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ABSTRACT

Hydrogen and hydroxyl incorporation into thin silicon dioxide

films thermally grown on silicon in dry oxygen atmospheres

contained in resistance-heated fused silica or-pol ycrysta 1 1 i ne

silicon tubes is analyzed. The mechanisms leading to incor-
1 -1 CO

poration of these impurities in the film are discussed in

terms of trace water and hydrocarbon contamination in the oxy-

gen used, room ambient humidity permeation through the fused

silica tube, the silicon wafer preparation prior to oxidation,

and other environment factors. The most significant reactions
I

occurring in the water-silica-silicon system during wafer oxi-

dation at temperatures in the range from 800°C to 1200°C are

discussed. It is shown that, during the oxidation period re-

quired to grow a 100-nm thick silicon dioxide film on a '^I00>

silicon wafer in nominally dry oxygen containing water con-

tamination in the ppm range, the introduction of hydrogen and



hydroxyl contamination into the oxide film can be explained

in terms of the water-silica interaction. The use of poly-

crystalline silicon oxidation tubes is discussed with refer-

ence to the inherent water gettering action of silicon at

oxidation temperatures.

Key Words: Dry oxidation of silicon; hydrogen contamination;

hydroxyl contamination; semiconductor device fabrication;

silicon; silicon dioxide; thermal oxidation of silicon.

INTRODUCTION

Ionic contamination in thermally grown thin silicon dioxide films is

known to cause instability in microelectronic devices [1]. In addition

to alkali ions, protons are generally identified as a mobile ionic spe-

cies responsible for such instability in silicon dioxide films. While

the contamination mechanism leading to alkali and heavy ion inclusion

in these films has been discussed [2], mechanisms for incorporation of

hydrogen and hydroxyl Impurities in thermally grown silicon dioxide

films have not been extensively analyzed. Infrared studies have shown

significant amounts of these impurities in silicon dioxide films [3l.

when either fused silica or polysilicon tubes are used to contain the

the oxidation atmosphere [^] . These results suggest a strong correla-

tion between water contamination in the oxidation atmosphere and hydro-

gen and hydroxyl contamination in the films.

At oxidation temperatures, trace amounts of hydrogen or hydrogen-

containing species in the atmosphere or included on the wafer causes

strong interactions with the silicon-silica system resulting in the in-
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corporation of hydrogen-bearing species into the growing silica film.

This type of impurity on the wafer surface has been shown to have a

marked influence on the oxidation rate of silicon [5]- If a thin hy-

drolyzed oxide layer is present on the wafer surface prior to thermal

oxidation, the oxidation rate is reduced with respect to nonhydrol yzed

silicon, suggesting a significant alteration has been produced at the

silicon-silica interface. A number of species containing hydrogen and

hydroxy 1 -bonded silicon have been reported in this interface layer [6].

At room temperature, oxygen, water, and hydrocarbons from the room am-

bient adsorb on clean silicon forming a thin film containing hydrogen-

bearing compounds on the wafer surface prior to the thermal oxidation

[7]. The oxygen-silicon bond in this film is stable enough (heat of

adsorption 210 kcal/mole) to remain on the wafer surface and, conse-

quently, influence the ’initial kinetics during the thermal oxidation of

silicon [8]. The presence of complex structures such as Si 03 in these

absorbed films has been reported even for cases in which less than a

monolayer of oxygen is adsorbed on the silicon surface [9]. The thick-

ness of both hydrogen and water adsorbed layers was found to be depen-

dent on the wafer polishing procedure [10]. The wafer preparation pro-

cedure requires strict material and environmental control to secure

stable and reproducible thermal oxidation results.

In this paper, an estimate of the hydrogen and the hydroxyl content

in thermally grown thin silicon dioxide films prepared in oxidation

atmospheres enclosed In resistance-heated fused silica or polycrys-

talline silicon tubes is presented. The results are compared with

3



available hydrogen and hydroxyl density data measured by infrared

internal reflection spectroscopy (IRS) [3»^]»

WATER CONTAMINATION IN OXIDATION ATMOSPHERES

The origin of water contamination in dry oxygen atmospheres used to

grow silicon dioxide films on silicon is related to impurities in

the oxygen and permeation of water from the room ambient through the

furnace tube [11-13]. Electronic grade oxygen generally contains about

5 ppm- water and 20 ppm hydrocarbons [11]. At oxidation temperatures,

the hydrocarbons decompose in the oxidation atmosphere to form car-

bon dioxide and water, resulting in about 25 ppm water contamination.

