EaRTH TERMINAL MEASUREMENT SYSTEM MAINTENANCE MANUAL

John P. Wakefield

Electromagnetic Fields Division National Engineering Laboratory National Bureau of Standards Boulder, Colorado 80303

September 1978

Equipment developed for
Commanding General
U.S. Army Communications Command Fort Huachuca, Arizona 85613

NBSIR 78-895

EARTH TERMINAL MEASUREMENT SYSTEM malitenance manual

John P. Wakefield

Electromagnetic Fields Division
National Engineering Laboratory
National Bureau of Standards
Boulder, Colorado 80303

Equipment developed for
Commanding General
U.S. Army Communications Command

Fort Huachuca, Arizona 85613

September 1978

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

Sidney Harman, Under Secretary
Jordan J. Baruch, Assistant Secretary for Science and Technology
NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

PREFACE

This manual is organized into ten sections. The first four sections present information related to the overall system. Each of the other sections, 5 through 9, is an instrument instruction manual for a particular unit. Section 10 contains information on the inter-connecting cables.

NOTICE

"Certain commercial equipment, instruments, or matertials are identified in this paper in order to adequately specify the experimental procedure. In no case does such identification imply recommendation or endorsement by the National Bureau of Standards, nor does it imply that the material or equipment identified is necessarily the best available for the purpose."

TABLE OF CONTENTS

Page
ABSTRACT. 1

1. GENERAL INFORMATION 3
1.1 Introduction 3
1.2 Software 3
1.3 Hardware 5
1.4 Specifications 5
1.4.1 System Specifications. 5
1.4.2 Individual Unit Specifications 8
2. INSTALLATION AND OPERATION. 9
2.1 Introduction 9
2.2 Unpacking and Inspection 9
2.3 Initial Installation 11
2.3.1 ETMS Control/RF Checkout 12
2.3.1.1 Manual Control 12
2.3.1.2 Calculator Control 14
2.3.1.3 RF Circuitry Checkout. 15
2.3.1.4 Power Detector Checkout. 16
2.3.2 Temperature/Dew-Point Monitor Checkout 17
2.3.3 Equipment Performance Checkout 18
2.4 New Site Equipment Setup 19
2.4.1 Introduction 19
2.4.2 Unpacking and Hookup 19
2.4.2.1 Unpacking. 19
2.4.2.2 Power-Up 20
2.4.2.3 Temperature/Dew-Point Probes 20
2.4.3 Installation of Noise-Add Standard 21
2.4.3.1 Positioning the Noise-Add Standard 21
2.4.3.2 Control Room Cables. 22
2.4.4 ETMS-IF Patch Panel Connections. 23
2.4.5 Equipment Checkout on Station. 23
3. THEORY OF OPERATION 24
3.1 Introduction 24
3.1.1 Measurement Description 24
3.2 Description of System Equipment 25
3.3 General System Theory. 26
3.3.1 Control/RF Unit 26
3.3.2 Power Detector Module 27
3.3.3 Digital Voltmeter. 27
3.3.4 Analog Multiplexer 28
3.3.5 Temperature and Dew-Point Meters 29
3.3.6 X-Band Dual Noise-Add Standard 29
3.4 System Control Circuits. 30
3.4.1 Control Signals. 30
3.4.2 Offset Voltage Control 32
3.4.3 Noise-Add Control. 32
3.5 System Flag Circuits 33
3.5.1 ETMS Control/RF Console Flags 33
3.5.2 DVM Data-Ready Flag. 33
3.5.3 Clock Data-Ready Flag. 34
3.6 System Data Circuits 34
3.6.1 Control Data Paths 34
3.6.2 Digital Voltmeter Data 34
3.6.3 Date and Time Data Paths 35
3.7 Input-Output Interfaces. 35
4. SYSTEM TROUBLESHOOTING 37
4.1 Systematic Approach. 37
4.1.1 Preliminary Evaluation 37
5. ETMS CONTROL/RF: INSTRUCTION MANUAL. 41
5.1 Introduction 41
5.2 Specifications 41
5.3 RF Circuits 43
5.3.1 Input Circuits 43
5.3.2 First Amplifier. 45
5.3.3 Attenuator Module. 45
5.3.4 Second Amplifier 45
5.3.5 Monitor and Output Circuits. 45
5.3.6 Star Simulator Circuits. 46
5.4 Control and Flag Circuits. 46
5.4.1 Control. 46
5.4.2 Ready Flags 47
5.5 Power Distribution 47
5.6 Digital Circuit Description. 47
5.6.1 Z 700 Control Card 47
5.6.2 Z 400 Switch Driver Card 50
5.6.3 Z 500 RF Level Processor Board 53
5.6.3.1 Adjustments of RF Level Processor. 53
5.7 Simulated Star Noise Sources 55
5.8 Troubleshooting the ETMS Control/RF Unit 55
5.8.1 RF Signal Diagnostics. 56
5.8.2 Control Circuitry Diagnostics. 56
5.8.3 Ready-Flag Diagnostics 56
5.9 Parts List--Control/RF Unit. 57
5.10 Wiring List. 73
5.11 ETMS Drawings 79
6. MULTIPLEXER/DIGITAL VOLTMETER CONTROLLER 94
6.1 Introduction 94
6.2 Specifications 94
6.3 Y 100 MUX/DVM Control Card 94
6.4 Y 200 Offset Reference Voltage Card. 96
6.4.1 Digital Circuits 96
6.4.2 Reference Voltage Circuits 98
6.4.3 Adjustment Y 200 Offset Voltage Reference 98
6.5 Y 300 Input Channel Multiplexer. 100
6.5.1 Control Circuits 100
6.5.2 Analog Multiplexer 100
6.5.3 Multinlexer Input Channel Assignments. 100
6.6 Troubleshooting 101
6.7 Parts List-MUX/DVM Controller. 102
6.8 Wiring List. 112
6.9 Drawings 119
7. POWER DETECTOR INSTRUMENT MANUAL 131
7.1 Description. 131
7.2 Specifications 131
7.3 RF Power Detector Mount 131
7.4 NBS Type IV Power Meter. 131
7.5 Parts List 133
7.6 Wiring List 134
8. CLOCK AND TEMPERATURE/DEW-POINT INSTRUMENT MANUAL 135
8.1 Introduction 135
8.2 Specifications 135
8.3 Digital Clock. 135
8.4 X3 Clock Inhibit/Flag Card 137
8.4.1 Troubleshooting. 137
8.5 Xl Temperature/Dew-Point Sensors 137
8.5.1 Alignment of Temperature Sensor. 138
8.5.2 Alignment Dew-Point Sensor 139
8.5.3 Troubleshooting. 139
8.6 X-2 Temperature/Dew-Point Power Supply 140
8.7 AC Power Distribution. 140
8.8 Parts List-Clock/Temperature/Dew-Point 141
8.9 Clock Wiring List 150
8.10 Drawings 157
9. NOISE-ADD STANDARD \& POWER SUPPLY INSTRUCTION MANUAL 170
9.1. Introduction 170
9.2 Specifications 170
9.3 Noise-Add Module 170
9.4 Noise-Add Power Supply 172
9.5 Troubleshooting. 172
9.6 Parts List - Noise-Add Unit \& Power Supply 173
9.7 Drawings 181
10. INTERCONNECTION CABLES 191
10.1 Cable List 191
10.2 Cable Wiring List. 193
ACKNOWLEDGMENTS. 201
REFERENCES 202
APPENDIX A: SPARE PARTS AND SUPPLIES 203
APPENDIX B: PARTS LIST MANUFACTURER'S CODE TABLE. 204
APPENDIX C: CONTROL CODES 211

LIST OF FIGURES

Page
Figure 1. ETMS System Equipment 2Figure 2Figure 3.Figure 4.Block Diagram of Earth Terminal and ETMS4System Control31
Figure 5. Flag Handshake Timing 39Interface Signal Assignments36
Figure 6. ETMS Control/RF Unit 42
Figure 7. ETMS Control/RF Unit RF Section 44
Figure 8. $Z 400$ Schematic Circuits 79
Figure 9. 2400 PC Assembly Drawing 81
Figure 10. 2500 Schematic Circuits 83
Figure 11. 2500 PC Assembly Drawing 85
Figure 12. 2700 Schematic Circuits 87
Figure 13. 2700 PC Assembly Drawing 89
Figure 14. 2600 Block Diagram 90
Figure 15. Front Panel Wiring 91
Figure 16. Rear Panel Wiring 92
Figure 17. Control/RF Unit Primary Power Distribution 93
Figure 18. Multiplexer/DVM Unit 95
Figure 19. Data Flow-DVM 97
Figure 20. Y100 Schematic Circuits 119
Figure 21. Y100 PC Assembly Drawings 121
Figure 22. Y200 Schematic Circuits 123
Figure 23. Y200 PC Assembly Drawing 125
Figure 24. Y300 Schematic Circuits 127
Figure 25. Y300 PC Assembly Drawing 129
Figure 26. Power Detector Unit 132
Figure 27. Clock and Temperature/Dew-Point Unit 136
Figure 28. X3 Schematic Circuits 157
Figure 29. X3 DC Assembly Drawing 159
Figure 30. Xl Schematic Circuits 161
Figure 31.Figure 32.Figure 33.Figure 34.Figure 35.Figure 36.Figure 37.Figure 38.
Xl PC Assembly Drawing 163
X2 Schematic Circuits 165
X2 PC Assembly Drawing 167
Clock/Temperature AC Power Distribution 169
Noise-Add Standard Unit 171
Noise-Add Schematic 181
V800 Noise-Add Constant Current Schematic 183
V800 PC Assembly Drawing 185
Figure 39. V900 Power Supply Schematic 187
Figure 40. V900 PC Assembly Drawing 189
Figure 41.iv

EARTH TERMINAL MEASUREMENT SYSTEM
 MAINTENANCE MANUAL

By John P. Wakefield

This manual describes the equipment and maintenance procedures to support the earth terminal measurements system (ETMS) developed by the National Bureau of Standards for making measurements of earth terminal and satellite parameters such as figure of merit (G/T), antenna gain relative to a reproducible reference level, ratio of carrier power to the operating noise temperature (C / kT), and satellite effective isotropic radiated power (EIRP). System equipment specifications, site set-up instructions, equipment theory of operation, troubleshooting and maintenance are included. This manual does not include measurement theory nor measurement operating procedures that are described in the Earth Terminal Measurement System Operation Manua1.

Key Words: Earth terminal measurement system; effective isotropic radiated power; figure of merit; noise temperature; satellite communication.

1. GENERAL INFORMATION

1.1 Introduction

The Earth Terminal Measurement System (ETMS) is a portable automated measurement system (figure 1) developed around the NBS Type IV self-balancing power meter [1]. The system measures pertinent power ratios used in determining various performance parameters of satellite receiving earth terminals.

The ETMS operates through the IF patch panel of the earth terminal. The Power Measurement and Control Console measures the power received from the patch panel and operates the remote rf solid-state noise source attached through a cross-guide coupler to the microwave front-end of the earth terminal as shown in figure 2. All measurements are made in pairs, one measurement with the noise source turned off and one measurement with the noise source turned on, and then the two measurements are normalized by the difference between the two powers to minimize the effects of gain variations of the earth terminal.

The measurement of Gain-Over-Noise Temperature (G/T) of an earth terminal is accomplished by pointing the antenna to a radio-star (essentially a point source) of known flux density, measuring the received power, and then pointing the antenna to "cold sky" and again measuring the power. Normally, the larger portion of the noise power "received" during the cold-sky measurement is generated by the "front-end" of the earth terminal. The G/T of the earth terminal is calculated knowing the cold-sky contribution to the measurement and the expected flux density of the star $[2,3,4,5,6,7]$.

1.2 Software

The software for the ETMS system consists of seven cassette tapes, four containing programs for specific tasks: equipment checkout, site-data preparation, data acquisition, and data rework. There are three support tapes, one of tabulated program variables, one of array variables, and one of special functions. The ETMS Operator's Instruction Manual [2], (not part of this manual), contains system operating instructions, including a sample input and printout for each measurement task.

The ETMS unit consists of eight major components (figure 2): (1) The noise-add standard source with its power supply, which is attached to the crossguide coupler at the antenna low-noise amplifier input; (2) the ETMS control/rf console which plugs into the IF patch panel (this unit also requires two coaxial cables which go up to the antenna rf-plate to remotely control the noise-add source); (3) the power-detector unit which is a thermally-isolated commercial thermistor mount and an NBS type IV power-meter; (4) the multi-channel input digital-voltmeter which measures and digitizes the various measurement parameters and monitor voltages in the system; (5) the clock which provides time information to the calculator for predicting star locations; (6) temperature/dew point monitor for calculating water absorption corrections to the star flux, (the temperature and dew point sensors are attached to 30 -meter ($100-\mathrm{ft}$) cables so that they may be located outside to monitor outside ambient conditions); (7) the calculator with its printer which provides the operator control interface, control of the measurement process, and calculations of the measurement data; and (8) a cassette memory for storing measurement data.

1.4 Specifications

Introduction:

The various units of the ETMS systems will operate over different frequency ranges and power levels, so specifications are given for the overall system. The specifications for each individual unit are given in the section pertaining to that particular unit.

1.4.1 System Specifications

General system specification size: The ETMS is transported in six (6) foamrubber lined fiber glass transit cases each weighing between 25 and 35 Kg (55 and 75 pounds). Total shipping weight of system is approximately 210 Kg (460 pounds). These transit cases provide an easy shipping method by air freight and protect the units against damage.

Power requirements: The ETMS system will operate on either 50 or 60 Hz power line frequency and can be switched to operate from 115 VAC or 230 VAC . The system will operate on a reduced input voltage down to approximately 200 V at either 50 or 60 Hz . System power consumption at 60 Hz is 500 W .

Control/RF Unit: The control/rf unit houses the control and switching circuits to operate the system from calculator commands; the rf circuitry, input attenuator, band-pass filters, programmed attenuators and precision attenuators; rf amplifiers; rf level monitor and alarm; and an internal simulation noise source for verifying system performance.

RF input frequency: The ETMS includes four filters for $30 \mathrm{MHz}, 2.5 \mathrm{MHz} \mathrm{B} . \mathrm{W}$. ; $70 \mathrm{MHz}, 5.5 \mathrm{MHz}$ B.W., 2.5 MHz B.W., and 1.3 MHz B.W.; and also permits wideband operation. Wideband operation is useful when an external filter is used for establishing system bandwidth or when measuring a known cw signal.

Actual cw and noise bandwidths are:

Selected Bandwidth	cw Bandwidth	Noise Bandwidth
Wide Band	$10-200 \mathrm{~Hz}$	Undefined
$30 \mathrm{MHz} / 2.5$	2.5 MHz	2.8 MHz
$70 \mathrm{MHz} / 5.5$	5.6 MHz	5.4 MHz
$70 \mathrm{MHz} / 2.5$	2.6 MHz	2.65 MHz
$70 \mathrm{MHz} / 1.0$	1.4 MHz	1.26 MHz

Input power level: The input rf power is from 0.2 microwatts to 10 milliwatts. The ETMS input is a $0-70 \mathrm{~dB}$ attenuator followed by approximately 30 dB of amplification. The optimum power detector level is between 200 and 1000 microwatts for most accurate measurements.

Input impedance: The impedance of the rf input is 50 ohm.

Output impedance: The rf output port impedance is 50 ohms.

RF level meter: The centerscale zero-reading on the rf level meter represents approximately 500 microwatts (-3 dBm) at the detector when operating at 70 MHz . The meter scale is approximately 1 dB per division.

Simulated noise source: The ETMS control/rf unit includes a simulated noise source for testing ETMS system performance without connecting to an earth terminal. The frequency spectrum is approximately 10 to 100 MHz uncalibrated output level. This simulation source incorporates three noise generators, two which simulate the noise-add standard and the third which is manually adjustable over an eleven $d B$ range.

Noise-1dd Standard: The dual diode noise-add standard is a solid-state microwave dual noise source with its companion power supply. This unit is attached to the antenna port, through a directional coupler, to inject a known noise signal into the earth terminal receiver under ETMS calculator control.

Dual diode noise-add standard: The 7.0 to 7.4 GHz frequency noise-diode output level is approximately $300,000 \mathrm{~K}$ with both diodes on. Diode No. 1 is approximately 3 db less than diode No. 2.

Noise-add current supply: This external module contains a long-term stability voltage reference which is used to determine the constant-current to each noise-add diode.

Input power: $115 / 230 \mathrm{~V} \mathrm{5C/60} \mathrm{~Hz}$.
Input control: Two coaxial lines from ETMS control console.

Power Detector Unit: The rf power detector unit is a thermister type rf detector which is in a thermally isolated enclosure, and an NBS type IV power meter. The output of the power meter is a dc voltage which can be measured with a digital-voltmeter.

DVM and Analog Multiplexer Unit: This unit provides eleven (11) input channels to the digital voltmeter for digitizing the various dc voltages involved in the equipment verification and measurement operation of the ETMS. One channel is a spare which can be used as an auxiliary input to the DVM. This module also houses the voltage-offset reference generator used to enhance the rf power measurement.

Time, Temperature and Dew Point Unit: This unit houses the system clock and temperature monitor circuits.

Time: The clock is a commercial module with a crystal time base. The unit has a power-outage, clock-failure signal that is used to initiate a program warning message. (See manufacturer's instruction manual.)

Date: Month and date information to calculator are input on the thumbwheel switches on the front panel.

Temperature monitor: The temperature monitor is a thermister sensor type meter, with a range of 0 to $100^{\circ} \mathrm{F}$ [10]. Extended ranging is available on the DVM reading only.

Dew point monitor: The dew point monitor is a heated lithuim-cloride element containing a thermister sensor type meter, range 12° to $96^{\circ} \mathrm{F}$ [10]. (See manufacturer's instruction manual.)

100-ft extension cables are supplied to remotely locate the temperature and dew point sensors to monitor outside conditions.

Calculator Control Unit: The calculator provides the automatic control and sequencing to operate the ETMS system. The functions are: keyboard input, thermal printer output, cassette tape program, and data storage. The software is in BASIC programming language. Four input/output channels are provided for instrument interfaces (see manufacturer's instruction manual).

1.4.2 Individual Unit Specifications

Refer to each respective equipment section of this manual for particular specifications for each unit.

2.1 Introduction

Installation procedures are usually performed on arrival at each site. In short, this amounts to first unpacking the system units; calculator, printer, external cassette unit, control/rf unit, DVM, power detector and clock, then interconnecting the various cables between units, verifying that the power line supply voltage selectors and fuses match the available power, turning on the system, and running the equipment check-out program.

2.2 Unpacking and Inspection

Figure 1 is a photograph of the units of the ETMS system. The system is shipped in six (6) transit cases labeled as follows:

Box No. 1 - Calculator
Box No. 2 - Printer
Box No. 3 - EMTS control/rf unit
Box No. 4 - DVM
Box No. 5 - Clock \& power detector
Box No. 6 - Supplies \& spare parts

Itemized lists of the contents of each case provide a guide for repacking equipment for transit.

Packing 1ist:

```
Box No. 1 - Calculator
    Calculator with special keys template attached
    ac power cord
    Tall dust cover for calculator
Box No. 2 - Printer
    Thermal printer
    Printer I/O cable (interface cable)
    ac inter-connect power cord
```

Box No. 3 - ETMS control/rf unit
control/rf unit
ac power cord
5-short BNC cables
2-type N cables
1-IF patch panel to type " N " adapter cable
2-6 meter (20 ft) BNC cables
$2-90 \mathrm{~cm}$ (3 ft) BNC cables
Box No. 4 - DVM
DVM with input multiplexer
2-ac power cords
1-I/O cable (rf unit)
1-I/O cable (clock)
1-I/O cable (DVM)
1-I/O cable (cassette unit)
1-control cable (rf to DVM)
3-analog cables
a) $r f /$ control cable
b) power detector cable
c) temp/dew point cable

1-DVM top cover (under foam padding)
Box No. 5-Clock/Power meter
Clock \& temperature-dew point meter
Power detector
External cassette memory
Dual diode noise-add standard
1-SMA/Type "N" simi-rigid line
Noise-add power supply
Hydrometer (temp/humidity)
4-ac power cords
2-SMA noise-add supply cables
Box No. 6 - Supplies \& Spare Parts
Temperature/dew point probe enclosure
3 cartons printer paper (6 rolls)
2 cartons cassettes (20 cassettes, program and data tapes)

```
Spare parts -
    l-NBS type IV power meter
    1-rf power chermister mount
    l-misc components and printed circuit boards
```

ETMS Accessories:

The manufacturer's accessory packages and instruction manuals for the various equipment are shipped under separate cover to facilitate item check-out upon initial delivery. Some of them will be incorporated into the system transit cases while others probably will not be needed "on the road."

2.3 Initial Installation

After unpacking the system and visually checking for damage, check the position of the $115 / 230 \mathrm{~V}$ selector card in the ac power receptacle for each instrument to make sure it is set to the proper power line voltage. The selected voltage setting is visible beneath the fuse cover.

Connect the calculator, printer, and external cassette unit and proceed through the manufacturer's performance check-outs as directed in the individual manufacturer's instruction manuals. The calculator accessories include a calculator user's training tape, if needed, in addition to the performance test tape.

Clock Check-out:

When satisfied with the calculator's and peripheral's operation, connect the clock I / O cable and set the time and date. Type the following commands on the calculator keyboard:

Type "ENTER (3,*) M, T"
Press "EXECUTE" key
Type "DISP M, T"
Press "EXECUTE" key

The calculator display should show two numbers; the left one should be the left (most significant) digit of the month and the right-hand number should be the least digit of the month, the day of the month (2 digits) followed by the time in hours (00 to 23), minutes, and seconds, all combined together as one long number string. The decimal point should be between the minutes and seconds, e.g., December 14, 12:36:04 = 1 2141236.04.

Voltmeter Checkout:

Connect the digital voltmeter I/O cable. Turn on the digital voltmeter and the input multiplexer power switch. Perform the instrument checkout listed in the manufacturer's instruction manual. Rotate the DVM rate control knob fully counter-clockwise to the ext. position. Press the "output data" button and release the "program control" button. Turn the mode selector to dc volts and the range selector to auto range.

Type the following commands into the calculator:

Type "ENTER (2,*) M,V"
Press "EXECUTE" key
Type "DISP M, V"
Preṣs "EXECUTE" key

The calculator should display a 9 (dc mode) and the right-hand number should coincide with the voltmeter display reading.

2.3.1 ETMS Control/RF Checkout

2.3.1.1 Manual Control

Connect the I / O cable from the calculator to the control/rf console, and the interconnecting cable between control/rf console and DVM multiplexer, and turn on ac power to all units.

Set each of the control codes in binary ($1,2,4,8,16,32$, and 64 code) into the programming switches on the front of the control/rf unit, press the "load" button and check for the conditions listed in the table below.

The complete list of control codes used by the calculator is given in Appendix B.

Control Code	Switches Up	Results On Indicator Lights
48	$32+16$	15 dB Programmed Attenuation
63	$32+16+8+4+2+1$	0 dB Programmed Attenuation
62	$32+16+8+4+2$	1 dB Programmed Attenuation
61	$32+16+8+4+1$	2 dB Programmed Attenuation
59	$32+16+8+2+1$	4 dB Programmed Attenuation
55	$32+16+4+2+1$	8 dB Programmed Attenuation
		-
66	$64+2$	Standard Attenuator In
67	$64+2+1$	Standard Attenuator Out
68	$64+4$	rf Off
69	$64+4+1$	rf On
82	$64+16+2$	Noise ADD 非1 On
83	$64+16+2+1$	Noise ADD \#1 Off
84	$64+16+4$	Noise ADD \#2 On
85	$64+16+4+1$	Noise ADD \#2 Off

The following codes control digital voltmeter functions. Press in the "program" button on the DVM and execute the control codes via the programming switches on the ETMS control/rf unit.

Control Code

Input Channels

$$
111
$$

$$
110
$$

$$
109
$$

$$
107
$$

$$
103
$$

$$
100
$$

DVM MODES

33	$32+1$	dc Volts/w Filter In
32	32	dc Volts/w Filter Out

DVM Ranges

27	$16+8+2+1$	0.1	Volt Range
28	$16+8+4$	1	Volt Range
29	$16+8+4+1$	10	Volt Range
30	$16+8+4+2$	100 Volt Range	
31	$16+8+4+2+1$	1000 Volt Range	
24	$16+8$	Auto Range	

2.3.1.2 Calculator Control

After checking the control functions listed in the tables above, output the same commands from the calculator by performing the following sequence:

First, set the output format of the calculator by entering one line of program into the calculator by typing "10 FORMAT B " on the keyboard. Then press the "END OF LINE" key.

Now, each of the control codes in the tables above may be executed from the calculator by typing "WRITE $(4,10)$ WBYTEXX;" Where XX is the control code
listed in the table. Then press the EXECUTE key. Note: The semicolon on the end of the direct command above must be included or the calculator waits for an end-of-message flag signal from the instrument and none is gencrated by this equipment, only a "command completed" flag is returned.

When the EXECUTE key is pressed, the instrument should respond with the results listed in the table. Check each command in the table by repeating the "WRITE $(4,10)$ WBYTEXX;" and EXECUTE for each of the command codes.

The "RECALL" key can be used to avoid retyping the WRITE statement in repeatedly. Refer to the calculator instruction manual as to the use of the RECALL and editing keys.

This completes the preliminary checkout of the control circuitry.

2.3.1.3 RF Circuitry Checkout

Set up the following conditions on the control panel:
a. Manual attenuator (input) set to 60 dB .
b. Connect the simulated noise output coax cable to the input, if not already connected.
c. Execute the command code 65 either from the front panel program switches or through the calculator keyboard as described in the previous section. Command code number 64 switches the standard attenuator in and turns the rf to the power detector "OFF."
d. Set the programmable attenuator to "zero" dB by executing command code 63 as above.
e. Turn the simulated noise-add "OFF" by executing command code 81.
f. Set the hold-bypass switch to the bypass position.
g. Set the meter range selector to Xl .
h. Select the $70 \mathrm{MHz} / 5.3 \mathrm{MHz}$ bandwidth filter on the filter selector control.
i. Set the simulated STAR level attenuator to 3.5 dB .

Adjust the manual input attenuator to increase the input signal (noise) level until the signal level meter reads approximately -3.0 by reducing the manual input attenuator. This should be around 20 dB input attenuation.

Turn each noise-add source on and off using command codes 83 and 82 (NA\#1), respectively, or 85 and 84 ($N A \# 2$), noting that the signal level meter indicates an increase or decrease in signal. Noise-add \#l is a smaller signal than noise-add \#2.

Verify the operation of the programmable attenuator and the standard attenuator by observing the change in level on the meter when each of the following control codes are executed (either manually or through the calculator keyboard).

Control Code
62
61
59
55
63
66
67

Action

Programmable Attenuator $=1 \mathrm{~dB}$
Programmable Attenuator $=2 \mathrm{~dB}$
Programmable Attenuator $=4 \mathrm{~dB}$
Programmable Attenuator $=8 \mathrm{~dB}$
Programmable Attenuator $=0 \mathrm{~dB}$
Standard Attenuator "IN" (6 dB)
Standard Attenuator "OUT" (0 dB)

Overload trip \& warning:

Decrease the input attenuator while observing the signal increase on the level meter. The overload light should turn on and the warning buzzer sound when the meter reads approximately +8 to +10 dB .

Adjust the input attenuator to reduce the input signal; then press. the overload reset button to reset the overload monitor and silence the buzzer. Readjust the input attenuator for a mid-scale (zero) reading on the meter. Set the meter range selector to X 0.1 and adjust the meter offset knob to return the meter to approximately mid-scale.

