
NBSIR 78-1420-3 f-

NBS Minimal BASIC Test
Programs - Version 1

User's Manual
Volume 3 - Control Statements, Data Structure, Program Input

David E. Gilsinn

Charles L. Sheppard

Systems and Software Division

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, D C. 20234

U S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

NBSIR 78-1420-3

NBS MINIMAL BASIC TEST
PROGRAMS - VERSION 1

USER'S MANUAL
Volume 3 - Control Statements, Data Structure, Program Input

David E. Gilsinn

Charles L. Sheppard

Systems and Software Division

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, D C. 20234

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

Dr. Sidney Harman, Under Secretary

Jordan J. Baruch, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

ABSTRACT

This volume is the third of four volumes that comprise the user's guide
to the NBS Minimal BASIC test programs. The programs test whether a BASIC
processor accepts the syntactical forms and produces semantically meaningful
results according co the specifications given in BSR X3.60 Proposed Amer i can
National Standard for Minimal BASIC . The object of this volume is to
compTete Tlie ~ testing of the control structures, introduce new data
structures, and test the user interactive capability of the language. There
are sixty individual programs in this volume that cover looping structures,
array variables, exception tests, subroutines, multiway branch structures,
data declarations and interactive data inputs,
available on tape.

The entire set of programs is

Key Words: BASIC, BASIC standard, BASIC validation, compiler validation,
computer programming language, computer standards

Table of Contents
Page

0.0 Introduction... 1

34.0 The FOR - NEXT Statements 3

Program Listing 5

Sample Output 9

35.0 Exiting from FOR - Blocks 12
Program Listing 12
Sample Output 13

36.0 Syntax Diagnostic - A FOR - Statement Without a Matching
NEXT - Statement 15

Program Listing 15
Sample Output 16

37.0 Syntax Diagnostic - A NEXT - Statement Without a Matching FOR -

Statement 17
Program Listing 17
Sample Output 17

38.0 Semantic Error - The Interleaving of Two FOR - Blocks 19
Program Listing 79
Sample Output 20

39.0 Introducing the Dimension Statement 21
Program Listing.. 23
Sample Output 25

40.0 Extending IF - THEN Capabilities by Using One - Dimensional
Arrays in the Comparison 27

Program Listing 27
Sample Output 31

41.0 Extending IF - THEN Capabilities by Using Two - Dimensional
Arrays in the Comparison 33

Program Listing 33
Sample Output 38

42.0 The ABS Function With Subscripted Variables for Arguments 39
Program Listing 39
Sample Output 1+0

43.0 Using Elementary Operations on Subscripted Variables Assigned
Same Type Constants 1+2

Program Listing 1*2

Sample Output 1+5

44.0 Using Elementary Operations on Subscripted Variables Assigned
Same Type Constants (Continued) 1*8

Program Listing..... 1*8

Sample Output 52

45.0 Using Elementary Operations on Subscripted Variables Assigned
Mixed Type Constants 56

Program Listing 56

i i i

Sample Output 58

46.0 Using Elementary Operations on Subscripted Variables Assigned
Mixed Type Constants (Continued) 60

Program Listing 60
Sample Output.... 62

47.0 Using Elementary Operations on Subscripted Variables Assigned
Mixed Type Constants (Continued) 6k

Program Listing 6k
Sample Output 70

48.0 Addition of More Than Two Terms Containing Array Elements 73
Program Listing 73
Sample Output 73

49.0 Multiplication of More Than Two Terms 77
Program Listing 77
Sample Output 79

50.0 Hierarchy of Operators and Parentheses 81
Program Listing 81
Sample Output 86

51.0 Evaluation of Expressions that have a Variety of Operators 89
Program Listing. 89
Sample Output 92

52.0 Exception Test - Zero Raised to a Negative Power 914

Program Listing 9 1+

Sample Output 99

53.0 Exception Test - A Negative Number Raised to a Non - Negative
Power g6

Program Listing 96
Sample Output 9

7

54.0 Semantic Error - Subscripted Variable with Different Numbers
of Subscripts gg

Program Listing gg
Sample Output gg

55.0 Exception Test - A Subscript is not in the Range of the
Implicit Dimensioning Bounds 100

Program Listing 100
Sample Output 10i

56.0 Exception Test - A subscript is not in the Range of an
Explicitly Dimensioned Variable 102

Program Listing 102
Sample Output 102

57.0 Attempting String Overflow by Variable Assignment 10^
Program Listing 10I4

Sample Output 105

58.0 Test for Undefined Variables 107

iv

Program Listing 107
Sample Output 108

59.0 Exception Test - On Division by Zero..... HO
Program Listing HO
Sample Output HI

60.0 Exception Test - On Expression Evaluation Resulting in
Overflow.... 113

Program Listing n3
Sample Output nU

61.0 Semantic Test - On the Magnitude of a Nonzero Numeric Constant
That is too Small H 7

Program Listing n7
Sample Output Hg

62.0 Exception Test - On the Magnitude of a Nonzero Numeric Constant
That is too large n9

Program Listing n9
Sample Output 12 o

63.0 DIM Statement With the OPTION Statement 122
Program Listing 122
Sample Output 123

64.0 Using the OPTION BASE - Statement to Change Implicit Array
Lower Bounds.' 125

Program Listing 125
Sample Output 125

65.0 Testing the Assignment of Zero for an Expression Causing
Underflow upon Evaluation..... 127

Program Listing 127
Sample Output 127

66.0 GOSUB/RETURN - Statement 129
Program Listing 130
Sample Output 131

67.0 Semantic Error - Test on GOSUB Transfer to an Illegal Line
Number 133

Program Listing 133
Sample Output 13^

68.0 Exception Test - RETURN - Statement Without GOSUB 135
Program Listing 135
Sample Output 136

69.0 Testing Roundoff to Six Significant Digits of Constants of
Arbitrary Length 137

Program Listing 137
Sample Output Ill

70.0 The ON - GOTO Statement ll3
Program Listing I 1* 1*

Sample Output 1 U 7

v

71.0 Semantic Diagnostic - ON - GOTO Statement Referring to a

Non-Existent Line Number 1^8
Program Listing 1^8
Sample Output 1^9

72.0 Exception Test - Value of ON - GOTO Expression Less than One.
(

. 150
Program Listing 150
Sample Output 150

73.0 Exception Test - Value of ON - GOTO Expression Greater than
the Number of Line Numbers in the List 152

Program Listing 152
Sample Output 152

74.0 READ/DATA Statements 15 1*

Program Listing 156
Sample Output 159

75.0 Exception Test - READ - Statement Encounters Insufficient
DATA l6l

Program Listing l6l
Sample Output 162

76.0 Exception Test - Non-Matching String Datum Assigned to a

Numeric Variable 163
Program Listing 163
Sample Output 163

77.0 Exception Test - Attempting a String Datum Overflow 165
Program Listing 165
Sample Output 166

78.0 Semantic Interpretation - A Numeric Value in a DATA List
Causes an Underflow 167

Program Listing 167
Sample Output 167

79.0 Exception Test - A Numeric Value in a DATA Statement Causes
an Overflow 169

Program Listing 169
Sample Output 169

80.0 Exception Test - Overflow Caused by a Numeric Value in a

DATA Statement (Continued) 171
Program Listing 171
Sample Output 171

81.0 Restoring READ Data 173
Program Listing 173
Sample Output 17L1

82.0 INPUT Statement for Numeric Constants 176
Program Listing 177
Sample Output 181

83.0 INPUT of Numeric Data to Subscripted Variables and Unquoted
Str i ngs 183

Program Listing....... 183
Sample Output 187

84.0 Inputting Mixed Data 190
Program Listing 190
Sample Output 1 9

L

85.0 Exception Test - Type of Datum Incorrect 196
Program Listing 196
Sample Output 197

86.0 Exception Test - Too much Data in DATA List 198
Program Listing ^98
Sample Output. 199

87.0 Exception Test - Insufficient Data in DATA List 200
Program Listing 200
Sample Output 201

88.0 Numeric Underflow on INPUT 202
Program Listing 202
Sample Output 202

89.0 Exception Test - Numeric Overflow 20U
Program Listing 20U
Sample Output 205

90.0 Testing the INT and SGN Functions 206
Program Listing 206
Sample Outpu t 208

' 91.0 Printing Strings Beyond the Margin..... 210
Program Listing. 211
Sample Output.... 21 U

92.0 Tabbing Strings Beyond the Margin. 217
Program Listing 217
Sample Output 220

93.0 Exception Test - String Overflow.... 229
Program Listing 229
Sample Output 230

vi i

.

0.0 INTRODUCTION

This volume is the third in a set of four volumes that comprise the
user's guide to the NBS Minimal BASIC test programs. There are sixty
individual programs in this volume that cover looping structures, array
variables, exception tests, subroutines, multiway branch structures, data
declarations and the interactive data inputs. As in the previous volumes the
user is assumed to be familiar with the American National Standard for
Minimal BASIC, BSR X3.60.

The first tests execute various forms of FOR - NEXT
statements. These include tests that use loops with and without the step
clause. Although the standard does not specify the depth to which loops can
be nested, one test executes a nest of three deep to accomodate at least the
looping needed to handle a matrix within some iterative algorithms consisting
of one loop. The matrix itself is doubly dimensioned. Another test checks
the control variable on exiting from a loop. There are finally some error
detection routines for looping.

A natural extension to the looping tests is the introduction of
dimensioned variables. These programs first test implicit and explicit
dimensioning without the OPTION statement. The OPTION statement in Minimal
BASIC allows the user to redefine the lower bound of array indices, which is
assumed to be 0 unless altered by the OPTION BASE statement. Next, arrays
are used in simple expressions which control some conditional branches.
These branch statements are then used to test more complex arithmetic
expressions that make use of arrays. Many of the tests of arithmetic

'expression evaluation are similar to previous arithmetic tests, but in the
present volume the expressions also use arrayed variables as well as simple
variables and constants. There are a number of exception tests included, as
for example, checking for subscripts out of bounds. The OPTION statement is

then introduced and tested by checking whether out of bounds errors are
detected when the zero-th element of an array is called for after the OPTION
BASE was used to specify a lower array bound of one, for example.

Up to this point only the elementary direct transfer GOTO and
conditional branch IF-THEN have been tested and used. Two new control
structures are now introduced. The tests first examine the GOSUB and RETURN
statements. Although no minimal depth of subroutine nesting is spec i f i ed , one
of the tests assumes the capability of handling at least four GOSUB levels.
There are also some exception tests associated with the GOSUB capability.
The next control structure introduced after the GOSUB statement is the
ON-GOTO statement. The main issue in this statement is whether the
expression used after the ON is rounded by the test system to the nearest
integer rather than truncated. Several tests execute different cases for
this statement type, including diagnostic and exception tests.

The final statement types tested in this
into a program either as a list or through
these is the DATA statement. Several issues
For example not only does the READ sta
sequential datum to the READ list item but it
the datum is compatible with the variable,
two ways. Each of these has to be examined,
there is insufficient or too much data

volume allow insertion of data
an external media. The first of
are tested in these routines,
tement have to assign the proper
must be able to detect whether
String data can be specified in

Such exceptions as whether
have to be tested. Finally the

1

RESTORE statement has to be tested in order to determine that the data list
can be reread. Although the DATA statement is one way of entering data to a

program, another way is by means of the INPUT statement that calls for
interaction with an external data source. Again the tests not only had to
test whether data could be entered but whether it was compatible with what
the program assumes is being entered, whether there is too much or too little
data being entered, or whether leading and trailing string spaces are
accepted or ignored.

The last tests in this volume consider what happens when strings are too
long to fit within the margin. The tests include ones to determine how the
system handles the tabbing of a string beyond the margin. In general the
system must determine how many margin widths fit within the number of spaces
requested, skip that many lines and then print the item in the appropriate
column computed by a specified formula. The last test uses the INPUT
capability to test the exception handling capability of the test system when
string overflow is encountered.

2

34.0

THE FOR-NEXT STATEMENTS

This unit tests several uses of the FOR-statement and the
NEXT-statement . They provide for the construction of loops, if the following
conditions are met: (1) the control variable is any simple numeric variable;
and, (2) both FOR and NEXT have the same control variable. In the absence of
the STEP clause, the increment is always +1.

The sequence of statements from the FOR-statement and NEXT-statement
forms a block referred to as the FOR-block. FOR-blocks can be nested (one
can be contained within another), but they cannot be interleaved. All
FOR-blocks are inactive at the initiation of a program but become active upon
execution of the FOR-statement. It remains active until it is exited via its
NEXT-statement, or until control is transferred to a FOR-statement (which may
or may not be the one associated with that FOR-block) having the same control
variable. However, control can exit a FOR-block via a control statement in
which case the FOR-block should remain active. When exit from a FOR-block is
via a NEXT-statement, the value of the control variable should be the first
value not used. For the precise specifications a user is referred to section
11 of BSR X3. 60 .

34.1

FOR/NEXT, Without a STEP Clause

The objective of this subsection is to verify that in the absence of a

STEP clause in a FOR-statement, the implementation will assume the increment
to be + 1

.

34.1.1 Initial-Value and Limit Are Integers

The objective here is to initiate the use of the FOR-statement by using
integer values only.

34.1.1.1 Different Initial and Limit Values

In this test each loop of the FOR-block is counted, and the final value
of the counter, C, determines whether the test passed or failed. There is
also a variable, T, in the FOR-block that keeps a running total of the values
assigned to the control var iable , i .e . I in this case. On output there
should be a message indicating whether the test failed or passed. If the
test failed then the following message should be printed: TEST FAILED. If
the test passed then the following message should be printed: TEST PASSED.

34.1.1.2 Equal Initial and Limit Values

This test shows that looping should not terminate until an increment
causes the value of the control variable to exceed the value of the limit,
unless there is an exit via a control statement. The actions of the C and
the T variables are the same as in section 34.1.1.1 and so is the output.

34.1.2 Fractions Contained in the Limit

The purpose of this test is to continue loop testing in the absence of
the STEP clause increments, but using numbers in the control variable limits
with fractional values. To have a limit containing a fraction with an
integer initial value means that incrementing should cause the control
variable to be either less than or greater than the limit, thus never

3

teaching the limit in the absence of the STEP clause. The actions of the C

and the T variables are the same as in test 34.1.1.1, and so is the output.34.2

FOR/NEXT Using Step Clause

The objective here is to use the STEP clause as a parameter in the
FOR-statement

.

34.2.1

Using Fractional Increments

This test verifies that the processor recognizes and, within machine
accuracy considerations, will increment a loop control variable with a

fractional step in the proper manner.

34.2.1.1 For an Increasing Control Value

The STEP clause for this test is a fraction while its other parameters
are integers. The C and T variables are again used. The T variable for this
test is testing for added increments of +.5, since +.5 is the value for the
STEP clause in this test. The output for this test should be similar to the
output in test 34.1.1.1.

34.2.1.2 For a Decreasing Control Value

The object of this test is to show that looping of a FOR-block, when the
initial value is to be decreased in value, should not terminate until the
control variable has been assigned a value less than the value of the limit,
unless there is an exit via a control statement. As in the previous test, C
and T variables are used. The T variable for this test is testing for added
decrements of -.5, since -.5 is the value for the STEP clause in this test.
The output for this test should be the same as the output in test 34.1.1.1.

34.2.2

Using Integer Increments

The objective of this test is to use the STEP clause for increments
where the assigned STEP parameters are integer valued.

34.2.2.1

For Decreasing the Control Value

This test shows some of the various ways in which the STEP clause can be
used to decrease the value of the initial value to a desired limit value.
The output for all tests below is similar to test 34.1.1.1.

34.2.2.1.1 Positive to Positive

The object here is to test decreasing the control variable's value from
a positive number to a smaller positive number. The value for the STEP
clause in this test is -2.

34.2.2.1.2 Positive to Negative

The object here is to test decreasing the initial value from a positive
number to a negative number in step increments of -4.

34.2.2.1.3 Negative to Negative

k

The object here is to test decreasing the i ni t i al -value from one
negative number to another negative number in increments of -1.

34.2.2.2 For Increasing Control Variable

This test is constructed to increase the control variable's value from
one negative number to another negative number in increments of 2.

34.2.3 Fractions

The object of this test is to show that the initial value is allowed to
contain a fraction. The control variable will be stepped forward each time
by +2

.

34.3 Nesting FOR-Blocks, Three Deep

The object of this test is to test that FOR-blocks can be nested to a
depth of three. That is, three FOR-blocks can be active at one time.

* PROGRAM FILE 34 *

PRINT "PROGRAM FILE
PRINT

0010
0060
0070 PRINT

PRINT
PRINT
PRINT
PRINT

0120 PRINT
0130 PRINT "

0140 PRINT
PRINT "

PRINT
0170 LET C=0
0180 LET T=0
0190 FOR I =-2 TO 3

0200 LET C=C+1
0210 LET T=T+I
0220 NEXT I

IF C 06 THEN 250
IF T=3 THEN 270

34'

0080
0090
0100
0110

0150
0160

SECTION 34.1: FOR/NEXT, WITHOUT STEP CLAUSE.

SECTION 34.1.1: INITIAL VALUE AND LIMIT ARE INTEGERS.

SECTION 34.1.1.1: DIFFERENT VALUES, LOW TO HIGH.

BEGIN TEST."

0230
0240
0250
0260

PRINT "

GOTO 300
THE 6 LOOPS (-2 TO 3) , FAILED TEST

0270
0280

PRINT "

PRINT
THE 6 LOOPS (-2 TO 3) , PASSED TEST

0290
0300

PRINT
PRINT

END TEST."

5

0310 PRINT " SECTION 34.1.1.2: EQUAL VALUES."
0320 PRINT
0330 PRINT " BEGIN TEST."
0340 PRINT
0350 LET C = 0

0360 LET T = 0

0370 FOR 1=3 TO 3

0380 LET C=C+1
0390 LET T=T+I
0400 NEXT I

0410 IF COl THEN 430
0420 IF T=3 THEN 450
0430 PRINT " THE 1 LOOP (3 TO 3), FAILED TEST
0440 GOTO 480
0450 PRINT " THE 1 LOOP (3 TO 3), PASSED TEST
0460 PRINT
0470 PRINT " END TEST.

"

0480 PRINT
0490 PRINT " SECTION 34.1.2: FRACTION CONTAINED IN THE LIMIT
0500 PRINT
0510 PRINT
0515 LET C = 0

0520 LET T=0
0530 FOR 1=4 TO 5.9
0540 LET C=C+1
0550 LET T=T+I
0560 NEXT I

0570 IF C<>2 THEN 590
0580 IF T=9 THEN
0590 PRINT "

0600 GOTO 640
0610 PRINT "

0620 PRINT
0630 PRINT M

0640 PRINT
0650 PRINT "

0660 PRINT
0670 PRINT "

0680 PRINT
0690 PRINT "

0700 PRINT
0710 PRINT "

0720 PRINT
0730 LET C=0
0740 LET T=0
0750 FOR 1=0 TO 4 STEP .5
0760 LET C=C+1
0770 LET T=T+I
0780 NEXT I

0790 IF C<>9 THEN 810
0800 IF T=1 8 THEN 830
0810
0820

PRINT "

GOTO 860
THE 9 LOOPS (0 TO 4) , INCREMENTED BY .5, FAILED TEST

0830
0840

PRINT "

PRINT
THE 9 LOOPS (0 TO 4) , INCREMENTED BY -5, PASSED TEST

0850 PRINT "

0860 PRINT

THE 2 LOOPS (4 TO 5.9) , FAILED TEST

THE 2 LOOPS (4 TO 5.9) , PASSED TEST

END TEST. n

SECTION 34.2: FOR/NEXT, USING STEP CLAUSE.

SECTION 34.2.1: USING FRACTIONAL INCREMENTS

SECTION 34.2.1.1: FOR INCREASING INITIAL VALUE

BEGIN TEST."

END TEST

0870 PRINT " SECTION 34.2
0880 PRINT
0890 PRINT "

0900 PRINT
0910 LET C = 0

0920 LET T=0
0930 FOR 1=2 TO 2 STEP -.5
0940 LET C=C+1
0950 LET T=T+I
0960 NEXT I

0970 IF COl THEN 990
0980 IF T=2 THEN 1010
0990 PRINT " THE 1 LOOP (2 TO 2) ,

1000 GOTO 1040
1010 PRINT " THE 1 LOOP (2 TO 2)

,

1020 PRINT
1030 PRINT "

1040 PRINT
1050 PRINT " SECTION
1060 PRINT
1070 PRINT “ SECTION 34.
1080 PRINT
1090 PRINT " SECTION
1100 PRINT
1110 PRINT "

1120 LET C=0
1130 LET T=0
1140 FOR 1=4 TO' 1 STEP -2

1150 LET C=C + 1

1160 LET T=T+I
1170 NEXT I

1180 IF C<>2 THEN 1200
1190 IF T=6 THEN 1220
1200 PRINT " THE 2 LOOPS (4 TO 1)

1210 GOTO 1250
1220 PRINT " THE 2 LOOPS (4 TO 1)

1230 PRINT
1240 PRINT "

1250 PRINT
1260 PRINT " SECTION
1270 PRINT
1280 PRINT "

1290 PRINT
1300 LET C=0
1310 LET T=0
1320 FOR 1=8 TOi -8 STEP -4

1330 LET C=C+1
1340 LET T=T+I
1350 NEXT I

1360 IF C<>5 THEN 1380
1370 IF T=0 THEN 1400
1380 PRINT " THE 5 LOOPS (8 TO -8
1390 GOTO 1430
1400 PRINT " THE 5 LOOPS (8 TO -8
1410 PRINT
1420 PRINT "

1430 PRINT

1.2: FOR DECREASING INITIAL VALUE.

BEGIN TEST."

INCREMENTED BY -.5, FAILED TEST

INCREMENTED BY -.5, PASSED TEST

END TEST.

"

34.2.2: USING INTEGER INCREMENTS."

.2.1: FOR DECREASING INITIAL VALUE.

34.2.2.1.1: POSITIVE TO POSITIVE."

BEGIN TEST."

INCREMENTED BY -2, FAILED TEST."

INCREMENTED BY -2, PASSED TEST."

END TEST.

"

34.2.2.1.2: POSITIVE TO NEGATIVE."

BEGIN TEST."

, INCREMENTED BY -4, FAILED TEST."

, INCREMENTED BY -4, PASSED TEST."

END TEST."

T

1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000

PRINT " SECTION 34.2.2.1.3: NEGATIVE TO NEGATIVE.
PRINT
PRINT " BEGIN TEST."
PRINT
LET C = 0

LET T=0
FOR I=-l TO -3 STEP -1

LET C=C + 1

LET T=T+I
NEXT I

IF C <> 3 THEN 1560
IF T= (-6

)

THEN 1580
PRINT "

GOTO 1610
THE 3 LOOPS (-1 TO -3)

,

PRINT "

PRINT
PRINT "

THE 3 LOOPS (-1 TO -3)

,

PRINT
PRINT " SECTION 34 .2.2.2:
PRINT
PRINT “

PRINT
LET C = 0

LET T=0
FOR I=-12 TO -5 STEP 3

LET C=C+1
LET T=T+I
NEXT I

IF C<>3 THEN 1740
IF T= (-27) THEN 1760
PRINT " THE 3 LOOPS
GOTO 1790
PRINT " THE 3 LOOPS
PRINT
PRINT "

PRINT
PRINT "

PRINT
PRINT "

PRINT
LET C=0
LET T=0
FOR 1=1.5 TO 3 STEP 2

INCREMENTED BY -1, FAILED TEST

INCREMENTED BY -1, PASSED TEST

END TEST."

FOR INCREASING INITIAL VALUE."

BEGIN TEST."

INCREMENTED BY 3, FAILED TEST

INCREMENTED BY 3, PASSED TEST

END TEST."

(-12 TO -5)

,

(-12 TO -5)

,

SECTION 34.2.3: FRACTION CONTAINED BY THE INITIAL VALUE.

BEGIN TEST."

LET C=C+1
LET T=T+I
NEXT I

IF COl THEN 1920
IF T=1 . 5 THEN 1940
PRINT "

GOTO 1970
THE 1 LOOP (1.5 TO 3)

PRINT " THE 1 LOOP (1.5 TO 3)
PRINT
PRINT "

PRINT
PRINT " SECTION 34.3:
PRINT
PRINT "

INCREMENTED BY 2, FAILED TEST."

INCREMENTED BY 2, PASSED TEST."

END TEST.

"

NESTING FOR-BLOCKS, THREE DEEP.

BEGIN TEST."

8

2010 PRINT
2020 LET C = 0

2030 LET T=0
2040 FOR 11=1 TO 2

2050 FOR 12=3 TO 1 STEP -1

2060 FOR 13=1 TO 3 STEP 1

2120 LET C=C+1
2130 LET T=T+I 3

2190 NEXT 13
2200 NEXT 12
2210 NEXT II
2220 IF COl 8 THEN 2240
2230 IF T=36 THEN 2260
2240 PRINT "

3 NESTED LOOPS, FAILED TEST.

"

2250 GOTO 2290
2260 PRINT "

3 NESTED LOOPS, PASSED TEST.

"

2270 PRINT
2280 PRINT " END TEST."
2290 PRINT
2300 PRINT
2310 END

* SAMPLE OUTPUT *

PROGRAM FILE 34

SECTION 34.1: FOR/NEXT, WITHOUT STEP CLAUSE.

SECTION 34.1.1: INITIAL VALUE AND LIMIT ARE INTEGERS.

SECTION 34.1.1.1: DIFFERENT VALUES, LOW TO HIGH.

BEGIN TEST.

THE 6 LOOPS (-2 TO 3), PASSED TEST.

END TEST.

SECTION 34.1.1.2: EQUAL VALUES.

BEGIN TEST.

THE 1 LOOP (3 TO 3) , PASSED TEST.

END TEST.

9

SECTION 34.1.2: FRACTION CONTAINED IN THE LIMIT.

THE 2 LOOPS (4 TO 5.9), PASSED TEST.

END TEST.

SECTION 34.2: FOR/NEXT, USING STEP CLAUSE.

SECTION 34.2.1: USING FRACTIONAL INCREMENTS.

SECTION 34.2.1.1: FOR INCREASING INITIAL VALUE.

BEGIN TEST.

THE 9 LOOPS (0 TO 4), INCREMENTED BY .5, PASSED TEST.

END TEST.

SECTION 34.2.1.2: FOR DECREASING INITIAL VALUE.

BEGIN TEST.

THE 1 LOOP (2 TO 2), INCREMENTED BY -.5, PASSED TEST.

END TEST.

SECTION 34.2.2: USING INTEGER INCREMENTS.

SECTION 34.2.2.1: FOR DECREASING INITIAL VALUE.

SECTION 34.2.2.1.1: POSITIVE TO POSITIVE.

BEGIN TEST.

THE 2 LOOPS (4 TO 1), INCREMENTED BY -2, PASSED TEST.

END TEST.

SECTION 34.2.2.1.2: POSITIVE TO NEGATIVE.

BEGIN TEST.

THE 5 LOOPS (8 TO -8), INCREMENTED BY -4, PASSED TEST.

END TEST.

SECTION 34.2.2.1.3: NEGATIVE TO NEGATIVE.

BEGIN TEST.

THE 3 LOOPS (-1 TO -3), INCREMENTED BY -1, PASSED TEST.

END TEST.

SECTION 34.2.2.2: FOR INCREASING INITIAL VALUE.

BEGIN TEST.

10

THE 3 LOOPS (-12 TO -5), INCREMENTED BY 3, PASSED TEST.

END TEST.

SECTION 34.2.3: FRACTION CONTAINED BY THE INITIAL VALUE.

BEGIN TEST.

THE 1 LOOP (1.5 TO 3), INCREMENTED BY 2, PASSED TEST.

END TEST.

SECTION 34.3: NESTING FOR-BLOCKS, THREE DEEP.

BEGIN TEST.

3 NESTED LOOPS, PASSED TEST.

END TEST.

11

35.0

EXITING FROM FOR-BLOCKS
35.1

FOR-Block Exiting Via Control Statement

This routine tests exiting from a FOR-block via a control statement. In
this routine the control statement is the IF-THEN-statement . Since the first
FOR-block for this test does not exit naturally (via its NEXT-statement),
there should be only 11 loops performed and a T variable sum of 30. The
output is similar to test 34.1.1.1.