To reduce this contamination level, oxygen needs to be purified be-

fore being used in the oxidation chamber. Hydrocarbons are removed

by cracking at high temperatures, and water is removed by subsequent

condensation at an appropriate low temperature. Oxygen treated in

this way contains about 1 ppm water [12, 14].

At high temperatures, water dissociates to form hydroxyl and hydrogen.

However, the amount of these dissociation products is relatively small,

and consequently water remains the most important impurity to interact

with the silicon-silica system. For example, at 1300 K the equilibrium

of water and its dissociation products in oxygen [2] corresponds to

partial pressure ratios of:

P(0H)/P(H20) = 5 X 10“2,

P(H)/P(H20) = 3 xlO"’^, and

P(H20) = 3 xlO-8.
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Table 1 shows the equilibrium constants for water- i nduced reactions oc-

curring in the thermal oxidation of silicon contained in a nominally

dry atmosphere at 1300 K. Table 2 shows the thermodynamic data used for

these calculations; values for the standard enthalpy of formation and

the Gibbs free energy function in the standard state at 1300 K are from

JANAF tables [15] or from high temperature water-silica reaction data

[ 16 ].

Some reactions listed in table 1 exhibit large equilibrium constants

indicative of the tendency of the reaction to occur. Due to the lack

of reaction kinetic data, the exact amount of water incorporated into

the oxide film during the oxidation period cannot be determined. How-

ever, qualitative considerations can be used to estimate the expected

water contamination in such films. For example, in 1 atm oxygen con-

taining 1 ppm water at 1000°C, the water number density is 5.7 ^

10^^ cm"^ and the average water molecular velocity is 1 .2 x 10^ cm‘s“^

[17]. !t takes approximately 175 min to grow a 100-nm thick oxide film

on <100> silicon in this atmosphere. During this oxidation period,

water molecules impinge on the wafer reacting with the growing film

and some of these molecules become incorporated into the film. The

water fluence on the wafer is [17]:

F = 2.67 X 10^^ Pt/(WT)^/^ = 1.85 X 10^^ cm”^

where P is the water partial pressure in the oxidation ambient (in

atmospheres), t is the wafer oxidation period (in seconds), W = I 8 g is

the molecular weight of water; and T = 1273 K, is the absolute tem-

perature. The water fraction (n) incorporated into the film can be
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estimated from data on water oxidation of silicon in inert atmospheres;

n is determined by the silica film thickness and the water fluence on

the wafer F

:

Ti = xpN/WF

where x is the silica film thickness grown by water oxidation of sili-

con (in centimeters), p = 2.3 g-cm"^ is the film density; N is

Avogadro's number; and W = 60 g, is the molecular weight of silica.

From available data on the oxidation of silicon at 1000“ C in inert at-

mospheres containing trace water contamination, n is estimated in the

10“^ range* [18,19]* In 100-nm thick silica films grown on <100>

silicon at 1000°C in 1 atm oxygen containing 1 ppm water contamination,

the expected water number density is in the 10^^ cm“^ range. This

figure is close to the solubility of water in fused silica at 1000°C

exposed to an inert atmosphere with water partial pressure P(H20 )
=

10“^ atm [20,21]. Consequently, silica films grown on silicon in a

conventional dry oxidation facility are expected to exhibit water con-

tamination up to the solubility equilibrium determined by the tempera-

ture and the water partial pressure in the oxidation ambient. Table 3

T. Nakayama and F. C. Collins [19] reported on the oxidation of sili-
con in 1 atm argon with water partial pressure in the range 10’*^ atm
< P(H20) ^ 10"^ atm. These data agree with results obtained in 1 atm
nitrogen containing trace water contamination [18]. However, their
data on nominally dry argon [P(H20 ) = 0 atm] do not agree with other
results [18]. The authors indicate that the oxide growth rate in
nominally dry argon at 1000°C can only be explained if the water im-
purity in argon is assumed to be 460 ppm. This rather large contami-
nation may arise from oil vapor backstreaming from an oil bubbler used
to close the exit port of the furnace tube to prevent entrance of
atmospheric moisture. At oxidation temperatures, cracking of oil in
oxygen generates enough water to explain the data obtained for oxida-
tion in nominally dry argon.
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summarizes calculations made for films grown in 1 atm oxygen containing

1 ppm water or 125 ppm water at temperatures in the range 780°C to

1200°C.

