Reference

NBSIR 78-1565

Low Velocity Performance of A Vortex-Shedding Anemometer

Fluid Engineering Division Center for Mechanical Engineering and Process Technology National Engineering Laboratory National Bureau of Standards Washington, D.C. 20234

December 1978

Task Report

JQ ·

100

. U56

78-1565

L. P. Purtell

Prepared for United States Department of the Interior Bureau of Mines

NBSIR 78-1565

LOW VELOCITY PERFORMANCE OF A VORTEX-SHEDDING ANEMOMETER

Mational Bureau of Standards MAY 14 1979

L. P. Purtell

National Bureau of Standards Fluid Engineering Division Washington, D.C. 20234

December 1978

Task Report

on Contract No. H0166198 Evaluation of the Behavior of Mine Anemometers in the NBS Low Velocity Calibration Facility

Prepared for United States Department of the Interior Bureau of Mines

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary Dr. Sidney Harman, Under Secretary

Jordan J. Baruch, Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Liter rice.

DISCLAIMER NOTICE

The views and conclusions contained in this document should not be interpreted as necessarily representing the official policies or recommendations of the Interior Department's Bureau of Mines. NBS-114A (REV. 5-78)

U.S. DEPT. OF COMM.1. PUBLICATION OR REPORT NO.2. GovBIBLIOGRAPHIC DATA SHEETNBSIR 79-1565No.		3. Recipient's	Accession No.
4. TITLE AND SUBTITLE		5. Publication	Date
LOW VELOCITY PERFORMANCE OF A VORTEX-SHEDDING ANEMON	METER		
		5. Performing	Organization Code
7. AUTHOR(S) L. P. Purtell	1	8. Performing NBSIR 79	Organ. Report No. 9–1565
9. PERFORMING ORGANIZATION NAME AND ADDRESS	1	0. Project/T 732048	ask/Work Unit No.
NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE		752040	
WASHINGTON, D.C. 20234		H016619	
12. Sponsoring Organization Name and Complete Address (Street, City, State, ZI. Office of the Assistant Director - Mining	P) 1	13. Type of Ro Covered	eport & Period
Bureau of Mines	1		978-Apr.30,1978
United States Department of the Interior	1	4. Sponsoring	Agency Code
Washington, D. C. 20241		• •	
15. SUPPLEMENTARY NOTES			
16. ABSTRACT (A 200-word or less factual summary of most significant informa bibliography or literature survey, mention it here.)	tion. If document	includes a si	gnificant
Performance of a vortex-shedding anemometer is eval	luated over t	the speed	range
of 58.1 feet per minute to 836 feet per minute. Te	ests on two u	units were	9
performed in the NBS Low Velocity Airflow Facility flow of low turbulence and utilizes a laser velocin			Eorm
standard.	neter as the	verocity	
 17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the finame; separated by semicolons) 	rst letter of the fin	st key word u	
			inless a proper
Airflow; anemometer; laser velocimeter; low velocit	ty, mine vent	ilation;	
Airflow; anemometer; laser velocimeter; low velocit tunnel	ty, mine vent	ilation;	
	ty, mine vent	CLASS	
tunnel	19. SECURITY	CLASS URT)	wind
tunnel 18. AVAILABILITY [] Unlimited	19. SECURITY (THIS REP	CLASS ORT) FIED	wind
tunnel 18. AVAILABILITY Image: State of the state	19. SECURITY (THIS REP UNCL ASSIN	CLASS ORT) FIED CLASS (E)	wind 21. NO. OF PAGES

- FOREWORD -

This report was prepared by the National Bureau of Standards, Fluid Engineering Division, Washington, D. C. 20234, under USBM Contract Number H0166198. The contract was initiated under the Coal Mine Health and Safety Program. It was administered under the technical direction of PM&SRC, With Dr. George H. Schnakenberg, Jr., acting as the Technical Project Officer. Mr. H. R. Eveland was the contract administrator for the Bureau of Mines. This report is a summary of the work recently completed as part of this contract during the period February 28, 1978 to April 30, 1978. This report was submitted by the author December 1978.

LIST OF SYMBOLS

U	velocity measured by laser velocimeter
f	frequency indicated by anemometer under test
ff	line segments fitted to U, f data
Ū	group mean true velocity
f	group mean indicated frequency
σ _f	standard deviation of f data from f_{f}
σ	standard deviation of f data expressed as true velocity
σ _c	σ adjusted for known variance in laser velocimeter measurements

L. P. Purtell

1. INTRODUCTION

The National Bureau of Standards in order to meet the need for a calibration capability with adequate accuracy at low air velocities, i.e., below 500 feet per minute (fpm) undertook the development of a low-velocity calibration facility for wind speed measuring instruments which would provide a capability down to 3 meters per minute (approximately 10 fpm) with an accuracy of plus or minus one percent. It was a natural consequence therefore that when said facility became operational to undertake an evaluation of the state-of-the-art and to provide the information needed as to the reliability and performance of instruments of various types of instruments for low velocity air measurements are undergoing test at NBS, and this report is concerned specifically with the results of one such test.