35.2

Compatability Between Initial-Value, Limit, and STEP Clause

This routine tests t)^e compatibility between the initial value, the
limit and the increment. There are two cases which determine this
compatibility: (1) if the initial value is smaller than the limit, then the
increment's value must be positive; and (2) if the initial value is larger
than the limit, then the increment's value must be negative. If either case
is violated, no looping in the FOR-block should be performed. In this test
the initial value, the limit, and the increment are not compatible, therefore
the number of loops should be zero. The output is similar to test 34.1.1.1.

35.3

Normal Exit Via NEXT-Statement

The object here is to test the value of the control variable upon
exiting via the NEXT-statement. Its value should be the first value not
used. For output refer to test 34.1.1.1.

* PROGRAM FILE 35 *

0010 PRINT "PROGRAM FILE 35"
0060 PRINT
0070 PRINT
0080 PRINT
0090 PRINT " SECTION 35.1: FOR-BLOCK EXITING VIA CONTROL STATEMENT."
0100 PRINT
0110 PRINT " BEGIN TEST."
0120 PRINT
0130 LET C=0
0140 LET T=0
0150 FOR 1=1 TO 10
0160 LET C=C+1
0170 LET T=T+I
0180 IF 1=5 THEN 200
0190 NEXT I

0200 IF 1=5 THEN 240
0210 PRINT " THE SYSTEM FAILED TO RETAIN THE INCREMENTED INITIAL"

12

0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0 7 0 0

THE 11 LOOPS (EXIT VIA IF/THEN), PASSED TEST.

END TEST.

"

PRINT "VALUE VIA A CONTROL STATEMENT."
GOTO 350
FOR J = 2 TO 4

FOR 1=2 TO 3

LET C=C+1
LET T=T+I
NEXT I

NEXT J

IF COll THEN 320
IF T=30 THEN 340
PRINT " THE 11 LOOPS (EXIT VIA IF/THEN), FAILED TEST."
GOTO 370
PRINT "

PRINT
PRINT "

PRINT
PRINT " SECTION 35.2 COMPATIBILITY/INITIAL VALUE, LIMIT AND STEP.'
PRINT
PRINT “ BEGIN TEST."
PRINT
LET C=0
FOR 1=4 TO 2 STEP 1

LET C=C+1
NEXT I

IF C=0 THEN 490
PRINT " THE SKIPPING OF (4 TO 2), INCREMENTED BY 1, FAILED TEST."
GOTO 520
PRINT " THE SKIPPING OF (4 TO 2), INCREMENTED BY 1, PASSED TEST."
PRINT
PRINT " END TEST.

"

PRINT
PRINT "

PRINT
PRINT "

PRINT
LET C =0
FOR 1=1 TO 6

LET C=C + 1

NEXT I

IF C<>6 THEN 630
IF 1=7 THEN 650
PRINT "CONTROL VALUE OF 7 (EXIT VIA NEXT-STATEMENT), FAILED TEST."
GOTO 680
PRINT "CONTROL VALUE OF 7 (EXIT VIA NEXT-STATEMENT), PASSED TEST."
PRINT
PRINT " END TEST."
PRINT
PRINT
END

SECTION 35.3: NORMAL EXIT VIA NEXT-STATEMENT.

BEGIN TEST."

******:*********
* SAMPLE OUTPUT *

13

PROGRAM FILE 35

SECTION 35.1: FOR-BLOCK EXITING VIA CONTROL STATEMENT.

BEGIN TEST.

THE 11 LOOPS (EXIT VIA IF/THEN), PASSED TEST.

END TEST.

SECTION 35.2 COMPATIBILITY/INITIAL VALUE, LIMIT AND STEP.

BEGIN TEST.

THE SKIPPING OF (4 TO 2), INCREMENTED BY 1, PASSED TEST.

END TEST.

SECTION 35.3: NORMAL EXIT VIA NEXT-STATEMENT.

BEGIN TEST.

CONTROL VALUE OF 7 (EXIT VIA NEXT-STATEMENT) , PASSED TEST.

END TEST.

\

l»t

36.0 SYNTAX DIAGNOSTIC - A FOR-STATEMENT WITHOUT A

MATCHING NEXT-STATEMENT

This routine and the next two perform tests on the FOR-NEXT statement
which should be diagnosed as errors. These are specifically constructed to
demonstrate the diagnostic capability of the language processor. Although no
exceptions have been specified with regard to FOR-NEXT Statements the
situations tested here are considered significant and require a processor to
report the error

.

The objective of this test is to verify that the execution of a

FOR-statement without a matching NEXT-statement will be recognized as a

syntactic error. This error must be recognized and reported. It should
result in the execution of the program being suspended. There should be some
form of implementation-defined diagnostic on output.

* PROGRAM FILE 36 *

0010
0100

. 0110
0120
0130
0140
0150
0160
0170
0160
0190
0200
0210
0220
0250
0260
0270
0280
0290
0 300
0310
0320
0330
0340
0350
0360
0 370
0380
0390

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
LET N

FOR I

LET N

"PROGRAM FILE 36'

SECTION 36.0"

A FOR-STATEMENT WITHOUT A MATCHING NEXT-STATEMENT."

" THE OBJECTIVE OF THIS SECTION IS TO USE A FOR-STATE-

"

"MENT WITHOUT ANY OCCURRING OR MATCHING NEXT-STATEMENT IN"
"THE SEQUENTIALLY FOLLOWING PROGRAM LINES. IF THE SYSTEM"
"RECOGNIZES THIS AS A SYNTAX ERROR THE TEST PASSED"

BEGIN TEST."

= 0

=1 TO 100
= N + 1

PRINT N ;
" LOOPS WERE MADE, THEREFORE TEST FAILS SINCE THE EXCLUSION

PRINT "OF A MATCHING NEXT-STATEMENT WAS NOT RECOGNIZED BY THE SYS-
PRINT "TEM."
PRINT
PRINT " END TEST.

"

PRINT
END

15

* SAMPLE OUTPUT *

For
In order for this test to pass, an error

example, a possible error diagnostic for
must be diagnosed
this program might

and
be

:

reported

.

? FOR WITHOUT NEXT IN LINE 310

16

37.(1 SYNTAX DIAGNOSTIC - A NEXT-STATEMENT WITHOUT A
MATCHING FOR-STATEMENT

The objective of this test is to verify that upon the
program, which contains a NEXT-statement but no matching
implementation will report a diagnosed error. The test
constructed without a matching FOR-statement for the
statement 260 of Program File 37. On output, there
implementation-specific diagnostic, but it should point to
NEXT-statement has no associated FOR-statement.

execution of a

FOR-statement, the
is specifically

NEXT-statement in
should be an

the fact that the

* PROGRAM FILE 37 *

0 0 10 PRINT
0 0 60 PRINT
0 0 70 PRINT
0 080 PRINT
0 090 PRINT
0 1 00 PRINT
0 1 10 PRINT
0 1 20 PRINT
0 1 30 PRINT
0 1 40 PRINT
0 1 50 PRINT
0 1 60 PRINT
0 1 70 PRINT
0 1 80 PRINT
0 2 10 PRINT
0 2 20 PRINT
0 2 30 PRINT
0 240 PRINT
0 250 PRINT
0 260 NEXT
0 2 70 PRINT
0 280 PRINT
0 290 PRINT
0 300 PRINT
0 3 10 PRINT
0 3 20 END

"PROGRAM FILE 3 1

SECTION 37.0"

A NEXT-STATEMENT WITHOUT A MATCHING FOR-STATEMENT."

" THE OBJECTIVE OF THIS SECTION IS TO USE A NEXT-STATE-"
"MENT WITHOUT ANY OCCURRING OR MATCHING FOR-STATEMENT IN THE"
"SEQUENTIALLY FOLLOWING PROGRAM LINES. IF THE SYSTEM RECOG-"
"NIZE3 THIS AS A SYNTAX ERROR THE TEST PASSED"

BEGIN TEST."

" TEST FAILS, THE SYSTEM DID NOT RECOGNIZE THE EXCLUSION"
"OF A MATCHING FOR-STATEMENT."

END TEST.

"

* SAMPLE OUTPUT *

17

A fatal
diagnostic i

error diagnostic is required as output,
implementation specific, but a possible

Again, the exact
message might be

? NEXT WITHOUT FOR IN LINE 260

18

38.0 SEMANTIC ERROR - THE INTERLEAVING OF TWO FOR-BLOCKS

The objective of this test is to verify that upon the execution of a
program which contains two FOR-blocks that are i nter 1 eaved--i . e . , a
NEXT-statement is matched with a FOR-statement with a different control
variable— the implementation will diagnose and report an error. The test
contains two FOR-blocks that are interleaved by associating FOR-statements at
lines 270 and 280 with NEXT-statements at lines 300 and 310 respectively in
Program File 38. On output, there should be an implementation-specific
diagnostic.

* PROGRAM FILE 38 *

0010
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
LET N =

FOR 1 =

FOR J =

LET N =

NEXT I

NEXT J

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
END

"PROGRAM FILE 38"

SECTION 38.0"

THE INTERLEAVING OF TWO FOR-BLOCKS."

" THE OBJECTIVE OF THIS SECTION IS TO MATCH A NEXT-STATE-"
"MENT WITH A FOR-STATEMENT WHICH HAS A DIFFERENT CONTROL"
"VARIABLE. IF THE SYSTEM RECOGNIZES THIS AS A SEMANTIC ERROR"
"THE TEST PASSED"

BEGIN TEST."

0

1 TO 50
1 TO 100
N + l

SYSTEM FAILED TO RECOGNIZE FOR-NEXT STATEMENTS BEING'
INTERLEAVED, THEREFORE, SYSTEM FAILED TEST."

END TEST."

19

******** * ********
* SAMPLE OUTPUT *

Again, as in the past two error tests, the system fails if there is
no diagnostic given. The following two diagnostic messages are
not necessarily ideal, but as a combination do indicate the problem
source

:

7NEXT WITHOUT FOR IN LINE 300
?FOR WITHOUT NEXT IN LINE 270

The point of these messages is that the system is not looking for an
associated FOR-statement in a higher level block or for a NEXT-statement
in a lower level block.

20

39.0

INTRODUCING THE DIMENSION STATEMENT

The tests in the next several sections are for the dimension-statement
which reserves space for arrays, that can be either one or two dimensional.
If a dimension-statement is not used to allocate storage, then a default
space allocation is made. In section 39.1 this default will be tested. The
default means that unless declared otherwise in a dimension-statement, all
array subscripts have a lower bound of zero and a upper bound of ten.
Therefore, under default there should be space reserved for 11 elements in

one-dimensional arrays and 121 elements in two-dimensional arrays. But, by
use of a dimension-statement, the subscript(s) of an array may be declared to
have an upper bound other than ten, and by use of the OPTION-statement , the
subscripts of all arrays may be declared to have a lower bound of either one
or zero. The reader is referred to section 15 on array declaration in BSR
X3.60 for the specification.

39.1

Implicit Dimensioning

The object here is to verify that implementations recognize default
space allocations for arrays.

39.1.1

One-Dimensional Arrays

The object is to test the default space allocation for one-dimensional
arrays. In this case, space should be reserved for 11 elements. In the
first part of the test, the subscripted variables A(0), A(l), A(2), ...,
A (1 0) of the implicit dimensional array A(I) are assigned the values 0, 1, 2,

..., 10 respectively. In the second part, there is a check made on the
assignment of the eleven elements to the array A (I) . This is done by the use
of a counter, C, and the total sum, Al, of the eleven elements. There should
be a count of eleven array elements and the sum of the elements should be 55.

On output there should be a message to the following effect, if the test
failed: IMPLICIT SINGLE DIMENSIONING TEST, FAILED. If the test passed, then
the following message should be printed: IMPLICIT SINGLE DIMENSIONING TEST,
PASSED. Another failure of the test could occur if a system diagnostic
indicated that an array element could not be accessed. If in fact tne system
indicates failure to dimension an array, then the system entirely fails
implicit single dimensioning.

39.1.2

Two-Dimensional Arrays

The object is to test the default space allocation for two-dimensional
arrays. Space should be reserved for 121 elements. In the first part of
this test the subscripted variables B(0,0), B(0,1), B(0,2), ..., B(10,10) of
the implicit dimensioned array B(I,J) are assigned the sum I +J . In the
second part of the test, a check is made on whether space was reserved for
the 121 elements of array B(I,J). This is accomplished through the use of a

counter, C. The counter keeps track of the number of loops performed by a

FOR-block, while the sum of all elements stored in array B(I,J) is computed.
The final count for this test should be 121 and the sum of the elements
should be 1210.

On output, there should be one of two messages
fails, then the following message should be pr

DIMENSIONING TEST, FAILED. If the test passes then
should be printed: IMPLICIT DOUBLE DIMENSIONING TEST

printed. If the test
inted: IMPLICIT DOUBLE
the following message

, PASSED.

21

39.2 The Dimension-Statement Without the OPTION-Statement

The object of this test is to verify that the implementation recognizes
array declarations by the dimension-statement for both one- and
two-dimensional arrays.

39.2.1 Used With One-Dimensional Arrays

The object of this test is to verify that, by use of the
dimension-statement, an array can be declared to have an upper bound greater
than 10. It would still retain its lower bound of zero. In the first part
of the test, the subscripted variables D(0), D(l), D(2), ..., D(20) of array
D (I) are assigned the values of 1, 2, 3, ..., 21, respectively. In the
second part of this test, the array allocation of 21 elements for D (I) is

accessed in order to verify the previous assignment. This is accomplished by
use of a loop counter, C and a total sum variable, Dl. The number of loop
counts for this test should be 21, and the sum of the array elements should
be 231.

If the test fails, then the following message should be printed: USE OF
DIM FOR SINGLE DIMENSIONING, FAILED TEST. If the test passes, then the
following message should be printed: USE OF DIM FOR SINGLE DIMENSIONING,
PASSED TEST.

39.2.2 Used With Two-Dimensional Arrays

The object of this test is to verify that, by use of the
dimension-statement, two-dimensional arrays can be declared to have upper
bounds greater than 10 for each dimension. This is accomplished in three
steps. In step one, the first subscript upper bound dimensioned greater than
10 for array N(I,J) while the second subscript remains less than 10. The
subscripted variable N (1 , 1) is assigned the value 1 + 1. The subscripted
variables N(0,2), N(l,2), N(2,2), ...» N (20, 2) are each assigned the negative
value of the first integer of their respective pair of subscripted integers.
Finally N(I,0) is assigned the value 1. As a check on the space allocation
for each element of array N(20,2), all members of the array are added and the
value should be 42. In the second step, an array P(2,20) is dimensioned.
The first subscript of the array P(I,J) remains less than 10 while the second
subscript is allowed to be greater than 10. The subscripted variables
P(1,0), P(l,l), P (1 , 2) , ..., P(2,20) are each assigned a value equal to the
product of the subscripts. As a verification of the space allocation, all
members of the array P(2,20) are added to each other and their sum should be
630. In the third dimensioning, both the first and second subscripts of the
array R(I,J) are simultaneously allowed to have upper bounds greater than 10.
For this part of the test, each array element R (I , J) is assigned the sum I +J

.

The total sum of all the array elements R(I,J) should be 8820.

If the test
DIM FOR DOUBLE
message should

A******************

On output, there should be one of two possible messages,
fails then the following message should be printed:
DIMENSIONING, FAILED TEST. If the test passes the following
be printed: DIM FOR DOUBLE DIMENSIONING, PASSED TEST.

22

* PROGRAM FILE 39 *

0010
0020
0030
0040
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0185
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0355
0360
0 370
0380
0390
0400
0410
0420
0425
0430
0440
0450
0460
0470
0480
0490

PRINT "PROGRAM FILE 39"

PRINT
PRINT
PRINT
PRINT " SECTION 39.1: IMPLICIT DIMENSIONING.
PRINT
PRINT " SECTION 39.1.1: ONE-DIMENSIONAL ARRAYS
PRINT
PRINT " BEGIN TEST."
PRINT
FOR 1=0 TO 10
LET A (I)

=1

NEXT I

LET A 1 = 0

LET C=0
FOR 1=10 TO 0 STEP -1

LET Y=A (I

)

LET Al=Al+Y
LET C=C+1
NEXT I

IF COll THEN 240
IF Al=55 THEN 260
PRINT "

GOTO 280
PRINT "

PRINT
PRINT ”

PRINT
PRINT "

PRINT
PRINT "

PRINT
FOR 1=0 TO 10

FOR J = 0 TO 10
LET Z=I+J
LET B (I , J) =Z
NEXT J

NEXT I

LET B 1 =0
LET C =0

FOR 1=10 TO 0 STEP -1

FOR J = 1 0 TO 0 STEP -1

LET W=B (I , J

)

LET Bl=Bl+W
LET C=C+1
NEXT J

NEXT I

IF C0 1 2 1 THEN 490
IF B 1 =1 2 1 0 THEN 510
PRINT "

IMPLICIT SINGLE DIMENSIONING TEST, FAILED.

IMPLICIT SINGLE DIMENSIONING TEST, PASSED.

END TEST."

SECTION 39.1.2: TWO-DIMENSIONAL ARRAYS.

BEGIN TEST."

IMPLICIT DOUBLE DIMENSIONING TEST, FAILED

0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0620
0625
0630
0640
0650
0660
0670
0675
0680
0690
0700
0710
0720

GOTO 530
PRINT " IMPLICIT DOUBLE DIMENSIONING TEST, PASSED."
PRINT
PRINT " END TEST.”
PRINT
PRINT "SECTION 39.2: THE DIM-STATEMENT WITHOUT OPTION-STATEMENT."
PRINT
PRINT " SECTION 39.2.1: USED WITH ONE-DIMENSIONAL ARRAYS."
PRINT
PRINT " BEGIN TEST."
PRINT
DIM D (2 0

)

FOR 1=0 TO 20

LET H=I +1
LET D (I

) =H
NEXT I

LET Dl =0
LET C=0
FOR 1=0 TO 20

LET M=D (I

)

LET Dl=Dl+M
LET C=C+1
NEXT I

IF C<>21 THEN 730
IF Dl=231 THEN 750

0730
0"»40

0750
0760
0770
0780
0790
0800
0810
0820
0830
0840
0850
0855
0860
0870
0880
0890
0895
0900
0910
0920
0930
0940
0945
0950
0960
0970
0980
0990
1000
1010

PRINT "

GOTO 770
PRINT "

PRINT
PRINT "

PRINT
PRINT
PRINT "

PRINT
PRINT "

PRINT
DIM N (20, 2) ,P (2, 20) ,R(20, 20)
FOR 1=0 TO 20
LET 11=1+1
LET N (1 , 1) =11
LET N (I , 2) =-I
LET N (I , 0) =1
FOR J=2 TO 0 STEP -1

LET J1=I*J
LET P(J,I)=J1
NEXT J

NEXT I

FOR K=0 TO 20
FOR L=0 TO 20

USE OF DIM FOR SINGLE DIMENSIONING, FAILED TEST."

USE OF DIM FOR SINGLE DIMENSIONING, PASSED TEST."

END TEST."

SECTION 39.2.2: USED WITH TWO-DIMENSIONAL ARRAYS."

BEGIN TEST."

LET K1=K+L
LET R (K , L) =K

1

NEXT L
NEXT K
LET N 1=0
LET Pl=0
LET Rl=0
LET C=0

2b

1020 LET T=0
1030 FOR 1=0 TO 20
1040 FOR J=0 TO 2

1045 LET F 1=N (I , J)
1050 LET N 1=N 1+Fl
1055 LET G1=P (J,I)
1060 LET P1=P1+G1
1070 LET C=C+1
1080 NEXT J
1090 NEXT I

1100 IF C<>63 THEN 1210
1110 IF Nl<>42 THEN 1210
1120 IF P1O630 THEN 1210
1130 FOR K=20 TO 0 STEP -1

1140 FOR L=0 TO 20
1145 LET Q1=R (K , L

)

1150 LET Rl=Rl +Q1
1160 LET T=T+1
1170 NEXT L
1180 NEXT K
1190 IF T<>441 THEN 1210
1200 IF Rl=8820 THEN 1230
1210 PRINT "

1220 GOTO 1260
1230 PRINT "

1240 PRINT
1250 PRINT "

1260 PRINT
1270 PRINT
1280 END

DIM FOR DOUBLE

DIM FOR DOUBLE

DIMENSIONING,

DIMENSIONING,

END TEST."

FAILED TEST."

PASSED TEST."

* SAMPLE OUTPUT *

PROGRAM FILE 39

SECTION 39.1: IMPLICIT DIMENSIONING.

SECTION 39.1.1: ONE-DIMENSIONAL ARRAYS.

BEGIN TEST.

IMPLICIT SINGLE DIMENSIONING TEST, PASSED.

END TEST.

25

SECTION 39.1.2: TWO-DIMENSIONAL ARRAYS

BEGIN TEST.

IMPLICIT DOUBLE DIMENSIONING TEST, PASSED.

END TEST.

SECTION 39.2: THE DIM-STATEMENT WITHOUT AN OPT ION-STATEMENT.

SECTION 39.2.1: USED WITH ONE-DIMENSIONAL ARRAYS.

BEGIN TEST.

USE OF DIM FOR SINGLE DIMENSIONING, PASSED TEST.

END TEST.

SECTION 39.2.2: USED WITH TWO-DIMENSIONAL ARRAYS.

BEGIN TEST.

DIM FOR DOUBLE DIMENSIONING, PASSED TEST.

END TEST.

26

40.0 EXTENDING IF-THEN CAPABILITIES BY USING ONE-DIMENSIONAL
ARRAYS IN THE COMPARISON

Since subscripted variables have already been introduced in previous
tests, they are now added to the list of possible numeric expressions that
can be compared in an IF-THEN-statement . The objectve of the next two test
programs is to extend the IF-THEN-statement capability by using subscripted
var iables

.

This section will concentrate on testing relation operations between
single dimensioned arrays, simple variables and constants. The first
comparisons made are between elements of the same array. Next, an array
element is compared with a variable on the left of the relational operator
and then the test is reversed. Finally, an element of the array is compared
against a constant. There is a two column output of which the first heading
is "Comparisons", and the second heading is "Results of IF-THEN Comparisons".

The first column of output lists the numerical values that are being
compared for each of the relations. The next six columns form a table
containing the six relation symbols =, <, >, <>, >=, and <=. This table
should appear blank (or empty), unless an error was made in a relation
comparison, in which case an asterisk should appear in the column of the
relational symbol for which the comparison was not evaluated properly. For
example, if two numbers are equal, then a < comparison should be correctly
evaluated as false and the correct transfer made. Otherwise, an asterisk
would appear in the table under the < column.

* PROGRAM FILE 40 *

0010 PRINT
0060 PRINT
0070 PRINT
0080 PRINT
0090 PRINT
0100 PRINT
0110 PRINT
0120 PRINT
0130 PRINT
0140 PRINT
0150 PRINT
0160 PRINT
0170 PRINT
0180 PRINT
0190 PRINT
0200 PRINT
0210 PRINT

"PROGRAM FILE 40"

SECTION 40.0"

IF-THEN"

* * *US ING NUMERICAL CONSTANTS, ASSIGNED SIMPLE VARIABLES"
AND"

ASSIGNED SUBSCRIPTED VARIABLES, TOGETHER.***"

BEGIN TEST."

27

0220 PRINT " ALL INVALID IF-THEN EVALUATIONS WILL BE DESIGNATED BY"
0230 PRINT "AN ASTERISK IN THE COLUMNS OF THOSE RELATIONAL SYMBOLS FOR"
0240 PRINT "WHICH ERROR (S) OCCURRED FOR THAT COMPARATIVE ROW."
0250 PRINT
0260 PRINT TAB (43)

; "RESULTS"
0270 PRINT TAB (45); "OF"
0280 PRINT TAB (10)

; "COMPARISONS" ;TAB (39)
; "IF-THEN EVALUATIONS"

0290 PRINT
0300 LET A $ = " = "

0310 LET B $ = " <

"

0320 LET C$=">"
0330 LET D $ = " <

>

"

0340 LET E$=">="
0350 LET F$=" <="

0360 PRINT TAB (34) ;A$;TAB (39) ;B$;TAB (44) ;C$;TAB (49) ;D$;TAB (55) ;E$;
0370 PRINT TAB (61) ;F$
0380 PRINT
0390 DIM A (5

)

0400 LET Al=l
0410 LET A (1) =2
0420 LET A (2) =3
0430 LET A (3) =— 2

0440 LET A2=-3
0450 LET A (4) =3
0460 LET A (5) =0
0470 LET F=0
0475 REM COMPARING AN ARRAY ELEMENT WITH ANOTHER ELEMENT
0477 REM OF THE SAME ARRAY
0480 IF A (2) =A (4) THEN 610
0490 LET A $ = " *

"

0500 LET F=1
0510 GOTO 620
0520 LET B $ = " *

"

0530 LET F=1
0540 GOTO 690
0550 LET C$="*"
0560 LET F=1
0570 GOTO 710
0580 LET D$= " *

"

0590 LET F=1
0600 GOTO 790
0610 LET A$=" "

0620 IF A (2) <=A (4) THEN 740
0630 LET F $ = " *

"

0640 LET F=1
0650 GOTO 750
0660 LET E $ =

" "

0670 IF A (2) <A (4) THEN 520
0680 LET B $ =

" "

0690 IF A (2) >A (4) THEN 550
0700 LET C$=" "

0710 IF A (2) <>A (4) THEN 580
0720 LET D$=" "

0730 GOTO 790
0740 LET F§=" "

0750 IF A { 2) > =A (4

)

THEN 660
0760 LET E $ = " *

"

28

0770 LET F = 1

0780 GOTO 670
0790 PRINT TAB (12)

;
" 3 TO 3

" ; TAB (3 4) ; A $; TAB (39) ; B $; TAB (4 4) ; C $; TAB (4 9) ; D$
0800 PRINT TAB (55) ;E$;TAB (61) ;F$
0805 REM COMPARING AN ARRAY ELEMENT WITH A SIMPLE VARIABLE
0807 REM ON THE LEFT
0810 IF A1<A(1) THEN 940
0820 LET B $ = " *

"

0830 LET F=1
0840 GOTO 950
0850 LET a $ = " *

”

0860 LET F=1
0870 GOTO 1020
0880 LET C$="* n

0890 LET F=1
0900 GOTO 1040
0910 LET E $ = " *

"

0920 LET F=1
0930 GOTO 1120
0940 LET B $ =

" ”

0950 IF AlOA(l) THEN 1070
0960 LET D$=" *

"

0970 LET F=1
0980 GOTO 1080
0990 LET F $

= " "

1000 IF Al=A (1) THEN 850
1010 LET A$=" "

1020 IF Al >A (1) THEN 880
1030 LET C$=" "

1040 IF Al >=A (1) THEN 910
1050 LET E$ = " "

1060 GOTO 1120
1070 LET D$= " "

1080 IF f 1<=A (1) THEN 990
1090 LET F$="*“
1100 LET F=1
1110 GOTO 1000
1120 PRINT TAB (12)

;
" 1 TO 2" ; TAB (3 4) ; A $;TAB (3 9) ; B $; TAB (4 4) ; C $; TAB (4 9) ; D$

1130 PRINT TAB (55) ; E $; TAB (61) ; F

$

1135 REM COMPARING AN ARRAY ELEMENT WITH A SIMPLE VARIABLE
1137 REM ON THE RIGHT
1140 IF A (2) >A2 THEN 1270
1150 LET C$="*"
1160 LET F=1
1170 GOTO 1280
1180 LET A $ = " *

"

1190 LET F=1
1200 GOTO 1350
1210 LET B$= H *"

1220 LET F=1
1230 GOTO 1370
1240 LET F$=" *"

1250 LET F=1
1260 GOTO 1450
1270 LET C$= M "

1280 IF A (2) >=A2 THEN 1400
1290 LET E $

= " *

"

/

29

1300 LET F=1
1310 GOTO 1410
1320 LET D$=" "

1330 IF A (2) =A2 THEN 1180
1340 LET A$=" "

1350 IF A (2) <A2 THEN 1210
1360 LET B $

= " "

1370 IF A (2) <=A2 THEN 1240
1380 LET F$=" n

1390 GOTO 1450
1400 LET E $

= " "

1410 IF A (2) OA2 THEN 1320
1420 LET D $ =

" *

"

1430 LET F=1
1440 GOTO 1330
1450 PRINT TAB (12)

; "3 TO -3
" ; TAB (34) ; A $; TAB (3 9) ; B $; TAB (4 4) ;C $; TAB (4 9)

;

1460 PRINT D$;TAB (55) ;E$;TAB (61) ;F$
1465 REM COMPARING AN ARRAY ELEMENT WITH A CONSTANT ON THE LEFT
1470 IF 2>=A (5) THEN 1600
1480 LET E $ =

" *

"

1490 LET F=1
1500 GOTO 1610
1510 LET A $ =

" *

"

1520 LET F=1
1530 GOTO 1680
1540 LET B $ =

" *

"

1550 LET F=1
1560 GOTO 1700
1570 LET F $ = " *

"

1580 LET F=1
1590 GOTO 1780
1600 LET E$=" "

1610 IF 2>A (5) THEN 1730
1620 LET C$="*"
1630 LET F=1
1640 GOTO 1740
1650 LET D$=" "

1660 IF 2=A (5) THEN 1510
1670 LET A$=" "

1680 IF 2<A (5) THEN 1540
1690 LET B$=" "

1700 IF 2<=A (5) THEN 1570
1710 LET F$=" "

1720 GOTO 1780
1730 LET C$=" "

1740 IF 2<>A (5) THEN 1650
1750 LET D $ = " *

"

1760 LET F=1
1770 GOTO 1660
1780 PRINT TAB (12)

; "2 TO 0
" ; TAB (34) ; A $; TAB (39) ; B $; TAB (44) ; C $; TAB (49) ; D$

1790 PRINT TAB (55) ;E$;TAB (61) ;F$
1795 REM COMPARING AN ARRAY ELEMENT WITH A CONSTANT ON THE RIGHT
1800 IF A (5) =0 THEN 1930
1810 LET A $ = " * H

1820 LET F=1
1830 GOTO 1940
1840 LET B $ =

" *

"

30

1850 LET F=1
1860 GOTO 2010
1870 LET C$="* M

1880 LET F=1
1890 GOTO 2030
1900 LET D $ =

" *

"

1910 LET F=1
1920 GOTO 2110
1930 GOTO 2110
1940 IF A (5) >=0 THEN 2060
1950 LET E$=" *

"

1960 LET F=1
1970 GOTO 2070
1980 LET F $ =

" "

1990 IF A (5) > 0 THEN 1840
2000 LET B $ =

" "

2010 IF A (5) <0 THEN 1870
2020 LET C$=" "

2030 IF A (5) <>0 THEN 1900
2040 LET D$=" "

2050 GOTO 2110
2060 LET E $ =

" "

2070 IF A (5) <=0 THEN 1980
2080 LET F$=" *

"

2090 LET F=1
2100 GOTO 1990
2110 PRINT TAB (12)

;
" 0 TO 0

" ; TAB (3 4) ; A $; TAB (3 9) ; B $;TAB (4 4) ;C $; TAB (4 9) ; D$
2120 PRINT TAB (55) ;E$;TAB (61) ;F$
2130 PRINT
2140 IF FOB THEN 2190
2150 PRINT TAB (31); "NO ASTERISKS"
2160 PRINT TAB (32)

; "THEREFORE"
2170 PRINT TAB (31)

;

"TEST PASSED."
2180 GOTO 2220
2190 PRINT TAB (30)

;

"SOME ASTERISKS"
2200 PRINT TAB (32)

; "THEREFORE"
2210 PRINT TAB(31) ; "TEST FAILED."
2220 PRINT
2230 PRINT " END TEST."
2240 PRINT
2250 PRINT
2260 END

* SAMPLE OUTPUT *

PROGRAM FILE 40

31

SECTION 40.0
IF-THEN

***USING NUMERICAL CONSTANTS, ASSIGNED SIMPLE VARIABLES
AND

ASSIGNED SUBSCRIPTED VARIABLES, TOGETHER. * * *

BEGIN TEST.

