NBSIR 78－1522

Characteristics of Incidental Fires in the Living Room of A Mobile Home

David P．Klein

Center for Fire Research
National Engineering Laboratory
National Bureau of Standards
Washington，D．C． 20234

September 1978
Interim Report

Sponsored principally by：
Division of Energy，Building Technology and Standards Office of Policy Development and Research
U．S．Department of Housing and Urban Development
Washington，D．C． 20410

CHARACTERISTICS OF INCIDENTAL FIRES IN THE LIVING ROOM OF A MOBILE HOME

David P. Klein

Center for Fire Research
National Engineering Laboratory
National Bureau of Standards
Washington, D.C. 20234

September 1978
Interım Report

Sponsored principally by:
Division of Energy, Building Technology and Standards Office of Policy Development and Research U.S. Department of Housing and Urban Development Washington, D.C. 20410
U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

Dr. Sidney Harman. Under Secretary

Jordan J. Baruch, Assistant Secretary for Sciance and Technology
NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Page

LIST OF FIGURES iv
LIST OF TABLES vi
Abstract 1

1. INTRODUCTION 2
2. EXPERIMENTAL DETAILS 3
2.1 Test Facility 3
2.2 Instrumentation. 5
2.3 Test Specimens 8
3. TEST PROCEDURE 8
4. TEST RESULTS 9
4.1 Fire Development 9
4.2 Rate of Burning. 12
4.3 Temperature 13
4.4 Incident Heat Flux 16
4.5 Smoke and Gas Concentrations 19
5. DISCUSSION 21
6. SUMMARY AND CONCLUSIONS 26
7. ACKNOWLEDGMENTS 27
8. REFERENCES 28
TABLES 30
APPENDIX A. CHRONOLOGICAL SUMMARY OF OBSERVATIONS FOR SELECTED TESTS 41
APPENDIX B. PLOTTED TEST DATA ILLUSTRATING CHANGES IN VARIOUS MEASURED CONDITIONS 47
Page
Figure 1. Plan view of the mobile home test unit illustrating dimensions. 4
Figure 2. Plan view of the mobile home test unit illustrating sampling locations for experimental measurements. 6
Figure 3. Photographs of a $16 \mathrm{~kg}(35 \mathrm{lb})$ upholstered chair and a $6.4 \mathrm{~kg}(14 \mathrm{lb})$ wood crib on the load platform prior to ignition 10
Figure 4 a . Burn rates of 16 kg (35 lb) upholstered chairs and $6.4 \mathrm{~kg}(14 \mathrm{lb})$ wood cribs (Ignition Characterization Series) 14
Figure 4b. Burn rates of various size wood cribs (Ignition Characterization Series) 14
Figure 5a. Time-Temperature curves for the thermocouple 25 mm (1 in) below the ceiling in the center of the living room for $16 \mathrm{~kg}(35 \mathrm{lb})$ upholstered chairs and 6.4 kg (14 1b) wood cribs (Ignition Characterization Series).. 15
Figure 5b. Time-Temperature curves for the thermocouple 25 mm (1 in) below the ceiling in the center of the living room for various size wood cribs (Ignition Characterization Series)15
Figure 6. Vertical temperature profiles in the center of the living room for selected ignition sources (Ignition Characterization Series)17

Figure 7a. Total incident heat flux, horizontal orientation,
0.6 m (2 ft) from the edge of the specimen, 0.9 m
(3 ft) above the floor for 16 kg (35 lb) upholstered
chairs and $6.4 \mathrm{~kg}(14 \mathrm{lb})$ wood cribs (Ignition
Characterization Series). 18
Figure 7b. Total incident heat $f 1 u x$, horizontal orientation, $0.6 \mathrm{~m}(2 \mathrm{ft})$ from the edge of the specimen, 0.9 m (3 ft) above the floor for various size wood cribs (Ignition Characterization Series).19

Figure 8. Total incident heat flux distributions, horizontal
orientation, at $0.9 \mathrm{~m}(3 \mathrm{ft})$ above the floor for
selected ignition sources (Ignition Characterization
Series) 20

LIST OF FIGURES (cont'd)

Page
Figure 9a. Average smoke concentrations at the door to the living room for 16 kg (35 lb) upholstered chairs and 6.4 kg (14 lb) wood cribs (Ignition Characterization Series)22
Figure 9b. Average smoke concentrations at the door to the living room for various size wood cribs and a waste container (Ignition Characterization Series) 22
Figure 10a. Oxygen concentrations in the center of the living roomfor 16 kg (35 lb) upholstered chairs and 6.4 kg (14 lb)wood cribs (Ignition Characterization Series).......... 23
Figure 10b. Oxygen concentrations in the center of the living roomfor various size wood cribs (Ignition CharacterizationSeries)23
Figure 11. Maximum 1-minute burn rate versus crib weight for each size wood crib (Ignition Characterization Series) 24
Figure 12. Maximum temperature 25 mm (1 in) below the ceiling in the center of the living room versus maximum l-minute burn rate for each size wood crib (Ignition Characterization Series)24
Page
Table 1. Instrumentation Locations (Ignition Characterization Series) 30
Table 2. Range and Limits of Error for Instrumentation (Ignition Characterization Series) 31
Table 3. Design Specifications for the Standardized Wood Cribs (Ignition Characterization Series) 32
Table 4. Test Conditions (Ignition Characterization Series) 33
Table 5. Sumnary of Selected Test Results (Ignition Character- ization Series) 34
Table 6. Summary of Maximum Fuel Burning Rates (Ignition Characterization Series) 35
Table 7. Summary of Maximum Temperatures Attained at Selected Locations (Ignition Characterization Series) 36
Table 8. Summary of Maximum Total Incident Heat Flux Levels Attained (Ignition Characterization Series) 37
Table 9. Summary of Selected Smoke and Gas Concentrations (Ignition Characterization Series) 38
Table 10. Summary of Averaged Readings for Selected Types ofIncidental Fires (Ignition Characterization Series)39
Table 11. Relationship Between Maximum Total Incident Heat Fluxon the Floor in the Center of the Living Room andMaximum Average Temperature 25 mm (1 in) Below theCeiling in the Living Room for all Tests of WoodCribs and Upholstered Chairs (Ignition Character-ization Series)40

David P. Klein

Abstract

A series of fire tests was conducted in the corner of a mobile home living room. The corner was lined with interior finish materials which did not contribute to the fires. The test series was designed to examine the fire characteristics of typical incidental (low intensity) fires which may be used as the ignition source for tests to evaluate the effects of interior finish materials.

This test series involved three types of source fires: standardized wood cribs ranging in weight from 2.3 kg to 13.6 kg (5 lb to 30 lb), identically constructed upholstered chairs, and polyethylene waste containers filled with crumpled newsprint. Experimental measurements were made of burn rate, temperature, heat flux, flame height, smoke density, and concentrations of oxygen, carbon monoxide, and carbon dioxide.

Under the test conditions employed, it was found that the fire severities for the several sizes of standardized wood cribs fell between those for the polyethylene waste containers filled with crumpled newsprint and the more severe incidental fires produced by the 16 kg (35 lb) upholstered chairs in terms of characteristics such as maximum temperature and heat flux levels, flame height, and changes in oxygen, carbon monoxide and carbon dioxide concentrations. Of the fires with wood cribs, it was found that the fires with $13.6 \mathrm{~kg}(30 \mathrm{lb})$ standardized wood cribs were most similar to the fires with 16 kg (35 lb) upholstered chairs, although the peak burning rate was generally higher for fires with upholstered chairs than for fires with wood cribs. It was also found that the time to reach the period of active burning was more reproducible for fires with wood cribs than fires with upholstered chairs.

Key words: Chairs; compartment fires; crib fires; fire tests; incidental fires; ignition source; mobile homes; repeatability; source fires; upholstered furniture.

[^0]The work reported here is based on completion of a segment of a broad ongoing research program at the National Bureau of Standards to investigate some of the characteristics which may affect the growth and spread of fire in a single-wide mobile home. As part of the program, full-scale fire tests were conducted in typical mobile homes to characterize fire growth potential as a function of the interior finish materials used on the walls and ceiling in different areas throughout the mobile home. These tests were designed based on a scenario in which an incidental (i.e., low intensity) fire starts in the corner of a room and becomes more severe by involving the interior finish materials on the walls and ceiling. This scenario was based on examination of current residential fire loss data. These data indicate that a large percentage of fires occurring in residential occupancies are initially incidental in nature, and that in many fires, especially those in mobile homes, the spread of flame from the initial burning item appears to result from involvement of the wall and ceiling materials [1-6]. ${ }^{2}$

Incidental fires, such as might occur in a wastebasket or upholstered chair, have been defined by Gross and Fang [7] as being of limited size, duration, and energy content. For this study an incidental fire is considered to be one that by itself does not cause flashover ${ }^{3}$ in the room in which it is burning. While an incidental fire does not cause flashover in a room, the ignition of nearby combustibles, including interior finish materials, may result in a more severe situation, including the possiblity of flashover. For this reason incidental fires are frequently used when evaluating the effects of interior finish materials used on wall and ceiling systems. Fang [10] has reported that the essential characteristics of typical incidental fires, e.g. burning time, temperature and heat flux levels, and the size and shape of the flame, can be duplicated with reproducible fires from a standardized wood crib (cross-piled pieces of wood). Other researchers have noted similar findings. Theobald and Heselden [11] concluded that fires from wood cribs constructed of 40 mm (1.6 in) thick sticks are reasonably representative of fires from various types of upholstered chairs and other wood furniture which they tested. And it has been reported by researchers at Underwriters Laboratories [12] that 1500 g (3.3 1b) wood cribs constructed of 25 mm (1 in) thick sticks provided consistent, reproducible ignitions of urethane-foam-padded upholstered chairs weighing approximately $15 \mathrm{~kg}(33 \mathrm{lb})$ and provided ignition of wall finish materials in a corner configuration without prior flame impingement on the ceiling.

[^1]3Flashover is defined here as a fire phenomenon in which the heated upper surfaces of a room transmit sufficient radiation into the lower part of the room to cause ignition of all combustible materials [8]. The term is synonomous with the phrase "total room involvement" [9].

In light of the complex and frequently unreproducible nature of real-world fire situations, the maximum possible reproducibility in initial fire build-up is desirable when conducting comparative fullscale fire testing. Experiments have demonstrated that the initial fire development in a typical item of furniture such as an upholstered chair may be considerably different from test to test, even when tested under similar fire conditions [13]. This is primarily due to the variation in sequential involvement of portions of the burning item. The use of reproducible incidental fires such as those afforded by standardized wood cribs minimizes variation in initial fire build-up and thereby allows a more precise evaluation to be obtained.

When using crib fires and other incidental fires to provide the ignition source for evaluating the effects of interior finish materials, it is of value to know the effects of the incidental fires themselves. This report addresses the results of a series of tests which was designed to examine the fire characteristics of some typical incidental fires in the living room of a mobile home.