2. THE INSTRUMENT

The anemometer tested for this report (two units, serial numbers 48 and 49) is a commercially available instrument (J-TEC Associates, Incorporated, VA-216 Air Draft Sensor)¹ supplied for test by the U.S. Bureau of Mines. The instrument is approximately $12 \times 4 \times 5-1/2$ inches in size (see Figure 1) and includes a probe head and the necessary electronics for operation. The probe head consists of a rod approximately 0.25 inches in diameter and 1.38 inches in length supported at the ends and oriented normal to the air stream. An ultrasonic transmitter and receiver pair located downstream of the cylinder detect the vortex street shed by the cylinder as an amplitude modulation of the ultrasonic signal. This modulation is converted by the electronics section to a pulse train (approximately a square wave signal) as an output. A frequency-to-voltage converter section also provides an analog output. Since the frequency of shedding of a vortex street is roughly proportional to velocity, the output signals can be used to measure the air velocity. A separate power supply is necessary to operate the instrument.

3. THE TESTS

The NBS Low Velocity Airflow Facility [1] used to test this instrument generates a low velocity air stream having a low turbulence intensity (less than 0.05%) and a large region of uniform flow (at least

This particular instrument was selected as being representative of this type of anemometer and its selection does not represent an endorsement.

75 x 75 cm). A laser velocimeter is employed as a primary velocity standard. It is nonintrusive, has a linear response with velocity, and has good spatial resolution. Adequate sensitivity is obtained without the artificial seeding of scattering particles. Thus the difficulties and inconvenience associated with seeding and the possible effect of such seeding on the performance of the device under test are avoided.

Each anemometer was mounted with the probe head on the centerline of the tunnel test section one meter downstream of the entrance to the test section in a manner to minimize the effect of the support on the air stream around the anemometer (Figure 1). Since the anemometer itself modifies the airflow in the tunnel, the velocity should be measured at a location in the flow which has the same velocity in the presence of the anemometer as it does in the absence of the anemometer. The velocity upstream of the anemometer was measured to find the position where deceleration of the flow due to the presence of the anemometer was no longer detectable within the scatter of the measurement. These measurements were performed at the free-stream velocity of 990 fpm. As shown in a previous report [2] the variation of the ratio of the local velocity to the free stream velocity with distance upstream of the anemometer is independent of free-stream velocity. A distance of 35 cm upstream of the anemometer was chosen as the position for velocity measurement by the laser velocimeter. With no anemometer in the tunnel, variation in velocity is imperceptible over the distance traversed (35 cm).

The frequency of the anemometer output was recorded during the time interval required for the measurement by the laser velocimeter. Five separate test runs were made for each instrument, a run consisting of thirteen different velocities. The lowest velocities were limited by a minimum operating speed of 54.1 fpm for S/N 49 and 58.8 fpm for S/N 48. The data are presented in chronological order in Tables 1A to 1E and 2A to 2E for instruments with S/N 49 and 48 respectively.

4. TESTS RESULTS

Since a particular air speed in the wind tunnel cannot be exactly reset from run to run, scatter in the test data in the form of frequency against speed is distributed along a curve, thus prohibiting computing the standard deviation of the data from a simple average. Instead, deviations from a curve fit to the data were computed and the standard deviation approximated by the r.m.s. value of these deviations within a group. The groups are (fpm):

U < 65	110 < U < 150	450 < U < 550
65 < U < 75	150 < U < 200	550 < U < 750
75 < U < 85	200 < U < 250	750 < U
85 < U < 95	250 < U < 350	
95 < U ^{<} 110	350 < U < 450	

Since the groups of data are compact (small range of U within a group; see Figures 2 and 3), a straight line segment is used to approximate the curve within a group. The line segment passes through the point $(\overline{U},\overline{f})$, the group mean true velocity and the group mean frequency. The slope of the line segment is computed as the average of the slopes of two lines, both passing through $(\overline{U},\overline{f})$ of the group being considered, one line passing through the $(\overline{U},\overline{f})$ of the adjacent group higher in velocity, and one line passing through $(\overline{U},\overline{f})$ of the adjacent group lower in velocity. For the highest groups (U > 750) there is only one adjacent group, and thus the line segment for this highest group passes through $(\overline{U},\overline{f})$ of the line segment for the lowest groups (U < 65 fpm) is similarly formed.

