NBSIR 78-1511

EXPERIMENTAL AND THEORETICAL ANALYSIS OF QUASI-STEADY SMALL-SCALE ENCLOSURE FIRES

J. G. Quintiere, B. J. McCaffrey and K. DenBraven

Center for Fire Research
National Engineering Laboratory
National Bureau of Standards
Washington, D.C. 20234

October 1978
U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

Dr. Sidney Harman, Under Secretary
Jordan J. Baruch, Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

EXPERIMENTAL AND THEORETICAL ANALYSIS OF QUASI-STEADY SMALL-SCALE ENCLOSURE FIRES

J. G. Quintiere, B. J. McCaffrey and K. DenBraven

Center for Fire Research
National Engineering Laboratory National Bureau of Standards Washington, D.C. 20234

October 1978
U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

Dr. Sidney Harman, Under Secretary Jordan J. Baruch, Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director
Page
LIST OF FIGURES iv
LIST OF TABLES iv
TABLE OF NOMENCLATURE v
Abstract 1

1. INTRODUCTION 2
2. DESCRIPTION OF THE EXPERIMENT 3
3. EXPERIMENTAL RESULTS 4
4. THEORETICAL MODEL 6
4.1. Flow Model 6
4.2. Energy Conservation for the Fuel $\left(C V_{I}\right)$ 7
4.3. Energy Conservation for the Fire Plume ($C V_{I I}$) 8
4.4. Energy Conservation of the Hot Upper Layer ($C_{\text {III }}$) 9
4.5. Conservation of Energy for Upper Walls and Ceiling 10
4.6. Conservation of Energy for the Floor 10
4.7. Solution of the Conservation Equations 11
5. DISCUSSION OF RESULTS 11
6. REFERENCES 14
APPENDIX A - TYPICAL EXPERIMENTAL RESULTS A-1
APPENDIX B - ESTIMATE OF THE OXYGEN CONCENTRATION OF THE FIRE PLUYE ENTRAINED FLOW B-1
APPENDIX C - CONSISTENCY OF TEMPERATURE AND HEAT FLUX DATA $\mathrm{C}-1$
APPENDIX D - SOLUTION OF THE EQUATIONS D-1
APPENDIX E - COMPUTER CODE E-1
Figure 1. Experimental arrangement 16
Figure 2. Control volumes (CV) used in the mathematical model 17
Figure 3a. Experimental results for rate of mass loss 18
Figure 3b. Theoretical results for rate of mass loss 18
Figure 4a. Experimental results for gas temperature 19
Figure 4b. Theoretical results for gas temperature 19
Figure 5a. Experimental results for incident heat flux to the floor 20
Figure 5b. Theoretical results for incident heat flux to the floor 20
Figure 6a Experimental results for rate of induced airflow 21
Figure 6b Theoretical results for rate of induced airflow 21
Figure 7. Fuel mass loss rate as a function of ventilation and fuel area 22
Figure 8. Fuel mass loss per unit area as a function of incident heat flux 23
Figure A-1. Experimental results for $W_{0}=0.077 \mathrm{~m}$ and $A_{v}=0.0056 \mathrm{~m}$ A-2
Figure $A-2$. Experimental results for $W_{0}=0.077 \mathrm{~m}$ and $A_{v}=0.010 \mathrm{~m}$ A-3
Figure A-3. Experimental results for $W_{0}=0.077 \mathrm{~m}$ and $A_{v}=0.0225 \mathrm{~m}$ A-4
Figure B-1. Estimated oxygen concentration for the flow induced into the flame B-4
Figure C-1. Measured incident heat flux to a water cooled sensor as a function of the upper gas temperature C-2
Figure C-2. Measured incident heat flux to a water cooled sensor as a function of the upper ceiling temperature C-3
LIST OF TABLES
Page
Table I. Summary of experimental results 24
Table II. Specified parameters for the theoretical model 25
Table B-l. Estimated entrainment rate B-3
Table B-2. Calculated oxygen mass concentrations B-5
```
    Surface area
    c Orifice coefficient
C, Cg Specific heat of solid, fluid
    F
        plane and the floor
        FFS Geometric configuration factor between the lower walls and fuel
            surface
    Gravitational acceleration
    Convective or total heat transfer coefficient
    Height
        |H}\quad\mathrm{ Heat of combustion
        \DeltaH
            k Thermal conductivity
        ke Entrainment constant
kg, k
    K Thermal conductance
    L Length of room
    m}\mathrm{ Rate of mass flow
    p Pressure
    q Rate of heat flow
    r Mass air to fuel ratio
    T Temperature
    W Width of room
        x
        Xd Height of thermal discontinuity
    B Parameter defined by eq. 6
    \gamma Area ratio, A }\mp@subsup{A}{F}{}/\mp@subsup{A}{W}{
    \delta Wall thickness
    \varepsilon Emissivity
    \rho Density
    \omega Parameter defined by eq. 7

Subscripts
a Air
b Burning
d Thermal discontinuity
e Entrainment
f Flame
fuel Fuel
F Floor
g Hot gaseous combustion products
n Neutral plane
- Doorway
p Plume
py Pyrolysis
r Radiation
s Fuel surface
v Volatilization
w Hot walls and ceiling

Superscript
()" Per unit area

EXPERIMENTAL AND THEORETICAL ANALYSIS OF QUASI-STEADY SMALL-SCALE ENCLOSURE FIRES
J. G. Quintiere, B. J. McCaffrey and K. DenBraven

\section*{Abstract}

Forty-six small-scale experiments were conducted to measure the characteristics of horizontal plastic (PMMA) pool fires in an enclosure as a function of doorway width and fuel area. A 0.30 m high enclosure was instrumented to measure sample mass loss, the upper gas layer and ceiling temperatures, heat flux to the floor, and the pressure drop across the doorway. Results are reported for the maximum steady burning period; however, a few cases do not seem to have reached a steady state. For small sample sizes, a distinct fire plume could be perceived in the enclosure, while for larger sample sizes flames tended to fill the enclosure (sometimes to within 2 or 3 cm of the floor), and extended out the door opening.

The rate of mass loss is a strong function of the radiative feedback from the enclosure. However, reduced oxygen concentration in the flow entrained by the fire plume seems also to affect the mass loss rate. For the smaller doorway widths, the rate of mass loss increases almost directly with ventilation. As the width is increased, the mass loss rate instead becomes a function of sample area and radiative heat transfer. For some sample sizes, as the doorway width is increased a maximum rate of mass loss is achieved, followed by a decrease in burning rate at higher ventilation levels. The temperatures and floor heat flux also tend to follow this trend.

The data were then compared to the results of a theoretical model. Agreement between theory and data is qualitatively good. But overall, good quantitative agreement is not achieved. This lack of agreement appears consistent with inaccuracies of the flame radiation model and an incomplete description of the flame chemistry.

Key words: Burning rate; enclosure fires; experiment; mathematical models; radiation; small scale; ventilation.
1. INTRODUCTION

One basic objective of fire safety research is the evaluation of the risk of fire growth within a room. Such an evaluation must consider all possible fuel sources and their arrangement, as well as the geometry and description of the enclosure. The present study is directed at improving the methodology for making this evaluation.

Specifically, a global mathematical model has been formulated [1] for an idealized mode of fire growth. It considers the fire as a steady burning horizontal slab of fuel on the floor of the compartment. The resulting fuel vaporization and corresponding thermal and flow characteristics are then calculated. In general, the model can be used to predict thermal conditions which may be judged as conducive to rapid fire growth and spread. In order to validate the model, experiments have been conducted on a small scale to match this idealized mode of burning. This paper reports on the comparison of that data with the theoretical results.

Traditionally, compartment fire research has been aimed at the fullydeveloped fire with application primarily to the prediction of the fire resistance of structural members. This work has been done essentially with wood cribs, and has elucidated two burning regimes: "fuel controlled" in which the pyrolysis rate is dependent on the exposed fuel surface area, and "ventilation controlled" in which the pyrolysis rate is dependent on the size of the compartment opening (or more precisely the factor \(A_{0} \sqrt{H_{0}}\) ). The latter regime has not yet been quantitatively explained, although it is generally accepted that a reduction in airflow seems to reduce the extent and rate of heat transfer to the fuel surface, thereby reducing and controlling the pyrolysis rate. The work of Gross and Robertson [2] illustrates these two regimes of compartment burning, while more recently the work of Thomas and Nilsson [3] illustrates a third burning regime related to the porosity of the cribs.

To study developing fires in rooms, many have considered flat horizontal or vertical slabs of fuel. These surfaces exhibit a greater sensitivity to radiation from the enclosure, resulting in a greater pyrolysis rate than for crib fires in rooms. For example, Friedman [4] cites an increase in the rate of mass loss for a wood crib fire in a room of up to 1.6 times its corresponding free burn value, yet a threefold increase was associated with

\footnotetext{
\({ }^{1}\) Numbers in brackets refer to references listed at the end of this paper.
}
the burning of a horizontal slab of polymethyl methacrylate (PMMA). Experiments with liquid fuel pool fires in compartments [5,6] indicate a similar relationship between mass loss rate and \(A_{0} \sqrt{H_{0}}\) as seen in wood crib fires, but with less enhancement of burning as that found for PMMA.

In recent years the mathematical modeling of developing fires has received increasing attention. This has occurred because of the need to evaluate furnishings items and materials in a room fire scenario, and ultimately to predict the spread of the fire through a building. Representative of the current state of modeling are an analysis by Tanaka [7] of fire spread over the interior surfaces of a room, and a generalized computer code developed by Emmons et al. [8]. This code has favorably predicted transient measurements from full-scale experimental room fires. In contrast, the model to be presented here does not consider time as a parameter. Instead, it can be used to indicate the "critical" values of fuel area and room opening at which thermal conditions in the room would exceed a tolerable level or would promote further fire growth.

\section*{2. DESCRIPTION OF THE EXPERIMENT}

Square slabs of polymethyl methacrylate (PMMA) were burned in a small compartment constructed of low density alumina silica block. A sketch of the experimental arrangement is shown in figure 1 . The internal dimensions of the enclosure were \(0.30 \mathrm{~m} \times 0.30 \mathrm{~m} \times 0.56 \mathrm{~m}\) deep with a doorway height of 0.225 m and widths ranging from 0.015 m to 0.285 m . Five PMMA sample sizes were burned, ranging in face area from \(0.0025 \mathrm{~m}^{2}\) to \(0.0225 \mathrm{~m}^{2}\) with a constant thickness of 0.013 m . The PMMA was burned on a platform 0.03 m above the floor and centered 0.40 m from the doorway. The weight was continuously recorded by a (linear variable differential transformer type) load cell which supported the platform, and was sufficiently below the floor to remain cool. Two bare chromel-alumel thermocouples of 0.025 mm diameter wire were used to measure the upper gas and ceiling temperatures at the locations shown in figure l. The ceiling thermocouple was pressed flush into the surface. A water-cooled thermopile heat flux sensor of absorptivity 0.97 was used to record the incident heat flux to the floor. The pressure difference across the compartment wall was measured with a sensitive electronic manometer.

Except in the flame region, the thermocouples yielded representative temperatures of the upper hot gas layer and upper walls and ceiling. The heat flux sensor indicated the incident radiative flux from the enclosure to
the PMMA surface, since the PMMA flame has a small emissivity. The pressure drop measurement was used to estimate the induced flow rate through the doorway.

Forty-six experiments were conducted with the fuel size and doorway width varied. Runs were repeated if instruments malfunctioned or to check reproducibility; in general, reproducibility of the results was very good. The procedure for each experiment consisted of first inspecting and cleaning the probes. A mixture of PMMA chips and paraffin oil was used as an accelerant to insure uniform ignition of the PMMA sheet. The PMMA sample was lined along the sides and bottom with aluminum foil to prevent uneven burning at the edges. Just prior to ignition, a small amount of pentane was added to the PMMA surface. The sample was ignited and allowed to burn completely, during which time the data were recorded continuously.

For the most part, two modes of burning could be discerned in these experiments. The first mode was exhibited by the smaller PMMA samples. This was characterized by a distinct pulsating laminar-like flame plume within the enclosure. These samples burned slowly, with complete consumption generally taking 25 to 30 minutes. A steady burning period persisted for a minimum of five minutes. The second mode of burning was exhibited by the larger size samples. The consumption period for this mode averaged about 15 minutes. These samples initially burned slowly and steadily, then the burning increased rapidly as turbulent flames stretched across the ceiling and extended out of the doorway. For the small door widths the flames filled the enclosure to within 2 to 3 cm of the floor. In general, a steady burning period could be discerned over the last several minutes of the burn, but in a few cases no steady-maximum burning was achieved before consumption (see appendix A).

\section*{3. EXPERIMENTAL RESULTS}

The data were analyzed to determine the period of maximum steady burning and the corresponding average values of the variables measured. This was done by identifying a significant period over which the rate of mass loss was at its steady peak. The corresponding periods of maximum-steady temperature were nearly coincidental. These maximum-steady values are listed in table 1 along with their deviation during this "period of steady burning."

Also listed in table \(l\) are calculated values of induced airflow rate. This was determined using the following assumptions:
1. the fluid in the room is stratified into two horizontal regions of uniform temperature,
2. the pressure in the enclosure follows a hydrostatic distribution, and
3. an orifice flow model applies at the doorway.

The first assumption is generally acceptable, the second is valid based on the work of McCaffrey and Rockett [9], and Prahl and Emmons [10] have demonstrated the applicability of the third assumption. Based on these studies the procedure for calculating the induced airflow rate, \(\dot{m}_{a}\) is as follows:
(neutral plane height i.e., the position of zero pressure drop and velocity in the doorway)
\[
\begin{equation*}
x_{n}=H-\frac{\Delta p}{\rho_{a}\left(1-\frac{T_{a}}{T_{g}}\right) g} \tag{1}
\end{equation*}
\]
where \(\Delta p\) is the pressure difference at the ceiling height, \(H\). (exit mass flow rate)
\[
\begin{equation*}
\dot{\mathrm{m}}_{\mathrm{g}}=\frac{2}{3} c W_{o} \rho_{a} \sqrt{2 g\left(\frac{T_{a}}{T_{g}}\right)\left(1-\frac{T_{a}}{T_{g}}\right)} \quad\left(H_{o}-X_{n}\right)^{3 / 2} \tag{2}
\end{equation*}
\]
(inlet air mass flow rate)
\[
\begin{equation*}
\dot{m}_{a}=\dot{m}_{g}-\dot{m}_{v} \tag{3}
\end{equation*}
\]
(Since numerous symbols will be used in the text, most will be defined in the table of nomenclature only.) The measured values of \(\Delta p, T_{g}\), and \(m_{r}\) were used to determine \(X_{n}, m_{g}\), and \(m_{a}\). The flow coefficient, \(c\), was taken as 0.7 , but could be higher for this scale experiment [l0]. In cases where the measured value of the pressure difference, \(\Delta p\), was low due to soot clogging the pressure tap, values of airflow were not calculated. The application of this procedure could overestimate \(\mathrm{X}_{\mathrm{n}}\) by about 30\% [9]. Since the flow coefficient for the exit can exceed 0.7 (but is not likely to be greater than 1), the net effect of variations in \(c\) and \(X_{n}\) could yield an estimated \(20 \%\) error or less in \(\mathrm{m}_{\mathrm{a}}\).

The basis of the theoretical model has been previously derived [l]. Consequently, no detailed derivation will be presented; however, the equations will be listed along with a description of their significance. Basically the equations have been derived by applying the conservation laws to distinct spatial regions (or control volumes, CV) that possess an approximately uniform character. These regions are identified in figure 2 . The fuel \(\left(C V_{I}\right)\) is considered to be a steadily vaporizing solid. The fire plume \(\left(\mathrm{CV}_{\text {II }}\right)\) is considered to be the region in which all of the combustion occurs, and is assumed to be a cylinder for radiation calculations. The upper region ( \(C_{\text {III }}\) ), roughly considered as the smoke layer, is considered to be at a uniform temperature, \(\mathrm{T}_{\mathrm{g}}\). Energy balances are also applied to the upper walls and ceiling, and to the floor, to determine these surface temperatures. These surfaces are considered to be black for radiation calculations. The philosophy of this development has been to include all of the processes that have been identified and that are amenable to mathematical description. Chemical processes have not been completely modeled, and some processes have been modeled approximately since a more elaborate description may not be justified at this time.

\subsection*{4.1. Flow Model}

The calculation to determine the rate of induced flow is based on Rockett's derivation [ll]. The flow exiting the doorway has already been given by eq. (2). The airflow entering the compartment is given by:
\[
\begin{equation*}
\dot{m}_{a}=\frac{2}{3} c W_{o} \rho_{a} \sqrt{2 g\left(1-\frac{T_{a}}{T_{g}}\right)}\left(X_{n}-X_{d}\right)^{1 / 2}\left(X_{n}+\frac{X_{d}}{2}\right) . \tag{4}
\end{equation*}
\]

This same flow is assumed to be entrained in the fire plume and eq. (4) is based on the result from Steward [12] for a turbulent diffusion flame.
\[
\begin{equation*}
\dot{m}_{\mathrm{a}}=\left(\frac{\rho_{\mathrm{a}}}{\rho_{\mathrm{v}}}\right) \omega \dot{m}_{\mathrm{v}}\left[\left(\beta X_{\mathrm{d}}+1\right)^{5 / 2}-1\right] \cong\left(\frac{\rho_{\mathrm{a}}}{\rho_{\mathrm{v}}}\right) \omega \dot{m}_{\mathrm{v}}\left(\beta X_{\mathrm{d}}+1\right)^{5 / 2} \tag{5}
\end{equation*}
\]
where
\[
\begin{equation*}
\beta=\frac{4}{5}(1-\omega)\left(\frac{5 \pi^{2} g \rho v^{2} k_{e}^{4}}{12 \dot{m}_{v}^{2} \omega^{3}}\right)^{1 / 5} \tag{6}
\end{equation*}
\]
and
\[
\begin{equation*}
\omega=\frac{1}{1+\frac{\Delta H}{\mathrm{rC}_{\mathrm{g}} \mathrm{~T}_{a}}} \tag{7}
\end{equation*}
\]

The applicability of this turbulent plume model may be questioned for this scale experiment since the flame did not always appear to be fully turbulent. Moreover, such models may not be very accurate near the base of the plume. In this regard, McCaffrey and Rockett [9] have found that the measured doorway airflow has a much stronger dependence on the fuel supply, m \({ }_{\mathrm{v}}\), than eq. (5) indicates; and that the entrainment coefficient, \(k_{e}\), appears to vary accordingly. Consequently an expression for \(k_{e}\) has been developed from the experimental results of \(\dot{m}_{a}\) for large doorway openings. This was estimated as
\[
\begin{equation*}
\mathrm{k}_{\mathrm{e}}=0.1+0.5 \dot{\mathrm{~m}}_{\mathrm{v}} \tag{8}
\end{equation*}
\]
where \(\dot{m}_{v}\) is in \(\mathrm{g} / \mathrm{s}\).
