistance to ground potential in order to drive the capacitance of the remote cable lines and control the remote noise-add generators. The noise-add generators are turned on when the remote cable is at +24 V or open circuited. All the noise-add signals are controlled by the state of the noise-add #1 and noise-add #2 data latches. The front panel LED indicators showing the state of these signals are driven by gates in IC-12.

Simulated noise-add constant current generators

This card also contains three constant-current power-supplies which drive internal noise sources. The output of these simulation noise sources is brought out to a front panel jack and can be connected to the input jack for a simulated test run. One of these noise sources represents the ambient noise while the other two are switched off and on by the noise-add control signals.

The three constant-current power-supplies are operational amplifer (IC-13, 14, and 15) connected as a Howland voltage to the current converter circuit [9].

The simulated noise-add noise sources are controlled by shunting each constant-current power-supply output to ground through an open-collector gate (IC-12), thus turning the noise generator off.

Test Codes	Expected	Results
Manual or WYBTE	NA #1	NA #2
	Front Panel	Front Panel
⁸⁰ 10	ON J ₁ J ₁₀	ON J ₂ J ₂₀
8110	· OFF	OFF
⁸² 10	ON	NC
⁸³ 10	OFF	NC
8410	NC	ON
⁸⁵ 10	NC	OFF
⁸⁶ 10	NC	NC
⁸⁷ 10	NC	NC
⁸⁸ 10	Same as 80	
89	Same as 81	
90	Same as 82	
91	Same as 83	
92	Same as 84	
93	Same as 85	
94	NC	NC
95	NC	NC

Table I. Test codes for noise-add circuits.

Test Code		Nois	e-Add	#1		Nois	e-Add	#2
Program Switch and WBYTE	Front Panel	J ₁	J ₁₀ *	Simulated Noise #1	Front Panel	J ₂	J ₂₀ *	Simulated Noise #2
⁸⁰ 10	ON	+24V	+4V	ON	ON	+24V	+4V	ON
⁸¹ 10	OFF	+.5V	+.7V	OFF	OFF	+.5V	+.7V	OFF
82 ₁₀	ON	+24V	+4V	ON	NC			NC
83 ₁₀	OFF	+.5V	+.7V	OFF	NC			NC
⁸⁴ 10	NC			NC	ON	+24V	+4V	ON
85 ₁₀	NC			NC	OFF	+.5V	+.7V	OFF
86 ₁₀	NC			NC	NC			NC
87 ₁₀	NC			NC	NC			NC

Table II. Trouble-shooting noise-add. Test program codes for noise-add.

NC represents no change (unaffected).

*Signals on J_{10} and J_{20} may be inverted from that shown on table depending on on the position setting of the "0/1" switches S10 and S20.

When the noise-add signals are connected to the system (actual or simulated), the level meter on the front panel should show an increased reading if the meter hold switch is in "bypass" when either or both noise-add signals are turned on.

5.6.2 Z 400 Switch Driver Card (Schematic, Figure 8)

The Z 400 printed circuit board contains the control and switch-drive circuitry for the programmable attenuator and step attenuator. In addition, the flags from the various functions are recombined on this card so they are available for the calculator on the I/O flag line.

Circuit description

The digital control data from the manual/auto multiplexer on the Z 700 card is connected to decoding circuits to decode the desired device code. Control bits five, six, and seven (E, F, and G) are decoded in IC-401 to enable the CTL signal to strobe the data latches IC-404 and IC-408 for the selected device. Control bits one, two, three, and four (A, B, C, and D) select the particular function to be programmed in the device; i.e., 1, 2, or 5 dB in the programmable attenuator or bridge rf ON. Control bit A supplies the true/false or off/on information while the decoded CTL signal is conditioned with bits B, C, and D in steering gates IC-402 and IC-403 to enable the "load" strobe to the selected data latches in IC-408. Programmable attenuator control bits are latched in IC-404.

Flag circuits

The selected CTL signal for the various devices are combined in the NOR gate IC-406 to control the flag one-shot IC-409 to generate the flag pulse. The device flag pulse is combined with the input-command flag signal from the Z 700 card in IC-419 and is returned to the calculator I/O on pin #55 as the FLG signal.

Switch drivers

The programmable attenuator and coaxial relays are latching relays so that the switching circuitry provides a pulse to one of the two terminals to actuate the device. The programmable attenuator is strobed by a one-shot, IC-405, and the switches are driven through open-collector gates IC-413, 414, 415, and 416. These gates energize switching transistors Q-1 through Q-8 in a bipolar, mutually exclusive cross-coupled circuit. The coaxial relays are strobed by one-shots IC-407 and IC-410 and gates IC-417 and IC-418. Transistor drive circuits are formed by Q409 and Q410 and Q411 and Q412 to switch the relays. Overload pulse signals from the Z 500 rf level-processor board are connected to pin 15 and pin 33 to pulse the bridge rf driver off when overload occurs. The overload indicator signal on pin 45 from the Z 500 board drives the front panel indicator light through IC-420. The overload signal is combined with the power meter rf ON signal to drive the rf ON front-panel indicator LED so that the rf ON indicator goes out when an overload occurs and the rf is switched off via the overload circuits. The step attenuator LED is driven by IC-411.

The front panel programmable attenuator LED indicators are driven through auxiliary contacts on the attenuator body.

The attenuator action can be monitored by observing the rf level meter on the front panel and the power detector milliamp meter. If the unit is not connected to a source, patch the simulated noise-add to the input connector and turn the noise-add generator on with programming code 80_{10} . Note: When the noise-add is turned on, the meter is inhibited unless the meter hold switch is in bypass.

Table I and Table II list the control codes and expected results when troubleshooting the switch driver circuits.

Table I. Test codes for Z 400 board.

Programmable attenuator.

Manual or WYBTE	Result
63 ₁₀	0 dB attenuation
62 ₁₀	1 dB attenuation
61 ₁₀	3 dB attenuation
⁶⁰ 10	3 dB attenuation
⁵⁹ 10	4 dB attenuation
58	5 dB attenuation
57	6 dB attenuation
56	7 dB attenuation
55	8 dB attenuation
54	9 dB attenuation
53	10 dB attenuation
52	ll dB attenuation
51	12 dB attenuation
50	13 dB attenuation
49	14 dB attenuation
⁴⁸ 10	15 dB attenuation

Table II.

Step attenuator and rf on.

Manual or WYBTE	Step Attenuator	RF
⁶⁴ 10	IN	OFF
65 ₁₀	OUT	ON
66 ₁₀	IN	NC
67 ₁₀	OUT	NC
68 ₁₀	NC	OFF
69 ₁₀	NC	ON

5.6.3 Z 500 RF Level Processor Board (Schematic Figure 10)

The rf level processor printed circuit card monitors the output of the diode detector. The input on pin 13 is amplified by IC-501 and fed to the overload level comparator, IC-506, through the overload-adjust potentiometer "H" (R5). If the rf power exceeds 5 milliwatts, the overload comparator triggers and latches. This forces the rf off/on switch on the Z 400 board "off" via IC-509 and also energizes the sonalert alarm and overload LED via Pin 47.

The comparator cannot be reset by pressing the reset button until the power level has been reduced to a safe level. When the comparator is reset, a oneshot, IC-508 pulses the rf-on latch (Z 400 board) to the reset (off) state so that the latch (and LED) coincide with the off position of the coaxial latching relay.

The incoming signal level is also processed through a log-amplifier to the front panel rf level meter. The output of the level amplifier passes through a sample and hold circuit, IC-502, which, when enabled by the front panel "Hold" switch, latches the meter to prevent meter surge while the noise-add sources are turned on. Delay timer IC-507 smoothes meter action during noise-add switching.

The output of the sample and hold circuit drives a log-amplifier, IC-504, to convert the meter reading to a dB scale. IC-503 forms a constant current source to set the zero reference of the log amplifier. The output of the logamplifier drives the meter driver amplifier. The gain of the meter amplifier is switched for gains of x10, x1 and x0.1 to obtain meter scales of 1 dB, 0.1 dB, and 0.01 dB. Potentiometer "D" (R14) adjust the x1 scale zero reference.

5.6.3.1 Adjustments on RF Level Processor

The adjustments on the rf level processor establish the logarithmic amplifier gain for the decibel scale on the front panel signal level meter and sets the overload alarm threshold. Complete alignment requires two, 1-milliamp constant current sources. The sequence for complete alignment follows:

Referring to figure 10,

1.

- (a) Mount the Z 500 printed circuit card on the pc extension card.
 - (b) Remove signal input cable from RF INPUT on front panel.
 - (c) Set FILTER switch to 5.3 MHz B.W., 70 MHz on front panel.

- 2. Put a BNC 50 ohm termination on the "TO OUTPUT" jack on front panel.
- 3. Connect external voltmeter between TP#1 and ground. Adjust "A" (R7) dc offset on first amplifier for zero on the voltmeter.
- 4. Switch "HOLD" switch to bypass on front panel. Connect the external voltmeter to TP-V and adjust offset "C" (R9) for a zero reading on the Voltmeter.
- 5. Remove jumper TP-V to TP-W. Connect temporary jumper TP-X to TP-Y. Connect external voltmeter to TP-Y. Adjust "E" (R19) dc offset first stage of log-amplifier for zero voltmeter reading.
- 6. Remove temporary jumper TP-X to TP-Y. Remove jumper Z-Z1. Then connect a +1 milliamp constant current source into TP-Z1 and ground; connect the other +1 milliamp constant current source into TP-W and ground. Set both current supplies to 1 milliamp*. Connect the external voltmeter to TP-2 and ground. Adjust "F" (R20) dc offset of second stage of logamplifier for zero volts on the voltmeter.
- 7. Remove both constant current sources. Replace jumper TP-V to TP-W. Replace jumper TP-Z to TP-Z1. Remove the BNC termination from the "TO OUTPUT" jack on the front panel.
- 8. Connect coaxial cable between SIMULATED STAR OUTPUT and RF INPUT on front panel. Connect external rf power meter to RF OUTPUT jack on front panel. Turn bridge "on" with control code 67. Adjust input ATTN and SIMULATED STAR NOISE for 1 mW reading on the power meter.

SU

no

th:

 Connect an external voltmeter to TP#1. Adjust first amplifier gain "B" R6 for 1 volt on voltmeter.

^{*}Connect two milliampre meters in series connection and establish a current reference point on both meters at approximately 1 ma of current. Use the reference points for adjusting the two constant current sources for equal currents.

- 10. Reduce power to 500 microwatts on power meter. Switch meter range selector on front panel to the Xl position. Adjust "D" (R14) log reference zero offset for a zero reading on the front panel signal level meter.
- 11. Increase input attenuation by 5 dB. Adjust log-amplifier gain "G" (R21) for a front pancl meter reading of -5 divisions. Decrease the input attenuation 10 dB and note front panel meter reading. Touch up "G" if necessary to obtain approximately +5 reading on the meter scale. Recheck -5 reading.
- 12. Set input attenuator for 1 milliwatt power reading on the power meter. Readjust "D" for +3 division reading on the front panel meter.
- 13. Adjust front panel attenuators for 5 mW (+7 dBM) power on the power meter. Adjust overload threshold "H" (R5) clockwise until alarm sounds. Back off counter-clockwise 1/2 turn. Reduce input power, reset alarm and turn bridge back on with control code 67. Slowly increase power to test alarm threshold at approximately 5 mW power level.

This completes alignment of the rf level processor monitor circuits. These adjustments do not affect the operation or accuracy of the measurements.

5.7 Simulated Star Noise Sources

The three solid-state noise sources used for simulating earth terminal reception are mounted on the Z 600 sub-assembly. The constant current bias supplies to power these noise sources and their control switches are on the Z 700 printed circuit board through Z 700 - J2. Refer to figure 14 for a block diagram of the Z 600 sub-assembly and the schematic of the solid state noise sources.

5.8 Troubleshooting the ETMS Control/RF Unit

When a problem has been identified as being in this chassis, the nature of the problem (1) no rf signal, (2) rf signal loss during a particular function, (3) improper response or no response to control commands or (4) calculator hangs

up on I/O select code #4 command due to loss of return Ready-Flag, will already be known or at least suspected.

5.8.1 RF Signal Diagnostics

When the problem is a loss of signal, the most straight forward approach is to trace the input rf or noise signal through the ETMS unit using a sensitive detector. The various parts of the circuit can be isolated at the short BNC cables on the front panel. Use caution not to overdrive the amplifier inputs. An alternative would be to use a signal generator and inject a signal at the power detector and then trace the circuit backward until the signal is lost.

Evaluation of a coaxial relay performance can be made by measuring the repeatability of the dc contact resistance. The resistance should be less than 0.2 Ω plus the adapter and lead resistance and should be repeatable within \pm 0.1 Ω .

5.8.2 Control Circuitry Diagnostics

The control circuitry can be examined by following the check-out tests given in section 2.3 of this manual, first check out the manual programming command codes and then commands via the calculator. NOTE: The DVM multiplexer control cable must be connected, otherwise the ETMS rf unit ready-flag back to the calculator is inhibited.

Attempt to isolate the clues as to the particular malfunction. Note whether the LED lites coincide with the command. If more than one malfunction is present try to deduce which data signals are common to both. This helps to determine whether the problem is in the data and decoder busses or in the latches and drivers.

Follow through the circuit description and schematics in section 5 for a particular circuit once the problem has been localized.

5.8.3 Ready-Flag Diagnostics

Follow the same procedures given in section 5.8.2 while monitoring the Ready-Flag line with a logic probe or oscilloscope or simply use the calculator response as an indicator. The Ready-Flag can be monitored on pin 55 of the Z 400 printed circuit card.

5.9 PARTS LIGT - Control/RF Unit

L.D.D. 1 DEC 77 PARTS LIST- RF UNIT (2) DATA 9

ÇA	TEGORY	NO. 1-		RESISTORS		
	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
	1 Z-R1	1	RES VAR 10 TURN	10к ОНМ	DUNC	3253-103

ATEGORY NO. 2-----CAPACITORS------

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	2-C1	1	CAP ELECTRLC 50V	500 UF	CD	WBR-500-50
2	Z-C2	1	CAP ELECTLC 50V	50 UF	SPRG	TE-1304

CATEGORY NO. 4-----DIODES-----

		DSGN	ÇΤΥ	DESCRIPTION	VALUE	MFG	PART NUMBER
	1	2-D1	10	LED INDICATOR LIGHT	5 VOLT	DIAL	550-0506
-	2	Z - D 2		SAME AS D1	5 VOLT		
	3	Z-D3		SAME AS D1	5 VOLT		
1	4	Z-D4		SAME AS D1	5 VOLT		
	5	Z-D5		SAME AS D1	5 VOLT		
1	6	Z-D6		SAME AS D1	5 VOLT		
-	7	2-D7		SAME AS D1	5 VOLT		
-	8	Z-D8		SAME AS D1	5 VOLT		
-	9	Z-D9		SAME AS D1	5 VOLT		
	10	2-D10		SAME AS D1	5 VOLT		
-	11	2-D11	1	DIODE SILICON 400V	1 AMP	RCA	1N4004

C	CATEGO	ORY NO	D. 5-	INTEGRATED	CIRCUITS			
	I	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER	
	1 2	Z-IC1	1	INT CRKT REGULATOR 24V	1 AMP	TI	uF7824C	

L.D.D. 1 DEC 77 PARTS LIST- RF UNIT (2) DATA 9 CATEGORY NO. 6-----CONNECTORS------

	DSGN (QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	J1-J9	9	CONN PANEL BNC-RG58U	COAX	AMPH	31-3206
2	Z-J10	1	CONN PANEL BNC-BNC	COAX	AMPH	UG-492/u
3	Z-J11	1	CONN PANEL N-N	COAX	AMPH	UG-30D/n
4	Z-J12	1	CONN PANEL N-RG58U	COAX	AMPH	UG-566B/u
5	J13-J30	18	CONN SMA ELBOW-RG58U	COAX	EFJ	142-0262-001
6	J31-J36	6	CONN SMA EL141 COAX	COAX	AMER	26805
7	Z-J37	1	CONN N141 SEMI RIGID	COAX	OSM	402-1
8	J38-J41	4	CONN SMA141 SEMI RIG	COAX	OSM	201-1
9	Z-J42		J42-J645 NOT USED			
10	Z-J646	1	CONN PC EDGE (2400)	60 PIN	AMPH	261-10030-2
11	2-J647	1	CONN PC EDGE (Z500)	60 PIN	AMPH	261-10030-2
12	Z-J648		NOT USED			
13	Z-J649	1	CONN PC EDGE (2700)	60 PIN	AMPH	261-10030-2
14	Z-J650	1	CONN BLUE RIBBON I/O	24 PIN	AMPH	57-40240
15	Z-J651	1	CONN BLUE RIBBON I/O	14 PIN	AMPH	57-40140
16	2-J652		NOT USED			
17	Z-J653	4	CONN PANEL BNC	COAX	AMPH	UG-1094/u
18	2-3654		SAME AS J653	COAX		
19	2-J655	1	CONN RECEPTACLE	5 PIN	VIKG	VR5/4AE13
20	Z-J656		SAME AS J653	COAX	•	
21	Z-J657		SAME AS J653	COAX		
22	P1-P16	16	CONN PLUG SMA-RG58U	COAX	\mathbf{EFJ}	142-0261-001
23	P17-P27	11	CONN PLUG BNC-KG58U	COAX	TROM	PL-20-5
24	Z-P28	3	CONN PLUG ENC-RG174/U	COAX	TROM	PL-20-5
25	2-P29		SAME AS P28	COAX		
26	Z-P30		SAME AS P28	COAX		
27	Z-P31	3	CONN PLUG SMA EL-RG174	COAX	EFJ	221
28	2-P32		SAME AS P31	COAX		
29	Z-P33		SAME AS P31	COAX	•	
30	Z-P34	2	PLUG (FOR IC SCCKET)	14 PIN	3 M	3406
31	Z-P35		SAME AS P35	14 PIN		

L.D. CATE	D. GORY NO	1 . 8-	DEC 77 PARTS LISTSWITCH	- RF UNIT IES	(Z)	DATA 9
	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1 2 3	Z-S1 Z-S2 Z-S3	1 2	SWITCH AC POWER (TOGL) SWITCH PUSH BUTTON SAME AS S2	DPDT SPDT SPDT	ALCO ALCO	MSTL-206N MSP-105F
4 5 6 7 8	2-54 2-55 2-56 2-57 7-58	1 1 3	SWITCH ROTARY 3 POLE SWITCH COAX TANDM ROT SWITCH RF COAX LATCHG SAME AS S6	3P3T 2P5T SPDT SPDT	ALCO TELC TELD	MRB-3-3 8401 CS-33S60
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	2-S9 2-S9 2-S10 2-S11 2-S12 2-S13 2-S14 2-S15 2-S16 2-S17 2-S18 2-S19 2-S20 2-S21 2-S22 2-S23 2-S23 2-S24 2-S25	16	SAME AS SO SWITCH TOGGLE SAME AS S9 SAME AS S9	SPDT SPDT SPDT SPDT SPDT SPDT SPDT SPDT	ALCO	MST-105D
26 27	2-8656 2-8657	2	SWITCH TOGGLE SAME AS S656	SPDT SPDT	ALCO	MST-105D
CATE	GORY NO.	9-	METER	S		
	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	Z-I1	1	METER PANEL O-CENTER	1.5 MA	MODT	25DMA1.5U1.5
CATE(GORY NO.					
	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
12	Z-H1 2-H2	2	HOUSING FRAME ASSEMBLY SAME AS H1	7X16 7X16	ΗΡ	5060-0734
3 4	Z-H3 Z-H4	1	HOUSING FRONT PANEL HOUSING REAR PANEL	7H 7X16	HP HP	5000-0120 5000-0121