Vary the simulated star attenuator noting the signal level change on the meter. The meter scale will be approximately 0.1 dB per small division.

Move the meter range selector to X 0.01 again adjusting the meter offset knob to midscale. Varying the simulated star attenuator should provide a signal level change of approximately 0.01 dB per small division. Return the meter range selector to the X 1 position.

2.3.1.4 Power Detector Checkout

Connect the ac power cord to the power detector unit after selecting the correct line voltage setting and fuse for the power line. Note: Make certain
the ground selector switch on the back panel of the unit is in the ungrounded position, and that the boloneter cable is connected. On the front panel, check that the inter-connect links are not connected and that the $100 \Omega /$ remote $/ 200 \Omega$ switch is in the 200Ω position (this switch is blocked in the 200Ω position on some models). Turn "ON" the ac power switch on the front panel of the power detector unit.

The meter should move up to about mid scale. Connect the analog voltage cable (J364) between the power detector and the voltmeter. Connect the type " N " coaxial cable between the control/rf unit and the power detector.

Adjust the input manual attenuator for approximately +3 reading on the $\underline{r f}$ LEVEL METER on the control/rf unit. While alternately using control codes 69 and 68 (rf "ON" and rf "OFF"), observe that the reading on the current meter on the power detector changes a definite but very small amount.

Execute control code $103(64+32+4+2+1)$ either manually or through the calculator keyboard to select DVM input channel 8 (power detector voltage). Execute control code 68 (rf OFF) last.

Set the DVM range selector to auto-range and the rate knob fully clockwise (free-run). Release the program button on the DVM. The DVM reading should be between 2.2 and 2.6 volts depending on the temperature of the power detector unit.

2.3.2 Temperature/Dew-Point Monitor Checkout

Caution:

The lithium cloride bobbin for the dew-point temperature probe is stored in a sealed test tube containing a drying agent. When in operation, the dew-point instrument heats the moisture absorbing bobbin to establish an equilibriun. When not heated, the bobbin will absorb moisture and in some instances can overheat and burn out when turned back on. For this reason the bobbin is kept dry by storing it in the sealed test tube with the drying compound. Refer to the manufacturer's instruction sheet included with the instruction manual for further information.

Unplug the dew-point probe, carefully remove the lithium-cloride bobbin from the dry test tube being careful not to touch the wicking material, and install the bobbin onto the dew-point probe. Replace the probe shield and plug the probe cable back in. After about thirty minutes the dew-point reading and DVM reading will indicate actual dew-point temperature.

Connect the temperature and dew-point probes to the chrono-met unit and the analog cable J656/J356. Within a few minutes, the temperature meter should indicate the probe temperature in degrees Fahrenheit. Executing control code 110 (DVM input channel 1) should read approximately the same temperature reading in millivolts times 10 . The dew point should indicate between 0 and $50^{\circ} \mathrm{F}$. depending on the probe temperature. Executing control code 109 (DVM input channel 2) should cause the DVM to read the indicated dew-point temperature in millivolts times 10.

2.3.3 Equipment Performance Checkout

The previous section described individual manual checks on each piece of equipment. In the system performance check, the equipment check program (cassette $\mathbb{F l}^{1}$, Equipment Check) is loaded into the calculator and the operation of all the functions and the quality of the performance of the entire system is tested. This program is the equipment check, which is performed first each time a setup is made at a new site. It can also be used as a troubleshooting aid.

Place the tape labeled Equipment Check in the cassette transport on the calculator keyboard. Rewind the tape if necessary. Turn the calculator power switch off for a few seconds and then back on. Press the LOAD key then the EXECUTE key. The calculator will load in the program from the tape. After the calculator has loaded the program (|- showing on the calculator display), press the RUN key and then the EXECUTE key. The program will begin execution and will request location of input data tape after a minute. Type 10 on the keyboard, then press the EXECUTE key; the calculator will load several data files off the cassette and begin execution of the program. Proceed through the equipment check program following the instructions described in the ETMS Operator's Manual.

On completion of these tests the ETMS system is operational in the simulated mode.

2.4 New Site Equipment Setup

2.4.1 Introduction

The ETMS equipment is normally shipped to an Earth Terminal site in the six transit cases. This section of this manual presents assembly of the system, connection to the earth terminal, and performance checkout routines assuming that the ETMS system was fully functional when it was packed for shipping. The normal procedure is to unpack and set up the equipment, execute the equipment check program recognizing that the units are cold, and then allowing the system to warm up and stabilize for at least 24 to 36 hours before attempting to make measurements.

2.4.2 Unpacking and Hookup

2.4.2.1 Unpacking

The ETMS can be set up on a small table adjacent to the IF patch panel and within sight of the antenna control console. Figure 1 shows a convenient arrangement of the ETMS equipment.

Unpack the control/rf console, DVM, power detector and clock units. Be sure that the proper power-line voltage is selected on each unit. Note that the DVM unit has ac line voltage selectors on both the input multiplexer and the DVM. Connect the ac power cords but do not turn the equipment "ON." Unpack the calculator and printer, placing them beside the equipment, and check that the printer has paper in it. Unpack the external cassette unit and check the ac line voltage settings of these three units. Connect the ac power cords to these units. The printer and cassette unit can be powered from the calculator. Leave all ac power off until the interconnecting cables are hooked up.

Connect the printer I/O cables (see figure 41), matching the jack numbers on the equipment and cables. The four I/O cables can be plugged into the calculator in any of the four locations.

Connect the control cable J352/J652 between the control/rf console and the DVM; and the three analog cables between the DVM input channels and the control/rf console, the power detector, and the chrono-met (clock) unit.

Connect the type N cable between control/rf console input and the power detector; and the short BNC cable between the simulated noise output and the signal input. Set the input manual attenuator to 70 dB attenuation. Be sure
that all the BNC connectors on the short cables on the front of the control/rf console are properly connected. An intermittent signal cable can wipe out a set of measurements.

Check that all control cable connectors are properly seated and locked.

2.4.2.2 Power-Up

Turn on all the ac power switches. Press the overload reset button on the control/rf console if the overload alarm is tripped. Set the GMT date (number of month and day) into the thumb-wheel switches on the front of the clock. Switch the run/set switch on the clock to the "set" position and set the clock to the GMT time using the seconds, minutes, and hours buttons. Restart the clock by returning the set switch to the run position. The time should be correct within one second of GMT time in order to track stars accurately.

The power-fail warning on the clock is automatically reset when the set switch is moved to set.

2.4.2.3 Temperature/Dew-Point Probes

Unpack the temperature/dew-point probe enclosure and the probe extension cables. There are three extension cables, two cables 15 meter (50 ft .), and one cable 30 meter (100 ft .) in length, all having the same pin connections. Connect the cables as needed to run from the temperature/dew-point meter to a location outside the building away from building air conditioners or heat reflecting walls. Remove the dew-point sensor bobbin from its "dry" test tube and install the bobbin on the dew-point probe in the enclosure. Replace the bobbin shield over the probe and adjust the lid on the enclosure so that the air can circulate freely unless the weather includes gusty winds.

Hang or support the enclosure as high off the ground as possible after connecting the extension cables.

Connect the respective cables to the temperature/dew-point meters. The temperature meter should stabilize in a few minutes; however, the dew-point meter may cycle for an hour before stabilizing.

The temperature meter display will go out of range if the outside temperature exceeds $100^{\circ} \mathrm{F}$., however, the analog data to the DVM will still remain valid. The temperature display can be internally switched to a higher range if desired by opening the clock module. (See the temperature/dew-point instruction manual).

The dew-point meter may go out of its operating range in very severe cold weather. If this happens the temperature and humidity can be manually entered into the calculator by placing the thermometer/hydrometer furnished with the system up on the antenna base and monitoring it periodically.

2.4.3 Installation of Noise-Add Standard

The noise-add standard module is mounted in the antenna rf room near the input to the low-noise amplifier where it can be connected to the input coupler through a short semi-rigid coaxial line, and is controlled from the ETMS rf console located in the earth terminal control room.

2.4.3.1 Positioning the Noise-Add Standard

Locate the noise-add standard on a bracket or waveguide near the directionalcoupler at the input of the low-noise amplifier where the standard can be connected to the pilot-inject or noise-add input of the directional coupler with the short 45 cm (18 inch) semi-rigid coaxial line. Tape the noise-add module securely with reinforced tape so that the semi-rigid coaxial line may be connected. The noise-add module must move with the low-noise amplifier as the antenna changes elevation. Be sure that sufficient clearance exists.

Transfer the earth terminal receiver to the low-noise amplifier (PARAMP) which will be tested;* disable the pilot detect warnings by switching to maintenance status and carefully disconnect the pilot-inject line from the directional coupler.

Unpack the short semi-rigid coaxial line and connect the noise-add standard into the directional-coupler where the pilot line was removed. Note: If antenna gain over a period of time is to be measured, an individual semi-rigid coaxial line should be made for each antenna, and this semi-rigid line used only for this particular antenna.

The noise-add standard is referenced through this line to the antenna so that every attempt possible must be made to keep the losses repeatable. This

[^0]includes reducing wear and tear on the semi-rigid line and SMA connector by having a line for each antenna; connecting and disconnecting the SMA connectors carefully and as few times as possible; and minimizing bending and reshaping the semi-rigid line. In other words, treat the semi-rigid line with TLC (tender, loving care). Connecting the noise-add standard power-supply and remote cables: Unpack the noise-add power supply and ac power cord, the two miniature coax cables having SMA connectors, and the two, 90 cm ($3 \mathrm{ft)}$. BNC cables.

Locate the noise-add power supply on a bracket where the SMA cables will connect between the noise-add standard and the power supply, and the ac power cord will reach a power outlet. Secure the power supply with tape after checking that all cables and modules have sufficient clearance in all antenna positions. Make sure the power supply has the correct supply voltage setting, turn the switch off and connect the ac power cord and SMA cables. Note that the SMA connectors are labled No. 1 and No. 2 on the respective ends.

Locate two coaxial lines running from the earth terminal control room to the antenna rf room which can be used temporarily. For example, on the AN/FSC-78, the frequency reference lines W 103 and W 203 for the 1 MHz and 5 MHz .

These are labeled J11 and J23 above the frequency control cabinet in the control room and $W 7$ on J 7 , W8 on J 8 in the antenna rf room. Verify that these are the correct unused cables using an ohm meter. Connect the cables in the rf room to the noise-add power supply control J853 and J854 using the three-ft BNC cables and coaxial adapters as needed.

Turn the ac power switch on.

2.4.3.2 Control Room Cables

Unpack the two, 6 -meter ($20-\mathrm{ft}$.) BNC cables and connect them between the temporary lines and the ETMS control/rf console, Jacks J653 and J654. Observe the low-noise amplifier output on the downlink spectrum-analyzer monitor. Switch the noise-add diodes off and on to see that they are properly controlled and that No. 2 is larger than No. 1. Execute program control code No. 81 in the ETMS to turn off both noise-add diodes.

Note the noise level rise as noise diode No. 1 is switched on and off using control codes No. 82 and No. 83. Then turn noise-add diode No. 1 off, control code No. 83 , then switch noise-add diode No. 2 on and off by executing control codes No. 84 and No. 85. The rise in noise level from noise-add No. 2 should
be larger than the noise from No. 1. If not, interchange the two BNC cables at J653 and J654 on the back of the ETMS control/rf console.

If neither or only one noise-add dicde is working, recheck continuity of the temporary control cables between the ETMS and the antenna rf room. Also, verify that the downlink monitor is looking at the same low-noise amplifier to which the noise-add standard is connected.

2.4.4 ETMS IF Patch Panel Connections

Unpack the IF patch panel to type N adapter cable and four-foot coaxial type N cable. Turn the input attenuator on the ETMS to 70 dB and connect the ETMS input to the selected down-connector IF patch. Switch the hold-bypass switch to bypass. Set up the desired down converter frequency and phase-lock control. Switch the ETMS filter selector to 5.3 MHz and then decrease the input attenuation until the signal level meter reads about mid-scale $0(-3 \mathrm{dBm})$.

Watch the signal level meter for each change as the noise-add standard is switched off and on using control codes No. 80 (off), No. 83 (NA No. 1) and 84 (NA No. 2) (on).

2.4.5 Equipment Checkout on Station

Load the equipment check program if it is not already in the calculator and proceed with the equipment/station checkout as described in the ETMS Operator's Manual under equipment check (section 6.1).

3. THEORY OF OPERATION

3.1 Introduction

This section describes the equipment which makes up the ETMS System hardware, the requirements on this equipment and evaluation of particular characteristics of the system. Theory of individual units are contained in later chapters of this manual.

The measurement of the pertinent power ratios along with real-time star location predictions is accomplished using a measurement system developed by NBS and known as the earth terminal measurement system (ETMS). The ETMS is an automated measurement system developed around the most accurate power measurement instrument known--the NBS Type IV self-balancing power meter [1]. This meter as implemented in the ETMS, measures the ratio of stable noise powers to an accuracy of better than $\pm 0.1 \%$.

3.1.1 Measurement Description

The ETMS system is a noise radiometer, capable of high-resolution rf power measurements, which has been combined with a programmable calculator, a clock, and a temperature/dew-point monitor. The calculator has been programmed to automatically operate the radiometer. The system is used to measure the antenna gain to system noise temperature ratio (G / T) of an earth terrainal antenna system. The program reads the time from the clock and calculates the predicted pointing azmuth and elevation for the antenna toward a selected radio-star. Then, as the earth rotates, the system records repeated measurement data of received noise-power when the radio-star drifts through the beam of the antenna. This "drift" routine is repeated five times with a different offset in declination angle each time, forming a set of data which cuts the radio-star into six slices. One pass is offset a couple of degrees away from the star to a quiet. area to establish a "sky background" noise-level.

The program then reprocesses these data using curve-fitting routines to calculate the maximum intensity of noise power (star flux) at the center of the star, even if none of the five cuts passed exactly through the center of the star. The G/T ratio of the earth-terminal is evaluated using measured data on the background noise temperature, including the receiver system noise and the
star-flux noise temperature as seen by the antenna. It also applies corrections for atmospheric attenuation based on the temperature, dew point, and various antenna parameters. Refer to the ETMS Operator's Manual for a rigorous analysis of the measurement theory and procedures.

3.2 Description of System Equipment

A simplified block diagram of the ETMS is shown in figure 2. The ETMS contains eight subsystems: (1) the control/rf unit which provides signal conditioning, system test signals, precision programmable attenuators, signal monitoring, alarm circuits, and interface circuits which allow the calculator to control the various measuring instruments; (2) and NBS type IV self-balancing power bridge used to measure noise power; (3) a dual. X -band solid-state noise source (noise-add) to provide a stable reference signal needed to eliminate the effects of gain fluctuations in the earth terminal; (4) a programmable voltmeter with an analog multiplexer (scanner) which connects the digital voltmeter to the various measurement points of interest; (5) a temperature and dew-point monitor with remote probes to measure the water content of the atmosphere at ground level; (6) a digital ciock to provide time information required to determine current star coordinates; (7) a calculator which provides computation capability, and a means of controlling each of the remaining subsystems under automatic sequence control, a keyboard to control the measurement procedures or to enter program modifications, and a means of storing the measurement results on magnetic cassette tape in order to rework the data at a later time; and (8) an external cassette memory which allows redundant recording of measurement data.

The Dual Standard Noise-Source (noise add) and its power supply are connected at the input to the low noise amplifier through a directional coupler. The noiseadd control signals are brought up from the ETMS in the earth terminal control room through two auxiliary coaxial lines. The remote temperature and dew-point probes are suspended out near the base of the antenna and connected to the ETMS with long extension cables. The ETMS input signal is picked off at the 70 MHz IF patch panel in the earth terminal control room. The ETMS calculator displays pointing azmuth and elevation angles which the operator sets on the earth terminal control console. Then the calculator automatically measures and records the received noise power as the star drifts through the antenna beam as the earth rotates.

3.3 General System Theory

3.3.1 Control/RF Unit

The 70 MHz IF signal from the down connecter is applied to the input of the ETMS control/rf unit through a level-set attenuator to adjust the input level and then a band-pass filter to limit the bandwidth of the signal fed to the amplifiers. A 3-dB attenuator (not shown in figure 2) isolates the input of the first amplifier from the impedance variations of the filters. The internal filters, which are selectable by a front panel control knob, are 70 MHz center frequency with $1 \mathrm{MHz}, 2.5 \mathrm{MHz}$ and 5.5 MHz bandwidths or at 30 MHz center frequency with 2.5 MHz bandwidth. A non-filtered wideband position is also available. The signal path is brought out to the front panel so that an external filter can also be connected.

The first low noise broadband ($10-200 \mathrm{MHz}$) amplifier has $30-\mathrm{dB}$ gain followed by a $10-\mathrm{dB}$ fixed attenuator (not shown) for a net gain of about 17 dB (including the $3-\mathrm{dB}$ input pad). A $0-15 \mathrm{~dB}$ programmable attenuator with high repeatability is controlled by the calculator to maintain the signal at an optimum level. The "6 dB reference attenuator" is switched in and out during the measurements and the attenuation value of this step verified as a check on system linearity and accuracy.

The second low noise broadband amplifier ($10-200 \mathrm{MHz}$), which is padded with $10-\mathrm{dB}$ attenuation in its input (not shown), has a gain of 30 dB so.the net gain is 20 dB . The +20 volt dc supply voltage to the amplifiers is monitored on input channel No. 3 of the DVM so that any significant change in supply voltage (which would effect amplifier gain) will be detected at setup time.

The output of the second amplifier is monitored through a directionalcoupler and crystal diode detector so that should a signal be high enough to damage the power detector, the rf off/on coaxial relay (not shown) in the rf output will be switched off, protecting the power detector.

The ETMS control unit provides a simulated star noise source and simulated noise-add sources which can be connected to the signal input to simulate earth terminal conditions, so that, with the exception of the X -Band Noise-Add Standard, the performance of the entire system can be checked out.

3.3.2 Power Detector Module

A commercial rf thermistor mount is used with the NBS Type IV dc substitution, self-balancing power meter to measure the noise power. The thermally isolated thermister mount is a 200 ohm negative temperature coefficient unit which detects rf power level.s up to 10 mW over the frequency range of 1 MHz to 1000 MHz .

The NBS Type IV power meter is a dc substitution type self-balancing meter which will measure rf power ratios to better than 0.1% accuracy. The output voltage of the meter is the dc voltage which appears acrosis the thermister element as the self-balancing action varies the dc current through the thermister element (and therefore the heating energy) to maintain the element at 200 ohms. As rf power is absorbed by the thermister, thereby heating it, the selfbalancing action decreases the dc power by an equal amount.

See the NBS Type IV Instruction Manual [8] and article [1] by N. T. Larsen for a complete theory and operation for the type IV power detector.

3.3.3 Digital Voltmeter

The digital voltmeter is connected to a twelve-channel input multiplexer (scanner) to measure various voltages of interest. Rf power is measured by switching the rf coaxial relay "off" then measuring the power meter dc output voltage on channel 8 , switching to channel 9 and measuring the difference between the coarse offset voltage and the power meter voltage. This sets the programmable digital to analog converter (DAC) to this difference in voltage so that the sum of the coarse offset plus the DAC output (called the corrected offset voltage hereafter) is equal to the bridge voltage within $\pm 1 \mathrm{mv}$. The DVM input is then switched to input channel 10 which is the difference between the power meter voltage and the corrected offset voltage; the offset difference (less than 1 mv) is measured; the rf coaxial relay is switched "on"; and the new offset voltage difference (on channel 10) is read. The dc voltage across the thermister will have decreased to compensate for the rf power which has been dissipated in the rf thermistor mount. As the rf heats the thermistor element, its resistance tries to decrease, but the self-balancing action reduces the dc current just enough to maintain the resistance at 200 ohms. The decrease in dc power to the thermistor is equal to the rf power introduced into the thermistor.

$$
P_{r f}=P_{d c}(\text { with no } r f)-P_{d c} \text { (with rf) }
$$

so that

$$
P=\frac{E_{1}^{2}}{R}-\frac{E_{2}^{2}}{R},
$$

where E_{1} is the dc voltage with no $r f$ and E_{2} is the power meter dc voltage with the rf applied to the power detector.

The form of the equation normally used for the type IV is

$$
P_{r f}=\frac{1}{1000 R}[\Delta V(2 E-\Delta V)],
$$

where P is the rf power in milliwatts, E is the power meter dc voltage (across the thermister with no rf applied, and ΔV is the change in power meter voltage $\left(E_{1}-E_{2}\right) \cdot R=200 \Omega$ for the detector mount used in the ETMS.

3.3.4 Analog Multiplexer

The analog multiplexer is controlled from the ETMS control unit to provide twelve input channels into the digital voltmeter. These inputs are connected to the DVM input through two-pole reed relays to provide for floating both the high and low inputs to the DVM.

The channel assignments are:

Channel 0	Shorted DVM inputs
Channel 1	Temperature
Channel 2	Dew point
Channel 3	+20 volt supply
Channel 4	+12 volt supply
Channel 5	DAC output
Channel 6	Diode detector voltage
Channel 7	DAC reference voltage
Channel 8	Power bridge voltage
Channel 9	Offset voltage
Channel 10	Δ Volts power-measure
Channel 11	Spare or auxillary input

3.3.5 Temperature and Dew-Point Meters

The temperature and dew-point sensors are bridge circuits having a remote composite thermister probe in one leg. The bridge outputs are followed by instrument amplifiers to prnvide a 10 mV per degree Fahrenheit scaled output. These outputs (temperature and dew point) are connected to DVM input channels No. 1 and No. 2; and to the temperature and dew-point panel displays.

The dew-point probe has a thermister surrounded by a wick bobbin containing (LiC1) lithium chloride. Electrodes are connected to the lithium chloride so that an electric current can be conducted through it, thus heating it.

The LiCl absorbs moisture from the surrounding atmosphere, decreasing its electrical resistance. The electrical current heats the LiCl bobbin until an equilibrium is established between the vapor pressure of the moisture in the LiC1 and the ambient humidity. The thermister senses the probe temperature so that the bridge output is proportional to the dew-point temperature.

3.3.6 X-Band Dual Noise-Add Standard

The dual noise-add source injects a reference level noise power into the earth terminal system between the receive-output of the antenna and the input to the low noise amplifier. This noise source acts as a stable reference level which is turned on and off remotely by the ETMS control/rf unit.

Measurements are repeated with the noise-add source both off and on and the calculated results corrected so as to keep the measured noise-added power constant. This effectively removes the effects of receiver gain changes from the measurements.

The two individual sources differ in power output by approximately 3 dB and they can be used singly or together. Software can be implemented to utilize the power step difference between the two as a receiver system linearity verification check.

This is accomplished by using two coaxial noise diodes which are combined through two, $3-\mathrm{dB}$ hybrids resulting in a circuit which attenuates the output of noise diode No. 1 by 3 dB more than the output of diode No. 2. The combined noise output is connected to the insertion directional coupler through a semirigid coaxial line.

The noise diodes are biased by two constant current generators whose reference is a very stable, precision, solid-state voltage standard. The noise outputs are adjusted for best temperature stability and 3 dB difference by selected trim resistors in the constant current source circuits.

Each diode is switched off by shunting the diode bias current to ground through a transistor switch. The transistor switch is connected to the input control line through an optical coupler.

3.4 System Control Circuits

The calculator controls the ETMS system via I/O-Select Code 非 through the TTL 8-bit bi-directional interface to the ETMS Control/rf unit. The control signals are the function-select code (MSB 4 bits), data (LSB 4 bits), the control command (CTL 1), and the auxillary interface control signal (I/O). These are processed in the ETMS control/rf unit and distributed to the various sub-systems or to the voltmeter control (refer to figure 3). The system answer-back signal called the return flag (or just flag), is collected in the control/rf unit from the various sub-systems and the voltmeter control and sent back to the calculator via this control/rf unit interface cable.

The voltmeter data, voltmeter read command, and flag signal are connected to the calculator via a BCD input interface cable on I/O-select code \#2. The clock, month, and day data are connected to the calculator through a BCD input interface cable on I/O-select code 非3.

3.4.1 Control Signals

The signals that control the ETMS are divided into two classifications, the function select lines (data bits) 5, 6 , and 7 having binary weights 16,32 , and 64 respectively, and the four data bits $1,2,3$, and 4 having binary weights $1,2,4$, and 8 . The function-select information (lines 5, 6, and 7) are combined with the function data (lines $1,2,3$, and 4) to form a seven-bit control code to activate or deactivate any function in the ETMS. This control code can be selected on the programming switches on the ETMS ccatrol/rf unit and the LOAD button pressed to generate a control pulse or the code can be programmed on the calculator using the WBYTE command, and output to I/O-select code \#4. NOTE: If WBYTE is used, the form must be WBYTE XX; where XX is the control code suffixed by the semicolon. The semicolon tells the calculator not to wait for a second flag or "end of data" signal from the interface.

The control function select codes (bits 5, 6, and 7) are listed in the following table.

Function		Switch Codes			
	8	7	6	5	Decimal Code
DVM Range	X	0	0	1	$16+$
DVM Function (DCV)	X	0	1	0	$32+$
Progranumable Attn	X	0	1	1	$48+$
Step Attn \& RF On	X	1	0	0	$64+$
Noise-add	X	1	0	1	$80+$
Voltmeter Input Channel	X	1	1	0	$96+$
(X represents a "don't care" position.)					

A complete list of the command codes is given in section 2.3.1.1 of this manual.

3.4.2 Offset Voltage Control

The offset reference. voltage is used to increase the digital voltmeter resolution of the power meter measurement. This reference offset voltage from the DAC must be set equal to the bridge voltage (within one MV) while the rf signal is turned off in the ETMS. The output of a DAC is wired in series with a fixed voltage offset. When DVM channe1 9 is selected, the DVM low input is connected to the fixed voltage offset and the DVM high input is connected to the power bridge so that the DVM reading is the difference voltage. This DVM reading is the input data to the DAC. The DAC strobe is enabled when the DVM channel 9 is decoded so that the DVM flag pulse strobes the DAC, storing the DVM reading.

3.4.3 Noise-Add Control

The X-Band Solid-State Dual Noise-add Standard is remotely controlled by the ETMS control/rf unit through auxillary coaxial cables already installed between the earth terminal control room and the rf room at the antenna. The ETMS console turns the noise-add source off by effectively shorting the coaxial line with a transistor switcil. The control inputs of the noise-add power supply (constant current sources) are coupled to the incoming control lines through optical couplers.