Equations (3), (4), and (5) may be considered as having three unknowns: airflow rate, \(\mathrm{m}_{\mathrm{a}}\), neutral plane height, \(\mathrm{X}_{\mathrm{n}}\), and the height of the hot layer, \(X_{d}\). In fact, these were solved in that fashion with \(m_{v}\) specified and \(T_{g}\) determined through an iterative process from a solution of the energy equations to follow.

\subsection*{4.2. Energy Conservation for the Fuel \(\left(C V_{I}\right)\)}

The solid is assumed to vaporize at a constant surface temperature, \(T_{s}\), and steady burning is assumed. The vaporization rate, \(\mathrm{m}_{\mathrm{v}}\), for a solid of surface area, \(A_{v}\), exposed to a net surface heat flux, \(q_{S}\) " is
\[
\begin{equation*}
\dot{m}_{v}=\frac{\dot{q}_{S}^{\prime \prime} A_{v}}{C_{\text {fuel }}\left(T_{s}-T_{a}\right)+\Delta H_{v}} \tag{9}
\end{equation*}
\]

The surface heat flux cannot easily be determined without a complete understanding of the flame chemistry and radiation properties. An approximate expression is used which at least includes the major contributing factors.
\[
\begin{align*}
\dot{q}_{S}^{\prime \prime}= & h_{S}\left(T_{f}-T_{S}\right)+\varepsilon_{f} \sigma T_{f}{ }^{4}+\left(l-\varepsilon_{f}\right) F_{d F}{ }^{\sigma}\left(\varepsilon_{g} T_{g}{ }^{4}+\left(1-\varepsilon_{g}\right) T_{W}{ }^{4}\right)  \tag{10}\\
& +\left(1-\varepsilon_{f}\right) F_{F S} \sigma T_{F}{ }^{4}-\sigma T_{S}{ }^{4}
\end{align*}
\]

This sum represents the convective heat flux from the flame; the incident radiative flux from the flame, upper hot layer and surfaces, and the lower heated surfaces; minus the surface reradiation. The unsatisfactory aspects of this formulation may be obvious:
1. The flame temperature is constant and uniform over a prescribed volume.
2. The convective contribution ignores the effect of fuel vaporization and the convective coefficient has been treated as a constant, independent of the fuel dimensions.
3. Flame emissivity is based only on flame height, and is represented as
where
\[
\begin{align*}
\varepsilon_{f} & =1-\exp \left(-\mathrm{k}_{\mathrm{f}} \mathrm{H}_{\mathrm{f}}\right)  \tag{11}\\
\mathrm{H}_{\mathrm{f}} & =16.2\left[\frac{\left(\mathrm{r}+\omega \rho_{\mathrm{a}} / \rho_{\mathrm{v}}\right)^{2}{ }_{\omega}}{\rho_{\mathrm{a}}{ }^{2} \mathrm{~g}(1-\omega)^{5}}\right] \frac{1 / 5 \cdot}{\mathrm{~m}_{\mathrm{b}}}  \tag{12a}\\
\mathrm{H}_{\mathrm{f}} & =\mathrm{x}_{\mathrm{d}^{\prime}} \tag{12b}
\end{align*}
\]
whichever is smaller [l2]. A representation that includes flame diameter, or flame shape in the compartment (if this were available), could improve this formulation.
4. The contributions of compartment radiation are based on approximate expressions for the interchange factors between these sources of radiation and the fuel surface. The geometric shape factor \(F_{d F}\) is calculated for parallel surfaces at the layer depth and the floor, and the shape factor between the lower walls and fuel surface is heuristically represented as
\[
\begin{equation*}
F_{F S}=1-\frac{W}{\sqrt{W^{2}+4 X_{d}{ }^{2}}} \tag{13}
\end{equation*}
\]
4.3. Energy Conservation for the Fire Plume \(\left(\mathrm{CV}_{\mathrm{II}}\right)\)

The assumptions for the energy balance on the fire plume are that all combustion occurs within that region, the fluid crosses into the hot layer region with temperature \(T_{p}\), and the flame plume radiates as a cylinder at temperature \(\mathrm{T}_{\mathrm{f}}\). Essentially, this energy balance equates the sum of the combustion energy and the radiant energy absorbed by the flame minus the energy radiated from the flame to the convected energy transported through the control volume ( \(\mathrm{CV}_{\mathrm{II}}\) ).
\(m_{b} \Delta H+\varepsilon_{f} F_{d F} \sigma\left(\varepsilon_{g} T_{g}{ }^{4}+\left(1-\varepsilon_{g}\right) T_{W}{ }^{4}\right) A_{V}-\varepsilon_{f} \sigma T_{f}{ }^{4} \cdot 2 H_{f} \sqrt{\pi A_{V}}\)
\[
\begin{equation*}
=\dot{m}_{g} C_{g}\left(T_{p}-T_{a}\right)+\dot{m}_{p y}\left[\Delta H_{v}+C_{f u e l}\left(T_{s}-T_{a}\right)-C_{g}\left(T_{s}-T_{a}\right)\right] \tag{14}
\end{equation*}
\]

Where there is insufficient air for complete combustion, \(\dot{m}_{a} / m_{v}<r\) :
\[
\begin{align*}
\dot{m}_{b} & =\dot{m}_{a} / r  \tag{15a}\\
\dot{m}_{p y} & =\dot{m}_{v}-\dot{m}_{b} \tag{15b}
\end{align*}
\]
and, for excess air, \(\dot{m}_{a} / \dot{m}_{v}>r\) :
\[
\begin{equation*}
\dot{m}_{b}=\dot{m}_{v}, \tag{16a}
\end{equation*}
\]
and
\[
\begin{equation*}
\dot{m}_{p y}=0 \tag{16b}
\end{equation*}
\]
4.4. Energy Conservation of the Hot Upper Layer ( \(\mathrm{CV}_{\text {III }}\) )

This energy balance considers only convective and radiative phenomena. It considers a uniform fluid temperature, \(T\), and a uniform surface temeraturc, \(T_{w}\) for the bounding walls and ceiling. These assumptions are acod since this region is well mixed unless extensive combustion occurs within it. No mixing with the layer below is considered except for the plume penetration. This is not valid near openings where the entering air jet will entrain some hot fluid into it. This point will be addressed later.
\[
\begin{equation*}
\dot{m}_{g} C_{g}\left(T_{p}-T_{g}\right)=h_{w} A_{w}\left(T_{g}-T_{w}\right)+\dot{q}_{r, w}^{\prime \prime} A_{w}+\dot{q}_{r, d}^{\prime \prime} A_{F}+T_{w}^{4} A_{0} \tag{1-}
\end{equation*}
\]

The net radiation from the gas to the walls is
\[
\begin{equation*}
\dot{q}_{r, W}^{\prime \prime}=\varepsilon_{g} \sigma T_{g}{ }^{4}+\gamma\left(1-\varepsilon_{g}\right) \sigma T_{F}{ }^{4}-\left[1-(1-1)\left(1-\varepsilon_{q}\right)\right] \tag{19}
\end{equation*}
\]
where
\[
\begin{equation*}
\gamma=A_{F} / A_{W}, \tag{19}
\end{equation*}
\]
the ratio of floor to the wall and ceiling area bounding \(\mathrm{CV}_{\text {III }}\). The net radiative flux from the lower plane of the hot layer is
\[
\begin{equation*}
\dot{q}_{r, d}^{\prime \prime}=\varepsilon_{g} \sigma T_{g}{ }^{4}+\left(1-\varepsilon_{g}\right) \sigma T_{W}{ }^{4}-\sigma_{T}{ }^{4} \tag{20}
\end{equation*}
\]

The radiation emitted through the doorway is relatively small. Hence, it has been approximated in eq. (17). The emissivity of the hot upper layer is represented as a function of the soot concentration and the \(\mathrm{H}_{2} \mathrm{O}\) and \(\mathrm{CO}_{2}\) composition of the layer.
\[
\begin{equation*}
\varepsilon_{g}=1-\exp \left[\left(k_{g}+k_{\text {soot }}\right)\left(H-x_{d}\right)\right] \tag{21}
\end{equation*}
\]
where \(k_{g}\) and \(k_{\text {soot }}\) are the absorption coefficients for the gases and soot respectively.

\subsection*{4.5. Conservation of Energy for Upper Walls and Ceiling}

Since the characteristic time for thermal penetration of the compartment walls was approximately 10 minutes, and most experiments exceeded this time, steady conduction was assumed for the enclosure structure. The resulting energy equation is
\[
\begin{equation*}
\dot{q}_{r, w}^{\prime \prime}+h_{w}\left(T_{g}-T_{w}\right)=K_{w}\left(T_{w}-T_{a}\right) \tag{22}
\end{equation*}
\]
where \(\quad K_{w}=\frac{1}{\frac{\delta}{k_{w}}+\frac{1}{h_{a}}}\)
which accounts for conduction through the wall and a convection loss on the outside.

\subsection*{4.6. Conservation of-Energy for the Floor}

A balance of radiation, convection, and conduction for the floor yields
\[
\begin{equation*}
F_{d F} \dot{q}_{r, d}^{\prime \prime}=h_{F}\left(T_{F}-T_{a}\right)+K_{w}\left(T_{F}-T_{a}\right) \tag{24}
\end{equation*}
\]

\subsection*{4.7. Solution of the Conservation Equations}

The algebraic equations were solved numerically employing a NewtonRaphson technique for first the flow equations (2). (5), then the energy equations. Basically the procedure is to specify \(m_{v}\), and guess \(T_{g}\) to solve the flow equations for \(X_{d}, X_{n}\), and \(m_{a}\). The energy equations are then solved for \(T_{W}, T_{g}, T_{F}\), and \(A_{V}\). This process is reiterated using a new value of \(T_{g}\) until satisfactory convergence is achieved (appendices \(D\) and E).

The values selected for the parameters that best matched the experimental conditions are listed in table 2. Some remarks explaining or justifying their selection are listed there also.

\section*{5. DISCUSSION OF RESULTS}

The experimental results display a strong coupling effect between the rate of burning and the energy feedback to the fuel from the compartment. The theoretical results are in good qualitative agreement with the data, and in some cases, good quantitative agreement also. These features are evident in figures 3-5 where the rate of mass loss, gas temperature, and radiative heat flux to the floor have been plotted against fuel surface area for each of the experimental doorway widths ( \(W_{O}\) ) selected. The ceiling temperature rosults have not been plotted since they are similar in character to the gas temperature results for theory and experiment.

Figure 3a shows that as the fuel area is increased, the rate of mass loss increases, almost linearly with \(A_{v}\) at first, then more rapidly as the compartment is heated and significant radiation is received by the fuel. Eventually so much fuel is vaporized that it cannot be burned within the compartment due to insufficient air. This excess fuel serves to dilute the products of combustion and hence to reduce the temperature and rate of heat flux received by the fuel surface from the compartment. This results in a decrease in the dependence of \(\dot{m}_{v}\) on \(A_{V}\). Since airflow rate sets an upper limit to the burning rate in the compartment, a larger fuel sample can burn in a compartment with a wider doorway before the effect of excess fuel is noted.

The corresponding theory shown in figure 3 b displays multivalued results indicated by dashed curves that are physically impossible. This mathematical phenomenon was displayed in this case since the solution procedure used \(m_{V}\) as the independent variable. Initially, as \(m_{v}\) was incremented, the solution
yielded increasing values for \(A_{v}\). But as heat transfer from the enclosure to the fuel became significant, an increase in \(\mathrm{m}_{\mathrm{v}}\) resulted in a decrease in \(A_{v}\). That is, at this higher surface heat flux a smaller area was required to support this fuel supply rate. Moreover, the upper inflection point on the dashed curves marks the stoichiometric point above which excess fuel is released. One interpretation of this result is that a critical fuel area exists above which a rapid increase in the burning rate, temperature, and heat flux would occur. The state of the fire would move from a relatively small fire with sufficient air for combustion to a fire which produces excess fuel and is "ventilation controlled." Thus the steady-state model suggests one mechanism for a rapid transition in fire growth (flashover). The validity of this interpretation must be more fully explored with a transient model; however, the data in figure \(3 a\) tend to support this idea -particularly since the "unsteady" data points are on the steepest portion of the curves.

The results for gas temperature in figure 4 demonstrate that the temperature is highest for the smallest doorway and smaller fuel areas. However, for large fuel samples, the inverse is true with regard to doorway width. Thus it is clear that the assessment of the severity of thermal conditions due to a fire is a complex function of fuel and ventilation conditions. Moreover, the agreement between theory and experiments tends to follow that of the mass loss results. This suggests that a more accurate determination of mass loss would improve temperature prediction.

Figure 5 displays the results for incident heat flux to the floor. The theoretical value was calculated as
\[
\begin{equation*}
\dot{q}_{F}^{\prime \prime}=\sigma F_{d F}\left[\varepsilon_{g} T_{g}{ }^{4}+\left(l-\varepsilon_{g}\right) T_{w}{ }^{4}-T_{a}{ }^{4}\right]+\varepsilon_{f}^{\sigma T_{f}}{ }^{4} \cdot \frac{2 H_{f} \sqrt{\pi A_{v}}}{A_{F}} \tag{25}
\end{equation*}
\]
where the first term represents the incident flux from the upper hot layer and the second term represents the heat flux from the flame (insignificant for this scale analysis). The disparity in agreement here is due to the inaccuracy of the temperature prediction.

Figure 6 shows good agreement between theory and the data for airflow. However, that is based on empirical selection of the entrainment relationship (eq. (8)). More study must be made of this aspect of the flow model.

Figure 7 is presented in a form common to results for the burning of wood cribs, i.e., as a function of compartment ventilation. For wood cribs, the data initially follow a linear plot (e.g., \(\dot{m}_{V} \sim W_{o} H_{o}^{3 / 2}\) ) followed by horizontal lines of constant burning rate for corresponding crib sizes. The PMMA data suggest this same initial trend, but with some preferred ordering with fuel area. The compartment radiation has a pronounced effect on the PMMA burning rate at high ventilation which is markedly different from crib fires. A locus of theoretical fires with an incident floor heat flux of \(2 \mathrm{~W} / \mathrm{cm}^{2}\) is also shown on figure 7. This corresponds approximately with the data. The utility of this plot can be appreciated if the heat flux locus is recognized as a condition for other potential ignitions within the enclosure.

Finally, the effect of radiation on the mass loss rate of PMMA is plotted in figure 8. It appears that a reduction in the oxygen concentration of the flow entrained by the fire plume reduced the mass loss rate. This is qualitatively consistent with the results obtained by Tewarson [13] with a calorimetric apparatus. In fact, despite the differences in experimental conditions, his data [14] taken under normal air conditions are in some agreement with the enclosure results, especially at high flux. The results in figure 8 can be explained by considering the mass loss rate per unit area to be directly dependent on the sum of the incident floor heat flux and the heat flux from the flame. A reduction in the oxygen would reduce the flame heat flux. This effect is not accounted for in the current model (eqs. (9) and (10)). However, the values of oxygen concentration calculated for figure 8 were based on the rate of mixing between the hot upper layer and the jet of induced airflow at the doorway. The mixing rate was determined from measurements taken in a similar experimental configuration (appendix B) [15].

In conclusion, the theory presented yields good qualitative results when compared with the data. Weak features of the model appear consistent with the accuracy of the results. Improvements in the models for radiative transport, particularly from the flame, should improve the results. Also in the flow model, plume entrainment needs to be better understood along with mixing within the compartment. Finally, the effect of oxygen devletion on burning should be included. In general, it appears that a conceptual basis for predicting features of fires in compartments has been established and with refinement should lead to more accurate results.
[1] Quintiere, J. G., Growth of fire in building compartments. Fire Standards and Safety, ASTM STP 614, 131-167 (1977).
[2] Gross, D. and Robertson, A. F., Tenth Symposium (International) on Combustion, 931-942, The Combustion Institute (1965).
[3] Thomas, P. H. and Nilsson, L., Fully developed compartment fires: new correlations of burning rates, F.R. Note No. 979, Fire Research Station, Borehamwood, England (Aug. 1973).
[4] Friedman, R., Behavior of fires in compartments, International Symposium Fire Safety of Combustible Materials, 100-113, Edinburgh, Scotland (Oct. 15-17, 1975).
[5] Tewarson, A., Combustion and Flame, Vol. 19, 363-371 (1972).
[6] Takeda, H. and Nakaya, I., Small-scale model fire in enclosure using liquid fuel - effect of ventilation factor, Paper presented at the Second Joint Meeting of the U.S. - Japan Panel on Fire Research and Safety, UJNR, Tokyo (Oct. 19-22, 1976).
[7] Tanaka, T., A mathematical model of a compartment fire, BRI Research Paper No. 70, Ministry of Construction, Japanese Government (Feb. 1977).
[8] Emmons, H. W., Mitler, H. E., and Trefethen, L. N., Computer fire code III, Home Fire Project Technical Report No. 25, Harvard University, Cambridge, Mass. (Jan. 1978).
[9] McCaffrey, B. J. and Rockett, J. A., J. Research, National Bureau Standards (U.S.), Vol. 82, No. 2, 107-117 (1977).
[10] Prahl, J. and Emmons, H. W., Combustion and Flame, Vol. 25, No. 3, 369-385 (Dec. 1975).
[11] Rockett, J. A., Combustion Science and Technology, Vol. 12, 165 (1976).
[12] Steward, F. R., Combustion Science and Technology, Vol. 2, 203 (1970).