Several different types of incidental fires were tested in a corner configuration. The corner was chosen because the confinement of the hot combustion gases and the reflected radiation from the walls cause an increased fire severity in that configuration. Since the intent of the tests was to develop data on the incidental fires themselves, the room was designed not to contribute heat, flames or smoke to the fires. In addition, no other combustible items were included in the living room during the tests.

The objectives of this test series were:

1. To provide a comparison of the characteristics, such as burn rate, temperature and heat flux levels, flame height, smoke densities, and concentrations of oxygen, carbon monoxide, and carbon dioxide, of fires with medium size upholstered chairs, small waste containers filled with newsprint, and several sizes of standardized wood cribs.
2. To obtain data on incidental fires resulting from the burning of the upholstered chairs, waste containers, and wood cribs in a compartment designed not to contribute to the fires, in order to provide information for comparison with data on similar incidental fires in the same compartment lined with combustible interior finish materials on the walls and ceilings (see reference [14]).
3. EXPERIMENTAL DETAILS

2.1 Test Facility

The tests were conducted in a typical single-wide mobile home whose exterior dimensions were approximately 3.6 x 18.3 m (12 x 60 ft). The mobile home included a living room and dining area, kitchen, bathroom,

Figure 1. Plan view of the mobile home test unit illustrating dimensions.
and three bedrooms (see figure 1). The dimensions of the living/dining room were approximately 7.5 m (24 ft 5 in) 10 ng and 3.5 m (ll ft 4 in) wide with a net usable floor area of $23.6 \mathrm{~m}^{2}\left(254 \mathrm{ft}^{2}\right)$. The ceiling height in this room and throughout the mobile home was 2.1 m (7 ft). A ceiling-high partition constructed of cement asbestos board and covered with 13 mm (0.5 in) thick Type X gypsum wallboard was built in front of the kitchen area to protect it from the effects of the test fires. The other three walls and the ceiling of the room were also lined with 13 mm (0.5 in) thick Type X gypsum wallboard mechanically fastened to the wall studs and ceiling truss system. Additional protection in the northwest corner where the ignitions occurred was provided by 13 mm (0.5 in) thick sheets of calcium silicate $\left(\mathrm{CaSiO}_{3}\right)$ marine board ${ }^{4}$ which were installed over the gypsum. The calcium silicate board extended from floor to ceiling and outward $1.2 \mathrm{~m}(4 \mathrm{ft})$ from the corner on both the north and east walls, and covered a $3.0 \mathrm{~m}^{2}\left(32 \mathrm{ft}^{2}\right)$ area of the ceiling in the corner. Calcium silicate board is an inorganic board that contributed no heat, flames, or smoke to the fires. Since none of the fires left the corner area the effect was a noncontributing compartment.

The exterior wall system of the mobile home consisted of nominal 51 $x 76 \mathrm{~mm}$ (2 x 3 in) hemlock studs, 406 mm (16 in) on center, with 64 mm (2.5 in) of single thickness paper-faced glass fiber insulation in the wall, and painted aluminum siding mechanically fastened on the exterior. The roof was constructed of painted aluminum sheeting mechanically fastened to a system of wood bow-string trusses, 406 mm (16 in) on center and insulated by 76 mm (3 in) of glass fiber above a polyethylene vapor barrier. The floor covering in the room was 3.1 mm (0.13 in) thick vinyl asbestos taken from a continuous 3.6 m (12 ft) wide roll and stapled to the 19 mm (0.75 in) thick particle board subfloor. The room contained six windows, each $660 \times 762 \mathrm{~mm}(26 \mathrm{x} 30 \mathrm{in})$ in size. Two each were located in the west, north, and east walls. The room contained no furnishings.

2.2 Instrumentation

Figure 2 is a diagram showing the locations where test parameters were measured. Table 1 lists each sampling location and its type of measurement. Table 2 lists the range and sensitivity of the instrumentation.

Temperature measurements were taken with 47 thermocouples located throughout the mobile home. The thermocouple trees located in the center of the living room and bedroom 非1 and the set of three thermocouples located 0.9 m (3 ft) above the floor of the living room at horizontal

[^2]

TEMPERATURE

$\mathrm{T}_{1}=$ Thermocouples $211,188,132 \mathrm{~cm}$ above floor
$\mathrm{T}_{2}=$ Thermocouples $211,188,132,91 \mathrm{~cm}$ above floor
$\mathrm{T}_{3}=$ Thermocouples $211 ; 188,132,91,46,2.5 \mathrm{~cm}$ above floor
$\mathrm{T}_{4}=$ Thermocouples 92 cm above floor; $61,122,183 \mathrm{~cm}$ from specimen
INCIDENT HEAT FLUX
$\mathrm{R}_{1}=$ Transducer at floor level
$R_{2}^{1}=$ Transducers 92 cm above floor; 61, $122,183 \mathrm{~cm}$ from specimen
$R_{3}=$ Transducers at wall surface 92 cm and 183 cm above floor, transducer at ceiling level centered over specimen

WEIGHT LOSS OF SPECIMEN
I $=$ Strain gage load cell

GAS CONCENTRATIONS

$\mathrm{G}_{1}=\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{O}_{2}$ sampled 1.5 m above floor
$\mathrm{G}_{2}=\mathrm{CO}, \mathrm{O}_{2}$ sampled 1.5 m above floor

```
\(\frac{\text { SMOKE CONCENTRATION }}{\mathrm{SM}=\text { Horizontal } \mathrm{sm}}\)
SM \(=\) Horizontal smoke meter at \(0.6,1.2,1.8 \mathrm{~m}\) above floor with path length of 0.8 m , and vertical smoke meter at ceiling with path length of 0.46 m
```


SMOKE DETECTOR

```
SD = Commerical ionization type smoke detector positioned 18 cm below ceiling on inside corridor wall
```

Figure 2. Plan view of the mobile home test unit illustrating sampling locations for experimental measurements.
distances of $0.6,1.2$, and $1.8 \mathrm{~m}(2,4$, and 6 ft$)$ from the specimen were 0.61 mm diameter (24 gage) Chromel and Alumel wires enclosed in glass fiber insulation with bare beaded ends. The remaining thermocouples were 0.91 mm diameter (20 gage) Chromel and Alumel wires packed in mineral insulation and enclosed in a 3.150 mm (0.124 in) diameter Inconel 702 sheath with a grounded junction.

Measurements of incident heat flux were taken with nine watercooled Gardon-type total incident heat flux transducers. Two were installed in the north wall flush with the wall surface immediately adjacent to the test specimen, one was installed in the ceiling, again flush with the surface, directly above and with a downward view in the direction of the flame plume, and three were located 0.9 m (3 ft) above the floor in the living room, with a horizontal view of the flame plume, at $0.6,1.2$, and 1.8 m (2,4 and 6 ft) away from the specimen. The remaining three were located in the floor at the north and south ends of the corridor and the center of the living room, each with an upward view.

Levels of smoke density were measured at two locations, one at the south end of the corridor and one at the north end next to the entrance to the living room. All the smoke meters operated by continuously measuring the attenuation of a collimated beam of light from a tungsten lamp impinging on a photo tube. At each location three horizontally aligned smoke meters were positioned at $0.6,1.2$, and 1.8 m (2, 4, and 6 ft) above the floor. These meters were designed to measure the smoke stratification in the upper part of the corridor. The path length of each of these meters was approximately 0.8 m (30 in). In addition, at each location, one vertically aligned smoke meter was positioned midway between the corridor walls to measure smoke obscuration along a path from 610 mm (24 in) below the ceiling to 152 mm (6 in) below the ceiling.

In order to determine the rate of weight loss of the specimen during a test, each specimen was positioned on a water-cooled, strain gage load cell located in the northwest corner of the living room.

Continuous sampling of gas concentrations was made at 1.5 m (5 ft) above the floor in the center of the living room and at the south end of the corridor at the entrance to bedroom \#1. These gases were filtered through glass fiber to remove soot and particulate matter, chilled in an ice bath to condense water vapor, and passed through an infrared gas analyzer to measure concentrations of CO and CO_{2}. Measurements of O_{2} concentrations were made with chemical oxygen cells.

Indicator specimens of crumpled newsprint were placed on the floor of the living room at distances of $0.6,1.2$, and 1.8 m (2, 4 , and 6 ft) from the specimen. Based on previous work [15], the crumpled newsprint was used to provide information on the time of involvement of combustible items in the room as a result of the incidental fire.

A commercially available, A.C. powered, ionization-type residential smoke detector was placed at the north end of the corridor. The detector was located on an inside wall, approximately 229 mm (9 in) below the ceiling and 381 mm (15 in) from the entrance to the living room.

Graphic documentation for the tests was provided by 35 mm color slides and black and white video tape. In addition, visual observations were recorded on a tape recorder and transcribed after each test.

Signals from all the instruments were collected every 10 seconds on a multiple-channel data acquisition system and were recorded on magnetic tape in order to be processed by computer. In addition, data from 24 thermocouples, the heat flux transducers, the gas analyzers, and the load cell were simultaneously recorded either on strip chart or multipoint recorders.

2.3 Test Specimens

The specimens tested were upholstered chairs, all weighing approximate$1 y 16 \mathrm{~kg}(35 \mathrm{lbs}), 0.3 \mathrm{~kg}$ (12 oz) polyethylene waste containers (9 liter (9.5 quart) capacity) filled with approximately 227 g (0.5 lb) of crumpled newsprint, and $2.3 \mathrm{~kg}(5 \mathrm{lb}), 6.4 \mathrm{~kg}(14 \mathrm{lb}), 9.1 \mathrm{~kg}(20 \mathrm{lb})$, and 13.6 kg (30 lb) standardized wood cribs. The upholstered chairs were of the same design and were produced by the same manufacturer. Each was constructed of a wood frame with polyurethane foam and cotton batting, and covered with rayon fabric. The seat cushion was also polyurethane foam covered with rayon fabric. The chairs were stored in a test building until their weight stabilized. Temperature and relative humidity in the test building were maintained at $75 \pm 5^{\circ} \mathrm{F}$ and $35 \pm 10 \%$, respectively. The wood cribs consisted of pieces of hemlock arranged in layers, with each layer placed at a right angle to the previous one. In addition, two bottom layers of two sticks each were included to support the crib above a pan of heptane. All the cribs were conditioned at $21{ }^{\circ} \mathrm{C}\left(70{ }^{\circ} \mathrm{F}\right)$ and 50% relative humidity until the moisture content and the resulting change in weight had stabilized. Because the tests were conducted in a mobile home located outdoors, the moisture content, when measured at test time with an electric resistance moisture meter, varied slightly, ranging from 6.3 to 9.5%. The cribs were designed so that after conditioning their final weight would be at least as great as the weight specified. Weight adjustments could then be made by removing one or more sticks from the top. Design specifications for the cribs are summarized in table 3.

In addition to the above specimens, tests were conducted using pans of 54 mL and 150 mL of heptane, the amounts used to ignite the wood cribs. These tests were for calibration purposes only and were of short duration due to the limited amount of fuel used.

