
Refer#n€#~
vft NSS

Publi- :

cations
ftX' AlllDM 3bll73

IMRSJR 78-1551

Access Functions for Packed
Scatter Tables

Bruce E. Martin

I

I

Systems and Software Division

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, D.C. 20234

August 1978

100

.U56

U.S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

r 73-1551

i97B

W0SJ8T Sureao of Sfandards
APk i ?]Q7§

NBSIR 78-1551

an nn -
:

ACCESS FUNCTIONS FOR PACKED
SCATTER TABLES

Bruce E. Martin

Systems and Software Division

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, D C. 20234

August 1 978

I
' ,1 , ;

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

Dr. Sidney Harman, Under Secretary

Jordan J. Baruch. Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS. Ernest Ambler, Director

mmul ,3t>aiMsfeo^V^

^ 2

,nMfm ,-: .3..,^ifiaflAay',,^H7i“=ro u'A^’«u'^!fAiftCHtAi^
*).

‘ • Rcjs ' •.^ :'
- ii*-

'

' :,-7«

NBSIR 78-1551

ACCESS FUNCTIONS FOR PACKED
SCATTER TABLES

Bruce E. Martin

Systems and Software Division

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, D C. 20234

August 1978

U.S. DEPARTMENT OF COMMERCE. Juanita M. Kreps. Secretary

Dr. Sidney Harman, Under Secretary

Jordan J. Baruch, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

0

II
4

TABLE OF CONTENTS

SUMMARY OF THE ACCESS METHOD

USE OF THE ROUTINES

Declarations

Initializations ...

Node (De) al loca t ion

APPENDIX A:

APPENDIX B:

APPENDIX C:

Documentation

Listings of a

Sample result

of PASCAL code

ccess routines

s

Page

2

5

6

6

7

8

16

21

-i i i-

-if ."M

p

s g.s"-s

'.<
.

* -A'
' 1

i

I'H...,

i*

I g».

<

'?*'

«9

’ dSsr:;irv«!*k^,
'

' m..

« I »' r, ^ « » * '• * •'
,» » >. « *

'• i W j;4--« c» « i>- » I*,' » .» '4'
* K* S'HPS^

;

,
.-__f

J f « .1 ' . (• 1 < * !*.• » r f » »..?'' », » » f

• • t .. .».» ¥ *,>•» « .(,.!?'>,, ji * #.

5a<^‘p ^ ...

Ji: . -

S*iJi

iVi

« 4r“i. ' ••>»'0kn»e
m-'

K?-,

jsi¥" -
'

' ;
,

i
•v;- ;

,Jt;-

•
^ V:,

;

.. >,5,'

M

'4

, "T ...
» / ^ :>.:

M
,® 5>:::.k''*>'

DISCLAIMER

The table functions described in this r

written and tested carefully. The possibi

application requires that NBS expressly disc

consequences of using the functions, A pa

must be issued on attempts to speed table ac

indices; such schemes are guaranteed fail

move with new insertions.

epor t ha

1 ity of

la im any

rt icu lar

cess by

ure , s in

ve been

improper

and all

warning

s tor ing

ce items

- 1 -

Access Functions for Packed Scatter Tables

Bruce E. Martin

Three PASCAL access routines are given for

packed scatter tables. INSERT packs tables of in-

teger keys; FIND retrieves the keys; DELETE

deletes keys. While the routines currently access

integer keys (for use in performance testing with

pseudo - random integers), they can easily be con-

verted to access other data types -- character

strings in a symbol table, for example. To

enhance portability, the code is straightforward

PASCAL without any input-output capabilities. Ap-

pend i ces conta i

n

specific comments on the

routines. listings. and sample results.

SUMMARY OF THE ACCESS METHOD

Hashing techniques allow insertion and retrieval of

keys by computing a function h(key) and storing the key in

T[h(key)], where T is an indexed table. Since the function

h(key) generally does not compute unique addresses, dif-

ferent keys may "collide". Simple collision-resolving

methods search for an alternate location to store the key

- 2 -

being inserted. But such methods can cause slow retrieval

of keys. More sophisticated methods search for alternate

locations for other keys as well as for the key being in-

serted. INSERT uses a generalized collision-resolving

method that recursively considers table rearrangement. The

user controls the method to be used with the parameter

DEPTH. Lyon gives a more detailed discussion of the algo-

rithm in [1]. A summary of the method appears here.

Specific comments on the PASCAL code appear in appendix A.