L.D.D.		1	DEC 77	PARTS LIST-	RF UNIT	(Z)	DATA 9
5	Z-H5 Z-H6	2	HOUSING SIDE	COVER	7X16	HP	5000-0743
7	2-H7	1	HOUSING TOP	COVER	16L	HP	5060-0740
8	Z-H8	1	HOUSING BOTT	OM COVER	16L	HP	5060-0752
9	Z-H9	2	HOUSING HAND	LE		HP	5060-0222
10	Z-H10		SAME AS H9				
11	Z-Hll	2	HANDLE RETAIL	NER ASS'Y		HP	5060-0765
12	Z-H12		SAME AS H1	1			
13	Z-H13	4	HOUSING FOOT	ASS'Y	•	HP	5060-0767
14	Z-H14		SAME AS H1	3			
15	Z-H15		SAME AS H1	3			
16	2-H16		SAME AS H1	3			
17	Z-H17	1	HOUSING PLAT	E ASS'Y		HP	5000-0052
18	Z-H18	1	PC CARD CAGE		ALUM	NBS	
19	-Z-H19	1	HEAT SINK (H)	P8472B)	ALUM	NBS	1.75 X 1 X 1
20	Z-H20	1	PLATE MAIN MO	OUNTING	.125 ALUM	NBS	14D X 15.5W
21	Z-H21	1	PLATE MOUNTI	NG (FANS)	.125 ALUM	NBS	3.75 X 7.5
22	Z-H22	1	PLATE (POWER	SUPPYS)	.125 ALUM	NBS	4.75 X 10.5
23	Z-H23	1	BRACKET		.125 ALUM	NBS	12 X 1.5
24	Z-H24	1	BRACKET		.125 ALUM	NBS	9 X .375
25	Z-H25	1	HEAT SINK (A	MPLIFIERS)	11L	WAKE	A-1527

•

CATEGORY NO. 12-----SUBASSEMBLIES-----

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	Z-Al	1	ATTEN STEP PROGRAMBL	BINARY	WEIN	AB134-15-6-1
2	Z-A2	1	ATTEN STEP ROTARY		WEIN	AD9003693101
3	2-A3	1	ATTEN STEP TANDM ROT		TELC	8140S-108
4	Z-A4	1	ATTENUATOR FXD MIN	3 dB	MIDW	MMT 333
5	Z-A5	1	ATTENUATOR FXD MIN	6 dB	MIDW	MMT 333
6	Z-A6	2	ATTENUATOR FXD MIN	10 dB	MIDW	MMT 333
7	Z-A7		SAME AS A6	10 dB		•
8	Z-A8	2	AMPLIFIER 10-200MHZ		AERT	A1517
9	Z-A9		SAME AS A8			5
10	Z-F1	1	FILTER BAND PASS	70 MHZ	CIRQ	FBT/20-70/1-
11 1	Z-F2	1	FILTER BAND PASS	70 MHZ	CIRQ	FBT/2-70/2.5
12	Z-F3	1	FILTER BAND PASS	70 MHZ	CIRQ	FBT/2-70/5.5.5
13	Z-F4	1	FILTER BAND PASS	30 MHZ	CIRQ	FBT/21-30/2.
14	Z-Ml	1	POWER SUPPLY MODULAR	20 V	LAMB	LOS-Y-20
15	Z-M2	1	POWER SUPPLY MODULAR	5V	SEMI	ES51000-K2
16	Z-M3	1	POWER SUPPLY MODULAR	+-12V	SEMI	P2.12.100-K2
17	Z-M4	1	POWER SUPPLY MODULAR	+-15V	BB	527
18	Z-M5	1	COUPLER COAXIAL MIN	10 dB	MERR	CRM-10-500
19	Z-M6	1	DETERCTOR DIODE		HP	HP8472E
20	Z-M7	1	TERMINATION COAX MIN	50 OHM	OSM	20020P
21	Z-Z1	1	SWITCHING PC CARD		NES	Z400
22	Z-Z2	1	RF LEVEL PROC PC CARD		NBS	2500
23	Z-Z3	1	NOISE ADD BOARD		NBS	2600
24	Z - Z 4	1	INPUT CONTRL PC CARD		NBS	Z700

	DSGN	QTY 	DESCRIPTION	VALUE	MFG	PART NUMBER
1	Z-B1	1	FUSE/FILTER/AC SOCKET		CORM	6.74
2.	Z-B2	1	AUDIO WARNING DEVICE		MALL	SC6280
3	Z-B3	2	F'AN PANCAKE		PANM	85000
4	Z-64		SAME AS B3			05000
5	Z-B5	1	CABLE RIEBON (23-24)	12	ALPH	3580/14
6	Z-B6	3	CABLE .141 SEMI RIG CX	6	INIF	
1	2-B7		SAME AS B6	6		
8	Z-88	-	SAME AS B6	6		
9	2-89	1	CABLE .141 SEMI RIG CX	2	UNIF	
	Z-BIO	3	CABLE COAX RG58AU	20	BELD	RG58AU
12	2-B11 7 1:10		SAME AS B10	20		
12	2-B12		SAME AS E10	20		
13	2-B13		SAME AS BIO	20		
14	2-B14		SAME AS BIO	20		
10	2-B15		SAME AS BIO	20		
10	2-B10		SAME AS BIO	20		
10	Z-B17		SAME AS B10	20		
10	2-B18	4	CABLE COAX RG58AU	7	BELD	RG58AU
20	2-B19 2-B20		SAME AS B18	7		
57.	2-620		SAME AS BIS	7		
22	$4 - D \ge 1$ 7 - B > 2	2	CALLE CONV DOLONY	7		
23	Z-E23	۷	CADLE COAX RESSAU	20	BELD	RG58AU
121	7 B 24	2	CADIE COAV DOCAN	22	TO FIT D	205020
25	7-B25	6	CARLE COAX RESCAU	17	BELD	RG58AU
26	2-125	0	CADLE COAX RESEAU	6	BELD	RG58AU
27	2-E27		SAME AS DOS	6		
28	Z-B28		SAME AS B25	6		
29	Z-E29		SAME AS E25	6		
30	Z-B30		SAME AS E25	6		
31	2-631	T	CABLE COAX RC58AU	6 5	BELD	PC 58 A (1
32	Z-B32	1	CABLE COAX RC58AU	13	BELD	RG58AU
33	Z-E33	ī	CABLE COAX RG58AU	14 75	EELD	RG58AII
34	Z-E34	-	SAME AS B24	17		ROJORO
35	2-B35	1	CABLE COAX RG58AU	31	BELD	RG58AU
36	Z-B36	ĩ	CABLE COAX RG58AU	32	BELD	RG58AU
		_				

.

CATE	GORY NO.	• 1-		RES	ISTORS			
	DSGN	QTY	DESCRIPTION		VALUE	MFG	PART	NUMBER
1	Z4-R1	3	RES FXD CARB 5%	1/4V.	27.0K CHM	AE	СВ	
2	Z4-R2	1	RES FXD CARB 5%	1/4W	33.0K OHM	AB	CB	
3	Z4-R3		SAME AS R1		27.0K OHM			
4	Z4-R4		SAME AS R1	- / /	27.0K OHM			
. 5	24-R5	3	RES FXD CARB 5%	1/4W	1.0K OHM	AB	СВ	
67	24-R0	0	SAME AS R5	1 / 25-1	1. UK OHM	כות	τD	•
8	24-K7 74-D9	o	SAME AS D7	1/28	82 OHM	AD	LD	
9	74 - R9		SAME AS R7		82 OHM			
10	Z4-R10		SAME AS R7		82 OHM			
11	Z4-R11		SAME AS R7		82 OHM			
12	24-R12		SAME AS R7		82 OHM			
13	Z4-R13		SAME AS R7		82 OHM			
- 14	24-R14		SAME AS R7		82 OHM			
15	Z4-R15	4	RES FXD CARE 5%	1/4W	4.7K OHM	AB	CB	
16	Z4-R16		SAME AS R15	- / /	4.7K OHM			•
17	Z4-R17	4	RES FXD CARE 5%	1/4W	10.0K OHM	AB	CB	
	Z4-RI8		SAME AS RIT		10.0K OHM			
20	24 - R19 7.4 - P20		SAME AS RID SAME AS P15		4.7K OHM 4.7K OHM			
21	74 - R21		SAME AS RIJ		10.0K OHM			
22	Z4-R22		SAME AS R17		10.0K OHM			
23	Z4-R23		SAME AS R5		1.0K OHM			
				·				

CATEGORY NO. 2CAPACITORS							
•	DSGN	QTY	DESCRIPTION		VALUE	MFG	PART NUMBER
1	Z4-C1	4	CAP HI-K MONC	50V	1.0 UF	SPRG	5C023105X025
2	Z4-C2		SAME AS Cl		1.0 UF		
3	Z4-C3		SANE AS Cl		1.0 UF		• }
4	Z4-C4		SAME AS Cl		1.0 UF		
5	Z4-C5	4	CAP CERAMIC		0.1 UF		ł
6	Z4-C6	1	CAP TANT 35V		1.0 UF		
7	Z4-C7		SAME AS C5		0.1 UF		
8	Z4-C8		SAME AS C5		0.1 UF		9
9	Z4-C9		SAME AS C5		0.1 UF		
10	Z4-C10	1	CAP TANT 25V		10 UF		
.D.D. 1 DEC 77 PARTS LIST- SWITCHING PC CARD (2400) DATA 5 ATEGORY NO. 3-----TRANSISTORS-----DSGN QTY DESCRIPTION VALUE MFG PART NUMBER

 Z4-Q1
 8
 TRANSISTOR SILICON PNP
 2N4919
 MOT
 2N4919

 Z4-Q2
 SAME AS Q1
 2N4919
 2N4919
 ZN4919

 Z4-Q3
 SAME AS Q1
 2N4919
 ZN4919
 ZN4919

 Z4-Q4
 SAME AS Q1
 2N4919
 ZN4919
 ZN4919

 Z4-Q5
 SAME AS Q1
 2N4919
 ZN4919
 ZN4919

 Z4-Q6
 SAME AS Q1
 2N4919
 ZN4919
 ZN4919

 Z4-Q7
 SAME AS Q1
 2N4919
 ZN4919
 ZN4919

 Z4-Q6
 SAME AS Q1
 2N4919
 ZN4919
 ZN4919

 Z4-Q6
 SAME AS Q1
 2N4919
 ZN4919
 ZN4919

 Z4-Q7
 SAME AS Q1
 2N4919
 ZN4919
 ZN4919

 Z4-Q8
 SAME AS Q1
 2N4919
 ZN4919
 ZN4919

 Z4-Q9
 4
 TRANSISTOR SILICON PNP
 ZN3906
 MOT
 ZN3906

 Z4-Q10
 SAME AS Q9
 2N3906
 ZN3906
 ZN3906
 ZN3906

 Z4-Q12
 SAME AS Q9
 2N3906
 ZN3906
 ZN3906
 ZN3906

-------------1 2 3 4 5 6 7 8 9 10 11 12

ATEGORY NO. 4-----DIODES-----DIODES-----DSGN QTY DESCRIPTION VALUE MFG PART NUMBER _____ Z4-CR1 20 DIODE SILICON 1A 400V 1N4004 RCA 1N4004 1 12.4-CR12.0DIODE SILICON IA 4000IN4004RCAIN400422.4-CR2SAME AS CR1IN400432.4-CR3SAME AS CR1IN400442.4-CR4SAME AS CR1IN400452.4-CR58DIODE ZENER SI 24 VIN525262.4-CR6SAME AS CR5IN525272.4-CR7SAME AS CR1IN400482.4-CR8SAME AS CR1IN400492.4-CR9SAME AS CR1IN4004 8 9 Z4-CR9SAME AS CR1Z4-CR10SAME AS CR1Z4-CR11SAME AS CR5Z4-CR12SAME AS CR5Z4-CR13SAME AS CR1Z4-CR14SAME AS CR1Z4-CR15SAME AS CR1Z4-CR16SAME AS CR1Z4-CR17SAME AS CR1Z4-CR18SAME AS CR5Z4-CR19SAME AS CR1Z4-CR12SAME AS CR5Z4-CR13SAME AS CR5Z4-CR14SAME AS CR5Z4-CR15SAME AS CR5Z4-CR17SAME AS CR5Z4-CR18SAME AS CR1Z4-CR20SAME AS CR1Z4-CR21SAME AS CR1Z4-CR22SAME AS CR1 10 1N400411 1N525212 1N5252 13 1N4004 14 1N4004 15 1N4004 1N4004 16 1N5252 17 18 1N5252 19 1N4004 20 1N4004 50 21 1N4004 Z4-CR22 22 SAME AS CR1 1N4004 23 Z4-CR23 SAME AS CR5 1N5252 SAME AS CR5 1N5252 24 Z4-CR24 SAME AS CR1 25 Z4-CR25 1N4004 Z4-CR26SAMEASCR1Z4-CR27SAMEASCR1Z4-CR28SAMEASCR1 1N4004 26 27 1N4004 28 1N4004

L.D.D. 1 DEC 77 PARTS LIST- SWITCHING PC CARD (2400) DATA 5 CATEGORY NO. 5-----INTEGRATED CIRCUITS-----

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	Z4-IC1	1	INT. CRKT. BCD DECODER	7442N	TI	SN7442N
2	Z4-IC2	3	INT. CRKT. QUAD NOR	· 74LS02N	ΤI	SN74LS02N
3	Z4-IC3	1	INT. CRKT. QUAD NAND	74LS00N	ΤI	SN74LS00N
4	Z4-IC4	1	INT. CRKT. QUAD LATCH	74LS175N	ΤI	SN74LS175N
5	Z4-IC5	4	INT. CRKT. ONE SHOT	74121N	ΤI	SN74121N
6	Z4-IC6		SAME AS IC2	74LS02N		
7	Z4-IC7		SAME AS IC5	74121N		
8	Z4-IC8	1	INT. CRKT. DUAL FF (D)	74LS74N	ΤI	SN74LS74N
9	Z4-IC9		SAME AS IC5	74121N		
10	Z4-IC10		SAME AS IC5	74121N		
11	Z4-IC11	2	INT. CRKT. HEX INVERT	74LS04N	ΤI	SN74LS04N
12	Z4-IC12		SAME AS IC11	74LS04N		
13	Z4-IC13	6	IC DUAL NAND OC DRIVE	75452B	TI	SN75452BP
14	Z4-IC14		SAME AS IC13	75452B		
15	Z4-IC15		SAME AS IC13	75452B		•
16	Z4-IC16		SAME AS IC13	75452B		
17	Z4-IC17		SAME AS IC13	75452B		
18	Z4-IC18		SAME AS IC13	75452B		•
19	Z4-IC19		SAME AS IC2	74LS02N		
20	24-IC20	1	IC DUAL NAND BUFFER	74LS38N	ΤI	SN74LS38N

CATEGORY NO. 10-----HARDWARE-----HARDWARE------

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMEER
1	Z4-B1	1	PC BRD FOR SWTCHG CRKT		NBS	PC-400
2	24-H1	8	SCREW NYLON 4-40	1/2		
3	Z4-H2	8	NUT NYLON 4-40			
4	Z4-H3	8	WASHER MICA INSULATOR			•

CALE	GORY NO.	. 1-	RESI	STORS		
	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	25-R1	1	RES FXD CARB 5% 1/4W	15K OF	IM AB	СВ
2	Z5-R2	2	RES FXD MF 1% 1/4W	100 OF	IM CORG	NC5
3	25-R3	4	RES FXD MF 1% 1/4W	10K OH	IM CORG	NC5
4	Z5-R4	1	RES FXD MF 1% 1/4W	1000K OI	IM CORG	NC5
5	25-R5	1	RES FXD MF 1% 1/4W	5.1K OH	IM CORG	NC 5
6	Z5-R6	3	RES VAR TRIM CERMET	10K OF	HM BRNS	3006W-1-103
7	25-R7	1	RES VAR TRIM CERMET	20K OF	IM ERNS	3006W-1-203
8	25-R8		SAME AS R6	10K OH	M	
9	Z5-R9	2	RES VAR TRIM CERMET	lk OH	HM BRNS	3006W-1-102
10	25-R10	4	RES FXD MF 1% 1/4W	200K OF	HM CORG	NC5
11	25-R11		SAME AS R10	200K OH	HM	
12	25-R12		SAME AS R10	200K OF	MF	
13	25-R13		SAME AS R10	200K OF	ME	
14	Z5-R14		SAME AS R6	10K OF	M	
15	Z5-R15	1	RES FXD MF 1% 1/4W	2K OF	HM CORG	NC 5
16	Z5-R16		SAME AS R3	10K OH	HM	
17	25-R17		SAME AS R3	10K OF	HM ADD	205
18	Z5-R18	1	RES FXD MF 1% 1/4W	20K OF	IM CORG	NC5
19	Z5-R19	2	RES VAR TRIM CERMET	2K OF	HM BRNS	30060-1-202
20	Z5-R20		SAME AS R19	ZK OI	161	
21	Z5-R21		SAME AS R9			NOF :
22	25-R22	1	RES FXD MF 1% 1/4W	511 01	IIM CONG	MCS
23	25-R23	1	RES FXD MF 1% 1/4W		IM CORG	NC J
24	Z5-R24	_	SAME AS R2			NC 5
25	Z5-R25	1	RES FXD MF 1% 1/4W			CR
26	Z5-R26	1	RES FXD CARB 5% 1/4W	2700		CB
27	Z5-R27	1	RES FXD CARB 5% 1/4W	108 01		CD
28	Z5-R28	_	SAME AS K3		IIM AR	СВ
29	25-R29	1	RES FXD CARB 58 1/4W	3 0K CI	HM AR	CB
- 30	25-R30	2	RLS FAD CARB 58 1/4W	30K 01	HM	
131	25-R31	-	SAME AS KOU	278 01	HM AB	CB
32	25-R32	1	RES FAD CARD 38 1/4W	10K 01	HM AB	CB
33	25-R33	1	KES FAD CARB 36 1/4W		HM AB	CB
34	25-R34	Ţ	RES FAD CARB 38 1/4W	24 36 0	HM CORG	NC 5
35	Z5-R35	1	RES FXD MF 18 1/4W	24.510		

L.D.D. 1 DEC 77 PARTS LIST- RF LEVEL PROCESS CARD (2500) DATA 6 CATEGORY NO. 2----CAPACITORS----CAPACITORS-----

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	25-C1	2	CAP DISK	.001 UF		
2	25-C2	1	CÀP CERAMIC	.1 UF		
3	25-C3	1	CAP POLYCARBONATE	.l UF	SEAC	СМК
4	Z5-C4	2	CAP DISK	.01 UF		
5	25-C5		SAME AS C4	.01 UF		
6	Z5-C6	4	CAP TANT 35V	22 UF		
7	25-C7	1	CAP DIP MICA	150 PF		
8	25-C8	2	CAP TANT 20V	47 UF		
9	25-C9		SAME AS C8	47 UF		
10	Z5-C10		SAME AS CG	22 UF		
11	25-C11		SAME AS C6	22 UF		
12	Z5-C12		SAME AS C6	22 UF		
13	Z5-C13	1	CAP DIP MICA	100 PF		
14	Z5-C14	3	CAP HI-K MONO 50V	1.0 UF	SPRG	5C023105X0250
15	25-C15		SAME AS C14	1.0 UF		
16	Z5-C16		SAME AS Cl	.001 UF		
17	25-C17		SAME AS C14	1.0 UF		

CATEGORY 1	NO. 4	DIODES

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	25-D1	1	DIODE SILICON 100V	1N4153	MOT	1N4153

CATEC	GORY	NO.	5	I
-------	------	-----	---	---

NTEGRATED CIRCUITS-----

.