[13] Tewarson, A. and Pion, R. F., Combustion and Flame, Vol. 26, 85-103 (1976).
[14] Tewarson, A., Fire and Materials, Vol. 1, 90 (1976).
[15] McCaffrey, B. J. and Quintiere, J. G., Heat Transfer and Turbulent Buoyant Convection, Vol. II, 457-472, Hemisphere (1977).
[16] Modak, A. T. and Croce, P. A.: Plastic Pool Fires. FMRC Serial No. 2236l-3, Factory Mutual Research, Norwood, Mass., June 1976.
[17] Markstein, G. H., Radiative properties of plastic fires, Seventeenth Symposium (International) on Combustion, The Combustion Institute (to be presented).
[18] Zukoski, E. E. and Kubota, T., An experimental investigation of the heat transfer from a buoyant gas plume to a horizontal ceiling part 2. Effects of ceiling layer, Progress Report. Grant No. 5-9004, National Bureau of Standards (U.S.) (June - Sept. 1975).


Figure 1. Experimental arrangement



Figure 3a. Experimental results for rate




heat flux to the floor




Figure 7. Fuel mass loss rate as a function of ventilation and fuel area. Theory: - Data: \(\Delta-0.0025 \mathrm{~m}^{2}\), \(0-0.0056 \mathrm{~m}^{2}, ~ \triangleright-0.0100 \mathrm{~m}^{2}, \mathrm{O}-0.0156 \mathrm{~m}^{2}\), \(\square-0.0225 \mathrm{~m}^{2}\). Open symbols represent data less than \(2.0 \mathrm{~W} / \mathrm{cm}^{2}\). Shaded symbols represent data greater than \(2.0 \mathrm{~W} / \mathrm{cm}^{2}\).


Figure 8. Fue? mass loss per unit as a function of incident heat flux. (The oxyaen concentration in the flow entrained by the fire plume was crit imatra.)

TABLE I
Summary of experimental results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Exp & \begin{tabular}{l}
wo \\
Doorway Width
\end{tabular} & \[
\begin{gathered}
\mathrm{A}_{\mathrm{v}} \\
\text { Fuel } \\
\text { Area }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Muration } \\
& \text { of } \\
& \text { Burn }
\end{aligned}
\] & \[
\begin{gathered}
\text { Duration } \\
\text { of } \\
\text { Steady } \\
\text { Burning }
\end{gathered}
\] & \(m_{v}\) Steady Mass Loss Rate & \[
\begin{gathered}
\mathrm{T}_{8} \\
\text { Gas } \\
\text { Temperature }
\end{gathered}
\] & \[
\begin{gathered}
\text { Tw } \\
\text { Ceiling } \\
\text { Temperature }
\end{gathered}
\] & \begin{tabular}{l}
\(\stackrel{q}{F}^{\prime \prime}\) \\
Incident Floot Heat F1ux
\end{tabular} & \[
\begin{aligned}
& \Delta p \\
& \text { Maximum } \\
& \text { Room } \\
& \text { Pressure } \\
& \text { Rise }
\end{aligned}
\] & \[
\begin{gathered}
\dot{m}_{a} \\
\text { Calculated } \\
\text { Air } \\
\text { Flow Rate }
\end{gathered}
\] \\
\hline & m & \(\mathrm{m}^{2}\) & min & min & 8/s & \({ }^{*}\) c & \({ }^{\circ} \mathrm{C}\) & \(\mathrm{w} / \mathrm{cm}^{2}\) & \(\mathrm{N} / \mathrm{m}^{2}\) & 8/5 \\
\hline 15 & 0.015 & 0.0025 & 26 & - & (0.040) & \(270 \pm 5\) & \(202 \pm 10\) & \(0.39 \pm .07\) & \(1.16 \pm .04\) & 0.712 \\
\hline 14 & & 0.0025 & 26 & - & (0.040) & \(280 \pm 10\) & \(212 \pm 10\) & \(0.39 \pm .07\) & \(1.16 \pm .08\) & 0.680 \\
\hline 5A & & 0.0025 & 26 & 6.5 & 0.040 & \(315 \pm 12\) & \(245 \pm 12\) & \(0.54 \pm .07\) & \([0.68 \pm .08]\) & - \\
\hline 6A & & 0.0056 & 25 & 5 & 0.100 & \(522 \pm 12\) & \(450 \pm 12\) & \(2.01 \pm .12\) & - & - \\
\hline 4A & & 0.0100 & 22 & 4 & 0.207 & \(725 \pm 25\) & \(660 \pm 25\) & \(5.40 \pm 1.15\) & - & - \\
\hline 7A & & 0.0225 & 23 & 6 & 0.383 & \(645 \pm 35\) & \(590 \pm 50\) & \(4.03 \pm .58\) & \(1.43 \pm .32\) & 0.157 \\
\hline 1 & 0.030 & 0.0025 & >20* & - & (0.032) & \(300 \pm 10\) & \(235 \pm 20\) & \(0.52 \pm .03\) & \(1.16 \pm .04\) & 1.30 \\
\hline 2 & & 0.0025 & >19* & - & (0.032) & \(275 \pm 10\) & \(205 \pm 5\) & \(0.40 \pm .01\) & \(1.12 \pm .04\) & 1.34 \\
\hline 1A & & 0.0025 & 27 & 9 & 0.032 & \(285 \pm 5\) & \(212 \pm 10\) & \(0.40 \pm .02\) & \(0.84 \pm .08\) & 0.54 \\
\hline 8A & & 0.0056 & 24 & 4 & 0.098 & \(463 \pm 5\) & \(393 \pm 12\) & \(1.43 \pm .07\) & \(1.31 \pm .04\) & 1.01 \\
\hline 2A & & 0.0100 & 20 & 3 & 0.300 & \(717 \pm 50\) & \(645 \pm 60\) & \(4.37 \pm 1.4\) & - & - \\
\hline 6 & & 0.0100 & 19.5 & - & (0.30) & \(778 \pm 50\) & \(730 \pm 50\) & \(5.98 \pm .23\) & \(2.16 \pm .08\) & 2.01 \\
\hline 9 A & & 0.0100 & 18 & 3 & 0.292 & \(732 \pm 50\) & \(683 \pm 50\) & \(4.60 \pm 1.2\) & \([1.44 \pm 0]\) & - \\
\hline 3A & & 0.0225 & 19 & 2 & (0.490) & \(730 \pm 35\) & \(680 \pm 50\) & \(4.83 \pm 1.49\) & \(2.00 \pm 0\) & 1.54 \\
\hline 10A & & 0.0225 & 19 & 5 & 0.490 & \(740 \pm 25\) & \(700 \pm 25\) & \(6.21 \pm 1.2\) & \([1.64 \pm .08]\) & - \\
\hline 3 & & 0.0225 & 21 & - & (0.490) & \(635 \pm 75\) & \(610 \pm 75\) & \(5.75 \pm 2.3\) & \(2.00 \pm .08\) & 1.78 \\
\hline 11A & 0.077 & 0.0025 & 24 & 6 & 0.037 & \(210 \pm 5\) & \(160 \pm 7\) & \(0.21 \pm .02\) & \(0.68 \pm .08\) & 1.14 \\
\hline 12A & & 0.0056 & 24 & 4 & 0.097 & \(378 \pm 10\) & \(288 \pm 10\) & \(0.74 \pm .07\) & \(1.00 \pm .08\) & 1.57 \\
\hline 13A & & 0.0100 & 16 & \(1{ }^{1}\) & 0.500 & \(960 \pm 35\) & \(778 \pm 35\) & \(644 \pm .69\) & \([0.92 \pm .12]\) & - \\
\hline 31A & & 0.0156 & 11.5 & 2 & 0.790 & \(910 \pm 50\) & \(865 \pm 50\) & \(9.88 \pm .65\) & \([0.72 \pm .20]\) & * \\
\hline 15 A & & 0.0225 & 10 & 2 & 0.870 & \(902 \pm 25\) & \(854 \pm 35\) & \(10.0 \pm 9\) & \([1.28 \pm .08]\) & - \\
\hline 14 A & & 0.0225 & 10 & 3 & 0.875 & \(902 \pm 50\) & \(865 \pm 50\) & \(8.05 \pm 1.2^{* *}\) & \(1.80 \pm .12\) & 2.53 \\
\hline 4 & 0.115 & 0.0025 & 23 & - & (0.038) & \(188 \pm 5\) & \(141 \pm 5\) & \(0.17 \pm .01\) & \(0.72 \pm .04\) & 2.38 \\
\hline 17A & & 0.0025 & 26 & 6 & 0.038 & \(195 \pm 5\) & \(149 \pm 3\) & \(0.16 \pm .01\) & \(0.76 \pm .08\) & 2.85 \\
\hline 18A & & 0.0056 & 27 & 5 & 0.078 & \(317 \pm 7\) & \(239 \pm 5\) & \(0.39 \pm .03\) & \(1.12 \pm 0\) & 4.26 \\
\hline 5 & & 0.0100 & 14 & - & (0.367) & \(876 \pm 12\) & \(766 \pm 25\) & \(7.59 \pm .46\) & \(1.96 \pm .04\) & 6.04 \\
\hline 16A & & 0.0100 & 17 & \(1.5{ }^{\dagger}\) & 0.367 & \(741 \pm 10\) & \(644 \pm 5\) & \(4.03 \pm .30\) & \(1.68 \pm .08\) & 4.74 \\
\hline 30A & & 0.0156 & 11 & \(1.5{ }^{\dagger}\) & 1.000 & \(993 \pm 25\) & \(937 \pm 25\) & \(11.0 \pm .8\) & \([1.00 \pm .20]\) & - \\
\hline 7. & & 0.0225 & 8 & - & (1.225) & \(927 \pm 50\) & \(902 \pm 50\) & \(10.8 \pm .23\) & \(2.24 \pm .12\) & 7.09 \\
\hline 23 A & & 0.0225 & 8 & 2 & 1.225 & \(902 \pm 50\) & \(854 \pm 50\) & \(9.62 \pm .78\) & \(2.24 \pm .08\) & 7.26 \\
\hline 8 & 0.185 & 0.0025 & 21 & - & (0.030) & \(158 \pm 5\) & \(112 \pm 5\) & \(0.23 \pm .2\) & [0.80 \(\sim .20]\) & - \\
\hline 19A & & 0.0025 & 28 & 6 & 0.030 & \(154 \pm 5\) & \(112 \pm 3\) & \(0.09 \pm .01\) & \(0.56 \pm .04\) & 2.60 \\
\hline 20A & & 0.0056 & 27 & 4.5 & 0.075 & \(263 \pm 10\) & \(205 \pm 5\) & \(0.30 \pm .13\) & \(0.88 \pm .08\) & 4.42 \\
\hline 21A & & 0.0100 & 25 & 5 & 0.163 & \(385 \sim 15\) & \(344 \pm 10\) & \(0.91 \pm .04\) & \(1.24 \pm .04\) & 7.11 \\
\hline 9 & & 0.0100 & 22 & - & (0.163) & \(415 \pm 10\) & \(337 \pm 15\) & \(0.99 \pm .12\) & \(1.32 \pm .12\) & 7.75 \\
\hline 29A & & 0.0156 & 16 & \(1 \dagger\) & 0.908 & \(973 \pm 25\) & \(863 \pm 25\) & \(8.45 \pm \frac{1.0}{2.6}\) & \([1.16 \pm .08]\) & - \\
\hline 10 & & 0.0225 & 6.5 & - & (1.50) & \(975 \pm 50\) & \(927 \pm 50\) & \(9.2 \pm 2.3\) & \(2.04 \pm .04\) & 8.87 \\
\hline 22 A & & 0.0225 & 9.5 & 2 & 1.50 & \(950 \pm 75\) & \(902 \pm 50\) & \(10.8 \pm .78\) & \(1.88 \pm .08\) & 7.29 \\
\hline 11 & 0.285 & 0.0025 & 22 & - & (0.033) & \(139 \pm 3\) & \(100 \pm 3\) & \(0.18 \pm .02\) & \(0.52 \pm .04\) & 3.81 \\
\hline 24 A & & 0.0025 & 28 & 6 & 0.033 & \(146 \pm 7\) & \(110 \pm 3\) & \(0.08 \pm .01\) & \(0.48 \pm .08\) & 2.37 \\
\hline 25A & & 0.0056 & 33 & 5 & 0.068 & \(220 \pm 3\) & \(170 \pm 3\) & \(0.21 \pm .01\) & \(0.80 \pm .08\) & 6.76 \\
\hline 12 & & 0.0100 & 25 & - & (0.148) & \(341 \pm 10\) & \(268 \pm 10\) & \(0.62 \pm .05\) & \(1.12 \pm .04\) & 9.77 \\
\hline 26A & & 0.0100 & 27 & 4 & 0.148 & \(330 \pm 12\) & \(268 \pm 12\) & \(0.52 \pm .01\) & \(1.04 \pm .08\) & 8.17 \\
\hline 28A & & 0.0156 & 20 & 11 & 0.527 & \(693 \pm 25\) & \(595 \pm 25\) & \(3.1 \pm .26\) & \(1.43 \pm .08\) & 8.18 \\
\hline 13 & & 0.0225 & 7 & - & (1.56) & \(1034 \pm 25\) & \(902 \pm 25\) & \(10.4 \pm .69\) & \(1.84 \pm .08\) & 10.4 \\
\hline 27A & & 0.0225 & 8.5 & 2 & 1.56 & \(1022 \pm 25\) & \(925 \pm\)\begin{tabular}{c}
25 \\
\hline
\end{tabular}\({ }^{\text {a }}\) ( & \(10.4 \pm 1.3\) & \(1.92 \pm .12\) & 11.9 \\
\hline
\end{tabular}

\footnotetext{
- Sample was extinguished before complete consumption
[] May not have reached steady-state
Pressure tap clogged
\(\|_{A \hbar}\) Estimated to calculate \(\dot{m}_{a}\)
** Water coolant hose melted
}

Note: Variation in the measured quantity refers to the span of values about a mean over the duration of steady burning.
IABLE II
Specified parameters for the theorotical model
\begin{tabular}{|c|c|c|}
\hline & & Remarks \\
\hline \multicolumn{3}{|l|}{Fuel Parameters} \\
\hline .. H, heat of combustion & \(2.49 \times 10^{7} \mathrm{~J} / \mathrm{kg}\) & based on \(\mathrm{C}: \mathrm{H}_{8} \mathrm{O}_{2}\) to CO , and \(17 \sim 0\) (vapor) \\
\hline \(\Delta H_{v}\), heat of volatilization & \(1.008 \times 10^{6} \mathrm{~J} / \mathrm{kg}\) & approximately value given by Modak and Croce \({ }^{16}\) ( \(1.108 \times 10^{6} \mathrm{~J} / \mathrm{kg}\) ) \\
\hline \(\mathrm{T}_{\text {s }}\), vaporization temperature & 636 K & from Modak and Croce \({ }^{16}\) \\
\hline \({ }^{1} \mathrm{v}\), density of vaporized fucl & \(1.92 \mathrm{~kg} / \mathrm{m}^{3}\) & based on \(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}\) as a perfect gas \\
\hline \(C_{\text {fuel }}\), specific heat of solid fuel & \(1.46 \times 10^{2} \mathrm{~J} / \mathrm{kg}-\mathrm{K}\) & from Modak and rroce \({ }^{16}\) \\
\hline \multicolumn{3}{|l|}{Fire Parameters 17} \\
\hline \(\mathrm{T}_{\mathrm{f}}\), flame temperature & 1400 》 & from Markstein \({ }^{17}\) \\
\hline \(\mathrm{k}_{\mathrm{f}}\), flame absorption coefficient & \(1.3 \mathrm{~m}^{-1}\) & " \\
\hline \multicolumn{3}{|l|}{Heat Transfer Parameters} \\
\hline \(h_{s}\), fuel convective heat transfer coefficient & \(2.5 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}\) & estimate \\
\hline \(k_{g}\), upper layer absorption coefficient due to \(\mathrm{H}_{2} \mathrm{O}\) and \(\mathrm{CO}_{2}\) & \(0.30+4.64 \dot{m}_{b} /\left(\dot{m}_{a}+0.6 \dot{\mathrm{~m}}_{\mathrm{b}}\right)\) & fit based on range of temperatures and \(\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}\) concentrations \\
\hline \(k_{\text {soot }}\) upper layer absorption coefficient due to soot & \(1.9 \mathrm{~m}^{-1}\) & estimate \\
\hline \(\mathrm{K}_{\mathrm{w}}\), wall and ceiling conductance & \(5 \mathrm{~W} / \mathrm{m}-\mathrm{Y}\) & estimate \\
\hline \(h_{F}\), floor convective heat transfer coefficient & \(10 \mathrm{~N} / \mathrm{m}-\mathrm{K}\) & estimate \\
\hline \(h_{w}\), wall and ceiling convective heat transfer coefficient & \(14.4\left(\dot{m}^{\mathrm{b}} \cdot \mathrm{H}, \mathrm{kN}\right)^{1 / 3} \mathrm{~F} / \mathrm{m}^{2}-\mathrm{K}\) & from Zukoski and Kubota \({ }^{18}\) \\
\hline \multicolumn{3}{|l|}{Flow Parameters} \\
\hline \(c\) c, doorway flow coefficient & 0.7 & from Prahl and Emmons \({ }^{10}\) \\
\hline \(k_{e}\), plume entrainment constant & \(0.1+0.5\left(\dot{r}_{v}, \mathrm{~g} / \mathrm{s}\right)\) & empirical fit from McCaffrcy and Rockett \({ }^{9}\) \\
\hline \multicolumn{3}{|l|}{Fluid Parameters} \\
\hline \(C_{C G}\), air and combustion product specific heat & \(1.046 \times 10^{3} \mathrm{~J} / \mathrm{kg}-\mathrm{K}\) & -- \\
\hline a' density of isir & \(1.25 \mathrm{~kg} / \mathrm{m}^{\text {? }}\) & -- \\
\hline \(T_{a}\), temperature of air & 300 K & -- \\
\hline \multicolumn{3}{|l|}{Compartment liaramoters} \\
\hline II, heirght & 0.30 m & \\
\hline W, width & 0.30 m & \\
\hline L, lenegth & 0.565 & \\
\hline Hr, droorway hreishot. & 0.225 m & \\
\hline Wr, derorway wjallt & \(0.015-0.285 \mathrm{~m}\) & \\
\hline Kw, thermad crondus:1 1\%' \(;\) &  & \\
\hline \%, '3rerssity & 26,0 K.9.1 il & \\
\hline , thicy\%no.ss & ). \(0 \%\) \% & \\
\hline
\end{tabular}

Three experimental conditions have been selected to illustrate the general characteristics of the data recorded over the duration of an experimental run. For illustration, the doorway condition \(W_{o}=0.077 \mathrm{~m}\) was selected for three fuel areas: \(0.0056,0.010\), and \(0.0225 \mathrm{~m}^{2}\). The smallest area exhibited the first mode of burning, while the largest area sample exhibited the second mode of burning. The intermediate sample size appeared transitional, and did not necessarily reach a steady state.