Integer keys are inserted in the scatter table by first

calculating a table address using a primary hash function

(key mod tablesize) . If the slot in the table addressed by

the primary hash function is not occupied, the key is in-

serted. Otherwise, the cost of displacing the contents of

the slot is calculated by calling the function DISPLACE.

Next, the cost of displacing the key is calculated by a

second call of DISPLACE. DISPLACE returns a stack that in-

dicates how the table should be rearranged. The table is

rearranged using the stack returned by the call of DISPLACE

with the least displacement cost.

The function DISPLACE makes

increments of the secondary hash

+1) until an open slot is found,

the search for an open slot is

by recursive calls of DISPLACE.

probes into the table by

step (key mod (tablesi ze-2)

Each slot probed during

considered for displacement

The recursion terminates

- 3 -

when the deepest level of recursion, as specified by the

user with the parameter DEPTH, is reached or whenever dis-

placement of further slots cannot possibly find a better

solution. The deepest call of DISPLACE returns the addi-

tional penalty to probe to the free slot; that is,

PENALTY (number of probes to free slot) minus PENALTY (number

of probes to table address), where PENALTY is a forcing

function defined by the user (see [1]). The rearrangement

stack returned by the deepest call of DISPLACE consists of

the table address of the item being displaced and the ad-

dress of the free slot. At higher levels, the total dis-

placement cost of each subsequent slot is calculated to be

the additional cost to probe to the slot plus its displace-

ment cost, and the minimum is returned. The stack at higher

levels of DISPLACE consists of the address of the item being

displaced and the stack returned from the chosen call of

DISPLACE

.

A table of counters of search lengths is maintained for

faster rejection of keys not in the table. As keys are in-

serted, the number of probes to find each key is recorded by

incrementing a counter in the search length counter table,

KICKOUT, where the search length is the index of KICKOUT.

Since key insertion possibly causes other keys to be dis-

placed, thus changing each displaced key's search length,

old and new search lengths of displaced keys are also re-

turned on the rearrangement stack to keep KICKOUT updated

- 4 -

and maintained. When a key is deleted, the appropriate

search length counter is decremented.

Keys are retrieved by first calculating their original

primary hash function and secondary hash step. Next, the

table is probed until the key or an open slot is found or

the number of slots probed equals the maximum search length.

Generally, the performance of retrieving keys in the table

does not improve as keys are deleted. For example, a table

half filled performs much better than a table that is first

completely filled and then has half of its keys deleted. Re-

jecting keys not in the table improves as keys are deleted

provided deletions cause the maximum search length to de-

crease. Again, the half-filled table performs better than

the table that is half-deleted. However, as keys are rein-

serted, both rejection and acceptance improve because inser-

tion of keys causes the table to be rearranged more optimal-

ly. See Appendix C for measurements that are typical of

correctly executing functions: Testing of the routines on a

new system should give similar results.

USE OF THE ROUTINES

Decl ar at i ons

The following must be declared by the calling program:

const
tablesize {the size of the table into which keys

maxr eal

ki cksize

type

will be inserted. Must be prime!}
(largest real for particular instal-
lation. }

(size of the search counter table}*

table=array [0 . . tablesi ze-lj of integer;
kicktab= array [-1 .. kicksi ze+1] of integer;
stkptr =

stkelmnt
"stkelmnt

;

= record
ind, oldlen, newlen: integer;
next: stkptr

end

;

var
oldnodes : stkptr; {for node (de) al locat i on

}

* Kicksi ze should be the expected longest probe for a

particular depth, penalty function and table fil-
ling. If the estimate of the maximum search length
is too small, the rejection performance of the table
may deteriorate. Therefore, a generous estimate of
kicksize is desirable.

Ini t i al i zat ions

The following

gr am

:

must be initialized by the calling pro-

VARIABLES WHEN INITIALIZED TO

of type TABLE
OLDNODES

for new table -1

first use of routines nil

- 6 -

of type KICKTAB for new table as follows:

k i ckout [-1]
: =0 ; {no overflow with new table}

ki ckout [0]
; =1 ; {maximum probes with new table}

kickout{l..kicksize+l] :=0;

Node (De) al location

Since node (de) al location differs from one PASCAL in-

stallation to the next, the INSERT routine, in the interest

of portability, explicitly controls node (de) al locat ion for

its rearrangement stack via procedures GETNODE and FREENODE.