3. TEST PROCEDURE

Prior to the start of a test, the temperature and relative humidity inside and outside the mobile home were recorded. Table 4 summarizes
this information. The interior environment of the mobile home was maintained at as constant a level as possible using the central heating system and a dehumidifier as required. However, due to the wide range of exterior conditions during the testing period, some variation in the interior conditions was experienced.

In tests using an upholstered chair, the chair was positioned diagonally in the northwest corner of the living room on the weighing platform so that the back of the chair was approximately 25 mm (1 in) from both the north and west walls. A 0.3 kg (12 oz) polyethylene waste container (9 liter (9.5 quart) capacity) filled with approximately 227 g $(0.5 \mathrm{lb})$ of crumpled newsprint was placed on the floor adjacent to the left arm of the chair, and the newsprint was ignited by remote electrical activation of a wooden match.

In tests using only the waste container and newsprint, the waste container was placed in a five-sided wire mesh enclosure. The dimensions of the enclosure base were approximately $305 \times 356 \mathrm{~mm}$ (12 x 14 in) and the four sides were each approximately 127 mm (5 in) tall. The enclosure was designed to prevent any newsprint from falling from the weighing platform, which was approximately 254 mm (10 in) above the floor. Dripping of molten polyethylene from the weighing platform was prevented through the use of a 13 mm (0.5 in) thick sheet of marine board, approximately $1.2 \mathrm{~m}(2 \mathrm{ft})$ square, which was placed between the mesh enclosure and the top of the weighing platform. The newsprint was again remotely ignited with a wooden match.

In tests using a wood crib, the crib was positioned on the weighing platform so that two of its sides were approximately 25 mm (1 in) from both the north and west walls. The base of the crib was approximately 254 mm (10 in) above the floor. A metal pan, either 203 x 203 x 25 mm ($8 \mathrm{x} 8 \times 1 \mathrm{in}$) containing 150 ml of heptane, or 127 x 127 x 25 mm (5 x 5 x 1 in) containing 54 ml of heptane, depending on the crib size, was placed under the crib and was again remotely ignited. Figure 3 shows an upholstered chair and a 6.4 kg wood crib, both in their position in the corner configuration.

Prior to ignition, all exterior doors and windows were closed to provide an initially static atmosphere. The doors leading into bedrooms \#2 and 非3 and the bathroom were also closed. The door to bedroom 非1 was left open.

4. TEST RESULTS

4.1 Fire Development

Fire development during the tests of upholstered chairs was characterized by an initial period of build-up, a period of active burning, and a decay period when the majority of the fuel had been consumed and the flame plume had degenerated into flamelets no greater than $100-150 \mathrm{~mm}$ ($4-6$ in) high above the fuel surface.

Figure 3. Photographs of a $16 \mathrm{~kg}(35 \mathrm{lb})$ upholstered

Typically, ignition of the newsprint in the waste container resulted in a flame $0.3-0.6 \mathrm{~m}$ (1-2 ft) above the top of the waste container. This flame impinged on the exterior fabric of the left arm of the chair igniting it within $45 \mathrm{sec}-2 \mathrm{~min}$. At the same time, the polyethylene waste container began deforming and melting away (at approximately one minute into the test) and by four to seven minutes into the test no longer significantly affected the development of the chair fire.

Although the general tendency was for the fires to burn from left to right across the chairs, there was some variation in the sequential involvement of the various surface areas of each chair. The period of active burning gnerally began at approximately the time the polyurethane foam inside the left arm of the chair became involved. This burning continued to increase until the flame reached maximum height and intensity. The decay period began at approximately the time the seat cushion and back cushion were almost completely consumed with the right arm being the only major source of fuel remaining in the chair.

The fire development of the $6.4,9.1$, and 13.6 kg wood cribs was characterized by similar periods of build-up, active burning, and decay. However, the build-up period for the cribs was relatively shorter than for the chairs. Typically, ignition of the heptane in the pan under the crib resulted in combustion throughout the interior of the crib and a flame which extended $0.3-1.5 \mathrm{~m}(1-5 \mathrm{ft})$ above the top surface of the crib. Complete consumption of the heptane ranged from 1 min 35 sec to 2 min , and in most cases, the flame then receded somewhat in height. Combustion continued, characterized by an increase in the intensity of the fire as well as the height of the flame above the crib, until a maximum fire intensity and flame height were reached. At this point the crib exhibited relatively steady burning over a period of at least 15 minutes before most of the fuel was consumed and the intensity of the burning began to decrease.

Fire development was somewhat different with the 2.3 kg cribs, which were contructed of smaller and more densely packed elements and which used a lesser volume of heptane with less exposed surface area. In these tests, the flame produced by the burning heptane was confined in the interior of the crib for 1 min 35 sec (Test 11) and 1 min 45 sec (Test 12) before appearing above the top surface. The heptane was completely consumed in 3 min (Test 11) and 3 min 15 sec (Test 12), at which time the burning of the crib itself was not sufficient to produce a flame above the top surface. When a flame did become evident above the top surface, at 6 min 10 sec and 6 min 20 sec , respectively, the flame was unattached to the crib and was burning in the gas plume above the crib. The flame became attached to the top surface at 7 min 10 sec in both tests as the burning spread throughout the interior of the crib and increased in intensity. The flame height then temporarily stabilized until approximately 12 and 13 min , respectively, when the flame increased to a maximum height and remained steady for a period of approximately 5 min in both tests until the fuel was nearly exhausted.

Summary information on maximum flame heights; test duration; and
time to smoke detector alarm, exhaustion of the heptane, and flame impingement on the ceiling is presented in table 5. This information was compiled from visual observations recorded by test personnel. Determination of flame heights during the fires with upholstered chairs was at times difficult due to the dense, black smoke produced during these tests. Detailed chronological documentation of events for representative tests is provided in Appendix A.

Results from Test 4, involving a 6.4 kg wood crib, are not included since that test was aborted immediately after the exhaustion of the heptane due to failure of the heptane to fully ignite the crib. Apparently a delay between the pouring of the heptane and its ignition resulted in excessive evaporation. The crib design was used again in Tests 10 and 15.

4.2 Rate of Burning

The rate of burning was calculated as the measured weight loss of the specimen over an interval of time and is expressed in $\mathrm{g} / \mathrm{sec}$. Maximum rates of burning are presented in table 6. These burn rates are measured over 30 -second and 1 -minute intervals with each interval beginning every 10 seconds throughout the test.

The maximum 30 -second burn rate ranged from 2.4 to $12.3 \mathrm{~g} / \mathrm{sec}$ for the wood cribs, with the larger cribs experiencing the greater burn rates; from 15.1 to $53.7 \mathrm{~g} / \mathrm{sec}$ for the upholstered chairs; and from 1.1 to $1.4 \mathrm{~g} / \mathrm{sec}$ for the waste containers. The maximum l-minute rate ranged from 2.2 to $12.2 \mathrm{~g} / \mathrm{sec}$ for the cribs, from 13.2 to $39.2 \mathrm{~g} / \mathrm{sec}$ for the upholstered chairs, and from 0.9 to $1.1 \mathrm{~g} / \mathrm{sec}$ for the waste containers.

For each of the wood cribs tested, the difference between the maximum 30 -second burn rate and the maximum 1 -minute burn rate in each test ranged from 0 to 9 percent of the l-minute rate. For the upholstered chairs, that difference ranged from 14 to 37 percent. And for the waste containers the differences were 22 and 27 percent. The smaller difference for the cribs indicates that these fires did not experience as marked a peak in rate of burning as did the fires with upholstered chairs or waste containers.

During the initial period of fire development the rate of burning of the chairs was rather low. During the period of active burning, it rapidly accelerated to a maximum rate, remained at that rate for a short time, and then gradually decreased. The period of rapid rise occurred approximately 5 min later in Test 3 than in Test 1 and approximately 1 min earlier in Test 3 than in Test 2. The variation in rate of burning of wood cribs of the same weight was considerably less, as noted above. Changes in the burn rate of the cribs occurred gradually, indicating a more stable burning. As might be expected, the maximum burn rate of the wood cribs increased with crib size, with the larger (heavier) cribs, containing more fuel and more exposed fuel surface, experiencing the
greater rates. Time histories of the rate of burning for the three upholstered chairs and four 6.4 kg wood cribs are shown in figure 4 a and the histories of four cribs of different weights are shown in figure $4 b$. These burn rates are measured over 30 -second intervals. Time histories of the burn rate, along with time histories of ceiling temperature and total incident heat flux at three locations for each upholstered chair, wood crib, and waste container are included in Appendix B.

4.3 Temperature

Summary data on maximum temperatures reached at various locations in the mobile home are presented in table 7.

During peak fire conditions, the temperature measured at a location 25 mm below the ceiling in the center of the living room ranged from 90 to $260{ }^{\circ} \mathrm{C}$ for the tests with wood cribs (with the higher temperatures being produced by the larger cribs), from 236 to $335^{\circ} \mathrm{C}$ for the upholstered chairs, and from 57 to $107{ }^{\circ} \mathrm{C}$ for the heptane alone. The maximum temperature measured during the tests with waste containers filled with newsprint was $37{ }^{\circ} \mathrm{C}$.

The average upper room gas temperatures at 25,250 , and 810 mm (1 , 10 , and 32 in) below the ceiling were calculated by averaging the gas temperatures at four locations throughout the living room at each of these heights. During peak fire conditions the average temperature 25 mm (1 in) below the ceiling ranged from 84 to $262{ }^{\circ} \mathrm{C}$ for the wood cribs (again with the higher temperatures being produced by the larger cribs), from 215 to $312{ }^{\circ} \mathrm{C}$ for the upholstered chairs, and from 47 to $83{ }^{\circ} \mathrm{C}$ for the heptane alone. The maximum temperature measured during the tests with waste containers was approximately $32{ }^{\circ} \mathrm{C}$. Thus the differences between the temperature below the ceiling in the center of the room and the average temperature at the same height were small.

The newsprint indicator specimens placed on the floor of the living room did not ignite during any of the tests. Fang [15] has reported, based on tests conducted in a $22 \mathrm{~m}^{3}\left(788 \mathrm{ft}^{3}\right)$ compartment, that, for the purpose of estimating the conditions leading to room flashover (the involvement of all combustible contents), the average upper room gas temperature necessary for spontaneous ignition of newsprint is $540 \pm 40^{\circ} \mathrm{C}$. (It should be noted that this average included low temperatures at the mid-height of the room and that temperatures 25 mm (1 in) below the ceiling in his tests almost always exceeded $600{ }^{\circ} \mathrm{C}$.)

Time histories of the temperature measured 25 mm (1 in) below the ceiling at the center of the living room are shown in figure 5 a for the three upholstered chairs and four 6.4 kg wood cribs, and in figure 5b for four wood cribs of different sizes. The ASTM E-119 standard timetemperature curve [16] is also included to show the magnitude of these incidental fires as compared to the expected exposure from a fully involved room. The temperature produced by the fully involved room is considerably more severe.