The results are shown in figures \(A-1, A-2\), and \(A-3\). These plots have been traced from the continuous data records and converted into the units of the physical variable measured. It could be anticipated that the radiant heat flux would be very sensitive to temperature since \(q^{\prime \prime} \sim T^{4} q\) and that the room pressure difference would be relatively insensitive to temperature since \(\Delta p \sim 1-T_{a} / T_{g}\) by eq. (1). These trends are confirmed by the results. Also the good reproducibility of the results is indicated in figure \(A-3\).




Figure A-1. Experimental results for \(W_{O}=0.077 \mathrm{~m}\) and \(A_{V}=0.0056 \mathrm{~m}^{2}\)



Figure \(A-2\). Experimental results for \(W_{O}=0.077 \mathrm{~m}\) and \(\lambda_{\mathrm{V}}=0.010 \mathrm{~m}\)


Figure A-3. Experimental results for \(W_{O}=0.077 \mathrm{~m}\) and \(A_{V}=0.0225 \mathrm{~m}^{2}\) A-4

As air enters the doorway of the enclosure it mixes with some hot fluid resulting in a vitiated air layer along the floor. This flow is then entrained into the fire plume. This vitiated air would reduce the energy release and thus affect the fuel mass loss rate. A simple model for this (based on eq. (9)) suggests that the rate of mass loss per unit area ( \(\mathrm{m}_{\mathrm{V}}^{\prime \prime}\) ) is proportional to the heat flux from the flame ( \(q_{f}^{\prime \prime}\) ) and the enclosure (q"enclosure),
\[
\begin{equation*}
\dot{m}_{\mathrm{V}}^{\prime \prime} \sim \dot{q}_{\dot{f}}^{\prime \prime}+\dot{q}^{\prime \prime} \text { enclosure. } \tag{B-1}
\end{equation*}
\]

For a fixed heat flux from the surroundings, a reduction in the oxygen concentration would reduce \(q_{f}^{\prime \prime}\). This is consistent with the results of Tewarson and Pion [13].

It is believed that the data shown in figure 8 follow the model given by eq. ( \(B-1\) ). To establish this relationship, the oxygen concentration of the entrained vitiated air must be determined. The following analysis attempts to estimate this concentration.

\section*{MODEL}


Assumptions: (1) Upper layer is well stirred at a uniform \(\mathrm{O}_{2}\) concentration.
(2) Air enters at the doorway and is contaminated by vases entrained from the upper layer.
(3) The entrained fluid is well mixed with the incoming air but only a mass flow rate equal to \(\mathrm{m}_{\mathrm{a}}\) is entrained into the fire plume and mass flow rate \(m_{c}\) is recirculated.

Oxygen specie conservation for \(\mathrm{CV}_{\text {IV }}\)
\[
\begin{align*}
& \text { [Oxygen In] } \quad=\text { [Oxygen Out] } \\
& 0.23 \dot{m}_{a}+\phi_{g} \dot{m}_{e}=\phi_{a}\left(\dot{m}_{a}+\dot{m}_{e}\right) \tag{B-2}
\end{align*}
\]
where
\(\phi_{g}\) is the oxygen mass concentration in the upper layer ( \(C_{\text {III }}\) ).
and
\(\phi_{a}\) is the oxygen mass concentration leaving \(C V I V\) and entrained into the fire plume.

Oxygen specie concentration for \(\mathrm{CV}_{\text {III }}\)
\[
\begin{align*}
& {\left[\begin{array}{c}
O_{2} \text { supplied } \\
\text { to fire } \\
\left(\mathrm{CV}_{I I}\right)
\end{array}\right]-\left[\begin{array}{c}
\mathrm{O}_{2} \text { consumed } \\
\text { in fire } \\
\left(\mathrm{CV}_{I I}\right)
\end{array}\right]+\left[\mathrm{O}_{2} \text { recirculated }\right]=\left[\mathrm{O}_{2} \text { out }\right]} \\
& \phi_{a} \dot{m}_{a}-0.23 \mathrm{rm}_{V}+\left(\phi_{a}-\phi_{g}\right) \dot{m}_{e}=\phi_{g} \dot{m}_{g} \tag{B-3}
\end{align*}
\]

Solving these equations results in:
\[
\text { For excess air, } \dot{m}_{v} \leq \frac{\phi_{a} \dot{m}_{a}}{0.23 r}
\]
\[
\begin{equation*}
\phi_{g}=\frac{0.23\left(\dot{m}_{a}-\dot{m}_{v}\right)}{\dot{m}_{a}+\dot{m}_{v}} \tag{B-4}
\end{equation*}
\]
and
\[
\begin{equation*}
\phi_{a}=0.23\left[\left(\frac{\dot{m}_{a}}{\dot{m}_{a}+\dot{m}_{e}}\right)+\frac{\left(\dot{m}_{a}-\dot{m}_{v}\right)\left(\dot{m}_{e}\right.}{\left(\dot{m}_{a}+\dot{m}_{v}\right)\left(\dot{m}_{a}+\dot{m}_{e}\right)}\right] \tag{B-5}
\end{equation*}
\]

For insufficient air, \(\dot{m}_{v}>\frac{\phi_{a} m_{a}}{0.23 r}\)
\[
\begin{equation*}
\phi_{g}=0 \tag{B-6}
\end{equation*}
\]
and
\[
\begin{equation*}
\phi_{a}=0.23\left(\frac{\dot{m}_{a}}{m_{a}+m_{e}}\right) \tag{B-7}
\end{equation*}
\]

Finally, the entrained flow was estimated from the measurements made in a similar scale experiment and doorway configuration [15]. These results are presented in table B-l as fractions of the doorway airflow rate. The fractional factor is given as a function of the width ratio \(W_{0} / W\).
\[
\begin{equation*}
\dot{m}_{e}=f \cdot \dot{m}_{a} \tag{B-8}
\end{equation*}
\]

Table B-l. Estimated entrainment rate
\begin{tabular}{lll}
\(W_{O}\) & \(W_{o} / W\) & \(f=\) \\
\((\mathrm{m})\) & \(-m_{c}\) \\
0.015 & 0.05 & 1.6 \\
0.030 & 0.10 & 1.2 \\
0.077 & 0.257 & 0.5 \\
0.115 & 0.383 & 0.4 \\
0.185 & 0.617 & 0.3 \\
0.285 & 0.95 & 0.2
\end{tabular}

The values of \(\phi_{a}\) and \({ }_{g}\) were then determined from the experimental airflow rate and equations given above. The results of those calculations are given in table \(B-2\). From those results as shown plotted in figure \(B-1\), it is clear that for large fires and small doorway widths, the entrained flow into fire has a low oxygen concentration. The effect of this vitiated air on fuel mass loss was shown in figure 8 by discriminating between a high and low set of oxygen concentration values in the data. A closer examination of the results may indicate a more continuous effect of reduced oxygen on mass loss but there are some exceptions in the data. In general, the effect of oxycten appears to have been demonstrated.


NOILЭY甘J SSYW N39xXO O3IVWIISヨ

Table B-2. Calculated oxygen mass concentrations
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Exp. } \\
& \text { No. }
\end{aligned}
\] & \begin{tabular}{l}
wo Doorway width \\
(m)
\end{tabular} & \begin{tabular}{l}
\({ }^{A}{ }_{V}\) \\
Fuel \\
Area \\
(m2)
\end{tabular} & \(+9\) Calculated \(\mathrm{O}_{2}\) Mass Conc. & *a Calculated \(\mathrm{O}_{2}\) Mass Conc. \\
\hline 15 & 0.015 & 0.0025 & 0.12 & 0.16 \\
\hline 14 & & 0.0025 & 0.11 & 0.16 \\
\hline 5A & & 0.0025 & -- & -- \\
\hline 6A & & 0.0056 & -- & -- \\
\hline 4A & & 0.0100 & -- & -- \\
\hline 7A & & 0.0225 & 0.0 & 0.09 \\
\hline 1 & 0.030 & 0.0025 & 0.18 & 0.20 \\
\hline 2 & & 0.0025 & 0.18 & 0.20 \\
\hline 1 A & & 0.0025 & 0.11 & 0.17 \\
\hline 81 & & 0.0056 & 0.04 & 0.13 \\
\hline 2 s & & 0.0100 & -- & -- \\
\hline 6 & & 0.0100 & 0.0 & 0.10 \\
\hline 9A & & 0.0100 & -- & -- \\
\hline 3A & & 0.0225 & 0.0 & 0.10 \\
\hline 10A & & 0.0225 & -- & -- \\
\hline 3 & & 0.0225 & 0.0 & 0.10 \\
\hline 11A & 0.077 & 0.0025 & 0.16 & 0.21 \\
\hline 12A & & 0.0056 & 0.11 & 0.19 \\
\hline 13A & & 0.0100 & - & -- \\
\hline 31A & & 0.0156 & -- & -- \\
\hline 15A & & 0.0225 & -- & -- \\
\hline 14A & & 0.0225 & 0.0 & 0.15 \\
\hline 4 & 0.115 & 0.0025 & 0.20 & 0.22 \\
\hline 17A & & 0.0025 & 0.20 & 0.22 \\
\hline 18A & & 0.0055 & -- & -- \\
\hline 5 & & 0.0100 & 0.11 & 0.20 \\
\hline 16 A & & 0.0100 & 0.08 & 0.19 \\
\hline 30A & & 0.0156 & -- & -- \\
\hline 7 & & 0.0225 & 0.0 & 0.16 \\
\hline 23A & & 0.0225 & 0.0 & 0.16 \\
\hline 8 & 0.185 & 0.0025 & -- & -- \\
\hline 19 A & & 0.0025 & 0.21 & 0.22 \\
\hline 208 & & 0.0056 & 0.19 & 0.22 \\
\hline 21 A & & 0.0100 & 0.18 & 0.22 \\
\hline 9 & & 0.0100 & 0.19 & 0.22 \\
\hline 29A & & 0.0156 & -- & -- \\
\hline 10 & & 0.0225 & 0.0 & 0.18 \\
\hline 22A & & 0.0225 & 0.0 & 0.19 \\
\hline 11 & 0.285 & 0.0025 & 0.21 & 0.23 \\
\hline 24A & & 0.0025 & 0.20 & 0.23 \\
\hline 25A & & 0.0056 & 0.21 & \(0.2=\) \\
\hline 12 & & 0.0100 & 0.20 & \(\therefore \therefore 2\) \\
\hline 26A & & 0.0100 & 0.19 & 0.22 \\
\hline 28A & & 0.0156 & 0.10 & 0.22 \\
\hline 13 & & 0.0225 & 0.0 & 0.10 \\
\hline 27A & & 0.0225 & 0.0 & 0.10 \\
\hline
\end{tabular}

Equation (25) gives an approximate expression that could be used to relate the measured gas and ceiling temperatures ( \(T_{g}\) and \(T_{w}\) ) with the measured floor heat flux, \(q_{F}^{\prime \prime}\). It can be shown that the contribution from the flame is insignificant for this small scale experiment, and the shape factor \(F_{d F}\) is between 0.7 and 1 . Therefore
\[
\begin{equation*}
\dot{q}_{F}^{\prime \prime} \cong{ }^{\prime \prime} \mathrm{dF}\left[\varepsilon_{g} \mathrm{~T}_{\mathrm{g}}{ }^{4}+\left(1-g_{\mathrm{g}}\right) \mathrm{T}_{\mathrm{w}}^{4}\right] \tag{C-1}
\end{equation*}
\]

Also for small values of \(X_{d}\) ("large" fires)
\[
\varepsilon_{g} F_{d F} \sim 0.5(0.96) \sim 0.5
\]
while for large values of \(X_{d}(" s m a l l " f i r e s)\)
\[
E_{g} F_{d F} \sim 0.25(0.68) \sim 0.15
\]

Based on these estimates, and equating "large" and "small" fires to hick and low temperature levels it follows that
\[
\begin{equation*}
\dot{\mathrm{q}}_{\mathrm{F}}^{\prime \prime} \sim 0.5{ }^{\circ} \mathrm{T}_{\mathrm{g}}{ }^{4}+0.5{ }^{\sigma} \mathrm{T}_{\mathrm{W}}{ }^{4} \tag{C-2}
\end{equation*}
\]
for high temperature levels;
and
\[
\begin{equation*}
\dot{q}_{F}^{\prime \prime} \sim 0.15 \quad \sigma T_{g}{ }^{4}+0.53 \sim T_{W}{ }^{4} \tag{c-3}
\end{equation*}
\]
for low temperature levels.

Since \(\mathrm{T}_{\mathrm{g}}\) is greater than \(\mathrm{T}_{\mathrm{w}}\) by up to \(100^{\circ} \mathrm{C}\), it follows that
\[
\sigma T_{g}^{4} \geq q_{F}^{\prime \prime} \geq T_{w}
\]
is true for high temperature, and almost true at the lower temperature low n s in these experiments. Figures \(\mathrm{C}-1\) and \(\mathrm{C}-2\) seem to follow that trend. yo noover, since \(T_{w}\) and \(T_{g}\) are of similar magnitude, \({ }_{F}{ }_{F}\) plotted against either \(T_{W}\) or \(T_{g}\) tends to follow a fourth power rolationshis.
\[
C-1
\]


Figure C-1. Measured incident heat flux to a water cooled sensor as a function of the upper gas temperature


Figure \(C-2\). Measured incident heat flux to a water cooled sensor as a function of the upper coiling temperature

\section*{APPENDIX D. SOLUTION OF THE EQUATIONS}

This section outlines the method of solution.

Flow Equations: eqs. (2) - (7)

Introduce dimensionless variables as
\[
\begin{align*}
M_{a} & =\frac{\dot{m}_{a}}{\dot{m}_{\text {max }}}  \tag{D-1}\\
M_{v} & =\frac{\dot{m}_{v}}{\dot{m}_{\text {max }}} \tag{D-2}
\end{align*}
\]
where
\(\dot{m}_{\max }=\frac{2}{3} \subset \sqrt{2 g} \quad \mathrm{Fa}_{\mathrm{O}} \mathrm{H}_{\mathrm{O}}^{3 / 2}\)
Also \(y=\frac{X_{n}}{H_{0}}\)
\[
\begin{equation*}
\mathrm{z}=\frac{\mathrm{x}_{\mathrm{d}}}{\mathrm{H}_{\mathrm{o}}} \tag{D-5}
\end{equation*}
\]
and
\[
\begin{equation*}
\mathrm{d}=\frac{\mathrm{T}_{\mathrm{a}}}{\mathrm{~T}_{\mathrm{g}}} \tag{D-6}
\end{equation*}
\]

The resulting three equations follow:
\[
\begin{align*}
M_{a}+M_{v} & =\sqrt{d(1-d)}(1-y)^{3 / 2}  \tag{D-7}\\
M_{a} & =\sqrt{1-d}(y-z)^{1 / 2}\left(y+\frac{z}{2}\right)  \tag{0-s}\\
M_{a} & =\left(\frac{a}{v}\right) M_{v}(\beta z+1)^{5 / 2} \tag{2-9}
\end{align*}
\]

Squaring eqs. (8) and (9) and combining yields
\[
\begin{equation*}
f(y, z)=(y-z)\left(y+\frac{z}{2}\right)^{2}-\left[\left(\frac{\rho_{a}}{r_{v}}\right) \omega M_{v}\right]^{2} \frac{(p z+1)^{5}}{(1-d)}=0 \tag{10-10}
\end{equation*}
\]

And combining eqs. (7) and (9) gives
\[
\begin{equation*}
y=1-\frac{M_{v}^{2 / 3}}{d(1-d)} 1 / 3\left[1+\left(\frac{\rho_{a}}{\rho_{v}}\right) \omega \cdot(\beta z+1)^{5 / 2}\right]^{2 / 3} \tag{D-11}
\end{equation*}
\]

Equation ( \(D-10\) ) is solved by a Newton-Raphson method for \(z\), then \(y\) is determined from eq. (Dill).