Designating the above line segments as f_f , the standard deviation, σ_f of the frequency, f, about the fitted segments is determined by squaring the differences between the f data and f_f , i.e., $[f(U) - f_f(U)]^2$. Since the data within the specified groups are reasonably compact, the mean of the squared differences within a group is taken as an estimate of the variance of f about f_f within that group and specified at that group's mean true velocity, U. To convert this to a standard deviation in terms of true velocity, designated σ , each $\sigma_f(U)$ is divided by the slope (df_f/dU) of the line segment associated with the $\sigma_f(U)$. Note that this σ does not include the "scatter" in the U measurements (due to the inability to exactly reset wind tunnel to a specified speed), but does include the uncertainty in a particular laser velocimeter measurement. This uncertainty may be estimated from repeated measurements of velocity, and is estimated as 0.001U for this report. A standard deviation, σ_f , corrected for the laser velocimeter uncertainty may thus be computed from

$$\sigma_{\rm c}^2 = \sigma^2 - (0.001U)^2$$

for any given U. σ_f and σ_f/\bar{f} are presented in Figures 4 through 7. σ_f and σ_f are presented in Figures 8 and 9 as velocity and in Figures 10 and 11 as percentage of \bar{U} . Since $\pm 2\sigma_f$ is extremely close to the 95 percent confidence interval for one measurement, curves of $\pm 2\sigma_f$ are also included in Figures 2 and 3 as dashed lines. The curves shown in each figure have been drawn for reference only.

5. DISCUSSION OF RESULTS

Since the primary output of this type of instrument ideally is a square wave with frequency related to the air speed, the analysis was concentrated on the measurements of that frequency directly rather than on the analog voltage output, since the latter merely reflects the quality of the frequency-to-voltage converter. The resolution in reading the frequency was always kept better than 0.1 percent to avoid affecting σ_{f} . The difference in the values of σ for the two units is not readily attributable to any known difference between the units; qualitatively the instruments performed the same.

The instruments in general performed with no erratic behavior. Some general comments concerning application of the instrument follow. With any measurement problem the instrument's capabilities should be matched to the required measurement.

This anemometer is intrusive, i.e., it must be placed in the flow.

This anemometer requires an outside source of power and either a frequency counter or a voltmeter.

Many other factors that can affect the suitability of an instrument for a particular application, such as turbulence or unsteadiness of the air stream, rough handling (shock and vibration), dirt and other environmental factors, time, orientation to the velocity and gravity vectors, etc., have not been tested herein but should be considered.

6. SUMMARY

The performance of a vortex-shedding anemometer (two units) has been evaluated at air speeds up to 836 fpm. Figures are presented showing the output frequency against true velocity and the standard deviation of repeated runs about the mean curves. The lowest velocities measurable were limited by a minimum operating speed of 54.1 fpm for one unit and 58.8 fpm for the other unit.

7. REFERENCES

- 1. L. P. Purtell and P. S. Klebanoff, The NBS Low velocity Airflow Facility, in preparation.
- 2. L. P. Purtell, Low Velocity Performance of a Bronze Bearing Vane Anemometer, NBSIR 78-1433.

Table 1A J-Tec Type VA-216 S/N 49

Instrument Output Frequency Hz	Instrument Output Voltage volts	True Air Speed fpm
8.68	.132	60.3
10.9	.160	72.2
12.6	.182	81.0
14.6	.208	91.4
16.5	.233	100.6
22.7	.312	128
32.5	. 44	170
46.9	.62	219
65.4	.88	284
83.2	1.12	374
110	1.48	492
147	1.95	. 649
187	2.45	835
242	3.20	1103
278	3.70	1290
318	4.20	1495

T = 21.3 to 21.6 °C

B = 752.4 mm Hg

Table 1B J-Tec Type VA-216 S/N 49

Instrument Output Frequency Hz	Instrument Output Voltage volts	True Air Speed fpm
8.63	.126	60.8
10.5	.154	72.5
12.3	.175	81.6
15.0	.209	92.9
16.6	.229	100.8
22.9	.308	130
32.6	• 44	172
46.9	.62	220
66.2	.86	284
84.0	1.13	375
112	1.49	492
148	1.95	647
186	2.50	833
245	3.20	1109
276	3.65	1293
320	4.15	1502
	1	