Figure 4 a . Burn rates of $16 \mathrm{~kg}(35 \mathrm{lb})$ upholstered chairs and 6.4 kg (14 lb) wood cribs (Ignition Characterization Series).

Figure 4b. Burn rates of various size wood cribs (Ignition Characterization Series).

Figure 5a. Time-Temperature curves for the thermocouple 25 mm (1 in) below the ceiling in the center of the living room for 16 kg (35 lb) upholstered chairs and 6.4 kg (14 lb) wood cribs (Ignition Characterization Series).

Figure 5b. Time-Temperature curves for the thermocouple 25 mm (1 in) below the ceiling in the center of the living room for various size wood cribs (Ignition Characterization Series).

As with the burn rate, temperatures measured 25 mm (1 in) below the ceiling in the center of the living room during the tests of upholstered chairs remained low during the initial period of fire development, but increased rapidly to a peak temperature, remained at that peak for a short period of time, and then began decreasing as the fire entered the period of decay. With the exception of the period just after the heptane ignitor was completely consumed, the temperature produced by the various size wood cribs did not experience sharp peaks. Rather, there was.a gradual increase in temperature over the course of about 15 minutes followed by a gradual decrease.

Figure 6 shows typical vertical gas temperature profiles which occurred in the center of the burn room for tests of all three upholstered chairs, one of each type crib, and one waste container. These profiles occurred at the time of maximum temperature 25 mm (1 in) below the ceiling and illustrate the presence of vertical temperature stratification in the living room as a result of heat released by the incidental fire and cooling air supplied from outside the room.

4.4 Incident Heat F1ux

Data on total incident heat flux measured at various locations in the living room are summarized in table 8. These levels are the result of combined radiative and convective heating.

Maximum incident heat flux levels measured 0.6 m (2 ft) from the edge of the specimen and $0.9 \mathrm{~m}(3 \mathrm{ft})$ above the floor looking horizontally at the specimen ranged from 0.24 to $1.32 \mathrm{~W} / \mathrm{cm}^{2}\left(0.21\right.$ to $\left.1.16 \mathrm{Btu} / \mathrm{ft}^{2} \mathrm{sec}\right)$ for the different wood cribs, from 1.15 to $1.75 \mathrm{~W} / \mathrm{cm}^{2}\left(1.01\right.$ to $1.54 \mathrm{Btu} / \mathrm{ft}^{2}$ $\mathrm{sec})$ for the upholstered chairs, and from 0.25 to $0.72 \mathrm{~W} / \mathrm{cm}^{2}(0.22$ to $0.63 \mathrm{Btu} / \mathrm{ft}^{2} \mathrm{sec}$) for the heptane alone. The maximum levels measured during the tests of waste containers were 0.10 to $0.12 \mathrm{~W} / \mathrm{cm}^{2}(0.09$ and $\left.0.11 \mathrm{Btu} / \mathrm{ft}^{2} \mathrm{sec}\right)$. None of these incident heat flux levels is sufficient to cause spontaneous ignition of ordinary combustible materials as a level of approximately $2 \mathrm{~W} / \mathrm{cm}^{2}\left(1.76 \mathrm{Btu} / \mathrm{ft}^{2} \mathrm{sec}\right)$ is required.

Maximum incident heat flux measured on the exposed wall at approximately 25 mm (1 in) from the specimen, again at 0.9 m (3 ft) above the floor and looking horizontally at the specimen, during tests of the 9.1 and 13.6 kg cribs, upholstered chairs, and 150 ml of heptane, were of sufficient levels to cause ignition of combustible materials located at that distance. These heat flux levels ranged from 3.46 to $4.48 \mathrm{~W} / \mathrm{cm}^{2}$ (3.05 to $3.94 \mathrm{Btu} / \mathrm{ft}^{2} \mathrm{sec}$) for the two types of cribs, from 2.51 to $4.80 \mathrm{~W} / \mathrm{cm}^{2}\left(2.21\right.$ to $\left.4.23 \mathrm{Btu} / \mathrm{ft}^{2} \mathrm{sec}\right)$ for the chairs, and from 2.97 to $4.06 \mathrm{~W} / \mathrm{cm}^{2}\left(2.61\right.$ to $\left.3.57 \mathrm{Btu} / \mathrm{ft}^{2} \mathrm{sec}\right)$ for the heptane.

Maximum incident heat flux levels measured at the ceiling looking vertically down on the flame plume ranged from 0.64 to $4.32 \mathrm{~W} / \mathrm{cm}^{2}(0.56$ to $3.80 \mathrm{Btu} / \mathrm{ft}^{2} \mathrm{sec}$) for the different cribs, from 1.66 to $4.20 \mathrm{~W} / \mathrm{cm}^{2}$ (1.46 to $3.70 \mathrm{Btu} / \mathrm{ft}^{2} \mathrm{sec}$) for the upholstered chairs, and from 0.29 to $1.41 \mathrm{~W} / \mathrm{cm}^{2}\left(0.26\right.$ to $\left.1.24 \mathrm{Btu} / \mathrm{ft}^{2} \mathrm{sec}\right)$ for the heptane alone. Measured

Figure 6. Vertical temperature profiles in the center of the living room for selected ignition sources (Ignition Characterization Series).
levels were 0.19 and $0.28 \mathrm{~W} / \mathrm{cm}^{2}\left(0.17\right.$ and $\left.0.25 \mathrm{Btu} / \mathrm{ft}^{2} \mathrm{sec}\right)$ for the waste containers.

Maximum incident heat flux levels measured at the floor in the center of the living room were negligible during the heptane and waste container tests, and measured levels were never greater than 0.20 and $0.28 \mathrm{~W} / \mathrm{cm}^{2}\left(0.18\right.$ and $\left.0.25 \mathrm{Btu} / \mathrm{ft}^{2} \mathrm{sec}\right)$ for any of the tests with cribs or chairs, respectively.

Plots of incident heat flux levels measured 0.6 m (2 ft) from the edge of the specimen at $0.9 \mathrm{~m}(3 \mathrm{ft})$ above the floor (horizontal view) versus elapsed time are shown in figure $7 a$ for the three upholstered chairs and four 6.4 kg wood cribs, and in figure 7 b for four wood cribs of different size. As would be expected, the general trends of the heat flux levels resulting from the burning item were similar to the trends shown in the time histories of temperature (figures 5 a and 5b).

Figure 7a. Total incident heat flux, horizontal orientation, $0.6 \mathrm{~m}(2 \mathrm{ft})$ from the edge of the specimen, 0.9 m (3 ft) above the floor for 16 kg (35 lb) upholstered chairs and 6.4 kg (14 lb) wood cribs (Ignition Characterization Series) •

Figure 8 shows a plot of incident heat flux measured 0.9 m (3 ft) above the floor (horizontal view) versus distance from the flame plume. Data from tests of all three upholstered chairs, one of each type crib, and one waste container are included. These profiles occurred at the time of maximum incident heat flux 25 mm (1 in) from the flame.

4.5 Smoke and Gas Concentrations

Summary data on minimum concentrations of oxygen, and maximum concentrations of carbon monoxide and carbon dioxide measured in the living room and in the corridor; and maximum concentrations of smoke measured at the living room doorway and in the corridor are presented in table 9.

The rate of smoke production during the tests varied appreciably. Production tended, though, to be greater for the upholstered chairs than for any of the other items tested. The smoke concentration measured at the living room doorway 1.2 m (4 ft) above the floor varied from 2.0 to $2.1 \mathrm{OD} / \mathrm{m}$ for the chairs and from 0.1 to $1.5 \mathrm{OD} / \mathrm{m}$ for the wood cribs. For the waste container it was less than $0.1 \mathrm{OD} / \mathrm{m}$ and for the pans of

Figure 7b. Total incident heat flux, horizontal orientation, 0.6 m (2 ft) from the edge of the specimen, $0.9 \mathrm{~m}(3 \mathrm{ft})$ above the floor for various size wood cribs (Ignition Characterization Series).

Figure 8. Total incident heat flux distributions, horizontal orientation, at $0.9 \mathrm{~m}(3 \mathrm{ft})$ above the floor for selected ignition sources (Ignition Characterization Series).

150 ml and 54 ml of heptane it was approximately $0.1 \mathrm{OD} / \mathrm{m}$. Comparison of data from the tests of wood cribs indicates that there did not appear to be a simple relationship between peak smoke production and the size of the crib.

Time histories of the average smoke concentration at the door to the living room, calculated by averaging the output from the horizontal smoke meters located $0.6,1.2$, and 1.8 m (2,4 , and 6 ft) above the floor, are shown in figure 9 a for the three upholstered chairs and four 6.4 kg wood cribs, and in figure 9 b for four cribs of different size and a waste container. The smoke produced by the chairs during their peak burning period was black in color and the smoke produced by the cribs was gray. Average smoke concentrations, rather than the smoke concentration at any one of the three smoke meters, was plotted since it was found to be less prone to variation over the course of time, even though there was a general tendency for smoke concentration to be higher at the upper measuring location.

Minimum concentrations of oxygen measured in the living room ranged from 19.3 to 18.1 percent for tests with the upholstered chairs and from 20.4 to 18.5 percent during tests with the wood cribs. Minimum O_{2} levels measured at the south end of the corridor ranged from 20.1 to 17.0 percent for tests with the upholstered chairs and from 19.9 to 15.1 percent for tests with the wood cribs. All O_{2} samples were taken 1.5 m (5 ft) above the floor. During every crib test and in two of the three chair tests (Tests 2 and 3), the minimum O_{2} concentration measured at the south end of the corridor was less than the minimum concentration measured in the center of the living room. It is believed that gas circulation patterns in the mobile home are the reason for this.

Time histories of O_{2} concentrations sampled in the center of the living room are shown in figure 10a for the three chairs and four 6.4 kg cribs, and in figure $10 b$ for four cribs of different sizes.

Maximum carbon monoxide concentrations sampled in the living room never exceeded 0.2 and 0.1 percent for tests with the chairs and cribs respectively. CO concentrations sampled in the south end of the corridor never exceeded 0.1 percent. In all three chair tests and in all but one of the crib tests, the maximum CO concentration in the living room was higher than that in the corridor. Maximum concentrations of carbon dioxide never exceeded 4.2 and 5.0 percent for tests with the chairs and cribs, respectively.

5. DISCUSSION

Much of the behavior of fires from the wood cribs and upholstered chairs studied in this test series were comparable when analyzed in relation to what might be expected during a fully developed room fire under similar conditions. As is consistent with the concept of an incidental fire, full room involvement was not reached during any of the tests.

Figure 9a. Average smoke concentrations at the door to the living room for 16 kg (35 lb) upholstered chairs and $6.4 \mathrm{~kg}(14 \mathrm{lb})$ wood cribs (Ignition Characterization Series).

Figure 9b. Average smoke concentrations at the door to the living room for various size wood cribs and a waste container (Ignition Characterization Series).