\section*{Energy Equations}

The following dimensionless variables are introduced:
\[
\begin{align*}
& \theta=\frac{T}{T_{a}} \\
& c=\frac{\Delta H \dot{m}_{\text {max }}}{\hat{A}_{\mathrm{W}} \mathrm{~T}_{\mathrm{T}}{ }^{4}} \\
& j=\frac{h_{s}}{\sigma T_{a}{ }^{3}} \\
& M=\frac{\dot{m}_{m}}{\dot{m}_{\text {max }}} \\
& d=\frac{C_{g} \dot{m}_{\text {max }}}{A_{w} \sigma T_{a}{ }^{3}} \\
& \Phi=\dot{q}{ }^{\prime \prime} /{ }_{\sigma T}{ }^{4}  \tag{D-12}\\
& e=\frac{C_{\text {fuel }} \dot{m}_{\text {max }}}{A_{w} \sigma T_{a}{ }^{3}} \\
& \alpha=\frac{A_{v}}{A_{w}} \\
& \mathrm{f}=\frac{\mathrm{H}_{\mathrm{O}}}{\sqrt{\mathrm{~A}_{\mathrm{w}}}} \\
& s=\frac{\mathrm{H}_{f}}{\mathrm{H}_{\mathrm{o}}} \\
& \mathrm{p}=\frac{\mathrm{A}_{\mathrm{o}}}{\mathrm{~A}_{\mathrm{w}}} \\
& a=\frac{h_{w}}{\sigma T_{a}{ }^{3}} \\
& g=\frac{\Delta H_{v} \dot{m}_{\text {max }}}{\dot{A}_{W} \sigma T_{a}{ }^{4}} \\
& \mathrm{~b}=\frac{\mathrm{K}_{\mathrm{w}}}{\sigma \mathrm{~T}_{\mathrm{a}}{ }^{3}}
\end{align*}
\]

The dimensionless equations to be solved result as follows:
From eqs. (14) and (17), along with subsidiary relationships:
\[
\begin{align*}
F\left(\theta_{g}, \theta_{W^{\prime}} \theta_{F}\right) & =\gamma_{r, d}^{\Phi}-\varepsilon_{f} F_{d F}\left[\Phi_{r, d}+\theta_{F}{ }^{4}\right] \alpha \\
& +b\left(\theta_{W}-1\right)+M_{g} d\left(\theta_{g}-1\right) \\
& +\varepsilon_{f} \theta_{f}^{4} 2^{\sqrt{\pi}} s f \sqrt{\alpha}-c M_{b} \\
& +M_{p Y}\left[g+(e-d)\left(\theta_{S}-1\right)\right]+p \theta_{W}^{4}=0 \tag{D-13}
\end{align*}
\]

From eqs. (18) and (22):
\[
\begin{align*}
& G\left(\theta_{g}, \theta_{W}, \theta_{F}\right)=\varepsilon_{g} \theta_{g}^{4}+\gamma\left(1-\varepsilon_{G}\right) \theta_{F}^{4}-\left[1-(1-\gamma)\left(1-\varepsilon_{g}\right)\right] \theta_{W}^{4} \\
&-b\left(\theta_{W}-1\right)+a\left(\theta_{g}-\theta_{W}\right)=0 \tag{D-14}
\end{align*}
\]

From eq. (24):
\[
\begin{equation*}
H\left(\theta_{g}, \theta_{W}, \theta_{F}\right)=\theta_{F}-1-k \Phi_{r, d}=0 \tag{D-15}
\end{equation*}
\]
where from eqs. (9) and (10):
\[
\begin{equation*}
\alpha=\frac{M_{V}\left[e\left(\theta_{S}-1\right)+g\right]}{\left(1-\varepsilon_{f}\right) F_{d F}+\left[\varepsilon_{g} \theta_{g}^{4}+\left(1-\varepsilon_{g}\right) \theta_{W}^{4}\right]+\varepsilon_{f} \theta_{f}^{4}+\left(1-\varepsilon_{f}\right) F_{S F} \theta_{F}{ }^{4}-\theta_{S}^{4}+j\left(\theta_{f}-\theta_{S}\right)} \tag{D-16}
\end{equation*}
\]
and from eq. (20):
\[
\begin{equation*}
\phi_{r, d}=\varepsilon_{g} \theta_{g}^{4}+\left(1-\varepsilon_{g}\right) \theta_{w}^{4}-\theta_{F}^{4} \tag{D-17}
\end{equation*}
\]

Equations ( \(D-13\) ) ( \(D-14\) ) and ( \(D-15\) ) are solved by a Newton-Raphson method for \(\theta_{G}, \theta_{W}\), and \(\theta_{F} \cdot \alpha\) is then determined from these results.

\section*{APPENDIX E. COMPUTER CODE}
```

Please note the following about the computer code:

```
1) A small change was made in eq. (D-13). The term po w was replaced by \(p\left(\varepsilon_{g}{ }_{g}{ }^{4}+\left(1-\varepsilon_{g}\right){ }^{\cap}{ }^{4}\right)\). Hence, results are not precisely those calculated for the graphs. Resulting changes were minor.
2) For the smallest doorway, temperature and flow equation solutions for the highest mass flows did not converge (numbers 17-20 on output).

\section*{FLOW CHART}


Main Program:
\begin{tabular}{|c|c|c|c|}
\hline Program & Theory & Program & Theory \\
\hline A & a & KE & k \\
\hline AF & \(A_{F}\) & KFLR & \(\mathrm{K}_{\mathrm{F}}\) \\
\hline ALPHA & \(\alpha\) & KG & k \\
\hline AMASS & \(\dot{m}_{a}\) & KW & \(\mathrm{K}^{\mathrm{g}}\) \\
\hline AV & \(A_{v}\) & L & \(L^{W}\) \\
\hline AW & \({ }^{\text {w }}\) & MA & Ma \\
\hline B & b & MAX & \(\dot{m}_{\text {max }}\) \\
\hline BETA & \(\beta\) & MB & \(\max _{M}\) \\
\hline BMASS & \(\dot{m}_{b}\) & MG & \({ }^{\text {M }}\) \\
\hline c & c & MPY & \(\mathrm{M}^{\text {g }}\) \\
\hline CFUEL & \(\mathrm{C}_{\text {fuel }}\) & MV & M \\
\hline CG & \(\mathrm{C}_{\mathrm{g}}\) & OMEGA & \(\omega\) \\
\hline CO & c (flow coefficient) & P & p \\
\hline CS & \(\mathrm{C}_{5}\) & PI & \(\pi\) \\
\hline D & d & PYMASS & \(\dot{m}_{p y}\) \\
\hline DELH & \(\Delta \mathrm{H}\) & QFIRE & radiant flux from flame \\
\hline DELHV & \(\Delta \mathrm{H}_{\mathrm{V}}\) & QFLR & \(\mathrm{q}_{\mathrm{F}}^{\prime \prime}\) (includes flame radiation) \\
\hline DR & \(\mathrm{T}_{\mathrm{a}} / \mathrm{T}_{\mathrm{g}}\) & QR & \(q_{F}^{\prime \prime}\) (excludes flame radiation) \\
\hline E & e & QWALL & \(\mathrm{q}_{\mathrm{w}}^{\prime \prime}\) \\
\hline EF & \(\varepsilon_{f}\) & R & r \\
\hline EG & \({ }^{\varepsilon} \mathrm{g}\) & RATIO & \(M_{a} / M_{V}\) \\
\hline F24 & \(\mathrm{F}_{\mathrm{dF}}\) & RD & ¢ \(_{\text {r }}, \mathrm{d}\) \\
\hline FF & \(f\) & RF & \(\Phi_{r, f}\) \\
\hline FFLR & \(\mathrm{F}_{\text {SF }}\) & RFDOT & rate of radiant energy from flame \\
\hline FUEL & \(\dot{m}_{V}\) & RHO & Pa \\
\hline GAMMA & \(\gamma\) & RHOV & iv \\
\hline GG & g & RW & \(\Phi_{r, w}\) \\
\hline GRAV & g & SIGMA & - \\
\hline H & H & TA & T \({ }_{\text {a }}\) \\
\hline HF & & TFLAM & \(\mathrm{T}_{\mathrm{f}}\) \\
\hline HFLR & & TFLR & \(\mathrm{T}_{\mathrm{F}}\) \\
\hline HO & \(\mathrm{H}_{\mathrm{f}}\) & TG & Tg \\
\hline HS & \(\mathrm{h}^{\circ}\) & THFLAM & f \\
\hline HW & \(\mathrm{h}_{\mathrm{s}}\) & THFLR & \({ }^{2}\) \\
\hline HW & \(h_{\text {w }}\) & THG & Cor \\
\hline & & THS & \({ }^{1}\) \\
\hline & & THW & 'w \\
\hline & & TS & \(\mathrm{T}_{\text {S }}\) \\
\hline & - & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Program & Theory & Program & Theory \\
\hline TW & T \({ }_{\text {W }}\) & RDX & \(\partial^{\text {¢ }}\) \\
\hline VMASS & \(\mathrm{m}_{\mathrm{v}}\) & & \[
\frac{r, d}{\partial x}
\] \\
\hline W & W & & \\
\hline WO & \(W_{0}\) & RDY & \[
\frac{\partial \varphi, d}{\partial y}
\] \\
\hline XD & \({ }^{\text {d }}\) & & \\
\hline XJ & j & S & \(z\) \\
\hline XN & \(X_{n}\) & X & g \\
\hline Y & Y & Y & \({ }_{\text {w }}\) \\
\hline Z & \(z\) & Z & \({ }^{\theta} \mathrm{F}\) \\
\hline
\end{tabular}

Subroutine TEMP:
\begin{tabular}{rlcc} 
ALX & \(\frac{\partial \alpha}{\partial X}\) & Subroutine FLOWS: \\
ALY & \(\frac{\partial \alpha}{\partial Y}\) & \(F\) & \(f(y, z)\) \\
\(A L Z\) & \(\frac{\partial \alpha}{\partial Z}\) & \(F Y\) & \(\frac{\partial f}{\partial Y}\) \\
F & \(F\) & \(Y Z\) & \(\frac{\partial f}{\partial z}\) \\
FAL & \(\frac{\partial F}{\partial \alpha}\) & \(Y Z\) & \(Y\) \\
FX & \(\frac{\partial F}{\partial X}\) & \(Z\) & \(\frac{d y}{d z}\) \\
& & & \(z\)
\end{tabular}
\begin{tabular}{ll} 
FY & \(\frac{\partial F}{\partial Y}\) \\
FZ & \(\partial F\)
\end{tabular}

G G
GX \(\quad \frac{\partial G}{\partial x}\)
GY \(\quad \frac{\partial G}{\partial Y}\)
GZ \(\frac{\partial G}{\partial z}\)

H H
HX \(\frac{\partial H}{\partial X}\)
HY \(\frac{\partial H}{\partial Y}\)
HZ \(\frac{\partial H}{\partial Z}\)
\[
\begin{aligned}
& \text { THIS SMALL-SCALE STEADY-STATE MODEL OF A DEVELOPING FIRE IN* } \\
& \text { A COMPARTMENT IS BASED ON CONSERVATION LAWS APPLIED TO THE } \\
& \text { FUEL. THE ENCLOSUPE, THE FIRE PLUME, AND THE UPPER GAS } \\
& \text { LAYER. SURFACE AND GAS TEMPERATURES, RADIATIVE HEAT FLUX } \\
& \text { *U } \\
& \text { TO THE FLOOR, AND FLOU RATES ARE PREDICTED. THE GEOMETRY } \\
& \text { AND THERMAL PROPERTIES OF THE COMPARTMENT AND THE } \\
& \text { PROPERTIES OF THE FUEL ARE SPECIFIED UITHIN THE PROGRAM. } \\
& \text { NOTE: THE SIX DOORUAY WIDTHS ARE INPUT FROM AN EXTERNAL } \\
& \text { DATA FILE. }
\end{aligned}
\]

\section*{}
COMMON GOMMA, EF,B,MG,D,Z,FF,C,MB,MPY,GG,E,THG,EGA,A, PHI, PI, XJ
COMMON REF,TA,P,JI,KFLR,MAX,TFLAM C PHYSICAL CONSTANTS:
GRAVITY.M/S2
GRAV \(=9.8\)
STEFAN-8OLTZMANH CONSTANT. Wノ(M2-K4)
SIGMA \(=5.6695-08\)
PI \(=3.14 .59\)
 2AV(2), TFLR (20),RFDOT(20), QFLR
REAL MAX, MB,MA,MPY,MBMAX,MV,L
REAL MG, INCREM,KW,KG,KFLR,KE
COMMON DR,HO,RB,MV,ROMEGA,BETA
COMMON GOMMA,EF,B,MG,D,Z,FF,C,
COMMON REF, TA,P,JI,KFLR,MAX,TFL
HEAT TRAIISFER PAPAIIETERS:
FLOW PARAMETERS:

\section*{DOORWAY FLOW COEFFICIENT \\ \(\mathrm{CO}=0.7\)}
FLUID PARAMETERS:
SPECIFIC HEAT OF AIR AND COMBUSION PRODUCTS. J/KG-K \(C G=1.046 E+03\)
PHO = 3
AI
\(A=300\).
SMOKE CONCENTRATION, MG \(\Omega\)
\(C S=4.0\)
\(C S=4.0\)
ROMEGA
ROMEGA \(=\) OMEGA \(*\) RHO/RHOV
COMPARTMENT PARAMETERS:
HEIGHT, M
HIDTH M
\(\mathrm{J}=0.3 \quad \mathrm{M}\)
\(=0.56\)
DOORWAY HEIGHT. M
HO=0. 22
GUESS AN INITIAL HOT GAS-AIR DENSITY RATIO
DR=0.5
BEGIN LOOP WHICH WILL BE REPEATED FOR EACH DOOR WIDTH
DO 500 NUMBER \(=1.6\)
INITIALIZE DIMENSIONLESS TEMPERATURES: GAS, UALL, AND FLOOR
THGOLD \(=2.0\)
THUOLD \(=1.5\)
READ (5.91) WO
DOORUAY SPECIFICATIONS:
91 FORMAT (F5.4)
BEGIN LOOP FOR CHANGING MASS FLOW RATE, KG/S. NOTE THAT
IF (NUMBER .GT. 2) INCREM=0.75E-04
（NUMBER ．GT．4）INCREM＝0． \(1 E-03\)
IF
DO
JI
IF
IF
RE
DR
EN
KE
BE
BE
PA
MA
DI
MV

\section*{IF（JI．EQ．1）FUEL（JI）\(=\) INCREM}
（F（JI．EQ．1）FUEL（JI）＝INCREM
REINITIALIZE GUESS FOR HOT GAS－AIR DENSITY RATIO
ENTRAINMENT COEFF ICIENT AS A FUNCTION OF FUEL
KE iJI）\(=0.1+\) 日． \(5 *(\) FUEL（JI）\(* 1000\).
BETA \(=9.2\)＊ KHO ＊KE \((\mathrm{J} \mathrm{I}\) ）＊＊日． 8 ／FUEL（ J I ）＊＊ด． 4
PARAMETER TO MAKE FLOUS DIMENSIONLESS
MAX \(=(2.13) * C D * R H O * S Q R T.(2 . * G R A V) * W O * H O * * 1.5\)
DIMENSIONLESS FUEL FLOW
\(M^{\prime} V^{\prime}=F U E L(J I) / M A X\)
DETERMINE DIMENSIONLESS DOORUAY AND COMPARTMENT NEUTRAL
PLANE HEIGHTS FROM FLOW EQUATIONS
52 CAIL FLOUS（Y）
DETERMINATION
C DETERMINATION OF FLOUJ PATES BASED ON NEUTRAL PLANE HEIGHTS：
COMPSR
\(X D(\mathrm{~J} I)=Z * H O\)

RMM：
CALL SHFPE（XDA．J．L．F24）
AIR FLOU，－－DIMENSIOMLESS
\(M A=S Q R T(D P *(1 .-D R)) *(1 .-Y) * * 1.5-M V\)
DETERMINE GHETHER GLL AVAILABLE FUEL IS BEING BURNED：
C MAXIIUUI GMOUNT DF FLEL THAT MAY BE BUPNED FOR THE
CALCULATETS AIR FLOUS
AVAII＿FELE FUEL BURNED－－－
IF（MV．LE．MBMAX）GO TO 29
IF NHT AILL BURMED．THEN
IMB＝MZMR
MASS PYOOLYZED－－V IIAENS IONLESS
MPY＝MV－MB
GO Tis 20
30 MG－11F＋任
C IF IT IS ALL BURIUED．THEH：
20 1イ8・サイン
GAS FLDIJ
\(\omega\)
0
HF (Ji) \(=16.2 *(\) (BMASS (JI) **2 \(2 *(R+\) (OMEGA*RHO/RHOV) ) **2*OMEGA) ) 1 (RHO**2*GRAV*(1.-OMEGA)**5) ) **⿹. 2
FLAME HEIGHT CAN BE NO GREATER THAN COMPARTMENTAL
NEUTRAL PLANE HEIGHT. SO
IF (HE=(JI).GT. XD(JI)) HF(JI) \(=X D(J I)\)
FLAME EMISSIVITY
\(E F=1.0-E X P(-1.3 * H F\)
FLOOR FAETOR TO REDUCE CONTRIBUTION FROM THE FLOOR
FFLR \(=1.0-(1) / S Q R T(\omega * * 2+4 . *<D(J I) * * 2)\)
CALCULATE PAROMETERS AND THE CDEFFICIENTS OF THE TERMS
IN DETERMINATION OF TEMPERATURES
LOOR AREA. MI
\(A F=W\)
WALL AREA DF UPPER GAS LAYER. M2 \(A(J=[J W L+2.0 *(H-X D(J I)) *(J H+L)\)
GAMMP \(=A F / A W\)
REF=3 SMP水TA**3
\(X J=H S R E F\)
- (MA* *JE(H) / (PWWREF*TA)
\(D=(C G W \uparrow \uparrow N) /\) (AUWRREF)

FF \(=\mathrm{HO}\)-SORT (AU)
\(P=H 0 \times J O \sim A J\)

C CALCULATE TEMPERATURES:
c START LALCULATION WITH PREVIOUSLY DETERMINED TEMPS THG = THGOLD
THW= THWOLD
THFLR = THFLRO

CALL TEMP (THG, THW, THFLR,F,G,ALPHA,RD,RW,RF,F24, FFLR)
THGOLD \(=\) THG
THUOLD \(=\) THH
THFLRO \(=\) THFLR
CALL TEMP (THG, THW, THFLR,F,G,ALPHA,RD,RW,RF,F24, FFLR)
THGOLD \(=\) THG
THUOLD \(=\) THH
THFLRO \(=\) THFLR
CALL TEMP (THG, THW, THFLR,F,G,ALPHA,RD,RW,RF,F24, FFLR)
THGOLD \(=\) THG
THUOLD \(=\) THH
THFLRO \(=\) THFLR
DIMENSIONALIZE VAR
C DIMENSIONALIZE VARIABLES FOR OUTPUT:
FIRE AREA.M2
AV (JI) =ALPHA \(*\) HW
RD CORRECTED TO
RD=RD-1. +THFLR**4
RADIATION TO THE FLOOR
QR (JI) =1.E-84*S IGMA*TA**4*RD*F24
GAS TEMPERATURE,
TG (JI) \(=\) THG*TA-273.
WALL TEMPERATURE,
TW(JI) =THW*TA-273.
