NBSIR 78-1473

Optical Materials Characterization

Albert Feldman, Deane Horowitz, Roy M. Waxler and Marilyn J. Dodge

Ceramics, Glass and Solid State Science Division Center for Materials Science National Bureau of Standards Washington, D.C. 20234

May 1978

Period Covered: August 1, 1977 to January 31, 1978 ARPA Order No: 2620

Prepared for Advanced Research Project Agency Arlington, Virginia 22209

NBSIR 78-1473

OPTICAL MATERIALS CHARACTERIZATION

Albert Feldman, Deane Horowitz, Roy M. Waxler and Marilyn J. Dodge

Ceramics, Glass and Solid State Science Division Center for Materials Science National Bureau of Standards Washington, D.C. 20234

May 1978

Period Covered: August 1, 1977 to January 31, 1978 ARPA Order No: 2620

Prepared for Advanced Research Project Agency Arlington, Virginia 22209

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary Dr. Sidney Harman, Under Secretary Jordan J. Baruch, Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director *v**

OPTICAL MATERIALS CHARACTERIZATION

Albert Feldman, Deane Horowitz, Roy M. Waxler, and Marilyn J. Dodge

Ceramics, Glass & Solid State Science Division Center for Materials Science

ARPA Order No	•	•	•	•	•	•	•	•	•	•	2620
Program Code Number	•	•	•	•	•	•	•	•	•	•	4D10
Effective Date of Contract	•	•	•	•	•	•	•	•	•	•	January 1, 1974
Contract Expiration Date .	•	•	•	•	•	•	•	•	•	•	September 30, 1978
Principal Investigator	•	•	•	•	•	•	•	•	•	•	Albert Feldman (301) 921-2840

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced Research Projects Agency or the U.S. Government. The results in this report are preliminary in nature and are subject to change.

Table of Contents

1.	Techr	nical Report Summary	
	1.1	Technical Problem	
	1.2	General Methodology	
	1.3	Technical Results	
	1.4	Department of Defense Implications	
	1.5	Implications for Further Research	
2.	Techr	nical Report	
	2.1	Thermo-optic and Linear Thermal Expansion Coefficients	
	2.2	Piezo-optic Constants	
3.	Ackno	owledgement	

OPTICAL MATERIALS CHARACTERIZATION

Abstract

The piezo-optic constants of CaF_2 , BaF_2 , and SrF_2 have been measured at 0.6328 µm and 1.15 µm. The temperature dependence of the refractive indices of CdF₂, MgF₂, and NaCl have been measured at several wavelengths in the infrared by the method of Fizeau interferometry. The linear thermal expansion coefficients of NaCl and CdF₂ as a function of temperature have also been measured.

OPTICAL MATERIALS CHARACTERIZATION

1. Technical Report Summary

1.1 Technical Problem

Windows subjected to high-average-power laser radiation will undergo optical and mechanical distortion due to absorptive heating. If the distortion becomes sufficiently severe, the windows become unusable. Theoretical calculations of optical distortion in laser windows depend on the following material parameters; absorption coefficient, refractive index, change of index with temperature, thermal expansion coefficient, stress-optical constants, elastic compliances, specific heat, thermal conductivity and density. Our program has been established to measure refractive indices, changes of index with temperature, stress-optical constants, elastic compliances, and thermal expansion coefficients of candidate laser window materials.

1.2 General Methodology

Laboratory experiments are conducted for measuring refractive indices, changes of index with temperature, stress-optical constants, elastic compliances, and thermal expansion coefficients.

The refractive indices of prismatic specimens are measured on precision spectrometers by using the method of minimum deviation. Two spectrometers are used. One instrument, which uses glass optics, is used for measuring refractive indices in the visible with an accuracy of several parts in 10°. The other instrument, which uses mirror optics, is used for measuring refractive indices in the ultraviolet and the infrared to an accuracy of several parts in 10°. Using both spectrometers we can measure refractive indices over the spectral region 0.2 μ m to 50 μ m.