ALL INVALID IF-THEN EVALUATIONS WILL BE DESIGNATED BY
AN ASTERISK IN THE COLUMNS OF THOSE RELATIONAL SYMBOLS FOR
WHICH ERROR (S) OCCURRED FOR THAT COMPARATIVE ROW.

RESULTS
OF

COMPARISONS IF-THEN EVALUATIONS=<><>>=<
3 TO 3

1 TO 2

3 TO -3
2 TO 0

0 TO 0

NO ASTERISKS
THEREFORE

TEST PASSED.

END TEST.

32

41.0 EXTENDING IF-THEN CAPABILITIES BY USING
TWO-DIMENSIONAL ARRAYS IN THE COMPARISON

The program below is nearly parallel in structure to that in section
40.0. The output format is also much the same. This test program, however,
exercises the use of a two dimensioned array in the comparison expression.
It begins by comparing a two-dimensional array element with itself, then with
a constant, thirdly with array elements from another doubly dimensioned
array, fourthly with simple variables, and finally with array elements from a

singly dimensioned array.

* PROGRAM FILE 41 *

0010
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360

PRINT "PROGRAM FILE 41"

PRINT " SECTION 41.0"
PRINT
PRINT " IF-THEN"
PRINT
PRINT
PRINT " ***USING NUMERICAL CONSTANTS, ASSIGNED SIMPLE VARIABLES"
PRINT " AND"
PRINT " ASSIGNED SUBSCRIPTED VARIABLES, TOGETHER.***"
PRINT
PRINT
PRINT
PRINT " BEGIN TEST."
PRINT
PRINT " ALL INVALID IF-THEN EVALUATIONS WILL BE DESIGNATED BY"
PRINT "AN ASTERISK IN THE COLUMNS OF THOSE RELATIONAL SYMBOLS FOR"
PRINT "WHICH ERROR (S) OCCURRED FOR THAT COMPARATIVE ROW."
PRINT
PRINT
PRINT TAB (43)

; "RESULTS"
PRINT TAB (45)

; "OF"
PRINT TAB (10) ; "COMPARISONS" ,-TAB (39) ; "IF-THEN EVALUATIONS"
PRINT
LET A$="=

"

LET B$=" <

"

LET C$=">"
LET D $ = " < >

"

LET E$=">="
LET F $

= " < = "

PRINT TAB (34) ;A$;TAB(39) ;B$;TAB(44) ;C$;TAB(49) ;D$;TAB(55) ;E$;
PRINT TAB (61) ;F$
PRINT
DIM B (5, 5) , C (5, 5)

33

0370 LET Al = 2

0380 LET B (1, 1)=-1
0390 LET B (2, 2) =-2
0400 LET B (3,3) =-3
0410 LET B (4 , 4) =-2
0415 LET C (4 , 4) =-2
0420 LET A2=3
0430 LET B (5, 5) =0
0440 LET F=0
0445 REM COMPARING TWO-DIMENSIONAL ARRAY ELEMENT WITH ANOTHER
0447 REM ELEMENT OF THE SAME ARRAY
0450 IF B (2, 2) =B (4 , 4) THEN 580
0460 LET A $ = " * M

0470 LET F=1
0480 GOTO 590
0490 LET B $ = " *

"

0500 LET F=1
0510 GOTO 660
0520 LET C$="*"
0530 LET F=1
0540 GOTO 680
0550 LET 0$="*"
0560 LET F = 1

0570 GOTO 760
0580 LET A$=" "

0590 IF B (2, 2) >=B (4 , 4) THEN 710
0600 LET E$=" *

"

0610 LET F=1
0620 GOTO 720
0630 LET F$=" "

0640 IF B (2, 2) <B (4 , 4) THEN 490
0650 LET B $

= " "

0660 IF B (2, 2) >B (4 , 4) THEN 520
0670 LET C$=" "

0680 IF B (2, 2) OB (4 , 4) THEN 550
0690 LET D$= " "

0700 GOTO 760
0710 LET E$=" "

0720 IF B (2, 2) <=B (4 , 4) THEN 630
0730 LET F$= M * M

0740 LET F=1
0750 GOTO 640
0760 PRINT TAB (10)

; " -2 TO -2
“ ; TAB (3 4) ; A $; TAB (3 9) ; B $; TAB (4 4) ; C $; TAB (4 9

)

0770 PRINT D$;TAB (55) ;E$;TAB (61) ;F$
0775 REM COMPARING A CONSTANT WITH A TWO-DIMENSIONAL ARRAY ELEMENT
0780 IF -3<B(1,1) THEN 910
0790 LET B$=" *

"

0800 LET F=1
0810 GOTO 920
0820 LET A$=" *

"

0830 LET F = 1

0840 GOTO 990
0850 LET C$="*"
0860 LET F=1
0870 GOTO 1010
0880 LET E $ = " *

"

0890 LET F=1

3l*

0900 GOTO 1090
0910 LET B $ =

" "

0920 IF -3 < >B (1 , 1) THEN 1040
0930 LET D $ = " *

"

0940 LET F=1
0950 GOTO 1050
0960 LET F$=" "

0970 IF -3=B (1 , 1) THEN 820
0980 LET A$=" "

0990 IF -3>B (1 , 1) THEN 850
1000 LET C$=" "

1010 IF -3 >=B (1,1) THEN 880
1020 LET E$ = " "

1030 GOTO 1090
1040 LET D$=" "

1050 IF -3<=8 (1 , 1) THEN 960
1060 LET F$="* H

1070 LET F=1
1080 GOTO 970
1090 PRINT TAB (10)

; "-3 TO -1
" ; TAB (3 4) ; A $; TAB (3 9) ; B $; TAB (4 4) ; C $; TAB (4 9

)

1100 PRINT D$;TAB (55) ;E$;TAB (61) ;F$
1105 REM COMPARING A TWO-DIMENSIONAL ARRAY ELEMENT WITH AN ELEMENT
1107 REM OF ANOTHER TWO-DIMENSIONAL ARRAY
1110 IF B (5, 5) >B (4 , 4) THEN 1240
1120 LET C$="*"
1130 LET F=1
1140 GOTO 1250
1150 LET A$= " *

"

1160 LET F=1
1170 GOTO 1320
1180 LET B $ = " *

"

1190 LET F=1
1200 GOTO 1340
1210 LET F $ = " *

"

1220 LET F=1
1230 GOTO 1420
1240 LET C$=" "

1250 IF B (5, 5) <>C (4 , 4) THEN 1370
1260 LET D $ =

" * "

1270 LET F=1
1280 GOTO 1380
1290 LET E$ = " "

1300 IF B(5,5)=C(4,4) THEN 1150
1310 LET A$=" "

1320 IF B (5, 5) <C (4 , 4) THEN 1180
1330 LET B$=" "

1340 IF B (5, 5) <=C (4 , 4) THEN 1210
1350 LET F$=" "

1360 GOTO 1420
1370 LET D$=" "

1380 IF B (5 , 5) >=C (4 r 4) THEN 1290
1390 LET E $ = " *

”

1400 LET F=1
1410 GOTO 1300
1420 PRINT TAB (11)

;
" 0 TO -2

" ; TAB (3 4) ; A $; TAB (3 9) ; B $; TAB (4 4) ; C $;TAB (4 9)

;

1430 PRINT D$;TAB (55) ;E$;TAB (61) ;F$
1435 REM COMPARING A SIMPLE VARIABLE WITH AN ELEMENTARY

35

1437 REM PARENTHESIZED EXPRESSION ENCLOSING AN ARRAY ELEMENT
1440 IF A2= (-B (3 , 3)) THEN 1570
1450 LET A$=" *

"

1460 LET F=1
1470 GOTO 1580
1480 LET
1490 LET F=1
1500 GOTO 1650
1510 LET C$="*"
1520 LET F=1
1530 GOTO 1670
1540 LET D$ = H *

”

1550 LET F=1
1560 GOTO 1750
1570 LET A$=” "

1580 IF A 2>= (-B (3,3)) THEN 1700
1590 LET E $ =

" *

"

1600 LET F=1
1610 GOTO 1710
1620 LET F $ =

" "

1630 IF A 2< (-B (3 , 3)) THEN 1480
1640 LET B $ =

" ”

1650 IF A2> (-B (3 , 3)) THEN 1510
1660 LET C$=" "

1670 IF A2<> (-B (3,3)) THEN 1540
1680 LET D$=” "

1690 GOTO 1750
1700 LET E$=“ "

1710 IF A2<= (-B (3, 3)) THEN 1620
1720 LET F $ =

" *

"

1730 LET F=1
1740 GOTO 1630
1750 PRINT TAB (11)

;
" 3 TO - (- 3

)

" ; TAB (34) ; A $; TAB (3 9) ; B $;TAB (4 4) ;C $

;

1760 PRINT TAB (49) ; D$; TAB (55) ; E $; TAB (61) ; F

$

1765 REM COMPARING AN ARRAY ELEMENT WITH A SIMPLE PARENTHESIZED
1767 REM EXPRESSION INVOLVING A SIMPLE VARIABLE
1770 IF B (2 , 2)

= (-A1) THEN 1900
1780 LET A § =

" *

"

1790 LET F=1
1800 GOTO 1910
1810 LET B$="* B

1820 LET F=1
1830 GOTO 1980
1840 LET C$= H *"

1850 LET F=1
1860 GOTO 2000
1870 LET D $ =

B *

”

1880 LET F=1
1890 GOTO 2080
1900 LET A$ = " "

1910 IF B (2, 2) >= (-A1) THEN 2030
1920 LET £$="*”
1930 LET F = 1

1940 GOTO 2040
1950 LET F$= B "

1960 IF B (2 , 2) < (-A1) THEN 1810
1970 LET B $ =

“ B

36

1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305

IF B (2 , 2) > (-A1) THEN 1840
LET C$=" "

IF B (2, 2) <> (-A1) THEN 1870
LET D$ = " "

GOTO 2080
LET E$ = " "

IF B (2, 2) <= (-A1) THEN 1950
LET F $ = " *

"

LET F=1
GOTO 1960
PRINT TAB (10)

; "-2 TO - (2
)

" ; TAB (3 4) ; A $; TAB (3 9) ; B $; TAB (4 4) ; C

$

PRINT TAB (49) ;D$;TAB (55) ;E$;TAB (61) ;F$
LET A$ = " "

LET B $
= " "

LET C$ = " "

LET D$=" "

LET E$=" "

LET F$ = " M

LET F=0
DIM A (5

)

LET B (5 , 5) =-5
LET A (5) =-5
IF B (5 , 5) =A (5) THEN 2165
LET A $ = " *

"

LET F=1
IF B (5 , 5) >=A (5) THEN 2180
LET E $ =

*' * "

LET F=1
IF B (5 , 5) <=A (5) THEN 2195
LET F $ = " *

"

LET F=1
IF B (5, 5) <A (5) THEN 2215
IF B (5 , 5) >A (5) THEN 2230
GO TO 2237
LET B $

= " *

"

LET F=1
GO TO 2200
LET C$="*"
LET F=1
PRINT
IF FO0 THEN 2270
PRINT TAB (31); "NO ASTERISKS"
PRINT TAB (32)

; "THEREFORE"
PRINT TAB (31)

; "TEST PASSED."
GOTO 2285
PRINT TAB (30)

; "SOME ASTERISKS"
PRINT TAB (32)

; "THEREFORE"
PRINT TAB (31) ; "TEST FAILED."
PRINT
PRINT " END TEST.

"

PRINT
PRINT
END

37

* SAMPLE OUTPUT *

PROGRAM FILE 41

SECTION 41.0

IF-THEN

* * *US I NG NUMERICAL CONSTANTS, ASSIGNED SIMPLE VARIABLES
AND

ASSIGNED SUBSCRIPTED VARIABLES, TOGETHER. * * *

BEGIN TEST.

ALL INVALID IF-THEN EVALUATIONS WILL BE DESIGNATED BY
AN ASTERISK IN THE COLUMNS OF THOSE RELATIONAL SYMBOLS FOR
WHICH ERROR (S) OCCURRED FOR THAT COMPARATIVE ROW.

COMPARISONS

RESULTS
OF

IF-THEN EVALUATIONS

-2 TO -2
-3 TO -1

0 TO -2
3 TO -(-3)

-2 TO “(2)
-5 TO -5

NO ASTERISKS
THEREFORE

TEST PASSED.

END TEST.

38

42.0 THE ABS FUNCTION WITH SUBSCRIPTED VARIABLES
FOR ARGUMENTS

Thi
vat i able
constant
constant
used as

s test verifies that the absolute value function allows subscripted
s as arguments. In this test, both negative and positive numerical
s are assigned to one and two dimensioned variables. The assigned
s are of NRl , NR2, and NR3 form. The subscripted variables are then
the arguments of the ABS function.

The output has three columns. The first column is labeled "Value of
Argument", the second is labeled "True Evaluation", and the third is labeled
"System Evaluation". The first column lists the constants that were assigned
to the subscripted variable, the second column lists the implementation
output expected, and the third column lists the test system evaluation. If
any value in the third column is inaccurate, then an asterisk should appear
beside it.

* PROGRAM FILE 42 *

0010
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310

PRINT "PROGRAM FILE 42"

PRINT
PRINT
PRINT
PRINT " SECTION 42.0"
PRINT
PRINT " THE ABS FUNCTION."
PRINT
PRINT
PRINT " "USING NUMERICALLY ASSIGNED SUBSCRIPTED
PRINT " FOR"
PRINT " ARGUMENTS.*"
PRINT
PRINT
PRINT " BEGIN TEST."
PRINT
DIM A (6) , B (2 , 3

)

LET A (1) =- 1

0

LET B (1, 1) =15
LET B (1, 2) =-.

5

LET A (2) = . 1 2 5

LET A (3) =-62. 5E-3
LET B (1 , 3) =312. 5E-4
LET A (4) =ABS (A (1)

)

IF A (4) <>10 THEN 320
LET A $ =

" "

GOTO 330

VARIABLES"

39

0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0630
0640
0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770
0780

LET A $ = " *

"

LET B (2 , 1) =ABS (B (1 , 1)

)

IF B (2, 1) 015 THEN 370
LET B$=" "

GOTO 380
LET B $ =

" *

"

LET A (5) =ABS (B(l,2)

)

IF A (5) <>. 5 THEN 420
LET C$=" "

GOTO 430
LET C $ =

" *

"

LET B (2, 2) =ABS (A (2)

)

IF B (2 , 2) O . 125 THEN 470
LET D$=" "

GOTO 480
LET D$=" *

"

LET A (6) =ABS (A (3)

)

IF A (6) 062. 5E-3 THEN 520
LET E$=" "

GOTO 530
LET E $ = " *

"

LET B (2, 3) =ABS (B (1, 3)

)

IF B (2, 3) 0312. 5E-4 THEN 570
LET F $

= " "

GOTO 580
LET F $ = " * "

PRINT
PRINT " EACH EVALUATED FAILURE OF THE ABS FUNCTION WILL BE DE-"
PRINT "NOTED BY AN ASTERISK BEING PRINTED ON THAT COMPARATIVE ROW"
PRINT "OF OUTPUT. TEST PASSED IF THERE ARE NOT ANY ASTERISKS."
PRINT
PRINT
PRINT "VALUE OF"," TRUE SYSTEM "

PRINT "ARGUMENT" ,
" EVALUATION" , "EVALUATION"

PRINT
PRINT "-10 "," 10 " , A (4) ; A $

PRINT " 15 15 "
, B (2 , 1) ; B $

PRINT "-.5 "," .5 " , A (5) ;C$
PRINT " .125 .125 ",B(2 f 2);D$
PRINT "-62.5E-3 " ,

" .0625 ",A(6);E$
PRINT " 312.5E-4 .03125 ",B(2,3);F$
PRINT
PRINT " END TEST.

"

PRINT
PRINT
END

* SAMPLE OUTPUT *

1*0

PROGRAM FILE 42

SECTION 42.0

THE ABS FUNCTION.

*US ING NUMERICALLY ASSIGNED SUBSCRIPTED VARIABLES
FOR

ARGUMENTS.

*

BEGIN TEST.

EACH EVALUATED FAILURE OF THE ABS FUNCTION WILL BE DE-
NOTED BY AN ASTERISK BEING PRINTED ON THAT COMPARATIVE ROW
OF OUTPUT. TEST PASSED IF THERE ARE NOT ANY ASTERISKS.

VALUE OF
ARGUMENT

-10
15

-.5
. 125

-62. 5E-3
312. 5E-4

TRUE
EVALUATION

10
15
. 5

. 125

. 0625

. 03125

SYSTEM
EVALUATION

10
15
. 5

. 125

. 0625

.03125

END TEST.

Ul

43.0 USING ELEMENTARY OPERATIONS ON SUBSCRIPTED VARIABLES
ASSIGNED SAME TYPE CONSTANTS

The next several tests verify that the implementation will continue to
maintain six digits of precision for the operations addition, subtraction,
multiplication, division, and involution when subscripted variables are used
as terms or factors of numerical expressions. The first test below uses
arrays assigned constants of the same type. This isolates any error to that
associated with operating on array elements and not to the constants assigned
to them.

43.1 Addition

The objective of this test is the same as for section 22.1, except in
this case the numerical constants have been assigned to subscripted variables
rather than simple variables. There are four different addition exercises
performed, one for each of the type constants NRl , NR2 , and NR3 , and implicit
point scaled. Each exercise adds a double- and a single-dimensional array
element. This test has the same output format described in section 22.1.

43.2 Subtraction

The objective here is the same as section 22.2, except in this test the
numerical constants have been assigned to subscripted variables instead of
simple variables. The four different subtraction exercises have been
constructed so that the output format is similar to that in section 22.2.

* PROGRAM FILE 43 *

0010 PRINT "PROGRAM FILE 43"
0140 PRINT
0150 PRINT
0160 PRINT
0170 PRINT n SECTION 43.0"
0180 PRINT
0190 PRINT ii (NON-MIXED MODES.)

"

0200 PRINT
0210 PRINT
0220 PRINT ii BEGIN TEST.

"

0230 PRINT
0240 PRINT
0250 PRINT M SECTION 43.1"
0260 PRINT
0270 PRINT ii « i » i i i II

k 2

0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770
0780
0790
0800
0810
0820
0830
0840

PRINT " + ADDITION + "

PRINT " ++++++++++++"
PRINT
PRINT M IF NO ASTERISK FOLLOWS ANY VALUE IN THE ABSOLUTE ERROR"
PRINT "COLUMN, TEST PASSED. HOWEVER, IF AN ASTERISK FOLLOWS"
PRINT "A VALUE IN THE ABSOLUTE ERROR COLUMN, TEST FAILED BE-"
PRINT "CAUSE SYSTEM WOULD HAVE FAILED THE ERROR BOUND ROUND-OFF OF"
PRINT "SIX PLACE ACCURACY."
PRINT
PRINT
PRINT "ASSIGNMENT 1"

PRINT " + " ," REQUIRED" ,
" SUM OF" , "ABSOLUTE"

PRINT "ASSIGNMENT 2"," SUM ", "SYSTEM"," ERROR "

PRINT
PRINT
DIM A (4) ,B (2 , 2) ,C(2,4) ,D(4)
LET A$ = " "

LET A (1) =2
LET B (1 , 1) =-12
LET D (1) =10
LET C (1 , 1)

=A (1) +B (1 , 1

)

LET C(1,2)=C(1,1)+D(1)
IF ABS (C (1, 2)) <=lE-4 THEN 520
LET A$=" *

"

PRINT " 2

PRINT " + =","-10 ",C(1,1),C(1,2);A?
PRINT "-12
PRINT
LET A$=" "

LET A (2) =10.

5

LET B (1 , 2) =-32.

5

LET D (2) =22 .

0

LET C (1 , 3) =A (2) +B (1 , 2

)

LET C (1 , 4) =C (1 , 3) +D (2)

IF ABS (C (1, 4)) <=lE-4 THEN 640
LET A $ = " *

"

PRINT " 10.5 "

PRINT " + =","-22 " ,C (1 , 3) ,C(1,4) ;A$
PRINT "-32.5
PRINT
LET A$=" "

LET A (3) =2 . 5E 20
LET B (2, 1) =3 . 5E21
LET D (3) =-3 . 75E21
LET C (2 , 1) =A (3) +B (2 , 1

)

LET C (2 , 2) =C (2 , 1) +D (3

)

IF ABS (C (2, 2)) < = 1E16 THEN ’’60

LET A $ = " *

"

PRINT " 2.5E20 "

PRINT " + ="," 3.75000E21 "
, C (2 , 1) , C (2 , 2) ; A

$

PRINT " 3.5E21 "

PRINT
LET A $ =

" "

LET A (4) =3E 20
LET B (2 , 2) =4E 20
LET D(4)=-7E20
LET C (2 , 3) =A (4) +B (2 , 2

)

i+3

0850
0860
0870
0880
0890
0900
0910
0920
0930
0940
0950
0960
0970
0980
0990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410

LET C (2 , 4) =C (2 , 3) +D (4)

IF ABS (C (2, 4)) <=1E15 THEN 880
LET A$=" *

“

PRINT " 3E20
PRINT " + 7. 0000 0E 20 " ,C (2 , 3) ,C (2 , 4) ; A?
PRINT " 4E20
PRINT
PRINT " END TEST."
PRINT
PRINT
PRINT
PRINT " BEGIN TEST."
PRINT
PRINT
PRINT " SECTION 43.2"
PRINT
PRINT " "

PRINT " - SUBTRACTION -"

PRINT " "

PRINT
PRINT " IF NO ASTERISK FOLLOWS ANY VALUE IN THE ABSOLUTE ERROR"
PRINT “COLUMN, TEST PASSED. HOWEVER, IF AN ASTERISK FOLLOWS"
PRINT "A VALUE IN THE ABSOLUTE ERROR COLUMN, TEST FAILED BE-"
PRINT "CAUSE SYSTEM WOULD HAVE FAILED THE ERROR BOUND ROUND-OFF OF"
PRINT "SIX PLACE ACCURACY."
PRINT
PRINT
PRINT "ASSIGNMENT 1"," " , "DIFFERENCE"
PRINT " - "," REQUIRED "," OF ", "ABSOLUTE"
PRINT "ASSIGNMENT 2" , "DIFFERENCE" ,

" SYSTEM "," ERROR "

PRINT
PRINT
DIM E(12) , F (4 , 2

)

LET A$ = " "

LET E (1) =156
LET E (2) =6
LET E (3) =150
LET F(1,1)=E(1)-E(2)
LET F (1, 2)=F (1, 1)— E (3)
IF ABS (F (1 , 2)) < = lE-3 THEN 1260
LET A $ =

" *

"

PRINT " 156
PRINT “ - ="," 156 ",F(1,1) ,F(1,2) ;A$
PRINT "6
PRINT
LET A$ = " "

LET E (4) =2 . 55
LET E (5) =-12. 55
LET E (6) =-15 .

1

LET F (2,1)=E (5)— E (4)
LET F(2,2)=F(2,1)-E(6)
IF ABS (F (2, 2)) <=lE-4 THEN 1380
LET A $

= " *

"

PRINT "-12.55
PRINT " - =","-15.1 " , F (2 , 1) , F (2 , 2) ;A$
PRINT " 2.55
PRINT

L U

1420 LET A$ = " "

1430 LET E (7) =2 . 55E20
1440 LET E (8) =-2 . 55E20
1450 LET E (9) =5 . 1E20
1460 LET F (3 , 1) =E (7) -E (8

)

1470 LET F(3,2)=F(3,1)-E(9)
1480 IF ABS (F (3 , 2)) <=1E15 THEN 1500
1490 LET A $ = " *

"

1500 PRINT " 2.55E20 "

1510 PRINT - = H ," 5 . 100 00E 20 - , F (

3

r 1) , F (3 , 2) ; A$
1520 PRINT "-2.55E20 "

1530 PRINT
1540 LET A$ = " "

1550 LET E (10) =1E30
1560 LET E (11) =19E30
1570 LET E (12) =18E30
1580 LET F (4, 1)=E (ll)-E (10)
1590 LET F(4,2)=F(4,1)-E(12)
1600 IF ABS (F (4 , 2)) <=1E26 THEN 1620
1610 LET A$= M *

"

1613 PRINT " 19E30
1630 PRINT " - 1 . 80000E 31 M

, F (4 , 1) , F (4 , 2) ; AS
1640 PRINT " IE 30
1650 PRINT
1660 PRINT " END TEST."
1670 PRINT
1680 PRINT
1690 END

* SAMPLE OUTPUT *

PROGRAM FILE 43

SECTION 43.0

(NON-MIXED MODES.