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	Z5-ICl	1	INT. CRKT. OP AMP	OP-05C	MONO	OP-05C
2	Z5-IC2	1	IC SAMPLE & HOLD	SHM-LM-2	DATL	SHM-LM-2
. 3	25-IC3	1	INT. CRKT. FET OP AMP	LH0042C	NATL	LH0042C
4	Z5-IC4	1	INT. CRKT. LOG AMP	8048	ITSL	ICL 8048 ECPH
5	25-IC5	1	INT. CRKT. OP AMP	LM741C	NATL	LM741C
6	25-IC6	2	INT. CRKT. TIMER	LM555	NATL	LM555
7	25-IC7		SAME AS IC6	LM 555		
8	25-IC8	2	INT. CRKT. ONE SHOT	74121N	ΤI	SN74121N
9	Z5-IC9	1	INT. CRKT. NAND DRIVE	75452B	TI	SN75452B
10	25-IC10)	DELETED	74121N		
11	Z5-IC1]	L 1	INT. CRKT. HEX INVERT	74LS04N	ΤI	SN74LS04N

D.D. 1 DEC 77 PARTS LIST - RF LEVEL PROCESS CARD (2500) DATA 6

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	25-Kl	2	SOCKET ROUND DIP	8 PIN	SAMT	
2	25-K2	1	SOCKET DUAL IN-LINE DP	16 PIN	SAMT	IC-316-SGG
3.	25-K3		SAME AS K1	3 PIN		
4	25-J1	2	JACK JUMPER IC PIN	l PIN	GARY	AA-C
ö	25-J2		SAME AS J1	1 PIN		
6	25-Tl	1	TERM TEST POINT	1 PIN	GARY	AA-C

ATEGORY N	10.	10
-----------	-----	----

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	25-Bl	1	PC BRD-RF PROCESS CRKT		NBS	PC-500

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	25	1	RF PROCLSS PC CARD		NES	Z500

CATE	GORY NO	. 1-	RESI	STORS		
	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Z 6-R11 Z 6-R12 Z 6-R13 Z 6-R14 Z 6-R15 Z 6-R21 Z 6-R22 Z 6-R23 Z 6-R23 Z 6-R24 Z 6-R31 Z 6-R32 Z 6-R33 Z 6-R34 Z 6-R35	6 3 3 3	RES FXD MF 1% 1/4W SAME AS R11 RES FXD MF 1% 1/4W RES FXD MF 1% 1/4W RES FXD MF 1% 1/4W SAME AS R11 SAME AS R11 SAME AS R13 SAME AS R14 SAME AS R15 SAME AS R11 SAME AS R11 SAME AS R13 SAME AS R13 SAME AS R14 SAME AS R15	10 OHM 10 OHM 150 OHM 27 CHM 30 OHM 10 OHM 10 OHM 150 OHM 27 OHM 30 OHM 10 OHM 10 OHM 10 OHM 10 OHM 30 OHM 30 OHM	CORG CORG CORG	NC5 NC5 NC5 NC5
ር ልጥም	CORV NO	2-	CAPAC	TTOPS		
	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1 2 3 4 5 6	Z6-C11 Z6-C12 Z6-C21 Z6-C22 Z6-C31 Z6-C32	6	CAP CERAMIC SAME AS Cll SAME AS Cll SAME AS Cll SAME AS Cll SAME AS Cll SAME AS Cll	10 PF 10 PF 10 PF 10 PF 10 PF 10 PF		
CATE	GORY NO	. 6-	CONNE	CTORS		
	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1 2 - 3	26-J1 26-J2 26-J3	 5	JACK PANEL RECEPTACLE SAME AS J1 SAME AS J1		EFJ	142-0296-001

.D.I 4 5	26-J4 76-J5	DEC	77 PARTS LIST- NOISE SAME AS J1	ADD CARD	(2600)	DATA 7
67	Z6-P1 Z6-P2	2	PLUG RIGHT ANGLE CLAMP SAME AS Pl		EFJ	142-0222-001
8 9 10 ·	Z6-P3 Z6-P4 Z6-P5	3	PLUG RT ANGLE TO .141 SAME AS P3 SAME AS P3		OSM	OSM 221-1
11	26-P6	1	PLUG SMA TO .141		OSM	OSM 201-1A
ATE	GORY NO.	. 10-	HARDW	IARE		
	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1 2	Z6-H1 Z6-H2	1 2	PLATE ALUM 4.25 X 5.5 BRAKET RIGHT ANGLE	1/16 1/16	NBS NBS	
3 4 5 6 7	26-H3 26-H4 26-H5 26-H6 26-H7	4	SAME AS H2 MINI BOXES (MODIFIED) SAME AS H4 SAME AS H4 SAME AS H4	1/16	POMA	
ATE	GORY NO.	. 12-	SUBASSE	MBLIES		
	DSGN	ÇTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1 2 3 4 5	26 26-S1 26-A1 26-T1 26-T2	1 1 1 1	NOISE ADD CARD 3 WAY POWER DIVIDER AMP 10-500 MHZ ATTENUATOR MINIPAD ATTENUATOR MINIPAD	5 dB 10 dB	NBS MERR AVNT MID MID	Z600 PDM-30-55 UDP-531 MTT-333-5 MTT-333-10
ATE	GORY NO	. 13-	MISCELI	ANEOUS		
	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1 2 3 4	Z6-L11 Z6-L21 Z6-L31 Z6-X1	3	INDUCTOR SAME AS L11 SAME AS L11 COAX MINI (RG-174)	.15 UH .15 UH .15 UH .3	DLVN BELD	1537-00 174/UG
5	Z6-X2	1	COAX SEMI-RIGID (.141)	4	UN IF	

CATEGORY NO. 1-----RESISTORS-----

	DSGN	QTY 	DESCRIPTION	VALUE	MFG	PART	NUMBER
1 2 3 4 5	Z7-R1 Z7-R2 Z7-R3 Z7-R4 Z7-R5	13	RES FXD CARB 5% 1/4W SAME AS R1 SAME AS R1 SAME AS R1 SAME AS R1	1.5K OHM 1.5K OHM 1.5K OHM 1.5K OHM 1.5K OHM	AB	СВ	
6 7 8	27-R6 27-R7 27-R7 27-R8		SAME AS RI SAME AS RI SAME AS RI	1.5K OHM 1.5K OHM 1.5K OHM			
9 10 11	27-R9 27-R10 27-R11		SAME AS RI SAME AS RI SAME AS RI	1.5K CHM 1.5K CHM 1.5K CHM			
12	Z7-R12		SAME AS R1	1.5K OHM			
13 14	27-R13 27-R14	2	RES FXD CAFB 5% 1/4W SAME AS R13	12.0K OHM 12.0K CHM	AB	СВ	
15 16	27-R15 27-R16	1	RES FXD CARB 5% 1/4W SAME AS R1	1.2K OHM 1.5K OHM	AB	CF	
17 18 -	Z7-R17 Z7-R18	4	RES FXD CARB 5% 1/4W NOT USED	2.2K OHM	AB	СВ	
19 20 21	Z7-R19 Z7-R20 Z7-R21	2	RES FXD WW 5% 3W SAME AS R17 NOT USED	2.2K OHM 2.2K OHM			
22 23	Z7-R22 Z7-R23	12	SAME AS R19 RES FXD MF 1% 1/4W	2.2K OHM 30.1K OHM	CRNG	NC 5	
24 25 26	Z7-R25 Z7-R26		SAME AS R23 SAME AS R23 SAME AS R23	30.1K OHM 30.1K OHM 30.1K OHM			
27 28 29	Z7-R27 Z7-R28 Z7-R29		SAME AS R23 SAME AS R23 SAME AS R23	30.1K OHM 30.1K OHM 30.1K OHM			
30 31	27-R30 27-R31		SAME AS R23 SAME AS R23	30.1K OHM 30.1K OHM			
32 33	27-R32 27-R33		SAME AS R23 SAME AS R23	30.1K OHM 30.1K OHM			
34	27-R34		SAME AS R23	30.1K OH14			

1.D CAT	.D. 1 D EGORY NO.)EC 2-	77 PARTS LIST- INPUT (CONTROL FC	CAFD (2700) DATA 8
	DSGN (2TY	DESCRIPTION	VALUE	MFG	PART NUMBER
1 2 3 4 5 6 7	27-C1 27-C2 27-C3 27-C4 27-C5 27-C6 27-C7	3 1 2 1	CAP HI-K MONG 50V SAME AS C1 SAME AS C1 CAP TANT 35V CAP DISK CAP TANT 25V SAME AS C5	1.0 UF 1.0 UF 1.0 UF 1.0 UF .01 UF 10.0 UF .01 UF	SPRG	5C023105X025053
САТ	EGORY NO.	3-	TRANS I	STORS		
	DSGN (QTY	DESCRIPTION	VALUE	MFG	PART NUMEER
1 2	Z7-Q1 Z7-Q2	2	TRANSISTOR SILICON NPN SAME AS Q1	2N 4 9 2 2 2N 4 9 2 2	RCA	2N4922
CAT	EGORY NO.	5-	INTEGRATED	CIRCUITS		
	DSGN Q	2TY	DESCRIPTION	VALUE	MFG	PART NUMBER
1 2 3 4 5	27-IC1 27-IC2 27-IC3 27-IC4 27-IC5	2 1 3	INT. CRKT. QUAD NAND INT. CRKT. HEX INVERT INT. CRKT. ONE SHOT SAME AS IC3 SAME AS IC3	74LS00N 74LS04N 74121N 74121N 74121N 74121N	TI TI TI	SN74LS00N SN74LS04N SN74121N
6	Z7-IC6	2	IC 4 BIT DATA MULTPLX	74LS157N	TI	SN74LS157N
8 9 10	27-IC7 27-IC8 27-IC9 27-IC10	1	INT. CRKT. QUAD NOR SAME AS IC1 INT. CRKT. QUAD LATCH	74L3137N 74LS02N 74LS00N 74LS74N 7404N	TI TI TI	SN74LS02N SN74LS74N SN7404N
12 13 14 15	27-IC12 27-IC13 27-IC14 27-IC15	1	IC HEX INVERTER (OC) INT. CRKT. OF AMP SAME AS IC13 SAME AS IC13	7406N OP-05 OP-05 OP-05	TI MCNO	SN7406N CP-05

L.D.D. 1 DEC 77 PARTS LIST- INPUT CONTROL PC CARD (Z700) DATA 8 CATEGORY NO. 6-----CONNECTORS------

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	27-J1		NOT USED			
2	Z7-J2	1	JACK IC DUAL IN-LINE	14 PIN	SAMT	IC-314-SGG

CATEGORY NO. 10-----HARDWARE-----

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1 2 3 4	27-B1 27-H1 27-H2 27-H3	1 2 2 2	PC BRD FOR CNTROL CRKT SCREW NYLON 4-40 NUT NYLON 4-40 WASHER MICA INSULATOR	1/2	NBS	PC-700

1	27	1	INPUT	CONTROL	PC	CARD	NES	2700

d

5.10 WIRING LIST

CONTROL/RF UNIT

		FRONT PANEL	<u>L CON</u>	INECTIONS *
	1	Z700-20 NA1 LED	31	Z500-26 METER X.01
1	2	Z700-28 PGM 64	32	+5V (POWER SUPPLY) AC ON LED
	3	Z700-18 NA2 LED	33	FILTER BAND SWITCH IN
ŀ	4	Z700-40 PGM 32	34	R.F. AMP 1 OUT
	5		35	REF ATN OUT
	6	Z700-34 PGM 16	36	TO PGM ATNR
	7		37	R.F. AMP 2 IN
	8	Z700-33 FGM 8	38	R.F. AMP 2 OUT
	9		39	XTAL DET. OUT
	10	Z700-27 PGM 4	40	Z500-28 METER X.1
	11		41	Z500-30 METER X1
	12	2700-39 PGM 2	42	Z500-23 METER RANGE
	13		43	Z500-43 OFFSET POT
	14	2700-43 PGM 1	44	Z500-39 OFFSET POT
	15	2700-49 LOAD	45	Z500-41 METER X1
	16	2700-51 LOAD	46	Z500-27 METER RANGE
	17	SIMUL. STAR OUT	47	Z500-32 METER-
	18	GND (PWR SUPPLY)	48	Z500-34 METER+
	19	Z700-48 HOLD/Bypass	49	Z400-44 "1" BUSS
	20	PGM ATN S-8 (LED)	50	2500-49 RESET
	21	PGM ATN S-4 (LED)	51	Z400-47 OVERLOAD LED
	22	PGM ATN S-2 (LED)	52	J650-8
	23	PGM ATN S-1 (LED)	53	J650-7
	24	Z400-43 REF ATN LED	54	J650-6
	25	2400-48 RF ON LED	55	J650-5
1	26		56	J650-4
	27	AC LINE FILTER	57	J650-3
	28	AC LINE FILTER	58	J650-2
	29	FUSE BLOCK -B	59	J650 -1
	30	FUSE BLOCK -F	60	TO DIRECTIONAL-COUPLER IN
1			61	R.F. OUTPUT
	L			

* Front Panel connections listed above are designated on other diagrams by a Triangular Flag . See also Figure 15.

-

J-1400												
ANALOG GND	1	2	ANALOG GND									
+36V	3	4	+36V									
+24V	5	6	+24V									
	7	8	PGM ATN 8+									
	9	10	PGM ATN 8-									
REF ATN -2	11	12	PGM ATN 4+									
REF ATN -1	13	14	PGM ATN 4-									
z500 - 50	15	16	PGM ATN 2+									
R.F. ON -2	17	18	PGM ATN 2-									
z500 - 52	19	20	PGM ATN 1+									
R.F. ON -1	21	22	PGM ATN 1-									
	23	24										
	25	26										
	27	.28										
	29	30	" ·									
	31	32										
z500 - 55	33	34										
	35	36										
	37	38	Z700 -31									
	39	40	Z700 -25									
FP 49	41	42	Z700 -37									
FP 2	43	44	Z700 -41									
z500 -47	45	46	2700 - 46									
FP 51	47	48	FP 25									
Z700 -42	49	50	Z700 -50									
2700 -36	51	52	Z700 -30									
2700 <u>-</u> 56	53	54	Z700 - 54									
J650 - 20	55	56	J651 - 13									
+5V	57	58	+5V									
GND	59	60	GND									

WIRING LIST

W:	IRINO	G LIS	ST
	J-5	20	ANALOG CND
ANALOG GND	1	2	YNYFOG GMD
	2 5	4	
	5	6	
	7	ð	
	9	10	
SHIELD XTAL DET.	11	12	
XTAL DET.	13	14	
	15	16	
	17	18	
	19	20	
	21	22	
FP 48	23	24	2
	25	26	FP 31
FP 40	27	28 [.]	FP 4
	29	30	FP 4
	31	32	FP 4 +METER
	33	34	.FP 4 -METER
-15V	35	36	-15V
+15V	37	38	+15V
FP 4	39	40	
FP 45	41	42	
FP 43	43	44	
Z700 -52	45	46	
Z400-45	47	48	
FP 50	49	50	Z400 -15
	51	52	Z400 –19
	53	54	
Z400 - 33	55	56	
+5V	57	58	+5V
GND	59	60	GND
	L	75 `	

W	TKIN	G LI	.ST
	J-	700	
ANALOG GND	1	2	ANALOG GND
	3	· 4	
+24V	5	6	+24V
+12V	7	8	+12V
	9	10	
	11	12	J654 NOISE-ADD #2
	13	14	J653 NOISE-ADD #1
S656 NC TTL NA1	15	16	
S656 NO TTL NA1	17	18	FP 3
S657 NC TTL NA2	19	20	FP 1
S657 NO TTL NA2	21	22	
J650 -1 6	23	24	
2400 -16 J651 -3	25	26	J650 -15
FP 10	27	28	FP 2
J650 -1 1	29	30	Z400 -52 J651 -8
Z400 -38 J651 -4	31	32	J650 -13
FP 8	33	34	FP 6
J650 -12	35	36	Z400 -51 J651 -5
Z400 -42 J651 -2	37	38	J650 - 14
FP 12	39	40	FP 14
Z400 -44 J651 -1	41	42	Z400 - 49 J651 - 6
FP 14	43	44	
J650 -9	45	46	Z400 -46 J651 -12
J650 -1 0	47	48	FP 19
FP 15	49	50	Z400 -50
FP 16	51	52	Z400 -45
J650 -19	53	54	Z400 - 54
J650 -17	55	56	Z400 - 53
+5V	57	58	+5V
GND	59	60	GND
	74		

ETMS CONNECTOR WIRING LIST

	-	2	4	∞	16	32	64	128	-	N	4	∞	16	32	64	128								
•	POINT	POINT	POINT	TNIOT	POINT	TNIOT	POINT	TNIOT	OUT															
550	BREAK	DATA	CTL		I∕Ò	FLAG																		
)- /	23				A				-45	-47	-29	-35	-32	-38	-26	-23	-55		-53	-55				
	FР	FP	FP	FP	FΡ	FP	FР	FP	Z700		Z700	Z400		GND	GND									
	,	2	μĴ	4	ß	9	2	ω	6	10		12	13	14	5	16	17	18	19	20	21	22	23	24

J-651	-	N	4	ω	16	32							AG	
	DATA	DATA	DATA	DATA	DATA	DATA						CONTRO.	VUX FL	
	Z700-41	Z700-37	Z700-25	Z700-31	Z700-36	Z700-42	GND	Z700-30				Z700-46	Z400-56 N	+5V
	-	2	ξ	4	ß	9	2	ω	6	10	11	12	13	14

J-655

			DET.	
GROUND	+20V SUPPLY	+12V SUPPLY	SHIELD-XTAL	XTAL DET.
A	щ	υ	A	म्र

2700 Schematic Circuits.

Figure 14. Z600 Block Diagram.

.

J651

J650

See Wiring Table for J650

See Wiring Table for J651

Figure 17. Control/RF Unit Primary Power Distribution.

6. MULTIPLEXER/DIGITAL VOLTMETER CONTROLLER

6.1 Introduction

The digital voltmeter control circuits and input channel multiplexer are built into a flat package which is attached to the top of the digital voltmeter (see fig. 18). This unit contains the control latches for the digital voltmeter functions, the offset-voltage reference used with the power meter measurements and the reed-relay analog multiplexer which provides 12 input channels for the digital voltmeter.

The entire package is self-contained and replaces the top cover of the DVM. No modifications to the DVM are required.

6.2 Specifications

Offset voltage reference

1 M.V. resolution programmed automatically by Channel #9. Range. 3 ranges internally selected.

2.0 to 2.999 V for Type IV power meter

3.5 to 4.5 V for Type II power meter

4.5 to 5.5 V for HP 432 power meter

Analog Multiplexer

12 input channels

Analog channels Low Thermal EMF Reed Relay, 2 pole guarded. Control commands are generated by the ETMS control/rf unit or ETMS calculator interface.

6.3 Y 100 MUX/DVM Control Card (Schematic, Figure 20)

The control circuits are on the Y 100 printed circuit card. Incoming command data from the ETMS control/rf unit on the four low-order bits are connected to three four-bit latches (IC-104, 105, and 106) which store the function data. The DVM range is stored in IC-106*, the DVM function (dc *Note: The D or "8" latch is not used to program Range, but instead actuates the DVM "HOLD." This allows the DVM range control codes 16, and 19 thru 23 to program the DVM range but leave the DVM RATE in the free-running mode.

volts; filter) in IC-105 and the input multiplexer channel IC 104. The function select data lines 5, 6, and 7 are decoded in IC 101. The output of this decoder enables the CTL pulse to the selected latch strobe to store the output data on the four data lines.

One gate of IC-103 acts as an OR gate to feed the decoded CTL pulse to trigger the ready-flag one-shot, IC 107. Any one of the three decoded CTL pulses cause the one-shot to return a ready-flag to the ETMS control/rf unit where it is combined with the flags from that chassis. Note: This flag circuit returns a flag for DVM control commands. The DVM DATA READY flag circuitry is connected to input I/O select code #2. When the input channel multiplexer function is selected, the enabled CTL pulse triggers the one-shot, IC 108, which generates a pulse to disable the multiplex driver during the time the MUX data latches are changing. This opens the previously selected input channel relay a short time before the next selected input channel relay closes thus avoiding shorting two input channels together.

Inverter driver IC's 110 and 111 drive the front panel LED indicator lights. The range information from the voltmeter must be converted to a corresponding exponent digit to be compatible with the calculator interface. This is accomplished by the adder, IC 120--which adds + 13 hexidecimal or modulo 16 to the range data and ignores the carry bit in the result. The DVM interface, I/O select code #2 has the decimal point code hard wired between DVM data digits 3 and 4 at the jack on the rear panel (J352). This arrangement permits inputing the DVM data without any extra processing required.

6.4 Y 200 Offset Reference Voltage Card (Schematic Figure 22)

The offset voltage reference is a programmable D/A converter which accepts DVM data when input channel #9 is selected so that the offset voltage is automatically set to the voltmeter reading.

6.4.1 Digital Circuits (See Also Figure 19)

The decoder IC-205 enables the DVM data ready signal in IC-206 when the input channel multiplexer is set to channel #9. This data ready pulse triggers the one-shot, IC-207 to strobe the three most significant digits of the DVM reading currently on the data lines into the DAC.

Figure 19. Data Flow-DVM.

6.4.2 Reference Voltage Circuits (Schematic, Figure 22)

The reference voltage used as an offset voltage is the combination of a fixed (coarse ref.) voltage and the programmed DAC voltage. The DAC voltage is 0 to 10 volts output but is divided by 10 before being added to the coarse reference voltage thus giving 1 millivolt resolution.