We measure the coefficient of linear thermal expansion, α , by a method of Fizeau interferometry. The interferometer consists of a specially prepared specimen which separates two flat plates. Interference fringes are observed due to reflections from the plate surfaces in contact with the specimen. We obtain α by measuring the shift of these interference fringes as a function of temperature. We can measure α from -180 °C to 800 °C.

The change of refractive index with temperature, dn/dT, is measured by two methods. In the first method, we measure the refractive index with the precision spectrometers at two temperatures, 20 °C and 30 °C, by varying the temperature of the laboratory. This provides us with a measure of dn/dT at room temperature. The second method may be used for measuring dn/dT from 180 °C to 800 °C. We obtain dn/dT from a knowledge of the expansion coefficient and by measuring the shift of Fizeau fringes in a heated specimen as a function of temperature. The Fizeau fringes are due to interferences between reflections from the front and back surfaces of the specimens.

We measure piezo-optic coefficients and elastic compliances using a combination of Twyman-Green and Fizeau interferometers. From the shift of fringes in specimens subjected to uniaxial or hydrostatic compression, we obtain the necessary data for determining all the stress-optical constants and elastic compliances.

In materials with small piezo-optic constants or in materials that cannot withstand large stresses, we use interferometers designed to measure fractional fringe shifts. At 10.6 μ m we use a modified Twyman-Green interferometer which has a sensitivity of 0.01 λ . At 632.8 nm, we use a modified Dyson interferometer which has a sensitivity of 0.002 λ . When using these interferometers to measure piezo-optic constants we must know the elastic constants of the material under test.

1.3 Technical Results

The temperature dependences of the thermo-optic coefficients of CdF₂, MgF₂ and NaCl have been measured over the temperature range -180 °C to 200 °C at discrete wavelengths in the infrared by the method of Fizeau interferometry. The linear thermal expansion coefficients of CdF₂ and NaCl were also measured over the same temperature range. (Section 2.1)

The piezo-optic constants q₁₁, q₁₂, and q₄₄, of CaF₂, BaF₂ and SrF₂ have been measured at 0.6328 μm and 1.15 μm . (Section 2.2)

1.4 Department of Defense Implications

The Department of Defense is currently constructing high-power laser systems. Criteria are needed for determining the suitability of different materials for use as windows in these systems. The measurements we are performing provide data that laser system designers can use for determining the optical performance of candidate window materials.

1.5 Implications for Further Research

We plan to measure the refractive indices of SrF_2 and MgF_2 from the ultraviolet into the infrared. Measurements of the thermo-optic coefficients of LiF, NaF₂, MgF₂, CdF₂, NaCl, Al₂O₅, CaF₂, BaF₂, SrF₂, KCl, and KBr are planned for the wavelengths 458 nm and 350 nm. Piezo-optic coefficient measurements are planned for SiO₂, CaF₂ and Al₂O₅ at 350 nm. All this work cannot be done by September 30, 1978, however, we will do as much as possible under the constraints of the funding available.

2. Technical Report

2.1 Thermo-optic and Linear Thermal Expansion Coefficients

In addition to the previously reported [1] dn/dT data on CaF₂, BaF₂, KBr(RAP), KC1(RAP), LiF, NaF, SrF₂, ZnS(CVD), and ZnSe(CVD), dn/dTwas measured on single crystals of CdF₂, MgF₂, and NaC1.

Figure 1 shows a plot of dn/dT as a function of temperature for CdF₂ at the two helium-neon laser wavelengths, 0.6328 µm and 3.39 µm, for the temperature range, -180 °C to 200 °C. The solid line curve represents a least squares, third order polynomial fit to the .6328 µm dn/dT data. Table 1 presents the results of this fit and a similar third order polynomial fit at 3.39 µm in a tabulated form with 20 °C temperature intervals. The errors in the table are the standard deviation of the experimental data to the least squares fit.

dn/dT as a function of temperature for NaCl is shown in Figure 2 for the three wavelengths, $0.6328 \mu m$, $1.15 \mu m$, and $3.39 \mu m$. The results of a least squares third order polynomial fits for each wavelength are presented in Table 2.