The procedures use a global variable OLDNODES, which points

to a linked list of nodes that grows and shrinks during exe-

cution.

REFERENCES

[1] Lyon, G.E. "Packed Scatter Tables", Comm . of the ACM

(tentative October, 1978)

[2] Lyon, G.E. "Batch scheduling from short lists",

Information Processing Letters , (to appear)

- 7 -

APPENDIX A: Documentation of PASCAL code

Procedure insert

PARAMETER TYPE

tab table

key integer

depth integer

kickout kicktab

the table in which keys are insert-
ed .

the integer to be inserted.

depth of recursion for displace-
ment.

table of counters of search
lengths, KICKOUT [1 , ,KICKSIZE] are
counters of search lengths, where
the length is the index in KICKOUT,
KICKOUT [0] = longest search length,
KICKOUT [-1] = longest search length
if an overflow occurs,
KICKOUT [KICKSIZE+1] is counter of
overflow search lengths,
KICKOUT [0] traps to KICKSIZE+1 if
overflow ocurs.

VARIABLE TYPE

index integer
primary hash index, TAB [INDEX] is
considered for displacement if a

collision occurs,

temp integer
stores the contents of TAB [INDEX]
while displacement of the new key
is being considered,

lenl integer
length of the longest search re-
turned when TAB [INDEX] is con-
sidered for displacement.

- 8 -

Ien2 integer
length of the longest search re-
turned when the key is considered
for displacement.

costl real
cost of displacing TAB [INDEX],

cost2 real
cost of displacing the key.

stkl stkptr
rearrangement stack returned when
TAB [INDEX] is considered for dis-
placement.

stk2 stkptr
rearrangement stack returned when
the key is considered for displace-
ment.

LINE NUMBER (S)

142. .144
The primary hash index is calculated.
Another key has search length of 1 so
KICK0UT[1] is incremented. If the slot
is empty or marked deleted, the key is
inserted and INSERT is exited. -1 indi-
cates empty slots; -2 marks deleted
slots

;

148. .149
The cost of displacing TAB [INDEX] is
calculated provided DEPTH > 0. DEPTH=0
means the key should be inserted in the
first free slot and no displacements oc-
cur ,

150. .152
The cost of displacing the key is calcu-
lated by temporarily storing TAB [INDEX]
in TEMP. The key is inserted in
tab[index] and DISPLACE is called. This
was designed so that DISPLACE would have
the table address as an parameter
(necessary for recursive calls) and so
INSERT would have the key as a parame-
ter, making table addresses invisible to
the user. Note that with the second
call of DISPLACE, COSTl is the actual
parameter corresponding to the DISPLACE

-9-

formal parameter MAX, This keeps the
second call of DISPLACE from considering
any displacements that are more costly
than the displacement found by the first
call of DISPLACE.

153. .162
If both the key and TAB [INDEX] were con-
sidered for displacement, the table is
rearranged by REARRANGE according to the
stack returned by the call of DISPLACE
returning the lower cost. If only the
key was considered for displacement, the
table is rearranged by STK2. Finally,
after table rearrangement, both stacks
are deallocated by FREENODE.

procedure getnode

7. .15
A node is allocated from OLDNODES or by
the pascal function NEW,

procedure f reenode

16. . 27
A linked list
to OLDNODES.

is walked and deallocated

procedure rearrange

30
If the search
greater than

length passed
the current

to it
maximum

IS

in
KICKOUT[0], KICKOUT[0] is updated.

31. .47
Each node in the stack has four fields:
IND,OLDLEN,NEWLEN and NEXT. For each
node: a) OLDLEN and NEWLEN are tested
for overflow. If so, KICKOUT[0] traps to
the overflow counter, b) KICKOUT [NEWLEN]
is incremented and KICKOUT [OLDLEN] is
decremented. c) the contents of
TAB [NEXT" . IND] are moved to TAB[IND], d)

the next node of the stack is used.
When the last node is encountered, the
key is moved to TAB[IND],

- 10 -

function displace

PARAMETER TYPE

index integer
address of item to be considered
for displacement.

depth integer
depth of recursion for which dis-
placement should be considered.

max real
MAX is an upper limit on cost for
displacement consideration. It is
the best solution found so far at
higher levels of recursion.

rjstack stkptr
contains indicies of slots rejected
at higher levels of recursion, A
slot which is rejected at a higher
level of recursion will not lead to
a better solution at a deeper lev-
el .