T = 22.5 °C

B = 752.7

Table 1C J-Tec Type VA-216 S/N 49

Instrument Output Frequency Hz	Instrument Output Voltage volts	True Air Speed fpm
8.70	.130	61.6
10.8	.154	72.5
12.7	.180	81.6
14.9	.210	92.5
16.3	.226	100.2
23.0	.311	131
32.6	.43	171
47.4	.60	219
65.4	.86	285
84.0	1.13	375
112	1.48	492
147	1.96	648
186	2.47	834
245	3.21	1110
282	3.68	1298
318	4.16	1497
	T = 22.5 to 22.8 °C	

T = 22.5 to 22.8 °C

B = 752.8 mm Hg

Table 1D J-Tec Type VA-216 S/N 49

Instrument Ou H	tput Frequency z	Instrument Outpu volt	-	True Air Speed fpm
8	.59	.126		59.8
10	. 6	.154		71.1
12	.6	.175		80.5
14	.8	.209		91.9
16	. 3	.227		100.4
22	.7	.308		131
32		.43		171
46		.60		219
64		.86		286
82	. 6	1.12		374
110		1.48		493
148		1.97		648
189		2.46		835
243		3.20		1106
279		3.65		1286
316		4.19		1505

 $T = 22.8 \text{ to } 23.0 \degree C$

B = 752.8 mm Hg

Table 1E J-Tec Type VA-216 S/N 49

Instrument Output Frequency Hz	Instrument Output Voltage volts	True Air Speed fpm
8.50	.126	59.5
10.8	.152	71.5
12.6	.177	80.9
14.9	.207	92.1
16.4	.226	100.2
23.3	.313	130
32.8	.43	172
46.5	.61	220
65.4	.84	284
83.3	1.12	375
110	1.48	490
147	1.96	648
188	2.47	836
244	3.20	1111
279	3.65	1292
320	4.12	1502

T = 23.2 to 23.4 °C

B = 751.3 mm Hg

]	Cable	2A
J-Tec	Туре	VA-216
	S/N	48

Instrument Output Frequency, Hz	Instrument Output Voltage, volts	True Air Speed, fpm
8.61	.118	59.6
10.8	.146	71.0
12.6	.168	80.4
14.7	.195	92.0
16.3	.216	100.5
22.2	.29	130
30.8	. 40	172
46.3	.60	220
59.5	.78	286
82.6	1.09	375
106.8	1.43	494
145.6	1.91	650
185.2	2.44	832

T = 23.1°C B = 751.0 mm Hg

1	Cable	2B
J-Tec	Туре	VA-216
	S/N	48

Instrument Output Frequency, Hz	Instrument Output Voltage, volts	True Air Speed, fpm
8.48	.116	58.1
10.7	.144	70.3
12.5	.166	80.2
15.0	.199	93.0
16.2	.215	99.5
22.2	.295	130
29.7	.39	170
46.1	.60	219
57.5	.76	285
82.0	1.09	375
105.7	1.42	494
144.5	1.92	649
186.2	2.45	835

Т	=	23.4°C		
В	=	751.2	mm	Ħg

1	Cable	e 2C
J-Tec	Туре	• VA-216
	S/N	48

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Instrument Output Frequency, Hz	Instrument Output Voltage, volts	True Air Speed, fpm
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.4	.218	100.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23.0	. 29	130
57.8 .77 285 80.0 1.07 375 106.4 1.49 492 143.7 1.91 650	29.2	. 38	171
80.0 1.07 375 106.4 1.49 492 143.7 1.91 650	45.7	.60	220
106.4 1.49 492 143.7 1.91 650	57.8	. 77	285
143.7 1.91 650	80.0	1.07	375
143.7 1.91 650	106.4	1.49	492
			650

T = 23.7°C B = 750.8 mm Hg

	[able	2D
J-Tec	Туре	VA-216
	S/N	48

Instrument Output Frequenc Hz	y, Instrument Output Voltage, volts	True Air Speed, fpm
8.50 10.6	.119	63.5 71.2
12.5	.142	80.1
14.7	.196	91.8
16.3	.217	100.2
21.5	.28	130
28.8	. 38	170
45.2	.59	220
59.9	.78	284
78.1	1.04	375
107.0	1.40	492
143.5	1.90	647
186.2	2.44	834

Т	=	23.9°(2	
В	=	750.2	mm	Hg

1	Cable	e 2E
J-Tec	Туре	e VA-216
	S/N	48

Instrument Output Frequency,	Instrument Output Voltage,	True Air Speed,
Hz	volts	fpm
8.40 10.6	.06	63.6 70.4
12.4	.165	80.0
14.6	.195	91.1
16.2	.215	99.4
22.7	. 30	130
27.9	. 37	170
44.8	.59	219
60.2	.77	283
78.1	1.04	3 7 5
103.7	1.58	489
142.9	1.88	642
184.8	2.43	834