3．5 System Flag Circuits

There are three independent flag circuits；the DVM data－ready flag on I／O select code \＃2，the time and date data－ready flag on $I / 0$ select code 非3，and the ETMS control－ready flag on I／O select code \＃4．Select codes \＃2 and \＃3 are input only I／O channels．The control－ready flag on $⿰ ⿰ 三 丨 ⿰ 丨 三 4$ includes control commands to the DVM（range，function，etc．）and the return flag for the break－point switches on select code $⿰ ⿰ 三 丨 ⿰ 丨 三 4$ input．The output or input return flags on the control／rf unit is selected depending on the interface auxiliary control line called I／O signal on select code \＃4．

3．5．1 ETMS Control／RF Console Flags

The control interface cable，I / O select code $\# 4$ ，is a bidirectional buss． Control data is transferred to the ETMS and the break－point switch input data is transferred from the ETMS control／rf unit to the calculator on this interface． A device ready flag is required for both input and output．On the input command， the auxiliary control line I / O is high，thus directing or steering the control signal to the input ready－flag one－shot，which sends a flag pulse back to the calculator．

The I／O signal remains low on output commands in order to steer the control signal to the various controlled functions．

Each of the particular functions：Programmable attenuator／RF ON，noise－ add，and multiplier／DVM control generate a ready－flag in response to the control signal when selected．These flag pulses are combined along with the break－point input flag to generate the interface answer－back flag for I／O select code \＃4 to the calculator．

3．5．2 DVM Data－Ready Flag

The digital voltmeter generates a data－ready flag in response to the con－ trol（read）signal upon completion of the digital conversion．This data－ready flag is sent back to the calculator on I／O select code \＃2 and to the DAC strobe input if analog input channel $\# 9$ has been selected．

3．5．3 Clock Data－Ready Flag

The time clock inhibit circuit locks the clock reading for a one－shot duration of 70 ms in response to a control signal（CTLI）on I／O select code \＃3． The data－ready flag is returned to the calculator at the beginning of the one－ shot pulse allowing time for the calculator to input the time and date before the time data is allowed to update．

3．6 System Data Circuits

Digital data circuits are divided into four separate non－interacting circuits：（1）Control and command data output on $I / 0$ select code $⿰ ⿰ 三 丨 ⿰ 丨 三 4, ~(2) ~ B r e a k-~$ point switch input data input on I / O select code $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ ，（3）（3igital voltmeter data input to the calculator on I / O select code $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 2，and（4）Month，day and time clock data input on I / O select code 非3．

3．6．1 Control Data Paths

Control data is sent from the calculator to the ETMS control／rf unit on eight（8）parallel lines．These signals are distributed to the function－select decoders in the control／rf unit and in the multiplexer／DVM control chassis and to the various data latches throughout the system．The decoded function will enable the control pulse to strobe the selected function latches．All other latches will remain unchanged since their strobe pulse is not selected by the decoders．

3．6．2 Digital Voltmeter Data

The digital voltmeter data is output in parallel BCD data－lines and is connected to the calculator through a BCD interface cable．This DVM BCD data is also connected to the digital inputs of the DAC used to generate the offset reference voltage．When the analog multiplexer channel \＃9 is selected，the DVM flag strobes this DVM reading into the DAC data latches．The DVM exponent （range）is corrected to a $B C D$ number before being sent to the calculator by adding +13 in base 16 without carry．Then a decimal point is inserted in the $B C D$ data stream to properly position the exponent．

3.6.3 Date and Time Data Path

The month, day, and clock data are paralle1 BCD lines connected to the calculator through a BCD interface cable.

The month and day are manually sct into BCD coded thumb-wheel switches. These four BCD digits are combined with the clock hours, ainutes, and seconds $B C D$ data. The exponent is hard wired to minus two (-2) to locate the decimal point between the minutes and seconds.

The power fail flag from the clock converts the exponent to +80 so that the software program can detect erroneous time data.

3.7 Input-Output Interfaces

Two types of calculator interface cables are used in the ETMS system. The TTL interface cable provides eight parallel control output data lines and eight parallel input data lines. The BCD interface cable is an input-only type which accepts up to 10 parallel BCD digits, a polarity line, exponent digit and sign, and an over-range line. Refer to the manufacturer's instruction manuals for information related to the interface cables.

The signal assignments for the ETMS control/rf unit interface TTL cable and the BCD cables for the DVM and clock are shown in figure 4. The programming format for each type of interface is listed on the lower portion of the figure.

$\begin{gathered} \text { BCD } \\ \text { Digit } \\ \hline \end{gathered}$	1/0 \#2 DVM	$\begin{gathered} \text { BCD } \\ \text { Digit } \\ \hline \end{gathered}$	$1 / 0.43$ Clock
1.	Mode 9= DC Volts	1.	Month MSD
2.	Comma	2.	Comma
3.	Sign(Polarity)	3.	Zero - Not Used
4.	Zero - Not Used	4.	Month LSD
5.	Zero - Not Used	5.	Date MSD
6.	Volts -- MSD D6	6.	Date LSD
7.	Volts -- DS	7.	Hours MSD
8.	Volts -- D4	8.	Hours LSD
9.	Decimal Point	9.	Minutes MSD
10.	Volts -- D3	10.	Minutes LSD
11.	Volts -- D2	11.	Seconds MSD
12.	Volts LSD D1	12.	Seconds LSD
13.	Exp Sign	13.	Dec Pt (Negative)
14.	Exp MSD \& Overrange	14.	Exp MSD (Powr Fail
15.	Exp LSD	15.	$\operatorname{Exp}(\mathrm{LSD})=2$
16.	Line Feed(End)	16.	Line Feed(End)

Operator data input
to computer

This section of this instruction manual addresses troubleshooting from the complete system viewpoint, attempting to present guidelines which will lead to identifying the malfunctioning unit. Troubleshooting for each individual unit is included in the section on that particular unit.

4.1 Systematic Approach

Normally a system malfunction will be suspected when operating in a complete system mode, either during an equipment check or during a measurement sequence.

4.1.1 Preliminary Evaluation

FIRST--STOP, LOOK, and THINK.
Note where the program failed or halted, then proceed carefully.
a. Write down the values of all ETMS, and DVM/MUX controller LED lights, the ETMS meter reading, and the DVM reading, mode and range.
b. Look.over the printed output and try to deduce where the ineasurement went wrong.
c. If program is hung up, press stop button once or twice to recover a display character on the calculator. If a line number is displayed instead of stop, write down the line number. If the line number is in a subroutine, press the "step" button to advance the program one line at a time. Note: "step" will hang up on input/output commands and the "stop" must be pressed again to recover. Repeat the "step" process until the line numbers return to the main part of the program. This should identify where in the program the system is in trouble. d. Now, again look over the results in the printed output and attempt to isolate the problem by looking for bad answers. Check the current values of any pertinent program variables in use at the time of the malfunctions.
e. Attempt to analyze the clues and deduce whether the problem is an rf signal level failure, a control command failure, or a flag failure.
f. Manually execute a few of the program codes (programmable attenuator, step attenuator, noise-add, DVM input channel, function and range) and observe if the instrument responds to the command and that the ETMS control/rf unit signal level meter or DVM respond as expected.
g. Manually program any condition which looks questionable and then measure the power level using the FNP3 command or FNDO + FND1 + FNP3 (assuming that these subroutines are loaded into the computer memory) if the ETMS needs initializing. h. When appropriate, check the manual attenuator and filter selector control settings and that the correct rf input coaxial cable and noise-add control cables are properly connected. Make sure that all coaxial connectors on the ETMS system are tight.
i. In case of control and flag problems, carefully inspect all I/O and control cables to be sure they are fully connected in the proper jacks AND THAT ALL CONNECTOR LOCKS ARE PROPERLY LOCKED.
j. If the trouble still has not been isolated to a particular unit, load the equipment check program into the calculator, change the rf input back to the Simulated Star output if connected to the earth terminal, and proceed through the systematic check provided. If the calculator seems to act unpredictably, turn the calculator and printer ac power switches off and back on, then load and run the equipment check program again.
k. The various instruments can be checked from the calculator keyboard without relying on program software.

1) Voltmeter - Enter the command ENTER (2,*) Q, Q1 on the calculator keyboard and press execute. The voltmeter should take a reading and the "|-" return to the calculator display. Then type Q, Q1 and press execute. Two numbers should appear on the display. The first is the DVM mode code and the second the DVM voltage reading. If the calculator did not return an " \mid " " when the enter command was executed* and the voltmeter did read, then no data-ready flag was received back at the calculator.
2) Repeat the enter test on the clock using ENTER ($3, *$) Q, Q1.
3) Command control can be checked without program software by entering a format line, 9700 Format B, and pressing the end of line key. Then type the direct command: $\operatorname{WRITE}(4,9700)$ WBYTE $X X$; where $X X$ is the desired control code to actuate a particular function. Note: The semicolon must be included. Then press the execute key. The ETMS should respond with the prescribed command. If the ETMS does respond properly, but the lazy T does not return to the calculator display, no ready flag is being returned. Figure 5 shows the hand-shaking timing interaction of the control signal and the return flag in the calculator input or cutput interface. Figure 3 shows the distribution of the control signals, data signals and latches and the return flags in the LTMS system.
COMPUTER/DEVICE HANDSHAKE SIGNALS
FIGURE 5 Flag Handshake Timing
1. When the problem has been isolated to a particular unit, refer to the trouble shooting section of the equipment manual for the particular unit. m. If the calculator, printer or cassette units are suspect, turn the ac power off on these three units and then back on again. Load the System Test Tape furnished with the calculator accessories and run the test programs as described in the instruction booklet, "System Test Instructions," furnished with the calculator.
*One unexpected result can be that the calculator appears hung-up for a short time (5 seconds to 2 minutes) and then gives an ERROR 2 (out of memory). The internal BCD I/O software attempts to input BCD digits until a line-feed is received. When the ERROR 2 occurs, the calculator did not recognize the 16 th and last character (LF) transmitted by the BCD interface card. The BCD. I/O card is programmed for either high-true or low-true logic input signals by grounding one of two lines in the interface cable. The ETMS uses high-true logic, requiring that line 917 in the interface cable be connected to ground. Without this ground connection the ERROR 2 occurs.

To check, read the 16 characters (see pages $1-5$ of 12203-A BCD Interface Installation and Service Manual) using the following program:

```
9600 FOR I= 1 TO 16
9610 FRINT I, RBYTE 2 (or 3 for clock)
9620 NEXT I
9630 STOP
```

The sixteenth character should be 10 (line feed). If not, wire 917 on pin 49 of J352 is not grounded. Use RBYTE 3 in above program to check the clock. If the sixteenth digit is not 10 , check wire 917 on pin 47 of $J 400$ of clock for ground connection.

5.1 Introduction

The ETMS control/rf unit (fig. 6) serves as a system controller as well as the rf signal precessor to amplify and control the level and establish the bandwidth for optimum rf power detector measurements.

The ETMS control/rf unit is the controller for the entire ETMS system. All control signals from the calculator are distributed to the various units through this unit. Manual programming switches are provided on the front panel to exercise the various functions. The rf level monitor protects the power dectector unit by switching the rf power off if $5 \mathrm{~mW}(+7 \mathrm{dBm})$ is exceeded.

Simulated star and sky noise and noise-add sources are built into this unit to permit self-checks of the system without connecting to an earth terminal.

Remote controls for the X-Band noise-add sources allow injection of a known added-noise at the throat of the antenna so that the gain of the earth terminal receiver can be monitored and the measurements corrected to compensate for gain changes.

5.2 Specifications

The input frequency range is 1 imited to 10 to 200 MHz , by the internal amplifiers

Input impedance: The input impedance is 50 ohms.

Power level: The maximum output power into 50 ohms is limited to 1.2 milliwatts to prevent amplifier compression and nonlinearity. The internal programmable attenuators, $0-15 \mathrm{~dB}$, and an internal check-standard attenuator, approximately 6 dB , are controlled by the calculator.

Simulated noise source: These noise sources have a frequency output of 10 to 100 MHz , bandwidth limited by an rf combining amplifier. There are three programmed noise-add generators, two controlled by the calculator which are approximately 3 dB apart, and one manually controlled through an 11 dB manual attenuator.

5.3 RF Circuits

5.3.1 Input Circuits

The rf input of the ETMS system is connected to the TF patch panel (downconverter output) which is normally 30 or 70 MHz . For self-checks, this input can be connected to the built-in star simulator output via a short coaxial cable (see block diagram in figure 7).

A high quality manual attenuator (zero to 70 dB) adjusts the level of the incoming signal (or noise).

The output of the attenuator is connected through a bandpass filter selector switch permitting selection of wideband (through connection) or 2.5 MHz bandpass at 30 MHz center frequency, or $5.3 \mathrm{MHz}, 2.5 \mathrm{MHz}$ or 1 MHz bandpass at 70 MHz center frequency.

The noise-bandwidth of each of these filters has been measured in the system so that measurements requiring known bandwidths such as $C / k T$ can be performed. The quantity referred to as the noise bandwidth and measured in situ for the four bandpass filters in the ETMS is given by the area under the power-gain curve normalized by the power gain of the filter at the defined center frequency (e.g., 30 MHz or 70 MHz). This definition differs from the standard definition of noise bandwidth which is the area under the power-gain curve normalized by the maximum power gain of the filter. If B is the noise bandwidth, and $g(f)$ is the power-gain function of the filter with g as the center frequency gain of the filter. Then

$$
B=\frac{\int_{0}^{\infty} g(f) d f}{g}
$$

Measuring the power gain $g\left(f_{i}\right)$ at each step frequency f_{i}, and stepping the frequency across the bandpass in uniform steps $D f$,

$$
B=\frac{D f}{g} \sum_{i=1}^{N} g\left(f_{i}\right)
$$

This process is repeated for each filter in the ETMS.

5.3.2 First Amplifier

The output from the bandpass filter selector module is padded with a $3-\mathrm{dB}$ attenuator to stabilize the impedance seen by the first amplifier. This prevents the amplifier from oscillating when the rf input is open circuited. This low noise amplifier has a gain of approximately 30 dB and is padded with 10 dB of attenuation in its output.

5.3.3 Attenuator Module

A highly repeatable programmable attenuacor having 0 to 15 dB attenuation is used to optimize the measurement power level under calculator control. Immediately following is a step attenuator which is used as a reference or standard check which is inserted and removed automatically during each measurement. The attenuation value of this attenuator is checked in the program to verify that the second amplifier and power detector are working linearly.

5.3.4 Second Amplifier

The input of the second amplifier is padded by 10 dB to minimize effects of small impedance changes in the attenuator switching. This amplifier has a gain of 30 dB . There is no padding in the output of this amplifier. In addition, the output power is kept below two milliwatts to avoid any detectable compression or clipping in the amplifier response.

5.3.5 Monitor and Output Circuits

A directional coupler samples the amplifier output and a diode detector and comparator monitors the signal (or noise) level and switches a coaxial relay off in the rf output line, avoiding possible damage to the thermistor mount in the power detector unit. Normal power to the power detector is under one milliwatt. Overload threshold is adjusted to 5 milliwatts (+7 dBm).

5．3．6 Star Simulator Circuits

The simulator is three identical solid state noise sources（two of which are switched simultaneously with the remote noise－add controls）．The three outputs are combined，amplified，and made available at the front panel．

The background and star noise source is connected through a 0 to 11 dB attenuator so that its level may be manually adjusted over this range，but cannot be turned off．The other two noise sources NA肘1 and NA\＃2 are attenuated 6 dB and 3 dB ，respectively，so that their output levels are similar to the noise－add received through the earth terminal．NA非1 and NA肘2 simulated sources are controlled simultaneously with the earth terminal noise－add standard， however，only one set of noise sources is connected ETMS input at any one time．

5．4 Control and Flag Circuits

5．4．1 Control

The distribution of the control signals is shown in figure 3．The calcu－ lator command data（ 8 bits parallel）and Manual program data are connected to two，4－bit digital input multiplexers．When the＂LOAD＂button is pressed，the multiplexer changes to the programming switches and the program switch data is placed on the data lines．The least significant four bits are distributed to the inputs of the various data latches．The next three bits（5，6，and 7）are used as inputs to the function－－select decoders．The decoded function is used to enable the desired latches so that the low four bits of data are strobed into the latch by the CTL pulse．

The CTL pulse is generated by a one－shot，triggered by the＂LOAD＂button or by the calculator interface．In normal operation the data from the calcu－ lator is fed through the digital multiplexers and to the data and function buss．The control pulse strobes the data into the selected function latches． These data busses are connected to the DVM／multiplexer control via an inter－ connecting cable so that the program switches can also control the DVM functions．

5.4.2 Ready Flags

After the calculator sends out data on the buss lines and the control pulse (CTL), it waits for a ready-flag signal to be answered back from the device, or when the calculator requests input data by switching the I/O signal to input and sending a CTL pulse, it waits for a data-ready flag to be returned (from the break-point switches, for example). This is the flag hand-shaking between devices and the calculator. Each command function generates its own flag pulse and they are combined in the ETMS control/rf unit to return to the calculator.

When the front panel break-point switches are read, the CTL pulse triggers a one-shot pulse which is sent back as the flag.

5.5 Power Distribution

The ac primary power circuits are dual-voltage circuits capable of operation on either 120 or 230 volts, either 50 or 60 Hz . The small printed circuit card below the fuse holder connects the power leads for the correct voltage. The selected voltage label is visible in the fuse holder. The two fans are operated in parallel for 120 volts and in series for 230 volts.

5.6 Digital Circuit Description

This unit contains three printed circuit boards: the control board (Z 700), the switching board ($Z 400$), and the rf processor board (Z 500).

5.6.1 Z 700 Control Card (Schematic, Figure 12)

The control card has an eight-bit digital multiplexer (IC's 6 and 7) which selects the input signals either from the calculator I/O cable or from the front panel programming switches when the load push button is pressed. The output signals from these multiplexers are distributed to data latches on this board, the $Z 400$ driver, and the $Y 100$ voltmeter/scanner control board. For manual operation, a code set in the programming switches is transferred into various data latches when the "load" push button is pressed. When the normally closed
contacts of the load switch are open, the multiplexer is switched from calculator input to the manual programming switches. The "load" switch is debounced by F/F gates in IC-1 and initiates a one-shot pulse in IC-3. The length of the pulse is determined by the RC combination of C1 and R13. This pulse is the manual entry control signal ($\overline{\mathrm{CTL}})$.

Data from the calculator is entered through the I/O cable and multiplexer. The calculator control signal ($\overline{\mathrm{CTL}}$) is coupled through steering gates IC-1 and IC-2 into a CTL one-shot (IC-4) or into the "input flag" one shot IC-5 depending on the state of the I / O signal from the calculator. When this I / O signal is high, the calculator interface is in the input mode and is inputting the status of the break point switches on the instrument panel. When the I/O signal is low the calculator is outputting control data to the system.

The manual load pulse is "ORed" with the calculator " "CTL" signal in gate IC-8 to provide a load strobe to the system central logic.

The eight bits of the control data word are divided into two functions, while the most significant bit (MSB), bit eight (H), is not used. The lower four bits, one, two, three, and four (A, B, C, \& D), program the function, and bits five, six, and seven (E, F, \& G) select the device to be controlled, such as the programmable attenuator or the DVM range or the noise-add generators. The noise-add data are selected by the steering logic gates IC-2, IC-9 and IC-8 so that the function data on the lower four bits are enabled and strobed into the noise-add data latches IC-10. The steering logic combines the device selcct bits with the $\overline{\mathrm{CTL}}$ signal to produce the strobe for these data latches. IC-8 and IC-1 provide a noise-add flag for the calculator.

The noise-add control circuitry is also on this card. Noise-add switching signals are connected to jacks on the rear panel to remotely switch the noiseadd standards placed at the antenna feed. In addition, two TTL logic level noise-add control signals are provided on the rear panel. These are switch selectable for high true or low true logic.

The remote cables to the noise-add generators at the antenna are driven by transistors Q_{1} and Q_{2} which are driven by open collector gates in IC-12. The transistors switch +24 VDC through 2 kilohms load resistance to ground potential in order to drive the capacitance of the remote cable lines and control the remote noise-add generators. The noise-add generators are turned on when the remote cable is at +24 V or open circuited. All the noise-add signals are controlled by the state of the noise-add \#1 and noise-add \#2 data latches. The front panel LED indicators showing the state of these signals are driven by gates in IC-12.

Simulated noise-add constant current generators

This card also contains three constant-current power-supplies which drive internal noise sources. The output of these simulation noise sources is brought out to a front panel jack and can be connected to the input jack for a simulated test run. One of these noise sources represents the ambient noise while the other two are switched off and on by the noise-add control signals.

The three constant-current power-supplies are operational amplifer (IC-13, 14, and 15) connected as a Howland voltage to the current converter circuit [9].

The simulated noise-add noise sources are controlled by shunting each constant-current power-supply output to ground through an open-collector gate (IC-12), thus turning the noise generator off.

Table I. Test codes for noise-add circuits.

Test Codes	Expected Results	
Manual or WYB'TE	NA 非1	NA \#12
	Front Panel	Front Panel
${ }^{80} 10$	ON $J_{1} J_{10}$	ON $\mathrm{J}_{2} \mathrm{~J}_{20}$
8_{10}	OFF	OFF
${ }^{82} 10$	ON	NC
8310	OFF	NC
8_{10}	NC	ON
$8^{85} 10$	NC	OFF
${ }^{86} 10$	NC	NC
8_{10}	NC	NC
8_{10}	Same as 80	
89	Same as 81	
90	Same as 82	
91	Same as 83	
92	Same as 84	
93	Same as 85	
94	NC	NC
95	NC	NC

Table II. Trouble-shooting noise-add. Test program codes for noise-add.

Test Code	Noise-Add \#1				Noise-Add \#2			
Program Switch and WBYTE	$\begin{aligned} & \overline{\text { Front }} \\ & \text { Panel } \end{aligned}$	J_{1}	$\mathrm{J}_{10} \text { * }$	Simulated Noise 非1	Front Panel	J_{2}	J_{20} *	Simulated Noise \#2
8_{10}	ON	$+24 \mathrm{~V}$	+4V	ON	ON	+24V	$+4 \mathrm{~V}$	ON
${ }^{81}{ }_{10}$	OFF	+.5V	+.7v	OFF	OFF	+. 5 V	+. 7 V	OFF
${ }^{82} 10$	ON	+24V	+4V	ON	NC	--	--	NC
$8^{83} 10$	OFF	+.5V	+.7V	OFF	NC	--	--	NC
$8^{84} 10$	NC	--	--	NC	ON	+24V	+4V	ON
${ }^{85}{ }_{10}$	NC	--	--	NC	OFF	+. 5 V	+.7v	OFF
${ }^{86} 10$	NC	--	--	NC	NC	--	--	NC
8_{10}	NC	--	--	NC	NC	--	--	NC

NC represents no change (unaffected).
*Signals on J_{10} and J_{20} may be inverted from that shown on table depending on on the position setting of the " $0 / 1$ " switches S10 and S20.

When the noise-add signals are connected to the system (actual or simulated), the level meter on the front panel should show an increased reading if the meter hold switch is in "bypass" when either or both noise-add signals are turned on.

5.6.2 Z 400 Switch Driver Card (Schematic, Figure 8)

The $Z 400$ printed circuit board contains the control and switch-drive circuitry for the programmable attenuator and step attenuator. In addition, the flags from the various functions are recombined on this card sc they are available for the calculator on the I/O flag line.

Circuit description

The digital control data from the manual/auto multiplexer on the Z 700 card is connected to decoding circuits to decode the desired device code. Control bits five, six, and seven (E, F, and G) are decoded in IC-401 to enable the $\overline{C T L}$ signal to strobe the data latches IC-404 and IC-408 for the selected device. Control bits one, two, three, and four (A, B, C, and D) select the particular function to be programmed in the device; i.e., 1, 2, or 5 dB in the programmable attenuator or bridge rf ON . Control bit A supplies the true/false or off/on information while the decoded $\overline{\text { CTL }}$ signal is conditioned with bits B, C, and D
in steering gates IC-402 and IC-403 to enable the "load" strobe to the selected data latches in IC-408. Programmable attenuator control bits are latched in IC-404.

Flag circuits

The selected CTL signal for the various devices are combined in the NOR gate IC-406 to control the flag one-shot IC-409 to generate the flag pulse. The device flag pulse is combined with the input-command flag signal from the 2700 card in IC-419 and is returned to the calculator I/O on pin $\# 55$ as the $\overline{\text { FLG }}$ signal.

Switch drivers

The programmable attenuator and coaxial relays are latching relays so that the switching circuitry provides a pulse to one of the two terminals to actuate the device. The programmable attenuator is strobed by a one-shot, IC-405, and the switches are driven through open-collector gates IC-413, 414, 415, and 416. These gates energize switching transistors $\mathrm{Q}-1$ through $\mathrm{Q}-8$ in a bipolar, mutually exclusive cross-coupled circuit. The coaxial relays are strobed by one-shots IC-407 and IC-410 and gates IC-417 and IC-418. Transistor drive circuits are formed by Q409 and Q410 and Q411 and Q412 to switch the relays. Overload pulse signals from the $Z 500$ rf level-processor board are connected to pin 15 and pin 33 to pulse the bridge rf driver off when overload occurs. The overload indicator signal on pin 45 from the $Z 500$ board drives the front panel indicator light through IC-420. The overload signal is combined with the power meter rf ON signal to drive the rf ON front-panel indicator LED so that the rf ON indicator goes out when an overload occurs and the rf is switched off via the overload circuits. The step attenuator LED is driven by IC-411.

The front panel programmable attenuator LED indicators are driven through auxiliary contacts on the attenuator body.

The attenuator action can be monitored by observing the rf level meter on the front panel and the power detector milliamp meter. If the unit is not connected to a source, patch the simulated noise-add to the input connector and turn the noise-add generator on with programming code 80 10. Note: When the noise-add is turned on, the meter is inhibited unless the meter hold switch is in bypass.

Table I and Table II list the control codes and expected results when troubleshooting the switch driver circuits.

Table I. Test codes for 2400 board. Programmable attenuator.

Manual or WYBTE	Result
${ }^{63}{ }_{10}$	0 dB attenuation
${ }^{62}{ }_{10}$	1 dB attenuation
${ }^{61}{ }_{10}$	3 dB attenuation
${ }^{60}{ }_{10}$	3 dB attenuation
${ }^{59}{ }_{10}$	4 dB attenuation
58	5 dB attenuation
57	6 dB attenuation
56	7 dB attenuation
55	8 dB attenuation
54	9 dB attenuation
53	10 dB attenuation
52	11 dB attenuation
51	12 dB attenuation
50	13 dB attenuation
49	14 dB attenuation
$48{ }_{10}$	15 dB attenuation

Table II.
Step attenuator and rf on.

Manual or WYBTE	Step Attenuator	$\underline{\mathrm{RF}}$
6_{10}	IN	OFF
6_{10}	OUT	ON
66_{10}	IN	NC
67_{10}	OUT	NC
6810	NC	OFF
${ }^{69} 10$	NC	ON

The rf level processor printed circuit card monitors the output of the diode detector. The input on pin 13 is amplified by IC-501 and fed to the overload level comparator, IC-506, through the overload-adjust potentiometer " H " (R5). If the rf power exceeds 5 miliiwatts, the overload comparator triggers and latches. This forces the rf off/on switch on the $Z 400$ board "off" via IC-509 and also energizes the sonalert alarm and overload LED via Pin 47.

The comparator cannot be reset by pressing the reset button until the power level has been reduced to a safe level. When the comparator is reset, a oneshot, IC-508 pulses the rf-on latch (Z 400 board) to the reset (off) state so that the latch (and LED) coincide with the off position of the coaxial latching relay.

The incoming signal level is also processed through a log-amplifier to the front panel rf level meter. The output of the level amplifier passes through a sample and hold circuit, IC-502, which, when enabled by the front panel "Hold" switch, latches the meter to prevent meter surge while the noise-add sources are turned on. Delay timer IC-507 smoothes meter action during noise-add switching.

The output of the sample and hold circuit drives a log-amplifier, IC-504, to convert the meter reading to a dB scale. IC-503 forms a constant current source to set the zero reference of the \log amplifier. The output of the logamplifier drives the meter driver amplifier. The gain of the meter amplifier is switched for gains of x 10 , x 1 and $\times 0.1$ to obtain meter scales of $1 \mathrm{~dB}, 0.1 \mathrm{~dB}$, and 0.01 dB . Potentiometer " D " (R14) adjust the xl scale zero reference.