stack stackptr
returns the rearrangement stack for
best solution at a given level,
(var parameter)

length integer
returns the length of the longest
search, (var parameter)

VARIABLE TYPE

ind integer
used to calculate subsequent slots
in the table.

probetoind integer
number of probes to hash to
TAB [INDEX]

.

probetofree integer
number of probes to the first free
slot.

counter integer
slot counter. Used in calculating
subsequent locations to probe the

-11-

table

step

hashl

next

sr chlen

upl im

totcost

pentonext

th isnode

sav r j

bes tack

tstack

integer
equal to the secondary hash func-
tion for probing.

integer
equal to the primary hash function
for probing.

integer

integer

address of the next slot

.

longest search from deeper levels
of recur sion.

real

real

real

s tkptr

s tkptr

the upper
cost at a

the minimum
TAB [INDEX]
(the least
levels)

,

limit on d
given level

of the cos
to a free s

cost found

isplacement
. UPLIM is
t to move
lot and MAX
at higher

additional cost of probing to next
slot plus cost of displacing next
slot.

additional cost of probing to next
slot, that is PENALTY (probes to
next slot) - PENALTY (probetoind)

.

pointer to node pushed on stack.
It is used to update the new search
length

,

saves a copy of rjstack upon first
execution of DISPLACE,

stkptr

stkptr

saves the stack
PLACE returning
BESTACK is in
higher levels of

returned by DIS-
the lowest cost,

turn returned to
DISPLACE.

temporary stack for calls of

- 12 -

DISPLACE

LINE NUMBER (S)

84. .95
The primary and secondary hash functions
are calculated. Slots are probed to
find the number of probes to INDEX and a

free slot.

96. .100
INDEX, number of probes to index, number
of probes to free slot are pushed on
STACK as IND, OLDLEN and NEWLEN, respec-
tively. NEWLEN may have to be updated
later if a better solution is found.
Therefore, THISNODE saves the node. So
far, the best solution found is to move
TAB [INDEX] to a free slot so BESTACK is
set to STACK. RJSTACK is saved.

101. .103
The tentative longest search is PROBETO-
FREE so LENGTH defaults to PROBETOFREE.
The index of the free slot and two dummy
constants are pushed on BESTACK. UPLIM
is the additional cost of probing to the
free slot.

104
If DEPTH=0, no subsequent slots are to
be considered for displacement. The re-
cursion has terminated. The stack with
INDEX and the address of the free slot
is returned. The value of DISPLACE is
UPLIM. Otherwise, subsequent slots are
considered for displacement.

105. .109
If a better solution than UPLIM was
found from a higher level of recursion
then UPLIM is updated. The primary hash
location is the first to be considered
for relocation. The cost to probe to
the first location is PENALTY (1)

PENALTY (probetoind)

.

110
While the cost to probe to the next slot
is greater than UPLIM, the following is
done

:

-13-

112. .135

136. .140

procedure push

function member

If the next slot has not already been
considered, it is considered for reloca-
tion. If the total cost, TOTCOST, is
lower than the current lowest cost
UPLIM, a better solution has been found
and UPLIM, BESTACK and LENGTH are updat-
ed to TOTCOST, TSTACK and SRCHLEN,
respectively. Otherwise, the slot being
considered for relocation is pushed on
the reject stack, RJSTACK. The next
slot to be considered and the additional
cost to probe to it are calculated.

The value of DISPLACE returned is the
UPLIM. BESTACK is returned as the rear-
rangement stack.

PUSH gets a new node and pushes the ar-
guments I ,OLDLEN,NEWLEN onto the stack.

MEMBER returns true if its integer argu-
ment is a member of the stack. Other-
wise it returns false.

function penalty

PENALTY is a forcing function defined by
the user. Currently it is linear; it
returns its argument. To force inser-
tion of keys in a different manner the
user must change the forcing function.

function f ind

FIND tries to find the key in the table.
If found, its table location is re-
turned, otherwise -1 is returned. The
variable probes returns the number of
probes to find (or reject) the key.

procedure delete

DELETE finds the key in the table by
calling function FIND, deletes the key

- 14 -

a’-S'^r . ..

i-s^, 'r '''‘iJ^-' »;
'"^

v';

and updates KICKOUT accordingly. A js slot
is marked deleted by setting it to ~2.

; i;.

'

'

.i'

' y
«

;. C '.
''.

'.’X

-'
' ' '<

:

- ,-

't.f
'".- yV;>

.