)

BEGIN TEST.

SECTION 43.1

+ ADDITION +

^5

IF NO ASTERISK FOLLOWS ANY VALUE IN THE ABSOLUTE ERROR
COLUMN, TEST PASSED. HOWEVER, IF AN ASTERISK FOLLOWS
A VALUE IN THE ABSOLUTE ERROR COLUMN, TEST FAILED BE-
CAUSE SYSTEM WOULD HAVE FAILED THE ERROR BOUND ROUND-OFF OF
SIX PLACE ACCURACY.

ASSIGNMENT 1

+ REQUIRED SUM OF
ASSIGNMENT 2 SUM SYSTEM

ABSOLUTE
ERROR

2

+ = -10 -10 0

-12

10.5
+ = -22 -22 0

-32.5

2. 5E20
+ = 3.75000E21 3 . 7 500 0E+2 1 0

3. 5E21

3E20
+ = 7.00000E20 1 . 00000E+20 0

4E20

END TEST.

BEGIN TEST.

SECTION 43.2

- SUBTRACTION -

IF NO ASTERISK FOLLOWS ANY VALUE IN THE ABSOLUTE ERROR
COLUMN, TEST PASSED. HOWEVER, IF AN ASTERISK FOLLOWS
A VALUE IN THE ABSOLUTE ERROR COLUMN, TEST FAILED BE-
CAUSE SYSTEM WOULD HAVE FAILED THE ERROR BOUND ROUND-OFF OF
SIX PLACE ACCURACY.

ASSIGNMENT 1 DIFFERENCE
- REQUIRED OF ABSOLUTE

ASSIGNMENT 2 DIFFERENCE SYSTEM ERROR

156

6

156 150 0

U6

2. 55E20

-2. 55E20

19E30

1E30

5. 10000E20

1. 80000E31

5. 10000E+20

1 . 80000E+31

END TEST

44.0 USING ELEMENTARY OPERATIONS ON SUBSCRIPTED VARIABLES
ASSIGNED SAME TYPE CONSTANTS (CONTINUED)

44.1 Multiplication

This test is similar to section
constants have been assigned to
variables. The four cases exercised
output to section 23.1.

23.1, except in this test the
subscripted variables instead
in 43.1 and 43.2 are used with

numerical
of simple
a similar

44.2 Division

tes
i ns
the

The objective of
t the numerical
tead of simple var
output is similar

this test is similar to section 23.2, except in this
constants have been assigned to subscripted variables
iables. Again, the four separate exercises are used and
to section 23.2.

44.3 Involution

The objective of this test is similar to test 23 . 3 ,
except in

the numerical constants have been assigned to subscripted variables
simple variables. The four separate exercises are used and the
similar to section 23.3.

this test
instead of
output is

* PROGRAM FILE 44 *

0010 PRINT
0060 PRINT
0070 PRINT
0080 PRINT
0090 PRINT
0100 PRINT
0110 PRINT
0120 PRINT
0130 PRINT
0140 PRINT
0150 PRINT
0160 PRINT
0170 PRINT
0180 PRINT
0190 PRINT
0200 PRINT
0210 PRINT

"PROGRAM FILE 44"

BEGIN TEST."

" SECTION 44.1"

XXXXXXXXXXXXXXXXXX"
X MULTIPLICATION X"

" XXXXXXXXXXXXXXXXXX"

IF NO ASTERISK FOLLOWS ANY VALUE IN THE ABSOLUTE ERROR"
"COLUMN, TEST PASSED. HOWEVER, IF AN ASTERISK FOLLOWS"
"A VALUE IN THE ABSOLUTE ERROR COLUMN, TEST FAILED BE-"
"CAUSE SYSTEM WOULD HAVE FAILED THE ERROR BOUND ROUND-OFF OF"

H8

0220 PRINT "SIX PLACE ACCURACY."
0230 PRINT
0240 PRINT
0250 PRINT "ASSIGNMENT 1"

0260 PRINT " X " , "REQUIRED" , "PRODUCT OF" f "ABSOLUTE"
0270 PRINT "ASSIGNMENT 2", "PRODUCT "," SYSTEM ERROR "

0280 PRINT
0290 PRINT
0300 DIM L (4) ,M (2 , 6) ,N(4)
0310 LET A$ = " ”

0320 LET L (1) =15
0330 LET M (1 , 1) =20
0340 LET N (1) =300
0350 LET M(1,2)=L(1)*M(1,1)
0360 LET M(1,3)=M(1,2)-N (1)
0370 IF ABS (M(l,3))<=lE-3 THEN 390
0380 LET A$=" *

"

0390 PRINT "15
0400 PRINT " * ="," 300 "

, M (1 , 2) , M (1 , 3) ; A $

0410 PRINT " 20
0420 PRINT
0430 LET A$=" "

0440 LET L (2) =3 .

6

0450 LET M (1 , 4) =4 .

2

0460 LET N (2) =15. 12
0470 LET M (1 , 5) =L (2

) *M (1 , 4

)

0480 LET M (1 , 6) =M (1 , 5) -N (2)
0490 IF ABS (M(l,6))<=lE-4 THEN 510
0500 LET A $ =

" *

"

0510 PRINT "3.6
0520 PRINT " * ="," 15.12 " , M (1 , 5) , M (1 , 6) ; A

$

0530 PRINT "4.2
0540 PRINT
0550 LET A$=" "

0560 LET L (3) =3 . 6E15
0570 LET M (2 , 1) =1 . 2E3
0580 LET N (3) =4 . 32E18
0590 LET M(2, 2)=L (3) *M(2, 1)
0600 LET M (2, 3) =M (2, 2) -N (3)
0610 IF ABS (M (2, 3)) <=1E13 THEN 630
0620 LET A$= " "

0630 PRINT " 3.6E15 "

0640 PRINT " * = "," 4 . 32000E18 " , M (2 , 2) , M (2 , 3) ; A $

0650 PRINT " 1.2E3
0660 PRINT
0670 LET A$= " "

0680 LET L (4) =3E18
0690 LET M (2 , 4) =2E-3
0700 LET N (4) =6E15
0710 LET M(2,5)=L(4)*M(2,4)
0720 LET M(2,6)=M(2,5)-N (4)
0730 IF ABS (M(2,6)) < =1E10 THEN 750
0740 LET A $ = " *

"

0750 PRINT " 3E18
0760 PRINT " * = "," 6. 00000E15 " , M (2 , 5) , M (2 , 6) ; A$
0770 PRINT " 2E-3
0780 PRINT

49

0790 PRINT
0800 PRINT
0810 PRINT
0820 PRINT
0830 PRINT
0840 PRINT
0850 PRINT
0860 PRINT
0870 PRINT
0880 PRINT
0890 PRINT
0900 PRINT
0910 PRINT
0920 PRINT
0930 PRINT
0940 PRINT
0950 PRINT
0960 PRINT
0970 PRINT
0980 PRINT
0990 PRINT
1000 PRINT
1010 PRINT
1020 PRINT
1030 PRINT
1040 DIM X (2 , 2) , Y (12) , Z (2 , 2

)

1050 LET A$=" "

1060 LET X (1 , 1) =1

5

1070 LET Y (1) =5
1080 LET Z (1, 1) =3
1090 LET Y (2) =X (1 , 1) /Y (1

)

1100 LET Y (3) =Y (2
) -Z (1,1)

1110 IF ABS (Y (3)) < =lE-5 THEN 1130
1120 LET A $ = " *

"

1130 PRINT "15
1140 PRINT " / ="," 3

"
, Y (2) , Y (3) ; A $

1150 PRINT "5
1160 PRINT
1170 LET A$=" "

1180 LET X(l,2)=14.2
1190 LET Y (4) =7 .

1

1200 LET Z (1,2) =2 .

0

1210 LET Y (5) =X (1,2) /Y (4

)

1220 LET Y(6)=Y(5)-Z(1,2)
1230 IF ABS (Y (6)) <=lE-5 THEN 1250
1240 LET A $ =

" * "

1250 PRINT " 14.2
1260 PRINT " / =","2 " ,Y (5) , Y (6) ; A $
1270 PRINT " 7.1
1280 PRINT
1290 LET A$=" "

1300 LET X(2,1)=3.5E30
1310 LET Y (7) =7 . 0E10
1320 LET Z (2, 1) =5. 0E19
1330 LET Y (8) =X (2, 1) /Y (7)
1340 LET Y(9)=Y (8

) -Z (2,1)
1350 IF ABS (Y (9)) <=1E14 THEN 1370

END TEST."

BEGIN TEST."

" SECTION 44.2"

M ////////////"
" / DIVISION /"
H ////////////"

" IF NO ASTERISK FOLLOWS ANY VALUE IN THE ABSOLUTE ERROR
"COLUMN, TEST PASSED. HOWEVER, IF AN ASTERISK FOLLOWS"
"A VALUE IN THE ABSOLUTE ERROR COLUMN, TEST FAILED BE-"
"CAUSE SYSTEM WOULD HAVE FAILED THE ERROR BOUND ROUND-OFF OF
"SIX PLACE ACCURACY."

"ASSIGNMENT 1"

" / ","REQUIRED","QUOTIENT OF", "ABSOLUTE"
"ASSIGNMENT 2

"
,

" QUOTI ENT"
,

" SYSTEM "," ERROR "

1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920

LET A $ = " *

"

PRINT " 3.5E30 "

PRINT " / 5. 00000E19 ",Y (8) ,Y(9) ;A$
PRINT " 7.0E10 "

PRINT
LET A$ = " "

LET X (2 , 2) =1 8E20
LET Y (10) =9E-2
LET Z (2, 2) =2E22
LET Y (1 1) =X (2 , 2) /Y (10)
LET Y (1 2) =Y (ll)-Z (2,2)
IF ABS (Y (12)) < = 1E17 THEN 1490
LET A$=" *

"

PRINT " 18E20
PRINT " / = 2. 00000E22 ",Y(11),Y(12);A$
PRINT " 9E-2
PRINT
PRINT " END TEST.

"

PRINT
PRINT
PRINT
PRINT " BEGIN TEST."
PRINT
PRINT
PRINT " SECTION 44.3"
PRINT
PRINT "

PRINT " * INVOLUTION
A "

PRINT " "

PRINT
PRINT
PRINT " IF NO ASTERISK FOLLOWS ANY VALUE IN THE ABSOLUTE ERROR"
PRINT "COLUMN, TEST PASSED. HOWEVER, IF AN ASTERISK FOLLOWS"
PRINT "A VALUE IN THE ABSOLUTE ERROR COLUMN, TEST FAILED BE-"
PRINT "CAUSE SYSTEM WOULD HAVE FAILED THE ERROR BOUND ROUND-OFF OF"
PRINT "SIX PLACE ACCURACY."
PRINT
PRINT
PRINT "ASSIGNMENT 1"

PRINT " ~ ", "REQUIRED" , "POWER OF" , "ABSOLUTE"
PRINT "ASSIGNMENT 2"," POWER "," SYSTEM "," ERROR "

PRINT
PRINT
DIM F (6 , 2) ,G (4) ,H(4)
LET A$=" "

LET F (1, 1) =-5
LET G (1) =4
LET F (1, 2) =625
LET H (1)=F(1,1)

a
G(1)

LET F (2 , 1) =H (1) —F (1, 2)
IF ABS (F(2,l))<=lE-3 THEN 1880
LET A $ = " *

"

PRINT "-5
PRINT " ="," 625 ",H(1) ,F(2,1) ;A$
PRINT "4
PRINT
LET A$=" "

51

1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310

LET F (2, 2) =. 625
LET G (2) =0 .

0

LET F (3 , 1) =1 .

0

LET H(2)=F(2,2)~G(2)
LET F (3 , 2) =H (2) -F (3 , 1

)

IF AB S (F (3 , 2))<=lE-5 THEN 2000
LET A$ = " * M

PRINT n .625
PRINT " = 1 " ,H (2) ,F (3, 2) ;A$
PRINT "0.0
PRINT
LET A$=" "

LET F (4 , 1) =-. 005E3
LET G (3) =-200 . E-2
LET F(4,2)=4.0E-2
LET H(3)=F(4,1)G(3)
LET F (5 , 1) =H (3) -F (4 , 2

)

IF ABS (F(5,l))<=lE-7 THEN 2120
LET A $ = " *

"

PRINT 005E3
PRINT " .04 " ,H (3) ,F (5, 1) ;A$
PRINT “-200. E-2 "

PRINT
LET A$=" "

LET F (5 , 2) =400E-2
LET G (4) =5E-1
LET F (6 , 1) =200E-2
LET H(4)=F(5,2)G(4)
LET F(6,2)=H(4)-F(6,1)
IF ABS (F (6 , 2)) <=lE-5 THEN 2240
LET A $ =

" *

"

PRINT " 400E-2
PRINT " = H ," 2 ",H(4),F(6,2);A$
PRINT “ 5E-1
PRINT
PRINT " END TEST.
PRINT
PRINT
END

* SAMPLE OUTPUT *

PROGRAM FILE 44

BEGIN TEST.

52

SECTION 44.1

xxxxxxxxxxxxxxxxxx
X MULTIPLICATION X

XXXXXXXXXXXXXXXXXX

IF NO ASTERISK FOLLOWS ANY VALUE IN THE ABSOLUTE ERROR
COLUMN, TEST PASSED. HOWEVER, IF AN ASTERISK FOLLOWS
A VALUE IN THE ABSOLUTE ERROR COLUMN, TEST FAILED BE-
CAUSE SYSTEM WOULD HAVE FAILED THE ERROR BOUND ROUND-OFF OF
SIX PLACE ACCURACY.

ASSIGNMENT 1

X REQUIRED
ASSIGNMENT 2 PRODUCT

PRODUCT OF
SYSTEM

ABSOLUTE
ERROR

15
*

20

3.6
*

4.2

3.6E15
*

1.2E3

3E18
*

2E-3

300 300 0

15.12 15.12 0

4. 32000E18 4 . 32000E+18 0

6. 0000 0E 15 6 . 00000E+15 0

END TEST.

BEGIN TEST.

SECTION 44.2

////////////
/ DIVISION /
////////////

IF NO ASTERISK FOLLOWS ANY VALUE IN THE ABSOLUTE ERROR
COLUMN, TEST PASSED. HOWEVER, IF AN ASTERISK FOLLOWS
A VALUE IN THE ABSOLUTE ERROR COLUMN, TEST FAILED BE-
CAUSE SYSTEM WOULD HAVE FAILED THE ERROR BOUND ROUND-OFF OF
SIX PLACE ACCURACY.

ASSIGNMENT 1

/ REQUIRED QUOTIENT OF ABSOLUTE
ASSIGNMENT 2 QUOTIENT SYSTEM ERROR

53

15

/ = 3 3 0

5

14,2
/
7,1

3. 5E30
/

7.0E10

18E20
/

9E-2

END TEST.

2 2 0

5.00000E19 5. 00000E+19 0

2.00000E22 2 . 00000E+22 0

BEGIN TEST.

SECTION 44.3

* INVOLUTION
~

IF NO ASTERISK FOLLOWS ANY VALUE IN THE ABSOLUTE ERROR
COLUMN, TEST PASSED. HOWEVER, IF AN ASTERISK FOLLOWS
A VALUE IN THE ABSOLUTE ERROR COLUMN, TEST FAILED BE-
CAUSE SYSTEM WOULD HAVE FAILED THE ERROR BOUND ROUND-OFF OF
SIX PLACE ACCURACY.

ASSIGNMENT 1

REQUIRED
ASSIGNMENT 2 POWER

. 625

0.0

-. 005E3

-200. E-2

1

. 04

POWER OF
SYSTEM

625

. 04

ABSOLUTE
ERROR

0

0

0

400E-2

5E-1
2 2 0

5 ^

END TEST.

45.0 USING ELEMENTARY OPERATIONS ON SUBSCRIPTED VARIABLES
ASSIGNED MIXED TYPE CONSTANTS

Addition

The objective of this test is similar to section 24.1, except in this
test the numerical constants have been assigned to subscripted variables
instead of simple variables. There are six separate exercises performed in
this routine. First, NRl and NR2 assigned constants are added. Second, NRl
and NR3 assigned constants are added. Third, NRl and implicit point scaled
constants are assigned, added, then followed by the addition of an NR2
number. Fourth, NR2 and NR3 are combined. Fifth, NR2 and implicit point
scaled are combined and, finally, NR3 and implicit point scaled are combined.
The output is similar in format to section 24.1.

* PROGRAM FILE 45 *

0010 PRINT
0060 PRINT
0070 PRINT
0080 PRINT
0090 PRINT
0100 PRINT
0110 PRINT
0120 PRINT
0130 PRINT
0140 PRINT
0150 PRINT
0160 PRINT
0190 PRINT
0200 PRINT
0210 PRINT
0220 PRINT
0230 PRINT
0240 PRINT
0250 PRINT
0260 PRINT
0270 PRINT
0280 PRINT
0290 PRINT
0300 PRINT
0310 PRINT
0320 PRINT
0330 PRINT
0340 PRINT

"PROGRAM FILE 45"

SECTION 45.0"

(MIXED MODES.)

"

BEGIN TEST."

+ ADDITION +'

IF NO ASTERISK FOLLOWS ANY VALUE IN THE ABSOLUTE ERROR"
"COLUMN, TEST PASSED. HOWEVER, IF AN ASTERISK FOLLOWS"
"A VALUE IN THE ABSOLUTE ERROR COLUMN, TEST FAILED BE-"
"CAUSE SYSTEM WOULD HAVE FAILED THE ERROR BOUND ROUND-OFF OF"
"SIX PLACE ACCURACY."

"ASSIGNMENT 1"
H tl

"ASSIGNMENT 2"
"REQUIRED"
" SUM

"SUM OF" , "ABSOLUTE"
"SYSTEM"," ERROR "

56

0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770
0780
0790
0800
0810
0820
0830
0840
0850
0860
0870
0880
0890
0900
0910

DIM A (12, 2) ,B (6)

LET A$=" "

LET A (1 , 1) =1

2

LET A (1 , 2) =2 .

5

LET A (2, 1) =-14.

5

LET B (1) =A (1 , 1) +A (1 , 2

)

LET A (2 , 2) =B (1) +A (2 , 1

)

IF ABS (A(2, 2)) <=lE-4 THEN 440
LET A$=" *

"

PRINT "12
PRINT " + 14.5 ",B(1) ,A(2,2) ;A$
PRINT "2.5
PRINT
LET A$ = " "

LET A (3 , 1) =1

4

LET A (3, 2) =12. 5E-3
LET A(4,1)=-.140125E2
LET B (2) =A (3 , 1) +A (3 , 2

)

LET A (4 , 2) =B (2) +A (4 , 1

)

IF ABS (A(4, 2)) <=lE-4 THEN 560
LET A $ = " *

"

PRINT " 14
PRINT " + ="," 14.0125 " ,B(2) ,A(4, 2) ;A$
PRINT " 12 , 5E-3
PRINT
LET A$=" "

LET A (5 , 1) =-9
LET A (5 , 2) =-15E-4
LET A (6, 1) =9. 0015
LET B (3) =A (5 , 1) +A (5 , 2

)

LET A (6 , 2) =B (3) +A (6 , 1

)

IF ABS (A(6, 2)) <=lE-5 THEN 680
LET A $ = " *

"

PRINT " -9
PRINT " + =","-9.0015 " ,B(3) , A (6 , 2) ;A$
PRINT "-15E-4
PRINT
LET A$=" "

LET A (7 , 1) = . 625
LET A (7, 2) =-. 00005E7
LET A (8 , 1) =499. 375
LET B (4) =A (7 , 1) +A (7,2)
LET A (8 , 2) =B (4) +A (8 , 1

)

IF ABS (A(8, 2)) <=lE-3 THEN 800
LET A $ =

" *

"

PRINT " .625
PRINT " + =","-499.375 " ,B (4) , A (8 , 2) ; A$
PRINT " — . 0 00 5E 7

PRINT
LET A$ = " "

LET A(9,l)=1234.2
LET A (9 , 2) =36000E-5
LET A (10 , 1) =-1234 . 56
LET B (5) =A (9,1) +A (9,2)
LET A (1 0 , 2) =B (5) +A (1 0 , 1

)

IF ABS (A(10, 2)) <=lE-2 THEN 910
PRINT " 1234.2

57

0920
0930
0940
0950
0960
0970
0980
0990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100

PRINT " + 1234.56 "
, B (5) , A (1 0 , 2) ; A $

PRINT " 36000E-5 "

PRINT
LET A$=" "

LET A(11,1)=65.4321E21
LET A (Ilf 2) =12345E17
LET A(12,1)=-6.66666E22
LET B(6)=A(11,1)+A(11,2)
LET A (1 2 , 2) =B (6) +A (1 2 , 1

)

IF ABS (A (1 2 , 2)) <=1E 1 7 THEN 1030
LET A$=" *

"

PRINT " 65. 432 IE 21 "

PRINT " + = "," 6.66666E22 "
, B (6) , A (1 2 , 2) ; A$

PRINT " 12345E17
PRINT
PRINT H END TEST."
PRINT
PRINT
END

* SAMPLE OUTPUT *

PROGRAM FILE 45

SECTION 45.0

(MIXED MODES.

)

BEGIN TEST.

++++++++++++
+ ADDITION +

++++++++++++

IF NO ASTERISK FOLLOWS ANY VALUE IN THE ABSOLUTE ERROR
COLUMN, TEST PASSED. HOWEVER, IF AN ASTERISK FOLLOWS
A VALUE IN THE ABSOLUTE ERROR COLUMN, TEST FAILED BE-
CAUSE SYSTEM WOULD HAVE FAILED THE ERROR BOUND ROUND-OFF OF
SIX PLACE ACCURACY.

ASSIGNMENT 1

58

+

ASSIGNMENT 2

REQUIRED
SUM

SUM OF
SYSTEM

ABSOLUTE
ERROR

12
+ =

2.5
14.5 14.5 0

14
+

12, 5E-3
14.0125 14.0125 0

-9
+

-15E-4
-9.0015 -9.0015 0

. 625
+ =

- . 0005E7
-499.375 -499.375 0

1234.2
+ =

36000E-5
1234.56 1234.56 0

65. 4321E21
+ =

12345E17
6 . 66666E22 6. 66666E + 22 0

END TEST.

59

46.0 USING ELEMENTARY OPERATIONS ON SUBSCRIPTED VARIABLES
ASSIGNED MIXED TYPE CONSTANTS (CONTINUED)

The objective of this subtraction test
except in this test the numerical constants
variables
discussed
to section

instead of
in section
24.2.

simple variables. S

45.0 are used with the

is the same as for
have been assigned
ix similar exerci
output being simil

section 24.2,
to subscripted
ses to those
arly formatted

* PROGRAM FILE 46 *

0010
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0185
0190
0200
0210
0220
0230
0240
0250
0260
0 2 7 0

0280
0290
0300
0310
0320
0330
0340
0350
0360
0370

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
DIM C (

LET
LET
LET
LET
LET
LET
IF

"PROGRAM FILE 46"

BEGIN TEST."

SECTION 46.0"

- SUBTRACTION -"

IF NO ASTERISK FOLLOWS ANY VALUE IN THE ABSOLUTE ERROR"
"COLUMN, TEST PASSED. HOWEVER, IF AN ASTERISK FOLLOWS"
"A VALUE IN THE ABSOLUTE ERROR COLUMN, TEST FAILED BE-"
"CAUSE SYSTEM WOULD HAVE FAILED THE ERROR BOUND ROUND-OFF OF"
"SIX PLACE ACCURACY."

A $

C (

C (

c (

D (

E (

ABS
LET A$

"ASSIGNMENT 1","
" - "," REQUIRED
"ASSIGNMENT 2" , "DIFFERENCE

3,6) , D (6) , E (6

)

_ || ||

1 , 1)=2
1 .

2)

=. 76544

1.3)

=1.23456
1) =C (1 , 1) -C (1 , 2)
1) =D (1) -C (1 , 3)
(E (1)) < = lE-5 THEN 380
= »*'

II II

f

II II

DIFFERENCE"
OF " , "ABSOLUTE"

SYSTEM ERROR "

60

0 380 PRINT " 2

0390 PRINT " - = "," 1.23456 "
, D (1) , E (1) ; A$

0400 PRINT " .76544
0410 PRINT
0420 LET A$ = " "

0430 LET C (1, 4) =15
0440 LET C (1, 5) =-. 00520E3
0450 LET C (1, 6) =. 202E2
0460 LET D (2) =C (1 , 4) -C (1 , 5

)

0470 LET E (2) =D (2) —C (1,6)
0480 IF ABS (E (2)) <=lE-4 THEN 500
0490 LET A $ = " *

"

0500 PRINT " 15
0510 PRINT " - = ,,

,

,, 20.2 "
, D (2) , E (2) ; A $

0520 PRINT 00520E3
0530 PRINT
0540 LET A$= " "

0550 LET C (2 , 1) =-9
0560 LET C (2, 2) =87600E-5
0570 LET C (2, 3) =-9876E-3
0580 LET D (3) =C (2 , 1) -C (2 , 2

)

0590 LET E (3) =D (3) -C (2, 3)
0600 IF ABS (E (3)) <=lE-5 THEN 620
0610 LET A $ = " *

"

0620 PRINT " -9
0630 PRINT " - =","-9.876 " , D (3) , E (3) ; A

$

0640 PRINT " 87600E-5 "

0650 PRINT
0660 LET A$=" "

0670 LET C (2 , 4) =8 .

8

0680 LET C (2, 5) =. 000231E6
0690 LET C (2, 6) =-222.2
0700 LET D (4) =C (2 , 4

) -C (2 , 5

)

0710 LET E (4) =D (4) -C (2 , 6)
0720 IF ABS (E (4)) < = lE-3 THEN 740
0 7 3 0 LET A $ = " * "

0740 PRINT " 8.8
0750 PRINT " - =","-222.2 " ,D (4) ,E (4) ;A$
0760 PRINT " .000231E6
0770 PRINT
0780 LET A$ = " "

0790 LET C (3 , 1) =177 . 177
0800 LET C (3, 2) =540540E-4
0810 LET C (3 , 3) =123 . 123
0820 LET D (5) =C (3,1) —C (3,2)
0830 LET E (5) =D (5

) -C (3 , 3

)

0840 IF ABS (E (5)) <=lE-3 THEN 860
0850 LET A$=" *

"

0860 PRINT " 177.177
0870 PRINT " - ="," 123.123 " ,D (5) ,E (5) ;A$
0880 PRINT " 540540E-4
0890 PRINT
0900 LET A$=" "

0910 LET C(3,4)=-90.1233E20
0920 LET C (3, 5)=-12345El6
0930 LET C (3, 6) =-8. 88888E21
0940 LET D (6) =C (3 , 4

) -C (3 , 5

)

6l

0950 LET E (

6

) =D (6) ~C (3 ,

0960 IF ABS (E (6)) <=1E16
0970 PRINT " -90. 1233E20
0980 PRINT " -

0990 PRINT " -12345E16
1000 PRINT
1010 PRINT "

1020 PRINT
1030 PRINT
1040 END

6)

THEN 970
II

= " ,"-8.88888E21 "
, D (6) , E (6) ; A $

END TEST."

* SAMPLE OUTPUT *

PROGRAM FILE 46

BEGIN TEST.

SECTION 46.0

- SUBTRACTION -

IF NO ASTERISK FOLLOWS ANY VALUE IN THE ABSOLUTE ERROR
COLUMN, TEST PASSED. HOWEVER, IF AN ASTERISK FOLLOWS
A VALUE IN THE ABSOLUTE ERROR COLUMN, TEST FAILED BE-
CAUSE SYSTEM WOULD HAVE FAILED THE ERROR BOUND ROUND-OFF OF
SIX PLACE ACCURACY.