5.6.3.1 Adjustments on RF Level Processor

The adjustments on the rf level processor establish the logarithmic amplifier gain for the decibel scale on the front panel signal level meter and sets the overload alarm threshold. Complete alignment requires two, l-milliamp constant current sources. The sequence for complete alignment follows:

Referring to figure 10,

1. (a) Mount the $Z 500$ printed circuit card on the pcextension card.
(b) Remove signal input cable from RF INPUT on front panel.
(c) Set FILTER switch to 5.3 MHz B.W., 70 MHz on front panel.

2．Put a BNC 50 ohm termination on the＂TO OUTPUT＂jack on front panel．

3．Connect external voltmeter between $T P ⿰ ⿰ 三 丨 ⿰ 丨 三 一 1$ and ground．Adjust＂A＂（R7） dc offset on first amplifier for zero on the voltmeter．

4．Switch＂HOLD＂switch to bypass on front panel．Connect the external voltmeter to $\mathrm{TP}-\mathrm{V}$ and adjust offset＂ C ＂（ R 9 ）for a zero reading on the Volt－ meter．

5．Remove jumper TP－V to TP－W．Connect temporary jumper TP－X to TP－Y． Connect external voltmeter to TP－Y．Adjust＂E＂（R19）dc offset first stage of log－amplifier for zero voltmeter reading．

6．Remove temporary jumper $\mathrm{TP}-\mathrm{X}$ to $\mathrm{TP}-\mathrm{Y}$ ．Remove jumper Z－Z1．Then connect a +1 milliamp constant current source into $\mathrm{TP}-21$ and ground；connect the other +1 milliamp constant current source into TP－W and ground．Set both current supplies to 1 milliamp＊．Connect the external voltmeter to TP－2 and ground．Adjust＂F＂（R20）dc offset of second stage of log－ amplifier for zero volts on the voltmeter．

7．Remove both constant current sources．Replace jumper TP－V to TP－W． Replace jumper TP－Z to TP－Z1．Remove the BNC termination from the ＂TO OUTPUT＂jack on the front panel．

8．Connect coaxial cable between SIMULATED STAR OUTPUT and RF INPUT on front panel．Connect external rf power meter to RF OUTPUT jack on front panel．Turn bridge＂on＂with control code 67．Adjust input ATTN and SIMULATED STAR NOISE for 1 mW reading on the power meter．

9．Connect an external voltmeter to TP非1．Adjust first amplifier gain＂ B ＂ R6 for 1 volt on voltmeter．
＊Connect two milliampre meters in series connection and establish a current reference point on both meters at approximately 1 ma of current．Use the reference points for adjusting the two constant current sources for equal currents．
10. Reduce power to 500 microwatts on power meter. Switch meter range selector on front panel to the Xl position. Adjust "D" (R14) log reference zero offset for a zero reading on the front panel signal level meter.
11. Increase input attenuation by 5 dB . Adjust log-amplifier gain " G " (R21) for a front pancl meter reading of -5 divisions. Decrease the input attenuation 10 dB and note front panel meter reading. Touch up "G" if necessary to obtain approximately +5 reading on the meter scale. Recheck -5 reading.
12. Set input attenuator for 1 milliwatt power reading on the power meter. Readjust " D " for +3 division reading on the front panel meter.
13. Adjust front panel attenuators for $5 \mathrm{~mW}(+7 \mathrm{dBM})$ power on the power meter. Adjust overload threshold "H" (R5) clockwise until alarm sounds. Back off counter-clockwise $1 / 2$ turn. Reduce input power, reset alarm and turn bridge back on with control code 67. Slowly increase power to test alarm threshold at approximately 5 mW power level.

This completes alignment of the rf level processor monitor circuits. These adjustments do not affect the operation or accuracy of the measurements.

5.7 Simulated Star Noise Sources

The three solid-state noise sources used for simulating earth terminal reception are mounted on the $Z 600$ sub-assembly. The constant current bias supplies to power these noise sources and their control switches are on the Z 700 printed circuit board through Z 700 - J2. Refer to figure 14 for a block diagram of the $Z 600$ sub-assembly and the schematic of the solid state noise sources.

5.8 Troubleshooting the ETMS Control/RF Unit

When a problem has been identified as being in this chassis, the nature of the problem (1) no rf signal, (2) rf signal loss during a particular function, (3) improper response or no response to control commands or (4) calculator hangs
up on I/O select code \#4 command due to loss of return Ready-F1ag, will already be known or at least suspected.

5.8.1 RF Signal Diagnostics

When the problem is a loss of signal, the most straight forward approach is to trace the input rf or noise signal through the ETMS unit using a sensitive detector. The various parts of the circuit can be isolated at the short BNC cables on the front panel. Use caution not to overdrive the amplifier inputs. An alternative would be to use a signal generator and inject a signal at the power detector and then trace the circuit backward until the signal is lost.

Evaluation of a coaxial relay performance can be made by measuring the repeatability of the dc contact resistance. The resistance should be less than 0.2Ω plus the adapter and lead resistance and should be repeatable within $\pm 0.1 \Omega$.

5.8.2 Control Circuitry Diagnostics

The control circuitry can be examined by following the check-out tests given in section 2.3 of this manual, first check out the manual programming command codes and then commands via the calculator. NOTE: The DVM multiplexer control cable must be connected, otherwise the ETMS rf unit ready-flag back to the caiculator is inhibited.

Attempt to isolate the clues as to the particular malfunction. Note whether the LED lites coincide with the command. If more than one malfunction is present try to deduce which data signals are common to both. This helps to determine whether the problem is in the data and decoder busses or in the latches and drivers.

Follow through the circuit description and schematics in section 5 for a particular circuit once the problem has been localized.

5.8.3 Ready-Flag Diagnostics

Follow the same procedures given in section 5.8 .2 while monitoring the Ready-Flag line with a logic probe or oscilloscope or simply use the calculator response as an indicator. The Ready-Flag can be monitored on pin 55 of the Z 400 printed circuit card.

CATEGORY NO.
1
RESISTOKS

ZAIEGOKY NO. 2---------------------CAPACITORS

	DSGN	QTY	DESCRIPTION		VALU		MFG	PART NLMDER
1	¢-Cl	1	CAP	ELECTRLC 50 V	500		CD	VBE-500-50
2	z-C2	1	CAP	ELECTLC 50V	50	UF	SPRG	TE-1304

	ESGN	CTY	DESCRIPIION	VALLE	LFFG	FAFT NUMEEF
1	2-L1	10	LEE INEICATOF LIGHT	5 VOLT	DIAL	550-0506
2	Z-E2		SANE AS DI	5 VGLT		
3	Z-D3		SAME AS DI	5 VOLT		
4	Z-D4		SAME AS Dl	5 VOLT		
5	Z-D5		SAME AS DI	5 VOLT		
6	Z-D6		SAME AS LI	5 VOLT		
7	Z-D7		SARE AS DI	5 VULT		
8	Z-D8		SAME AS DI	5 VOLT		
9	Z-D9		SAME AS El	5 VOLT		
10	\%-D10		SAME AS DI	5 VOLT		
11	2-D11	1	DIODE SILICON 400 V	1 ANP	FCA	1IV4004

CATEGORY NO. 5---------------INTEGEATED CIRCUITS

L.D.D.

PARTS LIST- RF UNIT (2)
DATA 9
CATEGORY NO.
1 6 DEC 77

CATEGORY NO. 7----------------------TERMINALS

L.D.D. CATEGORY NO.

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMEER
1	\%-S1	1	SWITCH AC POREF (TOEE)	DFD'	ALCO	
2	z-S2	2	SWITCH PUSH BUTTON	SPDT	ALCO	$\begin{aligned} & \text { NSTL-206N } \\ & M S P-105 \mathrm{~F} \end{aligned}$
3	Z-S3		SAME AS S2	SPDT		
	Z-S 4	1	SWITCH RCTARY 3 POLE	3P3'T	ALCO	
5	Z-S5	1	SWIITCHI COAX TANDM ROT	2P5T	'I'ELC	8401
6	C-S6	3	SWITCH RF COAX LATCHG	SPDT	TELE	CS-33S60
7	2-57		SAME AS S6	SPDT		
8	z-S8		SAME AS S6	SPDT		
9	2-59	16	SWITCH TOGGLE	SPET	ALCO	MST-105D
10	Z-Sl0		SAME AS S9	SPDT		
11	Z-Sll		SAME AS 59	SPDT		
12	\%-Sl2		SANE AS S9	SPDT		
13	Z-Sl3		SANE AS S9	SPDT		
14	Z-Sl4		SAME AS S9	SPDT		
15	Z-Sl5		SAME AS 59	SPDT		
16	Z-S16		SAME AS S9	SPDT		
17	Z-S17		SAME AS S9	SPDT		
18	Z-S18		SAME AS S9	SPDT		
19	2-S19		SAME AS S9	SPDT		
20	Z-S20		SAME AS S9	SFDT		
21	Z-S21		SAME AS S9	SPET		
22	Z-S22		SAME AS S9	SPDT		
23	Z-S23		SANE AS S9	SPDT		
24	Z-S24		SAME AS S9	SPDT		
25	Z-S25		S25-S655 NCT USED			
26	¢-S656	2	SWITCH TOGGEE	SPDT	ALCO	MST-105D
27	Z-S657		SANE AS S656	SFDT		

CATEGORY NO. 9------------------------METERS

CATEGORY NO. 10----------------------HARLWARE

| | LSGN | QTY | DESCRIPTION. | VALUE | NFG | PART NUMBER |
| :--- | :--- | ---: | :--- | :---: | :--- | :--- | :--- |
| 1 | Z-H1 | --2 | HOUSING FRANE ASSENBLY | 7×16 | HP | $5060-0734$ |
| 2 | L-H2 | | SAME AS HI | 7×16 | | |
| 3 | Z-H3 | 1 | HOUSING FRONT PANEL | 7 H | HP | $5000-0120$ |
| 4 | Z-H4 | 1 | HOUSING REAR PANEL | 7×16 | HP | $5000-0121$ |

L.D.D.

5	Z-H5
6	Z-H6
7	Z-H7
8	Z-H8
9	Z-H9
10	Z-H10
11	Z-H11
12	Z-H12
13	Z-H13
14	Z-H14
15	Z-H15
16	Z-H16
17	Z-H17
18	Z-H18
19	Z-H19
20	Z-H20
21	Z-H21
22	Z-H22
23	Z-H23
24	Z-H24
25	Z-H25

2 HOUSING SIDE COVER
7×16
HP 5000-0743 7×16 16L 16L
1 HOUSING BOT'ON COVER
2 HOUSING HANDLE SAME AS H9
2 HANDLE RETAINER ASS'Y SAME AS Hll
4 HOUSING FOOT ASS 'Y
SAME AS H13
SAME AS H13
SAME AS H13
1 HOUSING PLATE ASS'Y
1 FC CARD CAGE
1 HEAT SINK (HP8472B)
1 PLATE MAIN MOUNTING
1 PLATE MOUNTING (FAisS)
1 PLATE (POWER SUPPYS)
1 ERACKET
1 BRACKET
1 HEAT SINK (AMPLIFIERS)

HP
ALUM NBS
ALUM NBS
.125 ALUM
. 125 ALUM
.125 ALUM
.125 ALUM
.125 ALUM
11L

HP 5060-0740
HP 5060-0752
HP
HP 5060-0765
HP $5060-0767$

5000-0052
$1.75 \times 1 \times 1$ NBS $14 D \times 15.5 \mathrm{Fi}$
NBS 3.75×7.5
NBS 4.75×10.5
NBS 12×1.5
NBS $9 \times .375$
WAKE A-1527

CATEGORY NO. 12------------------ SUBASSEMBLIES

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	Z-A1	1	ATTEN STEP PROGRAMBL	BINARY	WEIN	AB134-15-6-1
2	Z-A2	1	ATTEN STEP ROTARY		WEIN	AD9003693101
3	\%-A3	1	ATTEN STEP TAINDM ROT		TELC	8140S-108
4	2-A4	1	ATTENUATOR EXD MIN	3 dB	MIDW	MMT 3.33
5	Z-A5	1	ATTENUATOR FXD MIN	6 dB	MIDW	MNT 333
6	Z-A6	2	ATtEinUATOR FXD MIN	10 dB	MIDW	MMT 333
7	Z-A7		SAME AS A6	10 dB		
8	2-A8	2	AMPLIFIER 10-200MHZ		AERT	A1517
9	Z-A9		SANE AS A8			
10	C-F1	1	FILTER band pass	70 MHZ	CIRQ	FBT/20-70/1-
11	L-F2	1	FILTER BAND PASS	70 MHZ	CIRQ	FBT/2-70/2.5
12	Z-F3	1	FILTER EAND PASS	70 MHZ	CIRQ	FBT/2-70/5.5
13	Z-F4	1	FILTER BAND PASS	30 MHZ	CIRQ	EBT/21-30/2.
14	Z-M1	1	PCNER SUPPLY MOEULAR	20 V	LAMB	LOS-Y-20
15	Z-M2	1	POWER SUPPLY MODULAR	5 V	SEMI	ES51000-K2
16	2-M3	1	FOWER SUPPLY MODULAR	+-12V	SEMI	P2.12.100-K 2
17	2-M4	1	POWER SUPPLY MODULAR	+-15V	BE	527
18	Z-M5	1	COUPLER COAXIAL MiN	10 dB	MERR	CRM-10-500
19	Z-M6	1	LETERCTOR DIGDE		HP	HP8472E
20	2-M7	1	TERMINATION COAX MIN	50 OHM	OSM	20020 F
21	2-21	1	SWITCHING PC CARD		NBS	Z 400
22	2-22	1	RE LEVEL PROC PC CARD		NBS	2500
23	\%-23	1	NOISE ALD BOARD		NES	2600
24	2-2.4	1	INPUT CONTRL PC CARD		NBS	z700

ATEGORY NO. 13-------------------MISCELLANLOUS

	DSGN	CTY	DESCRIPTION	VMLUE	NFG	12ART numeer
1	Z-Bl	1	FUSE/FILTER/AC SOCKET			
2	Z-B2	1	AUEIO WARiving device		CORA:	
3	2-B3	2	FAiv PANCAKE		MALL	SC628P
4	Z-E4		SAME AS B3		PANM	8500 C
5	- C 5	1	CABLE RIEBON (23-24)	12	ALPH	3580/14
6	2-B6	3	CABLE . 141 SEMI RIG CX	6	INIF	
7	2-B7		SAME AS B6	6		
8	2-E8		SAME AS B6	6		
9	Z-E9	1	CABLE . 141 SENI RIG CX	2	UNIF	
10	Z-B10	ε	CABLE COAX RG58AU	20	BELD	RG58AU
11	Z-Bll		SAME AS Bl0	20	BLIS	RG58AU
12	Z-bl2		SAME AS El0	20		
13	Z-B13		SAME AS Bl0	20		
14	2-E14		SAME AS Bl0	20		
15	Z-B15		SAME AS Blo	20		
16	L-B16		SAME AS Bl0	20		
17	Z-B17		SAME AS Bl0	20		
18	2-818	4	CABLE COAX RG58AU	7	BELD	RG58AU
19	2-E19		SAME AS Bl8	7		
20	\%-B20		SAME AS Bl8	7		
21	Z-B21		SAME AS Bl8	7		
22	Z-B22	2	CADLE COAX RG68AU	20	BELD	RG58AU
23	Z-E23		SAME AS B22	22		
24	¿-R24	2	CABLE CCAX KG58AU	17	EELD	RG58AU
25	Z-B25	6	CABLE CCAX RG58AU	6	BELD	KG58AU
26	2-526		SAME AS E 25	6		
27	Z-E27		SAME AS E25	6		
23	Z-E28		SAME AS L25	6		
29	Z-E29		SAML AS L25	6		
30	Z-B30		SAME AS E 25	6		
31	と-531	1	CABLE CCAX RG58AU	6.5	BELD	RG58AU
32	Z-E32	1	CABLL COAX RG58AU	13	EELD	RG58AU
33	2-E33	1	CABLL COAX RG58AU	14.75	EELD	RG58AU
34	Z-E34		SAME AS B24	17		
5	2-E35	1	CABLL COAX RG58AU	31	BELD	RG58AU
36	$2-336$	1	CABLE COAX RG58AU	32	BELD	RG58AU

CATEGOFY NO.

	DSGN	QTY	DESCRIPTION		VALUE		N.FG	PART NUMELR	
1	Z4-R1	3	RES FXD CARB 5\%	1/4V.	27.0K	CHM	$A E$	CB	
2	24-R2	1	FES FXD CARB 5\%	$1 / 4 W$	33.0K	OHM	$A B$	$C B$	
3	24-53		SAME AS RI		27.0K	OHM			
4	24-R4		SAME AS Rl		27.0K	OHM			
5	24-R5	3	RES FXD CARB 5\%	1/4W	1.0K	CHM	$A B$	CB	
6	24-R6		SAME AS R5		1.0K	OHM			
7	24-R7	8	RES FXD CAFB 5\%	1/2w	82	CHM	$A E$	EB	
8	24-R8		SAME AS R7		82	OHM			
9	24-R9		SANE AS R7		82	OHM			
10	24-R10		SAME AS F7		82	CHM			
11	24-R11		SAME AS F 7		82	OHM			
12	44-R12		SANE AS R7		82	OHM			
13	24-r.13		SAME AS F 7		82	OH1:			
14	44-K14		SAML AS P7		82	CHIL			
15	24-R15	4	RES FXD CARE 5\%	1/4W	4.7K	OUM	$A B$	CB	
16	24-R16		SAILE AS R15		4.7K	OFM			
17	24-R17	4	RES FXD CAFB 5\%	1/4W	10.0K	OHM	$A B$	$C B$	
18	24-R18		SANE AS Rl7		10.0K	OHM			
19	24-R19		SANE AS R15		4.7 K	OHM			
20	24-R20		SAME AS Rl5		4.7 K	OHM			
21	24-R21		SAME AS Rl7		10.0K	CHM			
22	Z4-R22		SAME AS Rl7		10.0K	CHM			
23	24-R23		SAME AS R5		1. OK	OHM			

CATEGORY INO.
-CAPACITCRS

	DSGN	QTY	LESCRIPTIOA		VALUE	NFG	FART NUMEER
1	24-Cl	4	CAP HI-K MONC	50 V	1.0 UF	SPPG	$5 \mathrm{C} 023105 \times 025$
2	24-C2		SAME AS Cl		1.0 UF		
3	$\mathrm{Z} 4 . \mathrm{C} 3$		SANE AS Cl		1.0 UF		
4	24-C4		SAME AS Cl		1.0 UF		
5	24-C5	4	CAP CERANIC		0.1 UF		
6	2 4 -C5	1	CAP TANT 35 V		1.0 UF		
7	24-C7		SAME AS C5		0.1 UF		
8	24-C8		SMME AS C5		0.1 UF		
9	24-C9		SANE AS C5		0.1 UF		
10	24-C10	1	CAP TANT 25 V		10 UF		

.D.D. 1 DEC 77 PARTS LIST- SFI'CHING FC CARD (2400) DATh 5 ATEGORY NO. 3--------------------TRALSISTOLS

ATEGCRY NO.

	USGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMEER
1	24-CR1	20	DIODE SILICON 1A 400 V	1N4004	RCA	1N4004
2	24-CR2		SAME AS CRI	1N4004		
3	24-CR3		SAME AS CRI	IN4004		
4	$24-C R 4$		SANE AS CRI	1N4004		
5	24-CR5	8	DIODE ZENER SI 24 V	1N5252	NOT	1-15252\%
6	24-CE6		SAME AS CR5	1N5252		
7	54-CR7		SAME AS CRI	liv4004		
8	24-CR8		SARIE AS CRI	1N4004		
9	24-CES		SAME AS CRI	1N4004		
10	Z4-CR10		SAME AS CRI	1H4004		
11	24-CR11		SAME AS CR5	liv 5252		
12	\%4-CR12		SAME AS CR5	1N5252		
13	24-CR13		SAME AS CRI	1N4004		
14	Z4-CR14		SAME AS CRI	IN4004		
15	Z4-CR15		SAME AS CRI	1N4004		
16	24-CR16		SAME AS CRI	1N4004		
17	24-CR17		SAME AS CR5	1N5252		
18	24-CR18		SAME AS CR5	1N5252		
19	L4-CR19		SAME AS CRI	1N4004		
20	24-CR20		SAME AS CRI	1 N 4004		
21	24-CR21		SANE AS CRI	$1 N 4004$		
22	24-CR22		SAME AS CRI	1N4004		
23	24-CR23		SAME AS CR5	1N5252		
24	Z 4-CR24		SAME. AS CR5	1 N 5252		
25	24-CR25		SAME AS CRI	1 N 4004		
26	24-CR26		SAME AS CRI	1N4004		
27	24-CR27		SAME AS CRI	1N4004		
28	24-CR28		SAME AS CRI	1N4004		

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	24-ICl	1	INT. CRKT. BCD DECODER	7442 N	TI	SN7442N
2	24-IC2	3	INT. CRKT. QUAD NOR	74 LS 02 N	TI	SN74LS0 2 N
3	24-IC3	1	INT. CRKT. QUAD NAND	74 LSO 0 N	TI	SN74LS00N
4	24-IC4	1	INT. CRKT. QUAD LATCH	. 74 LSL 175 N	T I	SN74LSI 75N
5	24-IC5	4	INT. CRKT. ONE SHOT	$74121 N$	T I	SN74121N
6	24-IC6		SAME AS IC2	74 LS 02 N		
7	Z4-IC7		SAME AS IC5	74121 N		
8	24-IC8	1	INT. CRKT. DUAL FF (D)	$74 \mathrm{LS74N}$	T I	SN74LS74N
9	24-ICS		SAMLE AS IC5	74121 N		
10	24-ICl0		SAME AS IC5	74121 N		
11	Z4-ICl1	2	INT. CRKT. HEX INVERT	$74 \mathrm{LS04N}$	T I	SN74LS04N
12	24-ICl2		SAPE AS ICll	$74 \mathrm{LS04N}$		
13	24-ICl3	6	IC LUAL NAND OC DRIVE	75452 B	TI	SN75452BP
14	Z4-ICl4		SAME AS ICl3	75452 B		
15	Z4-ICl5		SAME AS ICl3	75452 B		
16	24-ICl6		SAME AS ICl3	75452 B		
17	24-ICl7		SAME AS ICl3	75452 B		
18	Z4-ICl8		SAME AS ICl3	75452 B		
19	24-IC19		SAI:E AS IC2	74 LS 02 N		
20	44-IC20	1	IC DUAL NAIND BUFFER	74 LS 38 N	T I	SN74LS38N

CATEGORY NO. 10-----------------------HARDWARE

| | DSGN | QTY | DESCRIPTION | VALUE | MFG | PART NUMEER |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| 1 | Z4-B1 | 1 | PC BRD FOR SWTCHG CRKT. | | NBS | PC-400 |
| 2 | 24-H1 | 8 | SCREW NYLCN 4-40 | $1 / 2$ | | |
| 3 | Z4-H2 | 8 | NUT NYLON 4-40 | | | |
| 4 | Z4-H3 | 8 | WASHER MICA INSULATOR | | | |

CATEGOFY NO. 12-------------------SUBASSEMBLIES

	DSGH	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	Z4	-	RF SWITCHING PC CARD		NBS	Z400

	DSGiv	QTY	DESCRIPTION	VALL		MFG	PAET NUMEER
1	25-R1	1	RES FXD CARB 5\% $1 / 4 \mathrm{~W}$	15K	CHM	$A B$	CB
2	25-R2	2	RES FXD MF $1 \% 1 / 4 W$	100	OHM	CORG	NC 5
3	25-R3	4	FES FXD ME 1\% 1/4W	10K	OHEI	CORG	NC5
4	25-R4	1	RES FXD MF 1\% 1/4W	1000K	OHM	CORG	INC 5
5	25-R5	1	RES FXD MF $1 \% 1 / 4 W$	5.1K	OHM	COFG	NC 5
6	25-R6	3	RES VAR TRIM CERMET	10K	OHM	BRNS	3006W-1-103
7	25-R7	1	RES VAR TRIM CEFHET	20K	OHM	ERNS	3006W-1-203
8	25-R8		SAME AS R6	10K	CHM		
9	25-R9	2	RES VAR TRIM CERMET	1 K	OHM	ERNS	3006れ-1-102
10	25-R. 10	4	RES FXD HF $1 \% 1 / 4 \mathrm{~W}$	200K	OHM	COPG	inc5
11	25-R11		SAME AS Rl0	200K	OHM		
12	25-R12		SAME AS Rl0	200K	OHM		
13	25-R13		SAME AS R10	200K	OHM		
14	Z5-R14		SAME AS R.6	10K	OHM		
15	Z5-R15	1	RES FXD MF l\% l/ 4 W	2K	OHM	COFG	NC 5
16	25-R16		SAME AS R3	10 K	OHM		
17	25-R17		SAME AS R3	10K	OHM		
18	25-R18	1	RES FXD MF $1 \% 1 / 4 \%$	20K	OHN	CORG	NC 5
19	25-R19	2	RES VAR TRIN CERMET	2K	OHM	ERNS	3006W-1-202
20	25-R20		SAME AS RI9.	2K	CIIM		
21	Z5-R21		SAML AS R9	1K	CIIN		
<2	< 5 -R22	1	RES FXD MF $1 \% 1 / 4 W$	511	ChH	COEF	ivC5
23	25-下23	1	RLS FXD MF 1\% $1 / 4 \mathrm{~W}$	1 K	OHM	CORG	NC5
24	Z5-R24		SAME AS R2	100	OHM		
25	Z5-R25	1	RES FXD MF 1\% 1/4W	10	CHM	CORG	NC5
26	25-R26	1	RES FXD CARB 5\% $1 / 4 \mathrm{~N}$	100	OHM	$A B$	$C B$
27	25-R27	1	RES FXD CARB 5\% 1/4W	2.7 K	OHM	$A B$	$C B$
28	25-R28		SAME AS R3	10K	OHM		
29	25-R29	1	RES FXD CARB 5\% 1/4k	4.7K	OHM	AB	CB
30	Z5-R30	2	RES FXD CAFB 5\% 1/4W	39 K	CHM	AE	CB
31	25-R31		SAPIE AS R30	39K	OHM		
32	¢5-R32	1	RES FXD CARB 5\% $1 / 4 \%$	27 K	OHM	AE	CE
33	45-R33	1	FES FXD CARB $5 \% 1 / 4 \mathrm{w}$	10K	OHM	$A B$	C C
34	25-R34	1	RES FXD CARB 5\% $1 / 4 W$	1K	OHid	$A B$	
35	25-R35	1	RES FXD $\because \mathrm{F}$ (\% $1 / 4 \mathrm{~W}$	24.3K	CHM	CORG	NC5

CATEGORY NO. 2---------------------CAPACITORS

	DSGN	QTY	DESCRIPTION		VALUE	MFG	PART NUMBEK
1	25-Cl	2	CAF DISK		. 001 UF		
2	25-C2	1	CAP CERAMIC		. 1 UF		
3	25-C3	1	CAP FCLYCARBOI		. 1 UF	SEAC	CMK
4	25-C4	2	CAP DISK		. 01 UF		
5	25-C5		SAME AS C4		. 01 UF		
6	25-C6	4	CAP TANT 35V		22 UF		
7	25-C7	1	CAP DIP MICA		150 PF		
8	25-C8	2	CAP TANT 20 V		47 UF		
9	25-C9		SAME AS C8		$47 . \mathrm{UF}$		
10	25-Cl0		SAME AS CG		22 UF		
11	¢5-Cll		SAME AS C6		22 UF		
12	25-Cl2		SAME AS C6		22 UF		
13	25-C13	1	CAF DIP MICA		100 PF		
14	25-C14	3	CAP HI-K NONO	50 V	1.0 UF	SPRG	$5 \mathrm{CO23105} \mathrm{\times 0250}$
15	¢5-Cl5		SAME AS Cl4		1.0 UF		
16	25-Cl6		SAME AS Cl		. 001 UF		
17	25-C17		SANE AS Cl4		1.0 UF		

CATECORY NO.