:t;/
,.-

V,"
'• •• '

i.Sift'B.I i/.ni3i
,

\., :v'^. o.n j,
'i.

,.v ..Ib-^y.,. sVx^^vv.^' h 1 ''.:^€;x,.-;^ €

-ti i; .V ^ ,

.

" g •‘1
' : B :i<^ - q \

;-rv,,,
i.' '. ..

|t £-S, ;+(J ’f

^ \ , >'.
< ^}f^^f^ n’Lkii..i i ^

;'«'
.•

mm- f. \ ^ XOil'..
’

S'd' <0 >', b !• @ fiDi'ii’O i-0

,

• * C) s
*

.;j>

- f ’
.

.

$p. i
'

.''
' i^?v

' '

; ^ ' > .J

' ns f i '^'iS i. < >'i £ J n,- 5 i

"
.

Vii
' ‘''

? lo’^ “ :tX‘iiiili. a .;i
’

- '. - .fjsbonylo

'

"
,- :5bJ'o

^pns:i,')EiS«,a 37<^by:;niq

h::#icx'a3iM'5i'--
<'

'Xi&lMmfi ^ M
- nx(?'*9d

J' i &idno-)^oid

„.„

,?:i

.?i t

- r

Ji

n
u

;

li

as:.

B.-

li-.

if
U
i^C

.&c"

^.t

S:v

'$>

;t*

m:.

.
":

1

2

3

4

5

6

7

8

9

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

APPENDIX B: Listings of access routines

procedure insert (var tab: table; key, depth: integer;
var kickout : kicktab)

;

var
index, temp, lenl, len2: integer;
costl, cost2: real;
stkl, stk2: stkptr;

procedure getnode (var p:stkptr);
beg in
if oldnodes=nil then new(p)
else begin
p : =oldnodes

;

oldnodes : =oldnodes" . nex t

;

end

;

p" .next: =nil
end

;

procedure freenode (f irst , last : stkptr)

;

var
X : stkptr

;

beg in
if firstOlast then
beg in
X : = f i r s t

;

while first" .nextOlast do first:=f irst" .next;
first". next: =oldnodes;
oldnodes : =x

end
end;

procedure rearrange (stack: stkptr; key, length: integer);
beg in
if length > kickout[0] then kickout [0]: =length

;

repeat
if stack" .newlen > kicksize then
beg in
if kickout[-l] < stack" .newlen then
kickout[-l] : =stack" .newlen;

kickout [0]: =kicksize+l ; { trap to overflow counter }

stack" .newlen : =kicksize+l
end

;

if stack" .oldlen > kicksize then
stack" .oldlen: =kicksize + 1;

kickout [stack" .newlen] : =k ickout [stack" .newlen] + 1;
kickout [stack" .oldlen] : =kickout [stack" .oldlen] - 1;
if stack". next <> nil then

- 16 -

44
45
46
47
48
49

50
51

52
53
54
55
56

57
58
59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75
76
77

78
79
80
81
82

83
84
85
86
87

tab [stack ^ . ind] : =tab [stack ^ .next" . ind]
else tab [stack" , ind] : =key;
stack :=s tack". next

until stack=nil;
while kickout [kickout [0]]

= 0 do kickout [0]
; =kickout [0] -1

;

end

;

function displace (index , depth : integer ; maxrreal; r jstack rstkptr

;

var stack: stkptr; var length: integer): real

;

var
ind, probetoind, probetofree, counter, step, hashl,
next, srchlen: integer;
uplim, totcost, pentonext: real;
thisnode, savr j , bestack, tstack: stkptr;

procedure push (i ,oldlen,newlen: integer ; var stack : stkptr)

;

var
node: stkptr;

beg in
getnode (node)

;

node" . ind : =i

;

node" .newlen: =newlen;
node" .oldlen : =oldlen

;

node" .next : =s tack

;

stack : =node
end

;

function member (i:integer; stk: stkptr): boolean

;

var
found: boolean;

begin
found : =f alse

;

while (stk <> nil) and (not found) do
if stk".ind=i then found:=true
else stk : =stk" .next;

member : =found
end

;

function penalty (i : integer) : real;
{to be defined as desired; currently linear}
beg in
penalty : =fl oat (i)

end

;

begin { function displace }

step: = (tab [index] mod (tablesize-2)) +1

;

hashl : =tab [index] mod tablesize;
probeto ind : =0

;

repeat

- 17 -

88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

ind:=(hashl + probetoind * step) mod tablesize;
probetoind : =probetoind + 1

until ind=index;
probetof ree : =0

;

repeat
ind;=(hashl + probetofree * step) mod tablesize;
probetof ree : =probetof ree + 1

until (tab [ind] =-l) or (tab [ind] =-2)