The output from the internal voltage standard of the DAC is divided in the resistive divider providing three jumper selectable voltages 4.5, 3.5, and 2.0 volts for use as the coarse reference voltage. Amplifier-follower IC-202 drives the coarse reference circuits buffering them from the voltage standard. The output of this buffer is added to the divide by 10 output of the DAC in R8 and R9 and the summing amplifier IC-203. Inverter amplifier IC-204 drives the offset voltage reference circuits.

When input channel #9 is selected, the coarse reference is connected to the DVM "LO" input, and the rf power meter to the DVM "HI" input so that the DVM reads the difference of the two voltages. This DVM reading is strobed into the DAC so that the output voltage of the offset reference circuits matches the power meter voltage within ± 1 millivolt. Normally the rf power is turned off while the offset reference voltage (DAC) is set equal to the power meter voltage. Then small voltage changes between the power meter input and the offset reference can be measured with high resolution with a good 5 or 6 digit DVM. These readings are made on input channel #10.

6.4.3 Adjustment Y 200 Voltage Offset Reference (Refer to Figures 22 and 23)

The adjustment procedure for this circuit involves programming the digital to analog converter (DAC) to zero and adjusting the dc offset to zero; grounding the input to the course reference buffer and then "zeroing" the dc offset of the buffer amplifier, summing amplifier and the inverting amplifier. Then programming the DAC to a known voltage and adjusting the DAC gain to obtain that voltage out.

The following step-by-step procedure refers to an external voltmeter; however, the procedure is arranged so that the DVM can be used.

Adjustment Procedure:

 Disconnect rear DVM input cable J-204. Disconnect the power bridge cable J-354 on back of multiplexer.

- 2. Program input channel #9 using control code #102. Connect a test lead to short together the HI and LO input terminals on the front of the DVM. Place the DVM in manual control (but leave the data output button on) and turn the Rate knob fully clockwise. Adjust the DVM dc offset trimmer to obtain a zero reading on the DVM. Rotate the Rate knob fully counterwise (Ext. position) to lock the zero reading on the DVM display. Since input channel #9 was selected, the DAC is now programmed to zero reading. Execute control code #96 to disable the multiplexer and lock the DAC reading. Rotate the Rate control fully clockwise to enable the DVM.
- 3. Connect external voltmeter to the HI and LO input terminals of the multiplexer to read the DAC output voltage. Adjust the DAC dc offset, R16, for a zero reading on the voltmeter.
- 4. Remove Jumper "C" power meter select and ground the common pin. Connect the external voltmeter to TP-1 and ground. Adjust the buffer amplifier dc offset, R18, to obtain a zero reading on the voltmeter.
- Both inputs to the summing amplifier are now zero volts. Connect the external voltmeter to TP-2 and adjust the summing amplifier dc offset, R19, to obtain a zero reading on the voltmeter.
- Move the external voltmeter to TP-3. Adjust the inverter amplifier dc offset, R20, to obtain a zero reading on the voltmeter.
- 7. Set DVM to 10 volt scale and the Rate knob fully clockwise. Execute control code #102 (input channel 9) to enable the DAC. Connect the DVM LO input to ground with a test lead and the DVM HI input to + 5 volts on the power supply. Rotate the Rate control fully counterclockwise and then execute control code #96 to lock the DAC. Write down the DVM reading. Rotate the DVM Rate control fully clockwise. Connect an external voltmeter to input channel #5 HI and LO inputs to read the DAC output. Adjust the DAC gain, R17, to obtain the voltage written down from DVM in the last measurement.
- 8. Repeat step numbers 2 and 3 to recheck the DAC zero.
- Move the external voltmeter to TP-3 and verify that all amplifiers have zero offset.
- Remove test leads from DVM front panel input. Disconnect external voltmeter if one was used.
- 11. Replace power-meter select off-voltage jumper to "C" (if Type IV power meter is used). Reconnect J204 in rear of DVM. Reconnect J354 on rear of mux.

12. Load equipment check program and run equipment checks.

6.5 Y 300 Input Channel Multiplexer (Schematic, Figure 24)

6.5.1 Control Circuits

This printed circuit board contains a one-of-sixteen decoder-driver, IC-301. The data stored in the multiplexer latches on the Y 100 board is decoded to energize the selected reed relay coil. When the data changes, the CTL pulse is used to temporarily disable the decoder to avoid accidently shorting two multiplexer input channels together.

c

fa

cł

af

to

The

upd

6.5.2 Analog Multiplexer

Each analog input channel is switched to the HI and LO inputs of the DVM through a two-pole shielded reed relay having low thermal-emf contacts. The inputs to each channel relay are pin and jack connections, so that the channel assignments could be changed should a relay fail. Input channel #11 is an auxiliary input from J-357, but could be used as a spare input if needed. The program input channel assignments would also have to be changed. (See Section 6.6)

6.5.3 Multiplexer Input Channel Assignments

The input channel assignments are given in the following table.

	· ·	Control
nput Channel	Function	Code
0	Hi/Lo Shorted-DVM zero	111
1	Temperature	110
2	Dew point temperature	109
3	rf amp. power supply	108
4	Sim. Noise-Add Ref. Voltage	107
5	DAC output	106
6	XTAL Detector	105
7	DAC Ref. Voltage	104
8	Power Meter	103
9	*Hi-Pwr Meter, Lo Coarse Offse	t 102
10	AV Voltage Power Measurement	101
11	auxiliary channel	100
12	open circuit	<u>99</u>
13	open circuit	98
14	open circuit	97
15	open circuit	96

* Enables DAC programming.

Ľ

6.6 Troubleshooting

Manually program each input channel with the DVM in manual mode through the various control codes given in the previous table noting if the voltmeter reads the correct voltage. Check that the input cables are connected to the correct jacks on both ends. Check that the DVM rear panel input J204 is properly connected.

If a multiplexer relay fails to operate properly, the input channels can be changed. The analog multiplexer input leads are plugged into pin-jacks at each channel relay. These leads are long enough that they can be plugged into the auxillary input channel (#11, or # \emptyset if necessary) if a particular channel relay fails.

To substitute a multiplexer channel, move the two input leads to the new channel pin-jacks and add these two program lines to the measurement program after the program is loaded.

The program modifications are in the FNX(Q) function (line numbers refer to the X.03 subroutines).

Add: 75 If Q # (old channel control code) then 80 76 Q = (new channel control code).

Then the system should operate normally. NOTE: If the program is saved with the changes installed, the Program Revision Label (line number 50) should be updated.

6.7 PARTS LIST - MUX/DVM CONTROLLER

L.D.D. 1 DEC 77 PARTS LIST- CONTRL/MULTPLX/REF UNIT (Y) DATA 6

.

CATE	GORY NO	• 4	DIO	DES		
	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1 2 3 4 5 6 7 8 9 10 11 12	Y-D1 Y-D2 Y-D3 Y-D4 Y-D5 Y-D6 Y-D7 Y-D8 Y-D9 Y-D10 Y-D11 Y-D12	12	LED INDICATOR LIGHTS SAME AS DI SAME AS DI	5 VOLT	DIAL	550-0506

CATEGORY NO. 6-----CONNECTORS-----

	DSGN	ÇTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1 2	Y-P1 Y-P2	2	PLUG (FOR IC SOCKET) NOT USED	14 PIN	3M	3406
3	Y-P3		SAME AS PL	14 PIN		
4	Y-P4	23	PLUG WIRE WRAP	l PIN	SAMT	TS-120'-G-A
5	Y-P5		SAME AS P4	l PIN		
6	Y-P6		SAME AS P4	l PIN		
7	Y-P7		SAME AS P4	l PIN		1
8	Y- P8		SAME AS P4	l PIN		
9	Y-P9		SAME AS P4	l PIN		
10	Y-P10		SAME AS P4	l PIN		
11;	Y-P11		SAME AS P4	l PIN		
12'	Y-P12		SAME AS P4	l PIN		
13	Y-P13		SAME AS F4	l PIN		
14	Y-P14		SAME AS P4	l PIN		
15	Y-P15		SAME AS P4	1 PIN		1
16	Y-P16		SAME AS P4	l PIN		6. 1
17	Y-P17		SAME AS P4	l PIN		
18	Y-P18		SAME AS P4	l PIN		
19	Y-P19		SAME AS P4	l PIN		
20	Y-P20		SAME AS P4] PIN		
21	Y-P21		SAME AS P4	l PIN		1

I	D.	.D. 1	DEC	77 PARTS LIST- CO	ONTRL/MULTE	PLX/REF	UNIT	(Y) I	DATA	16
	22	Y-P22		SAME AS P4	1	PIN				
	23	Y-P23		SAME AS P4	ī	PIN				
-	24	Y-P24		SAME AS P4	1	PIN				
	25	Y-P25		SAME AS P4	1	PIN				
1	26	Y-P26		SAME AS P4	1	PIN				
	27	J1-J99		NOT USED						
HI IT	28	Y-J100	1	CONN PC EDGE (Y100)	60	PIN A	MPH	261-1003	30-2	
	29	Y-J200	1	CONN PC EDGE (Y200)	60	PIN A	AM P H	261-1003	30-2	
-	30	Y-J300		NOT USED (J300-J3	350)					
	31	Y-J351	2	CONN BLUE RIBBON I,	0 50	PIN A	AMPH	57-40500)	
いていたい	32	Y-J352		SAME AS J351	50	PIN				
Carlo Martin	33	Y-J353	1	CONN BLUE RIBBON I,	/0 14	PIN 2	AMPH	57-40140)	
To a substantial days	34	Y-J354	4	CONN PANEL RECEPTION	CLE 5	PIN V	/IKG	VR5/4AB	L 3	
and and a lot	35	Y-J355		SAME AS J354	5	PIN				
1	36	¥−J356		SAME AS J354	5	PIN			-	
	37	Y-J357		SAME AS J354	5	PIN				

TAC	EGORY NO	. 7-		TERMINALS		
	DSGN	ÇTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1 2 3 4 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Y-T1 Y-T2 Y-T3 Y-T4 Y-T5 Y-T5 Y-T6 Y-T7 Y-T7 Y-T7 Y-T7 Y-T9 Y-T10 Y-T11 Y-T12 Y-T13 Y-T14 Y-T15	15	TERMINAL TEFLON IN SAME AS TI SAME AS TI	SUL.	CAMB	45043520103
1111	6 Y-T16 7 Y-T17 8 Y-T18	3	TERM STRIP WIRE WF SAME AS T16 SAME AS T16	AP 25 PIN 25 PIN 25 PIN 25 PIN	SAMT	SS-120-G-2
A	TEGORY NO	D. 8-		-SWITCHES		DADE NUMPER
	DSGN	ÇTY	DESCRIPTION	VALUE	MFG	PART NUMBER
	1 Y-S1		SWITCH AC POWER	DPDT	ALCO	MSTL-206N

1 Y-S1 1 SWITCH AC POWER

L.D.D. 1 DEC 77 PARTS LIST- CONTFL/MULTPLX/REF UNIT (Y) DATA 16 CATEGORY NO. 10------HARDWARE------

	DSGN	ÇTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	Y-Hl	1	PLATE MOUNTINC	.125 ALUM	NBS	16W X 13D
2	Y−Н2	1	PANEL INDICATOR	.125 ALUM	NBS	7.5W X .25H
3	Y-H3	1	PLATE BACK UP (H2)	.125 BAKE	NBS	7.5W X .25H
4	Y-H4	1	PANEL REAR (CONNECTORS)	.125 ALUM	NBS	15W X .25H
5	Y-H5	1	COVER FORMED LETAL	1/16 ALUM	NBS	16W X13D X1.6I
6	Y-HG	1	STRIP REINFORCING (85)	.125 ALUM	NES	16L X .5V:
7	Y-Н7	1	STRIP RLINFCRCING (H5)	.125 ALUM	NES	10L X .5W
8	Y-H8	4	STAND-OFF (Y300 CARD)	ALUM	NBS	.5L CYLINDERS
9	Y-H9		SAME AS H8	ALUM		
10	Y-H10		SAME AS H8	ALUM		
11	Y-H11		SAME AS H8	ALUM		

CATECORY NO. 12-----SUBASSEMBLIES-----

	DSGN	$\zeta_{\rm TY}$	DESCRIPTION	VALUE	MFG	PART NUMBER
1	Y-M1	1	POWER SUPPLY MODULAR	5 VOLT	SEMI	ES51000-K2
2	Y-M2	1	POWER SUPPLY MODULAR	+-15 VOLT	ΒE	527
3	Y-Y1	1	CONTRL/MULTPLX PC CARD		NES	Y100
4	Y-Y2	1	BRIDGE REF PC CARD		NBS	Y200
5	Y-Y3	1	ANALG MULTPLX PC CARD		NBS	- Y300

CATEGORY NO. 13-----MISCELLANEOUS-----

.

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	Y-Al	1	SOCKET (FOR M1)		SEMI	K2
2	Y-A2	1	FUSE/FILTER/AC SOCKET		CROM	6J4
32	Y-A3	1	CABLE RIBBON (P1-P3)	16	ALPH	3580/14
4	Y-A4	2	CABLE COAXIAL MIN.	24	BELD	RG174/U
5	Y-A5		SAME AS A4	24		

.D.D.

	ATE	GORY NO.	. 1-	RESIS	TORS		
		DSGN	ÇTY	DESCRIPTION	VALUE	MFG	PART NUMBER
GE S	1 2 3 4	Y1-R1 Y1-R2 Y1-R3 Y1-R4	1 1 2	RES FXD CARB 5% 1/4W RES FXD CARB 5% 1/4W RES FXD CARB 5% 1/4W SAME AS R3	1K OHM 33K OHM 13K OHM 13K OHM	AB AB AB	CB CB CB
	5	¥1-R5	1	RES FXD CARB 5% 1/4W	10K OHM	AB	СВ
	ATE	GORY NO.	. 2-	CAPACI	TORS		
		DSGN	QTY	DESCRIPTION	VALUE	MFG	PARI NUMBER
	1 2 3 4 5 6 7 8 9 10 11	Y1-C1 Y1-C2 Y1-C3 Y1-C4 Y1-C5 Y1-C6 Y1-C7 Y1-C8 Y1-C9 Y1-C10 Y1-C11	3 1 3 3 1	CAP HI-K MONO 50V SAME AS C1 SAME AS C1 CAP TANT 10V CAP CERAMIC SAME AS C5 SAME AS C5 CAP TANT 25V CAP TANT 35V SAME AS C8 SAME AS C8	1.0 UF 1.0 UF 1.0 UF 120 UF .1 UF .1 UF .1 UF 10 UF 10 UF 10 UF 10 UF	SPRG	5C023105X025053
2							
	ATE	GORY NO.	. 5-	INTEGRATED	CIRCUITS		
		DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
	1	Y1-IC1	1	IC BCD TO DEC DECODER	7442N	TI	SN7442N
	2	Y1-IC2	1	INT. CRKT. QUAD NOR	74LSUZN 74LS27N	בב דיזי	SN74LS27N
	4	Y_{1-1C4}	⊥ २	IC QUAD FF (D) OC	74LS175N	TI	SN74LS175N
	5	Y1-IC5	Ŭ	SAME AS IC4	74LS175N		
	6 7 8	Y1-IC6 Y1-IC7 Y1-IC8	3	SAME AS IC4 INT. CRKT. ONE SHOT SAME AS IC7	74LS175N 74121N 74121N	TI	SN74121N

L.D.D	. 1 DEC	77	PARTS LIST- CONTRL/	MUTPLX CARD (Y100) DATA 13
9	Y1-IC9		SAME AS IC7	74121N	
10	Y1-IC10	2	IC HEX INVERTER OC	7406N TI	SN7406N
11	Y1-IC11		SAME AS IClO	7406 N	
12	Y1-IC12		NOT USED		
13	Y1-IC13		NOT USED		
14	Y1-IC14	1	IC HEX INVERTER	74LS04N TI	SN74LSC4N
15	Y1-IC15		NOT USED		
16	Y1-IC16		NOT USED		
17	Yl-IC17		NOT USED		
18	Y1-IC18		NOT USED		
19	Y1-IC19		NOT USED		
20	Y1-IC20	1	IC BINARY FULL ADDER	74LS283N TI	SN74LS283N

CATE	GORY NO	. 6-	CONNEC	CTORS			
	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART	NUMBEI
1	 YI -J 2		JACK IC DUAL IN-LINE	 14 PIN	SAMT	IC-31	4-SGG

CATE	GORY NO	. 10-	HARDW	ARE		
	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	Y1-B1	1	PC BRD-DVM CON/MUX CKT		NBS	PC -100

CATEGORY NO. 12-----SUBASSEMBLIES-----

	DSGN	QTY	DESCRIPTION	VALUE	MF'G	PART NUMBER
1	Yl	1	DVM CONT/MUX PC CARD		NBS	Y100

CATEGORY NO. 1RESISTORSRESISTORS									
	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER			
1	Y2-R1	1	RES FXD MF 1% 1/4W	20.0K OHM	CORG	NC5			
2	¥2-R2	1	RES FXD MF 1% 1/4W	15.0K OHM	CORG	NC5			
3	Y2-R3	2	RES FXD MF 1% 1/4W	10.0K OHM	CORG	NC5			
4	Y2-R4a	1	RES FXD MF 1% 1/4W	27.4K OHM	CORG	NC5			
5	Y2-R4b	1	RES FXD MF 1% 1/4W	SELECTED	CORG	NC5			
6	Y2-R5	1	RES FXD MF 1% 1/4W	ll.3K OHM	CORG	NC 5			
7	Y2-R6	1	RES FXD MF 1% 1/4W	14.3K OHM	CORG	NC5			
8	Y2-R7	1	RES FXD MF 1% 1/4W	19.6K OHM	CORG	NC5			
9	Y2-R8	2	RES FXD WW .025% 1/4W	2.00K OHM	ULTX	205A			
10	Y2-R9	3	RES FXD WW .025% 1/4W	20.0K CHM	ULTX	205A			
11	Y2-R10	1	RES FXD MF 1% 1/4W	1.00K OHM	CORG	NC5			
12	Y2-R11		SAME AS R8	2.00K OHM					
13	Y2-R12		SAME AS R 9	20.0K OHM					
14	Y2-R13		SAME AS R9	20.0K OHM					
15	Y2-R14		SAME AS R3	10.0K OHM					
16	Y2-R15	1	RES FXD CARB 5% 1/4W	12K OHM	AB	CB			
17	Y2-R16	4	RES VAR TRIM CERMET	20K OHM	BRNS	3006W-1-203			
18	Y2-R17	1	RES VAR TRIM CERMET	500 OHM	BRNS	3006W-1-501			
19	Y2-R18		SAME AS R16	20K OHM					
20	Y2-R19		SAME AS R16	20K CHM					
21	Y2-R20		SAME AS R16	20K OHM					

R

ATEGORY NO. 2-----CAPACITORS-----

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
					CDDC	500231058025053
1	¥2-C1	2	CAP HI-K MONC 50V	1.0 01	SEKG	JC025105A025055
2	Y2-C2	6	CAP ELECYLYC 25V	.4.7 UF		
3	Y2-C3		SAME AS C2	4.7 UF		
4	Y2-C4		SAME AS Cl	1.0 UF		
5	¥2-C5		SAME AS C2	4.7 UF		
6	¥2-C6		SAME AS C2	4.7 UF		
7	¥2-C7	1	CAP CERAMIC DISK	.001 UF		
8	Y2-C8		SAME AS C2	4.7 UF		
9	¥2-C9		SAME AS C2	4.7 UF		

L.D.D. 1 DEC 77 PARTS LIST- BRIDGE REFERENCE CARD (Y200) DATA 14 CATEGORY NO. 5------INTEGRATED CIRCUITS-----

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	Y2-IC1	1	CONVTR D-A 3 DIG BCD	· DAC40	BB	DAC40-12B-BCD
2	Y2-IC2	3	INT. CRKT. OP AMP	OP-05C	MONO	OP-05C
3	Y2-IC3		SAME AS IC2	OP-05C		
4	Y2-IC4		SAME AS IC2	OP-05C		
5	Y2-IC5	1	INT. CRKT. ONE SHOT	74121N	ΤI	SN74121N
6	Y2-IC6	l	IC QUAD NAND (OC)	74LS00N	ΤI	SN74LS00N
7	Y2-IC7	1	IC BCD TO DEC DECODER	7442N	ΤI	SN7442N