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMEET
\cdots	$-\cdots-D I$	1	DIODE SILICON IOOV	IN4153	MOT	IN4153

CATEGORY NO.
INTEGRATED CIRCUITS

	DSGN	QTY	DESCRIPTION	VALUE	NFG	PART NUMBER
1	Z5-ICl	1	INT. CRKT. OP AMP	OP-05C	MONO	OP-05C
2	\%5-IC2	1	IC SAMPLE \& HOLD	SHiN-LM-2	DATL	SHM-LM-2
3	25-IC3	1	INT. CRKT. FET OP AMP	LHO 042 C	NATL	LHOO42C
4	25-IC4	1	INT. CRKT. LOG AMP	8048	ITSL	ICL 8048 ECPF
5	25-IC5	1	INT. CRKT. OP AMP	LM741C	NATL	LM741C
6	25-IC6	2	INT. CRKT. TIMER	LM555	NATL	LM555
7	25-IC7		SAME AS IC6	LM 555		
8	25-IC8	2	INT. CRKT. ONE SHCT	74121 N	T I	SN74121N
9	25-IC9	1	INT. CRKT. NAINL DRIVE	75452 B	TI	SN75452B
10	25-ICl0		DELETED	74121 N		
11	25-1Cl1	1.	IWT. CRKT. HEX INVERT	74 LSO 4 N	TI	SN74LS04is

DIECCKY WO. DEC 77 PARTS LIST- TE LEVEL PROCESS CARD (2500)

	DSGN	QTY	description	value		MFC	ERET HUMEEP
1	25-Kl	2	SOCKET ROUND DIP		Fin	SA:m	
2	25-K2	1	SOCKLT DUAL IN-LINE DP	16		SAMT	IC-316-SGG
3	25-K3		SAME AS K1		PIN		
4	25-J1	2	JạCR JUMPER IC PIiv		PIn	GARY	AA-C
\%	25-J2		SAME AS Jl		PIN		
6	25-T1	1	tefm test point		PIN	GAR	AA-C

	DSGN	QTY	description	value	MFG	Part number
1	75				NBS	

\qquad

CATEGOFY NO. l---------------------RESISTORS

	DSGiN	CTY	DESCRIPTION	VALUE		MFG	PART ISUMBER	
1	26-R11	6	FUS FXD $\because \mathrm{FF} 1 \% 1 / 4 \mathrm{~W}$	10	OH C	CORG	HC5	
2	26-R12		SAME AS RIl	10	OH			
3	26-Kl3	3	RES FXD NF $1 \% 1 / 4 \hat{\sim}$	150	OHM	CORG	ivC 5	
4	26-R14	3	RES FXD NF 1\% $1 / 4 \mathrm{~W}$	27	CHM	COFG	NC5	
5	Z6-R15	3	RES FXD MF 1\% $1 / 4 \mathrm{~W}$	30	OHM	CORG	NC5	
6	26-R21		SAME AS Rll.	10	OHM			
7	26-R22		SAME AS Rll	10	OHM			
8	26-R23		SAME AS Rl3	150	OHM			
9	26-R24		SAlfE AS R14	27	OHM			
10	26-R25		SAME AS Rl5	30	OHM			
11	26-R31		SAME AS Ell	10	OHM			
12	CETR32		SAREE AS Kll	10	Ctim			
13	26-R33		SAME AS RI3	150	CHM			
14	C6-R34		SAME AS R14	27	OHM			
15	26-R35		SAME AS R15	30	OHM			

CATEGORY NO. 2--------------------CAPACITORS

	DSGN	QTY	DESCRIPTION	VALUE	PART NUMBER
1	26-Cll	6	CAP CERAAIC	10 PF	
2	26-Cl2		SAME AS Cll	10 PF	
3	26-C21		SAME AS Cll	10 PF	
4	26-C22		SAME AS Cll	10 PF	
5	26-C31		SAME AS Cll	10 PF	
6	26-C32		SAME AS Cll	10 PF	

CATEGOKY NO.

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	26-J1	5	JACK PANCL FECEPTACLE		EFJ	142-0296-001
2	26-J2		SAME AS Jl			
3	\%6-J3		SAME AS Jl			

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	26-H1	1	PLATE ALUM 4.25×5.5	1/16	NBS	
2	Z6-H2	2	BRAKET RIGHT ANGLE	1/16	NBS	
3	26-H3		SAME AS H2	1/16		
4	26-H4	4	MINI EOXES (MODIFIED)		POMA	
5	Z6-H5		SAME AS H4			
6	26-H6		SAME AS H4			
7	26-H7		SAME AS H4			

ATEGORY NO.

	DSGiv	CTY	DESCRIPTICN		ALUE	MFG	PART NUMEER
1	26	1	HOISE ADD CARD			NES	Z 600
2	26-S1	1	3 WAY POWER DIVIDER			MEFR	FDM-30-55
3	Z6-A1	1	AMP 10-500 MHz			AVNT	UDP-531
4	26-T1	1	ATTENUATOR MINIPAD		dB	MID	MTT-333-5
5	26-T2	1	ATTENUATOR MINIPAD		dB	MID	MTT-33 3-10

ATEGORY NO. 13-------------------MISCELLANEOUS

	DSGN	QTY	DESCRIPTION		VALUE		MFG	PART NUMBER
1	26-L11	3	INDUCTOR		. 15	UH	DLVN	1537-00
2	26-L21		SAME AS	L11	. 15			
3	26-L31		SAME AS	Lll	. 15	UH		
4	26-X1	1	COAX MINI	(RG-174)	3		BELD	174/UG
5	26-x2	,	CCAX SEMI	-RIGID (.141)			UNIF	
6	26-X3	1	COAX SEMI	-RIGID (.141)	1.25		UNIF	

CATEGORY NO．

	DSGN	8 ¢T	LESCRIPTICN	VALUE	MFG	FART NUMELR
1	27－R1	13	F．LS FXL CAFE 5\％1／46	1．5K CnM	AB	CE
2	く7－F2		SAME AS Rl	1.5 K CHN		
3	27－R3		SANE AS Rl	1．5K OHM		
4	27－R4		SAME AS Rl	1．5K OHM		
5	27－R5		SAME AS KI	1．5K CHM		
6	く7－R6		SAME AS Rl	1．5K CHE		
7	27－R7		SAME AS Rl	1．5K OFM		
8	27－R8		SAME AS RI	1．5K CHM		
9	27－R9		SAML AS RI	1．5K CHM		
10	く7－R10		SAND AS Kl	1．5K Cha		
11	く7－K11		SAFE AS Fil	1．5K OLIL		
12	27－R12		SAEL AS Rl	1.5 K CHM		
13	27－R13	2	RES FXL CARB 5\％1／4K	12.0 K OHM	$A B$	$C B$
14	27－R14		SAME AS R13	12.0 K ChM		
15	27－R15	1	RLS FXD CARB $5 \% 1 / 4 \%$	1． 2 K OHM	$A B$	CE
16	27－R16		SAME AS Rl	1.5 K OHA		
17	Z7－R17	4	RES FXD CARB 5\％1／4W	2． 2 K OHN	$A \bar{s}$	$C B$
18	27－R16		NOT USED			
19	27－R19	2	RES．FXD WW 5\％3W	2． 2 K OHM		
20	27－R20		SAME AS Rl7	2．2K OHM		
21	27－R21		NOT USED			
22	27－R22		SAME AS R19	2． 2 K CHM		
23	Z7－R23	12	RES FXD NF 1\％1／4W	30.1 K CHM	CRNG	NC 5
24	Z7－R24		SAME AS P23	30.1 K CHM		
25	27－R25		SAlIE AS R23	30.1 K OHM		
26	二7－R26		SAME AS K23	30.1 K CHM		
27	27－R27		SAME AS R23	30.1 K OHM		
28	47－R28		SAME AS R23	30.1 K OHM		
29	27－R29		SAME AS R23	30.1 K OHM		
30	27－R30		SAME AS R23	30.1 K OHM		
31	27－R31		SAME AS R23	30.1 K OHLI		
32	27－R32		SAME AS R23	30.1 K OLM		
33	27－R33		SAME AS R23	30.1 K OHM		
34	27－R34		SAME AS R23	30．1K OHiif		

S.D.D.

1 DEC 77

	DSGN	QTY	LESCRIPTICi		value	MFG	PART NL: ${ }^{\text {a }}$
1	27-C1	3	CAY HI-K HONC	50 V	1.0 UF	SPRG	$5 \mathrm{C} 023105 \times 025053$
2	く7-C2		SAME AS Cl		1.0 UF		
3	27-C3		SAME AS Cl		1.0 UF		
4	27-C4	1	CAP TANT 35V		1.0 UF		
5	27-C5	2	CAP DISK		. 01 UF		
6	27-C6	1	CAP TANT 25 V		10.0 UF		
7	27-C7		SAME AS C5		.01 UF		

CATEGORY NO.
TRANSISTOKS

	DSGN	QTY	DESCEIPTION		VALUE	MFG	PART NUMEER
1	Z7-Q1	2	'TRANSISTCF SILICON	NPV	2iv4922	RCA	2 N4922
2	27-Q2		SAME AS Q1		2iv4922		

CATEGORY NO. 5----------------INTEGRATED CIRCUITS

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PAET NUMBER
1	¢7-ICl	2	INT. CRKT. QUAD INAND	74 LSOON	TI	Sivi 74 LSO 0 N
2	Z7-IC2	1	INT. CRKT. HEX INVERT	74 LS 04 N	T I	SN74LS04N
3	27-IC3	3	INT. CRKT. CLIL SHOT	74121 N	TI	Siv74121N
4	<7-IC4		SAME AS IC3	74121 N		
5	27-IC5		SAME AS IC3	74121 N		
6	27-IC6	2	IC 4 BIT DATA MULTELX	74LS157N	TI	Siv74LSl 57 N
7	27-IC7		SAME AS IC6	74 LSl 57 N		
8	Z7-IC8	1	INT. CRKT. QUAD HOR	74LS02N	TI	SN74LS02N
9	27-IC9		SAME AS ICl	74LSOON		
10	27-ICl0	1	INT. CRKT. QUAD LATCH	$74 \mathrm{LS74N}$	TI	SN74LS74N
11	27-ICl1	1	IC HEX INVERT (NOT LS)	7404 N	TI	SN7404N
12	27-ICl2	1	IC HEX INVERTER (OC)	7406 N	TI	SN7406N
13	27-ICl3	3	INT. CEKT. OF AMP	OP-05	MCNO	CP-05
14	27-IC14		SANE AS ICl3	OP-05		
15	Z7-ICl5		SAME AS ICl3	OP-05		

L.D.D. I DEC 77 PAFTS LIST- INPUT CONTROL PC CARD (Z700) DATA 8 CATEGORY NO. 6--------------------CONNECTOFS

CAI'EGORY NO. 10----------------------HARDWARE-

	DSGN	QTY	DESCRIPTION	VALUE	NFG	PART NUMBER
1	27-B1	1	PC BRD FOR CNTROL CRKT		NBS	PC-700
2	27-H1	2	SCREW NYLON 4-40	1/2		
3	27-H2	2	NUT NYLON 4-40			
4	27-H3	2	WASHER MICA INSULATOR			

CATEGORY NO. l2------------------- SUBASSEMBLILS-

CONTROL/RF UNIT
FRONT PANEL COMNECTIONS *

* Front Panel connections listed above are designated on other diagrams by a Triangular Flag

[^1]| | J-400 | | |
| :---: | :---: | :---: | :---: |
| ANALOG GND | 1 | 2 | ANALOG GND |
| +36V | 3 | 4 | $+36 \mathrm{~V}$ |
| +24V | 5 | 6 | +24V |
| | 7 | 8 | PGM ATN 8+ |
| | 9 | 10 | PGM ATN 8- |
| REF ATN -2 | 11 | 12 | PGM ATN 4^{+} |
| REF ATN -1 | 13 | 14 | PGM ATN 4- |
| Z500-50 | 15 | 16 | PGM ATN 2+ |
| R.F. ON -2 | 17 | 18 | PGM ATN 2- |
| 2500-52 | 19 | 20 | PGM ATN ${ }^{1+}$ |
| R.F. ON -1 | 21 | 22 | PGM ATN 1- |
| | 23 | 24 | |
| | 25 | 26 | |
| | 27 | 28 | |
| | 29 | 30 | |
| | 31 | 32 | |
| 2500-55 | 33 | 34 | |
| | 35 | 36 | |
| | 37 | 38 | Z700-31 |
| | 39 | 40 | 2700-25 |
| FP 49 | 41 | 42 | Z700-37 |
| FP 2 | 43 | 44 | 2700-41 |
| 2500-47 | 45 | 46 | 2700-46 |
| FP 51 | 47 | 48 | Fp 25 |
| 2700-42 | 49 | 50 | 2700-50 |
| 2700-36 | 51 | 52 | 2700-30 |
| 2700-56 | 53 | 54 | 2700-54 |
| J650-20 | 55 | 56 | J651-13 |
| +5v | 57 | 58 | +5v |
| GND | 59 | 60 | GND |

ANALOG GND	1	2	ANALOG GND
	3	4	
	5	6	
	7	8	
	9	10	
SHIELD XTAL DET.	11	12	
XTAL DET.	13	14	
	15	16	
	17	18	
	19	20	
	21	22	
FP 48\%	23	24	
	25	26	FP 37
FP 46	27	28	FP 40
	29	30	FP 41
	31	32	FP $4>+\mathrm{METER}$
	33	34	FP 48 -METER
-15V	35	36	-15V
+15V	37	38	$\pm 15 \mathrm{~V}$
FP 44	39	40	
FP 42	41	42	
FP	43	44	
2700-52	45	46	
$2400-45$	47	48	
$\text { FP } 50$	49	50	2400-15
	51	52	Z400-19
	53	54	
2400-33	55	56	
+5V	57	58	+5V
GND	59	60	GND
		75	

WIRING LIST

\qquad

Omitimac daticor omame			
nivisions			
*	\because	sment	0×1
$+$		creomy	0-1,
,			
-			

Figure $12 . \quad 2700$ Schematic Circuits.

ASSY, WPUT CONTROL CARD TOR ESRTH TERMINAL CAR

\qquad
 AMOLRE
 mis er emococones
paint isouso
$2766480-2700$

Z600 Block Diagram.
Figure 14.

2700-14

AC Power See Power Supply Diagram

4
0
0
0
0
0
0
0

Figure 17. Control/RF Unit Primary Power Distribution.

6. MULTIPLEXER/DIGITAL VOLTMETER CONTROLLER

6.1 Introduction

The digital voltmeter control circuits and input channel multiplexer are built into a flat package which is attached to the top of the digital voltmeter (see fig. 18). This unit contains the control latches for the digital voltmeter functions, the offset-voltage reference used with the power meter measurements and the reed-relay analog multiplexer which provides 12 input channels for the digital voltmeter.

The entire package is self-contained and replaces the top cover of the DVM. No modifications to the DVM are required.

6.2 Specifications

Offset voltage reference
1 M.V. resolution programmed automatically by Channel \#9.
Range. 3 ranges internally selected.
2.0 to 2.999 V for Type IV power meter
3.5 to 4.5 V for Type II power meter
4.5 to 5.5 V for HP 432 power meter

Analog Multiplexer
12 input channels
Analog channels Low Thermal EMF Reed Relay, 2 pole guarded.
Control commands are generated by the ETMS control/rf unit or ETMS calculator interface.

6.3 Y 100 MUX/DVM Control Card (Schematic, Figure 20)

The control circuits are on the Y 100 printed circuit card. Incoming comnand data from the ETMS control/rf unit on the four low-order bits are connected to three four-bit latches (IC-104, 105, and 106) which store the function data. The DVM range is stored in IC-106*, the DVM function (dc FNote: The D or " 8 " latch is not used to program Range, but instead actuates the DVM "HOLD." This allows the DVM range control codes 16 , and 19 thru 23 to program the DVM range but leave the DVI RATE in the free-running mode.

Figure 18. Multiplexer/DVM Unit.
volts；filter）in IC－105 and the input multiplexer channel IC 104．The function select data lines 5，6，and 7 are decoded in IC 101．The output of this decoder enables the CTL pulse to the selected latch strobe to store the output data on the four data lines．

One gate of IC－103 acts as an OR gate to feed the decoded CTL pulse to trigger the ready－flag one－shot，IC 107．Any one of the three decoded CTL pulses cause the one－shot to return a ready－flag to the ETMS control／rf unit where it is combined with the flags from that chassis．Note：This flag circuit returns a flag for DVM control commands．The DVM DATA READY flag
 multiplexer function is selected，the enabled CTL pulse triggers the one－shot， IC 108，which generates a pulse to disable the multiplex driver during the time the MUX data latches are changing．This opens the previously selected input channel relay a short time before the next selected input channel relay closes thus avoiding shorting two input channels together．

Inverter driver IC＇s 110 and 111 drive the front panel LED indicator lights．
The range information from the voltmeter must be converted to a correspond－ ing exponent digit to be compatible with the calculator interface．This is accomplished by the adder，IC $120--$ which adds +13 hexidecimal or modulo 16 to the range data and ignores the carry bit in the result．The DVM interface，I／O select code 非2 has the decimal point code hard wired between DVM data digits 3 and 4 at the jack on the rear panel（J352）．This arrangement permits inputing the DVM data without any extra processing required．

6．4 Y 200 Offset Reference Voltage Card（Schematic Figure 22）

The offset voltage reference is a programmable D／A converter which accepts DVM data when input channel $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 9 is selected so that the offset voltage is auto－ matically set to the voltmeter reading．

6．4．1 Digital Circuits（See Also Figure 19）

The decoder $I C-205$ enables the DVM data ready signal in IC－206 when the input channel multiplexer is set to channel $\# 9$ ．This data ready pulse triggers the one－shot，IC－207 to strobe the three most significant digits of the DVM reading currently on the data lines into the DAC．

Figure 19. Data Flow-DVM.

6.4.2 Reference Voltage Circuits (Schematic, Figure 22)

The reference voltage used as an offset voltage is the combination of a fixed (coarse ref.) voltage and the programmed DAC voltage. The DAC voltage is 0 to 10 volts output but is divided by 10 before being added to the coarse reference voltage thus giving 1 millivolt resolution.

The output from the internal voltage standard of the DAC is divided in the resistive divider providing three jumper selectable voltages 4.5, 3.5, and 2.0 volts for use as the coarse reference voltage. Amplifier-follower IC-202 drives the coarse reference circuits buffering them from the voltage standard. The output of this buffer is added to the divide by 10 output of the DAC in R8 and R9 and the summing amplifier IC-203. Inverter amplifier IC-204 drives the offset voltage reference circuits.

When input channel $\# 9$ is selected, the coarse reference is connected to the DVM "LO" input, and the rf power meter to the DVM "HI" input so that the DVM reads the difference of the two voltages. This DVM reading is strobed into the DAC so that the output voltage of the offset reference circuits matches the power meter. voltage within ± 1 millivolt. Normally the rf power is turned off while the offset reference voltage (DAC) is set equal to the power meter voltage. Then small voltage changes between the power meter input and the offset reference can be measured with high resolution with a good 5 or 6 digit DVM. These readings are made on input channel $\# 10$.

6.4.3 fidjustment Y 200 Voltage Offset Reference (Refer to Figures 22 and 23)

The adjustment procedure for this circuit involves programming the digital to analog converter (DAC) to zero and adjusting the dc offset to zero; grounding the input to the course reference buffer and then "zeroing" the dc offset of the buffer amplifier, summing amplifier and the inverting amplifier. Then programming the DAC to a known voltage and adjusting the DAC gain to obtain that voltage out.

The following strp-by-step procedure refers to an external voltmeter; however, the procedure is arranged so that the DVM can be used.

Adjustment Procedure:

1. Disconnect rear DVM input cable J-204. Disconnect the power bridge cable J-354 on back of multiplewer.

2．Program input channel \＃9 using control code 非102．Connect a test lead to short together the HI and LO input terminals on the front of the DVM．Place the DVM in manual control（but leave the data output button on）and turn the Rate knob fully clockwise．Adjust the DVM dc offset trimmer to obtain a zero reading on the DVM．Rotate the Rate knob fully counterwise（Ext．position）to lock the zero reading on the DVM display．Since input channel \＃9 was selected，the DAC is row programmed to zero reading．Execute control code $⿰ ⿰ 三 丨 ⿰ 丨 三 八$ 96 to disable the rultiplexer and lock the DAC reading．Rotate the Rate control fully clockwise to enable the DVM．
3．Connect external voltmeter to the HI and LO input terminals of the multiplexer to read the DAC output voltage．Adjust the DAC dc offset， R16，for a zero reading on the voltmeter．
4．Remove Jumper＂C＂power meter select and ground the common pin． Connect the external voltmeter to TP－1 and ground．Adjust the buffer amplifier dc offset，R18，to obtain a zero reading on the voltmeter．
5．Both inputs to the summing amplifier are now zero volts．Connect the external voltmeter to $\mathrm{TP}-2$ and adjust the summing amplifier dc offset， R19，to obtain a zero reading on the voltmeter．
6．Move the external voltmeter to TP－3．Adjust the inverter amplifier dc offset，R20，to obtain a zero reading on the voltmeter．
7．Set DVM to 10 volt scale and the Rate knob fully clockwise．Execute control code $⿰ ⿰ 三 丨 ⿰ 丨 三 一 102$（input channel 9）to enable the DAC．Connect the DVM LO input to ground with a test lead and the DVM HI input to +5 volts on the power supply．Rotate the Rate control fully counterclockwise and then execute control code \＃96 to lock the DAC．Write down the DVM reading．Rotate the DVM Rate control fully clockwise．Connect an external voltmeter to input channel $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 5 HI and LO inputs to read the DAC output．Adjust the DAC gain，R17，to obtain the voltage written down from DVM in the last measurement．
8．Repeat step numbers 2 and 3 to recheck the DAC zero．
9．Move the external voltmeter to $\mathrm{TP}-3$ and verify that all amplifiers have zero offset．
10．Remove test leads from DVM front panel input．Disconnect external voltmeter if one was used．
11．Replace power－meter select off－voltage jumper to＂C＂（if Type IV power meter is used）．Reconnect J204 in rear of DVM．Reconnect J354 on rear of mux．
12. Load equipment check program and run equipment checks.

6.5 Y 300 Input Channel Multiplexer (Schematic, Figure 24)

6.5.1 Control Circuits

This printed circuit board contains a one-of-sixteen decoder-driver, IC-301. The data stored in the multiplexer latches on the $Y 100$ board is decoded to energize the selected reed relay coil. When the data changes, the CTL pulse is used to temporarily disable the decoder to avoid accidently shorting two multiplexer input channels together.

6.5.2 Analog Multiplexer

Each analog input channel is switched to the HI and LO inputs of the DVM through a two-pole shielded reed relay having low thermal-emf contacts. The inputs to each channel relay are pin and jack connections, so that the channel assignments could be changed should a relay fail. Input channel $\# 11$ is an auxiliary input from J-357, but could be used as a spare input if needed. The program input channel assignments would also have to be changed. (See Section 6.6

6.5.3 Multiplexer Input Channel Assignments

The input channel assignments are given in the following table.

Control
Input Channe1
Function
Hi/Lo Shorted-DVM zero
111
Temperature 110
Dew point temperature 109
rf amp. power supply 108
Sim. Noise-Add Ref. Voitage 107
DAC output 106
XTAL Detector 105
DAC Ref. Vol.tage 104
Power Meter 103
*Hi-Pwr Meter, Lo Coarse Offset 102
ΔV Voltage Power Measurement 101
auxiliary channel 100
open circuit 99.
open circuit 98
open circuit 97
open circuit 96

6．6 Troubleshooting

Manually program each input channel with the DVM in manual mode through the various control codes given in the previous table noting if the voltmeter reads the correct voltage．Check that the input cables are connected to the correct jacks on both ends．Check that the DVM rear panel input $J 204$ is properly con－ nected．

If a multiplexer relay fails to operate properly，the input channels can be changed．The analog multiplexer input leads are plugged into pin－jacks at each channel relay．These leads are long enough that they can be plugged into the auxillary input channel（ $⿰ ⿰ 三 丨 ⿰ 丨 三 11$ ，or $\# \emptyset$ if necessary）if a particular channel relay fails．

To substitute a multiplexer channel，move the two input leads to the new channel pin－jacks and add these two program lines to the measurement program after the program is loaded．

The program modifications are in the FNX（Q）function（line numbers refer to the X .03 subroutines）．

Add： 75 If Q\＃（old channel control code）then 80 $76 \mathrm{Q}=$（new channel control code）．

Then the system should operate normally．NOTE：If the program is saved with the changes installed，the Program Revision Label（line number 50）should be updated．

CATEGORY NO.