;

push (index , probetoind , probetofree , stack) ;

thisnode : =stack

;

tstack : =stack

;

bestack : =stack

;

savr j : =rj stack

;

length ; =probetof ree

;

uplim: =penalty (probetofree) -penalty (probetoind)

;

push(ind, 1,1, be stack)

;

if depth > 0 then
beg in
if uplim > max then uplim :=max;
counter : =0

;

next : =hashl

;

pentonext : =penalty (1) - penalty (probeto ind) ;

while uplim > pentonext do
beg in
if (not member (next , stack)) and (not member (next , r js tack)

)

then
beg in
totcost ; =pentonext + displace (next , depth-1, upl im-pentonex t

,

rjstack, tstack, srchlen)

;

if totcost < uplim then
beg in
upl im: =totcost

;

freenode (bestack , stack)

;

bestack : =tstack ;

thisnode" . newlen : =counter+l

;

if 1+counter > srchlen then length : =l+counter
else length : =srchlen

;

end
else begin
push (next, 1, 1, rjstack)

;

freenode (tstack , stack)
end

;

tstack : =stack

;

end

;

counter : =counter + l

;

next:=(hashl + counter * step) mod tablesize;
pentonext : =penalty (1+counter) - penalty (probetoind

)

end

;

freenode (rjstack,savrj)
end

;

stack : =bestack

;

displace : =uplim

- 18 -

140

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

end

;

begin { procedure insert }

index:=key mod tablesize;
kickout[lJ : =kickout [1] +1

;

if (tab [index] =-l) or (tab [index] =-2
) then tab [index] : =key

else begin
stkl : =nil

;

stk2: =nil

;

if depth>0 then
costl: =displace (index , depth-1, maxreal, nil, stkl, lenl);

temp: =tab [index] ;

tab [index] : =key

;

cost2 : =displace (index , depth, costl, nil, stk2, len2)

;

if (depth =0) or (cost2 < costl) then rear range (stk2 , temp, len2)
else begin
tab[index] ;=temp;
rear range (stkl , key, lenl)

end

;

freenode (stkl, nil) ;

f reenode (stk2,nil)
end

end

;

{ procedure insert }

- 19 -

1

2

3

4

5

6

7

8

9

10
11
12
13
14
15
16
17
18

1

2

3

4

5

6

7

8

9

10
11
12
13
14
15

function f ind (var tab: table; key: integer; var kickout: kicktab;
var probes: integer): integer;

var
hashl , step , index , 1 imit : integer;

begin
probes : =0

;

hashl:= key mod tablesize;
step:= key mod (tablesize - 2) +1;
if kickout [0] =kicksize+l then limit:=kickout [-1]

else limit:=kickout [0]

;

repeat
index := (hashl + probes * step) mod tablesize;
probes : =probes+l

until (tab [index j =key) or (tab [index] =-l) or (probes=l imi t)

;

if tab [index j =key then find: = index
else find:=-l

end

;

{ function find }

procedure delete (var tab; table; key: integer; var kickout: kicktab);

var
where

,
probes ; integer;

beg in
where:=find (tab, key, kickout, probes)

;

if where = -1 then wr iteln (output , key ,
' not found')

else begin
tab [where] : =-2

;

if probes > kicksize then probes:= kicksize+1;
kickout [probes] :=kickout [probes] -1

;

while (kickout [0] <>1) and (kickout [kickout [0]] =0

)

do kickout [0] :=kickout [0] -1
end

end

;

{ procedure delete }

- 20 -

APPENDIX C: Sample results

The table was 98% filled. The following was done for
DEPTh = 0,1,2,3,4,10; 4899 random integers were generated
from a 1 inear-congr uential formula i : =3309*1+885321 (mod
4194304). The same 4899 keys were retrieved from the table
to calculate retrieval performances, 4899 keys not in the
table were generated and rejected to calculate rejection
performances. This was repeated 18 times.