MgF₂, which is an anisotropic crystal, was measured at 0.6328 µm and 3.39 µm with the electric field parallel to the c-axis to get dn /dT, and with the electric field perpendicular to the c-axis to get dn /dT. The birefringence as a function of temperature, $d(n_{e}-n_{e})/dT$, was also measured at 0.6328 µm. The birefringence as a function of temperature was too small to be measured at 3.39 µm. The upper set of points in Figure 3 shows dn /dT as a function of temperature at 0.6328 µm and 3.39 µm, the middle set of points shows dn /dT as a function of temperature at 0.6328 µm and 3.39 µm, and the lower set of points shows the experimentally measured birefringence, $d(n_{e}-n_{e})/dT$, at 0.6328 µm data in which there was the constraint that the difference in the dn /dT and dn /dT fits equals the birefringence fit, $d(n_{e}-n_{e})/dT$. Table 3 shows the tabulated results for MgF₂.

The refractive indices, the specimen thicknesses, and references to the thermal expansion coefficient, all of which were used in the computation of the results for each of the materials, are given in Table 4.

The linear thermal expansion coefficients of NaCl and CdF₂ were also measured. Figure 4 gives the thermal expansion of NaCl in which the triangles are the experimental results and the circles are the AIP handbook values. The dashed line represents the fit to our data, which was used to calculate dn/dT for NaCl. Figure 5 gives the thermal expansion of CdF₂ as a function of temperature. Only one reference to the thermal expansion of CdF₂ was found.

2.2 Piezo-optic Constants

The piezo-optic constants have been treated amply in the literature [2] so that it is not necessary to describe them here. The rare-earth fluorides are cubic belonging to the crystal class m3m and have three piezo-optic coefficients, q_{11} , q_{12} , and q_{44} . These coefficients have been evaluated at two wavelengths, 0.6328 µm and 1.15 µm by measuring the changes in optical path length induced by compressive loading on specimens in the shape of rectangular prisms. Helium-neon laser sources were used at both wavelengths, and the optical path change was measured interferometrically by noting the shift in interference fringes. The fringes were detected by a silicon matrix vidicon camera and observed on a television monitor. Determinations were made for CaF₂, SrF₂ and BaF₂.

The specimens, which were obtained commercially, had been precision ground to the approximate dimensions, $38mm \ge 13mm \ge 13mm$. The method of mounting and loading the specimens has been described earlier [3]. Two specimens of each material were fabricated. In the first specimen, the longest dimension was parallel to the <001> crystallographic direction and the light was propagated parallel to the <010> direction. In the second specimen the longest dimension was parallel to the <111> direction and the light was propagated along the <110> direction.

Two opposite long faces of each prism had been polished sufficiently flat and parallel so that about six localized, Fizeau-type interference fringes could be observed across the face when illuminated with collimated monochromatic light. At the wavelength, $0.6328 \ \mu\text{m}$, q_{11} and q_{12} were determined by measuring the shift in these Fizeau fringes with load on the <001> specimens. The coefficient q_{44} was obtained from stress birefringence measurements on a <111> specimen. The optical set-up and equations relating the changes in refractive index with stress have been presented elsewhere [3-6].

At 1.15 µm, the use of a <001> prism for the determination of q_{11} and q_{12} was found to be inadequate because of the small shift in interference fringes with load; instead, the <111> prism was used. Measurements were made of the shift in interference fringes for light polarized both vertically and horizontally. q_{11} and q_{12} were then evaluated by solving simultaneously the two equations

$$\Delta n_1 = n_0^3 (q_{11} + 2q_{12} + 2q_{44}) \frac{p}{6}$$
(1)

and

$$\Delta n_2 = n_0^3 (q_{11} + 2q_{12} - q_{44}) \frac{P}{6}$$
(2)