	DSGN	¢TY	DESCRIPTION	VALUE	MFG	FART NUMBER
1	Y-Dl	12	LED INDICATOR LIGHTS	5 VOLT	DIAL	550-0506
2	$\mathrm{Y}-\mathrm{D} 2$		SAME AS DI			
3	$\mathrm{Y}-\mathrm{D} 3$		SAME AS El			
4	$\mathrm{Y}-\mathrm{D} 4$		SAME AS DI			
5	$\mathrm{Y}-\mathrm{L} 5$		SAME AS Dl			
6	Y-D6		SAME AS DI			
7	$\mathrm{Y}-\mathrm{D} 7$		SAME AS Dl			
8	$\mathrm{Y}-\mathrm{D} 8$		SAME AS DI			
9	Y-D9		SAME AS DI			
10	Y-Dl0		SAlve AS Dl			
11	Y-E11		SAME AS Ll			
12	Y-E12		SAME AS LI			

CATEGORY NO. 6-----------------------CONNECTORS

	DSGiJ	CTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	$\mathrm{Y}-\mathrm{Pl}$	2	PLUG (FOR IC SOCKET)	14 PIN	3M	3406
2	$Y-P 2$		NOT USED			
3	$\mathrm{Y}-\mathrm{P} 3$		SANE AS Pl	14 PIN		
4	$\mathrm{Y}-\mathrm{P} 4$	23	PLUG WIRE WRAP	1 PIN	SAMT	TS-120-G-A
5	$\mathrm{Y}-\mathrm{P} 5$		SAME AS P4	1 PIN		
6	$\mathrm{Y}-\mathrm{P} 6$		SAME AS P4	1 FIN		
7	$\mathrm{Y}-\mathrm{P} 7$		SAME AS P4	1 PIN		
8	$\mathrm{Y}-\mathrm{P} 8$		SAME AS P4	1 PIN		
9	Y-F9		SAME AS P4	1 FIN		
10	Y-Pl0		SAME AS P4	1 FlN		
11	Y-Pl 1		SAME AS P4	1 PIN		
12	$\mathrm{Y}-\mathrm{PI} 2$		SAME AS P4	1 PIN		
13	Y-E13		SAME AS t 4	1 PIN		
14	Y-P14		SAME AS P4	1 PIN		
15	Y-P15		SAFE AS P4	1 PIN		
16	Y-P16		SAME AS P4	1 PIN		
17	$\mathrm{Y}-\mathrm{Pl} 7$		SANE AS P4	1 PIN		
18	Y-H18		SAME AS P4	1 PIN		
19	$\mathrm{Y}-\mathrm{Pl} 9$		SANE AS P4	1 PIN		
20	$\mathrm{Y}-\mathrm{P} 20$		SAME AS P4	1 PIN		
21.	$Y-P 21$		SAME AS P4	1 PIiv		

L.D.D. $\quad 1$ DEC 77 SAML AS E4 SAME AS P4 SAME AS P4 SAME AS P4 SAME AS P4 NOT USED

```
2 2 ~ Y - P 2 2
```

2 2 ~ Y - P 2 2
2 3 ~ Y - P 2 3
2 3 ~ Y - P 2 3
2 4 ~ Y - P 2 4
2 4 ~ Y - P 2 4
2 5 ~ Y - P 2 5
2 5 ~ Y - P 2 5
2 6 ~ Y - F 2 6 ~
2 6 ~ Y - F 2 6 ~
27 jl-J99
27 jl-J99
2 8 ~ Y - J 1 0 0 ~
2 8 ~ Y - J 1 0 0 ~
29. Y-J200
29. Y-J200
30 Y-J 300
30 Y-J 300
31 Y-J351
31 Y-J351
32 Y-J 352
32 Y-J 352
33 Y-J353
33 Y-J353
34 Y-J 354
34 Y-J 354
35 Y-J355
35 Y-J355
36 Y-J356
36 Y-J356
37 Y-J357

```
37 Y-J357
```

 1 CONN FC EDGE (Y100)
 1 CONN PC EDGE (Y200)
 NOT USED (J300-J350)
 2 CONN BLUL RIEBON I/O
 SAME AS J35l
 1 CONN BLUE RIBBON I/C
 4 CONN FANEL RECEPTICLE
 SAME AS J354
 SAME AS J354
 SAME AS 3354
 1 PIN
 1 PIN
 1 PIN
 1 PIN
 1 PIN
 NOT USED
 60 PIN ANPH 261-10030-2
 60 EIN AMFH 261-10030-2
50 FIN AMPH 57-40500
50 EIN AMPH 57-40500
50 PIN
14 PIN AMPH 57-40140
5 PIN VIKG VR5/4AB13
5 PIIN VIKG VR5/4ABI 3
5 PIN
5 PIN
5 PIN
ATEGORY NC.
TERMINALS

	DSGN	CTY	DESCRIPTION	VALUE	MFG	FAR'T IVUMEER
1	Y-T1	15	TEREINAL TEFLON INSUL.		CAMb	45043520103
2	$\mathrm{Y}-\mathrm{T} 2$		SAME AS Tl			
3	$\mathrm{Y}-\mathrm{T} 3$		SAME AS Tl			
4	$\mathrm{Y}-\mathrm{T} 4$		SAME AS Tl			
5	$\mathrm{Y}-\mathrm{T} 5$		SAME AS Tl			
6	$\mathrm{Y}-\mathrm{T} 6$		SAME AS Tl			
7	$\mathrm{Y}-\mathrm{T} 7$		SAME AS Tl			
8	$\mathrm{Y}-\mathrm{T}$ \&		SAME AS Tl			
9	Y-T9		SAME AS Tl			
10	Y -Tl0		SAME AS Tl			
11	Y-Tll		SAME AS Tl			
12	Y-Tl2		SAME AS TI			
13	Y-T13		SAME AS Tl			
14	$\mathrm{Y}-\mathrm{Tl} 4$		SAME AS Tl			
15	Y-T15		SAME AS TI			
16	Y-T16	3	TER: STRIP WIRE WRAP	25 PIN	SAMT	SS-120-G-2
17	Y-T17		SAME AS Tl6	25 PIN		
18	Y-T18		SAME AS Tl6	25 PIN		

ATEGORY NO.
8-----------------------SWITHES

	DSGN	CTY	DESCRIPTION	VALUE		M FGG	PAPT NUMBEF
1	Y-H1	1	Plate NOUNTIETC	. 125	A.LUM	NBS	16W $\times 13 \mathrm{~L}$
2	$\mathrm{Y}-\mathrm{H} 2$	1	FANEL INDICATCE	. 125	ALUM	NBS	7.5W X . 25 H
3	Y-H3	1	PLATE BACK UP (H2)	. 125	EAKL	NBS	7.5W X . 25 H
4	$\mathrm{Y}-\mathrm{H} 4$	1	PAivLL REAR (CO.VINCCTORS)	. 125	ALUM	NBS	$15 \mathrm{~W} \times .25 \mathrm{H}$
5	Y-EI 5	1	COVLR FORUED I.LTAL	1/16	ALUM	NBS	$16 \mathrm{H} \times 13 \mathrm{~L} \times 1.61$
6	Y-Hig	1	STRIP P.EINFURCILC ([5)	. 125	ALUi	NLS	16L X . 5 I:
7	Y-K7	1	STRIE FLINFCTCING (H5)	. 125	aluna	NES	10L X . 5 w
8	Y-H8	4	S'AIND-OFF (Y3U0 CARL)		ALUM	inBS	. 5 L CYLINLLES
9	$\mathrm{Y}-\mathrm{H} 9$		SAME AS H8		ALUM		
10	$\mathrm{Y}-\mathrm{H} 10$		SAME AS H8		A LLM		
11	Y-H11		SAME AS H8		ALUM		

CAYECOFIY NOG. 12----------------------SUEASSEHBLIES

	ESG:	TY	DESCFIPTIOA	VALUL	MFG	FATM NUNELN
1	Y-M1	1	FONER SUPFLY HOLULAR	5 VCLI'	SE: 1	ES51000-i2
2	$\mathrm{Y}-\mathrm{N} 2$	1	FOKER SUPELY :SCLULAK	+-15 VOLT	EL	527
3	Y-Y1	1	CONTRL/MULTPLX PC CARD		NES	Y100
4	$Y-Y 2$	1	BRIDGE REF PC CARD		INBS	Y200
5	$Y-Y 3$	1	ANALG NCLTPLX PC CARL		insS	Y 300

CATEGOTY NO. 13------------------NISCELLANEOUS

ATEGORY NO. 1----------------------RESISTORS

A.TEGORY NO。 2--------------------CAPACITORS

	DSGN	QTY	DESCRIPTION		VALUE	MFG	PART NUMEER
1	Y1-C1	3	CAP HI-K MONO	50 V	1.0 UF	SPRG	5C023105×025053
2	Y1-C2		SAME AS Cl		1.0 UF		
3	Y1-C3		SAME AS Cl		1.0 UF		
4	Y1-C4	1	CAP TANT 10 V		120 UF		
5	Y1-C5	3	CAP CERAMIC		. 1 UF		
6	Y1-C6		SAME AS C5		. 1 UF		
7	Y1-C7		SAME AS C5		. 1 UF		
8	Y1-C8	3	CAP TANT 25 V		10 UF		
9	Y1-C9	1	CAP TANT 35 V		1.0 UF		
10	Y1-Cl0		SANE AS C8		10 UF		
11	Y1-Cll		SAME AS C8		10 UF		

ATEGORY NO. 5----------------INTEGRATED CIRCUITS

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	Yl-ICl	1	IC BCD TO DEC DECODER	7442 N	TI	SIJ7442N
2	Y1-IC2	1	INT. CRKT. QUAD NOR	74 LS 02 N	TI	SNT74 LS0 2N
3	Y1-IC3	1	IC TRIPLE INPUT NOR	74 LS 27 N	TI	SN74 LS 27 N
4	Y1-IC4	3	IC QUAD FF (D) OC	$74 \mathrm{LS175N}$	T I	SN74LSl 75N
5	Y1-IC5		SAME AS IC4	$74 \mathrm{LSI75N}$		
6	Y1-IC6		SAME AS IC4	74 LS 175 N		
7	Y1-IC7.	3	INT. CRKT. ONE SHOT	74121 N	T I	SN74121N
8	Y1-IC8		SAMIL AS IC7	$74121 N$		

L. D. D	1 DEC	77	PARTS LIST-	CONTRL/NUTPLX CARD	(Y100)	DATA 13
9	Y1-IC9		SAME AS IC7	74121 N		
10	Y1-ICl0	2	IC HEX INVERTER	R OC 7406 N	TI	SN7406N
11	Y1-ICll		SAME AS IClO	7406 N		
12	Y1-ICl2		NOT USED			
13	Y1-ICl3		NOT USED			
14	Y1-ICl4	1	IC HEX INVERTER	R 74LS04N	TI	$\operatorname{Sis} 74 \mathrm{LSC} 4 \mathrm{~N}$
15	Y1-ICl5		NOT USED			
16	Y1-ICl6		NOT USED			
17	Y1-ICl7		NOT USED			
18	Y1-IC18		NOT USED			
19	Y1-IC19		NOT USED			
20	Y1-IC20	1	IC EINARY FULL	ADDER 74LS 283 N	TI	SN74 LS283N

CATEGORY NO.

	DSGN	QTY	DESCRIPTION	VALUE	NFG	PART NUMBER
1	Y1-J2	1	CK IC DUAL IN-LINE	14 PIN	SAMT	I C-314-SGG

CATEGORY NO. 10--------------------HARDWARE

$$
\begin{array}{lrlcccc}
& \text { LSGN } & \text { QTY } & \text { DESCRIPTION } & \text { VALUE } & \text { MFG } & \text { PART NUMBER } \\
\hline 1 & \text { Yl-BI } & --1 & \text { PC BRD-DVM CON/MUX CKT } & & \text { NBS } & \text { PC-100 }
\end{array}
$$

CATEGORY NO. 12------------------- SUBASS EMBLIES

ZATEGORY NO. l-----------------------RESISTORS

ATEGORY NO. 2----------------------CAPACITORS

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMEER
1	Y2-Cl	2	CAP HI-K NONC 50V	1.0 UF	SPRG	$5 \mathrm{CO} 23105 \times 025053$
2	Y2-C2	6	CAP ELECYLYC 25V	4.7 UF		
3	Y2-C3		SAME AS C2	4.7 UF		
4	Y2-C4		SAME AS Cl	1.0 UF		
5	Y $2-\mathrm{C} 5$		SAME AS C2	4.7 UF		
6	Y2-C6		SAME AS C2	4.7 UF		
7	Y2-C7	1	CAP CERAMIC DISK	. 001 UF		
8	Y2-C8		SAME AS C2	4.7 UF		
9	Y2-C9		SAME AS C2	4.7 UF		

L.D.D. 1 DEC 77 PARTS LIST- BRIDGE PEFERENCE CARD (Y200)

CATEGORY NO. 5----------------INTEGRATED CIRCUITS

	DSGN	QTY	DESCRIPTIOid	VALUE	MFG	PART NUMBER
1	Y2-ICl	1	CONVTR D-A 3 LIG BCD	DAC40	BB	CAC40-12B-BCD
2	Y2-IC2	3	INT. CRKT. OP AMP	OP-05C	MONO	OP-05C
3	Y2-IC3		SAME AS IC2	OP-05C		
4	Y2-IC4		SAME AS IC2	OP-05C		
5	Y2-IC5	1	INT. CRKT. ONE SHOT	74121 N	T I	SN74121N
6	Y2-IC6	1	IC QUAD INAND (OC)	74 LSO 0 N	TI	SN74LS00N
7	Y2-IC 7	1	IC ECD TO DEC DECODER	7442 N	T I	SN7442N

CATEGORY NO. 7----------------------TERNINALS

	DSGN	QTY	DESCRIPTION		VALUE	MFG	PART INUMBER
1	Y2-K1	4	SOCKET IC	SINGLE STRIF	20 PIN	SAMT	SS-120-G-2
2	Y $2-12$		SAME AS	K1	20 PIN		
3	Y2-K3		SAME AS	Kl (-4 PINS)	16 PIN		
4	Y2-K4		SAME AS	Kl (-4 FINS)	16 PIN		
5	Y2-J1	8	JACK WIRE	ИKAP SOCKET	1 PIN		
6	Y2-J 2		SAME AS	J1	1 PIN		
7	Y2-J3		SAME AS	J1	1 PIN		
8	Y2-J4		SAME AS	J1	1 PIN		
9	Y2-J5		SAME AS	Jl	1 PIN		
10	Y2-う¢		SAME AS	Jl	1 PIN		
11	Y2-J7		SAME AS	J1	1 PIN		
12	Y2-J8		SAME AS	J1	1 PIN		

CATEGOFY NO. 10---------------------HARDWARE-

CATEGORY NO. 12------------------- SUBASSEMBLIES

ATEGORY NO 4------------------------DIODES

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMEER
1	Y3-D1	12	DICDE SILICON	1N4 153	MOT	1 N4 153
2	Y3-D2		SAME AS DI	$1 N 4153$		
3	Y3-D3		SAME AS DI	liv4 153		
4	Y3-D4		SAME AS DI	1N4 153		
5	Y3-D5		SAME AS Dl	1N4 153		
6	Y3-D6		SAME AS Dl	1N4153		
7	Y3-D 7		SANE AS DI	1N4153		
8	Y3-D8		SAME AS DI	1N4 153		
9	Y3-D9		SAME AS DI	1N4153		
10	Y3-D10		SAME AS DI	1N4153		
11	Y3-D11		SAME AS DI	114 4153		
12	Y3-D12		SAME AS DI	1N4153		

ATEGCRY NO. 5----------------INTEGRATED CIRCUITS

ATEGORY NO. 6---------------------CONNECTORS

CATEGORY NO.

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMEER
1	Y3-j2	39	JACK WIRE WRAP SOCKET	1 PIN		
2	Y3-J3		SAME AS J2	1 PIN		
3	Y3-J4		SAME AS J2	1 PIN		
4	Y3-J5		SAME AS J2	1 PIN		
5	Y3-J6		SAME AS J2	1 PIN		
6	Y3-J 7		SAME AS 32	1 PIN		
7	Y3-J8		SAME AS 32	1 PIN		
8	Y3-J9		SAME AS J2	1 PIN		
9	Y3-J10		SAME AS J2	1 PIN		
10	Y3-J11		SAME AS J2	1 PIN		
11	Y3-J12		SAME AS J 2	1 PIN		
12	Y3-J13		SAME AS J2	1 PIN		
13	Y3-J14		SAME AS J2	1 PIN		
14	Y3-J15		SAME AS J 2	1 PIN		
15	Y3-J16		SAME AS J 2	1 PIN		
16	Y3-J17		SAME AS J2	1 PIN		
17	Y3-J18		SAME AS J2	1 PIN		
18	Y3-J19		SANE AS j 2	1 PIN		
19	Y3-J 20		SAME AS J 2	1 PIN		
20	Y3-J 21		SAME AS J 2	1 PIN		
21	Y3-J 22		SALVE AS J 2	1 PIN		
22	Y3-J23		SAME AS J2	1 PIN		
23	Y3-J24		SAME AS J2	1 PIN		
24	Y3-J 25		SAME AS J 2	1 PIN		
25	Y3-J 26		SAME AS J 2	1 PIN		
26	Y3-J 27		SAME AS J2	1 PIN		
27	Y3-J 28		SAME AS J2	1 PIN		
28	Y3-J29		SAME AS J2	1 PIN		
29	Y3-J 30		SAME AS J2	1 FIN		
30	Y3-J 31		SAME AS J 2	1 PIN		
31	Y3-J 32		SAME AS J2	1 PIN		
32	Y3-J 33		SAME AS J2	1 PIN		
33	Y3-J34		SAME AS J2	1 PIN		
34	Y3-J35		SAME AS J. 2	1 PIN		
35	Y3-J36		SAME AS J2	1 PIN		
36	Y3-J 37		SAME AS J2	1 PIN		
37	Y3-J 38		SAME AS J2	1 PIN		
38	Y3-J39		SAME AS J2	1 PIN		
39	Y3-J 40		SAME AS J2	1 PIN		

CATEGORY NO. 10

	LSGN	QTY	DESCRIPTICN	VAlue	FG	PART NUMBER
1	Y3-E1	1				

	DSGN	QTY	DESCRIPTION	VALUE	MEG	PART NUMBER
1	Y3-K1	12	RELAY ELECTRICAL DPS'T	5 VOLT	COTO	CR-3202-5-701
2	Y 3 -K2		SAME AS Kl			
3	Y3-K3		SAME AS Kl			
4	Y3-K4		SAME AS Kl			
5	Y3-K5		SAME AS Kl			
6	Y3-K6		SAME AS Kl			
7	Y3-K7		SAME AS Kl			
8	Y3-K8		SAME AS Kl			
9	Y3-K9		SAME AS Kl			
10	Y3-K 10		SAME AS Kl			
11	Y3-K11		SAME AS Kl.			
12	Y3-K12		SAME AS Kl			

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
-1	-1	ANALOG MULTIPLXER CARD		NBS	Y300	

6.8 WIRING LIST

MUX/DVM FRONT PANEL

$\frac{\text { FUNCTION }}{+5 \mathrm{~V}}$	$\frac{\text { CONNECTED TO }}{5 \mathrm{~V} \text { PWR SUPPLY }}$
MUX D "8" LED	2100-5
MUX C "4" LED	2100-7
MUX B "2" LED	2100-9
MUX A "1" LED	Z100-11
+5V	5V PWR SUPPLY
DVM FUNCTION D "8" LED	2100-15
DVM FUNCTION C "4" LED	2100-13
DVM FUNCTION B "2" LED	2100-17
DVM FUNCTION A "1" LED	2100-19
+5V	5V PWR SUPPLY
DVM RANGE D "8" LED	2100-21
DVM RANGE C "4" LED	2100-27
DVM Range B "2" LED	2100-25
DVM RANGE A "1" LED	2100-23

$\underset{\mathrm{J}-100}{\text { WIRING }}$			
	1	2	
	3	4	
INPUT CHANNEL LED D	5	6	Y200-29
INPUT CHANNEL LED O	7	8	Y200-31
INPUT ChanNel Led B	9	10	Y200-33
INPUT CHANNEL LED A	11	12	Y200 -35
FUNCTION LED C	13	14	J351-48
FTINCTION LED D	15	16	
FUNCTION LED B	17	18	J351-50
FUNCTION LED A	19	20	J351-49
RANGE LED D	21	22	J351-45
RANGE LED A	23	24	J351-42
RANGE LED B	25	26	J351-43
RANGE LED C	27	28	J351-44
	29	30	
J353-4	31	32	
J353-3	33	34	
J353-1	35	36	J352-44
J353-2	37	38	J352-28
J353-12	39	40	J351-45
J353-5	41	42	J352-27
J353-6	43	44	J351-24
J353-8	45	46	
J353-13	47	48	
J351-23	49	50	
J352-25	53	54	
J351-22	55	56	
+5V	57	58	$+5 \mathrm{~V}$
GND	59	60	GND

PIN NO.			Y-300	SIGNAL
0	HI	Y300 Y300	$\begin{aligned} & \hline-0 \mathrm{GRD} \\ & -0 \mathrm{LO} \end{aligned}$	DVM ZERO
0	LO	Y300	-0 HI	
1	HI	J356	-B	TEMP
1	LO	J356	-C	
2	HI	J356	-D	DEW POINT
2	LO	J356	-E	
3	HI	J355	-B	+20V
3	LO	J355	-A	
4	HI	J355	-C	+12V
4	LO	Y300	-3 L0	
5	HI	Y200	-39	DAC
5	LO	Y200	-51/52	
6	HI	J355	-E	XTAL DET.
6	LO	J355	-D	
7	HI	Y200	-39	DAC REF
7	LO	Y200	-51/52	
8	HI	J354	-E	PWR METER
8	LO	Y200	-51/52	GND
9	HI	Y300	-8 HI	SET DAC
9	LO	1200		
10	HI	Y300	-9 HI	V PWR
10	LO	Y200		
11	HI	J357		AUXILLARY
11	LO	J357	-C	

HIGH LOW GAURD	DVM J2O4-7 DVM J2O4-3	DVM HI DVM J2O4-2	DVM LO
DVAURD			

J1-1	Y100	$-\mathrm{J} 2 / 1$	MUX RESET
J1-7	Y100	$-\mathrm{J} 2 / 7$	GND
J1-8	Y100	$-\mathrm{J} 2 / 8$	DATA A
J1-9	Y100	$-\mathrm{J} 2 / 9$	DATA B
J1-10	Y100	$-\mathrm{J} 2 / 10$	DATA C
J1-11	Y100	$-\mathrm{J} 2 / 11$	DATA D
J1-14	Y100	$-\mathrm{J} 2 / 14$	+5V

WIRING LIST

1	J 353
2	$\mathrm{Y} 100-35$
3	$\mathrm{Y} 100-37$
4	$\mathrm{Y} 100-31$
5	$\mathrm{Y} 100-41$
6	$\mathrm{Y} 100-43$
7	GND
8	
9	
10	
11	
12	$\mathrm{Y} 100-39$
13	$\mathrm{Y} 100-47$
14	

J354	
A B C D E	$\begin{aligned} & \mathrm{Y} 200-51 / 52 \\ & \text { Y } 300-8 \mathrm{HI} \end{aligned}$
J355	
A	Y300-3L0
B	Y300-3HI
C	Y300-4HI
D	Y300-6L0 (SHIELD)
E	Y300-6HI
J356	
A	GND
B	Y300-1 HI
C	Y300-1 10
D	Y300-2HI
E	Y300-2L0

J357	
A	GND
B	Y300-11HI
C	Y300-11LO
D	
E	

6.9 Drawings

Oomicimal dation onam

Figure 21
Y100 PC Assembly Drawings.

Y300 Schematic Circuits.

7．1 Description：（Figure 26）

The rf detector is a commercial thermister type rf detector mount surrounded by insulation foam．This mount has a dc isolation block on the input and a stainless steel coaxial feed line for thermal isolation．The NBS Type IV power meter is connected to the rf detector in a four wire measurement configuration to eliminate lead resistance errors．The power meter self－balances the thermister detector to 200Ω ．The dc output from the Type IV power meter is connected to the digital voltmeter via input channel \＃8．

The normal measuring sequence is：（1）Switch rf off in ETMS control／rf unit； （2）Measure and record zero rf power meter voltage on DVM channel \＃8；（3）Switch DVM input to channel \＃9 to enable DAC．Read difference between power meter and coarse reference voltage and automatically set DAC to difference voltage；（4） Switch to DVM channel $⿰ ⿰ 三 丨 ⿰ 丨 三 一 10$ and read and record offset voltage residual；（5）Switch on rf power and read and record voltage change ΔV on DVM channel $⿰ ⿰ 三 丨 ⿰ 丨 三 一 10 ; ~(6) ~ S w i t c h ~$ rf off and recheck offset voltage residual for any reference voltage drift or power meter＂zero＂drift；and（7）Calculate rf power as described elsewhere．

7．2 Specifications

RF thermister mount：Specification frequency from 1 MHz to 1000 MHz at 0 to 10 milliwatts power．（See manufacturer＇s instruction manual for details．） Power meter：The NBS Type IV power meter is a self－balancing dc measurement of rf power by dc substitution．The accuracy of the power measurement is determined by the accuracy and resolution of the auxiliary voltmeter used to measure the bridge voltage．

7．3 RF Power Detector Mount

Refer to the manufacturer＇s instruction manual included with the system for information on this unit．

7．4 NBS Type IV Power Meter

Refer to the NBS Type IV power meter instrument manual included with the system．

| | DSGN | CTY | DESCRIPTION | VALUE | MFG | PART NUMBER |
| :--- | :--- | ---: | :---: | :---: | :---: | :--- | :--- |
| 1 | U-J1 | 2 | JACK TYPE N TO .141 | COAX | OSM | OSN $402-1$ |
| 2 | U-J2 | | SAME AS J1 | | | |
| 3 | U-J3 | 1 | CONNECTOR THERM. MOUNT | 6 POAN | HP | $1251-0152$ |

CATEGOFY NO. 10-----------------------HARDWARE

ATEGORY NO. 13-------------------NISCELLANEOUS

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PAFT NUMEER
1	U-KI	1	COAX MIN SEMI-RIGID SS	4	UT	UT/.141SS

8. CLOCK AND TEMPERATURE/DEW POINT INSTRUCTION MANUAL (FIGURE 27)

8.1 Introduction

This unit contains a commercial digital clock having a crystal-oscillator time base, four thumb-wheel switches which are used to enter date (month/day) information into the calculator, and temperature and dew point meters which are connected by long cables with remote probes to monitor outside conditions. These probes are enclosed in an environmental enclosure to shield them from the direct effects of the sun and breezes. The enclosure case can be extended in normal operation, but should be left closed if windy conditions exist.

The dc outputs of the temperature and dew point meters are connected to the DVM via input channels 1 and 2 , respectively.

8.2 Specifications

Time: The clock is a commercially manufactured model with a crystal time base. It has a power-outage clock-failure signal that is used to initiate a program warning message. (See manufacturer's instruction manual.)
Date: The manual thumb-wheel switches on the front panel are used to input month and date information to calculator.
Temperature monitor: The temperature monitor is a thermister sensor type meter with a range of 0 to $100^{\circ} \mathrm{F}$. Extended ranging is available on the DVM reading only. Dew point monitor: The dew point monitor is a heated lithuim-cloride element containing a thermister sensor type meter with a range of 12° to $96^{\circ} \mathrm{F}$. (See manufacturer's instruction manual.)

Thirty-meter (100 -ft.) extension cables are supplied to remotely locate the temperature and dew point sensors to monitor outside conditions.

8.3 Digital Clock

The commercial digital clock provides parallel BCD data to the calculator on I/O select code \#3. These data are combined with the BCD data for month and day from the thumb-wheel switches. When the calculator requests time from the clock, the clock is "locked" to prevent updating while the data are transferred. If a one-second "tick" occurs during this time, it is stored in the clock input circuit until data transfer is completed. Then the time is updated.

Refer to the manufacturer's instruction manual for information on this unit.

8.4 X3 Clock Inhibit/Flag Card (Schematic, Figure 28)

This printed circuit card preforms the control interfacing between the clock and calculator. It also has pull-up resistors used in the thumb-wheel switch data lines.

When the CTL pulse from the calculator requests clock data, it triggers the one-shot, IC-1. This one-shot pulse inhibits clock updaiing on pin 33 of J3 and returns a ready-flag to the calculator on pin 34 of J 3.

The calculator can take as long as 55 milliseconds to read in the data; therefore, this hold pulse is approximately 70 ms in duration.

The maximum repetitive rate that time can be read into the calculator is 10 to 12 times per second.

8.4.1 Troubleshooting

Check that the interface cable is properly connected. Verify that a control pulse CTL is arriving at the one-shot and that the return flag pulse and the inhibit pulse are being generated. Use the Enter ($3, *$) $Q 1, Q$ command to interrogate the clock date/time.

8.5 X1 Temperature and Dew-Point Sensors (Schematic, Figure 30)

This printed circuit card is the temperature bridge and amplifier and the dew-point bridge and amplifier circuits.

The two circuits are identical with the exception of the resistance values in the bridge and the composite resistors RI and R31.

The remote thermister probes form one leg of the bridge. The thermister elements of the temperature and dew-point probes are identical; however, the dewpoint probe is surrounded by a spool of wicking soaked in lithium chloride (LiCl) solution. The LiCl absorbs moisture from the atmosphere, decreasing its electrical resistance. An ac current passing through the LiCl heats it up, drying the spool until equilibrium is reached. The thermister element measures the elevated temperature of the probe. Dew-point temperature is indicated as a function of this temperature.

The temperature probe has a metal guard frame around it but senses the atmospheric temperature. The output of the bridge circuit is connected to a
differential input instrument amplifier circuit having a gain of 10 formed by three of the amplifiers in IC-1 (or IC-2 in the dew-point circuit). The output buffer amplifier offsets the signal to establish the "zero degree" point on the temperature scale.