Τ	=	24.2°C	2	
В	=	750.2	mm	Hg

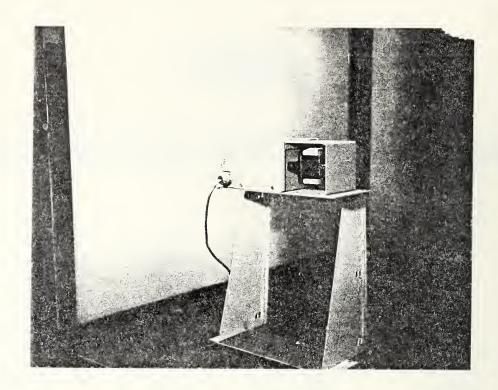


FIGURE 1. THE ANEMOMETER MOUNTED IN THE TUNNEL SHOWING METHOD OF SUPPORT (VIEWED LOOKING DOWNSTREAM).

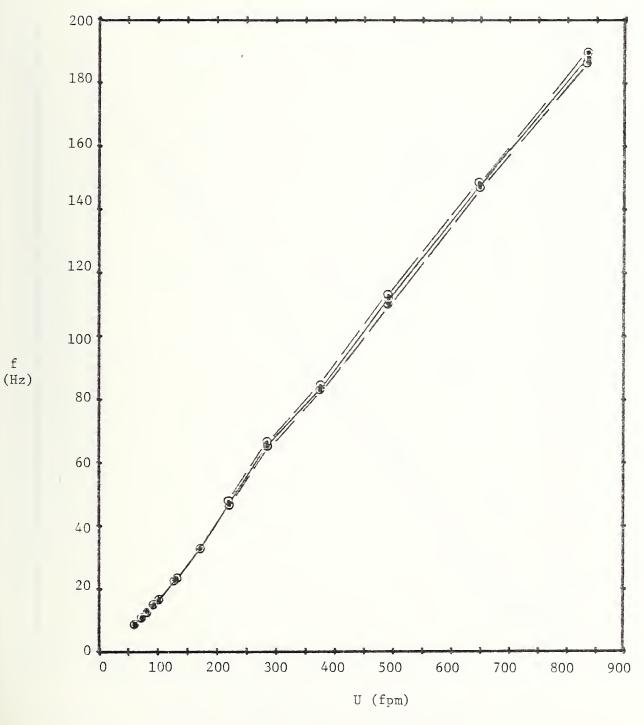