where Δn_1 and Δn_2 are respectively, the refractive index changes for light polarized vertically and horizontally, n_1 is the initial refractive index, and P is the applied stress. To determine q_{11} and q_{12} from the above equations, it is necessary to know q_{44} , and this value was found by measuring the stress induced birefringence in the <111> specimen. The results of the study are presented in Table 5. The data indicate that there is little dispersion between the determinations at $0.6328 \ \mu\text{m}$ and $1.15 \ \mu\text{m}$. For comparison, data from the literature [7] taken at $0.6328 \ \mu\text{m}$ are also presented. Except for q_{11} and q_{12} in CaF₂, the disagreement of our data with the data in the literature is significant. We suspect that many of the deviations observed may be due to erroneous values of the elastic constants in the literature. These constants are used in the analysis of the interferometric data in order to obtain the piezo-optic coefficients. They are also used in the conversion of elasto-optic coefficients to piezo-optic coefficients.

An example of the difficulty with the elastic compliances arose in the measurement of the piezo-optic constants of SrF_2 . It was found that the coefficients q_{11} and q_{12} obtained on the <001> specimen differed from the values obtained on the <111> specimen. The discrepancy was resolved by the performance of measurements on a Twyman-Green interferometer [8] in addition to the Fizeau interferometer measurements. Both sets of measurements permitted us to calculate elastic compliance components which differed from values in the literature. These values will be presented in a future report. References

- A. Feldman, D. Horowitz, R. M. Waxler, M. J. Dodge, and W. K. Gladden, <u>Optical Materials Characterization</u>, National Bureau of Standards International Report, NBSIR 77-1304 (August, 1977).
- J. F. Nye, <u>Physical Properties of Crystals</u> (Oxford University Press, London, 1957), pp. 243-254.
- 3. A. Feldman and W. J. McKean, Rev. Sci. Instrum., 46, 1588 (1975).
- A. Feldman, R. M. Waxler, and D. Horowitz, Optical Properties of Highly Transparent Solids, Ed. by S. S. Mitra and B. Bendow (Plenum Publishing Corp., New York, 1975), pp. 517-525.
- 5. R. M. Waxler and E. N. Farabaugh, J. Res., NBS 74A, 215 (1970).
 - 6. A. Feldman, Electro-optical Systems Design, 8, 36 (1976).
 - 7. S. K. Dickinson, Infrared Laser Window Materials Property Data for ZnSe, KC1, NaCl, CaF₂, SrF₂, BaF₂, (AFCRL-TR-75-0318 Physical Sciences Research Papers, No. 635, Solid State Sciences Laboratory, Projects 5620,3326, Air Force Cambridge Research Laboratories, L. G. Hanscom Field, Bedford, Massachusetts 01730, June 6, 1975), pp. 147-194.
 - N. Born and E. Wolf, <u>Principles of Optics</u> (Pergamon Press, 1970), p. 303.

	Waveleng	th (µm)	
Temperature (°C)	0.6328 ^a	3.39 ^b	
-180	- 0.56	- 0.53	
-160	- 0.64	- 0.64	
-140	- 0.72	- 0.73	
-120	- 0.78	- 0.81	
-100	- 0.84	- 0.87	
- 80	- 0.89	- 0.93	
- 60	- 0.93	- 0.98	
- 40	- 0.97	- 1.02	
- 20	- 1.01	- 1.05	
0	- 1.04	- 1.08	
20	- 1.07	- 1.11	
40	- 1.10	- 1.14	
60	- 1.13	- 1.17	
80	- 1.16	- 1.20	
100	- 1.19	- 1.23	
120	- 1.23	- 1.27	
140	- 1.27	- 1.31	
160	- 1.31	- 1.36	
180	- 1.37	- 1.42	
200	- 1.43	- 1.49	

Table 1. dn/dT of $CdF_2 (10^{-5}K^{-1})$

tandard deviation from a third degree polynomial fit is 0.02 tandard deviation from a third degree polynomial fit is 0.04