ASSIGNMENT 1

REQUIRED
DIFFERENCE

OF ABSOLUTE
ASSIGNMENT 2 DIFFERENCE SYSTEM ERROR

2

1.23456 1.23456 0

. 76544

15
20.2 20.2 0

- . 00520E3

-9
-9.876 -9.876 0

62

87600E-5

8.8

. 000231E6

177.177

540540E-4

-90. 1233E20

-12345E16

-222.2

123.123

-8. 88888E21

-222.2

123.123

-8. 88888E+21

END TEST.

0

0

0

63

47.0
USING ELEMENTARY OPERATIONS ON SUBSCRIPTED VARIABLES

ASSIGNED MIXED TYPE CONSTANTS (CONTINUED)
47.1

Multiplication

The objective of this test is the same as in section 25.1, except in
this test the numerical constants have been assigned to subscripted variables
instead of simple variables. As in sections 45.0 and 46.0, this routine uses
six exercises to check the accuracy of simple mixed type multiplication. The
output is similar to section 25.1

47.2

Division

The objective of this test is the same as in section 25.2, except in
this test the numerical constants have been assigned to subscripted variables
instead of simple variables. Again, six exercises are used and the output is
similar to section 25.2.

47.3

Involution

The objective of this test
this test the numerical constant
instead of simple variables. Si

similar to section 25.3.

is the same as in section 25.3, except in
s have been assigned to subscripted variables
x exercises are used and the output is

* PROGRAM FILE 47 *

0 010 PRINT
0 060 PRINT
0 070 PRINT
0 080 PRINT
0 090 PRINT
0 100 PRINT
0 110 PRINT
0 120 PRINT
0 130 PRINT
0 140 PRINT
0 150 PRINT
0 160 PRINT
0 170 PRINT
0 180 PRINT
0 190 PRINT
0 200 PRINT

"PROGRAM FILE 47"

BEGIN TEST."

" SECTION 4 ^ .
1

"

" XXXXXXXXXXXXXXXXXX"
" X MULTIPLICATION X"
" XXXXXXXXXXXXXXXXXX"

IF NO ASTERISK FOLLOWS ANY VALUE IN THE ABSOLUTE ERROR"
"COLUMN, TEST PASSED. HOWEVER, IF AN ASTERISK FOLLOWS"
"A VALUE IN THE ABSOLUTE ERROR COLUMN, TEST FAILED BE-"

13210 PRINT "CAUSE SYSTEM WOULD HAVE FAILED THE ERROR BOUND ROUND-OFF OF"
0220 PRINT "SIX PLACE ACCURACY."
0230 PRINT
0240 PRINT
0250 PRINT "ASSIGNMENT 1"

0260 PRINT " * ", "REQUIRED" , "PRODUCT OF" , "ABSOLUTE"
0270 PRINT "ASSIGNMENT 2", "PRODUCT " ,

" SYSTEM "," ERROR "

0280 PRINT
0290 PRINT
0300 DIM A(6) ,B(3,2) ,C(6) ,D(2,3) ,E(6)
0310 LET A$ = " "

0320 LET A (1) =5
0330 LET B (1 , 1) =1 . 25
0340 LET C (1) =6. 25
0350 LET D (1 , 1) =A (1

) *B (1 , 1

)

0360 LET E (1) =D (1,1) -C (1

)

0370 IF ABS (E (1)) <=lE-5 THEN 390
0380 LET A $ = " * "

0390 PRINT " 5

0400 PRINT " * ="," 6.25 " , D (1 , 1) , E (1) ; A

$

0410 PRINT " 1.25
0420 PRINT
0430 LET A$ = " "

0440 LET A (2) =21
0450 LET B(1,2)=-.47619E5
0460 LET C (2) =-999999
0470 LET D (1, 2) =A (2) *B (1 , 2)
0 480 LET E (2) =D (1, 2)-C (2)
0490 IF ABS (E (2)) <=1E0 THEN 510
0500 LET A $

= " *

"

0510 PRINT " 21
0520 PRINT " * =","-999999 " , D (1 , 2) , E (2) ; A$
0530 PRINT "-.47619E5
0540 PRINT
0550 LET A$=" "

0560 LET A (3) =-9 9

0570 LET B (2, 1) =-919100E-2
0580 LET C (3) =909909
0590 LET D (1 , 3) =A (3

) * B (2 , 1

)

0600 LET E (3) =D (1,3) —C (3

)

0610 IF ABS (E (3)) <=1E0 THEN 630
0620 LET A $ =

" *

"

0630 PRINT " -99
0640 PRINT " * =",“ 909909 " , D (1 , 3) , E (3) ; A

$

0650 PRINT " -919100E-2 "

0660 PRINT
0670 LET A$=" "

0680 LET A(4)=. 0015
0690 LET B (2 , 2) =6 . 25E4
0700 LET C (4) =93.75
0 7 10 LET D (2 , 1 =A (4

) *B (2 , 2

)

0 7 20 LET E (4) =D (2 , 1
) -C (4

)

0730 IF ABS (E (4)) < = lE-4 THEN 750
0 7 4 0 LET A $ = " *

"

0 7 50 PRINT " .0015
0760 PRINT " * ="," 93.75 " , D (2 , 1) , E (4) ; A

$

0 7

7

0 PRINT " 6.25E4

65

0780
0790
0800
0810
0820
0830
0840
0850
0860
0870
0880
0890
0900
0910
0920
0930
0940
0950
0960
0970
0980
0990
1000
1010
1020
1030
104 0

1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340

PRINT
LET A$ = " "

LET A (5) =1 . 92
LET B (3, l)=6430E-4
LET C (5) =1. 23456
LET D (2 , 2)

=A (5)
* B (3 , 1

)

LET E (5) =D (2 , 2) -C (5)

IF ABS (E (5)) <=lE-5 THEN 870
LET A$=" *

"

PRINT " 1.92
PRINT " * = 1.23456 " ,D (2 , 2) , E (5) ;A$
PRINT " 6430E-4 "

PRINT
LET A$ = " "

LET A (6) =10 . 631E27
LET B (3, 2) =-72000E5
LET C(6)=-7.65432E37
LET D (2 , 3) =A (6

) *B (3 , 2

)

LET E (6) =D (2 , 3
) -C (6)

IF ABS (E (6)) <=1E32 THEN 990
LET A $ = " * "

PRINT " 10.631E27
PRINT " * =" ,"- 7 .65432E37 " , D (2 , 3) , E (6) ; AS
PRINT "- 7 2000E5
PRINT
PRINT " END TEST."
PRINT
PRINT
PRINT
PRINT "

PRINT
PRINT
PRINT "

PRINT
PRINT "

PRINT "

PRINT "

PRINT
PRINT " IF NO ASTERISK FOLLOWS ANY VALUE IN THE ABSOLUTE ERROR"
PRINT "COLUMN, TEST PASSED. HOWEVER, IF AN ASTERISK FOLLOWS"
PRINT "A VALUE IN THE ABSOLUTE ERROR COLUMN, TEST FAILED BE-"
PRINT "CAUSE SYSTEM WOULD HAVE FAILED THE ERROR BOUND ROUND-OFF OF"
PRINT "SIX PLACE ACCURACY."
PRINT
PRINT
PRINT "ASSIGNMENT 1"

PRINT " / " , "REQUIRED" , "QUOTIENT OF" , "ABSOLUTE"
PRINT "ASSIGNMENT 2

"
, "QUOTIENT" ,

" SYSTEM "," ERROR "

PRINT
PRINT
DIM L (6) , M (2 , 9) ,N(6)
LET A$ = " "

LET L (1) =6 2

5

LET
-

M (1 , 1) =1. 25
LET M (1 , 2) =500
LET M (1 , 3) =L (1) /M (1,1)
LET N (1) =M (1,3) —M (1,2)

BEGIN TEST."

SECTION 4 7
.
2

"

////////////"
/ DIVISION /"

////////////"

66

1350 IF ABS (N (1)) < = lE-3 THEN 1370
1360 LET A$=" *

"

1370 PRINT " 625
1380 PRINT " / = 500 "

, M (1 , 3) ,N(1) ; A $

1390 PRINT " 1.25
1400 PRINT
1410 LET A$=" "

1420 LET L (2) =8 4 . 87 6E

7

1430 LET M(l,4)=-6875
1440 LET M (1, 5) =-123456
1450 LET M(1,6)=L(2)/M(1,4)
1460 LET N (2) =M (1 , 6

) -M (1 , 5

)

1470 IF ABS (N (2)) <=1E0 THEN 1490
1480 LET A $ = " *

"

1490 PRINT " 84.876E7 "

1500 PRINT " / =" , "-123456 " ,M (1 , 6) ,N (2) ;A$

1510 PRINT " -6875
1520 PRINT
1530 LET A $ =

" "

1540 LET L(3) =-198765
1550 LET M (1 , 7) =- 5E-20
1560 LET M(1,8)=39753E20
1570 LET M(1,9)=L(3)/M(1,7)
1580 LET N (3) =M (1,9) -M (1,8)
1590 IF ABS (N (3)) <=1E19 THEN 1610
1600 LET A $

= " *

"

1610 PRINT "-198765
1620 PRINT " / = "," 3 . 9753E24 "

, M (1 , 9) , N (3) ; A $

1630 PRINT "-5E-20
1640 PRINT
1650 LET A $

= " "

1660 LET L (4) =6 . 25
16"70 LET M (2, 1) =2. 5E-4
1680 LET M (2 , 2) =25000 .

0

1690 LET M (2, 3)=L(4)/M(2, 1)
1700 LET N (4) =M (2, 3) -M (2, 2)
1710 IF ABS (N (4)) <=1E-1 THEN 1730
1720 LET A$=" *

"

1730 PRINT " 6.25
1740 PRINT " / ="," 25000 " ,M(2, 3) ,N (4) ;A$
1750 PRINT " 2.5E-4
1760 PRINT
1770 LET A $ =

" "

1780 LET L (5) = . 1 728
1790 LET M (2, 4) =12E12
1800 LET M (2, 5) =144000E~19
1810 LET M (2, 6) =L (5) /M (2, 4)
1820 LET N (5) =M (2, 6) -M (2, 5)

1830 IF ABS (N (5))

<

= 1E-19 THEN 1850
1840 LET A$=" *

"

1850 PRINT " .1728
1860 PRINT " / = "," 1.44000E-14 " , M (2 , 6) , N (5) ; A$
1870 PRINT " 12E12
1880 PRINT
189 0 LET A $= " "

1900 LET L (6) =-l . 25E-10

67

1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470

LET M (2 , 7) =625E16
LET M (2, 8) =-2. 00000E-29
LET M(2,9)=L(6)/M(2,7)
LET N (6) =M (2, 9) -M (2, 8)

IF ABS (N (6)) <=lE-34 THEN 1970
LET A$=" *

"

PRINT "-1.25E-10 "

PRINT " / =" , "-2. 00000E-29 "
M(2,9) ,N (6) ;A$

PRINT " 625E16
PRINT
PRINT " END TEST."
PRINT
PRINT
PRINT
PRINT " BEGIN TEST."
PRINT
PRINT
PRINT " SECTION 47.3"
PRINT
PRINT " "

PRINT " * INVOLUTION
PRINT " "

PRINT
PRINT
PRINT
PRINT " IF NO ASTERISK FOLLOWS ANY VALUE IN THE ABSOLUTE ERROR"
PRINT "COLUMN, TEST PASSED. HOWEVER, IF AN ASTERISK FOLLOWS"
PRINT "A VALUE IN THE ABSOLUTE ERROR COLUMN, TEST FAILED BE-"
PRINT "CAUSE SYSTEM WOULD HAVE FAILED THE ERROR BOUND ROUND-OFF OF"
PRINT "SIX PLACE ACCURACY."
PRINT
PRINT
PRINT "ASSIGNMENT 1"

PRINT " * ", "REQUIRED" , "POWER OF" , "ABSOLUTE"
PRINT "ASSIGNMENT 2"," POWER "," SYSTEM " ,

" ERROR "

PRINT
PRINT
DIM I (6) , J (2, 9) ,K (6)
LET A$ = " "

LET I (1) =144
LET J (1 , 1) = . 5

LET J (1 , 2) =12
LET J (1 , 3) =1 (1) (1,1)
LET K (1) =J (1 , 3) -J (1,2)
IF ABS (K (1)) < = lE-4 THEN 2370
LET a $ =

" * "

PRINT "144
PRINT " “ =" ," 12 " ,J(1,3) ,K(1) ;A$
PRINT " .5
PRINT
LET A $= " "

LET I (2) =5
LET J (1 , 4) =-. 004E3
LET J (1 , 5) =1. 6E-3
LET J (1 , 6) =1 (2) (1 , 4)
LET K (2) =J (1 , 6

) -J (1,5)
IF ABS (K (2)) <=lE-8 THEN 2490

68

2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040

LET A$=" *

"

PRINT " 5

PRINT " ~ = "," .0016 " ,J (1, 6) ,K (2) ;A$
PRINT " - . 004E

3

PRINT
LET A $ =

" "

LET I (3) =65536
LET J (1,7) =-625E-4
LET J (1 , 8) =5E-1
LET J (1 , 9) =1 (3)

~ J (1,7)
LET K (3) =J (1 , 9) -J (1,8)
IF ABS (K (3)) <=lE-6 THEN 2610
LET A $ = " *

"

PRINT " 65536
PRINT " * ="," .5 ",J (1,9) ,K(3) ;A$
PRINT "-625E-4
PRINT
LET A$ = " "

LET I (4) =. 03125
LET J (2 , 1) =-. 0002E3
LET J (2, 2) =2
LET J (2 , 3) =1 (4)

~ J (2,1)
LET K(4)=J (2,3)-J (2,2)
IF ABS (K (4)) <=lE-5 THEN 2730
LET A$=" *

"

PRINT " .03125
PRINT " “ = "," 2 ",J (2,3) ,K(4) ;A$
PRINT 0002E3
PRINT
LET A$=" "

LET I (5) =1.

2

LET J (2,4)=5000E-3
LET J (2, 5) =2.48832
LET J (2 , 6) =1 (5)

~ J (2,4)
LET K (5) =J (2 , 6) -J (2,5)
IF ABS (K (5)) < =lE-5 THEN 2850
LET A$ = " * °

PRINT "1.2
PRINT " “ ="," 2.48832 ",J (2,6) ,K(5) ;A$
PRINT " 5000E-3
PRINT
LET A $

= " "

LET I (6) =1 . 024E13
LET J (2,7) =-10E-2
LET J (2, 8) =5E-2
LET J (2 , 9) =1 (6) ~J (2,7)
LET K (6) =J (2 , 9

) -J (2,8)
IF ABS (K (6))

<

= lE-7 THEN 2970
LET A $ = " *

"

PRINT " 1.024E13 "

PRINT " * ="," .05 " , J (2 , 9) , K (6) ; A $

PRINT " -10E-2
PRINT
PRINT " END TEST."
PRINT
PRINT
END

69

* SAMPLE OUTPUT *

PROGRAM FILE 47

BEGIN TEST.

SECTION 47.1

XXXXXXXXXXXXXXXXXX
X MULTIPLICATION X

XXXXXXXXXXXXXXXXXX

IF NO ASTERISK FOLLOWS ANY VALUE IN THE ABSOLUTE ERROR
COLUMN, TEST PASSED. HOWEVER, IF AN ASTERISK FOLLOWS
A VALUE IN THE ABSOLUTE ERROR COLUMN, TEST FAILED BE-
CAUSE SYSTEM WOULD HAVE FAILED THE ERROR BOUND ROUND-OFF OF
SIX PLACE ACCURACY.

ASSIGNMENT 1

* REQUIRED
ASSIGNMENT 2 PRODUCT

PRODUCT OF ABSOLUTE
SYSTEM ERROR

5
*

1.25

21
*

- . 47619E5

6.25

-999999

6.25

-999999

0

0

-99
*

-91 9100E-2

. 0015
*

6. 25E4

1.92
*

6430E-4

10. 631E27
*

-72000E5

909909 „ 909909 0

93.75 93.75 0

1.23456 1.23456 0

-7.65432E37 -7.65432E+37 0

70

END TEST

BEGIN TEST.

SECTION 47.2

////////////
/ DIVISION /
////////////

IF NO ASTERISK FOLLOWS ANY VALUE IN THE ABSOLUTE ERROR
COLUMN, TEST PASSED. HOWEVER, IF AN ASTERISK FOLLOWS
A VALUE IN THE ABSOLUTE ERROR COLUMN, TEST FAILED BE-
CAUSE SYSTEM WOULD HAVE FAILED THE ERROR BOUND ROUND-OFF OF
SIX PLACE ACCURACY.

ASSIGNMENT 1

/ REQUIRED
ASSIGNMENT 2 QUOTIENT

QUOTIENT OF ABSOLUTE
SYSTEM ERROR

625
/ = 500 500 0

1.25

84.876E7
/ = -123456 -123456 0

-6875

-198765
/ = 3 . 9753E24 3.97530E+24 0

-5E-20

6.25
/ = 25000 25000 0

2. 5E-4

.1728
/ = 1 . 44000E-14 1 . 44000E-14 0

12E12

-1. 25E-10
/ = -2 . 00000E-29 -2 . 00000E-29 0

625E16

END TEST.

BEGIN TEST.

SECTION 47.3

71

INVOLUTION

IF NO ASTERISK FOLLOWS ANY VALUE IN THE ABSOLUTE ERROR
COLUMN, TEST PASSED. HOWEVER, IF AN ASTERISK FOLLOWS
A VALUE IN THE ABSOLUTE ERROR COLUMN, TEST FAILED BE-
CAUSE SYSTEM WOULD HAVE FAILED THE ERROR BOUND ROUND-OFF OF
SIX PLACE ACCURACY.

ASSIGNMENT 1

REQUIRED POWER OF
ASSIGNMENT 2 POWER SYSTEM

ABSOLUTE
ERROR

144

. 5

5

. 004E3

65536

625E-4

. 03125

. 0002E3

1.2

5000E-3

1. 024E13

-10E-2

12

. 0016

. 5

2

2.48832

. 05

12

. 0016

.5

2

2.48832

. 05

0

0

0

0

0

0

END TEST.

72

48.0

ADDITION OF MORE THAN TWO TERMS CONTAINING
ARRAY ELEMENTS

The objective of this section is to continue the testing of standard
conforming numerical expressions. In particular, in this case we exercise
the addition of several terms involving array elements. From previous tests
we can have confidence in the addition operation on two terms. Here we are
extending the capability one more step.

48.1

Using Subscripted Variables

The objective of this test is the same as in section 28.2, except in
this test the numerical constants have been assigned to subscripted variables
instead of simple variables. In this section two expressions are computed,
one with five and the other with six terms. They combine single- and
double-dimensional arrays. The output is similar to section 28.2.

48.2

Mixing Constants, and Variables

The objective of this test is the same as in section 28.3, except in
this test subscripted variables are used along with the numerical constants
and simple variables to construct numerical expressions. Two expressions are
computed, one with seven and the other with eight terms. Constants, simple
variables and arrays are combined to form the expressions.

* PROGRAM FILE 48 *

0010 PRINT
0060 PRINT
0070 PRINT
0080 PRINT
0090 PRINT
0100 PRINT
0110 PRINT
0120 PRINT
0130 PRINT
0140 PRINT
0150 PRINT
0160 PRINT
0170 PRINT
0180 PRINT
0190 PRINT
0200 PRINT
0210 PRINT

"PROGRAM FILE 48"

SECTION 48.0"

ADDITION OF MORE THAN TWO TERMS."

" BEGIN TEST."

" IF NO ASTERISK FOLLOWS ANY VALUE IN THE ABSOLUTE ERROR"
"COLUMN, TEST PASSED. HOWEVER, IF AN ASTERISK FOLLOWS"
"A VALUE IN THE ABSOLUTE ERROR COLUMN, TEST FAILED BE-"
"CAUSE SYSTEM WOULD HAVE FAILED THE ERROR BOUND ROUND-OFF OF"
"SIX PLACE ACCURACY."

73

0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
0 6 0 0

0610
0620
0630
0640
0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770
0780

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
DIM 0(6,2) , P (10

)

LET A$= " "

LET P (1) = 2 .4
LET 0 (1, 1) =23.05
LET P (2) =230.004
LET 0 (1, 2) =432.1
LET P (3) =300.1
LET 0 (2, 1) = 314
LET P (4) = 8 4E-2
LET 0 (2, 2) =. 5E-2
LET 0 (3, 1) =-987.654
LET P (5) =P (1)+0(1,1) +P (2

)

+0(1
LET 0 (3, 2) =P (5) +0 (

3

,1)
IF ABS (0 (3 ,2))<=1E- 3 THEN 510
LET A $ = " *

"

PRINT " 5 "," 987.654 " ,P(5) ,0(3,2) ; A $

LET A$=" "

LET 0(4,1) =-999 . 999
LET 0 (4 , 2) =0 (1 , 1) +P (2) +0 (1 , 2) +0 (2 , 1) +P (4) +0 (2 , 2

)

LET P (6) =0(4, 2) +0(4,1)
IF ABS (P (6)) <= IE-3 THEN 580
LET A $

= " *

"

PRINT H
6 "," 999.999 " ,0 (4 , 2) ,P (6) ;A$

PRINT
PRINT
PRINT 11

•

PRINT '* ***************"
PRINT
PRINT
PRINT " SECTION 48.2"
PRINT
PRINT " MIXING"
PRINT "NUMERICAL CONS/NUMERICALLY ASSIGNED SIMPLE/SUBSCRIPTED VARS"
PRINT " TOGETHER."
PRINT
PRINT
LET A$=" "

LET Ql=110000
LET P (7) =10 . 1E7
LET Q2=7.4E8
LET O (5 , 1) =8E9
LET Q3=1.6E32
LET P (8) =1 . 2E 34

"NUMBER OF" , "REQUIRED”
, "SUM OF" , "ABSOLUTE"

" TERMS "," SUM ", "SYSTEM"," ERROR "

"**".
"A*********************"

SECTION 48.1"

USING"
NUMERICALLY ASSIGNED SUBSCRIPTED VARIABLES."

7 •+

0790
0800
0810
0820
0830
0840
0850
0860
0870
0880
0890
0900
0910
0920
0930
0940
0950
0960
0970
0980

LET 0 (5, 2)=1. 0E36
LET P (9) =Q 3+1 . 3E33+P (8) +10 0 . IE 33 + 100 . 0E33+O (5, 2) +2, 1E34
LET 0(6,l)=P(9)+(-1.23456E36)
IF ABS (0 (6, 1)) < =1E31 THEN 840
LET A$=" *

"

PRINT " 7 1. 23456E36 " , P (9) , 0 (6 , 1) ; A$
LET A$=" "

LET 0(6,2) =80000. 0+Q1+58E5+P (7) +5 . 3E 7+Q2 + 1 . IE 9+0 (5 , 1

)

LET P(10)=O(6,2) + (-9.99999E9)
IF ABS (P (10)) < = 1E4 THEN 900
LET A$= " *

"

PRINT " 8 9 . 99999E9 " ,0 (6 , 2) ,P (10) ;A§
PRINT
PRINT
PRINT W ** M •

PRINT "** * ******* * ** * * ****** ••

PRINT
PRINT " END TEST."
PRINT
END

* SAMPLE OUTPUT *

PROGRAM FILE 48

SECTION 48.0

ADDITION OF MORE THAN TWO TERMS.

BEGIN TEST.

IF NO ASTERISK FOLLOWS ANY VALUE IN THE ABSOLUTE ERROR
COLUMN, TEST PASSED. HOWEVER, IF AN ASTERISK FOLLOWS
A VALUE IN THE ABSOLUTE ERROR COLUMN, TEST FAILED BE-
CAUSE SYSTEM WOULD HAVE FAILED THE ERROR BOUND ROUND-OFF OF
SIX PLACE ACCURACY.

NUMBER OF REQUIRED SUM OF ABSOLUTE
TERMS SUM SYSTEM ERROR

**

75

SECTION 48.1

USING
NUMERICALLY ASSIGNED SUBSCRIPTED VARIABLES.

5 987.654 987.654 0

6 999.999 999.999 0

**

SECTION 48.2

MIXING
NUMERICAL CONS/NUMERICALLY ASSIGNED SIMPLE/SUBSCRIPTED VARS

TOGETHER.

7 1. 23456E36 1.23456E+36 0

8 9 . 99999E9 9.99999E + 9 0

****************** a***

END TEST.

76

49.0

MULTIPLICATION OF MORE THAN TWO TERMS

This section continues the testing of standard conforming numerical
expressions

.

49.1

Using Subscripted Variables

The objective of this test is the same as in section 29.2, except in
this test the numerical constants have been assigned to subscripted variables
instead of simple variables. Two expressions of five and six factors each
are computed. The output is similar to that of section 29.2.

49.2

Mixing Constants and Variables

The objective of this test is the same as in section 29.3, except in
this test subscripted variables along with numerical constants and simple
variables are used in the construction of numerical expressions. Two
expressions of seven and eight terms respectively are computed. The output
is similar to that of section 29.3.

ft******************
* PROGRAM FILE 49 *

0010 PRINT
0060 PRINT
0070 PRINT
0080 PRINT
0090 PRINT
0100 PRINT
0110 PRINT
0120 PRINT
0130 PRINT
0140 PRINT
0150 PRINT
0160 PRINT
0170 PRINT
0180 PRINT
0190 PRINT
0200 PRINT
0210 PRINT
0220 PRINT
0230 PRINT
0240 PRINT
0250 PRINT
0260 PRINT

"PROGRAM FILE 49"

SECTION 49.0"

MULTIPLICATION OF MORE THAN TWO TERMS."

" BEGIN TEST."

" IF NO ASTERISK FOLLOWS ANY VALUE IN THE ABSOLUTE ERROR"
"COLUMN, TEST PASSED. HOWEVER, IF AN ASTERISK FOLLOWS"
"A VALUE IN THE ABSOLUTE ERROR COLUMN, TEST FAILED BE-"
"CAUSE SYSTEM WOULD HAVE FAILED THE ERROR BOUND ROUND-OFF OF"
"SIX PLACE ACCURACY."

"NUMBER OF" , "REQUIRED" , "PRODUCT OF" , "ABSOLUTE"
" TERMS "/'PRODUCT "," SYSTEM " , " ERROR " -

77

0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770
0780
0790
0800
0810
0820
0830

PRINT "**********************”

PRINT
PRINT
PRINT " SECTION 49.1"

PRINT
PRINT ” USING"
PRINT " NUMERICALLY ASSIGNED SUBSCRIPTED VARIABLES."
PRINT
PRINT
DIM Q (13) , R (3 , 4

)

LET A $= " "

LET Q (1) =1 .

5

LET R(1,1) =0.2
LET Q (2) =3 .

7

LET R(l,2)=2.0
LET Q (3) =2 . 557
LET R (1 , 3) =3367
LET Q (4) =3E-11
LET R (1 , 4) =. 14

LET Q (5) =. 35E34
LET R (2 , 1) =2E-11
LET Q (6)

= .