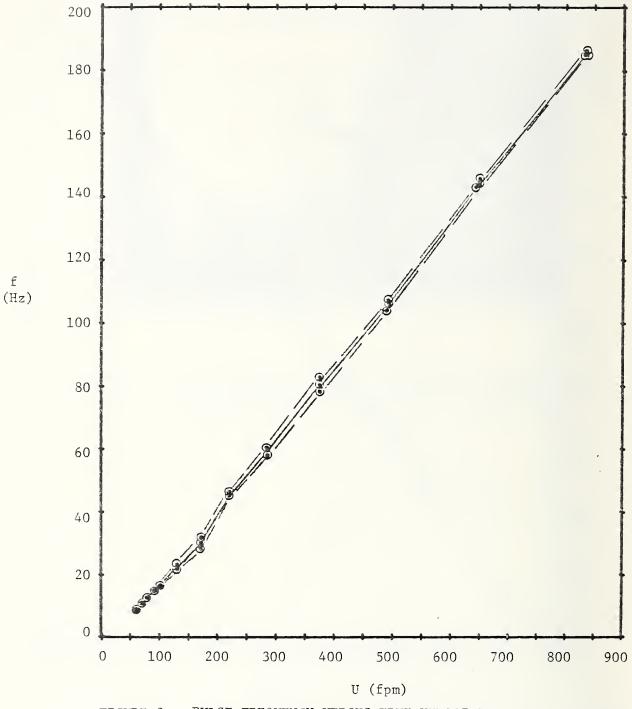
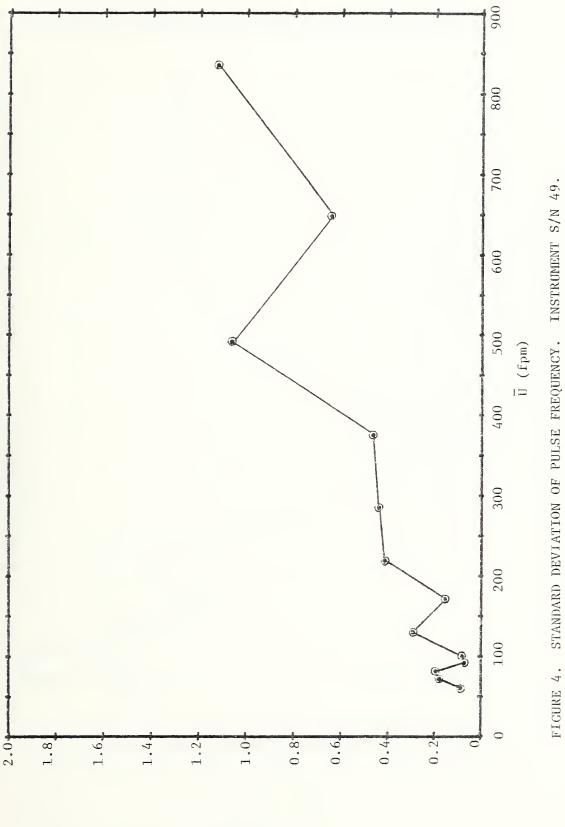
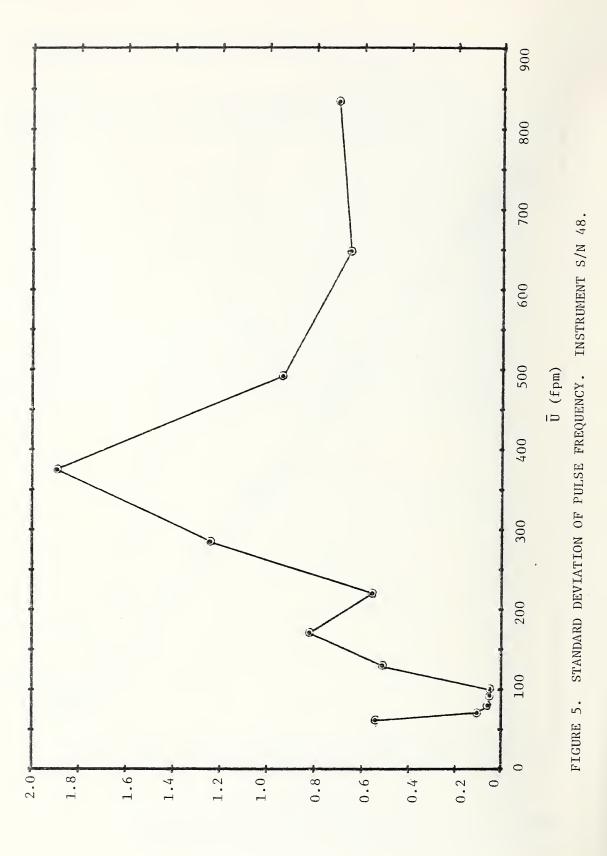
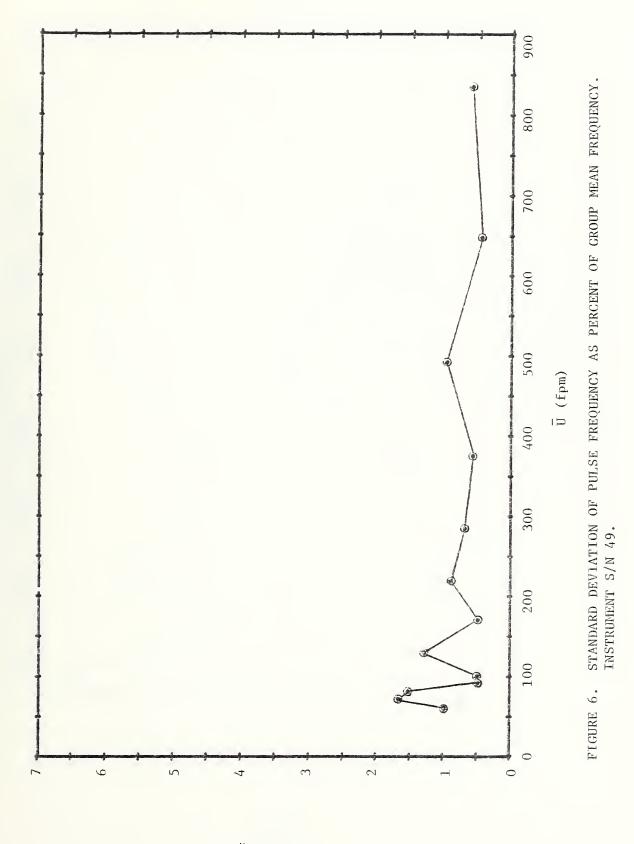
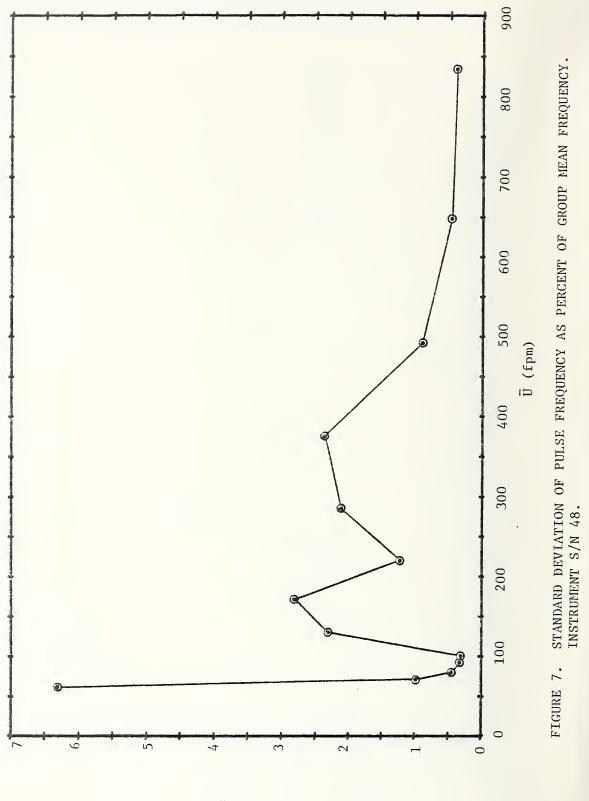
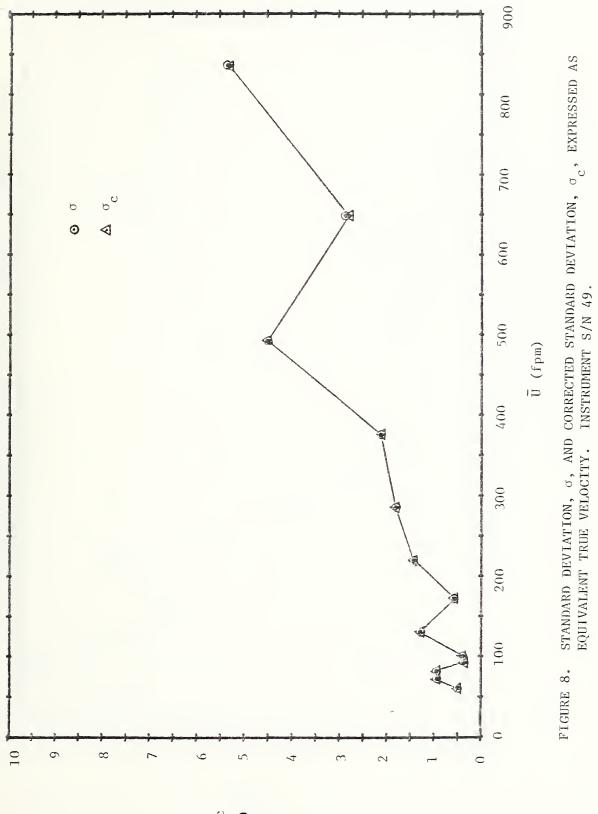