The output of the amplifiers are connected to the $D V M$ and also to front panel digital meters. The front panel meter scales can be changed to read above 99° by switching DIP switches S1 and S2 (or S3 and S4) off. The front panel meters do not read below zero degrees nor above 99.9; however, the DVM temperature data are correct outside this range.

8.5.1 Alignment of Temperature Sensor (Refer to Figures 30 and 31)

Procedure:
(1) Disconnect the temperature probe and place X 1 card on pc extension.

Note: The adjustment of R 40 is not critical and is set to approximately midrange.
(2) Short TP-6 and TP-7 together and connect TP-6 to ground (TP-5). Monitor TPwith a voltmeter and adjust R52, for a zero reading on the voltmeter. Keeping the shorting jumper between TP-6 and TP-7, remove the ground TP-6 connection. Adjust common mode rejection, R 48 , for a zero reading on the voltmeter. Remove shorting jumper between TP-6 and TP-7.
(3) Connect a high Z dc voltmeter to test points $\mathrm{TP}-6$ and $\mathrm{TP}-7$.
(4) Connect an $8085-\Omega$ resistor between pins 2 and 3 of the rear panel temperature jack. Adjust bridge balance, R33, for a zero reading on the voltmeter.
(5) Change the input resistor on pins 2 and 3 to $39,965 \Omega$ and adjust range, R36 to obtain 108 millivolts reading on the voltmeter.
(6) Move the voltmeter to TP-8 and ground and adjust the gain trimmer R41 for a voltmeter reading of 1.08 volts.
(7) Change the input resistor to $12,248 \Omega$. Connect the voltmeter to TP-9 and adjust the offset, $R 52$, to obtain a voltmeter reading of +770 millivolts.

The output voltage will be in degrees fahrenheit and will be scaled to 10 millivolts per degree.

8.5.2 Alignment of Dew-Point Sensor

Procedure:
(1) Disconnect the dew-point probe and place $\mathrm{X}-1$ cord on the pc extension. Note: The adjustment of R1O is not critical and is set to approximately midrange.
(2) Short TP-1 and TP-2 together and connect TP-1 to ground (TP-5). Monitor test point 4 with a voltmeter and adjust $R 22$ for a zero reading on the voltmeter. Keeping the shorting jumper between $\mathrm{TP}-1$ and $\mathrm{TP}-2$, remove the ground from $\mathrm{TP}-1$. Adjust the common mode rejection potentiometer, R18, for a zero reading on the voltmeter. Remove shorting jumper between TP-1 and TP-2.
(3) Connect a high Z dc voltmeter between $\mathrm{TP}-1$ and $\mathrm{TP}-2$.
(4) Connect a 1715- Ω resistor between pins 2 and 3 of the dew-point jack on the rear panel. Adjust bridge balance control, R3, for zero volts on the voltmeter.
(5) Change the input resistor on pins 2 and 3 to 10566Ω and adjust Range R6 for 108 millivolts on the voltmeter.
(6) Move the voltmeter to TP-3 and adjust the gain trimmer R1l for a voltmeter reading of 1.08 volts.
(7) Change the input resistor to 8898Ω. Connect the voltmeter to TP-4 and adjust offset adj., R22 for a voltmeter reading of +180 millivolts.

The output voltage is scaled 10 millivolts per degree on dew-point temperature.

8.5.3 Troubleshooting

Note: Refer to the caution warning on the manufacturer's data sheets for the dew-point probe.

The dew-point sensor will cycle several times and can require an hour before stabilizing.

Check that all cables are properly connected and that the temperature and dew-point probes are not interchanged.

If the temperature and dew-point readings seem to vary randomly, ascertain that the remote probes are not located close to the exhaust fans of air condition equipment or other heat sources.

8. 6 X2 Temperature/Dew-Point Power Supply (Schematic, Figure 32)

This card furnishes regulated 6.5 volts and 5.0 volts for the temperature/ dew-point sensors and digital panel meters respectively.

8.7 AC Power Distribution (Schematic, Figure 34)

All power supplies are the divided primary type and are switched between 115 and 230 volts by changing the pc card switch in the fuse module on the rear panel.

	DSGN	QTY	DESCRIPTION		VALUE	MFG	PART NUMBER
1	X-J1	1	CONN	PC EDGE (XI CAFD)	60 PIN	AMPH	261-10030-2
2	X-J2	1	CONN	PC ELGE (X2 CARD)	60 PIN	AMPH	261-10030-2
3	X-J 3	1	COLNN	PC ELGE (X3 CARD)	60 PIN	AMPH	261-10030-2
4	X-J4	1	CONN	JACK (TEMP PROBE)	4 FIN	SWCT	C4F
5	X-J5	1	CONN	JACK (D.P. PROBE)	4 PIN	SWCT	C4F
6	X-J6	1	CONN	JACK (ANALOG)	5 PIN	VI KG	VR5/4AB13
7	X-J7	1	CONN	JACK TOP (CLCCK)	30 PIN	SAE	SAC 15D/l-2
8	X-J 8	1	CONN	JK EOTTOM (CLOCK)	44 PIN	SAE	SAC 22D/l-2
9	X-J 9	1	CONN	JACK (TENP DPM)	20 PIN	VIKG	$2 \mathrm{VHIO} / 1 \mathrm{AN}-5$
0	X-J10	I	COINN	JACK (D.P. DPM)	20 PIN	VIKG	2VH10/1AN-5
1	X-J11	1	COINN	BLUE RIBEON I/O	50 FIN	mPH	57-40500

TEGORY NO. 7----------------------TERMINALS-

TEGORY NO. 8------------------------SWITCHES

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	X-S1	1	THUMB WHEEL SWITCH	4 DECADE	UNMX SF-22A	
2	1	SWITCH AC POWER	SPST	ALCO MSTL-206N		

CATEGORY NO. 10----------------------HARDWARE-

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUNEER
1	$\mathrm{X}-\mathrm{H} 1$	1	INSTRUMENT CASE		BUD	
2	$\mathrm{X}-\mathrm{H} 2$	1	FACE PANEL FOR fil	. 09375 AL	NBS	
3	X-H3	1	SHELF BRACKET	. 06250 AL	NBS	$91 / 2 \times 71 / 2$
4	$\mathrm{X}-\mathrm{H} 4$	1	L-BRACKET (PR SUPPLY)	. 09375 AL	NBS	1.75W X2.5H
5	X-H5	1	SUPFORT BRKT (CLOCK)	. 06250 AL	NBS	
6	$\mathrm{X}-\mathrm{H} 6$	2	SUPPORT BRKT (DPM'S)	. 06250 AL	UVES	
7	X-H7	4	SHELF PCSTS		NBS	$23 / 4 \mathrm{H}$
8	X-1.8	1	FC CAFD Cage	4 CAFD	SCBE	
9	$x-119$	1	FESISTOR CLIP			

CATEGORY NO. 12------------------SUBASSEMBLIES

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NURBER
1	$\mathrm{X}-\mathrm{Ml}$	1	DIGITAL PANEL CLOCK	24 HR	NEPT	6700S(+OPTION
2	$\mathrm{X}-\mathrm{M} 2$	1	MODULAR POWER SUPPLY	+-15V.	EB	527
3	$\mathrm{X}-\mathrm{PR} 1$	1	TEMPERATURE PROBE		YS I	705
4	$\mathrm{X}-\mathrm{PR} 2$	1	DEW POINT PROBE		YS I	9101
5	X-X1	1	TEMP/DEW PT. PC CARD		NBS	X1
6	$x-x 2$	1	POHER SUPPLY PC CARL		NBS	X1
7	$x-83$	1	CLCCK INHIBIT PC CARD		NBS	X3

CATEGOKY NO. 13-------------------MISCELLANEOUS

	DSGN	QTY	LESCRIPTION	value	MFG	PART NUMBEP
1	X-il	1	LAMP CURPENT LIMIT	12 V	GE	\#55
2	X-A1	1	SOCKET FOR L1		LCFT	07-20
3	$x-A 2$	1	LENSE FOR LI		CHGM	6063-000-634
4	$\mathrm{x}-\mathrm{F}]$	1	FUSE/EILILR/AC SOCKLT		CROM	$6 J 4$
5	8-T1	1.	TRANSEORFER DUAL PRIM	$115 / 220 \mathrm{~V}$	YS I	B-09125

	DSGN	QTY	DESCRIPTION	VALUE		MFG	PART NUMBER
1	Xl-R1	1	RES FXD MF $1 \% 1 / 4{ }^{\circ}$	6.65 K	OHN	CORG	NC 5
2	X1-R2	1	RES FXD HF 1\% $1 / 4 W$	1.62 K	OHM	CORG	NC5
3	X1-R3	1	RES VAR TRIM CEPMET	500	OHM	ERNS	3006W-1-501
4	Xl-R4	2	RES FXD MF 1\% 1/4W	3.48 K	OHM	CORG	NC5
5	X1-R5		SANE AS R4	3.48 K	OHM		
6	Xl-R6	6	PES VAR TRIM CERMET	5.0.0K	OHM	BRNS	3006W-1-502
7	Xl-R7	1	RES FXD MF $1 \% 1 / 4 W^{\circ}$	24.9 K	OHN	CORG	NC 5
8	X.1-R8	2	RES FXD MF $1 \% 1 / 4 \mathrm{~W}$	100	OHM	CORG	NC5
9	X1-R9	2	RES FXD MF $1 \% 1 / 4 W$	2.00 K	OHM	COFG	NC5
0	Xl-R10	3	RES VAR TRIM CERNET	1.00K	OHv	BRIVS	$3006 \mathrm{~W}-1-102$
1	Xl-R11		SAME AS R6	5.00K	CHR		
2	X1-R12	2	RES FXD NF $1 \% 1 / 4 \mathrm{~W}$	7.50K	OHM	CORG	NC 5
3	X1-R13	4	RES FXD MF $1 \% 1 / 4 W$	39.2K	CHM	CORG	NC5
4	Xl-R14		SAME AS Rl3	39.2K	OHM		
5	Xl-R15	12	KES FXD MF 19 l/4W	100 K	OHM	CORG	NC5
6	X1-R16		SAME AS R15	100 K	CHM		
17	X1-R17	2	RES FXD H F $1 \% 1 / 4 \mathrm{~K}$	90.9 K	CHM	CORG	NC5
.	X1-Fil8	2	RES VAR TRIM CEFMET	20.0K	CHM	BRNS	3006w-1-203
9	X1-R19		SAME AS Rl5	100 K	OHM		
0	X1-R20		SAME AS R15	100 K	OHM		
1	X1-R21		SAME AS R15	100 K	OHM		
2	XI-R22		SAME AS R6	5.00K	OHM		
3	X1-R23		SAME AS Rl5	100 K	OHN		
4	X1-R24	2	RES FXD MF $1 \% 1 / 4 W$	20.0K	OHM	CORG	NC5
5	X1-R25	2	RES FXD MF $1 \% 1 / 4 \mathrm{~W}$	2. 21 K	OHM	CORG	NC5
6	X1-R31	1	RES FXD MF $1 \% 1 / 4 W$	14.7 K	OHN	CORG	NC5
7	X1-R32	1	RES FXD MF $1 \% 1 / 4 W$	7.68 K	OHM	COFG	NC 5
8	X1-R33		SAME AS Rlo	1.00K	OHM		
9	X1-R34	2	RES FXD MF 1\% $1 / 4 \mathrm{~W}$	6.98 K	OHM	CORG	NC5
0	X1-R35		SAME AS R34	6.98 K	OHM		
1	X1-R36		SAME AS R6	5.00K	OHM		
2	X1-R37	1	RES FXD MF $1 \% 1 / 4 W$	21.0 K	OHM	CORG	NC5
3	X1-R38		SAME AS R8	100	OHM		
4	X1-R39		SAME AS R9	2.00 K	OHM		
5	X1-R40		SAME AS Rlo	1.00K	OHM		
6	X1-R41		SAME AS R6	5.00 K	OHM		
7	X1-R42		SAME AS Rl2	7.50 K	OHM		
8	X1-R43		SAME AS Rl3	39.2 K	OHM		
9	X1-R44		SAME AS R13	39.2 K	OHM		
0	XI-R45		SAME AS R15	100 K	OHM		
1	X1-R46		SAME AS Rl5	100 K	OHM		
2	Xl-R47		SAME AS RI7	90.9 K	OHM		

43	X1-R48	SAME AS Rl8	20.0K OHM
44	X1-R49	SAME AS Rl5	100 K OHM
45	X1-R50	SAME AS R15	100 K OHM
46	X1-R51	SAME AS Rl5	100 K OHM
47	X1-K52	SAME AS R6	5.00 K OHM
48	X1-R53	SAME AS R15	100 K OHM
49	X1-R54	SAME AS R24	20.0K OHM
50	X1-R55	SAME AS R25	2.21K CHM

CATEGOKY NO. 2---------------------CAPACITORS

	DSGN	QTY	DESCRIPTIOi*		VALUE		MFG	PART NUMBER
1	Xl-Cl	2	CAP HI-K MONO	50 V	1.0	UF	SPRG	$5 \mathrm{CO} 23105 \times 0250$
2	X1-C2		SAME AS Cl		1.0	UF		
3	X1-C3	4	CAP CERANIC		0.1	UF	SPRG	
4	Xl-C4		SAME AS C3		0.1			
5	81-C5		SAI'E AS C3		0.1	UF		
6	x1-C6		SANE AS C3		0.1	UF'		
7	X1-C7	3	CAP TANT 25 V		10	UF		
8	X1-C8	2	CAP ELECTLYC 50V		50	UF	SPRG	30 D TE-1307
9	Xl-C9		NOT USED					
10	X1-Cl0		SANE AS C7		10	UF		
11	Cll-C37		NOT USED					
12	X1-C38		SAME AS C8		50	UF'		
13	X1-C40		SAME AS C7		10	UF		

CATEGORY NO. 5----------------INTEGRATED CIRCUITS-

	DSGN	CTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	Xl-IC1	2	I.C. QUAL OP AMP	A, B,C, $\& D$	NATL	LM3 24
2	XI-IC2		SAME AS ICl	E,F,G,\&H		

CATEGORY NO.

	DSGN	QTY	DESCRIPTION	VALUE	AFFG	PART NUMBER
1	X1-T1	5	TEST POINT JACK			
2	X 1-92		SAME AS TI			
3	X1-T3		SAME AS Tl			
4	X1-7'4		SAML AS TI			

IEGORY NO. 8-----------------------SWITCHES

TEGORY NO. 12-------------------SUBASSEMBLIES

CATEGORY NO.

	DSGN	QTY	DESCRIPTION	VALUE		INFG	PART	NUMBER
1	$\times 2-\mathrm{R} 1$	1	RES EXE NF 1\% 1/4W	267	OHM	COEN	NC5	
2	X2-R2	1	FES FXD MF $1 \% 1 / 4 \mathrm{~W}$	1.10 K	CHM	CORE	ivC5	
3	X2-F3	1	CHASSIS MOUNTED	125	OHM			
4	X2-R4	1	RES FXD CARS 5\% 1/4W	2.70K	OHM	$A B$	$C B$	

CATEGORY NO.

	DSGN	QTY	DESCRIPTION			VALUE		MFG	PART NUMEER		
1	X2-Cl	1	CAP	ELECTLYC	50 V	500	UF	CD	WBR	50	00-50
2	$\times 2-\mathrm{C} 2$	1	CAP	HI-K MONC	50 V	1	UF	SPPRG	5C02		105×0250
3	X $2-\mathrm{C} 3$	2	CAP	CERAMIC		. 1	UF	SPRG			
4	$\times 2-\mathrm{C} 4$	1	CAP	ELECTLYC	50 V	50	UF	SPRG	30 D		E-1307
5	$\times 2-\mathrm{C} 5$			me AS C3		. 1					

CATEGORY NO.

CATEGORY NO. 5---------------INTEGRACED CIRCUITS

	DSGN	Q ${ }^{\text {Y }}$	ERSCRIPIIOA		VALUE	MFG	PART NUMBER
1	X2-ICl	i	YOLITACE	REGULATOR	6.5 V	NATL	LM 317T
2	$\times 2-102$	1	VOLTAGE	REGULAmOR	5.0 V	HOT	MC7805CP

DSGN	QTY	DESCRIPTION	VALUE	MFG	PART	NUM3ER
x 2	1	NER SUPPLY PC CARD		NBS	X2	

CATEGORY NO.

	DSGN	QTY	DESCRIPTION		VALUE		MFG	PAR	NUMBER
1	X3-R1	17	RES FXD CARB	5\% $1 / 4 \mathrm{~W}$	1.0K	OHM	$A B$	CB	
2	X3-R2		SAME AS Rl		1.0 K	OHM			
3	X3-R 3		DELETED		1.0K	OHM			
4	X3-R4	1	RES EXD CARB	5\% 1/4W	510	OHM	$A B$	CB	
5	X3-R5	1	RES FYD CARB	5\% $1 / 4 W$	10 K	OHM	$A B$	CB	
6	X3-R6		SAME AS Rl		1.0K	OHM			
7	X3-R7		SAME AS RI		1.0 K	OHM			
8	X3-R8		SAME AS R1		1.0 K	OHM			
9	X3-F9 9		SAME AS RI		1.0K	OHM			
1.0	X3-R10		SAME AS RI		1.0 K	OHM			
11	X3-r.11		SAME AS R1		1.0K	OHM			
12	X3-R12		SAliE AS Rl		1. 0 K	OHM			
13	X3-R13		SAME AS R1		1.0 K	OHN			
1.4	X3-R14		SAME AS Rll		1.0K	OHM			
15	X3-R15		SAME AS RI		1.0 K	OHM			
16	X3-K16		SAME AS RI		1.0 K	OLM			
17	X3-R17		SAME AS R1		1.0 K	OHM			
18	X3-R18		SAME AS RI		1.0K	OHM			
19	X3-R19		SAME AS Rl		1.0K	OFM			

CATEGORY NO. 2--------------------CAEACITOES

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART INUMBER
1	X3-C1	2	CAP TANT 25 V	10 UF		
2	X3-C2		SANE AS Cl	10 UF		

CATEGURY NO. 5----------------INTEGRATED CIRCUITS

	USGN	CTY	DESCEIPTION	VALUE.	NF'G	PART NUMBER
1	$\times 3-1 \mathrm{Cl}$	1	ONE SHOT	74121	I'I	Sin74121N

```
D.D. 1 DEC 77 CLOCK FLAG/INHIBIT PC CARD (X3) DATA 3
```

TTEGORY NO. 10----------------------HAEDWARE

DSGN	QTY	DESCRIPTION	VALUE	MFG	
X3	1	INHIBIT PC CARD		NBS	

8:9 CLOCK WIRING LIST

J-1			
J1-F	1	A	
	2	B	$x 3-1 \& 2+5 v$
	3	C	
	4	D	
	5	F	J1-15 (OSC)
	-	-	
	15	S	
J-2			
GND X3-60	1	A	
	2	B	
	3	C	
	4	D	GND X3-60
	5	F	X3-34 (DSBL)
J11-15	6	H	
	7	J	
	8	K	J11-17
J11-18	9	I	J11-16
J11-19	10	M	J11-21
	11	N	J11-20
J11-23	12	P	
	13	Q	
J11-26	14	R	J11-25
J11-27	15	S	J11-24
J11-30	16	I	J11-29
J11-31	17	U	J11-28
	18	V	
J11-34	19	W	J11-33
J11-35	20	x	J11-32
J11-38	21	Y	J11-37
J11-39	22.	2	J11-36
	15		

WIRING LIST

J-X1			
$\begin{aligned} & \mathrm{J} 456-\mathrm{C} \\ & \text { GND J4 }-3 \\ & \text { GND J5 }-3 \\ & \text { J456 }- \text { D } \end{aligned}$	1 3	2 4	$\begin{aligned} & \mathrm{X} 2-59 \mathrm{GND} \\ & \mathrm{COM} 15 \mathrm{VPS} /=5 \mathrm{VPS} \end{aligned}$
+6.5V X2 -55	5	6	
	7	8	
	9	10	
J4-2	11	12	
J4-1	13	14	
	15	16	
J5-2	17	18	
J5-1	19	20	
	21	22	
	23	24	
	25	26	
	27	28	
-15 VPS	29	30	
	31	32	
+15 VPS	33	34	
	35	38	
	39	40	
	41	42	D.P. DPM-1
D.P. + J456-D	43	44	
	45	46	D.P. DPM $-B$
TEMP + J456-B	47	48	TEMP DPM-1
	49	50	
TEMP DPM-H	51	52	TEMP DPM-B
D.P. DPM-H	53	54	
	55	56	
	57	58	
	59	60	

$\mathrm{J}-\mathrm{x} 2$			
	1	2	
	3	4	
	5	6	
	7	8	
	9	10	
	11	12	
$\begin{aligned} & 24 \mathrm{~V} \text { AC } \\ & \text { TO \#55 LAMP } \end{aligned}$	13	14	
J5-4	15	16	
	17	18	
TO R3	19	20	
	21	22	
	23	24	
	25	2.6	
	27	28	
	29	30	
	31	32	
	33	34	
	35	36	
TEMP DPM-9 D. P. DPM-9	37	38	
	39	40	
	41	42	
	43	44	
	45	46	
	47	48	
	49	50	
TO R3	51	52	
	53	54	
$\mathrm{X} 1-5$	55	56	
24 V AC	57	58	TEMP DPM GND
X1-2/GMD	59	60	D.P. DPM GND
		2	

IRING LIST

J-X3			
CLOCK J1-B +5V	1	2	+5V CLOCK J1-B
X10 DAY TWS C	3	4	J11-1 C8
X10 DAY TWS B	5	6	J11-2 B8
X10 DAY TWS A	7	8	J11-3 A8
$\mathrm{X1}$ DAY TWS D	9	10	J11-4 D7
X1 DAY TWS C	11	12	J11-5 C7
XI DAY TWS B	13	14	J11-6 B7
X1 DAY TWS A	15	16	J11-7 A7
X10 MONTH TWS B	17	18	J11-8 B10
X10 MONTH TWS A	19	20	J11-9 A10
X1 MONTH TWS D	21	22	J11-10 D9
X1 MONTH TWS C	23	24	J11-11 C9
X1 MONTH TWS B	25	26	J11-12 B9
XI MONTH TWS A	27	28	J11-13 A9
X10 DAY TWS D	29	30	J11-14 D8
X1O MONTH TWS D	31	32	J11-43 D10
FLAG J11-41	33	34	CLOCK J2-F (DSBL)
CTL J11-40	35	36	
	37	38	
X10 MONTH TWS C	39	40	J11-44 C10
	41	42	
J11-45	43	44	J11-46 "1" BUSS
	45	46	
	47	48	
	49	50	
	51	52	
	53	54	
	55	56	
	57	58	
$\begin{aligned} & \text { TWS-COMMON } \\ & \text { J11-49\&50 } \end{aligned}$	59	60	$\begin{aligned} & \text { CLOCK J2-2\&D } \\ & \text { GND } \end{aligned}$
		53	

WIRING LISTJ-9 TEMP		
X1-48		
	2 B	X1-52 (DEC. PT.)
	3 C	
	4 D	
(IN-) X1-2	5 F	
	6 H	X1-51 ($\mathrm{IN}+$)
	7 J	
	8 K	
+5V X2-37	9 I	X2-58 GND
J9-9	10 M	X2-58
J-10 DEW PT.		
X1-42		
	2 B	X1-46 (DEC. PT)
	3 C	
(IN-) X1-4	$5 \mathrm{~F}$	
	$6 \mathrm{H}$	X $1-53\left(1 N^{+}\right)$
	$7 \mathrm{~J}$	
+5V X2-37	9 L	X2-60 GND
J10-9	10 M	X2-60

1	X3-4	J-11 CLOCK	
2	X3-6	27	J2-14
3	X3-8	28	J2-15
4	X3-10	J2-U	
5	X3-12	39	J2-T
6	X3-14	30	J2-16
7	X3-16	31	J2-17
8	X3-18	32	J2-X
9	X3-20	33	J2-W
10	X3-22	34	J2-19
11	X3-24	35	J2-20
12	X3-26	36	J2-2
13	X3-28	37	J2-Y
14	X3-30	38	J2-21
15	J2-7	39	J2-22
16	J2-L	40	X3-35
17	J2-K	41	X3-33
18	J2-9	42	
19	J2-10	43	X3-32
20	J2-N	44	X3-40
21	J2-M	45	X3-43
22	J2-11	46	X3-44
23	J2-12	47	GND
24	J2-S	J2-R	48

Figure 30. X1 Schematic Circuits.

Figure 34. Clock/Temperature AC Power Distribution.

9.1 Introduction

The noise-add standard is a stable dual-diode noise generator module which is mounted at the throat of the antenna to inject a known level of added noise into the receiver system of the earth terminal under ETMS calculator control. This noise-add signal is injected during each measurement to provide informatior needed to correct for receiver system gain changes.

The noise-add module is powered by a constant power supply which is controlled remotely from the ETMS via two coaxial control cables.

9.2 Specifications

Dual diode noise-add standard: The 7.0 to 7.4 GHz frequency noise-diode output level is approximately 3 dB less than diode No. 2.

Noise-add current supply: This external module contains a long-term stability voltage reference which is used to determine the constant-current to each noise-add diode.

Input power: $115 / 230 \mathrm{~V} 50 / 60 \mathrm{~Hz}$.
Input control: Two coaxial lines from ETMS control console.

9.3 Noise-Add Module. (Figure 35)

The X-band noise-add module combines the noise outputs of two solid-state noise diodes. The output of this module is injected at the directional-coupler immediately ahead of the low-noise amplifier via a short semi-rigid coaxial cable.

The two noise diodes are remotely switched via the bias power supply from the ETMS controi/rf console. The signals from the diodes are combined through two, 3 dB hybrid couplers in a manner which reduces the output level of $\# 1$ diode to approximately 3 dB below the output level of diode 非2 (see fig. 36).

Each noise add diode is a dual source. If one diode should become defective, the diode substrate can be reversed to utilize the spare diode; however, all previous calibration history will be lost.

Note: Avoid connecting or disconnecting the bias current supply cables without first turning the ac power switch "off" on the bias power supply.

9.4 Noise-Add Power Supply (Schematic, Figure 37)

The noise-add power supply furnishes constant current bias to the noise-add module. The constant current generators [9] for the noise diodes are referenced to a 10 volt standard reference. The circuits in the generator are symetrical to eliminate output variation with temperature change.

The output current is switched (shunted) to ground to turn the noise diode off.

These switch transistors Q1 and Q2 are controlled from the remote input lines via optical isolators IC-3 and IC-4. When the input to the optical coupler is open circuited or at +15 volts the noise diode is turned on. Conversely, when the input is shorted the noise diode is off.

The resistance values in the current sources were selected to adjust the outputs of the diodes to approximately 3 dB difference in noise power level at the combined output of the two, 3 dB hybrid couplers.

9.5 Troubleshooting

Note: Ascertain that the par-amp connected to the noise-add unit is switched to the down-link. Initially verify that each noise-add diode is working by observing the output of the down-link on a spectrum analyzer and manually switch noise-add 非1 and \#2 off and on. Determine that noise-add \#2 injects a larger noise power. Reverse the control cables at the ETMS control/rf console if necessary. If the remote cables are suspected, open and short circuit the BNC control inputs to the noise-add power supply observing the results on the spectrum analyzer.