LOOR TEMPERATURE,

QFIRE \(=1 . E-04 * S I G M A * T A *\) KIRE KW
RFDOT (JI) = QF IRE*(2.*HF (JI)*SQRT (PI *AV (JI) ) )
HEAT FLUX TO SENSOR
QFLR (JI) =QR (JI) +Q. \(1 *(R F D O T(J I) / A F)\)
RFDOT (JI) = QF IRE*(2.*HF (JI) *SQRT (PI *AV (JI) ) )
HEAT FLUX TO SENSOR
QFLR (JI) =QR (JI) +Q. \(1 *(R F D O T(J I) / A F)\)
QUALL \(=1.0 \mathrm{E}-04 * S\) IGMA \(*\) TA \(* * 4 * R W\)
C REITERATE FLOU WITH NEW GAS TEMPERATURE:
COMPUTE NEUG
IF (ABS ( (DRNEW-DR)/DR)-. 1) 51.51 .50
\(50 \mathrm{DR}=\) DRNEW
IF (ABS ((DRNEU-DR)/DR)-.1) 51.51 .50
\(50 \mathrm{DR}=\mathrm{DRNEW}\)
IF (DR.LE.O.) GO TO 55
WRITE (5.22)
22 FORMAT ( \(/ .20 \%\) "DR DOES NOT CONVERGE")
51 CONTIHUE
109 CONTINUE
400 CONTINUE
IJP. ITE (6.1)

\(\left.2 / 5^{\prime}, 6 \times, 3\left(" M^{\prime}, 10 x\right),{ }^{\prime} K W^{\prime}\right)\)


IF (ALPHA.GE.0.) GO TO 22


CALCULATE DERIVATIVES NECESSARY FOR NEUTON-RAPHSOM METHOD ALX=(-(ALPHA**2)/(MV*(E*(THS-1.)+GG)))*((1.-EF)*RDX*F24) ALZ \(=(-(\) ALPHA \(* * 2) * 4 . *(1 .-E F) * F F L R * Z * * 3) /(M V *(E *\) (THS-1.) \(+G G))\) GX=4.*EG* \(\check{*} * * 3+\mathrm{A}\)
\(G Y=-4 \cdot *(1 .-(1 .-G A M M A) *(1 .-E G)) * Y * * 3-B-A\)
\(G Z=4 . * G M M A *(1 .-E G) * Z * * 3\)
FAL \(=-E\). * F \(24 *(E G * X * * 4+(1 .-E G) * Y * * 4-1)+\).
 \(F Y=4 . *(1,-E G) * Y * * 3 *(G A M M A-E F * A L P H A * F 24)+B+F A L * A L Y+4\). *P
**(1.-EG)*Y**3
\(F Z=-4 . * G A M M P\) P \(* Z * * 3+F A L * A L Z\)
\(H X=-4 *\).


\(H Z=1 .+4, ~ * K A Y * Z * * 3\)
\(E D D=E-D\)



\(H=2-1\).
\(D Y=\left(-F *(G Y X H Z-H Y * G Z)-F Y * K(-G * H Z+H * G Z)+F Z *\left(-G * * 1 Y^{\prime}+H * G Y\right)\right) / D E L T A\)

\(D Z=(F Y *(-\{: * G Y+G * H Y)-F Y *(-H \% G X+G * H Y)-F *(G X * H Y-H Y \% G Y)) / D E L T A\) \(\grave{x}(1+\check{x}=\swarrow\)
V
N
N
N
TOL \(X=G B S(D K / X)\)
TOLZ-GBS(DZ, Z)


\footnotetext{
C**************************************************
}
REAL MV. KF!
COMMON GAMMA, EF, B, MG, D,Z,FF, C,MB,MFY,GG,E,THS,EG,R,PHI,PI, XJ

FIRE
KW
\(00+35229{ }^{\circ}\)
\(10+35 D\) ご．
．1867E＋0 1
．1905E＋01
．1916E＋0 1
\(10+39161^{\circ}\)

．1844ミ＋01
－1817E＋01
\(10+35821\)

1706E＋01 ． \(1561 E+01\) \(\vec{~}\)
岂
\(\underline{0}\)
\(\vdots\) ．1556E＋01
．1495E＋ 1
． \(1171 \mathrm{E}+91\) 8222E－01 －1219E＋01 \(\overrightarrow{0}\)
+
\(\underset{\sim}{\omega}\)
\(\stackrel{\sim}{4}\)
崖 \(\Sigma\)
．8637E－01
10－325 \(28^{\circ}\)
10－39と28． 10－3b \(252^{\circ}\) ．6998E－01 ．6493E－81

10－3895s \({ }^{\circ}\)
\(\overrightarrow{0}\)
\(\stackrel{1}{u}\)
0
\(\stackrel{1}{0}\)


10－319で・ 10－3ャ668．
．3744E－01
\(\overrightarrow{0}\)
岃
苟
．3276E－01
．2717E－01 ．1562E－05 ．2558E－81 \(\overrightarrow{0}\)
\(\stackrel{1}{u}\)
\(\stackrel{\rightharpoonup}{n}\)
\(\stackrel{\rightharpoonup}{尸}\)
XN
\(M\)
\(.1175 \mathrm{E}+00\)
 \(.1078 E+00\) \(00+3 \mathrm{D} 0 \mathrm{I}^{\circ}\) ．1013E＋00

10－38596．
10－32SS6． ．9379E－01 \(\overrightarrow{0}\)
出
N
N
．9060E－01
．8911E－01 ．8766E－01

 7
0
\(u\)
0
0
0
0
0 ．8065E－01 ．2821E－01 ．7836E－01 ．5701E－01
 ．8637E－01 8753E－01 10－39とて8＊ 10－302S2 6998E－01 \begin{tabular}{l}
\(\overrightarrow{0}\) \\
岃 \\
0 \\
0 \\
\hline
\end{tabular} \begin{tabular}{l}
\(\overrightarrow{0}\) \\
\(\stackrel{1}{4}\) \\
\(\stackrel{y}{0}\) \\
\(\stackrel{0}{0}\) \\
\hline 0
\end{tabular}
 ．5196E－01

 ．4261E－01 \(\overrightarrow{0}\)
u
山
哥
 \(\overrightarrow{0}\)
i
山
M
M \(\vec{D}\)
u
ल
ल
M
 n
\(\stackrel{1}{1}\)
\(\stackrel{\sim}{0}\)
\(\cdots\)
 \(\overrightarrow{0}\)
\(\stackrel{1}{u}\)
\(\stackrel{1}{n}\)
\(\stackrel{1}{0}\) 0000E＋00 －0000E＋80 －0000E＋b0 2349E－84 4804E－84 ．7305E－84

．1259E－03 ．1520e－03 ．1703E－03
M
M
W
W
N
．23！5E－03



\begin{tabular}{c}
\(M\) \\
0 \\
\(u\) \\
\(\vdots\) \\
0 \\
\hline
\end{tabular}
．3ア8วะ－03
．40，57E－83
4261E－93
\begin{tabular}{c}
\(M\) \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

D8－300SZ
D8－3000s
．7500E－04
．1000E－03 \(M\)
\(\stackrel{N}{1}\)
\(\stackrel{N}{\mathbf{N}}\)

．1750E－03
．2000E－03
M
\(\stackrel{1}{1}\)
N
N
M
岗
苞
N
．2750E－03
． \(3000 E-03\)
．3250E－03
．3590ㄷ－03
． \(37505-03\)
．4920E－03
． \(4250 \mathrm{E}-03\)
．4500E－03

\begin{tabular}{c}
\(M\) \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
BMASS
KG／S
Da－300Sz
5000E－04
D8－30052
D日－3IS92





\(\stackrel{\rightharpoonup}{0}\)
\(\stackrel{1}{u}\)
\(\underset{\sim}{0}\)
\(\underset{n}{n}\)
－ \(0-39\) i0 \(^{\circ}\)






n
N
W
N
W．


\begin{tabular}{|c|}
\hline AMASS KG／S \\
\hline ．4262E－03 \\
\hline ．5725E－03 \\
\hline ．6242E－03 \\
\hline ．6312E－03 \\
\hline ．6350E－03 \\
\hline ．6349E－03 \\
\hline ．6322E－03 \\
\hline ．6111E－03 \\
\hline ． 60 19E－03 \\
\hline ．5915E－03 \\
\hline ．5788E－03 \\
\hline ．5652E－83 \\
\hline ．5503E－ \\
\hline ． \(5338 \mathrm{E}-93\) \\
\hline ．5155E－03 \\
\hline ． 49 こ2E－83 \\
\hline ． \(3378 \mathrm{E}-83\) \\
\hline ．2724E \\
\hline 39E－83 \\
\hline ． \(4295 \mathrm{E}-9\) \\
\hline
\end{tabular}


MA／MV FUEL 5／5 QFLR
\(W / C M-2\)
\(.5837 E-E 1\) RFDOT
KUI 3520E－91 ．4928E－日1 \(.5299 E-01\)
AV
\(M-2\)
\(\cdot 24 i^{-1} 1 E-N 2\)
QR
WCM－2 TFLR
C TW
C 8523 \(.8523 E+02\) TG
C
\(1.4066 \mathrm{E}+90.1062 \mathrm{E}+93\)
NUNBER
\(1.4066 E+90\)
\(2.4202 E+00\) \(2.4202 E+00.2057 E+93 \cdot 1687 E+03\) ， \(.134 .9 \mathrm{E}+00\) \(00+382\) IE 6737E－02 ．9922E－02 .137 1E－01 \begin{tabular}{c}
\(\vec{\infty}\) \\
\(\stackrel{1}{W}\) \\
\(\stackrel{1}{\omega}\) \\
\(\cdots\) \\
\(\cdots\) \\
\hline
\end{tabular}
 \begin{tabular}{l}
\(\overrightarrow{5}\) \\
1 \\
1 \\
\hline 0 \\
0 \\
\hline 1
\end{tabular} \begin{tabular}{l}
\(\stackrel{8}{0}\) \\
+ \\
世 \\
M \\
M \\
\hline
\end{tabular} \(.3105 E+80\) \(.3034 \mathrm{E}+0 \mathrm{O}\) \(.2944 E+90\) \begin{tabular}{c}
0 \\
+ \\
+ \\
\hline 0 \\
0 \\
0 \\
0 \\
0
\end{tabular} 2507E +03 ．1632E＋03 \(.1604 E+03\) \(6.4704 \mathrm{E}+00.2810 \mathrm{E}+03.2406 \mathrm{E}+03.1570 \mathrm{E}+03\) 7．4768E＋00．2742E＋03 ．2349E＋93 ．1530E＋033 \(8 \cdot 4835 E+00.2601 E+03 \quad .2223 E+03 \quad .1430 E+03\) \(9.4887 \mathrm{E}+00.2508 \mathrm{E}+03.2142 \mathrm{E}+03.1359 \mathrm{E}+03\)
 \(.3862 E-01\) ． \(4841 E-01\) ．6066E－01 \(.1582 E+00.7626 E-01\)

 \(00+39291^{\circ} \mathrm{GE}+3\) ロご





． \(4101 E-31\)



 \(.1225 E+03\) \(.1957 E+93\)
 を6＋ヨ26己己。 \(.2176 E+03\) \(.1057 E+43\) \(\varepsilon 0+30581\) \(.2044 E+93.1734 E+03\)
\(20+32096^{\circ} \varepsilon 6+\exists 1091^{\circ} \varepsilon 日+\exists 1681\)

 \(10+\exists \angle \angle 51^{\circ} 20+\exists \varepsilon 129^{\circ}\) こ0 \(0+36026^{\circ}\)




\section*{\(C S=4.00 \quad 10=.0150\)}

KW

\(.6225 E+00\)
 ．1245E＋81
 \(.1867 E+01\)

\(.2490 E+81\)

\(.3112 E+01\)
 \(.3676 E+01\)



10＋35088．
 ． \(3843 E+01\)
 \(10+3 \angle 28 \varepsilon^{\circ}\)
 \(10+32689^{\circ}\)
 ［ \(0+32062^{\circ}\)

\(\overrightarrow{0}\)
㟔
鬲

． \(3912 E+01\)


 10ヶシzage．
 \(10+3288 \varepsilon^{\circ}\)
 \(.3871 \mathrm{E}+01\)
 \(.3851 \mathrm{E}+01\)

 HF
M \(.1123 E+80\) \(.1092 \mathrm{E}+80\) \(.1052 \mathrm{E}+00\) ．9956E－01 ．9393E－81 ．8859E－01 ．8373E－01 ．7930E－81 ．7527E－01 ．7157E－01 ．6817E－01 ．6504E－01 ． \(6214 \mathrm{E}-\mathrm{O} 1\) ．5946E－01 \(\overrightarrow{0}\)
u
0
0
0
0 ．5463E－01
．5245E－01
．5041E－01 ． \(4850 \mathrm{E}-01\)
 \(1290 \mathrm{E}+00\) そェ
\begin{tabular}{l}
\(X D\) \\
\(M\)
\end{tabular}
\(.1123 E+00 \quad .1\) \(.1123 E+00\) \(.1092 \mathrm{E}+80\) 1052E＋80 \begin{tabular}{l}
\(\vec{\nabla}\) \\
1 \\
\(\stackrel{1}{0}\) \\
\(\stackrel{0}{0}\) \\
\hline
\end{tabular}

 8373E－01
 \(\overrightarrow{0}\)
\(\stackrel{N}{i}\)
N
N ． \(7157 \mathrm{E}-81\) \(\overrightarrow{0}\)
\(\stackrel{1}{\sim}\)
\(\stackrel{0}{2}\)
0 \(\overrightarrow{0}\)
\(\stackrel{1}{4}\)
\(\stackrel{0}{0}\)
0 \begin{tabular}{c}
\(\overrightarrow{0}\) \\
\(\stackrel{1}{山}\) \\
\(\stackrel{1}{\square}\) \\
\(\stackrel{1}{0}\) \\
\hline
\end{tabular} ．5946E－01 \begin{tabular}{c}
\(\overrightarrow{0}\) \\
\multirow{2}{*}{} \\
0 \\
0 \\
0 \\
0
\end{tabular} 5453E－01

．5041E－01 4850E－81 \(\overrightarrow{0}\)
\(\dot{1}\)
\(\stackrel{\rightharpoonup}{0}\)
0
\(\square\)
0009E＋80 \(\stackrel{\otimes}{+}\)
\(\stackrel{+}{\otimes}\)
\(\stackrel{\rightharpoonup}{\otimes}\)
\(\stackrel{\rightharpoonup}{\otimes}\)
0000E＋00
50－3£9とて
2444E－84
．4719E－04
．7867E－04
．9430E－04
1195E－03
．1431E－03

1929E－03
2180E－03
．2433E－03

．2946E－03
． \(3203 \mathrm{E}-03\)

\(\underset{\text { KGMPS }}{\text { VG }}\)
．2500E－04
「0－3000s
．7500E－04

\begin{tabular}{c}
\(N\) \\
\(\stackrel{1}{1}\) \\
\(\stackrel{\rightharpoonup}{*}\) \\
\multirow{2}{*}{}
\end{tabular}

M
\(\stackrel{1}{4}\)
\(\stackrel{N}{n}\) M
\(\stackrel{N}{U}\)
山
N
M
1
W
N
 2750E－03 ．3000E－03 \(M\)
\(\stackrel{M}{1}\)
\(\stackrel{\rightharpoonup}{*}\)
N
N M
\(\stackrel{y}{1}\)
山
M
M 3750E－03 4000E－03
 \begin{tabular}{c} 
M \\
\(\stackrel{1}{1}\) \\
\(\stackrel{1}{\otimes}\) \\
\(\stackrel{B}{8}\) \\
\hline
\end{tabular} 4750E－03
 BMASS
KG／S
\(.2500 E-04\)
\(.5000 E-04\) ．7500E－04 ．1009E－03 ．1250E－03 ．1476E－03
 ．1528E－03 1543E－03
 ．1565E－03 ．1569E－03 ．1572E－93 ．1571E－03 ．1570E－03 ．1567E－03 ．1551E－03 ．1554を－03 ．1547E－03 \begin{tabular}{l}
\(M\) \\
0 \\
\(\omega\) \\
\(\omega\) \\
\(\cdots\) \\
\(\cdots\) \\
\hline
\end{tabular} AMASS
KG／5
\(.7724 E-03\)
\(.9357 E-03\)
\(.1065 E-02\)
\(.1138 E-02\)
\(.1186 E-02\)
\(.1218 E-02\)
\(.1242 E-02\)
\(.1261 E-02\)
\(.1273 E-02\)
\(.1285 E-02\)
\(.1291 E-02\)
\(.1295 E-02\)
\(.1297 E-02\)
\(.1296 E-02\)
\(.1295 E-02\)
\(.1293 E-02\)
\(.1288 E-02\)
\(.1282 E-02\)
\(.1276 E-02\)
\(.1270 E-02\) nUMEER

MA／MV
OFLR
W／CM－2
\(.4191 E-01\)
\(.1157 E+00\)


\(.9490 E+\square 1\)
 \(10+38602^{\circ}\) \(10+\exists \varepsilon 0 \varepsilon 9^{\circ}\) ع0－ヨ0002• \(18+\exists \downarrow 201^{\circ}\)
 \(.1126 \mathrm{E}+01.2500 \mathrm{E}-03.5138 \mathrm{E}+01\)




 W．
＋
N
N
N \(.3030 \mathrm{E}+\mathrm{a}\) I
． \(4500 E-03.2850 E+81\)
．2686E＋ 1

．5000E－03

RFDOT
3
2
2 \(.1784 E-02.4972 E-01\)
\(.3594 E-02.6689 E-01\)

．P983E－02 ． \(8853 \mathrm{E}-01\)
\(10-38 \triangleright 9 く^{\circ}\) \(.7179 E-01\) ． \(7059 \mathrm{E}-01\) ．1323E－01 ．6897E－01
．6717E－01
．1538E－01

\(.3573 E+00\) \(.8418 \mathrm{E}-02\) \(.9311 \mathrm{E}-02\) \(6157 E+20\) \(.9489 E+00\)
\(.9946 \mathrm{E}+8 \mathrm{~B}\)
\(1033 E+01\)
\(\varepsilon 0+\exists 2 S I I^{\circ} \varepsilon 0+\exists 990 己^{\circ}\)
\(\Sigma 0+\exists\) S281• \(\varepsilon 0+\exists 1082^{\circ}\) \(.3533 E+03.2606 E+0.3\) \(.4203 E+03.3367 E+03\) \(.4249 E+03.3436 E+03\)
\(.4282 E+03.3490 E+03\)
\(.4298 \mathrm{E}+03.3523 \mathrm{E}+03\)

\section*{\(.4313 E+03.3553 E+03\)}
 \(11.4658 \mathrm{E}+00.4759 \mathrm{E}+03\) \(\varepsilon 日+\exists l \triangleright \angle \nabla^{\circ} 0 日+\exists \varepsilon 日 \angle 大^{\circ}\) 乙ा \(13.4744 \mathrm{E}+00.4722 \mathrm{E}+03\) \(14.4782 \mathrm{E}+00.4690 \mathrm{E}+03\)