Figure l0a. Oxygen concentrations in the center of the living room for 16 kg (35 lb) upholstered chairs and $6.4 \mathrm{~kg}(14 \mathrm{lb})$ wood cribs (Ignition Characterization Series).

Figure lob. Oxygen concentrations in the center of the living room for various size wood cribs (Ignition Characterization Series).

(0.) ヨyกคロ 3 dW31 BURN RATE (g / s) Figure 12. Maximum temperature 25 mm (1 in) below versus maximum 1 -minute burn rate for each size wood crib (Ignition Characterization Series).

Figure ll. Maximum l-minute burn rate versus crib weight for each size wood crib (Ignition Characterization Series).

Characteristics such as maximum temperature in the flame plume and in the upper part of the living room, maximum incident heat flux, steady burning flame height, decrease in O_{2} concentration, and increase in CO and CO_{2} concentrations for fires with the wood cribs fell within a range defined by the severities of the fires produced by the waste containers filled with newsprint and the fires produced by the upholstered chairs. The most severe crib fires occurred with the largest (13.6 kg) cribs. These fires were similar to fires with the upholstered chairs. The 2.3 kg cribs produced fires which were more severe than fires with the waste containers and newsprint but generally less severe than fires with the 6.4 kg and 9.1 kg cribs. Fires with the 6.4 kg cribs generally fell well within the spectrum of the fires examined and it therefore seems appropriate to use the 6.4 kg crib to represent a broad range of incidental fire sizes and severities similar to those used in this test series. Table 10 presents a summary of averaged results for the waste containers, 6.4 kg and 13.6 kg wood cribs, and 16 kg upholstered chairs.

It was found from replicate tests that the fires from wood cribs, especially the 6.4 kg wood cribs, were fairly repeatable. The active burning period of the wood cribs of all sizes tended to be at least as great as the active burning period of the upholstered chairs and, due to the variation in fire development across the exterior fabric of the chairs, their active burning period began at different times in each test. Therefore, exposure of the nearby walls and ceiling to the intense flame began at correspondingly different times during tests of similar chairs but began at about the same time for tests of similar cribs. For this reason, when using incidental fires as the ignition source for tests designed to evaluate the effects of interior finish materials used on the walls and ceiling, the more reproducible fires from wood cribs would seem to be preferable to the fires from upholstered chairs.

Figure 11 shows the highest l-minute burn rate plotted against the crib weight for all tests of wood cribs. As indicated in the figure, there is a direct relationship between crib weight and maximum burn rate. Using linear regression analysis by the method of least squares and assuming a curve that passes through (0,0) , the following equation was derived for the data points:

$$
\begin{equation*}
\mathrm{R}=0.00086 \mathrm{~W} \tag{1}
\end{equation*}
$$

where R is the maximum burn rate (in grams) measured over a l-minute interval and W is the initial weight (in grams) of the wood crib. The coefficient of correlation for equation 1 is 0.99 , indicating a close approximation to the data points.

In figure 12, the maximum gas temperature 25 mm (lin) below the ceiling in the center of the living room was plotted against the maximum l-minute burn rate for all tests of wood cribs. Again a proportional relationship was indicated over the range of burn rates and temperatures involved. The equation derived for the data points is:

$$
\begin{equation*}
\mathrm{T}=17.41 \mathrm{R}-52.44 \tag{2}
\end{equation*}
$$

where T is the maximum gas temperature (in ${ }^{\circ} \mathrm{C}$) 25 mm (1 in) below the ceiling in the center of the living room and R is the maximum burn rate (in g / s) measured over a l-minute interval. The coefficient of correlation for equation 2 is 0.99 , again indicating a close approximation to the data points. It is obvious that in this case temperature could also be shown to be a function of initial crib weight.

Table 11 summarizes the measurements of the maximum total incident heat flux H (in W / cm^{2}) at the center of the floor and the maximum average air temperature $\mathrm{T}\left(\mathrm{in}^{\circ} \mathrm{C}\right.$) 25 mm (1 in) below the ceiling in the living room for all tests of wood cribs and upholstered chairs. Based on this data, the following relationship can be formulated:

$$
\begin{equation*}
\mathrm{H}=(0.45 \pm 0.08) \sigma \mathrm{T}^{4} \tag{3}
\end{equation*}
$$

where σ is the Stefan-Boltzmann constant (in $W / \mathrm{cm}^{2} \mathrm{~K}^{4}$). It should be noted that this relationship is not general but applies only to the particular room geometry and test conditions studied. From a number of tests conducted in the same living room, Budnick [14] found that, for tests in which flashover occurred, the minimum total incident heat flux at the center of the floor was $1.5 \mathrm{~W} / \mathrm{cm}^{2}\left(1.3 \mathrm{Btu} / \mathrm{ft}^{2} \mathrm{sec}\right)$ and the minimum average air temperature 25 mm (1 in) below the ceiling was $600^{\circ} \mathrm{C}$. That is,

$$
\mathrm{H} \geq 1.5 \mathrm{~W} / \mathrm{cm}^{2} \quad \text { and } \quad \mathrm{T} \geq 600{ }^{\circ} \mathrm{C}
$$

When $\mathrm{T}=600{ }^{\circ} \mathrm{C}$, then $\sigma \mathrm{T}^{4}=3.3 \mathrm{~W} / \mathrm{cm}^{2}$. If this value of $\sigma \mathrm{T}^{4}$ is used in equation 3 , then

$$
\mathrm{H}=0.45 \times 3.3=1.5 \mathrm{~W} / \mathrm{cm}^{2}
$$

This establishes a correlation between data obtained during flashover and non-flashover conditions.

6. SUMMARY AND CONCLUSIONS

The following conclusions are based on the results of a limited number of fire tests conducted in the corner of a mobile home living room which was designed not to contribute to the fires. The objectives of this test series were (1) to provide a comparison of the characteristics, such as burn rate, temperature and heat flux levels, flame height, smoke densities, and concentrations of oxygen, carbon monoxide, and carbon dioxide, of fires with medium size upholstered chairs, small waste containers filled with newsprint, and several sizes of standardized wood cribs, and (2) to obtain data on incidental fires resulting from the burning of the upholstered chairs, waste containers, and wood cribs in a compartment designed not to contribute to the fires in order to provide information for comparison with data on similar incidental fires in the same compartment lined with combustible interior finish materials on the walls and ceiling. In addition, information was obtained on
incidental fires resulting from the burning of two different volumes of heptane.

Based on the results of the tests reported here, the following conclusions are drawn:

1. Under the experimental conditions of this test series, an incidental fire resulting from the burning of a wood crib up to $13.6 \mathrm{~kg}(30 \mathrm{lb})$ or a medium size upholstered chair by itself did not result in conditions conducive for full room involvement.
2. Characteristics of incidental fires such as maximum temperature and heat flux levels, flame height, and change in carbon monoxide, cardon dioxide, and oxygen concentrations were similar for a $13.6 \mathrm{~kg}(30 \mathrm{lb})$ wood crib and a typical 16 kg (35 lb) upholstered chair.
3. The period of active burning was more stable for fires with wood cribs than for fires with upholstered chairs.
4. The peak burn rate was generally higher for fires with upholstered chairs than for fires with wood cribs of approximately the same weight.
5. The time to reach the period of active burning was more reproducible for fires with wood cribs than fires with upholstered chairs. For this reason, wood cribs may be preferable to upholstered chairs for use as the ignition source in tests designed to evaluate the effects of interior finish materials used on the walls and ceiling.
6. Based on data from the tests of wood cribs, linear relationships were determined between crib weight and maximum burn rate, and between maximum burn rate and maximum upper-air burn room temperature.

7. ACKNOWLEDGMENTS

The author would like to express his thanks to Mr. E. Budnick, with whom the concept and planning of the test series was developed; and Mr. W. Bailey, Mr. J. Lawson, Mr. T. Maher, Mr. T. Prather, Mr. B. Ramey, Mr. S. Steel, Mr. C. Veirtz and Mr. M. Womble for their assistance in the experimental work. This work was sponsored in part by the United States Department of Housing and Urban Development.

8. REFERENCES

[1] Fires and Fire Losses Classified, 1975, Fire J., Vol. 70, No. 6, 17-19 (Nov. 1976).
[2] McKinnon, G. P., Editor, Fire Protection Handbook, Section 1, National Fire Protection Association, Boston (1976).
[3] Klem, T. J., Unpublished transmittal, Preliminary Analysis of Fire Incidents in Mobile Homes, National Fire Prevention and Control Administration, Washington, D. C.
[4] California Fire Loss Experience, Mobile Homes/Travel Trailers vs 1 and 2-Family Dwellings, Calendar Year 1974, MH/RV Document 75-14, Committee on Mobile Homes and Recreational Vechicles, National Fire Protection Association, Boston (May 1975).
[5] Stickney, C. W., The Mobile Home Fire Protection Problem, a talk presented to the Fire Marshals Association of North America, Nov. 1971 (Available from author).
[6] U.S. Department of Health, Education, and Welfare, Report on the Risk of Fire in Mobile Homes, prepared by Division of Community Injury Control, Washington, D. C. (Available from author).
[7] Gross, D. and Fang, J. B., The Definition of a Low Intensity Fire, Joint RILEM-ASTM-CIB Symposium Proceedings, Performance Concept in Buildings, Vol. 1, Nat. Bur. Stand. (U.S.), Special Publication 361 (1972).
[8] Parker, W. J., and Lee, B. T., A Small-Scale Enclosure for Characterizing the Fire Buildup Potential of a Room, Nat. Bur. Stand. (U.S.), NBSIR 75-710 (June 1975).
[9] Parker, W. J., and Lee, B. T., Fire Buildup in Reduced Size Enclosures, Nat. Bur. Stand. (U.S.), Special Publication 411 (Nov. 1974).
[10] Fang, J. B., Measurements of the Behavior of Incidental Fires in a Compartment, Nat. Bur. Stand. (U.S.), NBSIR 75-679 (March 1975).
[11] Theobald, C. R. and Heselden, A. J. M., Fully Developed Fires with Furniture in a Compartment, Fire Research Station (U.K.), Fire Research Note No. 718 (July 1968).
[12] Fact-Finding Report on Comparative Fire Testing of Two Mobile Home Units with Representative Interior Finish Materials and Furnishings, Underwriters' Laboratories, Northbrook, Ill., File MH 10498 (Jan. 1977).
[13] Budnick, E. K., Klein, D. P., O'Laughlin, R., Mobile Home Bedroom Fire Studies: The Role of Interior Finish, Nat. Bur. Stand. (U.S.), NBSIR 78-1531 (Sept. 1978).
[14] Budnick, E. K., Mobile Home Living Room Fire Studies: The Role of Interior Finish, Nat. Bur. Stand. (U.S.), NBSIR 78-1530 (Sept. 1978).
[15] Fang, J. B., Fire Buildup in a Room and the Role of Interior Finish Materials, Nat. Bur. Stand. (U.S.). Tech. Note 879 (June 1975).
[16] Standard Methods of Fire Tests of Building Construction and Materials (ASTM E119-76), 1976 Annual Book of ASTM Standards, Part 18, American Society for Testing and Materials, Philadelphia.