TABLESIZE; 4999
NUMBER OF KEYS INSERTED: 4899
PERCENT OF TABLE FILLED; 98
DEPTH OF RECURSION; 0

PENALTY FUNCTION USED; LINEAR

TRIAL LONGEST PROBE MEAN PROBES MEAN REJEC

1 179 4.05429 48.17125
2 154 3.96142 47.80567
3 266 4.00204 49.21779
4 181 3.93957 48.19289
5 158 4.06940 48.14002
6 407 3.84057 48.72545
7 210 3.92712 49.15839
8 131 3.84057 45.55154
9 171 3.92733 47.68626

10 170 3.84751 48.78914
11 144 3.96366 47.68279
12 155 3.92998 47.07409
13 220 4.03184 50.97244
14 249 3.96529 48.20759
15 142 3.82384 45.78485
16 264 4.08389 50.35047
17 195 4.03123 48.02571
18 169 3.89957 48.48152

MEAN 198.05 3.95217 48.22322

- 21 -

TABLESIZE: 4999
NUMBER OF KEYS INSERTED: 4899
PERCENT OF TABLE FILLED: 98
DEPTH OF RECURSION: 1
PENALTY FUNCTION USED: LINEAR

TRIAL LONGEST PROBE MEAN PROBES

1 20
2 15
3 26
4 20
5 21
6 18
7 20
8 25
9 20

10 20
11 20
12 21
13 19
14 19
15 27
16 19
17 21
18 18

2.14696
2.12880
2.12247
2.13574
2.11614
2.16431
2.13247
2.14778
2.11859
2.12267
2.14227
2.14206
2.13655
2.12288
2.15554
2.15819
2.15839
2.14472

mean 20.50 2.13870

MEAN REJECTION

16.64258
13.07817
20.30557
16.49112
17.29679
15.17922
16.63400
19.72320
16.67462
16.68748
16.52582
17.05817
15.84547
15.99224
20.89773
16.01285
17.33210
15.43233

16.87830

22-

TABLESIZE: 4999
NUMBER OF KEYS INSERTED; 4899
PERCENT OF TABLE FILLED: 98
DEPTH OF RECURSION; 2

PENALTY FUNCTION USED; LINEAR

TRIAL LONGEST PROBE MEAN PROBES MEAN REJECTION

1 13 1.89855 11.64564
2 11 1.90936 10.04123
3 12 1.90304 10.67605
4 15 1.89895 13.08532
5 11 1.92284 10.01408
6 13 1.89548 11.58522
7 11 1.91181 9.95264
8 12 1.91202 10.74402
9 11 1.92304 9.93794

10 14 1.91712 12.29271
11 12 1.89712 10.78138
12 13 1.87711 11.53031
13 12 1.91855 10.76546
14 13 1.91835 11.58236
15 11 1.92876 10.05409
16 14 1.89875 12.42600
17 11 1.91345 9.99183
18 12 1.90814 10.75648

MEAN 12.27 1.90847 10.99237

- 23 -

TABLESIZE: 4999
NUMBER OF KEYS INSERTED: 4899
PERCENT OF TABLE FILLED: 98
DEPTH OF RECURSION: 3
PENALTY FUNCTION USED: LINEAR

TRIAL LONGEST PROBE MEAN PROBES

1 11 1.83710
2 9 1.84486
3 11 1.83445
4 11 1.81812
5 10 1.81771
6 9 1.80608
7 10 1.84323
8 10 1.81853
9 11 1.82629

10 11 1.84996
11 11 1.85772
12 9 1.83996
13 10 1.81833
14 11 1.83568
1

5

9 1.81853
16 10 1.83200
17 10 1.81975
18 8 1.81363

MEAN 10.05 1.82955

MEAN REJECTION

9.95407
8.35211
9.95733

10.00489
9.12349
8.28373
9.17962
9.17350
9.95611
9.94284
9.97958
8.37170
9.16084
9.92794
8.28965
9.14064
9.17228
7.42416

9.18858

- 24 -

TABLESIZE: 4999
NUMBER OF KEYS INSERTED: 4899
PERCENT OF TABLE FILLED: 98
DEPTH OF RECURSION: 4

PENALTY FUNCTION USED: LINEAR

TRIAL LONGEST PROBE MEAN PROBES MEAN REJECTION

1 8 1.80894 7.42559
2 10 1.79975 9.11900
3 8 1.77873 7.45621
4 9 1.80036 8.31006
5 9 1.79199 8.26495
6 10 1.80261 9.11696
7 8 1.78362 7.44886
8 9 1.81036 8.28026
9 10 1.79159 9.16411