These noise-add and power supply modules have matching serial numbers and have been checked on the NBS noise calibration system before being shipped. If the noise-add module is to be used as a reference standard for continuity of data over long time spans, it should be rechecked periodically.
9.6 PART LIST - NOISE ADD UNIT \& PONER SUPPLY
D.D.
1 DEC 77
PART'S LIST- NOISE ADD PWR SUPPLY (V
DATA 12

TEGORY NO. 1

TEGORY NO. 6--------------------CONNECTORS

DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
V-Jl	2	JACK BNC FANEL		AMPH	UG-1094/u
$\mathrm{V}-\mathrm{J} 2$		SAME AS Jl			
$v-J 3$	2	JACK SMiA PANEL		OSM	220
V-J4		SAME AS J3			

TEGORY NO. \qquad
DSGN
$1 \mathrm{~V}-\mathrm{S} 1$

QTY	DESCRIPTION
1	ITCH DPDT LOCKING

VALUE	MFG
3 AMP	ALCO

FART NUMEER
3 AMP ALCO NSTL-206N
L.D.D. 1 DEC 77 PAFIS LIST- NOISE ADD PWR SUPPLY (V) DATA 12 CATEGORY NO. 10----------------------HARLWARE

CATEGORY NO. 12------------------SUBASSEMBLIES

	DSGN	QTY	DESCRIPTIOI	VALUE	MFG	PART NUMDER
1	V-V1	1	CONST. CURRENT PC CARD		NBS	V800
2	V-V2	1	POWER SUPPLY PC CARD	NBS	V900	

TEGORY NO. 6---------------------CCNNLCTCRS

DSGN	¢TY	LESCRIPTION	value	M.FG	FART NUMELS
V - J 1	1	CCLNN FANLL N-SMA (JKS)	COAX	OSN	21011
W: J 2	2	COIVN PANLL SNA-SMA	COAX	CS:	209A
W-J 3		SAME AS J2	COAX		
V	2	CONN SNA-. 141 SEMI RIG	COAX	CSH	201-1A
ii-P2		SAPE AS Pl	COFX		
W-P3	2	COiNN EL SIIA-. 141 S-RIG	COAX	OSM	221-1
V - P 4		SAME AS P3	COAX		
Wr-F5	4	CONN SLAA-SMA (PLUGS)	COAX	OSF:	218
i. P6		SAlie AS F5	CCAX		
ii-P7		SARIL AS P5	CCAX		
W-P8		SAIFL AS P5	COAX		

ATEGORY NC. 10--------------------HAREVARE

TTEGORY NO. 12-------------------SUEASS EMELILS-

L.D.D. 1 DEC 77 PARTS LIST- DUAL NOISE-ADD STANDAKD (W) DATA

CATEGUKY NO. 13-------------------NISCELLANEOUS-

	DSGiv	¢TY	DESCRIPTIOH				VALLE	MFG	PART NUMELR
1	$\mathrm{V}-\mathrm{Al}$	1	CABLE	. 141	S-RIG	COAX	3	UNIF	
2	H-A2	1	CABLE	. 141	S-RIG	COAX	1	UNiNF	

D.D. $\quad 1$ DEC 77

PARTS LIST- NOISE ACD CONST I CARD (V800)
Dlo

ATEGORY NO.

DSGN	QTY	DESCRIPTION	VALUE	MFG	PAP?
V8-R1	16	EES FXU WW . 025\% 1/4W	SELECTED	ULTX	2051
V8-R2		SAME AS RI	SELECTED		
V8-R3		SAME AS Rl	SELECTED		
V8-R4		SAME AS Rl	SELECTED		
V8-R5		SAME AS Rl	SELECTED		
V8-R6		SAME AS Rl	S ELECTED		
V $8-\mathrm{R} 7$		SAME AS RI	SELECTED		
V8- K 8		SAME AS Rl	SELECTED		
V8-R9	2	RES FXD CARB 5\% 1/4W	l0K OHM	$A B$	CB
V8-R10	2	RES FXD CAIE 5\% 1/4W	510 OHM	$A B$	CE
V8-R11		SAME AS Rl	SELECTED		
V8-K12		SAME AS RI	SELECTED		
V8-R13		SAME AS Rl	SELECTED		
V8-R14		SAME AS RII	SILECTED		
V8-P. 15		SAME AS Rl	SELECTED		
V8-R16		SANE AS R1	SELECTED		
V8-R17		SRIEE AS Fl	SELECTED		
V8-F18		SAIIE AS Rll	SELECTED		
V8-R19		SAME AS R9	IOK OHM		
VG-R20		SFME AS RlO	510 OEN		
V̇-F21	2	ILS EXD CARB 5\% $1 / 2 \mathrm{~W}$	1.5K OLR	AB	EE
V8-R22		SAN: AS R21	1.5 K CHM		

ATEGURY NO:
2--------------------CAPACITORS

CATEGORY NO.

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART	NUMBEF
1	V8-61	2	TRANSISTOR SILICON PNP	2N3906	NOT	2N3906	
2	V8-Q2		SAME AS Ql	2N3906			

CATEGORY NO. 4---------------------DICDES

	DSGN	QTY	DESCFIPTION	VALUE	MFG	PART NUMBER
1	V8-CR1	2	DIOLE ZENER 12.7 V	1N5242A	MOT	1N5 242 A
2	V8-CR2		SAME AS DI	1N5242A		

CATEGORY NO. 5---------------INTEGRATED CIRCUITS

	DSGN		DESCRIPTION	VALUE	VFG	PART NUMBER
1	V8-ICl	2	INT. CRKT. OP AllP	CP-05C	MONO	OP-05
2	V8-IC2		SAME AS ICl	OP-05C		
3	V8-IC3	2	I.C. OPTICAL COUPLER	LIT-5		LTI-5
4	V8-IC4		SAME AS IC3	LIT-5		
5	V8-IC5	1	VOLTAGE-REF. PREC	10 V	CV	PVSN 10G

CATEGORY NO.

	DSGN	QTY	DESCRIPTION	VALUE	MFG	PART NUMBER
1	V8-J1	1	JACK IC DUAL IN-LINE	14 PIN	SAMT	IC-314-SGG
2	V8-J2	2	CONIVECTOR COAXIAL	BNC	AMPH	UG-1094/u
. 3	V8-J3	2	CONNECTOR COAXIAL	SMA	OSM	220
4	V8-J4		SAME AS J 2	BiNC		
5	V8-J5		SAME AS J3	SNA		

- DSGN	QTY	DESCRIPTION	VALUE	NFG	PART NUMEER
V8	1	NST. CURRENT PC CARD		[iBS	V800

CATLEGORY iNO. 6--------------------CONNECTORS

	DSGN	QTY	DESCRIPTION	VALUE	WF'G	PART NUMBEF
1	v9-J1	2	JACK IC DUAL IN-LINE	14 PIN	SAV:T	IC-314-SGG
2	V9-J 2		SAME AS Jl	14 PIN		

CATEGORY NO. 10---------------------HARDWARE-

	DSGN	CTY	DESCRIPTIGN	VALUE	EFG	PART NUMEER
1	V9-E1	1	PC BIDD-PWR SUPPLY CRKT		NBS	PC-900
2	V9-H1	1	BRACKET - FWR SUPPLYS	. 062 AL		
3	v9-H2	4	SCREW 4-40	$3 / 4$		
4	V8-H3	4	L.UT 4-40			
5	v9-H4	4	WASFIER LOCK 4-40			

CATEGORY NO. 12-------------------SUBASSEMBLIES

	DSGN	CTY	DESCRIPTIOL	VALUE	MFG	PART NUMBER
1	V9	-1	POWER SUPPLY CARD		NBS	V900
2	V9-M1	2	MODULAR POWER SUPPLY	$+-15 V$	EB	527
3	V9-M2		SAME AS M1	+-15 V		

Figure. 36. Noise-Add Schematic.

pevisions			
-	c c	emanct	Ontr
1.			
1			
3			
。			

POWER SUPPLY
MOUNTED ON MOUNTED O
BACK SIDE

10.1 CABLE LIST

QTY DESCRIPTION
RQD
$5 \quad 15 \mathrm{~cm}$ (6 inch) BNC Coax
160 cm (2 ft.) Type " N " RF Det. Input
$1 \quad 120 \mathrm{~cm}$ (4 ft.) Type "N" Coax
$1 \quad 15 \mathrm{~cm}$ (6 inch) Type " N " to Term. IF Adaptor
26 meter (20 ft.) BNC with BNC to Type "N" Adaptor J-653/J-654 and Type " N " Female Plug
145 cm (18 inch) Rigid SMA to Type "N" Coax
$290 \mathrm{~cm}(3 \mathrm{ft}$.$) BNC with BNC to Type "N" Adaptor$
$1 \quad 10 \mathrm{~cm}$ (4 inch) Adaptor Type BNC to Viking 5 Pin J357 (Aux Voltage Input)

1 BCD I/O Cable No. 3
1 BCD I/O Cable No. 2
1 TTL I/O Cable No. 4
1 Cassette I/O Cable No. 5
1 Printer I/O Cable
1 A.C. Power Interconnect 9866B/9830
1 RF Unit to MUX Control
1 RF Unit Analog Voltages
1 Bridge Voltage
1 Temp. Dew. Pt. from MUX
1 DVM to MUX Control
1 DVM Input
7 A.C. Power Cords
21.5 meter (5 ft.) Noise Add. SMA

1 Dew Point Sensor
1 Temperature Sensor
130 meter ($100 \mathrm{ft}$.) Dew. Pt. Sens. Ext. Cable
215 meter (50 ft.) Temp. Sens. Ext. Cables

10.2 Cable Wiring List

MULTIPLEXER/DVM BCD I/O CABLE 11203 A

CLOCK I/O CABLE 11203A

Signal	Source	00/J	Wire \#	BCD I/O Card
c 10's Day	$\begin{aligned} & \text { X3-4 } \\ & \text { X3-6 } \\ & \text { x } 3-8 \\ & \text { 3 }-10 \end{aligned}$		936	D2-4
$\text { B } 11$		$\begin{aligned} & 2 \\ & 3 \\ & \hline \end{aligned}$	927	D2-2
			923	D2-1
D "1" Day		4	948	D3-8
C " "	$\times 3-12$	5	937	D3-4
B	$\times 3-14$	6	-928	D3-2
A " "	$\times 3$-16	$?$	924	D3-1
B 10's Month	X3-18	8	- 92	Function-2
A " "	X3-20	9	6	Function-1
D "1" Month	X3-22	10	946	D1-8
C " "	X3-24	11	935	D1-4
B " "	X3-26	12	926	D1-2
A " "	X3-28	13	918	D1-1
D 10's Day Pwr Fail	X3-30	14	947	D2-8
	J2-?	15	-914	Overrange
A " $"$ "	J2-L	16	1	D9-1
	J2-K	17	90	D9-2
$\begin{array}{ll}\text { B } \\ \mathrm{C} & \prime \prime\end{array}$	J2-9	18	96	D9-4
D " "	J2-10	19	-907	D9-8
A 10's Second	J2-N	20	2	D8-1
B "1"s	J2-M	21	-9 -	D8-2
C ¢ "	J2-11	22	95	D8-4
D " "	J2-12	23	906	D8-8
A "1" Minutes	J2-5	24	- 3	D7-1
	J2-R	25	8	D7-2
$\begin{array}{ll}\text { B } \\ \mathrm{C} & \prime \prime\end{array}$	J2-14	26	94	D7-4
D " "	J2-15	27	905	D7-3
A 101 's Minutes	- T2-0	28	4	D6-1
	J2-T	29	7	D6-2
$\begin{array}{lll}\text { B } & \prime \prime \\ C & \prime \prime\end{array}$	J2-16	30	93	D6-4
D "	J2-17	31	904	D6-8
A "1" Hours	J2-X	32	5	D5-1
	Ј2-W	33	91	D5-2
$\begin{array}{ccc}\text { B } & \prime \prime & \prime \prime \\ C & " 1 & " 1 \\ D & " & \end{array}$	J2-19	34	-902	D5-!
	J2-20	35	-912.	D5-8
${ }_{\text {A }}{ }^{10} 11{ }^{\prime \prime}$ s Houre	J2-2	36	- 925	D4-1
	J2-Y	37	934	D4-2
C " $"$	J2-21	38	938	D4-4
D " "	X3-35	40	958	CTL-1
Ready Flas	X3-33	41	967	Flag
		42		
D 10's MonthC ""1""1"	X3-32	43	903	Function-8
	X3-40	44	98	Function-4
	$\times 3-43$	45	-916	EXP SiEn
"1"	$\begin{gathered} \text { X3-4.4 } \\ \text { GND } \end{gathered}$	46	-913	EXP-2
		$\begin{aligned} & 48 \\ & 49 \end{aligned}$		
	$\begin{aligned} & \mathrm{X3}-59 / \mathrm{GND} \\ & \mathrm{GND} \end{aligned}$	$\begin{aligned} & 40 \\ & 49 \\ & 50 \end{aligned}$	01	GND
			O	EXP-1
				EXP-4
		NC	957	CTL-2
		NC	945	H/L
		NC	915	Logic Select (f)

$\begin{array}{llllllll}0 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\ 5 & 5 & \frac{0}{5} & \frac{8}{5} & 5 & 5\end{array}$

$\frac{8}{5} \frac{8}{5}$
${ }_{\mathrm{E}-1}^{\circ}{ }_{\mathrm{E}}^{\mathrm{H}}$
CONTROL CABLE
Cable
$i n$
i
i
2700－41

2700－31
2700－36
2700－42
\circ
M
ín
in
$\begin{array}{cc}0 & 0 \\ 1 & 0 \\ 0 & 8 \\ 0 & 8 \\ & -1\end{array}$
 （島）こと 7Tを aNO Bit 64 （G） NC NC NC CTLT to MUX FLAG from MUX +5 Volts

Cables

Multiplexer

TEMPERATURE/DEW POINT ANALOG CABLE
ER
Analog Gid
To "High Hi" MUX
To "Lo Hi"
To High \#2" MUX
To "Lo \#2"

CHRONOMET
$J 456$
A
B
C
D
E
1.5 meter (5 ft.) Length
M
GTGVD DOTVNV 山IN
MULTIPLEXER

MULTIPLEXER AUXILIARY INPUT CABLE

ACKNOWLEDGMENTS

This measurement system was developed through the combined efforts of a large number of people. This author is indebted especially to William C. Daywitt, Lanny D. Driver, and David F. Wait for the development of the theory and extensive software; to Gerome R. Reeve for the initial equipment design; and to Thomas H. Bremer and Douglas P. Kremer for their efforts in the packaging design and assembly.

REFERENCES

[1] Larsen, N. T., "A New Self-Balancing D-C Substitution RF Power Meter," IEEE Transactions on Instrumentation and Measurement, Vol. IM-25, No. 4, pp. 343-347 Dec. 1976.
[2] Wait, D. F., "ETMS Operations Manual," NBSIR 78-879, Dec. 1977.
[3] Wait, D. F., W. C. Daywitt, M. Kanda, and C. K. S. Miller, "A Study of the Measurement of G/T Using Cassiopeia A," NBSIR 74-382, June 1974.
[4] Dent, W. A., H. D. Aller, E. T. Olsen, "The Evolution of the Radio Spectrum of Cassiopeia A," The Astrophysical Journa1, 188, PPL11-13, Feb. 1974.
[5] Daywitt, W. C., "Error Equations Used in the NBS Precision G/T Measurement System,," NBSIR 76-842, Sept. 1976.
[6] Daywitt, W. C., "Error Equations Used in the NBS Earth Terminal Measurement System," NBSIR 78-869, Dec. 1977.
[7] Kanda, M., "An Improved Solid-State Noise Source," IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-29, No. 8, pp. 990-995, Dec. 1976.
[8] Larsen, N. T., "NBS Type IV RF Power Meter Operation and Maintenance," NBSIR 77-866, Oct. 1977.
[9] Smith, J. I., Modern Operational Circuit Design, pp. 155-160, Wiley InterScience, New York (1971).
[10] The Fahrenheit temperature scale is used instead of the Celcius scale because it is easier to implement a temperature scale which is non-negative over the measurement range.

3 Boxes Paper
1 Box Prog. Cassettes
1 Box Blank Cassettes
1 Logic Probe
1-15V Power Supply
$1-5 \mathrm{~V}$ Power Supply
1-12V Power Supply
1-20 Power Supply
1-Type IV Power Meter
1-Temp/DP Enclosure/W Probes
1-11202A Card
1-11203A Card
1-Aertech Amplifier
1-1C Test Clip
l-Dew-point Bobbin
1-Coax Relay
1-Aux Mux Adapter
1-HP 478A-H55
1-PC ext. Card.
2-Mux Relays
2-LED
1-SN 74159N
1-MC 201 Noise Diode
2-0P-05 Amp.
1-7824 Voltage Regulator
1-15 meter ($50 \mathrm{ft}$.) Probe Ext. Cable Red
1-15 meter (50 ft.) Probe Ext. Cable Blue
l-30 meter (100 ft .) Probe Ext. Cable
60 meter (200 ft.) Nylon Cord
1-Fan
1-X1 PC Card
1-X2 PC Card
1-X3 PC Card
1-Y100 PC Card
1-Y200 PC Card
1-2400 PC Card
1-2500 PC Card
1-2700 PC Card

APPENDIX B

PARTS LIST MANUFACTURER'S CODE TABLE

3M

```
3M Company, Electronics Products Division
3M Center
St. Paul, Minnesota 55101
```

$A B$
Allen-Bradley Company
1201 S. Second Street
Milwaukee, Wisconsin 53204

AERT
Aertech Industries
825 Stewart Drive
Sunnyvale, California 94086

ALCO
Alcoswitch Division of Alco Electronic Products, Inc. P.O. Box 1348

Lawrence, Massachusetts 01842

ALPH

ALPHA Wire Corporation
711 Lidgerwood Avenue
Elizabeth, New Jersey 07207

AMER

American Microwave Connector Division
Omni Spectra, Inc.
Waltham, Massachusetts 02154

AMPH
Amphenol Connector Division
Bunker-Ramo Corporation
Broadview, Illinois 60153

AVNT
Avantek Incorporated
3175 Bowers Avenue
Santa C1ara, California 95051

BB
Burr-Brown Research Corporation
6730 South Tucson Blvd.
Tucson, Arizona 85734

BELD
Beldon Corporation, Electronic Division
P.O. Box 1331

Richmond, Indiana 47374

Bourns, Incorporated, Trimpot Division 1200 Columbia Avenue Riverside, California 92507

BUD
Bud Radio Incorporated 4605 East 355th Street Willoushby, Ohio 44094

CAMB
Cambridge Thermionic Corporation 445 Concord Avenue
Cambridge, Massachusetts 02138
$C D$
Cornell-Dubilier Electronics Division
Federal Pacific Electric Company
Newark, New Jersey 07101
CHGM
Chicago Miniature Lamp Company
4433 North Ravenswood Avenue
Chicago, Illinois 60640
CIRQ
Ciratel Incorporated
10504 Wheatley Street
Kensington, Maryland 20795
CNCH
CINCH/TRW Electronic Components Div.
1501 Morse Avenue
Elk Grove Village, Illinois 60007
CORG
Corning Glass Works
Electronic Products Division
Corning, New York 14830
CORM
Corcom, Incorporated
2635 North Kildare Avenue
Chicago, Illinois 60639
CORN
Corning Glass Works
Electronic Products Division
Corning, New York 14830
COTO
Coto-Coil, Incorporated
65 Pavilion Avenue
Providence, Rhode Island 02905

CROM
Corcom, Incorporated 2635 North Kildare Avenue Chicago, Illinois 60639

CY
Codi Semiconductor Corporation
Pollitt Drive
Fair Lawn, New Jersey 07410
DATL
Datel Systems, Incorporated
1020 Turnpike Street
Canton, Massachusetts 02021
DEST
Destek Industries
P.O. Box 24163

Los Angeles, California 90024
DIAL
Dialight Corporation
Division of North American Phillips Corporation
Brooklyn, New York 11237
DLVN
Devalon Electronics, Inc.
14605 North 73rd Street
Scottsdale, Arizona 85260
DUNC
Duncan Electric Company, Incorporated
2865 Fairview Road
Lafayette, Indiana 47902
EFJ
E. F. Johnson Company

299 10th Avenue
Waseca, Minnesota 56093
GARY
Garry Manufacturing, Inc.
1010 Jersey Avenue
New Brunswick, New Jersey 08902
GE
General Electric Company
Electronic Components Division
Hudson Falls, New York 12839
GRAY
Grayhill, Incorporated
569 Hillgrove Avenue
La Crange, Illinois 59525

HP
Hewlett Packard Company
1501 Page Mill Road
Palo Alto, California 94304
INIF
Uniform Tubes, Incorporated Microdelay Division Collegeville, Pennsylvania 19426

ITSL
Intersil, Incorporated
10900 North Tantau Avenue
Cupertino, California 95014
LAMB
Lambda Electronics Corporation
Division of Veeco
Melville, New York 11746
LCFT
Leecraft Mfg., Inc.
21-16 44 th Road
Long Island City, N.Y. 11101
MALL
P. R. Mallory \& Company, Incorporated
P.O. Box 372

Indianapolis, Indiana 46206
MERR
Merrimac Industries, Incorporated
41 Fairfield Place
West Caldwell, New Jersey 07006
MID
Midwest Microwave, Incorporated
3800 Packard Road
Ann Arbor, Michigan 48104
MIDW
Midwest Microwave, Incorporated 3800 Packard Road
Ann Arbor, Michigan . 48104
MODT
Modutec, Incorporated
18 Marshall Street
Norwalk, Conneticut 06854
MONO
Precision Monolithics, Incorporated
1500 Space Drive
Santa Clara, California 95050

MOT
Motorala Semiconductor Products, Incorporated 2002 West 10th Place
Tempe, Arizona 85281
NATL
National Semiconductor Corporation
2900 Semiconductor Drive Santa Clara, California 95051

NBS
National Bureau of Standards
Division 723.05325 South Broadway
Boulder, Colorado 80303
NEPT
Newport Laboratories, Incorporated
630 East Young Street
Santa Clara, California 92705
NLS
Non-Linear Systems, Incorporated
533 Stevens Avenue
Solana Beach, California 92075
OSM
Omni Spectra, Incorporated
21 Continental Blvd.
Merrimack, New Hampshire 03054
PANM
Pamotor, Incorporated
770 Airport Blvd.
Burlingame, California 94010
POMA
Pomona Electronics, Incorporated
P.O. Box 2767

Pomona, California 91766
RCA
Radio Corporation of America
Frunt \& Cooper
Camden, New Jersey 08102
SAE
Stanford Applied Engineering, Incorporated
340 Martain Avenue
Santa Clara, Ca!ifornia 95050
SAMT
Samtec, Incorporated 2652 Charlestown Road
New Albany, Indiana 47150

SCBE
Scanbe Canosa Industries
3445 Fletcher Avenue
El Monte, California 91731

SEAC

Seacor, Incorporated
598 Broadway
Norwood, New Jersey 07648
SEMI
Semiconductor Circuits, Incorporated
306 River Street
Haverhill, Massachusetts. 01830
SPRG
Sprague Electric Company
481 Marshall Street
North Adams, Massachusetts 01247
SWCT
Switchcraft, Incorporated
5555 North Elston
Chicago, Illinois 82389
TELC
Telonic Altair, Incorporated P.O. Box 277

Laguna Beach, California 92652

TELD

Teledyne Microwave, Incorporated
1290 Terra Bella Avenue
Mountain View, California 94040
TI
Texas Instruments, Incorporated
P.O. Box 5012

Dallas, Texas 75222
TROM
Trompter Electronics, Incorporated 8936 Comanche
Chatsworth, California 91311
ULTX
Ultronix, Incorporated
P.O. Box 1090

Grand Junction, Colorado 81501
UNIF
Uniform Tubes
Microdelay Division
Collegeville, Pennsylvania 19426

UT
Uniform Tubes
Microdelay Division
Collegeville, Pennsylvania 19426
VIKG
Viking Industries, Incorporated 9324 Topanga Cyn Blvd.
Chatsworth, California 91311
WAKE
Wakefield Engineering, Incorporated Teal \& Audobon Road
Wakefield, Massachusetts 01880
WEIN
Weinschel Engineering Company
P.O. Box 577

Gaithersburg, Maryland 20760
YSI
Yellow Springs Instrument Company
P.O. Box 279

Yellow Springs, Ohio 45387

CONTROL CODES

Program Switches and WBYTE

24
27
28
29
30
31
32
33
34

DVM AUTO RANGE
DVM 0.1 RANGE
DVM 1.0 RANGE
DVM 10.0 RANGE
DVM 100.0 RANGE
DVM 1000.0 RANGE
DVM DC VOLTS FILTER OUT DVM DC VOLTS FILTER IN
DVM RATIO-NOT USED IN ETMS
PROG ATTNR 15 dB
PROG ATTNR 14 dB
PROG ATTNR 1 dB
PROG ATTNR 0 dB
RF OFF/6 dB STEP IN
RF ON/6 dB STEP OUT
RF OFF
RF IN
6 dB IN
6 dB OUT
NOISE ADD ON
NOISE ADD OFF
NOISE ADD \#1 ON
NOISE ADD 非 1 OFF
NOISE ADD \#2 ON
NOISE ADD 非 2 OFF
INPUT CHANNEL \#11 DVM INPUT CHANNEL \#10 DVM INPUT CHANNEL \# 9 DVM INPUT CHANNEL \# 8 DVM INPUT CHANNEL \# 7 DVM INPUT CHANNEL \# 6 DVM INPUT CHANNEL \# 5 DVM INPUT CHANNEL \# 4 DVM INPUT CHANNEL \# 3 DVM INPUT CHANNEL \# 2 DVM INPUT CHANNEL \# 1 DVM INPUT CHANNEL \# \emptyset DVM

U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLIKATION OR REPORT NO. NBSIR 78-895	2. Gor't Accession No.	3. Keciphent's Accesston Nu.
4. TITLE AND SUBTITLE Earth Terminal Measurement System Maintenance Manual			5. Publication Datc September 1978
			6. Performing Organization Code 723.05
7. AUTHOR (S) John P. Wakefield			8. Performing Organ. Report No.
9. PERFORMING ORGANIZATION NAME AND ADDRESS NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20234			10. Project/Task/R'ork Unit No. 723.5481
			11. Contract/Grant No. ACC-414-74, Amendment CC-025-76, NBS 非2765481
12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP) United States Army Communications Command Fort Huachuca, Arizona 85613			13. Type of Report \& Period Covered
			14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES
16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.)

This manual describes the equipment and maintenance procedures to support the earth terminal measurements system (ETMS) developed by the National Bureau of Standards for making measurements of earth terminal and satellite parameters such as figure of merit (G / T), antenna gain relative to a reproducible reference level, ratio of carrier power to the operating noise temperature (C / kT), and satellite effective isotropic radiated power (EIRP). System equipment specifications, site set-up instructions, equipment theory of operation, troubleshooting and maintenance are included. This manual does not include measurement theory nor measurement operating procedures that are described in the Earth Terminal Measurement System-Operation Manual.
7. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a propes name; separated by semicolons)
Earth terminal measurement system; effective isotropic radiated power; figure of merit: noise temperature; satellite communication.
8. AVAILABILITY

Unlimited

■ For Official Distribution. Do Not Release to NTIS
— Order From Sup. of Doc., U.S. Government Printing Office Washington, D.C. 20402, SD Cat. No. C13
X Order From National Technical Information Service (NTIS) Springfield, Virginia 22151

| 19. SECURITY CLASS |
| :--- | :---: |
| (THIS REPURT) |
| UNCL ASSIFIED |\quad 21. NO. OF PAGES $\quad 223$

[^0]: *If the LNA with the pilot disconnected is switched out, the earth terminal control logic may not switch back to the LNA automatically so that the switches must either be manually switched or the pilot temporarily reconnected while switching.

[^1]: - See also Figure 15.