 \(17.4880 \mathrm{E}+90.4576 \mathrm{E}+23\) \(18.4908 \mathrm{E}+00.4528 \mathrm{E}+03\) \(19.4935 E+00.4475 E+03\) \(.4422 E+03\)


20
\(C S=4.00 \quad W 0=.0300 \quad \mathrm{KW}=5.09 \quad 0.55 \times 0.30 \mathrm{ROOM}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline NUMEER & AMASS KG/S & \begin{tabular}{l}
BMASS \\
KG/S
\end{tabular} & VMASS KG/S & \[
\begin{aligned}
& \text { PYMASS } \\
& \text { KG } 15
\end{aligned}
\] & \[
\begin{aligned}
& X D \\
& M
\end{aligned}
\] & \[
\begin{aligned}
& X N \\
& M
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{HF} \\
& \mathrm{M}
\end{aligned}
\] & \[
\begin{aligned}
& \text { FIRE } \\
& \text { KW }
\end{aligned}
\] \\
\hline 1 & . 1868E-02 & .7500E-04 & . \(7500 \mathrm{E}-84\) & .0000E+00 & \(.1350 E+00\) & . \(1419 \mathrm{E}+80\) & . \(1350 \mathrm{E}+00\) & 18 \\
\hline 2 & . \(2423 \mathrm{E}-02\) & . 1500E-03 & . 1500E-03 & .0000E+00 & . \(1212 \mathrm{E}+00\) & . \(1381 \mathrm{E}+00\) & . \(1212 \mathrm{E}+00\) & . \(3735 \mathrm{E}+0\) \\
\hline 3 & .2750E-02 & .2250E-03 & .2250E-03 & .0000E+00 & . 1077E+00 & \(.1188 \mathrm{E}+00\) & . 1077E+00 & . \(5602 \mathrm{E}+8\) \\
\hline 4 & . 2944E-02 & . 3000E-03 & . 3000E-03 & .0000E+ & .9593E-01 & . 1099E+00 & .9593E-01 & . 7 \\
\hline 5 & .3057E-82 & . \(3705 \mathrm{E}-0\) & . \(3750 \mathrm{E}-03\) & . 4472E-0 & .8607E-01 & . 1028E+00 & .8607E-81 & . \(9226 \mathrm{E}+0\) \\
\hline 6 & . \(3159 \mathrm{E}-82\) & . \(3829 \mathrm{E}-03\) & . \(4500 \mathrm{E}-03\) & . \(67105-04\) & .7830E-01 & .9936E-01 & . \(7830 \mathrm{E}-01\) & .9534E+ \\
\hline 7 & . \(3236 \mathrm{E}-02\) & . \(3923 \mathrm{E}-03\) & . \(5250 \mathrm{E}-03\) & . 1327E & . \(7173 E-01\) & .9494E-01 & . \(7173 \mathrm{E}-01\) & . 9767 \\
\hline 8 & . \(3284 \mathrm{E}-02\) & . \(3981 \mathrm{E}-03\) & .6000E-03 & .2019E-03 & .6610E-01 & .9210E-01 & .6610E-01 & . \(9912 \mathrm{E}+\) \\
\hline 9 & .3316E-92 & . 4019E-03 & .6750E-03 & .2731E-03 & .6122E-01 & .8983E-01 & .6122E-01 & . \(1001 \mathrm{E}+02\) \\
\hline 10 & .3334E-02 & . \(4041 \mathrm{E}-03\) & .7500E-03 & .3459E-03 & .5695E-01 & .8793E-01 & .5695E-01 & . 1006E+ \\
\hline 11 & . \(3341 \mathrm{E}-02\) & . \(4050 \mathrm{E}-03\) & .8250E-03 & . 4200E-03 & . 5320E-01 & . \(8634 \mathrm{E}-01\) & . 5320E-01 & 1008E+8 \\
\hline 12 & .3341E-02 & . \(4050 \mathrm{E}-8\) & .9000E & . 49505 & .4986E-8 & . \(8496 \mathrm{E}-8\) & . 4986E-01 & 1808 \\
\hline 13 & .3335E-02 & . 4042E-03 & .9750E-03 & .5708E-03 & .4689E-01 & .8376E-01 & .4589E-01 & . 1006E+0 \\
\hline 14 & . \(3324 \mathrm{E}-02\) & . 4929E-03 & . 1050E-02 & .647 1E-03 & .4422E-01 & .8269E-91 & .4422E-01 & 00 \\
\hline 15 & .3399E-02 & - 4011E-03 & . 1125E-02 & . \(2239 \mathrm{E}-03\) & .4180E-01 & .8173E-01 & . 4180E-01 & . \(99865+\) \\
\hline 16 & . \(3291 \mathrm{E}-02\) & .3989E-03 & . 1200E-02 & . \(8011 \mathrm{E}-03\) & . \(3961 \mathrm{E}-01\) & .8086E-01 & . \(3961 \mathrm{E}-81\) & . 9933E+8 \\
\hline 17 & . \(32.71 \mathrm{E}-02\) & . \(3955 \mathrm{E}-03\) & . 1275E-02 & .8785E-03 & .3761E-01 & .8006E-01 & .37615-01 & . 9872E+ \\
\hline 18 & .3249E-02 & . \(3938 \mathrm{E}-03\) & . 1350E-02 & .9562E-03 & .3578E-01 & .7933E-01 & .3578E-01 & .9805E+0 \\
\hline 19 & . \(3223 \mathrm{E}-02\) & . 3307E-03 & . 1425E-02 & . 1034E-92 & . \(3410 \mathrm{E}-01\) & .7869E-01 & .3410E-01 & .9728E+0 \\
\hline 29 & . 3200E-02 & .3879E-03 & . \(\mathrm{S} 500 \mathrm{E}-02\) & . \(1112{ }^{\text {en-02 }}\) & .3255E-01 & .7801E-01 & . \(3255 \mathrm{E}-8\) & . 9659 \\
\hline
\end{tabular}
MA／MV

KG／S 7500E－04 \(.1500 \mathrm{E}-03\) ．2250E－03
 \(.3750 E-03\) \(.1218 \mathrm{E}+01\) 8974E－01．2635E＋01 \(.4693 \mathrm{E}+81\) \(10+35015^{\circ} 10-30 \varepsilon 19^{\circ} 10-38601^{\circ}\)

\section*{5539E－01 ． \(5415 \mathrm{E}+01\)} \(.5044 \mathrm{E}-81\) ． \(4621 E-01\) ．4260E－01 10－ \(3156 \varepsilon^{\circ}\)
．1262E－01 1441E－01 \(.1634 E-01\)

\section*{\(\stackrel{\rightharpoonup}{0}\)
\(\stackrel{+}{4}\)
\(\stackrel{0}{0}\)
\(\stackrel{0}{0}\)}

\section*{\(.5633 E+01\)} \(.5243 E+01\)
 \(.6831 E+03.48095+01\)

\(.6567 E+03.4489 E+01\)

\(.6433 E+03\)
\(K W=5.00\)
\(0.56 \times 0.30 \mathrm{ROOM}\)
\(.7426 E+03\)
\(\varepsilon 0+395 \varepsilon 2^{\circ}\) \(.8222 E+03\)
£0＋32062．\(\varepsilon 日+38 \varepsilon 28\)

\section*{と0＋ヨ1062＂\(\varepsilon \square+\exists \varepsilon 己 28 ~\)} \(.8182 E+03.7866 E+03\) \(8122 E+03.7810 E+03\) \(\varepsilon 0+\exists 8 \varepsilon \angle 2^{\circ} \Sigma Q+\exists 9 \triangleright 08^{\circ}\) \(\varepsilon 0+\exists 259 \iota^{\circ} \varepsilon \square+36562\) \(00+3 \angle 5 \angle 0^{\circ} 6\) \(00+3 \angle 188^{\circ} 01\) \(00+30280^{\circ}\) II
\(12.4916 \mathrm{E}+00\)
\(13.4957 E+00\) \(14.4993 \mathrm{E}+00.7861 \mathrm{E}+03.7556 \mathrm{E}+03.7174 \mathrm{E}+03 \quad .5397 \mathrm{E}+01\) ع \(2+3 \angle \Sigma 89^{\circ} \Sigma 0+39 巾 12^{\circ}\)
\(00+38715{ }^{\circ} 02\)
\(00+3298 \varepsilon^{\circ} \varepsilon\) 4． \(4148 \mathrm{E}+00\) \(5.4393 \mathrm{E}+00\) \(6.4509 E+00\)

F

UMIBER EG
\(1.3227 E+00.175\) \(2.3555 E+00.3644 E+03\) \(.5252 E+03\) \(.6759 E+03\)
\(8038 E+03\) \(8154 \mathrm{E}+03\)
 \(00+3889 \nabla^{-8}\) ，


1 \(\qquad\)
15 \(.7068 E+03\)
\(.6953 E+03\) \(.7221 E+03\) 20 \(+395 \angle 2^{\circ}\) \(15.5025 E+00\) \(15.5055 \mathrm{E}+00\) \(17.5081 E+00\) \begin{tabular}{l}
\(18 \cdot 5106 E+00.7403 E+03\) \\
\(19.5128 E+00.7273 E+03\) \\
\hline
\end{tabular} \(.6965 E+033\)

\section*{KW}
\[
.2073 E-01
\] 10－306ャc． 20－30051• \(10+32080^{\circ}\) \(.2440 \mathrm{E}-21\)
\(\overrightarrow{+}\)
+
\(\underset{\sim}{4}\)
\(M\)
\(\cdots\)
FIRE
．1867E＋0 1 \(10+\exists 5 \varepsilon \angle \varepsilon^{\circ}\) \(.5602 E+81\) \(.7470 E+01\) \(10+32 \varepsilon \varepsilon 6^{\circ}\) ．1120E＋02 \(20+\exists 20 \varepsilon 1^{\circ}\) 20＋360ロ1．
 20＋コ09～1．
 \(20+36801^{\circ}\) 20＋ヨ26ロ1． 20＋ヨてロS！ \(20+\)＂3SOSI \({ }^{\circ}\)
 ．1505E＋02 \(20+3\) Easi \({ }^{-}\) ．1500e＋ 02 \begin{tabular}{r} 
N \\
+ \\
世 \\
W \\
\multirow{2}{*}{} \\
\hline
\end{tabular}

\section*{높}
\(.1459 E+00\)
\(00+\exists \angle \square \varepsilon V^{\circ}\)
0ロ＋ヨスIてI。
\(.1102 \mathrm{E}+00\)

10－38 1 16 \(^{\circ}\)
．8439E－01
10－30082．
\begin{tabular}{c}
\(\overrightarrow{0}\) \\
\multirow{2}{*}{} \\
\(\stackrel{N}{N}\) \\
\multirow{2}{*}{}
\end{tabular}
\(\overrightarrow{0}\)
\(\stackrel{1}{3}\)
\(\underset{\sim}{0}\)
\(\stackrel{0}{0}\)
10－38629＊
\(\overrightarrow{0}\)
ü
等
0
\(\overrightarrow{0}\)
\(u\)
u
0
0
0
0
\(\overrightarrow{0}\)
\(u\)
\(w\)
0
0
0

． 48 PTE－01

．4443E－81 ．4251E－01 \begin{tabular}{c}
\(\vec{D}\) \\
\(\stackrel{u}{v}\) \\
\(\stackrel{\rightharpoonup}{v}\) \\
\hline
\end{tabular}
\begin{tabular}{cll} 
PYMASS & XD & XN \\
KG／S & \(M\) & \(M\)
\end{tabular}
\(1505 E+00\)
－ 0 ＋3Iロロ！
\(.1292 E+00\)
\(.1201 \mathrm{E}+00\)
．1126E＋00
1064E＋00
1012E＋00
\(\stackrel{\rightharpoonup}{0}\)
\(\vec{\circ}\)
\(\stackrel{1}{4}\)
\(\stackrel{3}{\sim}\)
\(\widetilde{\sigma}\)

．9013E－01
\(\overrightarrow{0}\)
\(\stackrel{1}{7}\)
\(\infty\)
\(\infty\)
\(\overrightarrow{0}\)
1
\(山\)
u
0
0
0
\(\overrightarrow{0}\)
\(\stackrel{1}{\sim}\)
\(\stackrel{N}{N}\)
\(\stackrel{n}{0}\)

．836日E－01

．8190E－01
\(\overrightarrow{0}\)
\(\stackrel{1}{4}\)
\(\stackrel{\rightharpoonup}{\square}\)
.

\(.1459 E+00\)
1347E＋00
1217E＋00
1102E＋00
1003E＋00
．9178E－01
． \(0439 E-01\) ．7804E－01
\begin{tabular}{l}
\(\overrightarrow{0}\) \\
\(\underset{\sim}{u}\) \\
\(\stackrel{N}{N}\) \\
\multirow{2}{*}{}
\end{tabular}
．6811E－01
．6399E－01
\(\overrightarrow{0}\)
1
w
w
en
0

\(\overrightarrow{0}\)
\(\tilde{u}\)
\(\tilde{\sim}\)
0
\(n\)

487アE－01
\(\overrightarrow{0}\)
\(\stackrel{1}{4}\)
\(\stackrel{1}{7}\)
\(\square\)
4443E－81
．4251E－01

PYMASS
\(\underset{\text { KGMAS }}{\text { KG／S }}\)
－ 0 －3005 \(2^{\circ}\)
M
\(\stackrel{1}{1}\)
\(\stackrel{1}{\otimes}\)
\(\stackrel{n}{n}\)
2250E－03
． \(3000 \mathrm{E}-03\)
3750E－03

M
㺃
N
N

\(M\)
0
\(山\)
0
0
0
．7500E－03
．8250E－03



．1125E－02
\begin{tabular}{c}
\(N\) \\
\(\stackrel{N}{\sim}\) \\
山 \\
N \\
\multirow{2}{*}{}
\end{tabular}
\begin{tabular}{c}
\(N\) \\
\multirow{1}{1}{} \\
N \\
\multirow{1}{N}{} \\
\hline
\end{tabular}
 ．1425E－02

BMASS
KG／S
\(.7500 E-04\)
\(.1500 E-03\)
\(.2250 E-03\)
\(.3000 E-03\)
\(.3750 E-03\)
\(.4500 E-03\)
\(.5250 E-03\)
\(.5658 E-03\)
\(.5778 E-03\)
．5865E－03
．5928E－03
 ． \(5011 \mathrm{E}-03\)
． 603 ：E－03

．6046E－93
． \(6543 E-03\)
．5035E－03
N
N
W
N
0
0
\begin{tabular}{c}
\(M\) \\
0 \\
1 \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
AMASS
\(\mathrm{KG} / \mathrm{S}\)
\(.2229 \mathrm{E}-02\)
\(.3070 \mathrm{E}-02\)
\(.3610 \mathrm{E}-02\)
\(3995 \mathrm{E}-02\) ．4264E－02
．4448E－02 ．4576E－02







 ．4988E－02
 N
0
1
\(\tilde{W}\)
N
w


 \(20+39 \mathrm{~b} 02\) \(.1605 E+02\) \(N\)
O
W
N
M
\(\cdots\) \(.1137 E+02\) \(.9883 E+01\) \(.8717 E+01\) \(.7780 E+01\) \(.7062 E+01\) \(10 \div 32589^{\circ}\) \(.5928 E+01\) \(.5481 E+\square 1\) \(.5086 E+01\) \(4739 E+01\) \(.4432 E+01\) \(.4157 E+01\) \(.3910 E+01\) \(.3688 E+01\) \(.3487 E+01\)
\(\overrightarrow{0}\)
+
\(\dot{W}\)
\(M\)
\(\cdots\)
\(?\)

7500E－24 \(.1500 E-03\) ．2250드－03 ．3000E－03 \(.3750 E-03\) \(.4500 E-93\) ．5250E－03 \(.8077 E+01.6000 E-03\) \(.8446 E+91.6750 \mathrm{E}-93\) \(\overrightarrow{0}\)
1
\(\vdots\)
\(\tilde{N}\)
\(\tilde{n}\)
in ．5316E－01 ．4902E－01 \(.4542 E-01\) ．4223E－01
．3946E－91

\(\overrightarrow{0}\)
\(\vdots\)
N
N
M
\(\cdots\)
10－3832玉 ． \(3114 \mathrm{E}-01\) ．2957E－01
-0
0
4
4
0
0
0
0
\(B\)
0
\(\stackrel{4}{N}\)
0
0
0
0

\section*{10－ヨコ981}
．2020E－01
\(.8415 \mathrm{E}+01\) \(.8535 E+01\) ． \(8871 E+01\) \(.9005 \mathrm{E}+01\)
\(.9066 E+01\)
\(.9080 \mathrm{E}+01\)
\(.9956 E+01\)
\(10+\exists \downarrow 668^{\circ}\)
\(.8902 E+01.2185 E-01\)
\(.3797 E+21.2359 E-01\)
10－ヨ5ise
「0－32ロくで

\(28+35 \vee 28^{\circ} 20+39506^{\circ}\)
\(\varepsilon 0+3 \triangleright 898^{\circ} \varepsilon 0+3 ャ 668^{\circ}\)
．8927E＋03 ．8617Ei－03

 \(.9116 E+93\)

0
8
4
0
0
0
0
\(00+30 p 05^{\circ}\) 日Z
\(0.56 \times 0.30 \mathrm{ROOM}\)
\[
.9223 E+03
\]
\(M\)
M
山
0
0
0
0
0
\(12.4770 \mathrm{E}+00.9496 \mathrm{E}+03\) \(13.4817 E+00.9466 E+03\) \(14.4859 \mathrm{E}+00.9426 \mathrm{E}+03\) 15．4897E＋00．9378E＋03 \(16.4931 \mathrm{E}+00.9321 \mathrm{E}+03\) 17 ． \(4962 \mathrm{E}+00.9258 \mathrm{E}+03\) 18 ．4990E＋00．9189E＋03
\[
.9218 E+03
\] －

\[
\begin{aligned}
& \text { F1RE } \\
& \text { KW }
\end{aligned}
\]

\[
.2490 E+01
\]

\[
20+350 \square 2 .