CATEGORY NO. 7-----TERMINALS-----

	DSGN	QTY 	DESCRI	PTION	VALUE	MFG	PART NUMBER
1 2 3	Y2-K1 Y2-K2 Y2-K3	. 4	SOCKET IC SAME AS SAME AS	SINGLE STRIP Kl Kl (-4 PINS)	20 PIN 20 PIN 16 PIN	SAMT	SS-120-G-2
4	Y2-K4		SAME AS	K1 (-4 PINS)	16 PIN		
5	Y2-J1	8	JACK WIRE	WRAP SOCKET	l PIN	•	
6	Y2-J2		SAME AS	Jl	. l PIN		
7	Y2-J3		SAME AS	Jl	l PIN		•
8	Y2-J4		SAME AS	Jl	l PIN		
9	¥2-J5		SAME AS	Jl	1 PIN		
10	¥2-J6		SAME AS	Jl	l PIN		•
11	Y2-J7		SAME AS	Jl	l PIN		
12	Y2-J8		SAME AS	J1	1 PIN		

CATEGORY 1	NO.	10		-HARDWARE	E			
	-		DECODEDUTON		57 5 7 7 7 7 7 7 7 7	MEG	חתגת	NUMBER

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1.	Y2-B1	l	PC BRD-BRIDGE REF. CKT		NBS	PC-200

CATEGORY NO. 12-----SUBASSEMBLIES-----

	DSGN	ÇТҮ	DESCRIPTION	VALUE	MFG	PART NUMBER
1.	У2	1.	BRIDGE REF. PC CARD		NBS	Y200

ATEGORY NO	. 4-	DIOD	ES		
DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1 Y3-D1 2 Y3-D2 3 Y3-D3 4 Y3-D4 5 Y3-D5 6 Y3-D6 7 Y3-D7 8 Y3-D8 9 Y3-D9 10 Y3-D10 1 Y3-D11 2 Y3-D12	12	DIODE SILICON SAME AS D1 SAME AS D1	1N4153 1N4153 1N4153 1N4153 1N4153 1N4153 1N4153 1N4153 1N4153 1N4153 1N4153 1N4153 1N4153	MOT	1N4153
TEGCRY NO	. 5-	INTEGRATED	CIRCUITS	·	
DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1 Y3-IC1	1	IC DECODE/DEMULTPLX OC	SN74159N	TI	SN74159N
TEGORY NO	. 6-	CONNEC:	rors		

	DSGN	· QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	¥3-J1	1	JACK IC DUAL IN-LINE	14 PIN	SAMT	IC-314-SGG

L.D.D. 1 DEC 77 PARTS LIST- ANALOG MULTIPLEXER CARD (Y300) D15 CATEGORY NO. 7-----TERMINALS-----

	DSGN	QTY	DESCRI	PTION	VAI	LUE	MFG	PART	NUMBER
1	Y3-J2	39	JACK WIRE	WRAP SOCKET	1	PIN			
2	Y3-J3		SAME AS	J2	1	PIN			
3	Y3-J4		SAME AS	J 2	1	PIN			
4	¥3-J5		SAME AS	J 2	1	PIN			
5	Y3-J6		SAME AS	J2	1	PIN			
6	¥3-J7		SAME AS	J2	1	PIN			
7	Y3-J8		SAME AS	J 2	1	PIN			
8	¥3-J9		SAME AS	J2	1	PIN			
9	Y3-J10		SAME AS	J 2	1	PIN			
10	Y3-J11		SAME AS	J 2	1	PIN			
11	Y3-J12		SAME AS	J 2	1	PIN			
12	Y3-J13		SAME AS	J2	1	PIN			
13	Y3-J14		SAME AS	J2	1	PIN			
14	Y3-J15		SAME AS	J 2	1	PIN			
15	Y3-J16		SAME AS	J 2	1	PIN			
16	Y3-J17		SAME AS	J 2	1	PIN			
17	Y3-J18		SAME AS	J 2	1	PIN			
18	Y3-J19		SAME AS	J 2	1	PIN			
19 1	Y3-J20		SAME AS	J 2	1	PIN			
20	Y3-J21		SAME AS	J 2	1	PIN			
21	Y3-J22		SAME AS	J2	1	PIN			
22	Y3-J23		SAME AS	J2	1	PIN			
23	Y3-J24		SAME AS	J2	1	PIN			
24	Y3-J25		SAME AS	J 2	1	PIN			
25	Y3-J26		SAME AS	J 2	1	PIN			
26	¥3-J27		SAME AS	J 2	1	PIN			
27	Y3-J28		SAME AS	J 2	1	PIN			
28	Y3-J29		SAME AS	J2	1	PIN			
29	Y3-J30		SAME AS	J2	1	PIN			
30	Y3-J31		SAME AS	J 2	1	PIN			
31	Y3-J32		SAME AS	J2	1	PIN			
32	¥3-J33		SAME AS	J 2	1	PIN			
33	Y3-J34		SAME AS	J2	1	PIN			
34	Y3-J35		SAME AS	J 2	1	PIN			
35	Y3-J36		SAME AS	J2	· 1	PIN			
36	Y3-J37		SAME AS	J 2	1	PIN			
37	Y3-J38		SAME AS	J2	1	PIN			
38	Y3-J39		SAME AS	J2	1	PIN			
39	¥3-040		SAME AS	.12	· 1	PIN			

CATEGORY NO. 10------HARDWARE------

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	Y3-B1	1	PC BRD ANALG MLTPX CKT		NBS	PC-300

D.D. 1 DEC 77 PARTS LIST- ANALOG MULTIPLEXER CARD (Y300) D15 ATEGORY NO. 11-----RELAYS-----RELAYS------

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1 2 3 4 5	Y3-K1 Y3-K2 Y3-K3 Y3-K4 Y3-K5	12	RELAY ELECTRICAL DPST SAME AS K1 SAME AS K1 SAME AS K1 SAME AS K1	5 VOLT	СОТО	CR-3202-5-701
67	Y3-K6 Y3-K7		SAME AS KI SAME AS KI			
8	Y3-K8		SAME AS K1			
9	¥3-K9		SAME AS Kl			
LO	Y3-K10		SAME AS Kl			
11	¥3-K11		SAME AS Kl			
12	¥3-K12		SAME AS Kl			

ΔT	EGORY NO	. 12-	SUBASSE	MBLIES			
	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER	
		— — ,		~~~~~~~			
1	¥3	1	ANALOG MULTIPLXER CARD		NBS	Y300	

6.8 WIRING LIST

MUX/DVM FRONT	PANEL	
FUNCTION +5V		CONNECTED TO 5V PWR SUPPLY
MUX D "8" LED		Z100-5
MUX C "4" LED		Z100-7
MUX B "2" LED		Z100-9
MUX A "1" LED		Z100-11
+5V		5V PWR SUPPLY
DVM FUNCTION D "8" LED		Z100-15
DVM FUNCTION C "4" LED		Z100-13
DVM FUNCTION B "2" LED		Z100-17
DVM FUNCTION A "1" LED		Z100-19
+5₩		5V PWR SUPPLY
DVM RANGE D "8" LED		Z100-21
DVM RANGE C "4" LED		Z100-27
DVM RANGE B "2" LED	•	Z100-25
DVM DANGE A HIH IED		7100-23

WI	RIN(J-1	3 LI 100	ST
	1	2	
	3	4	
INPUT CHANNEL LED D	5	6	¥200 - 29
INPUT CHANNEL LED C	7	8	¥200 - 31
INPUT CHANNEL LED B	9	10	¥200 - 33
INPUT CHANNEL LED A	11	12	¥200 - 35
FUNCTION LED C	13	14	J351 -48
FUNCTION LED D	15	16	
FUNCTION LED B	17	18	J 3 51 - 50
FUNCTION LED A	19	20	J351 -49
RANGE LED D	21	22	J351 -45
RANGE LED A	23	24	J351 -42
RANGE LED B	25	26	J351 -43
RANGE LED C	27	28	J351 -44
	29	30	
J 353 -4	31	32	
J353 - 3	33	34	
J353 -1	35	36	J352 -44
J353 - 2	37	38	J352 - 28
J353 - 12	39	40	J351 - 45
J35 3 - 5	41	42	J352 -27
J353 -6	43	44	J351 -24
J353 -8	45	46	
J353 - 13	47	48	
J351 -23	49	50	
J352 -2 5	53	54	
J351 -22	55	56	
+5V	57	58	+5V
GND	59	60	GND

	WI	RING	F L]	.ST	
GND		J = 2	200	GND	_
J351 _9		י ז	- - -	, dilb	
1351 -10		5	4		
1351 -11		7	8	•	
1351 -12		a.	10		
1351 13		11	12		
1351 1/		17	11		
1751 15		15	16		
1751 16		17	18		
JJJ1 -10		10	20		
		21	20		
JJJJI =10		27	21.	- 0	
J J J J J J J J J J J J J J J J J J J		25	24		
J J J J J J J J J J J J J J J J J J J		27	20		
J 552 -40	-	20			
1100 - 6		29	20		
¥100 =0		21	26		
¥100 =10)) 75	24		
1100 -12		22	20		
1300 -7H1		21	20	•	
1300 -5HI		29	40		
W700 010		41	42		
1200 200		42	44		
		47	46		
1300 -10L0		47	40		
		49	50	111100	ONT
ANALOG GND		51	52	ANALOG	GNI
-15V		55	54	-150	
+15V		55	56	+15V	
+5V		57	58	+5V.	
ANALCG GND		59	60	ANALOG	GNI

		WIRING L	IST
PIN	NO	• Y-300	SIGNAL
0	HI	¥300 -0 GRD	DVM ZERO
0	LO	Y300 -0 HI	
1	HI	J356 -B	TEMP
1	LO	J356 -C	
2	HI	J356 -D	DEW POINT
2	LO	J356 -E	
3	HI	J355 – B	+20V
3	LO	J355 -A	
4	HI	J355 -C	+12V
4	LO	¥300 -3 LO	
5	HI	¥200 - 39	DAC
5	LO	¥200 -51/52	
6	HI	J355 - E	XTAL DET.
6	LO	J355 -D	
7	HI	¥200 - 39	DAC REF
7	LO	¥200 - 51/52	
8	ΗI	J354 - E	PWR METER
8	LO	Y200 -51/52 A	NLG GND
9	ΗI	Y300 -8 HI	SET DAC
9	LO	¥200 - 43	
10	HI	Y300 -9 HI	V PWR
10	LO	¥200 - 47	
11	ΗI	J357 – B	AUXILLARY
11	LO	J357 -C	
HIG	H	DVM J204-7	DVM HI
LOW	I	DVM J204-3	DVM LO
GAU	JRD	DVM J204-2	DVM GAURD
J1-	-1	¥100 -J2/1	MUX RESET
J1-	·?*	¥100 -J2/7	GND
J1-	-8	¥100 -J2/8	DATA A
J1-	-9	¥100 -J2/9	DATA B
J1-	-10	¥100 -J2/10	DATA C
J1-	.11	¥100 -J2/11	DATA D
J1-	14	¥100 -J2/14	+5V

	J352-29	J352-30	J352-31	J352-50	J352-43				J352-48	GND			GND				Y100-24	Y100-26	Y100-28	Y100-22	J352-47	Y100-16	Y100-14	Y100-20	Y100-18
	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
J=351	1 J352-6	2 J352-12	3 J352-18	4 J352-24	5 J352-5	6 J352-11	7 J352-17	8 J352-23	9 J352-4	10 J352-10	· 11 J352-16	12 J352-22	13 J352-3	14 J352-9	15 J352-15	16 J352-21	17 J352-2	18 J352-8	19 J352-14	20 J352-20	21 J352-1	22 Y100-55	23 Y100-49	24 Y100-44	25 Y100-40

L V

+

WIRING

WIRING LIST

Y100-38 J351-26 J351-27 J351-28 J351-30 GND J351-46 J351-34 GND J351-29 Y100-51 Y100-42 Y100-3 Y100-3 Y100-3 Y100-3 GND 45 48 30 50 27 28 29 35 37 38 43 44 47 49 31 32 39 42 46 26 34 40 33 41 J-352 J351-20 J351-16 J351-12 J351-15 J351-11 J351-7 J351-3 J351-14 J351-10 J351-6 J351-13 J351-8 J351-4 J351-19 Y100-53 J351-13 J351-2 GND J351-17 J351-5 J351-1 J351-9 J351-21 GND GND 22 25 12 16 17 18 19 20 23 24 14 12 5 10 13 = 9 ∞ δ 5 2

WIRING LIST

117

.....

	J353		.	J354
1	¥100-35		A	
2	¥100 - 37		В	
3	¥100 - 33		С	
4	¥100 - 31		D	¥200-51/52
5	¥100 - 41		E	Y300-8HI
6	¥100-43			
7	GND			J355
8			A	Y300-3L0
9			В	¥300-3HI
10			С	¥300–4HI
11			D	Y300-6L0(SHIELD)
12	¥100-39		E	Y300-6HI
13	¥100-47			
111				1356
14				0,0,0
	•]	A	GND
			A B	GND Y300-1HI
			A B C	GND Y300-1HI Y300-1L0
			A B C D	GND Y300-1HI Y300-1L0 Y300-2HI
<u> </u>			A B C D E	GND Y300-1HI Y300-1L0 Y300-2HI Y300-2L0
			A B C D E	GND Y300-1HI Y300-1L0 Y300-2HI Y300-2L0
(14)			A B C D E	GND Y300-1HI Y300-1L0 Y300-2HI Y300-2L0 J357
(A B C D E	GND Y300-1HI Y300-1L0 Y300-2HI Y300-2L0 J357 GND
(A B C D E N A B	GND Y300-1HI Y300-1L0 Y300-2HI Y300-2L0 J357 GND Y300-11HI
(14)			A B C D E A B C	GND Y300-1HI Y300-1L0 Y300-2HI Y300-2L0 J357 GND Y300-11HI Y300-11L0
(14)			A B C D E E A B C D	GND Y300-1HI Y300-1L0 Y300-2HI Y300-2L0 J357 GND Y300-11HI Y300-11L0

ANALOG INPUTS

7. POWER DETECTOR INSTRUMENT MANUAL

7.1 Description: (Figure 26)

The rf detector is a commercial thermister type rf detector mount surrounded by insulation foam. This mount has a dc isolation block on the input and a stainless steel coaxial feed line for thermal isolation. The NBS Type IV power meter is connected to the rf detector in a four wire measurement configuration to eliminate lead resistance errors. The power meter self-balances the thermister detector to 200 Ω . The dc output from the Type IV power meter is connected to the digital voltmeter via input channel #8.

The normal measuring sequence is: (1) Switch rf off in ETMS control/rf unit; (2) Measure and record zero rf power meter voltage on DVM channel #8; (3) Switch DVM input to channel #9 to enable DAC. Read difference between power meter and coarse reference voltage and automatically set DAC to difference voltage; (4) Switch to DVM channel #10 and read and record offset voltage residual; (5) Switch on rf power and read and record voltage change ΔV on DVM channel #10; (6) Switch rf off and recheck offset voltage residual for any reference voltage drift or power meter "zero" drift; and (7) Calculate rf power as described elsewhere.

7.2 Specifications

<u>RF thermister mount</u>: Specification frequency from 1 MHz to 1000 MHz at 0 to 10 milliwatts power. (See manufacturer's instruction manual for details.) <u>Power meter</u>: The NBS Type IV power meter is a self-balancing dc measurement of rf power by dc substitution. The accuracy of the power measurement is determined by the accuracy and resolution of the auxiliary voltmeter used to measure the bridge voltage.

7.3 RF Power Detector Mount

Refer to the manufacturer's instruction manual included with the system for information on this unit.

7.4 NBS Type IV Power Meter

Refer to the NBS Type IV power meter instrument manual included with the system.

				7.5 PARTS LIST - POWER	DETECTOR				
	.D.	D.	9 FEB	78 PARTS LIST- POWE	R DETECTOR	UNIT	(U) DATA 18		
	ATE	GORY N	0. 6-	CONNEC	TORS				
		DSGN	ÇTY	DESCRIPTION	VALUE	MFG	PART NUMBER		
	1 2	U-J1 U-J2	2	JACK TYPE N TO .141 SAME AS J1	COAX	OSM	OSN 402-1		
Unit	3	U-J3	1	CONNECTOR THERM. MOUNT	6 PIN	ΗP	1251-0152		
tor									
Jeteo									
er I	ATE	GORY NO	0. 10-	HARDW	ARE				
Pow		DSGN	ÇTY	DESCRIPTION	VALUE	MFG	PART NUMBER		
	1	U-H1	1	INSTRUMENT CASE	00375	BUD	BB-1801-RB		
26-	3	U-H3	1	REAR PANEL FOR HI	.09375 AL	NBS			
gure									
ET									
	ATE	GORY NO	0. 12-	SUBASSE	SUBASSEMELIES				
		DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER		
	1	U-Ml	1	NES TYPE IV POWR METER		NBS	TYPE IV		
	3	U-N1	1	NOISE SUPPRESS/DC BLK		WEIN	478A-H55 936N		
					-				
	ATE	GORY NO	D. 13	MISCELL.	ANEOUS				
		DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER		
	1	U-K1	1	COAX MIN SEMI-RIGID SS	4	UT	UT/.141SS		

7.6 WIRING LIST P-101 REMOTE

1	J478A-H55-4 (E-)
2	
3	J478A-H55-4 (I-)
4	
5	J478A-H55-1 (I+)
6	
7	J478A-H55-1 (E+)
8	

8. CLOCK AND TEMPERATURE/DEW POINT INSTRUCTION MANUAL (FIGURE 27)

8.1 Introduction

This unit contains a commercial digital clock having a crystal-oscillator time base, four thumb-wheel switches which are used to enter date (month/day) information into the calculator, and temperature and dew point meters which are connected by long cables with remote probes to monitor outside conditions. These probes are enclosed in an environmental enclosure to shield them from the direct effects of the sun and breezes. The enclosure case can be extended in normal operation, but should be left closed if windy conditions exist.

The dc outputs of the temperature and dew point meters are connected to the DVM via input channels 1 and 2, respectively.

8.2 Specifications

<u>Time</u>: The clock is a commercially manufactured model with a crystal time base. It has a power-outage clock-failure signal that is used to initiate a program warning message. (See manufacturer's instruction manual.)

<u>Date</u>: The manual thumb-wheel switches on the front panel are used to input month and date information to calculator.

<u>Temperature monitor</u>: The temperature monitor is a thermister sensor type meter with a range of 0 to 100°F. Extended ranging is available on the DVM reading only. <u>Dew point monitor</u>: The dew point monitor is a heated lithuim-cloride element containing a thermister sensor type meter with a range of 12° to 96°F. (See manufacturer's instruction manual.)

Thirty-meter (100-ft.) extension cables are supplied to remotely locate the temperature and dew point sensors to monitor outside conditions.

8.3 Digital Clock

The commercial digital clock provides parallel BCD data to the calculator on I/O select code #3. These data are combined with the BCD data for month and day from the thumb-wheel switches. When the calculator requests time from the clock, the clock is "locked" to prevent updating while the data are transferred. If a one-second "tick" occurs during this time, it is stored in the clock input circuit until data transfer is completed. Then the time is updated.

Refer to the manufacturer's instruction manual for information on this unit.

8.4 X3 Clock Inhibit/Flag Card (Schematic, Figure 28)

This printed circuit card preforms the control interfacing between the clock and calculator. It also has pull-up resistors used in the thumb-wheel switch data lines.

When the CTL pulse from the calculator requests clock data, it triggers the one-shot, IC-1. This one-shot pulse inhibits clock updating on pin 33 of J3 and returns a ready-flag to the calculator on pin 34 of J3.

The calculator can take as long as 55 milliseconds to read in the data; therefore, this hold pulse is approximately 70 ms in duration.

The maximum repetitive rate that time can be read into the calculator is 10 to 12 times per second.

8.4.1 Troubleshooting

Check that the interface cable is properly connected. Verify that a control pulse CTL is arriving at the one-shot and that the return flag pulse and the inhibit pulse are being generated. Use the Enter (3,*)Ql,Q command to interro-gate the clock date/time.

8.5 X1 Temperature and Dew-Point Sensors (Schematic, Figure 30)

This printed circuit card is the temperature bridge and amplifier and the dew-point bridge and amplifier circuits.

The two circuits are identical with the exception of the resistance values in the bridge and the composite resistors Rl and R31.

The remote thermister probes form one leg of the bridge. The thermister elements of the temperature and dew-point probes are identical; however, the dewpoint probe is surrounded by a spool of wicking soaked in lithium chloride (LiCl) solution. The LiCl absorbs moisture from the atmosphere, decreasing its electrical resistance. An ac current passing through the LiCl heats it up, drying the spool until equilibrium is reached. The thermister element measures the elevated temperature of the probe. Dew-point temperature is indicated as a function of this temperature.