These results are in agreement with diffusion data. If an ideally dry

silica film is exposed to a water-contami nated inert atmosphere at oxi-

dation temperatures, the water diffusion through the film is high

enough to account for water saturation of the film during an interval

of time equivalent to the oxidation period. For example, a 100-nm

thick pure silicon dioxide film exposed to- 1 atm nitrogen containing

1 ppm water at 1000°C allows the diffusion of ^.1 x 10® cm“^'s~^ water

molecules (the diffusion coefficient of water in silica at 1000°C is

7.2 X 10"^® cm^*s”^ [20,21]). Assuming this film is exposed for 175

nin (equivalent to the time necessary to grow at 1000°C a 100-nm thick

oxide film on silicon in oxygen at atmospheric pressure conta i n i ng 1 ppm

water), the water diffused through the film is ^.3 ^ 10^^ cm~^, and

the resulting water number density in the film is ^.3 10^^ cm“®.

This figure agrees in order of magnitude with the estimated water num-

ber dens i ty in the film due to water react ivi ty with the s i 1 ica-s i 1 icon

system during the oxidation period. Both the water kinetic considera-

tion in the oxidation atmosphere and the water diffusion into the film

provide coincident results.

In addition to water diffusion, hydrogen diffusion through the film

plays an important role. Although the hydrogen content in the oxida-

tion atmosphere is small, its diffusion coefficient in silica and

7



silicon is large.* It has been postulated thac the formation of triva-

lent silicon compounds at the silicon-silica interface are generally

associated with structurally defective sites in the silicon and silica

lattices where Interstitial hydrogen plays a key role in reactions with

trivalent silicon exhibiting nonsaturated dangling bonds [23]. The

resulting silicon-hydrogen structures are thought to affect the elec-

trical properties and the radiation response of silicon microelectronic

devices, and therefore the presence of hydrogen might become a factor

of major technological significance.

INFLUENCE OF THE FURNACE TUBE ON THERMALLY GROWN SILICON DIOXIDE FILMS

It has been shown that alkali and other impurities Included in fused

silica tubes can evaporate into the oxidation atmosphere and contami-

nate the growing oxide films [2]. Similarly, hydroxyl may evaporate

from fused silica tubes containing water as an impurity. There are

two types of fused silica available as tube material: natural and

synthetic. The former is made by electrical fusion of quartz-crystal

powder resulting in a product containing about 10 ppm hydroxyl and 100

to 200 ppm metal 1 ic impuri ty. Synthetic fused silica is made by flame

fusion of highly purified chemicals and results in a product contain-

ing about 3000 ppm hydroxyl and less than 2 ppm metallic impurity [24].

Furnace tubes used in oxidation facilities are generally made out of

natural fused silica with low hydroxyl content. However, since the

At 1000°C the hydrogen- to-wa ter partial-pressure ratio in 1 atm oxy-
gen containing 1 ppm water is 3 ^ 10"^. The diffusion coefficient of
hydrogen in silicon is 10"^ cm^*s~^ and in silica is 10“^ cm^*s [22].
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tube IS constantly exposed to rooni humidity, its hydroxyl (,ontent in-

creases up to the solubility limit.

It has been suggested [12,13] that water from the room ambient per-

meates through the fused silica furnace tube adding impurity to the

oxidation atmosphere. Assuming that the oxidation facility is in a

room with an ambient temperature of 25“C and a relative humidity of 30

percent, the resulting water partial pressure in this room is 9-^ ^

10”^ atm [25] . The corresponding water number density in the proximity

of the oxidation tube at 1000®C is 5.^ ^ 10^^ cm"^. When water comes

in contact with the tube wall, it dissociates forming silanol which is

incorporated into the fused silica:

H20(g) + (e Si - 0 - Si 5) (c) t 2 (e Si - OH) (c)

.