\]

\[
10+30966^{\circ}
\]

\[
.1245 E+02
\]

\[
\text { . } 1494 E+02
\]

\[
20+368 \varepsilon e^{\circ}
\]

\[
20+\exists I \downarrow ट \underbrace{\circ}
\]

\[
20+\exists 2661^{\circ}
\]

\[
20+\exists \varepsilon \square<I^{\circ}
\]

\[
10+30 \angle D<^{\circ}
\]

\[
10+\exists 086 \nabla^{\circ}
\]

\[
.2332 E+92
\]

\[
.2365 E+02
\]

\[
c^{\prime} \theta+\exists \angle I \nabla 己 \cdot
\]

\[
.2426 E+02
\]

\[
.2431 E+02
\]

\[
.2432 E+02
\]

\[
.2432 E+02
\]

\[
.2431 E+82
\]

\(.2427 E+02\)
尘 \(\Sigma\)
\(.1561 E+00\)
\(00+3 \varepsilon\) IDI•





 ． \(2410 \mathrm{E}-01\)
．6900E－01
． 647 1E－91 ．6090e－01
 \(\overrightarrow{0}\)
\(\stackrel{1}{u}\)
\(\stackrel{y}{w}\)
\(\vec{w}\)
\(\overrightarrow{0}\)
\(\vdots\)
\(\stackrel{3}{4}\)
\(\stackrel{1}{0}\)
in
．4912E－01 ．4682E－01 ． \(4472 \mathrm{E}-81\)
．4279E－01
\(\overrightarrow{0}\)
\(\dot{1}\)
\(\stackrel{0}{\nabla}\)
\(\stackrel{\rightharpoonup}{7}\)
PYMASS \(X D \quad X N\)
\(.1587 E+00\)
\(B 6+3 y 5 D I^{\circ}\)
\(00+362 \varepsilon 1^{\circ}\)
．1229E＋00
\(.1147 \mathrm{E}+\mathrm{BO}\)
\(.1082 \mathrm{E}+0 \mathrm{~B}\)
．1029E＋00
．9848E－81
．9483E－01

．8980E－01

\(\overrightarrow{0}\)
岃
0
0
0
\(\overrightarrow{0}\)
岗
品
0

．8327E－91


．8088e－91
D
N
N
W
0
\begin{tabular}{ll} 
PYMASS & \(\quad \times \mathrm{D}\) \\
\(\mathrm{KG} / \mathrm{S}\) & M
\end{tabular}
． \(1561 E+00\)

1268E＋00
\(.1143 E+00\)
\(.1037 E+80\)

\(\overrightarrow{0}\)
\(\stackrel{1}{N}\)
N
N．
0
．7997E－01

\(\overrightarrow{0}\)
嶱
0
\(\overrightarrow{0}\)
u
条
\(\vdots\)

\(\overrightarrow{0}\)
耑
ị
\(\overrightarrow{0}\)
\(\stackrel{1}{u}\)
\(\stackrel{N}{4}\)
\(!\)
\(\overrightarrow{0}\)
\(\stackrel{1}{4}\)
\(\stackrel{4}{0}\)
\(\stackrel{1}{n}\)
\(\overrightarrow{0}\)
\(\stackrel{1}{\sim}\)
ज
g
4682E－01
\(\overrightarrow{0}\)
\(\stackrel{1}{\sim}\)
\(\stackrel{N}{\tilde{N}}\)

\(\vec{\nabla}\)
\(\stackrel{1}{\otimes}\)
\(\stackrel{\rightharpoonup}{\otimes}\)
\(\underset{\nabla}{F}\)
． \(0000 \mathrm{E}+0 \mathrm{D}\)

－00005＋00
－0000E＋00
．OODOE +00
－0000E＋00
\(\stackrel{\stackrel{\otimes}{+}}{\stackrel{1}{+}}\)

000日E +00
6358E－04
．1503E－03
．2407E－03







N
N
W
N
－
VMASS
KG／S
20－30001
2090E－03
ع0－3060
4000E－03
．5000E－03
．6000E－03
7000E－03
．8000e－03

．1002e－02
1100E－02
12005－02
．1300E－02
．1400E－02

：600E－02



N
U
山
U
N
BMASS
KG／S
をロ－3000！
2000E－03
\begin{tabular}{l} 
M \\
U \\
山 \\
W \\
M \\
\hline
\end{tabular}


．6000e－0．3
7000E－03






\(M\)
0
W
W
N
0
．9744E－03
M
u
w
N
á
．9769E－03




number

MA/MV FUEL
KG/S 1000E-03 .2000e-03 . \(3000 \varepsilon-03\) 4327E+0 \(.9446 E+90\) . 1807E+01 \(.3062 E+01\) . \(4696 \mathrm{E}+01\)
\(.6667 E+01\)
6689E-01 .8944E+01
.5521E-01.1150E+62


ع0+ \(906<2\)
TFLR
응
WCM-2
.6379E-01 .4797E-02
\[
00+35 D 2 \varepsilon^{\circ}
\]
\(.6137 E+92\)

Fu AV
\(\mathrm{M}-2\)
.9866E-02
10-3962!
. 157 1E-01 10-36ャら!. . 1442E-81
.1319E-01

\section*{. 1105E-01} . 4636E+0 1
. \(6618 \mathrm{E}+\mathrm{a} 1\)

\section*{\(.7263 E+03\)} 7. \(4255 \mathrm{E}+00.9001 \mathrm{E}+03.8652 \mathrm{E}+03\). \(8246 \mathrm{E}+03\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline M PEER & AMASS KG/S & BMASS KG/S & VMASS KG/S & PYMASS KG /S & \[
\begin{aligned}
& X D \\
& M
\end{aligned}
\] & \[
\begin{aligned}
& X N \\
& M
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{HF} \\
& \mathrm{M}
\end{aligned}
\] & \[
\underset{\mathrm{KW}}{\mathrm{FIRE}}
\] \\
\hline 1 & .3605E-82 & . 1000E-03 & . 1000E-03 & .0000e+00 & . 1660E+ & . \(1676 \mathrm{E}+00\) & . \(1660 \mathrm{E}+00\) & .2490E+01 \\
\hline 2 & .5462E-82 & .2000E-03 & . 2000 E & .0000E+00 & . \(1542 \mathrm{E}+00\) & . 1564E+00 & \(.1542 E+00\) & . \(4980 \mathrm{E}+81\) \\
\hline 3 & .6936E-82 & . \(3000 \mathrm{E}-03\) & . \(3000 \mathrm{E}-03\) & . \(0900 \mathrm{E}+00\) & . \(1410 \mathrm{E}+00\) & . \(1447 \mathrm{E}+00\) & . \(1410 \mathrm{E}+00\) & . \(2470 \mathrm{E}+01\) \\
\hline 4 & .8149E-02 & . \(4000 \mathrm{E}-03\) & . \(4000 \mathrm{E}-03\) & .0900E+00 & . 1293E+ & . \(1347 \mathrm{E}+00\) & . 1293E+00 & .9960E+81 \\
\hline 5 & .9123E-02 & .5000E-03 & .5000E-0 & .0000E+00 & . 1190E+00 & . 1264E+00 & . \(1190 \mathrm{E}+00\) & . 1245E+02 \\
\hline 6 & .9901E-02 & .6000E-03 & . \(6009 \mathrm{E}-03\) & .0090E+00 & \(.1100 \mathrm{E}+00\) & . \(1194 \mathrm{E}+00\) & \(.1100 \mathrm{E}+00\) & . 1494E+0 \\
\hline 7 & . 1050E & . \(2000 \mathrm{E}-03\) & . 7000 E & .0000E+00 & . 1020E+00 & . \(1136 \mathrm{E}+00\) & . 1020E+00 & . 1743E+02 \\
\hline 8 & . 1096E-01 & . \(8000 \mathrm{E}-03\) & . 8000E-03 & .0000E+00 & .9498E-01 & . 1087E+00 & .9498E-01 & . 1992E+82 \\
\hline 9 & . 1133 E -0 & .9000E-03 & .9000E & .0008 & . 8875 & 15E & .8875 & \(2241 \mathrm{E}+02\) \\
\hline 10 & . 1160E-0 & . 1000E-02 & . 1000E-0 & .0000E+00 & .8322E-81 & . 1010E+00 & .8322E-01 & . \(2490 \mathrm{E}+02\) \\
\hline 11 & .1181E-01 & . 1100E-02 & . 1100E-0 & . \(0000 \mathrm{E}+00\) & .7827E-8 & .9790E-01 & . \(7827 E-01\) & \(2739 \mathrm{E}+82\) \\
\hline 12 & . 1196E-8 & . 1200E & . 1200E-0 & .0000E+0 & . \(7383 \mathrm{E}-8\) & .9532E-01 & . \(7383 \mathrm{E}-8\) & .2988E+02 \\
\hline 13 & . 1208E-0 & . 1300E-02 & . 1300E-02 & .0000E+00 & .6983E-01 & .9294E-01 & .6983E-01 & . \(3237 E+02\) \\
\hline 14 & . 1216E & . 1400 E & .1400E & .0000E & .6620 & .9086E-01 & .6620E-81 & 3486E+ \\
\hline 15 & . 1220E-0 & . 1479E-02 & . 1500E-0 & .2081E-0 & .6291E-01 & .8904E-01 & .6291E-01 & . \(3683 \mathrm{E}+02\) \\
\hline 16 & . 1225E-01 & . 1485E-02 & . 1600E-02 & . 1146E-03 & .5995E-01 & .8750E-01 & .5995E-01 & . \(36998+02\) \\
\hline 17 & . 1232E-0 & . 1494E-02 & .1700E-0 & . 2065E-03 & .5734E-8 & .8647E-01 & . \(5734 \mathrm{E}-01\) & . 37 19E+02 \\
\hline 18 & . 1238E-01 & . 1501E-02 & . 1800E-02 & .2993E-03 & . \(5494 \mathrm{E}-01\) & .8549E-81 & .5494E-01 & . \(3737 \mathrm{E}+02\) \\
\hline 13 & . 1243E-81 & . 1506E-02 & . 1900E-02 & . \(3939 \mathrm{E}-03\) & .5272E-01 & .8463E-01 & .5272E-01 & . \(3750 \mathrm{E}+02\) \\
\hline 29 & . 1247E-01 & . 1511E-02 & .2900E-02 & .4886E-03 & .5067E-01 & .8379E-01 & .5067E-01 & 3763 \\
\hline
\end{tabular}

MRATV
\(.3328 \mathrm{E}+00.2000 \mathrm{E}-03\) 6284E＋00． \(3000 \mathrm{E}-03\) ．3000e－03
．1066E＋01 ．4000E－03
．5000E－03
．6000E－03
．7000E－03
\(1187 \mathrm{E}+00.4626 \mathrm{E}+01 \quad .8000 \mathrm{E}-03\)

20－3000I 10＋308910 00＋3£581＂

\section*{20－39286}

10－ヨヤロロ1•
10－ヨ1 \(221^{\circ}\)


10－36I02•

\section*{10－3ED61．}
\begin{tabular}{l}
\(\overrightarrow{+}\) \\
世 \\
山 \\
M \\
M \\
\hline
\end{tabular}
．7217E＋03
\(20+31202^{\circ}\)
\(1.2659 \mathrm{E}+00.1399 \mathrm{E}+03\)
\(\longmapsto_{\omega}\)
number eg
5022E＋02．4236E－0

\section*{． \(9440 \mathrm{E}+00\)} ．2398E＋03 3536E＋03 4612E＋03

\section*{\(.3145 \mathrm{E}+00.4152 \mathrm{E}+03.3550 \mathrm{E}+03\)} \(.3362 \mathrm{E}+00.5122 \mathrm{E}+03.4525 \mathrm{E}+83\) ． \(3554 \mathrm{E}+00.5985 \mathrm{E}+03\) ． \(5430 \mathrm{E}+03\)
\[
.3724 \mathrm{E}+00.6762 \mathrm{E}+03.6261 \mathrm{E}+03
\]

\section*{． \(3877 \mathrm{E}+00\)}

\section*{\(4016 \mathrm{E}+00-8116 \mathrm{E}+03, .7712 \mathrm{E}+03\)}

\section*{\(.4142 \mathrm{E}+00.8706 \mathrm{E}+03\) ． \(8342 \mathrm{E}+03\)}

\(1160 \mathrm{E}+02\)
．1074E＋02
．9964E＋01
\(.9289 E+01\)
．8683E＋0 1 \(.8136 E+01\) \(.7659 E+01\) \(.3976 E-01.1653 E+02 \cdot 1700 \mathrm{E}-02.7248 \mathrm{E}+01\)

\(.6540 \mathrm{E}+01\)
\(\begin{array}{r}\overrightarrow{9} \\ \stackrel{4}{4} \\ \stackrel{N}{0} \\ \hline 0\end{array}\)
．9018E＋01．1100E－02

1300E－02
\(.1458 \mathrm{E}+02.1400 \mathrm{E}-02\)
20－300s！ \(20+\exists 2291^{\circ}\)
\(.1638 \mathrm{E}+02.1600 \mathrm{E}-02\)

．1900E－02



10－3595E．
\(\overrightarrow{0}\)
\(\dot{U}\)
0
W
M
\[
.1385 \mathrm{E}-01
\]
10－360 \(21^{\circ}\)
IU-JSS91•
\[
10-309 I^{\circ}
\]
\[
18-3 D \angle V I^{\circ}
\]



NBS-114A (REV. 7-73)
\begin{tabular}{|c|c|c|c|}
\hline U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET & 1. PUBLICATION OR REPORT NO. NBSIR 78-1511 & 2. Gov't Accession No. & 3. Recipient's Accession No. \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
4. TITLE AND SUBTITLE \\
Experimental and Theoretical Analysis of Quasi-Steady Small-Scale Enclosure Fires
\end{tabular}}} & 5. Publication Date October 1978 \\
\hline & & & 6. Performing Organization Code \\
\hline \multicolumn{3}{|l|}{7. AUTHOR(S) J. G. Quintiere, B. J. McCaffrey and K. DenBraven} & 8. Performing Organ. Report No. \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
9. PERFORMING ORGANIZATION NAME AND ADDRESS \\
NATIONAL BUREAU OF STANDARDS \\
DEPARTMENT OF COMMERCE \\
WASHINGTON, D.C. 20234
\end{tabular}}} & \[
\begin{aligned}
& \text { 10. Project/Task/Work Unit No. } \\
& 7515676 \\
& \hline
\end{aligned}
\] \\
\hline & & & 11. Contract/Grant No. \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP) \\
Same as No. 9
\end{tabular}}} & 13. Type of Report \& Period Covered Final \\
\hline & & & 14. Sponsoring Agency Code \\
\hline
\end{tabular}
15. SUPP LEMENTARY NOTES
16. ABSTRACT (A 200-word or less factual summary of most sienificant inforqation. If documentincludes asifenificiflucted to
bibliography or literature survey, mention it here.) Forty-six small-scale experiments wet measure the characteristics of horizontal plastic (PMMA) pool fires in an enclosure as a function of doorway width and fuel area. A 0.30 m high enclosure was instrumented to measure sample mass loss, the upper gas layer and ceiling temperatures, heat flux to the floor, and the pressure drop across the doorway. Results are reported for the maximum steady burning period; however, a few cases do not seem to have reached a steady state. For small sample sizes, a distinct fire plume could be perceived in the enclosure, while for larger sample sizes flames tended to fill the enclosure (sometimes to within 2 or 3 cm of the floor), and extended out the door opening.

The rate of mass loss is a strong function of the radiative feedback from the enclosure. However, reduced oxygen concentration in the flow entrained by the fire plume seems also to affect the mass loss rate. For the smaller doorway widths, the rate of mass loss increases almost directly with ventilation. As the width is increased, the mass loss rate instead becomes a function of sample area and radiative heat transfer. For some sample sizes, as the doorway width is increased a maximum rate of mass loss is achieved, fallowed by a decrease in burning rate at higher ventilation levels. The temperatures and floor heat flux also tend to follow this trend.

The data were then compared to the results of a theoretical model. Agreement between theory and data is qualitatively good. But overall, good quantitative agreement is not achieved. This lack of agreetrent appears coneistent with inaccuraries of the flame radiation model and an incomplete description of the flame chemistry.
17. KEY WORDS (six to twelve entries; alphabetical order; capatalize only the first letter of the first key word unless a oroper name; separated by semicolons) Burning rate; enclosure fires; experiment; mathematical
models; radiation; small scale; ventilation.
18. AVAILABILITY

\section*{\(\square\) Unlimited}
X. For Official Distribution. Do Not Release to NTIS*
\(\square\) Order From Sup. of Doc., U.S. Government Printing Office
Washington, D.C. 20402, SD Cat. No. C13
\(\square\) Order From National Technical Information Service (NTIS) Springfield, Virginia 22151
\begin{tabular}{|c|c|}
\hline 19. SECURITY CLASS (THIS REPURT) & 21. NO. OFP PAGES \\
\hline UNCI ASSIFIED & \\
\hline 20. SECURITY CI.ASS (THIS PAGE) & 22. Price \\
\hline UNCLASSIFIED & \\
\hline
\end{tabular}

The maln text of this report will be available in a non-NBS publicatlascommoczenti.e.t This expanded version is for limited distribution to specialists.```