The temperature probe has a metal guard frame around it but senses the atmospheric temperature. The output of the bridge circuit is connected to a

differential input instrument amplifier circuit having a gain of 10 formed by three of the amplifiers in IC-1 (or IC-2 in the dew-point circuit). The output buffer amplifier offsets the signal to establish the "zero degree" point on the temperature scale.

The output of the amplifiers are connected to the DVM and also to front panel digital meters. The front panel meter scales can be changed to read above 99° by switching DIP switches S1 and S2 (or S3 and S4) off. The front panel meters do not read below zero degrees nor above 99.9; however, the DVM temperature data are correct outside this range.

8.5.1 Alignment of Temperature Sensor (Refer to Figures 30 and 31)

Procedure:

 Disconnect the temperature probe and place X1 card on pc extension. Note: The adjustment of R40 is not critical and is set to approximately midrange.

(2) Short TP-6 and TP-7 together and connect TP-6 to ground (TP-5). Monitor TPwith a voltmeter and adjust R52, for a zero reading on the voltmeter. Keeping the shorting jumper between TP-6 and TP-7, remove the ground TP-6 connection. Adjust common mode rejection, R48, for a zero reading on the voltmeter. Remove shorting jumper between TP-6 and TP-7.

(3) Connect a high Z dc voltmeter to test points TP-6 and TP-7.

(4) Connect an $8085-\Omega$ resistor between pins 2 and 3 of the rear panel temperature jack. Adjust bridge balance, R33, for a zero reading on the voltmeter.

(5) Change the input resistor on pins 2 and 3 to 39,965 Ω and adjust range, R36 to obtain 108 millivolts reading on the voltmeter.

(6) Move the voltmeter to TP-8 and ground and adjust the gain trimmer R41 for a voltmeter reading of 1.08 volts.

(7) Change the input resistor to 12,248 Ω . Connect the voltmeter to TP-9 and adjust the offset, R52, to obtain a voltmeter reading of +770 millivolts.

The output voltage will be in degrees fahrenheit and will be scaled to 10 millivolts per degree.

8.5.2 Alignment of Dew-Point Sensor

Procedure:

 Disconnect the dew-point probe and place X-l cord on the pc extension. Note: The adjustment of RlO is not critical and is set to approximately midrange.

(2) Short TP-1 and TP-2 together and connect TP-1 to ground (TP-5). Monitor test point 4 with a voltmeter and adjust R22 for a zero reading on the voltmeter. Keeping the shorting jumper between TP-1 and TP-2, remove the ground from TP-1. Adjust the common mode rejection potentiometer, R18, for a zero reading on the voltmeter. Remove shorting jumper between TP-1 and TP-2.

(3) Connect a high Z dc voltmeter between TP-1 and TP-2.

(4) Connect a $1715-\Omega$ resistor between pins 2 and 3 of the dew-point jack on the rear panel. Adjust bridge balance control, R3, for zero volts on the voltmeter.

(5) Change the input resistor on pins 2 and 3 to 10566 Ω and adjust Range R6 for 108 millivolts on the voltmeter.

(6) Move the voltmeter to TP-3 and adjust the gain trimmer Rll for a voltmeter reading of 1.08 volts.

(7) Change the input resistor to 8898 Ω . Connect the voltmeter to TP-4 and adjust offset adj., R22 for a voltmeter reading of +180 millivolts.

The output voltage is scaled 10 millivolts per degree on dew-point temperature.

8.5.3 Troubleshooting

Note: Refer to the caution warning on the manufacturer's data sheets for the dew-point probe.

The dew-point sensor will cycle several times and can require an hour before stabilizing.

Check that all cables are properly connected and that the temperature and dew-point probes are not interchanged.

If the temperature and dew-point readings seem to vary randomly, ascertain that the remote probes are not located close to the exhaust fans of air condition equipment or other heat sources.

8.6 X2 Temperature/Dew-Point Power Supply (Schematic, Figure 32)

This card furnishes regulated 6.5 volts and 5.0 volts for the temperature/ dew-point sensors and digital panel meters respectively.

8.7 AC Power Distribution (Schematic, Figure 34)

All power supplies are the divided primary type and are switched between 115 and 230 volts by changing the pc card switch in the fuse module on the rear panel.

X.

EGOR

DS

X-1

EGORY

DSG

X-S X-S

		8.8	B PARTS LIST-CLOCK/TEMPE	RATURE/DEW-	-POINT	
D.I	D. 1	DEC 7	7 PARTS LIST- TEMP/DEW	PT./CLOCK	CHASSIS	6 (X) DATA 4
TE(GORY NO	D. 1	RESIS	TORS		
	DSGN	ÇTY	DESCRIPTION	VALUE	MFG	PART NUMBER
ļ	X2-R3	1	RES FXD WW 5% 12W	125 OHM		
TE	GORY NO	D. 6	CONNEC	CTORS		
-	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	X-J1	1	CONN PC EDGE (XI CARD)	60 PIN	AMPH	261-10030-2
13	X-J2 X-J3	1	CONN PC EDGE (X2 CARD) CONN PC EDGE (X3 CARD)	60 PIN	AMPH	261-10030-2
4	X-J4	ī	CONN JACK (TEMP PROBE)	4 PIN	SWCT	C4F
5	X-J5	1	CONN JACK (D.P. PROBE)	4 PIN	SWCT	C4F
16 7	X-J6 X-J7	. <u>1</u>	CONN JACK (ANALOG)	5 PIN 30 PIN	VIKG SAE	VR5/4ABL3 SAC 15D/1-2
8	X-J8	i	CONN JK BOTTOM (CLOCK)	44 PIN	SAE	SAC 22D/1-2
9	X-J9	1	CONN JACK (TEMP DPM)	20 PIN	VIKG	2VH10/1AN-5
0	X-J10	1	CONN JACK (D.P. DPM)	20 PIN	VIKG	2VH10/1AN-5
<u> </u> +	X-JII	T	CONN BLOE RIBBON 170	50 PIN	LJ.1 L 11	57-40500
TE	GORY NO	D. 7	TERMI	NALS		
1	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	X-Tl	1	MINIATURE TERM BLOCK	14 PIN	CNCH	14-140
TE	GORY NO	0. 8-		CHES		
	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
12	X-Sl X-S2	1	THUMB WHEEL SWITCH SWITCH AC POWER	4 DECADE SPST	UNMX ALCO	SF-22A MSTL-206N

in tior

e/

ear

L.D. CATE	D. 1 Gory No	DEC 7	7 PARTS LIST- TEMP/DEW	PT./CLOCK RS	CHASSI	S (X) DATA
	DSGN	ŲΤΥ	DESCRIPTION	VALUE	MFG	PART NUMBER
1 2	X-M1 X-M2	1 1	DIG PANL MTR (D.P.) DIG PANL MTR (TEMP)	3 DIGIT 3 DIGIT	NLS NLS	PM3 39-250-1 PM3 39-250-1
				•		
			•			
CATE	GORY NO	. 10-	HARDW	ARE		
	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1 2 3 4 5 6 7 8 9	X-H1 X-H2 X-H3 X-H4 X-H5 X-H6 X-H6 X-H7 X-H8 X-H9	1 1 1 2 4 1	INSTRUMENT CASE FACE PANEL FOR H1 SHELF BRACKET L-BRACKET (PR SUPPLY) SUPPORT BRKT (CLOCK) SUPPORT BRKT (DPM'S) SHELF POSTS FC CARD CAGE RESISTOR CLIP	.09375 AL .06250 AL .09375 AL .06250 AL .06250 AL 4 CARD	BUD NBS NBS NBS NBS NBS SCBE	9 1/2 X 7 1/2 1.75W X2.5H X 2 3/4H
CATE	GORY NO	. 12-	SUBASSE	MBLIES		
	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1 2 3 4 5 6 7	X-M1 X-M2 X-PR1 X-PR2 X-X1 X-X2 X-X3	1 1 1 1 1	DIGITAL PANEL CLOCK MODULAR POWER SUPPLY TEMPERATURE PROBE DEW POINT PROBE TEMP/DEW PT. PC CARD POWER SUPPLY PC CARD CLOCK INHIBIT PC CARD	24 HR +-15V.	NEPT EB YSI YSI NBS NBS NBS	6700S(+OPTION 527 705 9101 X1 X1 X3
CATE	GORY NO	. 13-	MISCELL	ANEOUS		1
	DSGN	QТҮ 	DESCRIPTION	VALUE	MF'G	PART NUMBER
1 2 3 4 5	X-L1 X-A1 X-A2 X-F1 X-T1	1 1 1 1	LAMP CURRENT LIMIT SOCKET FOR L1 LENSE FOR L1 FUSE/FILTER/AC SOCKET TRANSFORMER DUAL PRIM	12 V 115/220V	GE LCFT CHGM CROM YSI	#55 07-20 6063-000-634 6J4 B-09125

1	TE	GORY NO	. 1-	;	RESISTORS		
1							
• • • •		DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
	1	X1-R1	1	RES FXD MF 18 1/4W	6.65K OHM	CORG	NC 5
ĸ	12	$x_1 - R_2$	ī	RES FXD MF 18 1/4W	1.62K OHM	CORG	NC5
	3	X1-R3	ī	RES VAR TRIM CEEME	т 500 ОНМ	BENS	3006W-1-501
	4	X1-R4	2	RES FXD MF 1% 1/4W	3.48K OHM	CORG	NC5
3 /2	5	X1-R5		SAME AS R4	3.48K OHM		
1/1	6	X1-R6	6	RES VAR TRIM CERME	T 5.00K OHM	BRNS	3006W-1-502
11	7	X1-R7	1	RES FXD MF 1% 1/4W	24.9K OHM	CORG	NC 5
	8	X1-R8	2	RES FXD MF 1% 1/4W	100 OHM	CORG	NC5
	9.	X1-R9	2	RES FXD MF 1% 1/4W	2.00K OHM	CORG	NC5
	10	X1-R10	3	RES VAR TRIM CERME	т 1.00К ОНМ	BRNS	3006W-1-102
	11	X1-R11		SAME AS R6	5.00K OHM		
	12	X1-R12	2	RES FXD MF 1% 1/4W	7.50K OHM	CORG	NC 5
	.3	X1-R13	4	RES FXD MF 1% 1/4W	39.2K OHM	CORG	NC 5
	14	X1-R14		SAME AS R13	39.2K OHM		
	.5	X1-R15	12	RES FXD MF 1% 1/4W	100 K OHM	CORG	NC5
	.6	X1-R16		SAME AS R15	100 K CHM		
	17	X1-R17	2	RES FXD MF 1% 1/4W	90.9K OHM	CORG	NC5
	.8	X1-E18	2	RES VAR TRIM CERME	T 20.0K OHM	BRNS	3006W-1-203
R	.9	X1-R19		SAME AS R15	100 K OHM		
	0	X1-R20		SAME AS R15	100 K OHM		
TION	1	X1-R21		SAME AS RIS	LUU K OHM		
	2	X1-R22		SAME AS R6			
	3	X1-R23	~	SAME AS RID	20 OK OHM	CORG	NC5
	4	XI-R24	2	RES FXD MF 16 1/4W	2 21K OHM	CORG	NC5
	5	XI-RZO	2	RLD FAD MF 10 1/4W	14.7K OHM	CORG	NC5
	0	XI-RSI	1	DEC EVD ME 18 1/4W	7.68K OHM	CORG	NC 5
	10	XI-RJZ	7	CAME AS PIO	1.00K OHM		
	C	X1-R33	. 2	PFS FXD MF 18 1/4W	6.98K OHM	CORG	NC5
		X1-R34	2	SAME AS R34	6.98K OHM		
	1	X1-F36		SAME AS R6	5.00K OHM		
	2	x1-R30	٦	RES FXD MF 1% 1/4W	21.0K OHM	CORG	NC 5
	- 3	X1-R38	-	SAME AS R8	100 OHM		
	4	x1-R39	1	SAME AS R9	2.00K OHM		
IT P	5	\dot{X} $1-R40$		SAME AS R10	1.00K OHM		
	6	X1-R41		SAME AS R6	5.00K OHM		
	7	X1-R42		SAME AS R12	7.50K OHM		
	8	X1-R43		SAME AS R13	39.2K OHM		
631	9	X1-R44		SAME AS R13	39.2K OHM	•	
1.1.1	0	X1-R45		SAME AS R15	100 K OHM		
	1	X1-R46	·	SAME AS R15	100 K OHM		
	2	X1-R47		SAME AS R17	90.9K OHM		

L.D.I 43 44 45 46 47 48 49 50	D. 1 X1-R48 X1-R49 X1-R50 X1-R51 X1-R52 X1-R53 X1-R54 X1-R55	DEC	77 PARTS LIST- SAME AS R18 SAME AS R15 SAME AS R15 SAME AS R15 SAME AS R6 SAME AS R15 SAME AS R15 SAME AS R24 SAME AS R25	TEMP/DEW POINT PC 20.0K OHM 100 K OHM 100 K OHM 100 K OHM 5.00K OHM 100 K OHM 20.0K OHM 2.21K CHM	CARD	(X1) DATA 1
	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
l	 X1-C1	 2	CAP HI-K MONO	50V 1.0 UF	SPRG	5C023105X0250
2 3 4 5 6	X1-C2 X1-C3 X1-C4 X1-C5 X1-C6	4	SAME AS Cl CAP CERAMIC SAME AS C3 SAME AS C3 SAME AS C3	1.0 UF 0.1 UF 0.1 UF 0.1 UF 0.1 UF	SPRG	
7 8 9 10 11 12 13	X1-C7 X1-C8 X1-C9 X1-C10 C11-C3 X1-C38 X1-C40	3 2 7	CAP TANT 25V CAP ELECTLYC 50V NOT USED SAME AS C7 NOT USED SAME AS C8 SAME AS C7	10 UF 50 UF 10 UF 50 UF 10 UF	SPRG	30D TE-1307
						-
CATE	GORY NO.	• 5-	INT	'EGRATED CIRCUITS		
	DSGN 	<u>С</u> ТҮ 	DESCRIPTION	VALUE	MFG 	PART NUMBER
1 2	X1-IC1 X1-IC2	2	I.C. QUAD OP AMP SAME AS ICl	A,B,C,&D E,F,G,&H	NATL	LM324
CATE	GORY NO.	. 7-		TERMINALS		
1 2 3 4	DSGN X1-T1 X1-T2 X1-T3 X1-T4	<u>ÇTY</u> 9	DESCRIPTION TEST POINT JACK SAME AS T1 SAME AS T1 SAME AS T1	VALUE	MFG	PART NUMBER

1	D. 1 DEC 77	PARTS LIST-	TEMP/DEW	POINT	PC CARD	(X1)	DATA 1
5	X1-T5	SAME AS T1					
5	X1-T6	SAME AS TI					
7	Х1-Т7	SAME AS T1					
B	X1-T8	SAME AS TI					
9	X1-T9	SAME AS TI					

TEGORY	NO.	8
--------	-----	---

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
L	X1-S1	1	SW SPST 8 ROCKER DIP	ROCKER 1	GRAY	76B08
2	X1-S2		SECTION OF S1	ROCKER 2		
В	X1-S3		SECTION OF S1	ROCKER 3		
1	X1-S4		SECTION OF S1	ROCKER 4		

TEGORY	NO.	10HARDWARE
--------	-----	------------

DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
X1-B1	1	PC BRD FOR T/D.P. CRKT		NBS	PC-1

TEGORY NO. 12------SUBASSEMBLIES-----

DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
X1 [.]	1	TEMP/DEW PT. PC CARD		NBS	Xl

. . .

CATE	GORY NO	. 1-	RESIS	TORS		
	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1 2 3	X2-R1 X2-R2 X2-R3	1	RES FXD MF 1% 1/4W RES FXD MF 1% 1/4W CHASSIS MOUNTED	267 OHM 1.10K OHM 125 OHM	CORN CORN	NC 5 NC 5
4	X 2-R4	1	RES FXD CARE 5% 1/4W	2.70K OHM	AB	СВ
CATE	GORY NO	. 2-	CAPACI	TORS		
	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1 2 3	X2-C1 X2-C2 X2-C3	1 1 2	CAP ELECTLYC 50V CAP HI-K MONO 50V CAP CERAMIC	500 UF 1 UF .1 UF	CD SPRG SPRG	WBR 500-50 5C023105X0250
4 5	X2-C4 X2-C5	<u>1</u>	CAP ELECTLYC 50V SAME AS C3	50 UF .1 UF	SPRG	30D TE-1307
CATE	GORY NO	. 4 –	DIOD	es		
	DSGN	QTY	DESCRIPTION	VÁLUE	MFG	PART NUMBER
1	X2-CR1	1	DIODE SILICON 1A 400V	1 AMP	RCA	1N4004
CATE	GORY NO	. 5-	INTEGRATED	CIRCUITS		
	DSGN	QTY	LESCRIPTION	VALUE	MFG	PART NUMBER
1 2	X2-IC1 X2-IC2	1	VOLTACE REGULATOR VOLTAGE REGULATOR	6.5V 5.0V	NATL MOT	LM 317T MC7805CP
	· .					

•

D.D. 1 DEC 77 PARTS LIST- TEMP/DEW PT. PWR SUPPLY (X2) DATA 2 EGORY NO. 10------HARDWARE------

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
	X2-B1	1	PC BRD- PWR SPLY CRKT		NBS	PC-2
2.	X2-H1	2	SCREW 4-40	1/4		
	X2-H2	2	NUT 4-40			
Ł	Х 2-НЗ	2	WASHER FLAT 4-40			

FEGORY NO. 12------SUBASSEMBLIES-----

DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
X 2	1	POWER SUPPLY PC CARD		NBS	X2

CATE	GORY NO.	. 1-		RESIS	TORS			
	DSGN	QTY	DESCRIPTION		VALUE	MFG	PART	NUMBER
1 2 3	X3-R1 X3-R2 X3-R3	17	RES FXD CARB 5% SAME AS R1 DELETED	1/4W	1.0K OHM 1.0K OHM 1.0K OHM	AB	СБ	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	X3-R4 X3-R5 X3-R5 X3-R7 X3-R8 X3-R9 X3-R10 X3-R11 X3-R12 X3-R12 X3-R13 X3-R14 X3-R15 X3-R16 X3-R17 X3-R18	1	RES FXD CARB 5% RES FXD CARB 5% SAME AS R1 SAME AS R1	1/4W 1/4W	510 OHM 10 K OHM 1.0K OHM	AB AB	CB CB	
19 CATE	X3-R19 GORY NC	. 2-	SAME AS R1	CAPACI	1.0K OHM		· ·	
	DSGN	QTY	DESCRIPTION		VALUE	MFG	PART	NUMBER

· ·

	DSGN	QTI	DESCRIPTION	VALUE	MEG	PART NUMBLE
1 2	X3-C1 X3-C2	2	CAP TANT 25V SAME AS Cl	10 UF 10 UF		

CATEGORY	NO.	5INTEGRATED	CIRCUITS

	DSGN	ζTY	DESCRIPTION	VALUE	MF'G	PART NUMBER
						i
1	X3-IC1	1	FF ONL SHOT	74121	ΥI	SN74121N

.