1

LET R(2,2)=-5. 67654
LET Q(7)=-9.89898E13
LET R (2 , 3) =Q (1) *R (1 , 1) *Q (2) *R (1 , 2) *Q (3

)

LET Q (8) =R (2,3) +R (2,2)
IF ABS (Q (8)) < =lE-5 THEN 550
LET a $ = " *

"

PRINT " 5 ", " 5.67654 " , R (2 , 3) , Q (8) ; A

$

LET A $= " "

LET Q (9) =R (1 , 3) *Q (4) *R (1 , 4) *Q (5) *R (2, 1) *Q (6)

LET R (2, 4) =Q (9) +Q (7)

IF ABS (R(2, 4)) <=1E8 THEN 610
LET A $ = " * "

PRINT " 6 "," 9 . 89898E13 "
, Q (9) , R (2 , 4) ; A

§

PRINT
PRINT
PRINT "**" •

PRINT M ********************** M

PRINT
PRINT
PRINT " SECTION 49.2"
PRINT
PRINT " MIXING"
PRINT "NUMERICAL CONS/NUMERICALLY ASSIGNED SIMPLE/SUBSCRIPTED VARS"
PRINT " TOGETHER."
PRINT
PRINT
LET A $ =

“ "

LET S 1=1 . 5E-5
LET Q(10)=0.8E20
LET S 2 = 64 . 3E8
LET R (3 , 1) =2 . 0E-6
LET S 3 = 3

LET Q (11) =6 . 25
LET S4=10101
LET R(3,2)=l.l

78

0840
0850
0860
0870
0880
0890
0900
0910
0920
0930
0940
0950
0960
0970
0980
0990
1000
1010
1020
1030

LET Q (12)=S1*.2E8*Q (10) *.4E-10*S2*. 1E-5*R(3, 1)
LET R(3/3)=Q(12)+(-1.23456El0)
IF ABS (R(3, 3)) <=1E5 THEN 880
LET A $ = " *

"

PRINT " 7 1 . 23456E10 " ,Q (12) , R (3 , 3) ;A$
LET A?=" "

LET R (3, 4) =37 5E10*S3*1. 6E-12*Q (1 1
) *4E 21 *S 4 * . 2E-1 0 *R (3 , 2

)

LET Q(13)=R(3,4)+(-9.99999El6)
IF ABS (Q (13)) < =1E11 THEN 940
LET A$= " *

"

PRINT " 8 9.99999E16 " , R (3 , 4) , Q (1 3) ; A$
PRINT
PRINT
PRINT "^^t** •

PRINT " ***********************
PRINT
PRINT " END TEST."
PRINT
PRINT
END

* SAMPLE OUTPUT *

PROGRAM FILE 49

SECTION 49.0

MULTIPLICATION OF MORE THAN TWO TERMS.

BEGIN TEST.

IF NO ASTERISK FOLLOWS ANY VALUE IN THE ABSOLUTE ERROR
COLUMN, TEST PASSED. HOWEVER, IF AN ASTERISK FOLLOWS
A VALUE IN THE ABSOLUTE ERROR COLUMN, TEST FAILED BE-
CAUSE SYSTEM WOULD HAVE FAILED THE ERROR BOUND ROUND-OFF OF
SIX PLACE ACCURACY.

NUMBER OF REQUIRED PRODUCT OF ABSOLUTE
TERMS PRODUCT SYSTEM ERROR

**

79

SECTION 49.1

USING
NUMERICALLY ASSIGNED SUBSCRIPTED VARIABLES.

5 5.67654 5.67654 0

6 9.89898E13 9.89898E+13 0

**

SECTION 49.2

MIXING
NUMERICAL CONS/NUMERICALLY ASSIGNED SIMPLE/SUBSCRIPTED VARS

TOGETHER.

7 1.23456E10 1.23456E+10 0

8 9.99999E16 9.99999E+16 0

**

END TEST.

80

50.0

HIERARCHY OF OPERATORS AND PARENTHESES

The objective of this section is to reconstruct test section 30.0 with
subscripted variables. This continues the testing of standard conforming
numerical expressions.

50.1

Operators of Equal Priority

The objective of this test is the same as in section 30.1, except in
this test the constants have been assigned to subscripted variables. There
are five exercises in this test: lef t-to-r ight division, left-to-r ight
subtraction, lef t-to-r ight involution, lef t-to-r ight subtraction and
addition, and finally left-to-r ight division and multiplication. The output
is similar to section 30.1.

50.2

Operators of Different Priorities without Parentheses

The objective of this test is the same as in test section 30.2, except
in this test all numerical constants have been assigned to subscripted
variables. In this part of the program there are three exercises to first
test multiplication over addition or subtraction, division over addition or
subtraction, and finally to test that involution takes precedence over all
other operators. The output is similar to section 30.2.

50.3

Operators of Different Priorities with Parentheses

The objective of this test is the same as in section 30.3, except in
this test all numerical constants have been assigned to subscripted
variables. In this test, there are two sets of exercises. The first employs
simple expressions that use parentheses and finally there is an exercise
using more complex expressions. The output is similar to section 30.3.

* PROGRAM FILE 50 *

0010 PRINT
0060 PRINT
0070 PRINT
0080 PRINT
0090 PRINT
0100 PRINT
0110 PRINT
0120 PRINT
0130 PRINT

"PROGRAM FILE 50"

" SECTION 50.0: HIERARCHY OF OPERATORS AND PARENTHESES."

" SINCE THIS TEST IS ONLY CONCERNED WITH THE ORDER OF"
"OPERATIONS, THE SELECTED NUMBERS USED FOR THIS TEST ARE IN"

81

0140 PRINT
0150 PRINT
0160 PRINT
0170 PRINT
0180 PRINT
0190 PRINT
0200 PRINT
0210 PRINT
0220 PRINT
0230 PRINT
0240 PRINT
0250 PRINT
0260 PRINT
0270 PRINT
0280 PRINT
0290 PRINT
0300 PRINT
0310 PRINT
0320 PRINT
0330 PRINT
0340 PRINT
0350 PRINT
0360 PRINT
0370 PRINT
0380 PRINT
0390 PRINT
0400 DIM S (28) ,T (11, 3)
0410 LET A$="PASSED"
0420 LET S (1) =81
0430 LET T (1, 1) =9
0440 LET S (2) =3
0450 LET T (1, 2) =23
0460 LET S (3) =13
0470 LET T (1 , 3) =2
0480 LET S (4) =S (1) /T (1 , 1) /S (2

)

0490 LET S (5) =S (4)-3
0500 IF ABS (S (5)) <=lE-5 THEN 520
0510 LET A$=" FAILED"
0520 PRINT TAB (18)

, "DIVISION" ;TAB (40) ,A$
0530 PRINT
0540 LET A$="PASSED"
0550 LET T(2,1)=T(1,2)-S(3)-T(1,3)
0560 LET T (2, 2) =T (2, 1) -8
0570 IF ABS (T (2, 2)) < = lE-5 THEN 590
0580 LET A$="FAILED"
0590 PRINT TAB (18)

, "SUBTRACTION" ;TAB (40) ,A$
0600 PRINT
0610 LET A$="PASSED"
0620 LET T(2,3)=T(1,1)~S(2)T(1,3)
0630 LET T (3, 1) =T (2, 3) -531441
0640 IF ABS (T(3,1))<=1E0 THEN 660
0650 LET A$="FAILED"
0660 PRINT TAB (18) , "EXPONENTIATION" ;TAB (40) ,A$
0670 PRINT
0680 LET A$="PASSED"
0690 LET S (6) =T (1 , 2

) -S (3) +T (1 , 3

)

0700 LET S (7) =S (6) -12

"INTEGER FORM ONLY."

" SECTION 50.1"

LEFT TO RIGHT EVALUATION FOR EXPRESSIONS WITH OPERA-"
"TORS OF EQUAL PRIORITY, USING ASSIGNED SUBSCRIPTED VARIA-"
"BLES.

"

" * * * * *NOTE : LEFT TO RIGHT EVALUATION FOR EXPRESSIONS WITH"
"OPERATORS OF ONLY ADDITION OR MULTIPLICATION DOES NOT NEC-"
"ESSARILY APPLY, THEREFORE, SUCH EXPRESSIONS ARE NOT TESTED"
"IN THIS TEST.*****"

" BEGIN TEST."

TAB (18)
, "OPERATOR (S

) ";TAB(40) ,
" EVALUATION

"

TAB (18)," OF " ;TAB (40)
,
" OF

TAB (18)
, "EXPRESSION ";TAB(40)," SYSTEM "

•I***.
§

82

0710
0720
0730
0740
0750
0760
0770
0780
0790
0800
0810
0820
0830
0840
0850
0860
0870
0880
0890
0900
0910
0920
0930
0940
0950
0960
0970
0980
0990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270

IF ABS (S (7)) <=lE-4 THEN 730
LET A$=" FAILED"
PRINT TAB (18) ,

" SUBTRACTION

"

PRINT TAB (18)
,
" AND " ; TAB (4 0) , A$

PRINT TAB (18)," ADDITION "

PRINT
LET A$ = " PASSED"
LET T (3 , 2) =S (1) /T (1 , 1) *S (2)

LET T (3, 3) =T (3, 2)-27
IF ABS(T(3,3)) <=lE-4 THEN 820
LET A$="FAILED"
PRINT TAB (18)

,
" DIVISION

PRINT TAB (18)
,
" AND ",TAB(40),A$

PRINT TAB (18)
, "MULTIPLICATION"

PRINT
PRINT " END TEST."
PRINT
PRINT
PRINT " SECTION 50.2"
PRINT
PRINT " EVALUATION OF THE PRECEDENCE OF OPERATORS FOR EXPRES-"
PRINT " SIONS WHICH CONTAIN OPERATORS OF DIFFERENT PRIORITIES IN"
PRINT "THE ABSENCE OF PARENTHESES, USING ASSIGNED SUBSCRIPTED VAR-"
PRINT " IABLES .

"

PRINT
PRINT
PRINT " BEGIN TEST."
PRINT
PRINT TAB (21) , "PRIORITY" ; TAB (5 1) /’EVALUATION"
PRINT TAB (24)

, "OF " ; TAB (5 5) ,"OF"
PRINT TAB (21)

, "OPERATOR" ; TAB (5 3)

, "SYSTEM"
PRINT ** *' •

PRINT 11 **********************”
PRINT
PRINT
LET A$="PASSED"
LET T (4 , 1) =7
LET S (8) =20
LET T (4 , 2) =100
LET S (9) =72
LET T (4 , 3) =6
LET S (10) =10
LET T(5,l)=ll
LET S (11)=S (1)+T (1, 3) *S (2)-T (4,1)+S (8)
LET S (12) =S (11) -100
IF ABS (S (12)) < =lE-3 THEN 1180
LET A$=" FAILED"
PRINT TAB (18) /’MULTIPLICATION"
PRINT TAB (22) /' BEFORE " ; TAB (5 3) ,A$
PRINT TAB (11)

, "ADDITION OR SUBTRACTION"
PRINT
LET A $= " PASSED"
LET T (5 , 2) =T (4 , 2) +S (9)

/T (1 , 1) -S (2
) -T (4 , 3

)

LET T (5 , 3) =T (5 , 2)
- 9 9

IF ABS (T (5, 3)) <=lE-4 THEN 1270
LET A$=" FAILED"
PRINT TAB (21)

, "DIVISION"

83

1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1385
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830

PRINT TAB (22) /’BEFORE" ;TAB (53) ,A$
PRINT TAB (11)

, "ADDITION OR SUBTRACTION"
PRINT
LET A$="PASSED"
LET F = 0

LET T(6,3)=S (10)+T(4,2) *T (1, 3)-T(5,l)
LET T(7,l)=T(6,3)-9999
IF ABS (T (7, 1)) < = lE-2 THEN 1380
LET F=1
PRINT "EXPONENTIATION BEFORE ADDITION OR SUBTRACTION FAILED."
LET S (13) =T (4, 1) *S (2) *T (1 , 3) /T (1 , 1

)

LET S (14) = S (13) - 7

IF ABS (S (14)) < =lE-5 THEN 1420
LET F=1
PRINT "EXPONENTIATION BEFORE MULTIPLICATION OR DIVISION FAILED."
LET T(7,2)=-S(1)~T(1,3)
LET T(7,3)=T(7,2)-(-6561)
IF ABS (T(7,3))< =lE-2 THEN 1470
LET F =1

PRINT "EXPONENTIATION BEFORE UNARY FAILED."
IF F=0 THEN 1490
GOTO 1520
PRINT TAB (18) /’EXPONENTIATION"
PRINT TAB (19) /'AS FIRST OF " ; TAB (5 3) , A$
PRINT TAB (20) /’OPERATIONS"
PRINT
PRINT " END TEST."
PRINT
PRINT
PRINT " SECTION 50.3"
PRINT
PRINT " EVALUATION OF THE PRECEDENCE OF OPERATIONS FOR THOSE"
PRINT "EXPRESSIONS WHICH CONTAIN OPERATORS OF DIFFERENT PRIORITIES"
PRINT "BUT ARE INFLUENCED BY THE USE OF PARENTHESES, USING AS-"
PRINT "SIGNED SUBSCRIPTED VARIABLES."
PRINT
PRINT
PRINT ’’ BEGIN TEST."
PRINT
PRINT TAB (14) , "ALTERATION OF PRIORITY TAB (5 1)," EVALUATION"
PRINT TAB (24) , " B Y " ; TAB (55) , " OF

"

PRINT TAB (19)
, "PARENTHESES" ;TAB (53)

, "SYSTEM"
PRINT "**"•
PRINT " **********************"
PRINT
PRINT
LET F=0
LET S (15) =4
LET T (8 , 1) =92
LET S (16) =725
LET T (8 , 2) =27

4

LET S (17) =1998
LET T (8 , 3) =27
LET T(9,1)=S(1)/(T(1, 1)/S(2))

LET T (9 , 2) =T (9 , 1
) -2?

IF ABS (T (9, 2)) <=lE-4 THEN 1840
LET F=1

81*

1840 LET S(18)=T(1,2)-(S(3)-T(1,3))

1850 LET S (19) =S (1 8
) -12

1860 IF ABS (S (19)) <=lE-4 THEN 1880
1870 LET F = 1

1880 LET S (20) =S (15) " (S (2)T (1 , 3)

)

1890 LET S (21)=S (20)-262144
1900 IF ABS (S (21)) <=1E0 THEN 1920
1910 LET F=1
1920 LET T(9,3)=T(1,2)-(S(3)+T(1,3))
1930 LET T (1 0 , 1) =T (9,3) — 8

1940 IF ABS (T (10, 1)) <=lE-5 THEN 1960
1950 LET F=1
1960 LET S(22)=S(1)/(T(1,1)*S(2))

1970 LET S (23) =S (22) -3
1980 IF ABS (S (23)) < =lE-5 THEN 2000
1990 LET F=1
2000 IF F=0 THEN 2030
2010 LET A $=" UNSUCCESSFUL"
2020 GOTO 2040
2030 LET A $=" SUCCESSFUL"
2040 PRINT TAB (18) EXPRESSIONS OF"
2050 PRINT TAB (18)

, "LEFT TO RIGHT" ; TAB (5 1) , A$
2060 PRINT TAB (20)

, "EVALUATION"
2070 PRINT
2080 LET F=0
2090 LET T (10,2) = (S (1)+T (1, 3))

* (S (2)-T (4, 1)) 4-S (8)
2100 LET T(10,3)=T(10,2)-(-312)
2110 IF ABS (T (10, 3)) <=lE-3 THEN 2130
2120 LET F=1
2130 LET S (24) = (T(4,2)+T(8,1)) / (T (1 , 1) -S (2)) -T (4 , 3

)

2140 LET S (25) =S (24) -26
2150 IF ABS (S (25)) <=lE-4 THEN 2170
2160 LET F=1
2170 LET S (26) = (S (16)+T(8, 2))

~ (S (15)-T (1, 3)) +S (17)
2180 LET S (27)=S (26)-999999
2190 IF ABS (S (27)) <=1E0 THEN 2210
2200 LET F=1
2210 LET T(11,1) = (T(5,1)*S(2))~(T(1,1)/S(2))/T(8,3)
2220 LET T (11, 2) =T (11, 1) -1331
2230 IF ABS (T (11, 2)) <=lE-2 THEN 2250
2240 LET F=1
2250 LET T (11, 3) = (-S (1)

)

~T (1, 3)
2260 LET S (28)=T(11,3)-6561
2270 IF ABS (S (28)) <=lE-2 THEN 2290
2280 LET F=1
2290 IF F=0 THEN 2320
2300 LET A $=" UNSUCCESSFUL"
2310 GOTO 2330
2320 LET A $= "SUCCESSFUL"
2330 PRINT TAB (14)

, "EXPRESSIONS EVALUATED"
2340 PRINT TAB (18)

,
" BY PRIORITY OF" ; TAB (5 1) , A$

2350 PRINT TAB (19)
, "THE OPERATOR"

2360 PRINT
2370 PRINT " END TEST."
2380 PRINT
2390 PRINT
2400 END

85

* SAMPLE OUTPUT *

PROGRAM FILE 50

SECTION 50.0: HIERARCHY OF OPERATORS AND PARENTHESES.

SINCE THIS TEST IS ONLY CONCERNED WITH THE ORDER OF
OPERATIONS, THE SELECTED NUMBERS USED FOR THIS TEST ARE IN
INTEGER FORM ONLY.

SECTION 50.1

LEFT TO RIGHT EVALUATION FOR EXPRESSIONS WITH OPERA-
TORS OF EQUAL PRIORITY, USING ASSIGNED SUBSCRIPTED VARIA-
BLES .

* * * * *NOTE : LEFT TO RIGHT EVALUATION FOR EXPRESSIONS WITH
OPERATORS OF ONLY ADDITION OR MULTIPLICATION DOES NOT NEC-
ESSARILY APPLY, THEREFORE, SUCH EXPRESSIONS ARE NOT TESTED
IN THIS TEST.*****

BEGIN TEST.

OPERATOR (S) EVALUATION
OF OF

EXPRESSION SYSTEM
**

DIVISION PASSED

SUBTRACTION PASSED

EXPONENTIATION PASSED

SUBTRACTION
AND PASSED

ADDITION

DIVISION
AND PASSED

MULTIPLICATION

86

END TEST

SECTION 50.2

EVALUATION OF THE PRECEDENCE OF OPERATORS FOR EXPRES-
SIONS WHICH CONTAIN OPERATORS OF DIFFERENT PRIORITIES IN
THE ABSENCE OF PARENTHESES, USING ASSIGNED SUBSCRIPTED VAR-
IABLES.

BEGIN TEST.

PRIORITY
OF
OPERATOR

EVALUATION
OF
SYSTEM

kicicisie-k-k'kicic’k'k'kicic'kic'k

MULTIPLICATION
BEFORE PASSED

ADDITION OR SUBTRACTION

DIVISION
BEFORE PASSED

ADDITION OR SUBTRACTION

EXPONENTIATION
AS FIRST OF PASSED
OPERATIONS

END TEST.

SECTION 50.3

EVALUATION OF THE PRECEDENCE OF OPERATIONS FOR THOSE
EXPRESSIONS WHICH CONTAIN OPERATORS OF DIFFERENT PRIORITIES
BUT ARE INFLUENCED BY THE USE OF PARENTHESES, USING AS-
SIGNED SUBSCRIPTED VARIABLES.

BEGIN TEST.

ALTERATION OF PRIORITY EVALUATION
BY OF
PARENTHESES SYSTEM

**

EXPRESSIONS OF
LEFT TO RIGHT SUCCESSFUL

87

EVALUATION

EXPRESSIONS EVALUATED
BY PRIORITY OF
THE OPERATOR

SUCCESSFUL

END TEST

51.0 EVALUATION OF EXPRESSIONS THAT HAVE A VARIETY
OF OPERATORS

In this test expressions are formed
numerically assigned simple and assigned
expression is characterized by either the abs
non-nested parentheses, or nested parentheses,
the same as in test section 32.0, except in th
are included along with the numerical constan
construction of the numeric expressions. Th
Each exercise includes the evaluation of e
exercise, no parentheses are used in order to
In the second exercise, parentheses are used
test that evaluation within parentheses takes
lef t-to-r ight precedence is observed. Fin
parentheses are evaluated. Output is similar

from numerical constants,
subscripted variables. Each

ence of parentheses, use of
The objective of this test is

is test subscripted variables
ts and simple variables for the
ree exercises are performed,
ight expressions. In the first
test lef t-to-r ight precedence,
but are not nested in order to
place first and then that

ally, expressions with nested
to section 32.0.

* PROGRAM -FILE 51 *

0010
0 0 60
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310

PRINT "PROGRAM FILE 51"

PRINT
PRINT
PRINT
PRINT " SECTION 51.0"
PRINT
PRINT " EVALUATION OF EXPRESSIONS WHICH HAVE A VARIETY OF OP-"
PRINT "ERATORS AND ARE OF ONE OF THREE CATEGORIES:"
PRINT
PRINT " (1) NO PARENTHESES,"
PRINT " (2) NON-NESTED PARENTHESES, AND"
PRINT " (3) NESTED PARENTHESES."
PRINT
PRINT "ALSO, THESE EXPRESSIONS ARE FORMED FROM THE USE OF NUMERI-"
PRINT "CAL CONSTANTS, NUMERICALLY ASSIGNED SIMPLE VARIABLES, AND"
PRINT "NUMERICALLY ASSIGNED SUBSCRIPTED VARIABLES."
PRINT
PRINT
PRINT TA B (1 8)

, " CATEGORY TAB (3 6)," EVALUATION

"

PRINT TAB (18)
,
" OF ";TAB(36)," OF

PRINT TAB (18)
, "EXPRESSION" ;TAB (36)

,
" SYSTEM "

PRINT "**" •

PRINT "**********************"
PRINT
PRINT
PRINT " BEGIN TEST."
PRINT

89

0320 PRINT
0330 DIM Z (3) , M (2 , 8

)

0340 LET F=0
0350 LET X=3
0360 LET Y=2
0370 LET Z (1) =5
0380 LET Z (2) =-60
0390 LET Z (3) =92
0400 LET M(l,l)=X+Y*Z(l)-Z(2)/5-Z(2)/5/6+18
0410 LET M(l,2)=M(l,l)-45
0420 IF ABS (M(l, 2)) <=lE-4 THEN 440
0430 LET F-l
0440 LET M (1, 3) =Y~3*4+216/3Y*2+Z (3) -82
0450 LET M(l,4)=M(l,3)-90
0460 IF ABS (M(l,4)) <=lE-4 THEN 480
0470 LET F=1
0480 LET M (1 , 5) =Y*X+Y*Z (2) -Y+170
0490 LET M(l,6)=M(l,5)-54
0500 IF ABS (M(l, 6)) < = lE-4 THEN 520
0510 LET F=1
0520 LET M (1 , 7) =Z (2) /Y + 10 5/Z (1) *Y~2+3-24
0530 LET M(l,8)=M(l,7)-33
0540 IF ABS (M(l, 8)) < = lE-4 THEN 560
0550 LET F=1
0560 LET M (2, 1) =Y*Y + Z (2) *Y+167*X+Y-124
0570 LET M (2, 2) =M (2, 1) -263
0580 IF ABS (M (2 , 2)) < = lE-3 THEN 600
0590 LET F=1
0600 LET M(2,3)=Y*Y+Y*Y+Y*Y+Y*Y+Y-3*Z(1)
0610 LET M (2, 4) =M (2, 3) -3
0620 IF ABS (M(2, 4)) <=lE-5 THEN 640
0630 LET F=1
0640 LET M (2, 5) =Z (2) +Z (1) +X+Y+Y-X-9
0650 LET M (2, 6) =M (2, 5) - (-60)
0660 IF ABS (M(2, 6)) <=lE-4 THEN 680
0670 LET F=1
0680 LET M(2,7)=Z (2) /Z (1) +X+Y *Y ~ Y-X+l

0

0690 LET M (2, 8) =M (2, 7) -6
0700 IF ABS (M (2 , 8)) <=lE-5 THEN 720
0710 LET F=1
0720 IF FO0 THEN 750
0730 LET A$="PASSED"
0740 GOTO 760
0750 LET A$="FAILED"
0760 LET F = 0

0 7 7 0 LET M (1, 1) = (X+Y) * (Z (1
) — Z (2)) /5-Z (2) /5/6+1

8

0780 LET M (1 , 2) =M (1 , 1) -85
0790 IF ABS (M (1 , 2))< =lE-4 THEN 810
0800 LET F=1
0810 LET M (1 , 3) =Y~ (3*4) + (216/3) Y*2+ (Z (3) -82)
0820 LET M(1,4)=M(1,3)-144 7 4

0830 IF ABS (M (1 , 4)) <=1E-1 THEN 850
0840 LET F=1
0850 LET M (1 , 5) =Y* (X+Y) * (Z (2) -Y) +170
0860 LET M(l,6)=M(l,5)-(-450)
0870 IF ABS (M (1 , 6)) <=lE-3 THEN 890
0880 LET F=1

90

0890 LET M (1 , 7) =Z (2) /Y+l 0 5/Z (1
) *Y ~

(2 + 3) -24
0900 LET M(1,8)=M(1,7)-618
0910 IF ABS (M (1, 8)) <=lE-3 THEN 930
0920 LET F=1
0930 LET M (2, 1) =Y* (Y+Z (2))* (Y+167) *X+ (Y-124

)

0940 LET M(2,2)=M(2,l)-(-58934)
0950 IF ABS CEl) <=1E-1 THEN 970
0960 LET F=1
0970 LET M (2, 3) =Y* (Y+Y) *Y+ (Y*Y+Y) *Y+ (Y-3*Z (1)

)

0980 LET M (2, 4) =M (2, 3) -15
0990 IF ABS (M (2, 4)) <=lE-4 THEN 1010
1000 LET F=1
1010 LET M(2,5) = (Z(2)+Z(1) +X+Y +Y) - (X-9

)

1020 LET M(2,6)=M(2,5)-(-42)
1030 IF ABS (M (2 , 6)) <=lE-4 THEN 1050
1040 LET F=1
1050 LET M (2, 7) =Z (2) / (Z (1) +X) +Y*Y~ (Y-X) +10
1060 LET M (2, 8) =M (2, 7) -3.

5

1070 IF ABS (M(2, 8)) < = lE-4 THEN 1090
1080 LET F=1
1090 IF FO0 THEN 1120
1100 LET B $ = " PASSED"
1110 GOTO 1130
1120 LET B $ = " FAILED"
1130 LET F=0
1140 LET M (1 , 1) =Y/ (184/ (Z (3)/ (30/ (Z (2)/ (1 2/X))))

)

1150 LET M(l,2)=M(l,l)-(-.5)
1160 IF ABS (M(l, 2)) <=lE-6 THEN 1180
1170 LET F=1
1180 LET M(l,3)=Y~3*4+405/(3 (Y*2))+Z (3

) -82
1190 LET M(l, 4) =M (1, 3) -47
1200 IF ABS (M(l, 4)) <=lE-4 THEN 1220
1210 LET F=1
1220 LET M(1,5)=Y*(X+Y*(Z(2)-Y)) +1 70
1230 LET M(l,6)=M(l,5)-(-72)
1240 IF ABS (M (1 , 6)) < = lE-4 THEN 1260
1250 LET F=1
1260 LET M (1, 7) =Z (2)/Y+121/(Z (1) * (Y~2+3)-24)
1270 LET M (1 , 8) =M (1 r 7)

- (- 1 9)

1280 IF ABS(M(1,8)) <=lE-4 THEN 1300
1290 LET F=1
1300 LET M (2, 1) =Y* (Y+Z (2) * (Y+167* (X+Y))

) -124
1310 LET M (2, 2) =M (2, 1) - (-100560)
1320 IF ABS (M(2, 2)) <=1E0 THEN 1340
1330 LET F=1
1340 LET M (2, 3) =Y* (Y +Y* (Y+Y* (Y+Y* (Y + Y)))

) -3*Z (1)
1350 LET M (2, 4) =M (2, 3) -77
1360 IF ABS (M (2, 4)) <=lE-4 THEN 1380
1 3"7 0 LET F = 1

1380 LET M (2, 5) =Z (2) + (Z (1) + (X+ (Y+ (Y- (X-9))))

)

1390 LET M(2,6)=M(2,5)-(-42)
1400 IF ABS (M (2 , 6)) <=lE-4 THEN 1420
1410 LET F =1
1420 LET M (2, 7) =Z (2)/(Z (1) +4+ (Y* (Y~ (Y-X)) +10)

)

1430 LET M (2, 8) =M (2, 7) - (-3)
1440 IF ABS (M (2 , 8)) <=lE-5 THEN 1460
1450 LET F=1

91

1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630

IF F< > 0 THEN 1490
LET C $ = " PASSED"
GOTO 1500
LET C $ = " FAILED"
PRINT TAB (18)

,
" NO

PRINT TAB (18) , "PARENTHESES" ;TAB (38) ,A$
PRINT
PRINT TAB (18)

, "PARENTHESES"
PRINT TAB (18)," BUT ";TAB(38),B$
PRINT TAB (18)

, "NON-NESTED "

PRINT
PRINT TAB (18)

,
" NESTED "

PRINT TAB (18) ," PARENTHESES" ; TAB (3 8) ,C$
PRINT
PRINT "

PRINT
PRINT
END

END TEST n

* SAMPLE OUTPUT *

PROGRAM FILE 51

SECTION 51.0

EVALUATION OF EXPRESSIONS WHICH HAVE A VARIETY OF OP-
ERATORS AND ARE OF ONE OF THREE CATEGORIES:

(1) NO PARENTHESES,
(2) NON-NESTED PARENTHESES, AND
(3) NESTED PARENTHESES.