Table 1. Instrumentation Locations (Ignition Characterization Series)

Table 3. Design Specifications for the
Standardized Wood Cribs (Ignition Characterization Series)

Crib Weight	Vidth and Pepth of Square Cross Section of Each Stick	$\begin{gathered} \text { Separ } \\ \text { nist } \\ \text { Betwe } \\ \text { Sti } \\ \hline \end{gathered}$	\qquad	Leng of E Sti	$\begin{aligned} & \text { th } \\ & \text { ach } \\ & \text { ck } \end{aligned}$	Number of Sticks Per Layer	Number of Layers	Amount of Heptane Ignitor	Comments
(kg) (lbs)	(mm) (in)	(mm)	(in)	(mm)	(in)			(m1)	
2.35	$19 \quad 0.75$		0.4	191	7.5	7	10	54	
6.414	381.5		2.7	356	14	4	6	150	Type A
6.414	381.5		1.9	381		5	5	150	Type B
9.120	381.5		1.9	381		5	6	150	
13.630	381.5		1.9	381		5	10	150	

Table 4．Test Conditions（Ignition Characterization Series）

£†	$\varepsilon 9 \quad L T$	$\bigcirc \varepsilon$	［9 9］	L	
を＇	$\overline{\varepsilon 9}-\overline{L T}$	¢	T9 9］	9	
TS	$\varepsilon 9 \quad \angle \mathrm{~L}$	ऽ	T9 9］	6	U
TS	£9 LT	$\varsigma \varepsilon$	T9 9T	8	［
$\varepsilon \varepsilon$	ZS IT	$\varepsilon \varepsilon$	0L T乙	02	
09	978	カ	02 TZ	6 L	q！コゴ
92	09 9T	LE	69 T乙	8T	
27	57 L	97	0500	LI	
85	876	ワワ	09 9T	9 T	a $\mathrm{JdS}_{\text {L }}$
6 L	$7 L$ とて	SS	$9 \mathrm{\square}$ ワで	5	
27	LS カT	St	79 8T	SI	V ədKı
TS	$\varepsilon 9$ LT	¢ $¢$	I9 9］	OT	q7xコ 8タガ9
89	S9 8T	カワ	89 02	ZI	¢Tコ） 8 ¢ $\varepsilon^{\circ} 7$
8 L	6 S ST	97	09 9T	II	
て7	85 7	$\angle 7$	8ऽ \quad L	7 I	ภวuฺฺe7uoう
TS	\＆ऽ ZT	87	85 ワT	$\varepsilon \tau$	27sen ${ }^{\text {¢ }}$ 的 0
£6	$\varepsilon 9 \quad \angle T$	05	てL てZ	ε	
25	εL \＆Z	で	8902	Z	рәдәาstoudn
85	$\square L$ ह乙	TS	9 y †て	I	8995
（\％）	（ \pm_{0} ）（ 0_{0} ）	（\％）	（ J_{0} ）（ O_{0} ）	－ON 7sel	แวユ1
K7！̣p țun ${ }_{H}$ элтาетәョ	วากาехวduəl	K7！ 			
suoṭ孔т！puoう хот̣ләәха		suoṭztpuoŋ дот̣גəұuI			

Table 5. Summary of Selected Test Results (Ignition Characterization Series)

[^3]Table 6. Summary of Maximum Fuel Burning Rates (Ignition Characterization Series)

Item	Test No.	Maximum Fuel Burning Rate (g/s)	
		Measured Over a 30-Second Interval	Measured Over a l-Minute Interval
$\begin{gathered} 16 \mathrm{~kg} \\ \text { Upholstered } \\ \text { Chair } \end{gathered}$	1	53.7	39.2
	2	15.1	13.2
	3	36.4	31.2
0.3 kg Waste Container	13	1.1	0.9
	14	1.4	1.1
2.3 kg Crib	11	2.9	2.7
	12	2.4	2.2
$\begin{gathered} 6.4 \mathrm{~kg} \text { Crib } \\ \text { Type A } \end{gathered}$	10	5.0	4.7
	15	5.3	5.3
$\begin{aligned} & 6.4 \mathrm{~kg} \mathrm{Crib} \\ & \text { Type B } \end{aligned}$	5	5.5	5.2
	16	5.9	5.8
9.1 kg Crib	17	8.8	8.6
	18	8.7	8.1
13.6 kg Crib	19	11.5	11.0
	20	12.3	12.2

Table 7. Summary of Maximum Temperatures Attained at Selected

Table 8. Summary of Maximum Total Incident lleat Flux Levels Attained (Ignition Characterization Series)

*Actual distance approximately 0.3 m (1.ft)

Item	Test No.	Maximum Snoke Concentration ($¢ \mathrm{\Gamma} / \mathrm{m}$)						Cas Concentrations (\% by vol) 1.5m (5 ft) Above Floor				
		Door to Livirg Foom			Scuth End of Corridor			Minimum $\mathrm{O}_{2}{ }^{*}$		Maxinum C0		Maximum CO_{2}
		$\begin{array}{r} 0.6 \mathrm{~m} \\ (2 \mathrm{ft}) \\ \hline \end{array}$	$\begin{gathered} 1.2 \mathrm{~m} \\ (4 \mathrm{ft}) \\ \hline \end{gathered}$	$\begin{gathered} 1.8 \mathrm{~m} \\ (6 \mathrm{ft}) \end{gathered}$	Listance Above Floor 0.6 m 1.2 m 1.8 m $(2 \mathrm{It})$ $(4 \mathrm{ft})$ $(6 \mathrm{ft})$			Living Pioori	South Corridor	Iiving Poom	South Corridor	Living Roomi
16 kg Upholstered Chair	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.3 \\ & 2.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.1 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.3 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.4 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.2 \\ & 2.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4 \\ & 1.9 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 18.1 \\ & 19.2 \\ & 19.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.1 \\ & 18.2 \\ & 17.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \\ & 0.1 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.2 \\ & 3.1 \\ & 3.7 \\ & \hline \end{aligned}$
0.3 kg Waste Container	$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & \text { NC } \\ & \text { NC } \end{aligned}$	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N} \mathrm{C} \\ & \mathrm{NC} \end{aligned}$	$\begin{aligned} & \mathrm{NC} \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{gathered} 20.7 \\ \mathrm{NC} \\ \hline \end{gathered}$	$\begin{aligned} & 20.6 \\ & 20.6 \\ & \hline \end{aligned}$	$\begin{aligned} & * * \\ & * * \end{aligned}$	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \\ & \hline \end{aligned}$
2.3 kg Crib	$\begin{aligned} & 11 \\ & 12 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.3 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 20.4 \\ 20.4 \end{array}$	$\begin{aligned} & 19.9 \\ & 19.4 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.2 \end{aligned}$
$\begin{gathered} 6.4 \mathrm{~kg} \mathrm{Crib} \\ \text { Type A } \\ \hline \end{gathered}$	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 0.3 \\ 0.8 \\ \hline \end{array}$	$\begin{aligned} & 0.2 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$	$\begin{array}{r} 0.2 \\ 0.6 \\ \hline \end{array}$	$\begin{aligned} & 0.2 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.2 \\ & 20.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 18.1 \\ & 18.3 \\ & \hline \end{aligned}$	$\begin{aligned} & * * \\ & \mathrm{NC} \end{aligned}$	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.1 \\ & \hline \end{aligned}$
$\begin{gathered} 6.4 \mathrm{~kg} \mathrm{Crib} \\ \text { Type B } \\ \hline \end{gathered}$	$\begin{array}{r} 5 \\ 16 \\ \hline \end{array}$	$\begin{aligned} & 0.5 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 19.2 \\ & 20.2 \end{aligned}$	$\begin{aligned} & 18.1 \\ & 19.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & \mathrm{NC} \end{aligned}$	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.6 \end{aligned}$
9.1 kg Crib	$\begin{aligned} & 17 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 \\ & 0.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 19.5 \\ & 18.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.8 \\ & 16.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	NC NC.	$\begin{aligned} & 3.7 \\ & 3.6 \\ & \hline \end{aligned}$
13.6 kg Crib	$\begin{array}{r} 10 \\ 20 \\ \hline \end{array}$	$\begin{aligned} & 1.0 \\ & 0.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.3 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.5 \\ 0.8 \\ \hline \end{array}$	$\begin{aligned} & 0.5 \\ & 0.9 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.7 \\ 0.7 \\ \hline \end{array}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.3 \\ & 18.5 \end{aligned}$	$\begin{aligned} & 15.4 \\ & 15.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{NC} \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.7 \\ & 5.0 \\ & \hline \end{aligned}$
54 m1 Heptane	$\begin{aligned} & 8 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \end{aligned}$	0.1	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{gathered} \mathrm{NC} \\ 20.7 \end{gathered}$	$\begin{aligned} & 20.7 \\ & 20.7 \\ & \hline \end{aligned}$	$\begin{aligned} & * * \\ & * * \end{aligned}$	$\begin{aligned} & \text { NC } \\ & \text { NC } \end{aligned}$	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \end{aligned}$
150 ml Heptane	$\begin{aligned} & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & \text { NC } \\ & \text { NC } \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{gathered} N C \\ 20.7 \end{gathered}$	$\begin{aligned} & 20.5 \\ & 20.4 \\ & \hline \end{aligned}$	$\begin{aligned} & * * \\ & * * \end{aligned}$	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \end{aligned}$	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \end{aligned}$

[^4]Table 10. Summary of Averaged Readings for Selected Types of Incidental Fires

Item	Raximum Temperature		Paximun Total Tncident leat Flux		Maximum Steady Rurning Tlame Height	ras Concentrations in the Living Room		
	$\begin{gathered} \text { Tn I'lame } \\ \text { Plorve } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Center of Room, } \\ & 25 \mathrm{~mm} \text { (1 in) } \\ & \text { Trom Ceiling } \\ & \hline \end{aligned}$	25 mm (1 in) Fron Iteni, O. 9 (2 Et$)$ Ahove Flonr	Center of T.ivirig Footr Floor Leve 1		$\begin{gathered} \text { Ninimum } \\ 0_{2} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Naximum } \\ & \text { C0 } \end{aligned}$	$\begin{gathered} \mathrm{Maximum} \\ \mathrm{CO}_{2} \\ \hline \end{gathered}$
	$\left({ }^{\circ} \mathrm{C}\right)$	(${ }^{\circ} \mathrm{C}$	($\mathrm{i} / \mathrm{lcm}{ }^{2}$)	($\mathrm{i} / \mathrm{cm}{ }^{2}$)	(m)	(\%)	(\%)	(\%)
0.3 kg Waste Container	135	37	0.30	0.01	0.5	20.7	*	NC**
6.4 kg Crib	295	146	1.62	0.08	1.3	20.0	$\mathrm{Na}^{2} \mathrm{C}$	2.3
13.6 kg Crib	6% ?	25%	4. 36	0.19	2.1	18.9	0.1	4.4
16 kg Upholstered Chair	60.5	270	3.85	0.20	2.0	18.9	0.1	3.7