10 10 1.80159 9.17452
11 9 1.80547 8.28271
12 9 1.80016 8.27434
13 9 1.79056 8.28699
14 9 1.78648 8.29067
15 8 1.79567 7.41192
16 8 1.80159 7.43702
17 8 1.82159 7.46540
18 8 1.79465 7.47846

MEAN 8.83 1.79809 8.14933

- 25 -

TABLESIZE: 4999
NUMBER OF KEYS INSERTED: 4899
PERCENT OF TABLE FILLED: 98
DEPTH OF RECURSION: 10
PENALTY FUNCTION USED: LINEAR

TRIAL LONGEST PROBE MEAN PROBES

1 7

2 7

3 8

4 7

5 7

6 7

7 7

8 7

9 7

10 7

11 7

12 7

13 7

14 7

15 7

16 7

17 8

18 7

1.75199
1.76546
1.76484
1.75688
1.77709
1.74321
1.76811
1.76219
1.77342
1.76260
1.75750
1.74239
1.76423
1.76832
1.77995
1.75423
1.75729
1.76382

MEAN 7.11 1.76186

-26 -

MEAN REJECTION

6.62482
6.58685
7.40579
6.56195
6.59951
6.59420
6.60318
6.59154
6.56031
6.58562
6.62318
6.60073
6.58215
6.58603
6.62237
6.59889
7.48867
6.58154

6.68874

The table was filled to 98% loading

,

All the keys in the
table were retr ieved to calculate retr ieval performances

,

An equal number of keys not in the table were rejected to
calculate rejection performances. 49% of the keys were
deleted. Retrieval and rejection statistics were again cal-
culated. The table was filled back to a 98% loading

,

Re-
trieval and rejection statistics were again calculated.
These are the mean results of 18 trials:

TABLE SIZE: 4999
DEPTH OF RECURSION: 4

PENALTY FUNCTION USED: LINEAR

OF KEYS % TABLE LONGEST MEAN PROBES TO
ACTION IN TABLE LOADED PROBE ACCEPT/REJECT

INSERT 4900
LOOKUP 4900

4900 97,9 9,06
1.80268 AC

LOOKUP-4900
DELETE 2450 2450 48,9 8.61

8.35276 RJ

LOOKUP 2450 1.78899 AC
LOOKUP-2450 7.98171 RJ
INSERT 2450
LOOKUP 2450

4900 97,9 9.50
1.86280 AC

LOOKUP-2450

AVERAGES OF EIGHTEEN TRIALS

9.43040 RJ

- 27 -

NBS-1 1 4A IR E V 7-73)

U.S. DEPT. OF COMM.
BIBLIOGRAPHIC DATA

SHEET

1. PUBLIC ATION OR REPORT NO.

NBSIR 78-1551

2. Gov’t Accession
No.

3. Recipient’s Accession No.

4. TITLE AND SUBTITLE

ACCESS FUNCTIONS FOR PACKED SCATTER TABLES

5. Publication Date

August 1978

6. Performing Organization Code

7. AUTHOR(S)
Bruce E. Martin

8. Performing C^rgan. Report No.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

10. Project/Task/Work Unit No.

6401129

11. Contract/Grant No.

12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)

see 9 above

13. Type of Report & Period
Covered

14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

16. ABSTRACT (A 200-word or less (actual summary ol most significant information. If document includes a significant

bibliography or literature survey, mention it here.)

Three PASCAL access routines are given for packed scatter tables. INSERT packs

tables of integer keys; FIND retrieves the keys; DELETE deletes the keys. While the

routines currently access integer keys (for use in performance testing with pseudo-
random integers) , they can easily be converted to access other data types —
character strings in a symbol table, for example. To enhance portability, the code

is straightforward PASCAL without any Input/output capabilities. Appendices
contain specific comments on the routines, listings, and sample results.

17. KHY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper

name; separated by semicolons

)

Access functions; fast retrievals; hashing; PASCAL; scatter storage

18. AVAILABILITY ^ Unlimited

For Official Distribution. Do Not Release to NTIS

Order From Sup. of Doc., U.S. Government Printing Office
Washington, D.C. 20402, SD Cat. No. C13

[_J Order From National Technical Information Service (NTIS)
Springfield, Virginia 22151

19. SECURITY CLASS
(THIS REPORT)

UNCL ASSIFIED

20. SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

21. NO. OF PAGES

29

22. Price

USCOMM-DC 290<2-P74

i'

I