ALSO, THESE EXPRESSIONS ARE FORMED FROM THE USE OF NUMERI-
CAL CONSTANTS, NUMERICALLY ASSIGNED SIMPLE VARIABLES, AND
NUMERICALLY ASSIGNED SUBSCRIPTED VARIABLES.

CATEGORY EVALUATION
OF OF

EXPRESSION SYSTEM
**

BEGIN TEST.

92

NO
PARENTHESES

PARENTHESES
BUT

NON-NESTED

NESTED
PARENTHESES

END TEST.

PASSED

PASSED

PASSED

93

52.0 EXCEPTION TEST - ZERO RAISED TO A NEGATIVE POWER

The objective of this test is to verify that the implementation
recognizes zero raised to a negative power as an exception with a specified
recovery procedure. In this case it means that upon recognition of this
error, the implementation should supply machine infinity and continue program
execution. The test has a statement at line 290 which allows zero to be
raised to a negative power. Some systems may generate diagnostics that refer
to this line number. On the other hand, this test prints a statement that
informs the user on what he should expect so that the user can for himself
determine whether the implementation has performed according to the standard.
In particular, the user must look for the machine infinity for his particular
system.

* PROGRAM FILE 52 *

0010
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380

PRINT "PROGRAM FILE 52"

PRINT
PRINT
PRINT
PRINT " SECTION 52.0“
PRINT
PRINT " (ZERO RAISED TO A NEGATIVE POWER.)"
PRINT
PRINT
PRINT
PRINT " THE OBJECTIVE OF THIS SECTION IS TO DETERMINE WHETHER "

PRINT "IMPLEMENTATION WILL CONSIDER ZERO BEING RAISED TO A NEGA-"
PRINT "TIVE POWER AS A NONFATAL ERROR; THAT IS, UPON RECOGNITION"
PRINT "OF SUCH AN ERROR, IMPLEMENTATION SHOULD SUPPLY ITS MACHINE"
PRINT "INFINITY AND CONTINUE PROGRAM EXECUTION."
PRINT
PRINT
PRINT
PRINT " BEGIN TEST."
PRINT
LET A-0 5

PRINT " IF THE NUMERICAL VALUE, WHICH SHOULD BE PRINTED FOLLOW-"
PRINT "ING THIS MESSAGE, IS RECOGNIZED BY THE USER AS THE MACHINE "

PRINT "INFINITY FOR THE SYSTEM BEING TESTED, THEN IMPLEMENTATION "

PRINT "WILL HAVE PASSED THE TEST."
PRINT
PRINT A
PRINT
PRINT " END TEST.

"

PRINT

0390 END

* SAMPLE OUTPUT *

PROGRAM FILE 52

SECTION 52.0

(ZERO RAISED TO A NEGATIVE POWER.)

THE OBJECTIVE OF THIS SECTION IS TO DETERMINE WHETHER
IMPLEMENTATION WILL CONSIDER ZERO BEING RAISED TO A NEGA-
TIVE POWER AS A NONFATAL ERROR; THAT IS, UPON RECOGNITION
OF SUCH AN ERROR, IMPLEMENTATION SHOULD SUPPLY ITS MACHINE
INFINITY AND CONTINUE PROGRAM EXECUTION.

BEGIN TEST.

? ZERO TO A NEGATIVE POWER IN LINE 290

IF THE NUMERICAL VALUE, WHICH SHOULD BE PRINTED FOLLOW-
ING THIS MESSAGE, IS RECOGNIZED BY THE USER AS THE MACHINE
INFINITY FOR THE SYSTEM BEING TESTED, THEN IMPLEMENTATION
WILL HAVE PASSED THE TEST.

1.70141E+38

END TEST.

95

53.0 EXCEPTI ON TEST - A NEGATIVE NUMBER RAISED TO A NON-INTEGRAL POWER

The objective of this test is to verify that the implementation
recognizes a negative power raised to a non-integral power as an exception
with no recovery procedure. This means that the error should be reported and
program execution should be suspended pending user-directed restart
procedures. In this test, there is a statement at line 270 that has a

negative number raised to a non-integral power. A diagnostic should be the
only output unless a translator is used that executes line by line. In that
case, a fatal diagnostic should appear after the statement BEGIN TEST.

* PROGRAM FILE 53 *

*

0010 PRINT
0 0 6 0 PRINT
0070 PRINT
0 0 8 0 PRINT
0090 PRINT
0100 PRINT
0110 PRINT
0120 PRINT
0130 PRINT
0140 PRINT
0150 PRINT
0160 PRINT
0170 PRINT
0180 PRINT
0190 PRINT
0200 PRINT
0210 PRINT
0220 PRINT
0230 PRINT
0240 PRINT
0250 PRINT
0260 PRINT
0270 LET A
0280 PRINT
0290 PRINT
0300 PRINT
0310 PRINT
0320 PRINT
0330 PRINT
0340 END

"PROGRAM FILE 53"

SECTION 53.0"

(A NEGATIVE NUMBER RAISED TO A NON-INTEGRAL POWER.)"

" THE OBJECTIVE OF THIS SECTION IS TO DETERMINE WHETHER"
"UPON EVALUATION OF THE OPERATION OF INVOLUTION RESULTING IN
"A NEGATIVE NUMBER BEING RAISED TO A NON-INTEGRAL POWER WILL
"THE SYSTEM CONSIDER THIS AS A FATAL ERROR. THAT IS, WILL"
"THE SYSTEM SUSPEND PROGRAM EXECUTION IN SUCH A WAY THAT US-
" ER-DIRECTED RESTART PROCEDURES ARE REQUIRED? IF THIS PRO-"
"CEDURE IS TAKEN, THEN THE TEST WILL HAVE PASSED."

" BEGIN TEST."

: (-25)~.5
A; "HAS BEEN PRINTED, THEREFORE, TEST FAILS WHICH MEANS THE"
"SYSTEM DID NOT RECOGNIZE PROPERLY A NEGATIVE NUMBER BEING"
"RAISED TO A NON-INTEGRAL POWER."

END TEST.

"

II

II

96

* SAMPLE OUTPUT *

PROGRAM FILE 53

SECTION 53.0

(A NEGATIVE NUMBER RAISED TO A NON-INTEGRAL POWER.)

THE OBJECTIVE OF THIS SECTION IS TO DETERMINE WHETHER
UPON EVALUATION OF THE OPERATION OF INVOLUTION RESULTING IN
A NEGATIVE NUMBER BEING RAISED TO A NON-INTEGRAL POWER WILL
THE SYSTEM CONSIDER THIS AS A FATAL ERROR. THAT IS, WILL
THE SYSTEM SUSPEND PROGRAM EXECUTION IN SUCH A WAY THAT US-
ER-DIRECTED RESTART PROCEDURES ARE REQUIRED? IF THIS PRO-
CEDURE IS TAKEN, THEN THE TEST WILL HAVE PASSED.

BEGIN TEST.

? ABSOLUTE VALUE RAISED TO POWER IN LINE 270

97

54.0 SEMANTIC ERROR - SUBSCRIPTED VARIABLE WITH
DIFFERENT NUMBERS OF SUBSCRIPTS

The objective of this test is to determine whether the implementation
recognizes an occurrence of the same subscripted variable with a different
number of subscripts as an error. The routine uses the array A as both a

single and double dimensioned array. If an implementation recognizes this
error, the output of the test should be a diagnostic that indicates that in
lines 340 to 360 there is an array used with different sets of subscripts.
However, since this is a semantic rather than a syntactic error some systems
may
This

allow one and two - dimensioned arrays to use the same variable name,
test is meant to be informative to the user.

* PROGRAM FILE 54 *

0010
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420

PRINT "PROGRAM FILE 54"
PRINT
PRINT
PRINT
PRINT " SECTION 54.0"
PRINT
PRINT " (THE SAME SUBSCRIPTED VARIABLE WITH DIFFERENT NUMBERS OF"
PRINT " SUBSCRIPTS.)"
PRINT
PRINT
PRINT
PRINT " THE OBJECTIVE OF THIS SECTION IS TO DETERMINE WHETHER"
PRINT "THE USE OF THE SAME SUBSCRIPTED VARIABLE WITH BOTH ONE SUB-"
PRINT "SCRIPT AND TWO SUBSCRIPTS IN THE SAME PROGRAM IS ALLOWED"
PRINT "BY THE SYSTEM. IF THE SYSTEM RECOGNIZES THIS AS A FATAL"
PRINT "ERROR, THEN THE TEST WILL HAVE PASSED."
PRINT
PRINT
PRINT
PRINT " BEGIN TEST."
PRINT
LET A (

1

) =2
LET A (5, 5) =A (1) +64
PRINT A (5, 5); "HAS BEEN PRINTED, THEREFORE, TEST FAILS WHICH MEANS"
PRINT "THE SYSTEM DID NOT RECOGNIZE PROPERLY THE SAME SUBSCRIPTED"
PRINT "VARIABLE OCCURRING WITH DIFFERENT NUMBERS OF SUBSCRIPTS."
PRINT
PRINT " END TEST."
PRINT
END

98

* SAMPLE OUTPUT *

If this program exec
subscripted variable wi
system does not then a po

utes then
th one and
ssible error

the test system recogni
two - dimensional arrays,
diagnostic for this progr

zes the
However

am might

same
i f a

be

:

? DIMENSION ERROR IN LINE 350

99

55.0 EXCEPTION TEST - A SUBSCRIPT IS NOT IN THE RANGE OF THE IMPLICIT
DIMENSIONING BOUNDS

The objective of this test is to verify that the implementation will
recognize when the values of a subscripted variable are not within the
appropriate range. In the present case we test whether the implementation
recognizes an exception when a subscript is assigned a value greater than 10
if that array has not been declared in a dimension-statement. There is a
statement in which a subscripted variable has a subscript value greater than
10 yet that subscripted variable is not a declared array that might allow for
such a subscript value. On output, there should be a fatal diagnostic that
might indicate a dimensioning error in line 330.

* PROGRAM FILE 55 *

0010
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0270
0290
0300
0310
0320
0330
0340
0350
0360
0370

PRINT "PROGRAM FILE 55"
PRINT
PRINT
PRINT
PRINT " SECTION 55.0"
PRINT
PRINT "(A SUBSCRIPT IS NOT IN THE RANGE OF THE IMPLICIT DIMENSION-"
PRINT " ING BOUNDS.)"
PRINT
PRINT
PRINT
PRINT " THE OBJECTIVE OF THIS SECTION IS TO DETERMINE WHETHER"
PRINT "THE USE OF A SUBSCRIPT WHICH IS NOT IN THE RANGE OF THE"
PRINT "IMPLICIT DIMENSIONING BOUNDS IS ALLOWED BY THE"
PRINT "SYSTEM. IF THE SYSTEM RECOGNIZES THIS AS A FATAL ERROR"
PRINT "(THAT IS, SUSPENDING PROGRAM EXECUTION SUCH THAT USER-DI-"
PRINT "RECTED RESTART PROCEDURES ARE REQUIRED) , THEN THE TEST WILL"
PRINT "HAVE PASSED."
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT " BEGIN TEST."
PRINT
LET A (1 5) =2
PRINT A (15); "HAS BEEN PRINTED, THEREFORE, TEST FAILS WHICH MEANS"
PRINT "THE SYSTEM DID NOT RECOGNIZE PROPERLY THAT THE SUBSCRIPT"
PRINT "BEING USED WAS OUT OF THE RANGE OF THE IMPLICIT DIMENSION-"
PRINT "ING BOUND."

100

0380 PRINT
0390 PRINT " END TEST."
0400 PRINT
0410 END

* SAMPLE OUTPUT *

PROGRAM FILE 55

SECTION 55.0

(A SUBSCRIPT IS NOT IN THE RANGE OF THE IMPLICIT DIMENSION-
ING BOUNDS.)

THE OBJECTIVE OF THIS SECTION IS TO DETERMINE WHETHER
THE USE OF A SUBSCRIPT WHICH IS NOT IN THE RANGE OF THE
IMPLICIT DIMENSIONING BOUNDS IS ALLOWED BY THE
SYSTEM. IF THE SYSTEM RECOGNIZES THIS AS A FATAL ERROR
(THAT IS, SUSPENDING PROGRAM EXECUTION SUCH THAT USER-DI-
RECTED RESTART PROCEDURES ARE REQUIRED), THEN THE TEST WILL
HAVE PASSED.

BEGIN TEST.

? DIMENSION ERROR IN LINE 330

101

56.0 EXCEPTION TEST - A SUBSCRIPT IS NOT IN THE RANGE OF AN EXPLICITLY
DIMENSIONED VARIABLE

The objective of this test is to ve
recognizes the assignment of a value to a

bound of the array declaration as an exception
which an assigned value to the subscript is
the array declaration. A fatal diagnostic on
indicate that there is a dimension error in li

rify that the
location greater
. This test has
larger than the

output is requir
ne 170.

implementation
than the upper
a statement in
upper bound of
d. It might

* PROGRAM FILE 56 *

0010
0 0 6 0

0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
DIM A
LET A
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
END

"PROGRAM FILE 56"

SECTION 56.0"
FATAL ERROR TEST ON DIMENSIONED VARIABLES"

(THE EXPLICIT CASE.)"

" BEGIN TEST."

(100)

(101) =64
A (1 0 1)

;
" HAS BEEN PRINTED, THEREFORE, TEST FAILS WHICH MEANS"

"THE SYSTEM DID NOT RECOGNIZE PROPERLY THAT THE SUBSCRIPT"
"BEING USED WAS OUT OF THE RANGE OF THE EXPLICIT DIMENSION-"
"ING BOUND."

" END TEST.

"

* SAMPLE OUTPUT *

102

PROGRAM FILE 56

SECTION 56.0
FATAL ERROR TEST ON DIMENSIONED VARIABLES

(THE EXPLICIT CASE.

)

BEGIN TEST.

? DIMENSION ERROR IN LINE 170

103

57.0 ATTEMPTING STRING OVERFLOW BY VARIABLE ASSIGNMENT

The objective of this test is to generate a string overflow to determine
whether the implementation will recognize this as an error and provide an
appropriate diagnostic. Since a string expression is either a string
constant or string variable, two cases must be considered. However, string
constants up to the maximum allowed line length have previously been tested.
This test, then, will only test string variable assignment. The standard
specifies that string variables can have assigned to them, during the
execution of a program, a character string from zero to 18 characters. This
test attempts to assign strings longer than 18 characters in length. This is
an informative test since a portable standard conforming program should only
use string variables with assignments of 18 or fewer characters.
Implementations that accept the assignment of strings longer than 18
characters are not required to inform the user that this program contains
assigned strings, longer than 18 characters. The reader is referred to
section 6.4 of BSR X3.60 for the precise specifications.

The test has been constructed with several statements that allow strings
of various lengths greater than 18 characters to be assigned to string
variables. The lengths of the strings used are 19, 20, 30, 40, 50, and 58
characters in length.

If a diagnostic is generated, then it most likely will terminate the
program. Some systems, however, accept long assigned strings. Therefore,
since multi-line statements are not permitted, this error test may not
generate a diagnostic for systems allowing long strings. This is acceptable
since the implementation could not be made to overflow with respect to
str ings

.

* PROGRAM FILE 57 *

0 0 10 PRI NT
0 0 60 PRINT
0 070 PRINT
0 080 PRI NT
0 090 PRI NT
0 1 00 PRINT
0 1 10 PRI NT
0 1 20 PRI NT
0 1 30 PRI NT
0 1 40 PRI NT
0 1 50 PRI NT
0 1 60 PRI NT
0 1 70 PRI NT
0 1 80 PRI NT

"PROGRAM FILE 57"

SECTION 57.0: ERROR TEST ON STRING EXPRESSIONS II

THE OBJECTIVE OF THIS SECTION IS TO DETERMINE WHETHER"
"THE ASSIGNING OF MORE THAN 18 CHARACTERS TO A STRING WOULD"
"BE RECOGNIZED BY THE SYSTEM AS A FATAL ERROR. THAT IS, UP-"
"ON SUCH AN ASSIGNMENT, PROGRAM EXECUTION WOULD BE SUSPENDED"
"PENDING USER-DIRECTED RESTART PROCEDURES. IF THE SYSTEM"
"RECOGNIZES SUCH ASSIGNMENTS AS FATAL ERRORS, THEN THE TEST"

10U

0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
04 00
0410
0420
0430
0440
0450
0460

PRINT "PASSES. HOWEVER, IF IT DOES NOT, THEN THE SYSTEM SATISFIES"
PRINT "MORE THAN WHAT IS REQUIRED BY MINIMAL BASIC."
PRINT
PRINT
PRINT
PRINT " BEGIN TEST."
PRINT
LET A$ = ,, *********19******** 11

LET B$= m *********20*********"
LET Q$=" ************** 3Q** ****** *******

LET £) $= 11******* 4 0 ******************* M

LET E$ sl1 ************************50************************"
LET F $ =

M *****************58****************************”
PRINT " IN THE OUTPUT BELOW, THE NUMBERS TOWARD THE CENTER OR"
PRINT "IN THE CENTER OF THE ASTERISKS SIGNIFIES THE LENGTH OF THE"
PRINT "CHARACTER STRINGS ASSOCIATED WITH EACH ASSIGNED STRING VAR-

"

PRINT " IABLE .

"

PRINT
PRINT A$
PRINT B

$

PRINT C$
PRINT D$
PRINT E

$

PRINT F

$

PRINT
PRINT " END TEST."
PRINT
END

* SAMPLE OUTPUT *

If a string overflow occurs then a diagnostic message such as:

7STRING TOO LONG IN LINE 260

might appear during execution. Otherwise, the user will get the following
printed output:

PROGRAM FILE 57

SECTION 57.0; ERROR TEST ON STRING EXPRESSIONS.

105

THE OBJECTIVE OF THIS SECTION IS TO DETERMINE WHETHER
THE ASSIGNING OF MORE THAN 18 CHARACTERS TO A STRING WOULD
BE RECOGNIZED BY THE SYSTEM AS A FATAL ERROR. THAT IS, UP-
ON SUCH AN ASSIGNMENT, PROGRAM EXECUTION WOULD BE SUSPENDED
PENDING USER-DIRECTED RESTART PROCEDURES. IF THE SYSTEM
RECOGNIZES SUCH ASSIGNMENTS AS FATAL ERRORS, THEN THE TEST
PASSES. HOWEVER, IF IT DOES NOT, THEN THE SYSTEM SATISFIES
MORE THAN WHAT IS REQUIRED BY MINIMAL BASIC.

BEGIN TEST.

IN THE OUTPUT BELOW, THE NUMBERS TOWARD THE CENTER OR
IN THE CENTER OF THE ASTERISKS SIGNIFIES THE LENGTH OF THE
CHARACTER STRINGS ASSOCIATED WITH EACH ASSIGNED STRING VAR-
IABLE.

20 ********** 20 *************** 40 ********************50************************
****58****************************

END TEST.

106

58.0 TEST FOR UNDEFINED VARIABLES

At initiation of a pr og r am ,var i ables may or may not be assigned a

specific value. The objective of this test is to determine which of the
following three alternatives for associating implementation-defined initial
values with variables is used for the implementation tested. The three
alternatives are: (a) all variables receive unknown or arbitrary values
(i.e., the implementation takes no explicit action to initialize variables);
(b) all numeric variables are assigned the value zero and all string
variables the null string; or (c) all variables are r ecogn i zeabl y undefined
in the sense that an error will result from any attempt to access the value
of a variable before that variable is explicitly assigned a value. The
standard recommends that the alternative (c) be adopted in order that a
program be much more transportable. The reader should consult section 6.6 of
BSR X3.60 for the specifications used here.

This test has numerical expressions that contain undefined variables,
that is, a variable which has not been explicitly defined. Which of the
above alternatives is practiced by the tested implementation will determine
what kind of output there will be. If alternative (a) or (b) is practiced,
then the value of the expression will be printed and this value should be
followed by a statement to the user regarding the practice of the host
implementation. Several runnings of the program would indicate (b) is used
if the values 2, 4, 6, 8 are printed consistently. If not then (a) is

followed. However, if alternative (c) --which is recommended by the ANSI
Minimal BASIC Standard— is practiced, then the output should consist of some
form of implementation-defined diagnostics.

a*****************
* PROGRAM FILE 58 *

0010 PRINT
0060 PRINT
0070 PRINT
0080 PRINT
0090 PRINT
0100 PRINT
0110 PRINT
0120 PRINT
0130 PRINT
0140 PRINT
0150 PRINT
0160 PRINT
0170 PRINT
0180 PRINT
0190 PRINT
0200 PRINT

" PROGRAM FILE 58"

SECTION 58.0: TEST FOR UNDEFINED VARIABLES."

" THE OBJECTIVE OF THIS SECTION IS TO DETERMINE WHETHER"
"THE SYSTEM WILL RECOGNIZE AN UNDEFINED VARIABLE AS A FATAL"
"ERROR, THAT IS, REQUIRING A VALUE TO HAVE BEEN ASSIGNED THE"
"VARIABLE BEFORE ANY EXPRESSION INVOLVING THAT VARIABLE IS"
"EXECUTED. IF THE SYSTEM SHOULD RECOGNIZE THE UNDEFINED"
"VARIABLE AS A FATAL ERROR (SUSPENDING PROGRAM EXECUTION"
"PENDING USER-DIRECTED RESTART PROCEDURES), THEN THE TEST"
"WILL HAVE PASSED; HOWEVER, IF THE SYSTEM DOES NOT MAKE THIS"

107

0210 PRINT "RECOGNITION, THEN THE SYSTEM IS SATISFYING MORE THAN IS"
0220 PRINT "REQUIRED BY MINIMAL BASIC."
0230 PRINT
0240 PRINT
0250 PRINT
0260 PRINT " BEGIN TEST."
0270 PRINT
0280 LET A=B+2
0290 PRINT A
0292 LET A=C+4
0293 PRINT A
0294 LET A=D+6
0295 PRINT A
0296 LET A=E+8
0297 PRINT A
0300 PRINT
0305 PRINT "IF THE SEQUENCE 2, 4, 6, 8 HAS BEEN PRINTED ABOVE THEN THE"
0306 PRINT "VARIABLES B, C, D, E WERE INITIALIZED TO 0 (ALTERNATIVE B)

.

"

0307 PRINT "IF ANOTHER SEQUENCE APPEARS THEN ALTERNATIVE A APPLIES."
0310 PRINT
0320 PRINT " END TEST."
0330 PRINT
0340 END

* SAMPLE OUTPUT *

Since the standard suggests that alternative C be adopted, the followi
diagnostics might appear:

? UNINITIALIZED VARIABLE IN LINE 280
? UNINITIALIZED VARIABLE IN LINE 292
? UNINITIALIZED VARIABLE IN LINE 294
? UNINITIALIZED VARIABLE IN LINE 296

Otherwise, if alternative B applied the following output might appear

PROGRAM FILE 58

SECTION 58.0: TEST FOR UNDEFINED VARIABLES.

THE OBJECTIVE OF THIS SECTION IS TO DETERMINE WHETHER

108

THE SYSTEM WILL RECOGNIZE AN UNDEFINED VARIABLE AS A FATAL
ERROR, THAT IS, REQUIRING A VALUE TO HAVE BEEN ASSIGNED THE
VARIABLE BEFORE ANY EXPRESSION INVOLVING THAT VARIABLE IS
EXECUTED. IF THE SYSTEM SHOULD RECOGNIZE THE UNDEFINED
VARIABLE AS A FATAL ERROR (SUSPENDING PROGRAM EXECUTION
PENDING USER-DIRECTED RESTART PROCEDURES), THEN THE TEST
WILL HAVE PASSED; HOWEVER, IF THE SYSTEM DOES NOT MAKE THIS
RECOGNITION, THEN THE SYSTEM IS SATISFYING MORE THAN IS
REQUIRED BY MINIMAL BASIC.

BEGIN TEST.

2

4

6

8

IF THE SEQUENCE 2, 4, 6, 8 HAS BEEN PRINTED ABOVE THEN THE
VARIABLES B, C, D, F WERE INITIALIZED TO 0 (ALTERNATIVE B).
IF ANOTHER SEQUENCE APPEARS THEN ALTERNATIVE A APPLIES.

END TEST.

109

59.0
EXCEPTION TEST - ON DIVISION BY ZERO

The objective of this test is to verify that the implementation
recognizes a numerical expression involving division by zero as an exception
with a recovery procedure. When the implementation recognizes this
situation, it must supply the machine infinity with the sign of the numerator
and continue program execution. The reader is referred to section 7 .5 of BSR
X3.60 for the specifications.

59.1

Positive Numerator

The objective of this test is to determine, in the event that the
implementation does recognize division by zero as a recoverable error, that
it will also recognize the sign of the numerator (in this case positive) and
assign it to its machine infinity. This test has an expression at line 290
which, when evaluated, will involve division by zero. The numerator for the
expression is positive. On output, this test requires that the
implementation-supplied machine infinity printed and, preceding this value,
there should be a message informing the user to look for the positive case of
the machine infinity.

59.2

Negative Numerator

The objective of this test is the same as the stated objective for
section 59.1, except that this test uses a negative numerator. The
expression in this case is at line 470.

* PROGRAM FILE 59 *

0010 PRINT
0060 PRINT
0070 PRINT
0080 PRINT
0090 PRINT
0100 PRINT
0110 PRINT
0120 PRINT
0130 PRINT
0140 PRINT
0150 PRINT
0160 PRINT
0170 PRINT
0180 PRINT
0190 PRINT
0200 PRINT
0210 PRINT

"PROGRAM FILE 59"

" SECTION 59.0: NON-FATAL ERROR TEST FOR DIVISION BY ZERO."

" THE OBJECTIVE OF THIS TEST IS TO DETEMINE WHETHER THE"
"EVALUATION OF THE SYSTEM ON A EXPRESSION WHICH RESULTED IN"
"DIVISION BY ZERO WILL CAUSE THE SYSTEM TO SUPPLY ITS"
"MACHINE INFINITY WITH THE SIGN OF THE NUMERATOR AND A"
"CONTINUATION OF PROGRAM."

SECTION 59.1"

110

0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
LET A
LET X
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
LET A
LET X
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
END

(POSITIVE NUMERATOR.)"

BEGIN TEST."

= 2

= 32/ (A-2

)

" IF THE NUMBER PRINTED AFTER THIS STATEMENT IS POSITIVE"
"AND THE MACHINE INFINITY FOR THE SYSTEM, THEN THE TEST"
"WILL HAVE PASSED."
X

" END TEST."

" SECTION 59.2"

" (NEGATIVE NUMERATOR.)"

" BEGIN TEST."

= 64
=(-32)/(A-64)
" IF THE NUMBER PRINTED AFTER THIS STATEMENT IS NEGATIVE"
"AND IS THE MACHINE INFINITY FOR THIS SYSTEM, THEN THE TEST"
"WILL HAVE PASSED."
X

" END TEST."

* SAMPLE OUTPUT *

PROGRAM FILE 59

SECTION 59.0: NON-FATAL ERROR TEST FOR DIVISION BY ZERO.

THE OBJECTIVE OF THIS TEST IS TO DETEMINE WHETHER THE
EVALUATION OF THE SYSTEM ON A EXPRESSION WHICH RESULTED IN
DIVISION BY ZERO WILL CAUSE THE SYSTEM TO SUPPLY ITS

111

MACHINE INFINITY WITH THE SIGN OF THE NUMERATOR AND A
CONTINUATION OF PROGRAM.

SECTION 59.1

(POSITIVE NUMERATOR.)

BEGIN TEST.

?DI VIS ION BY ZERO IN LINE 290

IF THE NUMBER PRINTED AFTER THIS STATEMENT IS POSITIVE
AND THE MACHINE INFINITY FOR THE SYSTEM, THEN THE TEST
WILL HAVE PASSED.

1. 70141E + 38

END TEST.

SECTION 59.2

(NEGATIVE NUMERATOR.)

BEGIN TEST.