[^5]| Test No. | T Maximum Average Living Room Temperature 25 mm (l in) Below Ceiling | σT^{4} | ```H Maximum Total Incident Heat Flux at Floor of Living Room``` | $\frac{H}{\sigma T^{4}}$ |
| :---: | :---: | :---: | :---: | :---: |
| | $\left({ }^{\circ} \mathrm{C}\right)$ | $\left(W / \mathrm{cm}^{2}\right)$ | (W/ cm^{2}) | |
| 1 | 312 | 0.66 | . 0.28 | 0.42 |
| 2 | 215 | 0.32 | 0.15 | 0.47 |
| 3 | 234 | 0.38 | 0.16 | ก. 42 |
| 5 | 145 | 0.17 | 0.08 | 0.47 |
| 10 | 146 | 0.17 | 0.08 | 0.47 |
| 11 | 87 | 0.10 | 0.04 | 0.40 |
| 12 | 84 | 0.09 | 0.04 | C. 44 |
| 15 | 142 | 0.17 | 0.09 | 0.53 |
| 16 | 133 | 0.15 | 0.07 | 0.47 |
| 17 | 178 | 0.23 | 0.11 | -. 48 |
| 18 | 191 | 0.26 | 0.32 | 0.46 |
| 19 | 262 | 0.47 | 0.20 | 0.43 |
| 20 | 251 | 0.43 | 0.18 | C. 42 |
| | | | | Average $=0.45$ |

APPENDIX A

CHRONOLOGICAL SUMMARY OF OBSERVATIONS
FOR
SELECTED TESTS

MOBILE HOME IGNITION CHARACTERIZATION SERIES
 TEST 3

16 kg (35 lb) Upholstered Chair

Time (Min:Sec)

0:00
0:14
0:25
0:30
0:34
$0: 45$
0:55
$1: 12$
$1: 35$

2:45
3:05
4:25
5:10
5:40
5:45
6:10
6:50
6:55

7:00
$7: 15$
7:40
7:55
8:35

10: 10
10:15
$10: 45$
10:55
11:15
11:25
11:30
11:35

11:55
12:00
12:10

12:25
12:50
13:15

Observation/Event

Ignition of newsprint in polyethylene waste container Flame from newsprint impinging on left arm of chair Charring of left arm of chair
Flame height approximately $0.8 \mathrm{~m}(2.5 \mathrm{ft})$ above floor
Smoke detector alarm
Ignition of left arm of chair
Height of flame from newsprint and left arm of chair is
approximately $0.9 \mathrm{~m}(3.0 \mathrm{ft})$ above floor
Waste container beginning to melt away
Slight spread of flame on left arm, scorch area approximately $0.3 \mathrm{~m}(1.0 \mathrm{ft})$ wide
Involvement of polyurethane foam inside left arm
Waste container approximately 50% melted
Smoke visible from underneath chair
Flame height approximately 0.9 m (3.0 ft) above floor
Flame intensity increasing
Left rear of chair has become involved
Material dripping from chair
Waste container completely melted down
Increase in flame intensity as polyurethane foam in left arm becomes more involved.
Charring of front left area of seat cushion
Flame height approximately 1.1 m (3.5 ft) above floor
Flame height approximately 1.2 m (4.0 ft) above floor
Entire left side of chair is involved or charred
Bottom of smoke layer approximately 0.9 m (3.0 ft) above floor
Burn-through of left arm of chair
Flames from left arm are impinging on rear cushion of chair
Involvement of left portion of rear cushion Flame height approximately 1.2 m (4.0 ft) above floor Flame height approximately 1.4 m (4.5 ft) above floor Involvement of left portion of seat cushion Flame height approximately 1.5 m (5.0 ft) above floor Increase in flame intensity and smoke obscuration in the living room
Flame height approximately $1.7 \mathrm{~m}(5.5 \mathrm{ft})$ above floor Flame height approximately $1.8 \mathrm{~m}(6.0 \mathrm{ft})$ above floor Left portion of rear cushion and left portion of seat cushion fully involved - left portion of front of chair becoming involved
Black smoke being produced
Involvement of right arm of chair
Involvement of entire rear portion of chair

14:30
14:40
15:30
16:00
17:00

Burn-through of the rear cushion and seat cushion Bottom of smoke layer approximately 0.3 m (1.0 ft) above floor
Flame intensity decreasing
Rear of chair, left arm, and seat cushion almost completely consumed
Termination of test

MOBILE HOME IGNITION CHARACTERIZATION SERIES
 TEST 12
 $2.3 \mathrm{~kg}(5 \mathrm{lb})$ Wood Crib

Time (Min:Sec)

0:00
0:20

1:45
1:50
2:10
3:15
$4: 10$
6:20
6:55
7:10
7:50
9:00
10:40
13:35

16:45
19:30
20:50
23:40
23:45
24:30

Observation/Event

Ignition of heptane in pan under crib
Dark gray smoke, but no flames, being emitted from top of crib
Flames visible above crib
Flame height 1.1 - 1.2 m (3.5-4.0 ft) above floor Smoke detector alarm
Heptane completely consumed --- flames no longer visible above crib, however, burning is present in interior of crib
Bottom of smoke layer is approximately 1.5 m (5 ft) above floor
Detached flame burning in gas plume above crib Flame height approximately $0.9 \mathrm{~m}(3.0 \mathrm{ft})$ above floor Flame now attached to top of crib --- flame height approximately $1.1 \mathrm{~m}(3.5 \mathrm{ft})$ above floor
Bottom of smoke layer approximately 1.2 m (4.0 ft) above floor
Flame height $1.2-1.4 \mathrm{~m}(4.0-4.5 \mathrm{ft})$ above floor Bottom $1 / 4$ of crib is glowing, rest is flaming Lower $1 / 3$ of crib is glowing, many sticks have collapsed in interior of crib --- flame height 1.4 - 1.5 m (4.5-5.0 ft) above floor

Lower $1 / 2$ of crib is glowing, rest is flaming --- flame height still $1.4-1.5 \mathrm{~m}(4.5-5.0 \mathrm{ft})$ above floor Flame height approximately $1.2 \mathrm{~m}(4.0 \mathrm{ft})$ above floor Most of interior of crib has collapsed --- flame height 1.1 - 1.2 m (3.5-4.0 ft) above floor Flame height $0.8-0.9 \mathrm{~m}(2.5-3.0 \mathrm{ft})$ above floor Crib has completely collapsed Termination of test

MOBILE HOME IGNITION CHARACTERIZATION SERIES
 TEST 15
 6.4 kg (14 lb) Wood Crib

Time Min: Sec
$0: 00$
$0: 15$
0:29
0:30
0:40
0:55
1:15

1:35
1:45
1:48
2:00
2:17
2:17-8:00
8:00

9:00
9:00-13:30
13:30
13:50
14:00
14:30
15:30
15:40

16:45
17:20
17:55
19:05

19:25
20:00

Observation/Event

Ignition of heptane in pan under crib
Flame height approximately 1.2 m (4.0 ft) above floor
Smoke detector alarm
Flame height $1.2-1.4 \mathrm{~m}(4.0-4.5 \mathrm{ft})$ above floor
Flame height approximately 1.5 m (5.0 ft) above floor
Flame height approximately $1.8 \mathrm{~m}(6.0 \mathrm{ft})$ above floor
Flame impingement on ceiling (flame height 2.1 m (7.0 ft) above floor)

Flames receding from ceiling
Flame height $1.2-1.4(4.0-4.5 \mathrm{ft})$ above floor
Heptane completely consumed
Flame height $1.1-1.2 \mathrm{~m}(3.5-4.0 \mathrm{ft})$ above floor
Flame height approximately 1.2 m (4.0 ft) above floor No appreciable change in conditions or size of fire Flame height approximately $1.1-1.2 \mathrm{~m}$ (3.5-4.0 ft) above floor --- no significant change in visibility in room
Flame height approximately 1.2 m (4.0 ft) above floor No appreciable change in conditions or size of fire Flame height approximately 1.2 m (4.0 ft) above floor Interior of crib beginning to collapse
Flame height approximately $1.2 \mathrm{~m}(4.0 \mathrm{ft})$ above floor Flame height approximately 1.1 m (3.5 ft) above floor Flame height approximately 1.1 m (3.5 ft) above floor Flame more yellow, not as intense --- flame height approximately $1.1 \mathrm{~m}(3.5 \mathrm{ft})$ above floor
Flame height approximately 1.1 m (3.5 ft) above floor Flame height approximately $0.9 \mathrm{~m}(3.0 \mathrm{ft})$ above floor Flame height approximately $0.9 \mathrm{~m}(3.0 \mathrm{ft})$ above floor Flame height $150-200 \mathrm{~mm}(6.0-8.0 \mathrm{in})$ above top of crib (approximately $0.6 \mathrm{~m}(2.0 \mathrm{ft})$ above floor)
Crib has collapsed throughout the center Termination of test

MOBILE HOME IGNITION CHARACTERIZATION SERIES TEST 18
$9.1 \mathrm{~kg}(20 \mathrm{lb})$ Wood Crib

Time (Min:Sec)

0:00 Ignition of heptane in pan under crib
0:25 Flame height approximately $1.2 \mathrm{~m}(4.0 \mathrm{ft})$ above floor

0:35
0:37
0:55
1:35
2:50
3:10
3:15
3:40
4:15
4:15-10:15
10:15
10:50
11:25
11:50
12:20
13:25
14:20
15:15
15:20
15:50
17:05
17:40
18:30
19:35
20:00

Flame height approximately $1.5 \mathrm{~m}(5.0 \mathrm{ft})$ above floor Smoke detector alarm
Flame impingement on ceiling (flame height 2.1 m (7.0 ft) above floor)

Heptane completely consumed, reduction in flame height to approximately $1.5 \mathrm{~m}(5.0 \mathrm{ft})$ above floor Flame height $1.7-1.8 \mathrm{~m}(5.5-6.0 \mathrm{ft})$ above floor Flame height $1.8-2.0 \mathrm{~m}(6.0-6.5 \mathrm{ft})$ above floor Intermittent flame impingement on ceiling Flame impingement on ceiling Intermittent flame impingement on ceiling No appreciable change in conditions or size of fire Intermittent flame impingement on ceiling Flame is more yellow, less intense Collapse of a stick near bottom of crib Bottom of smoke layer is approximately 0.6 m (2.0 ft) above floor
Flames continuing to lose intensity
Bottom of smoke layer at floor level
Flame height $1.7-1.8 \mathrm{~m}(5.5-6.0 \mathrm{ft})$ above floor Flame height $1.7-1.8 \mathrm{~m}(5.5-6.0 \mathrm{ft})$ above floor Sticks at bottom of crib continuing to collapse Smoke meters at door to living room are obscured from view by smoke
Flame height 1.4 - 1.5 m (4.5-5.0 ft) above floor Flame height 1.1 - $1.2 \mathrm{~m}(3.5-4.0 \mathrm{ft})$ above floor Flame height approximately $0.3 \mathrm{~m}(1.0 \mathrm{ft})$ above top of crib (approximately $0.8 \mathrm{~m}(2.5 \mathrm{ft})$ above floor) Flame height 150-200 (6.0-8.0 in) above top of crib Termination of test