At oxidation temperatures, this process reaches equilibrium in a few

days [20] resulting in a constant water concentration in the bulk

determined by the hydroxyl solubility in fused silica. This is

7 X 10^® cm'3 or about 300 ppm for fused silica exposed to a partial

pressure of water P(H20) = 9*^ ^ 10 ^ at lOOO^C [21]. The evapora t i on

of hydroxyl groups into the oxidation atmosphere can be calculated as-

suming the wall as a constant concentration source. At constant tem-

perature, hydroxyl in silica diffuses out at a smaller rate than it

diffuses in [20,21], and so the tube reaches equilibrium hydroxyl con-

centration in a relatively short time.

Table 4 shows the available data and the resulting hydroxyl partial

pressure in the oxidation atmosphere due to water permeation through

the tube wall. For example, at 1000“C the water flux entering into
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this atmosphere is 2 x lO^O cm-^-s-l. jhese molecules are emitted

from the tube wall. For example, at 1000°C the water flux entering

into this atmosphere is 2 x 10^0 cm“2*s“^ These molecules are

emitted from the tube wall with average velocity v -- (8 kT/mir)^ =

1.2 X 10^ cm-s"^ and diffuse in the oxygen with a diffusion coefficient

D( 0H- 02 ) calculated according to [17l:

D(0H-02) = (v^(OH) + v^ (O 2 ) )^/3irn6^ = 1.7 cm^*s”^,

where n = 5-7 ^ 10^® cm“^ is the oxygen number density in the oxida-

tion ambient at 1 atm and 1000°C, and 6 = (6(0H) + 6(02))/2 = 4.1 x

10”® cm is the OH-O 2 molecular diameter." The net hydroxyl molecular

displacement per unit time t (measured in seconds) in any arbitrary

direction in the oxidation atmosphere can be expressed as [17]:

= (2tD (OH-O 2 )
) ^ = 1.8 cm. The hydroxyl number density in the

oxidation atmosphere is estimated from the net displacement in a

direction perpendicular to the wall. This displacement generates

a 1.8 cm^ volume per unit wall area and unit time. This volume

contains a number of hydroxyl molecules given by the net balance

between the incoming and the outgoing fluxes. This number is

2 X 10^° cm"^*s”Vl.8 cm*s“^ = 1.1 x 10^® cm“^, and the corresponding

partial pressure in the oxidation atmosphere is P(0H) = I.9 ^ 10~^ atm.

This pressure is 26 times smaller than the hydroxyl equilibrium par-

tial pressure generated from dissociation of 1 ppm water in oxygen.

Another approximate expression can be used to evaluate the^ i nterdi f-

fusion coefficient of hydroxyl in oxygenj D = 2 (k^T^/iT^m)5/dTr2p

;

here, P = 1 atm is the oxygen pressure [26]- At 1000°C, 0 = 0.76
cm^.s"!; the difference between this and the D-value calculated
above is not significant for the purpose of this discussion.
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Consequently, the use of natural fused silica tubes in oxidation

furnaces does not necessarily ensure low hydroxvl content in the oxida-

tion atmosphere. In addition, natural fused silica has about 100 times

more metallic impurity than synthetic fused silica, so the criteria

used to select the furnace oxidation tube need to be reexamined.'"

The use of polycrystalline silicon tubes in oxidation furnaces instead

of fused silica presents interesting aspects. Water permeation through

the tube wall is greatly reduced since water reacts with silicon to

form a silica "skin" on the tube wall:

Si(c) + H20(g) -> Si02(c) + 2 H 2 (g).

This is the most probable reaction occurring in the oxidation of sili-

con by water and is known to occur rapidly at high temperature. Thus,

water fr6m the room ambient is preferentially trapped on the tube wall.