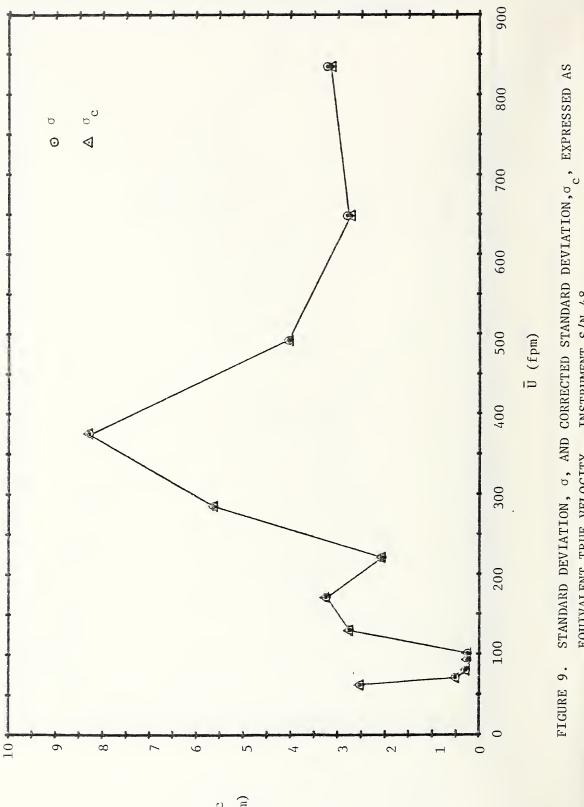
FIGURE 2. PULSE FREQUENCY VERSUS TRUE VELOCITY WITH \pm $2\sigma_{\rm f}$ CURVES. INSTRUMENT S/N 49.