	Wavelength (µm)			
Temperature (°C)	.6328 ^a	1.15 ^a	3.39 ^a	
-180	-2.16	-2.22	-2.24	
-160	-2.40	-2.48	-2.49	
-140	-2.61	-2.70	-2.70	
-120	-2.79	-2.89	-2.89	
-100	-2.96	-3.06	-3.05	
- 80	-3.09	-3.20	-3.19	
- 60	-3.21	-3.32	-3.31	
- 40	-3.32	-3.42	-3.41	
- 20	-3.40	-3.51	-3.49	
0	-3.48	-3.58	-3.57	
20	-3.54	-3.64	-3.63	
40	-3.50	-3.70	-3.68	
60	-3.65	-3.74	-3.73	
80	-3.69	-3.79	-3.78	
100	-3.74	-3.83	-3.83	
120	-3.78	-3.88	-3.88	
140	-3.83	-3.93	-3.94	
160	-3.88	-3.99	-4.01	
180	-3.94	-4.06	-4.09	
200	-4.01	-4.14	-4.18	

Table 2. dn/dT of NaCl (10^{-5}K^{-1})

^aStandard deviation from a third degree polynomial fit is 0.04

		Wavelength (um)					
Temperature (°C)	0.6	328 ^a	3.3	9 ^b			
	dn _e /dT	dn _o /dT	dn _e /dT	dn _o /dT			
-180	1.65	2.23	1.5	2.0			
-160	1.54	2.12	1.4	2.0			
-140	1.44	2.01	1.3	1.9			
-120	1.33	1.90	1.2	1.8			
-100	1.22	1.79	1.2	1.7			
- 80	1.12	1.68	1.1	1.6			
- 60	1.01	1.57	1.0	1.5			
- 40	0.90	1.46	0.9	1.4			
- 20	0.80	1.35	0.8	1.3			
0	0.69	1.24	0.7	1.2			
20	0.58	1.12	0.6	1.1			
40	0.48	1.01	0.5	1.0			
- 60	0.37	0.90	0.4	1.0			
80	0.27	0.79	0.3	0.9			
100	0.16	0.68	0.2	0.8			
120	0.05	0.57	0.1	0.7			
140	-0.05	0.46	0	0.6			
160	-0.16	0.35	-0.1	0.5			
180	-0.27	0.24	-0.2	0.4			
200	-0.37	0.13	-0.3	0.3			

Table 3. dn/dT of MgF₂ $(10^{-6}K^{-1})$

^aStandard deviation to be determined

^bStandard deviation from a linear fit is 0.2

Material	Refr	t (mm)	α			
	632.8 nm	1.15 µm	3.39 µm			
CdF ₂	1.5735 ^a		1.54 ^b	7.33	с	
^{MgF} 2 ⁿ e	1.3887 ^d	1.384 ^e	1.369 ^e	13.40	f	
MgF ₂ no	1.3770 ^d	1.373 ^e	1.358 ^e	13.40	f	
NaCl	1.542 ^g	1.5305 ^g	1.5235 ^g	14.08	h	
^C See Figure 5. ^d A. Duncanson, R 1001 (1958).	. W. H. Steve	enson, Proc. Ph	nys. Soc. (Lo	ondon) <u>72</u> ,	,	
1001 (1958).		,			, 	
H. H. Li, to be	published.					
^f J. S. Browder,	S. S. Ballard	l, Appl. Optics	<u>16</u> (12), 32	214-7.		
^g S. S. Ballard, Dwight E. Gray	J. S. Browden ed. (McGraw-H	r, J. F. Ebersc Hill Book Co.,	ole, AIP Hand 1972), pp. 6	lbook, 5-12 to 6-	-57.	
^h R. K. Kirby, T. Dwight E. Gray and Figure 4.	R. K. Kirby, T. A. Hahn, B. D. Rothrock, AIP Handbook, Dwight E. Gray ed. (McGraw Hill Book Co., 1972), pp. 4-119 to 4-142					