In addition to this, the use of polycrystalline silicon tubes allows

the use of higher temperatures in the oxidation of silicon wafers,

thus reducing the oxidation period and, consequently, the water in-

corporation into the growing oxide film. For example, it takes 59

min to grow a 100-nm thick silicon dioxide film on <100> silicon

at 1100°C in 1 atm oxygen containing 1 ppm water [l8]; the total num-

ber of water-silica collisions during this period is 6 x 10^° cm“2^

This is three times less than expected at 1000°C.

Although thermal oxidation of silicon by rf-heating is not generally

used in production-oriented facilities, it is worth noting that it

provides a way of minimizing the tube influence on the cxiduticr

atmosphere since the tube remains much cooler than the wafer [?7]-



V.'hen a new polycrystalline silicon tube is used, the tube surface

area exposed to the oxidation atmosphere is much larger than its

geometrical size due to the nature of the polycrystalline surface.

This surface reacts quickly with residual water to form silica. This

is especially efficient at higher temperature. The wall behaves like

a getter removing water from the oxidation atmosphere. Consequently,

silica films grown on silicon wafers at high temperatures in dry

oxidation atmospheres contained in polycrystalline silicon tubes are

expected to show less water contamination than films grown in fused

silica tubes under similar conditions. This is an interpretation

consistent with a general trend shown by infrared spectroscopic mea-

surements of hydroxyl and hydrogen in thin silicon dioxide films

thermally grown in dry atmospheres contained in fused silica or poly-

crystalline silicon tubes at 1000°C [^] . Naturally, as the silicon

tube develops a silica ’’skin," its gettering action is reduced.

Periodic in situ cleaning is needed to eliminate the film and re-

generate the fresh polycrystalline surface.

MEASUREMENT OF HYDROGEN AND HYDROXYL CONTAMINATION IN THIN SILICON
DIOXIDE FILMS

The use of infrared internal reflection spectroscopy (iRS) has been

reported for direct measurements of hydrogen and hydroxyl impurity

included in thin silicon dioxide films thermally grown in dry oxi-

dation atmospheres contained in both fused silica [ 3 ] and polycrys-

talline silicon tubes [^] . The technique [28] requires the use of

trapezoidal silicon prisms on which oxide films are grown. The sped

men is exposed to infrared light incident on the prism at an angle

12



appropriate for multiple total internal reflection. Since the index

of refraction in the film is lower than the index of refraction in

the prism, at each reflection site where total internal reflection

occurs at the silicon-silicon dioxide interface, a certain amount of

light propogates into the film as an evanescent wave. This evanes-

cent wave travels an unknown distance along the film and then is re-

flected back into the prism. The only relevant information obtained

is due to light absorbed in the film at each reflection. The higher

the number of internal reflections in the film, the higher the ab-

sorption effect. Depending on the film thickness, the evanescent

wave may reach the outer film Interface (silicon dioxide/air) where

again a similar situation is observed [29].

IRS results were reported on hydrogen and hydroxyl compounds in thin

silicon dioxide films therma 1
1 y grown in dry oxidation atmospheres

at 1000°C contained in fused silica or polycrystalline silicon tubes.

The oxide films were subsequently annealed in nitrogen for 30

min before being removed from the furnace tube. The results show an

order of magnitude reduction in both hydrogen and hydroxyl compounds

in si Icon dioxide when the polycrystalline silicon tubes are used

in the oxidation furnace. The reported values for hydroxyl and hydro-

gen densities are, respectively 1.7 ^ 10^^ cm"^ and 1.7 ^ 10^^ cm"^

in films grown in fused silica tubes and 2.9 ^ 10^® cm ^ and 1.8 x 10^^

cm" ^ in films grown in a polycrystalline silicon tube. [^].

Quantitive measurements with th i
s' techn

i
que require complete knowl-

edge of parameters such as the absorption coefficient of the film, the

13



optical path in the film, and the probe Intensity. All of these are

Jirricult to measure. For example, as pointed out elsewhere [3]. the

evaluation of IRS signals in terms of impurity number density in the

film requires knowledge of the effect i ve* charge associated with each

molecule where the absorbing group is attached. For hydrogen and

hydroxyl compounds in silicon dioxide, this information is not com-

plete. The experimental error of IRS measurements is ±50 percent and

the sensitivity is 5 ^ 10^® cm”^ for SiOH and 3 ^ 10^^ cm”^ for SiH

groups [3]. Results obtained on 1 -ym thick silicon dioxide films

thermally grown at 1100°C in 1 atm oxygen containing 60 ppm water

show no SiOH signal (<5 ^ 10^® cm”^) and 7 10^^ cm"^ SiH [3l.