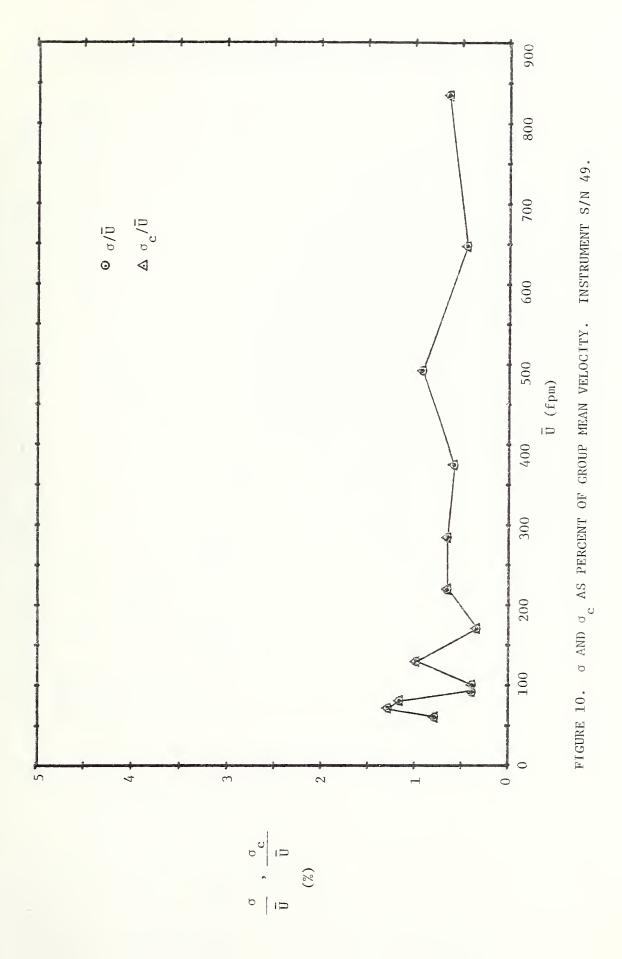

FIGURE 3. PULSE FREQUENCY VERSUS TRUE VELOCITY WITH $\pm 2\sigma_{f}$ CURVES. INSTRUMENT S/N 48.

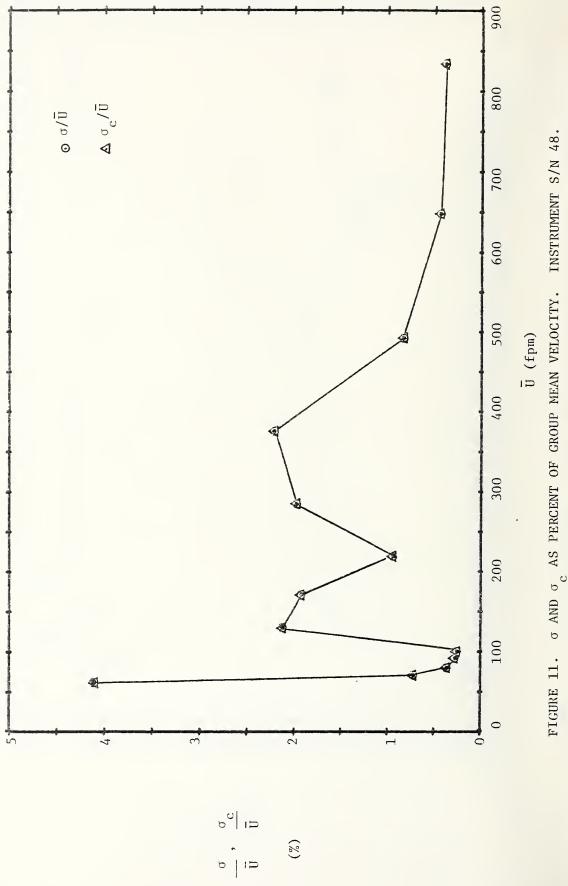

 (H_Z)


σf (Hz)


σ_f/f̄ (%)

 σ_{f}/\overline{f} (%)




σ, σ_c (fpm)

(fpm) σ,σ c

EQUIVALENT TRUE VELOCITY. INSTRUMENT S/N 48.