D.D. 1 DEC 77 CLOCK FLAG/INHIBIT PC CARD (X3) DATA 3

DSGN	QTY	DESCRIPTION	VALUE	MFG	FART NUMBER
X3-Bl	1	PC BRD- CLK IHBT CRKT		NBS	PC-3

TEGORY	NO. 12	SUBA	SSEMBLIES		· · · · · · · · · · · · · · · · · · ·
DSGI	N QTY	DESCRIPTION	VALUE	MFG	PART NUMBER

L	X3	1	CLK INHIBIT PC CARD	NBS	ХЗ

8:9 <u>CLOCK WIRING LIST</u>						
<u> </u>	<u>J-1</u>	.				
	1	A				
	2	В	X3-1&2 +5V			
	3	С				
	4	D				
	5	F	J1-15 (OSC)			
	-	-				
J1-F	15	S				
	J-	2				
	1	A				
	2	B				
	3	с				
GND X3-60	4	D	GND X3-60			
	5	F	X3-34 (DSBL)			
	6	H				
J11-15	2	J				
	8	K	J11-17			
J11-18	9	L	J11 - 16			
J11-19	10	М	J11-21			
	11	N	J11-20			
J11-23	12	P				
	13	ହ				
J11-26	1.4	R	J11-25			
J11-27	15	S	J11-24			
J11-30	16	Ŧ	J11-29			
J11-31	17	U	J11-28			
	18	V				
J11-34	19	W	J11-33			
J11-35	20	X	J11 - 32			
J11-38	21	Y	J11-37			
J11-39	22	Z	J11-36			
	15					

WIRING LIST													
J456 -C 1 2 V2 50 0V2													
GND J4 -3 GND J5 -3	1	2	X2 -59 GND										
J456 - D	3	4	COMM 15VPS/=5VPS										
+6.5V X2 -55	5	6											
	7	8											
	9	10											
J4-2	11	12											
J4-1	13	14											
	15	16											
J5-2	17	18											
J5-1	19	20											
	21	22											
	23	24											
	25	26											
	27	28											
-15 VPS	29	30											
	31	32											
+15 VPS	33	34											
	35	38											
	39	40											
	41	42	D.P. DPM-1										
D.P. + J456 -D	43	44											
	45	46	D.P. DPM-B										
TEMP + J456 -B	47	48	TEMP DPM-1										
	49	50											
TEMP DPM-H	51	52	TEMP DPM-B										
D.P. DPM-H	53	54											
	55	56											
	57	58											
	59	60											
•	لسنا												

WIRING LIST											
	J-X	2	·····								
	1	2									
	3	4									
	5	6									
	7	8									
	9	10									
	11	12									
24V AC TO #55 LAMP	13	14									
J5-4 TO #55 LAMP	15	16									
	17	18									
TO R3	19	20									
	21	22									
	23	24									
	25	2.6									
	27	28									
	29	30									
	31	32									
	33	34									
	35	36									
TEMP DPM-9 D.P. DPM-9	37	38									
	39	40									
	41	42									
	43	44									
	45	46									
	47	48									
	49	50									
TO R3	51	52									
	53	54									
X1-5	55	56									
24V AC	57	58	TEMP DPM GND								
X1-2/GND	59	60	D.P. DPM GND								
	15	2									

WIRING LIST

•	J = X	2	
CLOCK J1-B +5V	1	2	+5V CLOCK J1-B
X10 DAY TWS C	3	4	J11-1 C8
X10 DAY TWS B	5	6	J11-2 B8
X10 DAY TWS A	7	8	J11-3 A8
X1 DAY TWS D	9	10	J11-4 D7
X1 DAY TWS C	11	12	J11-5 C7
X1 DAY TWS B	13	14	J11-6 B7
X1 DAY TWS A	15	16	J11-7 A7
X10 MONTH TWS B	17	18	J11-8 B10
X10 MONTH TWS A	19	20	J11-9 A10
X1 MONTH TWS D	21	22	J11-10 D9
X1 MONTH TWS C	23	24	J11-11 C9
X1 MONTH TWS B	25	26	J11-12 B9
X1 MONTH TWS A	27	28 28	J11-13 A9
X10 DAY TWS D	29	30	J11-14 D8
X10 MONTH TWS D	31	32	J11-43 D10
FLAG J11-41	33	34	CLOCK J2-F (DSBL)
CTL J11-40	35	36	
	37	38	
X10 MONTH TWS C	39	40	J11-44 C10
· · · · ·	41	42	
J11-45	43	44	J11-46 "1" BUSS
	45	46	
	47	48	
	49	50	
	51	52	
	53	54	
	55	56	
	57	58	
TWS-COMMON J11-49&50	59	60	CLOCK J2-2&D GND
	1	53	

DPM WIRING LIST												
J	- 9	TEM	P									
X1-48	1	A										
	2	В	X1-52 (DEC. PT.)									
	3	С										
	. 4	D										
(IN-) X1-2	5	F										
	6	H	X1-51 (IN+)									
	7	J										
	8	K										
+5V X2 -37	9	L	x2-58 gnd									
J9 - 9	10	Μ	X2-58									

	·····		
X1-42	1	A	
	2	В	X1-46 (DEC. PT)
	3	С	
	4	D	
(IN-) X1-4	5	F	
	6	H	X1-53 (IN+)
	7	J	
	8	K	
+5V X2 - 37	9	L	X2-60 GND
J10-9	10	Μ	X2-60

	J2-14	J2-15	J2-U	J2-T	J2-16	J2-17	J2-X	J2-W	J2-19	J2-20	J2-2	J2-Y	J2-21	J2-22	X3-35	X3-33		X3-32	X3-40	X3-43	X3-44	GND		X3-59/GND	
	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
J-11 CLOCK	4	9		10	12	14	16	18	20	22	24	26	28	30	2	L	K	6	10	N	W	11	12	Ŝ	H.
	X3-	X3-(X3-	х3-	X3-	X3-	X3-	X3-	X3-	X3-	X3-	X3-	X3-	X3-	J2-	J2-	J2-	J2-	J2-	J2-	J2-	J2-	J2-	J2-	J2-
	-	2	Μ	4	5	9	2	ω	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

NB2

Figure 34. Clock/Temperature AC Power Distribution.

9. NOISE-ADD STANDARD AND POWER SUPPLY INSTRUCTION MANUAL

9.1 Introduction

The noise-add standard is a stable dual-diode noise generator module which is mounted at the throat of the antenna to inject a known level of added noise into the receiver system of the earth terminal under ETMS calculator control. This noise-add signal is injected during each measurement to provide information needed to correct for receiver system gain changes.

The noise-add module is powered by a constant power supply which is controlled remotely from the ETMS via two coaxial control cables.

9.2 Specifications

Dual diode noise-add standard: The 7.0 to 7.4 GHz frequency noise-diode output level is approximately 3 dB less than diode No. 2.

<u>Noise-add current supply</u>: This external module contains a long-term stability voltage reference which is used to determine the constant-current to each noise-add diode.

Input power: 115/230 V 50/60 Hz.

Input control: Two coaxial lines from ETMS control console.

9.3 Noise-Add Module (Figure 35)

The X-band noise-add module combines the noise outputs of two solid-state noise diodes. The output of this module is injected at the directional-coupler immediately ahead of the low-noise amplifier via a short semi-rigid coaxial cable.

The two noise diodes are remotely switched via the bias power supply from the ETMS control/rf console. The signals from the diodes are combined through two, 3 dB hybrid couplers in a manner which reduces the output level of #1 diode to approximately 3 dB below the output level of diode #2 (see fig. 36).

Each noise add diode is a dual source. If one diode should become defective, the diode substrate can be reversed to utilize the spare diode; however, all previous calibration history will be lost.

Note: Avoid connecting or disconnecting the bias current supply cables without first turning the ac power switch "off" on the bias power supply.

Figure 35. Noise-Add Standard Unit.

9.4 Noise-Add Power Supply (Schematic, Figure 37)

The noise-add power supply furnishes constant current bias to the noise-add module. The constant current generators [9] for the noise diodes are referenced to a 10 volt standard reference. The circuits in the generator are symetrical to eliminate output variation with temperature change.

The output current is switched (shunted) to ground to turn the noise diode off.

These switch transistors Q1 and Q2 are controlled from the remote input lines via optical isolators IC-3 and IC-4. When the input to the optical coupler is open circuited or at + 15 volts the noise diode is turned on. Conversely, when the input is shorted the noise diode is off.

The resistance values in the current sources were selected to adjust the outputs of the diodes to approximately 3 dB difference in noise power level at the combined output of the two, 3 dB hybrid couplers.

9.5 Troubleshooting

Note: Ascertain that the par-amp connected to the noise-add unit is switched to the down-link. Initially verify that each noise-add diode is working by observing the output of the down-link on a spectrum analyzer and manually switch noise-add #1 and #2 off and on. Determine that noise-add #2 injects a larger noise power. Reverse the control cables at the ETMS control/rf console if necessary. If the remote cables are suspected, open and short circuit the BNC control inputs to the noise-add power supply observing the results on the spectrum analyzer.

These noise-add and power supply modules have matching serial numbers and have been checked on the NBS noise calibration system before being shipped. If the noise-add module is to be used as a reference standard for continuity of data over long time spans, it should be rechecked periodically.

			9.6 PART LIST - NOISE A	DD UNIT & P	POWER S	UPPLY					
D.D.	1	DEC	77 PARTS LIST- NOISE	ADD PWR SUP	PLY (V) DATA 12					
TEGO	TEGORY NO. 1RESISTORSRESISTORS										
Ď	SGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER					
l V	8-R23	1	RES FXD CARB 5% 1/2W	910 OHM	AB	EB					
•											
1.			· ·								
TEGO	RY NO.	, 4-	DIOD	ES							
D	SGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER					
l V	-Dl	1	LED (INDICATOR LAMP)		HP	5082 - 4655					
			•								
TEGO	RY NO.	. 6-	CONNEC	TORS	·						
D	SGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER					
1 V	-J1	2	JACK BNC PANEL		АМРН	UG-1094/u					
2 V 3 V	-J2 -J3	2	JACK SMA PANEL		OSM	220					
14 V	-04		SAME AS US								
				•							
TEGO	RY NO.	. 8-		HES							
D	SGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER					
l v	 	1	SWITCH DPDT LOCKING	3 AMP	ALCO	MSTL-206N					

L.D. CATE	L.D.D. 1 DEC 77 PARTS LIST- NOISE ADD PWR SUPPLY (V) DATA 12 CATEGORY NO. 10HARDWAREHARDWARE								
	DSGN	ŶŢŊ	DESCRIPTION	VALUE	MFG	PART NUMBER			
1	V-H1	1	HOUSING TEKARD CASE		DEST	КЗЗ-5			
				· .		.			
CATEGORY NO. 12SUBASSEMBLIES									
DSGN QTY			DESCRIPTION	VALUE	MFG	PART NUMBER			
1 2	V-V1 V-V2	1 1	CONST. CURRENT PC CARD POWER SUPPLY PC CARD		NBS NBS	V800 V900			
CATE	GORY NO.	13-	MISCELLA	NEOUS					
	DSGN	QΤΥ	DESCRIPTION	VALUE	MFG	PART NUMBER			
1	V-F1	1	FUSE/FILTER/AC SOCKET		CRCM	6J4			

UMBER

	TEO	GORY NO.	6-	CCNNEC	TORS						
	and the second se	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER				
UNEER	1 2 3 4	W-J1 W-J2 W-J3 W-P1	1 2 2	CONN PANEL N-SMA (JKS) CONN PANEL SMA-SMA SAME AS J2 CONN SMA- 141 SEMI RIC	COAX COAX COAX	OSM OSM	21011 209A				
, and	5	W-P2	2	SAME AS PI	COAX	OSM	201-1A				
	7	k = P4	2	SAME AS P3	COAX	OSM	221-1				
	8 9 0 1	W-P5 W-P6 W-P7 W-P8	4	SAME AS P5 SAME AS P5 SAME AS P5 SAME AS P5	COAX CCAX CCAX COAX	OSM	218				
UNEER	· · ·										
	TEGORY NC. 10HARDWARE										
	DSGN ÇIY		ÇIY	DESCRIPTION	VALUE	MFG	PART NUMBER				
1 2 3 4		W-H1 1 W-H2 1 H3-H6 4 H7-H24 18		HOUSING MILLED GUT BLK HOUSING FRONT PANEL SCREW (PANL CONN) 4-40 SCREW (FACE PANL) 4-40	ALUM .125 ALUM .25 .375	NBS AES	6L X3.25W X2.63D 6L X 3.25W				
	ATE(GORY NG.	12	SUBASSEI	MELILS						
		DSGN	ÇTY	DESCRIPTION	VALUE	MFG	PART NUMBER				
	1	W-N1	2	DUAL NOISE LICLE ASS'Y		NBS	2766480				
	3	W-N2 W-M1	2	SAME AS NI COUPLER 3dB QUADRATURE	COAX	MERR	QHM-2-6AG				
	4 5	W-M2 W-M3	2	SAME AS MI TEE/DC BLK/MONITOR SMA	COAX	OSM	203356				
	6 W-M4 7 W-M5 8 W-M6 9 W-M7		M4SAME AS M3M53TERMINATION MIN SMAM6SAME AS M5M7SAME AS M5		50 OHM 50 OHM 50 OHM	OSM	20020P				

L.D.D. 1 DEC 77 PARTS LIST- DUAL NOISE-ADD STANDARD (W) DATA CATEGORY NO. 13------MISCELLANEOUS-------DSGN CTY DESCRIPTION VALUE MFG PART NUMBER 1 W-A1 1 CABLE .141 S-RIG COAX 3 UNIF 2 W-A2 1 CABLE .141 S-RIG COAX 1 UNIF

TECR ----

ATEGORY NO. 1-----RESISTORS-----RESISTORS------

	DSGN	ŷTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1 2 3 4 5 6 7 8	V8-R1 V8-R2 V8-R3 V8-R4 V8-R5 V8-R6 V8-R7 V8-R8	16	RES FXD WW .025% 1/4W SAME AS R1 SAME AS R1	SELECTED SELECTED SELECTED SELECTED SELECTED SELECTED SELECTED SELECTED	ULTX	205A
9	V8-R9	2	RES FXD CARB 5% 1/4W	10K OHM	AB	СВ
10	V8-R10	2	RES FXD CARE 5% 1/4W	510 OHM	AB	CE
11 12 13 14 15 16 17 18 19 20	V8-R11 V8-R12 V8-R13 V8-R14 V8-R15 V8-R16 V8-R17 V8-R17 V8-R18 V8-R19 V8-R20		SAME AS R1 SAME AS R9 SAME AS R10	SELECTED SELECTED SELECTED SELECTED SELECTED SELECTED SELECTED 10K OHM 510 OHM		
21	V3-R21 V8-R22	2	LLS FXD CARB 5% 1/2W SAME AS R21	1.5K OHM 1.5K CHM	AB	ED

ATEGORY NO: 2-----CAPACITORS-----

.

DSGN	ÇTY	DESCRIPTION		VALUE	MFG	PART NUMBER
 1 V8-C1 2 V8-C2 3 V8-C3	3	CAP HI-K MONC 5 SAME AS Cl SAME AS Cl	50V	1.0 UF 1.0 UF 1.0 UF	SPRG	5C023105X025053

L.D.	D . 1	DEC	11 PARTS LIST- NOISE A	IDD CONST I	CARD	(V800) DI0
CATE	GORY NO.	3-	TRANSIS	TORS		
	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1 2	1 V8-Q1 2 2 V8-Q2		TRANSISTOR SILICON PNP SAME AS Q1	2N3906 2N3906	MOT	2N3906
CATE	GORY NO.	. 4-	S			
	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1 V8-CR1 2 2 V8-CR2			DIODE ZENER 12.7V SAME AS D1	1N5242A 1N5242A	MOT	1N5242A
CATEGORY NO. 5INTEGRATED CIRCUITS						
	DSGN	QТҮ 	DESCRIPTION	VALUE	MFG	PART NUMBER
1	V8-IC1	2	INT. CRKT. OP AMP	OP-05C	MONO	OP-05
3	V8-IC2 V8-IC3	2	I.C. OPTICAL COUPLER	LIT-5		LTI-5
4 5	V8-IC4 V8-IC5	1	SAME AS IC3 VOLTAGE-REF. PREC	LIT-5 10V	CV	PVSN 10G
CATE	GORY NO.	6-	CONNEC1	ORS		
	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1 V8-J1 1 2 V8-J2 2 3 V8-J3 2 4 V8-J4 5 V8-J5		1 2 2	JACK IC DUAL IN-LINE CONNECTOR COAXIAL CONNECTOR COAXIAL SAME AS J2 SAME AS J3	14 PIN BNC SMA BNC SMA	SAMT AMPH OSM	IC-314-SGG UG-1094/u 220

10

ER

EER S GG u

 TEGORY NO. 12------SUBASSEMBLIES

 DSGN
 QTY
 DESCRIPTION
 VALUE
 MFG
 PART
 NUMBER

 I
 V8
 I
 CONST. CURRENT PC CARD
 NBS
 V800

L.D.D. 1 DEC 77 PARTS LIST- NOISE ADD PWR SUPPLY CARD (V900) D1

CATEGORY NO. 6-----CONNECTORS-----

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1 2	∨9-J1 V9-J2	2	JACK IC DUAL IN-LINE SAME AS J1	14 PIN 14 PIN	SAMT	IC-314-SGG

1	V9-B1	l	PC BRD-PWR SUPPLY CRKT		NBS	PC-900
2	V9-H1	1	BRACKET - PWR SUPPLYS	.062 AL		
3	V9-H2	4	SCREW 4-40	3/4		
4	V9-H3	4	NUT 4-40			
5	V9-H4	4	WASHER LOCK 4-40			

CATEGORY NO. 12-----SUBASSEMBLIES------

	DSGN	ÇΤΎ	DESCRIPTION	VALUE	MFG	PART NUMBER
1	V 9	1	POWER SUPPLY CARD		NBS	V900
2	V9-M1	2	MODULAR POWER SUPPLY	+-15V	ΒB	527
3	V9-M2		SAME AS M1	+-15V		

9.7 Drawings

Figure 36.

Noise-Add Schematic.

Figure 38.

NO.

SCALE

CHECKER

PROJECT ENGR

CHIEF, EEC .

CHIEF. DIV..

CHIEF ENGINEER

ORIGINAL DATE OF DRAWING

REVISIONS

CHANGE

NOMENCLATURE

NATIONAL BUREAU OF STANDARDS WASHINGTON, D.C. 20234

TYPE

DRAFTONAN

mm mgt

PROJECT ENGR

SUSMITTED EY

EXAMINED EY

APPROVED EY

2766480-1800

II

±.008

±.018

± %*

THIS

PRINT ISSUED

TOLERANCES

DATE

10. INTERCONNECTION CABLES

10.1 CABLE LIST

QTY DESCRIPTION FROM/TO RQD 5 15 cm (6 inch) BNC Coax 60 cm (2 ft.) Type "N" RF Det. Input 1 120 cm (4 ft.) Type "N" Coax 1 15 cm (6 inch) Type "N" to Term. IF Adaptor 1 6 meter (20 ft.) BNC with BNC to Type "N" Adaptor J-653/J-654 2 and Type "N" Female Plug 45 cm (18 inch) Rigid SMA to Type "N" Coax 1 90 cm (3 ft.) BNC with BNC to Type "N" Adaptor 2 10 cm (4 inch) Adaptor Type BNC to Viking 5 Pin J357 1 (Aux Voltage Input) J400/9830 BCD I/O Cable No. 3 1 J352/9830 BCD I/O Cable No. 2 1 J650/9830 TTL I/O Cable No. 4 1 9865A/9830 Cassette I/O Cable No. 5 1 Printer I/O Cable 1 9866B/9830 A.C. Power Interconnect 1 J651/J653 RF Unit to MUX Control 1 J655/J355 RF Unit Analog Voltages 1 J654/Pwr. Det. Bridge Voltage 1 Remote J356/J456 Temp. Dew. Pt. from MUX 1 J351/J201-202 DVM to MUX Control 1 J204/MUX 1 DVM Input A.C. Power Cords 7 1.5 meter (5 ft.) Noise Add. SMA 2 Dew Point Sensor 1 1 Temperature Sensor 30 meter (100 ft.) Dew. Pt. Sens. Ext. Cable 1 15 meter (50 ft.) Temp. Sens. Ext. Cables 2

Figure 41. System Interconnection Cables.