These figures agree in order of magnitude with expected film contami-

nation resulting from interaction with residual water in the oxidation

atmosphere. The water fluence on this film during the oxidation pe-

riod is of the 10^^ cm~^ order of magnitude. Assuming n = 10”^ for

the water-to-s i 1 ica-s i 1 icon interaction, the expected water number

density in this film is in the 10^^ cm"^ range.

Although these kinetic considerations are in agreement with IRS results

on thin silica films, independent measurements aimed at characterizing

hydrogen and hydroxyl impurities in these films are needed. Laser

calorimetry may offer this possibility. The technique has already

been successfully employed for measurements of very small absorptivi-

ties in thin films used for optical applications [30,31]. An extension

of this work for thin silicon dioxide films on silicon may provide

valuable results to complement available IRS data. Another interesting



technique for hydrogen detection in thin silicon dioxide films using

nuclear resonance reactions has been reported [32]. This technique is

sensitive to elemental composition and does not provide information on

the compound structure into which hydrogen is incorporated.

CONCLUSIONS

Hydrogen and hydroxyl contamination in thin oxide films thermally grown

on silicon in nominally dry oxidation atmospheres is primarily due to

trace water and hydrocarbons included in the oxygen. The preparation

procedure prior to thermal oxidation of silicon may contribute addi-

tional oxide contamination included as a very thin layer formed on the

silicon wafer. This layer contains hydrogen-bonded and hydroxyl -bonded

species that Influence the silicon oxidation rate. A minor hydroxyl

contamination may result in the oxidation atmosphere due to evaporation

from fused silica furnace tubes. A water content below 1 ppm in the

oxidation atmosphere can only be achieved when special care is taken in

controlling factors such as the prepurification of oxygen, the wafer

preparation procedure prior to oxidation, and the furnace tube quality.

Complete water contamination removal from the oxidation atmosphere is

difficult and expensive; the use of polycrystalline silicon tubes to

contain such atmospheres at high oxidation temperatures is preferred

to getter residual hydrogen and hydroxyl.

In summary, to minimize hydrogen and hydroxyl impurities in thermally

grown thin silicon dioxide films control must be exercised on the water

contamination that may arise from (a) oxygen, (b) residual wafer im-

purity due to the processing, (c) room ambient humidity, and (d) the

15



furnace oxidation tube. The measurement technique used to detect

hydrogen and hydroxyl content in these films needs to be carefully

examined

.
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Table 1. Water- I nduced Reactions During Oxidation of Silicon at 1300 K.