Table 4. Data used in Computation of dn/dT

	$\lambda = 0.6$	$\lambda = 0.6328 \ \mu m$	
	NBS ^a	Literature ^b .	NBS ^a
CaF ₂			
9 ₁₁	-0.38±0.03	-0.41	-0.40±0.06
9 ₁₂	1.08±0.03	1.04	1.09±0.06
$(q_{11} - q_{12})$	-1.46±0.01	-1.45	-1.49±0.02
9 ₄₄	0.71±0.01	0.84	0.72±0.01
SrF ₂			
9 ₁₁	-0.64±0.04	-0.58	-0.63±0.05
9 ₁₂	1.45±0.04	1.77	1.50±0.06
$(q_{11}^{}-q_{12}^{})$	-2.08±0.01	-2.35	-2.13±0.04
9 ₄₄	0.60±0.01	0.59	0.62±0.02
BaF ₂			
9 ₁₁	-0.99±0.03	-0.62	-0.91±0.07
9 ₁₂	2.07±0.04	2.31	2.13±0.07
$(q_{11} - q_{12})$	-3.06±0.01	-2.93	-3.03±0.02
9 ₄₄	0.95±0.01	1.06	0.95±0.01

Table 5. Piezo-optic Constants of Three Alkaline Earth Fluorides

^aThe errors were calculated from the standard deviations of the experimental data.

^bReference (6), the data for SrF_2 were calculated from the values of p_{ij} and s_{ij} given in reference (6).

- 12 -

qu/q1 (10₋₂K₋₁)

13 -_

Thermal expansion coefficient for NaCl as a function of temperature. The triangles are our experimental points and the circles are obtained from the AIP Handbook.

3. Acknowledgement

We thank Ronald Munro for his assistance with the least squares fit of the ${\rm MgF}_2$ data.

S-114A (REV. 7-73)			
U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA	1. PUBLICATION OR REPORT NO.	2. Gov't Accession No.	3. Recipient's Accession No.
TITLE AND SUBTITLE		<u> </u>	5. Publication Date
OPTICAL MATERIALS	CHARACTERIZATION		6. Performing Organization Code
AUTHOR(S) Albert Fe and Maril	ldman, Deane Horowitz, Roy vn J. Dodge	M. Waxler,	8. Performing Organ. Report No.
PERFORMING ORGANIZATI	ON NAME AND ADDRESS		10. Project/Task/Work Unit No.
NATIONAL B	UREAU OF STANDARDS		<u>5650442</u>
DEPARTMEN WASHINGTON	T OF COMMERCE I, D.C. 20234		11. Contract/Grant No.
. Sponsoring Organization Nar	ne and Complete Address (Street, City, S	tate, ZIP)	13. Type of Report & Period Covered
Advanced Arlington	Research Projects Agency , Virginia 22209		14. Sponsoring Agency Code
. SUPPLEMENTARY NOTES			
ABSTRACT (A 200-word or bibliography or literature su	less factual summary of most significant rvey, mention it here.)	information. If documen	nt includes a significant
The piezo-op 0.6328 µm and 1.11 of CdF ₂ , MgF ₂ , and infrared by the ma coefficients of Na	tic constants of CaF ₂ , BaF ₂ 5 µm. The temperature depe d NaCl have been measured a ethod of Fizeau interferome aCl and CdF ₂ as a function	, and SrF, have ndence of ² the re t several wavele try. The linear of temperature a	been measured at efractive indices engths in the thermal expansion are also presented.
	· · ·		
KEY WORDS (six to twelve name; separated by semicolo	entries; alphabetical order; capitalize on ons)	ly the first letter of the	first key word unless a proper
Thermal coefficient	nt of refractive index; the	rmo-optic consta	MgF ₂ ; NaCl. nt; linear thermal
expansion; piezo-	optic constants; photo-elas	tic constants, C	AF; BAF; STF; CdF;
AVAILABILITY	1 Millelimited	IV. SECURI	

AVAILABILITY X Unlimited	19. SECURITY ČLASS (THIS REPORT)	21. NÓ. OF PÁGES
For Official Distribution. Do Not Release to NTIS	UNCL ASSIFIED	22
Order From Sup. of Doc., U.S. Government Printing Office Washington, D.C. 20402, SD Cat. No. C13	20. SECURITY CLASS (THIS PAGE)	22. Price
Order From National Technical Information Service (NTIS) Springfield, Virginia 22151	UNCLASSIFIED	\$4.00
		USCOMM-DC 29042-P74