10.2 Cable Wiring List

MULTIPLEXER/DVM BCD I/O CABLE 11203A

Signal	Source	J352	Wire #	BCD I/O Card
Signal 100K 10K 1K 100K 10K 1K 20K 2K 200K 20K 2K 200K 20K 2K 20K 2K 200K 2K 2C 4C 4C 4K 4C 4K 4C 8K 8K 80K 8K 8C 8K 8C 8K 8C 8K 8C 8K 8C 8K 8C 8K 8C 8C 8C 8C 8C 8C 8C 8C 8C 8C	Source J351-21 J351-17 J351-13 J351-4 J351-5 J351-1 GND J351-18 J351-14 J351-10 J351-10 J351-10 J351-10 J351-2 GND J351-19 J351-19 J351-19 J351-19 J351-19 J351-19 J351-19 J351-19 J351-19 J351-19 J351-10 J351-19 J351-19 J351-19 J351-10 J351-19 J351-20	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Wire # 925 5 4 3 2 1 934 91 91 91 91 92 91 92 92 934 91 92 92 93 90 938 902 938 902 938 902 938 902 938 902 938 902 938 904 956 904 905 906 907 0 907 908 6 92 98	BCD I/O Card D4-1 D5-1 D6-1 D7-1 D8-1 D9-1 D4-2 D5-2 D6-2 D7-2 D8-2 D9-2 D4-4 D5-4 D5-4 D7-4 D5-4 D7-4 D5-4 D7-4 D5-4 D7-4 D5-4 D7-4 D5-8 D6-8 D7-8 D6-8 D7-8 D7-8 D8-8 D9-8 EXP-1 EXP-2 EXP-4 EXP-2 EXP-4 EXP-2 Function-1 Function-4
"1" "1" "1" "1"	V100-3 V100-3 V100-3 V100-3 V100-3 GND	32 33 34 35 36 37 38 39 40 41	903 918 923 924 924 928 928 948 948 937 926 927 927 927 925 927	Function-8 D1-1 D2-1 D3-1 D3-2 D3-8 D3-4 D1-2 D2-2 D1-4 D2-4
Carry	J351-30 ¥100-3		936 914 916 916 946 946	Overrange EXP Sign D1-8 D2-4
pirect Command Data Ready Polarity()	J351-46 J351-34 GND J351-29	40 47 48 49 50	958	Control 1 Flag GND Polarity(-) Logic Select(-) Logic Select(+)
:		NC	945 957	H/L CTL 2

C

Ι

CLOCK I/O CABLE 11203A

Signal	Source	P400/J11	Wire #	BCD I/O Card
C 10's Day	X3-4	1	936	D2-4
B 11 11	X3-6	2	927	D2-2 1
A 11 11	X3-8	3	923	D2-1
D "1" Day	X3-10	4	948	D3-8
C II II	X3-12	5	937	- D3-4 ^r
B '' ''	X3-14	6	928	D3-2
A	X3-16	2	924	- D3-1 F
B 10's Month	X3-18	8	92	Function-2
	X3-20	9	6	Function-1
D "I" Month	X3-22			D1-8
	X)-24 VZ 20		935	D1-4
A 11 11	λ)-20 vz 20	12		
	A)=20 VZ ZO			
Dun Fail	x)=)∪ t27	15	947	
A 1111 Second	JZ=7 .T2=T.	16	914	Do 1
B II II	.T2_K	17		
с и и	.12-9	18	96	
0 11 11	J2=10	19	907	
A 10's Second	J2-N	20		D8-1
B II II.	J2-M	21	9	D8-2 F
<u>C 11 11</u>	J2-11	22	<u>9</u> 5	D8-4
D 11 11	J2-12	23	906	D8-8 "
A "1" Minutes	J2 - 5	24	3	D7-1
B ¹¹ ¹¹	J2-R	25		D7-2
Спп	J2-14	26	94	D7-4 Z
D 11 11	J2 - 15	27	905	- D7-8
A 10's Minutes	J2-U	28	4	D6-1 7/
B 11 11	J2-T	29	7	D6-2
C 11 11	J2-16	30	93	D6-4
D 11 11	J2-17	31	904	D6-8 "
A "1" Hours	J2-X	32	5	- D5-1
Ban	J2-W	33	91	D5-2 6
	J2-19	24	902	D5-4
	JZ-20	22		D5-8 17
A IV'S Hours	JZ-2 TO V	20		- 1)4-1
	JZ-1 TO 01		974	D4-2
	12-22	30		D4-4
Command	UZ⊷ZS		958	
Ready Flag	X3-33	40	967	Flag
nouuj 11u5	NJ		567	1.000
D 10's Month	X3-32	43	903	Function-8
C II II	X3-40	44		Function-4
	X3-43	45	916	EXP Sign
niin	X3-44	46	913	EXP-2
	GND	47	<u> </u>	Logic Select(
		48		
	X3-59/GND	49	968	GND 71
	GND	50	901	Polarity 4
		L {	0	EXP-1
			97	EXP-4
		L	908	EXP-8
				31
		NC	957	CTL-2
		NC	945	H/L T
		NC	915	LOGIC SELECTIV

RF UNIT INTERFACE CABLE 11202A

BCD I/C	RF UNIT INTERFACE CABLE 11202A									
D2. D2. D2.	Co	Break	Point	Switch		J650		Cable H.P. wire #	4 8	Eit I/O Card
D3.	₹P	59			0	1		- 0	0	Input Bits
UJ DJ Duncti	FP	58			1	2		- 1	1	
Functi	FP	57			2	3		- 2	2	н
DI DI	FP.	56			3	4		- 3	3	
D2 D2 Gverra	FP	55			4	5		- 4	4	11
D9 D9	FP	54			5	6		- 5	5	
- D9	FP	53			6	7		- 6	6	
00 D8	FP	52			7	8 .		- 7	7	11
D7	8 Z1C	0-45			1	9		- 90	C	Output Bits
	57C	0-47			2	10		- 91	1	
Dé Dé	370	0-29			4	11		- 92	2	11
- Di	370	0-35			8	12		- 93	3	, 11
2.6.19	370	0-32			16	13		- 94	4	۰ ^{۱۱}
	370	0-38			32	14		. 95		; 11
2	370	0-26		-	64	15		- 96	6	5 **
	170	0-23				16		- 97	7	y ¥1
- I Annet	170	0-55				17		- 98	0	TL
Funct					NC	18		- 902		STP
Logic	6 70	0-53				19		- 901]	/0
Pol	40	0-55				20		- 8	I	TLG
EXE EXE	X. 8.				NC	21		9	F	СН
		D .				22		- 903	(ND
Inchi		D				23		- 904	(IND
						24		NC		

Volt Supply GND Pin 45 Pin 39 Pin 35 Pin 31 Pin 33 J100 Pin 43 Pin 47 J100 Pin 37 Pin 41 Multiplexer J100 J100 J100 J100 J100 J100 J100 To То To Чо To Ъ0 Ц о Н 0 E 0 E1 о Н J353 N 9 3 2 M 4 S ~ ∞ 10 3 14 Cable J651 പ 2 0 5 M S 5 + 9 ~ 00 14 ----

Z700-37 2700-25 Z700-36 Z700-31 Z700-42 Z700-41 Z700-46 Z400-56 Z700-30 FLAG from MUX CTL to MUX Bit 64(G) Bit 16(E) Bit 32(F) +5 Volts Bit 8(D) Bit 1(A) Bit 2(B) Bit 4(C) GND NC NC NC

CONTROL CABLE

RF Unit

 874A-H55
 P102

 4
 1

 4
 3

 1
 5

 1
 7

 E+

•

TEMPERATURE/DEW POINT ANALOG CABLE

RF UNIT ANALOG CABLE

199

•

MULTIPLEXER AUXILIARY INPUT CABLE .(CHANNEL # 11)

ACKNOWLEDGMENTS

This measurement system was developed through the combined efforts of a large number of people. This author is indebted especially to William C. Daywitt, Lanny D. Driver, and David F. Wait for the development of the theory and extensive software; to Gerome R. Reeve for the initial equipment design; and to Thomas H. Bremer and Douglas P. Kremer for their efforts in the packaging design and assembly.

REFERENCES

- [1] Larsen, N. T., "A New Self-Balancing D-C Substitution RF Power Meter," IEEE Transactions on Instrumentation and Measurement, Vol. IM-25, No. 4, pp. 343-347, Dec. 1976.
- [2] Wait, D. F., "ETMS Operations Manual," NBSIR 78-879, Dec. 1977.
- [3] Wait, D. F., W. C. Daywitt, M. Kanda, and C. K. S. Miller, "A Study of the Measurement of G/T Using Cassiopeia A," NBSIR 74-382, June 1974.
- [4] Dent, W. A., H. D. Aller, E. T. Olsen, "The Evolution of the Radio Spectrum of Cassiopeia A," The Astrophysical Journal, 188, PPL11-13, Feb. 1974.
- [5] Daywitt, W. C., "Error Equations Used in the NBS Precision G/T Measurement System,," NBSIR 76-842, Sept. 1976.
- [6] Daywitt, W. C., "Error Equations Used in the NBS Earth Terminal Measurement System," NBSIR 78-869, Dec. 1977.
- [7] Kanda, M., "An Improved Solid-State Noise Source," IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-29, No. 8, pp. 990-995, Dec. 1976.
- [8] Larsen, N. T., "NBS Type IV RF Power Meter Operation and Maintenance," NBSIR 77-866, Oct. 1977.
- [9] Smith, J. I., Modern Operational Circuit Design, pp. 155-160, Wiley Inter-Science, New York (1971).
- [10] The Fahrenheit temperature scale is used instead of the Celcius scale because it is easier to implement a temperature scale which is non-negative over the measurement range.

APPENDIX A: SPARE PARTS AND SUPPLIES

3 Boxes Paper 1 Box Prog. Cassettes 1 Box Blank Cassettes 43-34 1 Logic Probe 1-15V Power Supply 1-5V Power Supply 1-12V Power Supply 1-20 Power Supply 1-Type IV Power Meter 1-Temp/DP Enclosure/W Probes 1-11202A Card 1-11203A Card 1-Aertech Amplifier 1-1C Test Clip 1-Dew-point Bobbin 1-Coax Relay 1-Aux Mux Adapter 1-HP 478A-H55 1-PC ext. Card. 2-Mux Relays 2-LED 1-SN 74159N 1-MC 201 Noise Diode 2-0P-05 Amp. 1-7824 Voltage Regulator 1-15 meter (50 ft.) Probe Ext. Cable Red 1-15 meter (50 ft.) Probe Ext. Cable Blue 1-30 meter (100 ft.) Probe Ext. Cable 60 meter (200 ft.) Nylon Cord 1-Fan 1-X1 PC Card 1-X2 PC Card 1-X3 PC Card 1-Y100 PC Card 1-Y200 PC Card 1-Z400 PC Card 1-Z500 PC Card 1-Z700 PC Card

EE

18

เนอ

r-

ive

APPENDIX B

PARTS LIST MANUFACTURER'S CODE TABLE

3M

3M Company, Electronics Products Division 3M Center St. Paul, Minnesota 55101

AB

Allen-Bradley Company 1201 S. Second Street Milwaukee, Wisconsin 53204

AERT

Aertech Industries 825 Stewart Drive Sunnyvale, California 94086

ALCO

Alcoswitch Division of Alco Electronic Products, Inc. P.O. Box 1348 Lawrence, Massachusetts 01842

ALPH

ALPHA Wire Corporation 711 Lidgerwood Avenue Elizabeth, New Jersey 07207

AMER

American Microwave Connector Division Omni Spectra, Inc. Waltham, Massachusetts 02154

AMPH

Amphenol Connector Division Bunker-Ramo Corporation Broadview, Illinois 60153

AVNT

Avantek Incorporated 3175 Bowers Avenue Santa Clara, California 95051

BB

Burr-Brown Research Corporation 6730 South Tucson Blvd. Tucson, Arizona 85734

BELD

Beldon Corporation, Electronic Division P.O. Box 1331 Richmond, Indiana 47374
BRNS

Bourns, Incorporated, Trimpot Division 1200 Columbia Avenue Riverside, California 92507

BUD

Bud Radio Incorporated 4605 East 355th Street Willoushby, Ohio 44094

CAMB

Cambridge Thermionic Corporation 445 Concord Avenue Cambridge, Massachusetts 02138

CD

Cornell-Dubilier Electronics Division Federal Pacific Electric Company Newark, New Jersey 07101

CHGM

Chicago Miniature Lamp Company 4433 North Ravenswood Avenue Chicago, Illinois 60640

CIRQ

Ciratel Incorporated 10504 Wheatley Street Kensington, Maryland 20795

CNCH

CINCH/TRW Electronic Components Div. 1501 Morse Avenue Elk Grove Village, Illinois 60007

CORG

Corning Glass Works Electronic Products Division Corning, New York 14830

CORM

Corcom, Incorporated 2635 North Kildare Avenue Chicago, Illinois 60639

CORN

Corning Glass Works Electronic Products Division Corning, New York 14830

COTO

Coto-Coil, Incorporated 65 Pavilion Avenue Providence, Rhode Island 02905

CROM

Corcom, Incorporated 2635 North Kildare Avenue Chicago, Illinois 60639

CY

Codi Semiconductor Corporation Pollitt Drive Fair Lawn, New Jersey 07410

DATL

Datel Systems, Incorporated 1020 Turnpike Street Canton, Massachusetts 02021

DEST

Destek Industries P.O. Box 24163 Los Angeles, California 90024

DIAL

Dialight Corporation Division of North American Phillips Corporation Brooklyn, New York 11237

DLVN

Devalon Electronics, Inc. 14605 North 73rd Street Scottsdale, Arizona 85260

DUNC

Duncan Electric Company, Incorporated 2865 Fairview Road Lafayette, Indiana 47902

EFJ

E. F. Johnson Company 299 10th Avenue Waseca, Minnesota 56093

GARY

Garry Manufacturing, Inc. 1010 Jersey Avenue New Brunswick, New Jersey 08902

GE

General Electric Company Electronic Components Division Hudson Falls, New York 12839

GRAY

Grayhill, Incorporated 569 Hillgrove Avenue La Grange, Illinois 69525 100

Hewlett Packard Company 1501 Page Mill Road Palo Alto, California 94304

INIF

HP

Uniform Tubes, Incorporated Microdelay Division Collegeville, Pennsylvania 19426

ITSL

Intersil, Incorporated 10900 North Tantau Avenue Cupertino, California 95014

LAMB

Lambda Electronics Corporation Division of Veeco Melville, New York 11746

LCFT

Leecraft Mfg., Inc. 21-16 44th Road Long Island City, N.Y. 11101

MALL

P. R. Mallory & Company, Incorporated P.O. Box 372 Indianapolis, Indiana 46206

MERR

Merrimac Industries, Incorporated 41 Fairfield Place West Caldwell, New Jersey 07006

MID

Midwest Microwave, Incorporated 3800 Packard Road Ann Arbor, Michigan 48104

MIDW

Midwest Microwave, Incorporated 3800 Packard Road Ann Arbor, Michigan 48104

MODT

Modutec, Incorporated 18 Marshall Street Norwalk, Conneticut 06854

MONO

Precision Monolithics, Incorporated 1500 Space Drive Santa Clara, California 95050

MOT

Motorala Semiconductor Products, Incorporated 2002 West 10th Place Tempe, Arizona 85281

NATL

National Semiconductor Corporation 2900 Semiconductor Drive Santa Clara, California 95051

NBS

National Bureau of Standards Division 723.05 325 South Broadway Boulder, Colorado 80303

NEPT

Newport Laboratories, Incorporated 630 East Young Street Santa Clara, California 92705

NLS

Non-Linear Systems, Incorporated 533 Stevens Avenue Solana Beach, California 92075

OSM

Omni Spectra, Incorporated 21 Continental Blvd. Merrimack, New Hampshire 03054

PANM

Pamotor, Incorporated 770 Airport Blvd. Burlingame, California 94010

POMA

Pomona Electronics, Incorporated P.O. Box 2767 Pomona, California 91766

RCA

Radio Corporation of America Front & Cooper Camden, New Jersey 08102

SAE

Stanford Applied Engineering, Incorporated 340 Martain Avenue Santa Clara, California 95050

SAMT

Samtec, Incorporated 2652 Charlestown Road New Albany, Indiana 47150

SCBE

Scanbe Canosa Industries 3445 Fletcher Avenue El Monte, California 91731

SEAC

Seacor, Incorporated 598 Broadway Norwood, New Jersey 07648

SEMI

Semiconductor Circuits, Incorporated 306 River Street Haverhill, Massachusetts 01830

SPRG

Sprague Electric Company 481 Marshall Street North Adams, Massachusetts 01247

SWCT

Switchcraft, Incorporated 5555 North Elston Chicago, Illinois 82389

TELC

Telonic Altair, Incorporated P.O. Box 277 Laguna Beach, California 92652

TELD

Teledyne Microwave, Incorporated 1290 Terra Bella Avenue Mountain View, California 94040

ΤI

Texas Instruments, Incorporated P.O. Box 5012 Dallas, Texas 75222

TROM

Trompter Electronics, Incorporated 8936 Comanche Chatsworth, California 91311

ULTX

Ultronix, Incorporated P.O. Box 1090 Grand Junction, Colorado 81501

UNIF

Uniform Tubes Microdelay Division Collegeville, Pennsylvania 19426 Uniform Tubes Microdelay Division Collegeville, Pennsylvania 19426

VIKG

UT

Viking Industries, Incorporated 9324 Topanga Cyn Blvd. Chatsworth, California 91311

WAKE

Wakefield Engineering, Incorporated Teal & Audobon Road Wakefield, Massachusetts 01880

WEIN

Weinschel Engineering Company P.O. Box 577 Gaithersburg, Maryland 20760

YSI

Yellow Springs Instrument Company P.O. Box 279 Yellow Springs, Ohio 45387

APPENDIX C

CONTROL CODES

Program Switch	es and WBYTE
24	DVM AUTO RANGE
27	DVM 0.1 RANGE
28	DVM 1.0 RANGE
29	DVM 10.0 RANGE
30	DVM 100.0 RANGE
31	DVM 1000.0 RANGE
32 33 34 ₃ 35 48 47	DVM DC VOLTS FILTER OUT DVM DC VOLTS FILTER IN DVM RATIO-NOT USED IN ETMS PROG ATTNR 15 dB PROG ATTNR 14 dB
62	PROG ATTNR 1 dB
63	PROG ATTNR 0 dB
64	RF OFF/6 <u>dB</u> STEP IN
65	RF ON/6 <u>dB</u> STEP OUT
66	RF OFF
67	RF IN
68	6 <u>dB</u> IN
69	6 <u>dB</u> OUT
80	NOISE ADD ON
81	NOISE ADD OFF
82	NOISE ADD #1 ON
83	NOISE ADD #1 OFF
84	NOISE ADD #2 ON
85	NOISE ADD #2 OFF
100	INPUT CHANNEL #11 DVM
101	INPUT CHANNEL #10 DVM
102	INPUT CHANNEL # 9 DVM
103	INPUT CHANNEL # 8 DVM
104	INPUT CHANNEL # 7 DVM
105	INPUT CHANNEL # 6 DVM
106	INPUT CHANNEL # 5 DVM
107	INPUT CHANNEL # 4 DVM
108	INPUT CHANNEL # 3 DVM
109	INPUT CHANNEL # 2 DVM
110	INPUT CHANNEL # 1 DVM
111	INPUT CHANNEL # Ø DVM

211

BIBLIOGRAPHIC DATA SHEET	NBSIR 78-895	2. Gov't Accession No.	3. Recipient's Accession No.
4. TITLE AND SUBTITLE		5. Publication Date September 1978	
artii ieiminai iious			6. Performing Organization Code 723.05
7.AUTHOR(S) John P. Wakefield			8. Performing Organ. Report No.
9 PERFORMING ORGANIZATION NAME AND ADDRESS NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20234		10. Project/Task/Work Unit No. 723.5481 11. Contract/Grant No. ACC-414-74, Amendment CC-025-76, NBS #276548	
12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP) United States Army Communications Command Fort Huachuca, Arizona 85613		13. Type of Report & Period Covered	
			14. Sponsoring Agency Code
5. SUPPLEMENTARY NOTES			

bibliography or literature survey, mention it here.)

This manual describes the equipment and maintenance procedures to support the earth terminal measurements system (ETMS) developed by the National Bureau of Standards for making measurements of earth terminal and satellite parameters such as figure of merit (G/T), antenna gain relative to a reproducible reference level, ratio of carrier power to the operating noise temperature (C/kT), and satellite effective isotropic radiated power (EIRP). System equipment specifications, site set-up instructions, equipment theory of operation, troubleshooting and maintenance are included. This manual does not include measurement theory nor measurement operating procedures that are described in the Earth Terminal Measurement System-Operation Manual.

7. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolons)

Earth terminal measurement system; effective isotropic radiated power; figure of merit; noise temperature; satellite communication.

8. AVAILABILITY Durlimited	19. SECURITY CLASS (THIS REPORT)	21. NO. OF PAGES
For Official Distribution. Do Not Release to NTIS	UNCL ASSIFIED	223
Order From Sup. of Doc., U.S. Government Printing Office Washington, D.C. 20402, <u>SD Cat. No. C13</u>	20. SECURITY CLASS (THIS PAGE)	22. Price \$9.25
X Order From National Technical Information Service (NTIS) Springfield, Virginia 22151	UNCLASSIFIED	