MOBILE HOME IGNITION CHARACTERIZATION SERIES TEST 20

$13.6 \mathrm{~kg}(30 \mathrm{lb})$ Wood Crib

Time (Min:Sec)

0:00
0:24
0:28
0:32
0:38
0:53
$1: 40$
$1: 45$

Observation/Event

Ignition of heptane in pan under crib
Flame height approximately $0.9 \mathrm{~m}(3.0 \mathrm{ft})$ above floor
Flame height approximately $1.2 \mathrm{~m}(4.0 \mathrm{ft})$ above floor
Flame height 1.4 - 1.5 m (4.5-5.0 ft) above floor
Smoke detector alarm
Flame impingement on ceiling (flame height 2.1 m (7.0 ft) above floor)

Heptane completely consumed, no decrease in flame height
Flame impingement on ceiling

3:30-11:25
11:25
12:20

12:40
15:35

15:45
16:20
16:35
17:12
17:30

18:30
19:05
19:40
20:35
20:45
21:30
22:00

Steady flame impingement on ceiling, flames are extending out from corner approximately $0.9 \mathrm{~m}(3.0 \mathrm{ft})$ into living room at ceiling level
No appreciable change in conditions or size of fire Collapse of some sticks in interior of crib Steady flame impingement on ceiling, flames are extending out from corner $1.1-1.2 \mathrm{~m}$ (3.5-4.0 ft) into living room at ceiling level
Bottom of smoke layer is at floor level
Continuing steady flame impingement on ceiling, flames are extending approximately $0.9 \mathrm{~m}(3.0 \mathrm{ft})$ into living room at ceiling level
Flames are becoming less intense
Intermittent flame impingement on ceiling Flames are more yellow, less intense
Intermittent flame impingement on ceiling Flame height approximately $2.0 \mathrm{~m}(6.5 \mathrm{ft})$ above floor --no impingement on ceiling
Flame height 1.7 - $1.8 \mathrm{~m}(5.5-6.0 \mathrm{ft})$ above floor
Flame height $1.4-1.5 \mathrm{~m}(4.5-5.0 \mathrm{ft})$ above floor
Flame height $1.4-1.5 \mathrm{~m}(4.5-5.0 \mathrm{ft})$ above floor
Flame height 1.1 - 1.2 m (3.5-4.0 ft) above floor
Sticks in interior of crib continuing to collapse Flame height $1.1-1.2 \mathrm{~m}(3.5-4.0 \mathrm{ft})$ above floor Termination of test

APPENDIX B

PLOTTED TEST DATA ILLUSTRATING CHANGES
IN VARIOUS MEASURED CONDITIONS

FIGURE 日1. GAS TEMPERATURE MEASURED IN THE UVING ROOM, ANO THE EURN RATE OF THE UPHOLSTERED CHNR.

FIGURE 82. TOTA INCIDENT HEAT FLUX NEASURED AT DIFFERENT LOCATIONS AROUND THE UPHOLSTERED CHAR.

FIGURE 日3. GAS TEMPERATURE MEASURED IN THE LIVING ROON, AND THE BURN RATE OF THE UPHOLSTERED CHNR.

FGGURE B4. TOTA INCIOENT HEAT FLUX MEASURED AT DIFFERENT LOCATIONS AROUND THE UPHOLSTERED CHARR.

FGCURE BS. GAS TEMPERATURE MEASURED IN THE LUMNG
ROOM, AND THE EURN RATE OF THE UPHOLSTERED CHAR.

FIGURE 86. TOTA INCIDENT HEAT FLUX MEASURED AT DIFFERENT LOCATIONS AROUND THE UPHOLSTERED CHARR.

fGGURE 87. GAS TEMPERATURE MEASURED IN THE UMNC
ROON. AND THE BURN RATE OF THE WOOO CRIB.

FIGURE 日8. TOTAL INCIDENT HEAT RUX MEASURED AT different locatons around the wood crig.

FIGURE Bio. TOTAL INCIDENT HEAT FLUX MEASURED AT DFFERENT LOCATIONS AROUND THE WOOD CRIE.

fGgure bil. Gas tempgrature measured in the lining
ROOM, AND THE BURN RATE OF THE WOOD CRIB.

figure bi2. total incident heat flux measured at DIFFERENT LOCATONS ARCUND THE WOOD CRIE.

FIGURE 813. GAS TEMPERATURE NEASURED IN THE LNVING ROOM, AND THE GURN RATE OF THE WOOD CRIB.

FIGURE B14. TOTAL INCIDENT HEAT FLUX MEASURED AT DIFFERENT LOCATIONS AROUND THE WOOD CRIE.

FGGURE B15. GAS TEMPGRATURE MEASURED IN THE LNING
ROOM, AND THE BURN RATE OF THE WASTE CONTANER AND NEWSPAPER.

GGURE 816. TOTAL INCIDENT HEAT FLUX MEASURED AT DIFFERENT LOCATIONS AROUND THE WASTE CCNTAINER.

FIGURE 日17. GAS TEMPGRATURE MEASURED N THE LNIMG ROOM, AND THE GURN RATE OF THE WASTE CONTANER AND NEWSPAPER.

FIGURE E18. TOTAL INCIDENT HEAT FLUX MEASURED AT different locations around the waste container.

FIGURE 819. GAS TEMPERATURE MEASURED IN THE LNING ROOM. AND THE BURN RATE OF THE WOOO CRIB.

FIGURE B20. TOTAL INCIDENT HEAT FLUX MEASURED AT DIFFERENT LOCATIONS AROUND THE WOOD CRIE.

FIGURE E23. GAS TEMPERATURE MEASURED IN THE LINING ROON, AND THE OURN RATE OF THE WOOD CRIB.

FIGURE 825. GAS TEMPERATURE MEASURED N THE LNING
ROON, AND THE BURN RATE OF THE WOOD CRIB.

FIGURE B26. TOTAL INCIDENT HEAT FLUX MEASURED AT DIFFERDNT LOCATIONS AROUND THE WOOD CRIE.

FGGURE 日27. GAS TEMPERATURE MEASURED IN THE LIVING ROOM. AND THE BUFN RATE OF THE WOOD CRIB.

FIGure g28. total incioent heat flux measured at DIFFERENT LOCATIONS AROUND THE WOOD CREB.

FGGURE 829. GAS TEMPERATURE MEASURED N THE LNING ROOM, AND THE BURN RATE OF THE WOOO CRIB.

NBS.114A (REV. 7.73)

U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. NBSIR 78-1522	2. Gov"t Accession No.	3. Recipient's Accession No.
4. TITLE AND SUBTITIE Characteristics of Incidental Fires in the Living Room of a Mobile Home			5. Publication Date September 1978
			6. Performing Organization Code
7. AUTHOR(S) David P. Klein			8. Performing Organ. Report No.
9. PERFORMING ORGANIZATION NAME AND ADDRESS NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20234			10. Project/Task/Work Unit No. 7526389
			11. Contract/Grant No.
12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP) Sponsored principally by: Div. of Energy, Bldg. Technology and Standards Office of Policy Development and Research U.S. Department of Housing and Urban Development, Wash., D.C.			13. Type of Report \& Period Covered Interim Report
			14. Sponsoring Agency Code
15. SUPPI.EMENTARY NOTES 20410			

16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.) A series of fire tests was conducted in the corner of a mobile home living room. The corner was lined with interior finish materials which did not contribute to the fires. The test series was designed to examine the fire characteristics of typical incidental (low intensity) fires which may be used as the ignition source for tests to evaluate the effects of interior finish materials.

This test series involved three types of source fires: standardized wood cribs ranging in weight from 2.3 kg to 13.6 kg (5 lb to 30 lb), identically constructed upholstered chairs and polyethylene waste containers filled with crumpled newsprint. Experimental measurements were made of burn rate, temperature, heat flux, flame height, smoke density, and concentrations of oxygen, carbon monoxide, and carbon dioxide.

Under the test conditions employed, it was found that the fire severities for the several sizes of standardized wood cribs fell between those for the polyethylene waste containers filled with crumpled newsprint and the more severe incidental fires produced by the $16 \mathrm{~kg}(35 \mathrm{lb})$ upholstered chairs in terms of characteristics such as maximum temperature and heat flux levels, flame height, and changes in oxygen, carbon monoxide and carbon dioxide concentrations. Of the fires with wood cribs, it was found that the fires with $13.6 \mathrm{~kg}(30 \mathrm{lb})$ standardized wood cribs were most similar to the fires with $16 \mathrm{~kg}(35 \mathrm{lb})$ upholstered chairs, although the peak burning rate was generally higher for fires with upholstered chairs than for fires with wood cribs. It was also found that the time to reach the period of active burning was more reproducible for fires with wood cribs than fires with upholstered chairs.
17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolons) Chairs; compartment fires; crib fires; fire tests; incidental fires; ignition source; mobile homes; repeatability; source fires; upholstered furniture.

18. AVAILABILITY Unlimited \square For Official Distribution. Do Not Release to NTIS	19. SECURITY CLASS (THIS REPORT) UNCL ASSIFIED	21. NO. OF PAGES 68
Order From Sup. of Doc., U.S. Government Printing Office Washington, D.C. 20402 , SD Cat. No. C13	20. SECURITY CLASS (THIS PAGE)	22. Price
X Order From National Technical Information Service (NTIS) Springficld, Virginia 22151	UNCLASSIFIED	

[^0]: ${ }^{1}$ This work was principally supported by funds provided by the Division of Energy, Building Technology and Standards, Office of Policy Development and Research of the U.S. Department of Housing and Urban Development with supplemental funding by the Center for Fire Research at the National Bureau of Standards.

[^1]: 2Numbers in brackets refer to the literature references listed at the end of this paper.

[^2]: 4Manufacturer's specifications for the calcium silicate board are: density $=46 \mathrm{lb} / \mathrm{ft}^{3}$
 specific heat $=0.34 \mathrm{Btu} /{ }^{\circ} \mathrm{F} / \mathrm{lb}$ at $800^{\circ} \mathrm{F}$
 thermal conductivity $=0.93 \mathrm{Btu} \mathrm{in} / \mathrm{ft}^{2} /{ }^{\circ} \mathrm{F} / \mathrm{hr}$ at $800^{\circ} \mathrm{F}$

[^3]: *For tests irvolving cribs, tle tiejght of the flame due to hurning hoptane was not consjdered **NA designates Not Applicałle ***NR designates Not Recorded

[^4]: * Based on initial C_{2} concentration of 20.8%
 **Pata could not te reliatly obtaineg
 ***Essentially uncharged from initial condition

[^5]: * Data could not be reliatly ohtaineri.
 ** Essentially unchanged fror initial condition.