Reactions K

Si(c) + 2H20(g) Z Si02(c) + 2H2(g) 1.33 >

Si(c) +|H20(g) J isi02(0H)6(g) + 2H2(g) 1.8? >

Si(c) + 3H20(g) t Si0(0H)2(g) + 2H2(g) 1.31 >

Si(c) + 2H20(g) t Si0(0H)(g) + |H2(g) 5.20 >

Si(c) + H20(g) J^Si02(c) + |-SiH4(g) 3.78 >

ySi(c) + 2H20(g) jisi(0H)4(g) + H2(g) 2.75 >

Si(c) + H20(g) t SiO(g) + H2(g) 27.56
Si (c) + 0H(g) t SiOH(g) 1 .61 >

Si(c) + H20(g) t SiOH(g) + ^2(9) 2.29 >

Si (c) + H20(g) t SiOH(g) + H(g) 2.52 >

Si02(c) +^20(g) tSi0(0H)(g) +^2(9) 1.15 >

Si02(c) +|H20(g) jSi(0H)3(g) + {02(g) 6.8I >

Si (c) + {02(g) t 5i0(g) 3.20 >

Si(c) + 02(g) Z Si02(g) 2.51 >

Si (c) + 02(g) Z Si02(c) 1 .8 >

Si(c) + 02(g) + H20(g) JSi0(0H)(g) + 0H(g) 2.71 >

Si (c) + 02(g) + H20(g) Z Si (OH) (g) + {02(g) 3.28 >

Si(c) + 02(g) + H20(g) t Si0(0H)2(g) 6.21 >

Si(c) + 02(g) + 2H20(g) JSi(0H)4(g) 3-59 >

Si(c) + 02(g) + |H20(g) j{-Si20(0H)6(g) 8.5^ >

SiO(g) + {02(g) Z Si02(c) 5.59 >

SiO(g) + {02(g) Z Si02(g) 7.86 >

SlO(g) + H20(g) tSiO(OH)(g) + {H2(g) 5.16 >

SiO(g) + 2H20(g) J Si0(0H)2 (g) + H2(g) 1.67 >

SiO(g) + 3H20(g) J Si(0H)4(g) + H2(g) 9.69 >

SiO(g) + |H20(g) J jS
i
2O (OH) g (g) + H2(g) 2.30 >

1013

106

10^

103

103

102

102

10”^

10"12

10" 13

10’18

108

1012
1027

lolo

lolo

1020

1013

1020

IOI8

103

102

103

103

108
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Table 2. Thermodynamic Data Used to Calculate Equilibrium
Constants at 1300 K for Reactions Listed in Table 1.

Compound (kca 1 /mol e)

-(g;-H238)/T

( ca 1 /

K

. mo 1 e )

H20(g) - 57.798 51.136
H(g) 52.1 30.879
0H(g) 9.432 48.877

0(g) 59.559 42.044

02(g) 0.0 54.283
H2 (g) 0.0 36.130

Si02(c) -217.7 19.918

$102(1) -215.74 21.134
SiOoig) - 73.0 63.266
SiO(g) - 24.0 55.994

Si (c) 0.0 8.399
Si(l) 11.585 15.188
Si (g) 107.7 43.715

SiH(g) 90.0 52.515

SiH4(g) 7.3 58.969

Si0(0H)(g) -118.0 71.63*

Si (0H)2(g) -101.0 72. 1.2;;

Si0(0H)2(g) -222.0 80.15

Si (0H)4(g) -322.3 92.93’:

Si02(0H)e(g) -612.1 128.83“

Si(0H)(g) 4.0 63.2

Si(0H)3(g) -203.0 82.5

These data replace corresponding data in

Reference [2]. The effect on the results

given there is small and the conclusions

are unchanged.
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Table

3.

Water

Fluence

(F)

on

Wafer

Unit

Area

During

the

Oxidation

Period

(t)

Necessary

to

Grow

lOO-nm

Silicon

Dioxide

on

<100>

Silicon.

The

oxidation

atmosphere

(1

atm

oxygen)

contains

I

ppm

or

125

ppm

water.

ro X
O— -3-

— <TS

II

(/)

e *D
0 —
1 £

3

-C >
C7J

3
o <0

c <-»

0 c
0)

4^ O
01 ^
0) 0)

E Q.
W. I

22

(*)

Data

calculated

from

References

[20,21]

for

P(H20)

=

9.4

x

10

^

atm.



Table 5. Si-OH and Si-H Bond Energies for
Various Silicon Compound Molecules.

Compound Type

Bond
Energy

(kcal/mole) (eV/mol ecul e)

SiO(g) Si = 0 190 8.24
Si02(g) Si = 0 149 6.46

Si(0H)3(g) Si-OH 127 5.51

Si20(0H)6(g) Si-OH 117.5 5.10
Si (0H)4(g) Si-OH 116.5 5.05

SiO(OH)g Si-OH 113 4.90

SiH4(g) Si-H 76 3.30
SiH(g) Si-H 73.5 3.19

Si2H6(g) Si-Si
51 2.21

sisHetg) Si-Si

0-H 102.2 4.43

0-H--0 % 5 0.22

Si = Si 75.8 3.29
Si-Si 53.4 2.32
Si-0 111 4.82
Si = 0 192.3 8.34
0 = 0 119.2 5.17
0-0 34.0 1.48
0-H 110.8 4.81
Si-H 74.7 3.24
Si E Si 153.6 6.66
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