7DIVISION BY ZERO IN LINE 4'7 0

IF THE NUMBER PRINTED AFTER THIS STATEMENT IS NEGATIVE
AND IS THE MACHINE INFINITY FOR THIS SYSTEM, THEN THE TEST
WILL HAVE PASSED.

-1. 70141E+38

END TEST.

112

60.0

EXCEPTION TEST - ON EXPRESSION EVALUATION
RESULTING IN OVERFLOW

The objective of this test is to verify that the implementation, when
attempting to evaluate an expression causing an overflow, will recognize a

recoverable exception. Following this overflow , the implementation should
supply machine infinity with the algebraically correct sign. The reader is

referred to section 7.5 of BSR X3.60 for the specifications.

60.1 Positive Machine Infinity

In this part of the test, we raise 999999 to the 99999 power, which, for
all practical purposes, on existing computer systems, is sufficiently large
to cause overflow. All of the numbers are kept within 6 digits so that
roundoff is not a factor. This test requires that the
implementation-supplied machine infinity be printed. Preceding the output of
the machine infinity, there should be a printed message informing the user
what to look for, in order to verify that implementation passed or failed the
test. In this case, the user is instructed to look for positive machine
infinity. On the test system used machine infinity was 1.70141E+38.

60.2 Negative Machine Infinity

Two cases are considered here. First, the negative number -999999 is
raised to the odd power 99999 then, secondly, it is raised to the even power
88888. In the first case, the implementation should return machine infinity
with a negative sign and in the second case, with a positive sign. The
implementation supplied machine infinity is printed preceded by the
appropriate sign for each case. The user is informed by message what to look
for in terms of sign.

* PROGRAM FILE 60 *

0010 PRINT "PROGRAM FILE 60"
0060 PRINT
0070 PRINT
0080 PRINT
0090 PRINT " SECTION 60.0: NON-FATAL ERROR TEST FOR EXPRESSION EVALU-"
0100 PRINT " ATION WHICH RESULTS IN OVERFLOW."
0110 PRINT
0120 PRINT
0130 PRINT
0140 PRINT " THE OBJECTIVE OF THIS TEST IS TO DETERMINE WHETHER UP-"
0150 PRINT "ON THE EVALUATION OF AN EXPRESSION WHICH CAUSES OVERFLOW"
0160 PRINT "THE SYSTEM WILL SUPPLY ITS MACHINE INFINITY, WHICH SHOULD BE"
0170 PRINT "ACCOMPANIED BY THE CORRECT ALGEBRAIC SIGN, AND IF PROGRAM"

113

0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0542
0543
0545
0546
0547
0549
0550
0560
0570

PRINT "EXECUTION CONTINUES."
PRINT
PRINT
PRINT
PRINT " SECTION 60.1"
PRINT
PRINT " (MACHINE INFINITY, POSITIVE.)"
PRINT
PRINT
PRINT " BEGIN TEST."
PRINT
LET A = 9 9 9 99
LET X=999999~A
PRINT " IF THE NUMBER PRINTED AFTER THIS STATEMENT IS POSITIVE"
PRINT "AND THE MACHINE INFINITY FOR THIS SYSTEM, THEN THE TEST"
PRINT "WILL HAVE PASSED."
PRINT X

PRINT
PRINT " END TEST."
PRINT
PRINT
PRINT
PRINT " SECTION 60.2"
PRINT
PRINT " (MACHINE INFINITY, NEGATIVE.)"
PRINT
PRINT
PRINT " BEGIN TEST."
PRINT
PRINT
LET A=99999
LET X= (-999999) "A
PRINT " IF THE NUMBER PRINTED AFTER THIS STATEMENT IS NEGATIVE"
PRINT "AND THE MACHINE INFINITY FOR THIS SYSTEM, THEN THE TEST"
PRINT "WILL HAVE PASSED."
PRINT X
PRINT
LET A=88888
LET X= (-99999) ~A* (-1) * (-5) +2
PRINT " IF THE NUMBER PRINTED AFTER THIS STATEMENT IS POSITIVE"
PRINT "AND THE MACHINE INFINITY FOR THIS SYSTEM, THEN THE TEST"
PRINT "WILL HAVE PASSED."
PRINT X
PRINT " END TEST.

"

PRINT
END

* SAMPLE OUTPUT *

111*

PROGRAM FILE 60

SECTION 60.0: NON-FATAL ERROR TEST FOR EXPRESSION EVALU-
ATION WHICH RESULTS IN OVERFLOW.

THE OBJECTIVE OF THIS TEST IS TO DETERMINE WHETHER UP-
ON THE EVALUATION OF AN EXPRESSION WHICH CAUSES OVERFLOW
THE SYSTEM WILL SUPPLY ITS MACHINE INFINITY, WHICH SHOULD BE
ACCOMPANIED BY THE CORRECT ALGEBRAIC SIGN, AND IF PROGRAM
EXECUTION CONTINUES.

SECTION 60.1

(MACHINE INFINITY, POSITIVE.)

BEGIN TEST.

?OVERFLOW IN LINE 300

IF THE NUMBER PRINTED AFTER THIS STATEMENT IS POSITIVE
AND THE MACHINE INFINITY FOR THIS SYSTEM, THEN THE TEST
WILL HAVE PASSED.

1. 70141E+38

END TEST.

SECTION 60.2

(MACHINE INFINITY, NEGATIVE.)

BEGIN TEST.

70VERF LOW IN LINE 490

IF THE NUMBER PRINTED AFTER THIS STATEMENT IS NEGATIVE
AND THE MACHINE INFINITY FOR THIS SYSTEM, THEN THE TEST
WILL HAVE PASSED.

-1. 70141E+38

? OVERFLOW IN LINE 543

115

IF THE NUMBER PRINTED AFTER THIS STATEMENT IS POSITIVE
AND THE MACHINE INFINITY FOR THIS SYSTEM, THEN THE TEST
WILL HAVE PASSED.

1. 70141E+38

END TEST.

116

61.0 SEMANTIC TEST - ON THE MAGNITUDE OF A NONZERO
NUMERIC CONSTANT THAT IS TOO SMALL

The objective of this test is to verify that the implementation will
recognize a numerical constant, with a magnitude outside the
implementation-defined range, as a diagnosable error. Since numeric
constants are expressions ,their errors are handled in the same manner. If the
magnitude of the constant is too small then the implementation should supply
0 and continue. The ANSI Minimal BASIC standard does not require a

diagnostic message in an underflow of this kind. If the magnitude is too
large then the implementation should supply machine infinity with the
appropriate sign. In the case of an overflow a diagnostic message is

required. The reader is referred to section 7.4 of BSR X3.60 for the
specifications.

This test will determine whether the implementation will supply a value
of zero for an extremely small value which most present implementations
cannot represent. For any value so close to zero that it is outside of the
implementation-defined range, a value of zero should be supplied by the
implementation and program execution continued.

This test uses a numerical constant, 10.0E-99999, which is too small to
be represented on most present day machines. The constant is assigned on
line 310 and diagnostics might refer to this line. On encountering this
number, a processor should assign 0 to A and continue.

* PROGRAM FILE 61 *

0010 PRINT
0060 PRINT
0070 PRINT
0080 PRINT
0090 PRINT
0100 PRINT
0110 PRINT
0120 PRINT
0130 PRINT
0140 PRINT
0150 PRINT
0160 PRINT
0170 PRINT
0200 PRINT
0210 PRINT
0220 PRINT
0280 PRINT
0290 PRINT

"PROGRAM FILE 61"

" SECTION 61.0: SEMANTIC TEST ON THE MAGNITUDE OF A"
" NONZERO NUMERIC CONSTANT."
" (THE MAGNITUDE IS TOO SMALL)"

" THE OBJECTIVE OF THIS SECTION IS TO DETERMINE WHETHER"
"UPON THE ASSIGNMENT OF A NONZERO CONSTANT WHICH IS TOO"
"SMALL FOR THE IMPLEMENTATION A ZERO WILL"
"BE SUPPLIED."

BEGIN TEST."

117

0310 LET A=10. 0E-99999
0320 PRINT " IF THE NUMBER PRINTED AFTER THIS STATEMENT IS ZERO,"
0330 PRINT "THEN THE TEST WILL HAVE PASSED."
0340 PRINT A
0350 PRINT
0360 PRINT " END TEST."
0370 PRINT
0380 END

* SAMPLE OUTPUT *

PROGRAM FILE 61

SECTION 61.0: SEMANTIC TEST ON THE MAGNITUDE OF A
NONZERO NUMERIC CONSTANT.

(THE MAGNITUDE IS TOO SMALL)

THE OBJECTIVE OF THIS SECTION IS TO DETERMINE WHETHER
UPON THE ASSIGNMENT OF A NONZERO CONSTANT WHICH IS TOO
SMALL FOR THE IMPLEMENTATION A ZERO WILL
BE SUPPLIED.

BEGIN TEST.

IF THE NUMBER PRINTED AFTER THIS STATEMENT IS ZERO,
THEN THE TEST WILL HAVE PASSED.
0

118

62.0
EXCEPTION TEST - ON THE MAGNITUDE OF A NONZERO

NUMERIC CONSTANT THAT IS TOO LARGE
62.1

Positive Machine Infinity

This
var i able

.

pr inted

.

appear a

the printed
X3. 60 .

test assigns
It requires

But, preceding
printed messag

constant

.

a numerical constant 9 . 99999E99999
the implementation-supplied machine

the output of the machine infinity,
e informing the user what sign to look
The reader is referred to section

to a s i mpie
i n fin ity be

the re sho uld
for pr eced i ng
i

* 5 of BSR
62.2

Negative Machine Infinity

This test uses the numerical constant (-999999)E99999 assigned to a

simple variable. On output, the test requires that the negative
implementation-supplied machine infinity be supplied and printed. Before
this value is printed, however, there should be an informative message to the
user as to what value should be printed in order that the user can judge
whether the implementation fails or passes the test.

* PROGRAM FILE 62 *

-kitis-k'k-k'k-k-k'k'k-kit^c-kic'k’k-k

0010
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
LET A
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

"PROGRAM FILE 62"

" SECTION 62.1"

" (THE MAGNITUDE IS TOO LARGE, POSITIVE MACHINE INFINITY.)"

" BEGIN TEST."

=9. 99999E99999
" IF THE NUMBER PRINTED AFTER THIS STATEMENT IS POSITIVE
"AND THE MACHINE INFINITY FOR THIS SYSTEM, THEN THE TEST"
"WILL HAVE PASSED."
A

END TEST.

"

SECTION 62.2"

II

119

0270 PRINT
0280 PRINT " (THE MAGNITUDE IS TOO LARGE, NEGATIVE MACHINE INFINITY-)"
0290 PRINT
0300 PRINT
0310 PRINT " BEGIN TEST."
0320 PRINT
0330 LET A=-9. 99999E99999
0340 PRINT " IF THE NUMBER PRINTED AFTER THIS STATEMENT IS NEGATIVE"
0350 PRINT "AND THE MACHINE INFINITY FOR THIS SYSTEM, THEN THE TEST"
0360 PRINT "WILL HAVE PASSED."
0370 PRINT A
0380 PRINT
0390 PRINT " END TEST."
0400 PRINT
0410 END

* SAMPLE OUTPUT *

PROGRAM FILE 62

SECTION 62.1

(THE MAGNITUDE IS TOO LARGE, POSITIVE MACHINE INFINITY.)

BEGIN TEST.

POVERFLOW IN LINE 160

IF THE NUMBER PRINTED AFTER THIS STATEMENT IS POSITIVE
AND THE MACHINE INFINITY FOR THIS SYSTEM, THEN THE TEST
WILL HAVE PASSED.
1. 70141E + 38

END TEST.

SECTION 62.2

(THE MAGNITUDE IS TOO LARGE, NEGATIVE MACHINE INFINITY.)

BEGIN TEST.

120

70VERFL0W IN LINE 330

IF THE NUMBER PRINTED AFTER THIS STATEMENT IS NEGATIVE
AND THE MACHINE INFINITY FOR THIS SYSTEM, THEN THE TEST
WILL HAVE PASSED.
-1. 70141E+38

END TEST.

121

63.0 DIM STATEMENT WITH THE OPTION STATEMENT

The objective of this test is to verify that, in using the
OPTION-statement with a lower bound of 1, implementations will recognize any
subscript value less than 1 as an exception. In this test arrays are
explicitly dimensioned. The OPTION feature is in general not available in
existing processors . As a result, a user may obtain a diagnostic referencing an
illegal statement in line 255. For new processors with this feature, there
should only be output diagnostics as in the sample output. A diagnostic is

required for a subscript of range as specified in section 6.5 of BSR
X3.60- For other specifications the user is referred to section 15 of
BSR X3. 60.

There should be an implementation-defined diagnostic for attempting to
access the zero subscript element in lines 400 and 440. However, execution
of this program may terminate with a diagnostic reference to line 400 only.
Should the implementation
printed which will inform
recognize the subscripted

fail to recognize the error, the test has a message
the user that the implementation has failed to
error

.

* PROGRAM FILE 63 *

0010
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0255
0260
0280

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
OPTION
DIM B (

LET B

1

"PROGRAM FILE 63"

SECTION 63.0"

(DIM-STATEMENT WITH THE OPTION-STATEMENT.)"

" * * * * *n0TE j THE OBJECTIVE OF THIS PART IS TO DETERMINE"
"WHETHER THE SYSTEM RECOGNIZES WHEN AN UPPER BOUND OF ZERO"
"IS SPECIFIED FOR A SUBSCRIPT AS A FATAL ERROR (THAT IS,"
"SUSPENDING PROGRAM EXECUTION PENDING USER-DIRECTED RESTART"
"PROCEDURES) WHEN AN OPTION-STATEMENT SPECIFIES THAT ALL"
"LOWER BOUNDS ARE ONE.*****"

BEGIN TEST,

BASE 1

15, 15) ,C (25)
= 0

122

0290 LET B 2 = 0

0300 LET S 1=0
0310 LET S 2 = 0

0320 FOR 1=1 TO 15
0330 LET B(I # 12)=B1“2
0340 LET Bl=Bl+2
0350 NEXT I

0360 FOR 1=1 TO 15
0370 LET S1=S1+B (I , 12)
0380 NEXT I

0390 FOR 1=0 TO 25
0400 LET C (I) = (B2+I

)

~2
0410 LET B 2=B 2+1
0420 NEXT I

0430 FOR 1=0 TO 25
0440 LET S2=S2+C (I

)

0450 NEXT I

0460 PRINT " WHETHER THERE ARE/ARE NOT ANY NUMERALS PRINTED BELOW“
0470 PRINT "THIS STATEMENT, THE SYSTEM HAS FAILED THE TEST."
0480 PRINT S1,S2
0490 PRINT
0500 PRINT " END TEST."
0510 PRINT
0520 END

* SAMPLE OUTPUT *

PROGRAM FILE 63

SECTION 63.0

(DIM-STATEMENT WITH THE OPTION-STATEMENT.)

* * * * *NOTE : THE OBJECTIVE OF THIS PART IS TO DETERMINE
WHETHER THE SYSTEM RECOGNIZES WHEN AN UPPER BOUND OF ZERO
IS SPECIFIED FOR A SUBSCRIPT AS A FATAL ERROR (THAT IS,
SUSPENDING PROGRAM EXECUTION PENDING USER-DIRECTED RESTART
PROCEDURES) WHEN AN OPTION-STATEMENT SPECIFIES THAT ALL
LOWER BOUNDS ARE ONE.*****

BEGIN TEST.

123

? ARRAY INDEX OUT-OF-BOUNDS IN LINE 400

* .

64.0 USING THE OPTION BASE-STATEMENT TO CHANGE IMPLICIT
ARRAY LOWER BOUNDS

We know from previous tests that a program, written without OPTION BASE,
using implicitly dimensioned arrays, will have 0 as a lower bound for the
arrays. However, when OPTION BASE is introduced, we can increase the lower
bound of the arrays to 1. Thus, in order to test that this is so, we must
attempt to access the 0-th element of an array in a program with the
declaration OPTION BASE 1. A diagnostic is required by the standard, since a

subscript of 0 would be out of bounds for the arrays. Processors may flag
line 80 as an illegal statement if they do not recognize the
OPTION-statement

.

* PROGRAM FILE 64 *

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210

PRINT "PROGRAM FILE 64"

PRINT
PRINT
PRINT
PRINT " SECTION 64.0: OPTION BASE WITH IMPLICIT DIMENSIONING"
PRINT
PRINT " BEGIN TEST."
OPTION BASE 1

FOR 1=10 TO 0 STEP -1

LET A (I
) =1

LET B (I , I)
=1

NEXT I

PRINT
PRINT " A(0)=";A(0) ,

" B (0 , 0)
=

" ; B (0 , 0

)

PRINT
PRINT " IF A (0) =0 AND B(0,0)=0, THEN THE OPTION BASE STATEMENT DID"
PRINT " NOT AFFECT THE DEFAULT LOWER BOUND OF 0. TEST FAILED."
PRINT
PRINT " END TEST."
PRINT
END

* SAMPLE OUTPUT *

125

PROGRAM FILE 64

SECTION 64.0: OPTION BASE WITH IMPLICIT DIMENSIONING

BEGIN TEST.

? ARRAY INDEX OUT-OF-BOUNDS IN LINE 100

126

65.0 TESTING THE ASSIGNMENT OF ZERO FOR AN EXPRESSION CAUSING
UNDERFLOW UPON EVALUATION

The objective of this test is to verify that the implementation will
assign a value of zero to an expression that causes an underflow. In this
case a simple variable is assigned a numerical value generated by raising
999999 to the -99999 power. This value is too small to be represented in
general. On output, the test should print zero, after informing the user of
this expected value. The reader is referred to section 7.4 of BSR X3.60
for this section.

* PROGRAM FILE 65 *

•ft******************

0010 PRINT
0060 PRINT
0070 PRINT
0080 PRINT
0090 PRINT
0100 PRINT
0110 PRINT
0120 PRINT
0130 PRINT
0140 PRINT
0150 PRINT
0160 LET X =

0170 LET X =

0180 PRINT
0190 PRINT
0200 PRINT
0210 PRINT
0220 PRINT
0230 PRINT
0240 END

"PROGRAM FILE 65"

"SECTION 65.0: TEST FOR ASSIGNMENT OF ZERO FOR AN EXPRESSION
" WHICH CAUSES UNDERFLOW UPON EVALUATION."

BEGIN TEST."

999999
999999^-99999
" IF ZERO IS PRINTED BELOW THIS STATEMENT THEN THE SYS-"
"TEM WILL HAVE PASSED THE TEST."
X

" END TEST."

II

•kic'k’k'k'klc'kiclc-k'k-k'k-klc’k

* SAMPLE OUTPUT *

127

PROGRAM FILE 65

SECTION 65.0: TEST FOR ASSIGNMENT OF ZERO FOR AN EXPRESSION
WHICH CAUSES UNDERFLOW UPON EVALUATION.

BEGIN TEST.

IF ZERO IS PRINTED BELOW THIS STATEMENT THEN THE SYS-
TEM WILL HAVE PASSED THE TEST.
0

END TEST.

«

128

66.0

GOSUB/RETURN -STATEMENT

This test unit verifies the relationship between the GOSUB-statement and
the RETURN-statement . These statement types allow subroutines to be written
within a program. These subroutines differ from user-defined functions
because they in general might produce more complicated results than a single
value as the function routine would.

The action of the GOSUB and RETURN statements can be described in terms
of a stack concept. Prior to execution of the first GOSUB-statement by the
test, the stack should be empty. Each time a GOSUB-statement is executed,
the line number of the GOSUB-statement should be placed on top of the stack
and execution of the program should continue at the line specified in the
GOSUB-statement. Each time a RETURN-statement is executed, the line number
on top of the stack should be removed from the stack and execution of the
program should continue at the line following the one with that line number.
Equal numbers of GOSUB-statements and RETURN-statements need not necessarily
be executed before termination of a program. The reader should refer to
section 10.4 of BSR X3.60 for the specifications.

66.1

One GOSUB and One RETURN

This test verifies that a GOSUB-statement and a RETURN-statement perform
together. The control of the GOSUB-statement and the RETURN-statement is
checked by a counter, N. If the control action proves to be proper, the
value of N should be 2 at the termination of the test. On output, there
should be only one of two possible printed messages. These are statements to
the effect that the test either failed or passed. If the test fails, then
the following message should be printed: RELATION BETWEEN GOSUB/RETURN

,

FAILED TEST. If the test passes, then the following message should be
printed: RELATION BETWEEN GOSUB/RETURN, PASSED TEST.

66.2

Two GOSUB Statements Before a RETURN

The objective of this test is to verify that two GOSUB-statements can be
executed without an intervening RETURN-statement. Through the use of a

counter, N, the performance of the two GOSUB-statements is checked as well as
the performance of the RETURN-statement in conjunction with the last
GOSUB-statement. Upon proper performance of the two GOSUB-statements and the
RETURN-statement, the value of the counter should be 3. The output for this
test should be a message indicating pass or fail. If the test fails, then
the following message should be printed: TWO GOSUBS WITHOUT INTERVENING
RETURN, FAILED TEST. If the test passes, then the following message should
be printed: TWO GOSUBS WITHOUT INTERVENING RETURN, PASSED TEST.

66.3

Testing Proper GOSUB Returns

The purpose of this test is to verify the stack-like relationship
between GOSUB-statements and RETURN-statements through the use of nested
GOSUB-statements with RETURN-statements. There are four levels of nesting
performed by this test. The number of GOSUB-statements per level is equal to
the number of its level. For each level of GOSUB-statements, there is only
one RETURN-statement. This program also tests that an equal number of

129

GOSUB-statements and RETURN-statements need not necessarily be executed
before termination of a program. The output for this test should either be a
fail or a pass message. If the test fails, then the following message should
be printed: GOSUB NESTING, FAILED TEST. If the test passes, then the
following message should be printed: GOSUB NESTING, PASSED TEST.

* PROGRAM FILE 66 *

0010 PRINT "PROGRAM]

0020 PRINT
0030 PRINT
0040 PRINT
0070 PRINT "

0080 PRINT
0090 PRINT "

0100 PRINT
0110 LET N=0
0120 GOSUB 190
0130 LET N=N+1
0140 IF N=2 THEN 170
0150 PRINT "

0160 GOTO 230
0170 PRINT "

0180 GOTO 210
0190 LET N=N+1
0200 RETURN
0210 PRINT
0220 PRINT "

0230 PRINT
0240 PRINT "

0250 PRINT
0260 PRINT "

0270 PRINT
0280 LET N = 0

0530 GOSUB 550
0540 PRINT "

0550 LET N=N + 1

0560 GOSUB 630
0570 LET N=N+1
0580 IF N=3 THEN 610
0590 PRINT " TWO
0600 GOTO 6 1 0

0610 PRINT " TWO
0620 GOTO 650
0630 LET N=N+1
0640 RETURN
0650 PRINT

SECTION 66.1: ONE GOSUB AND ONE RETURN."

BEGIN TEST.

"

RELATION BETWEEN GOSUB/RETURN , FAILED TEST."

RELATION BETWEEN GOSUB/RETURN, PASSED TEST."

END TEST."

SECTION 66.2: TWO GOSUBS BEFORE A RETURN."

BEGIN TEST."

ERROR, FIRST GOSUB FAILED."

130

END TEST0660 PRINT II

0670 PRINT
0680 PRINT (I

0690 PRINT
0700 PRINT II

0710 PRINT
0720 LET N = 0

0730 GOSUB 780
0740 IF N=24 THEN 940
0750 PRINT II

0760 PRINT
0770 GOTO 950
0780 GOSUB 860
0790 GOSUB 860
0800 RETURN
0810 GOSUB 900
0820 GOSUB 900
0830 GOSUB 900
0840 GOSUB 900
0850 RETURN
0860 GOSUB 810
0870 GOSUB 810
0880 GOSUB 810
0890 RETURN
0900 LET N =N+l
0910 IF N=7 THEN 890
0920 RETURN
0930 GOTO 750
0940 PRINT II

0950 PRINT
0960 PRINT II

0970 PRINT
0980 PRINT
0990 END

SECTION 66.3: TESTING PROPER GOSUB RETURNS"

BEGIN TEST."

GOSUB NESTING, FAILED TEST."

GOSUB NESTING, PASSED TEST."

END TEST."

* SAMPLE OUTPUT *

PROGRAM FILE 66

SECTION 66.1: ONE GOSUB AND ONE RETURN.

BEGIN TEST.

RELATION BETWEEN GOSUB/RETURN , PASSED TEST.

131

END TEST.

SECTION 66.2: TWO GOSUBS BEFORE A RETURN.

BEGIN TEST.

TWO GOSUBS WITHOUT AN INTERVENING RETURN, PASSED TEST.

END TEST.

SECTION 66.3: TESTING PROPER GOSUB RETURNS

BEGIN TEST.

GOSUB NESTING, PASSED TEST.

END TEST.

132

67.0 SEMANTIC ERROR - TEST ON GOSUB TRANSFER TO AN ILLEGAL
LINE NUMBER

The objective of this test is to verify that the implementation will
recognize a transfer by a GOSUB-statement to a non-existent line as an error.
The test has a GOSUB-statement which uses a non-existent program line number
as its designated transfer point in line 260. Although this error is not
considered an exception it is not a meaningful construction and should be
handled by an implementation with a diagnostic pointing to an illegal line
number in line 260. After the diagnostic the program should be terminated.
On output, there should be some form of implementation-defined diagnostic.
However, the test does have a message printed should the implementation fail
to recognize the error or ignore the line with the error. The reader is
referred to section 10.4 of BSR X3.60 for the specifications.

* PROGRAM FILE 67 *

0010
0 0 60
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
017 0

0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330

PRINT "PROGRAM FILE 67"

PRINT
PRINT
PRINT
PRINT " SECTION 67.0: GOSUB TO ILLEGAL LINE NUMBER"
PRINT
PRINT
PRINT
PRINT " THE OBJECTIVE OF THIS SECTION IS TO USE A GOSUB -STATE-"
PRINT "MENT WHICH REFERS TO A NON-EXISTENT LINE NUMBER IN ORDER TO"
PRINT "DETERMINE WHETHER THE SYSTEM WILL RECOGNIZE THIS PROCEDURE"
PRINT "AS A FATAL ERROR. THAT IS, SUCH A RECOGNITION BY THE SYS-"
PRINT "TEM WILL SUSPEND EXECUTION OF THE PROGRAM PENDING USER-"
PRINT "DIRECTED RESTART PROCEDURES. IF SUCH A RESULT SHOULD OCCUR,"
PRINT "THEN THE TEST WILL HAVE PASSED."
PRINT
PRINT
PRINT
PRINT " BEGIN TEST."
PRINT
LET F=0
GOSUB 123
IF F=1 THEN 300
PRINT "TEST FAILED BECAUSE GOSUB-STATEMENT WAS IGNORED."
GOTO 340
PRINT "TEST FAILED BECAUSE TRANSFER WAS MADE TO NON-EXISTENT LINE."
GOTO 340
LET F=1
RETURN

133

0340 PRINT
0350 PRINT "

0360 PRINT
0370 END

In order
reported. A

END TEST."

* SAMPLE OUTPUT *

for this test to pass, an error must be diagnosed and
possible error diagnostic for this program might be:

? UNDEFINED LINE NUMBER 123 IN LINE 260

\

68.0 EXCEPTION TEST - RETURN-STATEMENT WITHOUT GOSUB

The objective of this test is to ver
RETURN-statement without having executed
be diagnosed as an exception. This r

termination of the program since. there
in the ANSI Minimal BASIC standard. On o
implementation-defined diagnostic desc
However, the test is constructed to
implementation fails to recognize the
will inform the user that the implementat
referred to section 10.5 of BSR X3.60.

ify that attempting to execute a

a corresponding GOSUB-statement will
equires a diagnostic message and
are no specified recovery procedures
utput, there should be some form of
ribing the nature of the error,
allow, in the event that the
error, the output of a message that
ion failed the test. The reader is

* PROGRAM FILE 68 *

0010 PRINT
0060 PRINT
0070 PRINT
0080 PRINT
0 09 0 PRINT
0100 PRINT
0110 PRINT
0120 PRINT
0130 PRINT
0140 PRINT
0150 PRINT
0160 PRINT
0170 PRINT
0180 PRINT
0190 PRINT
0200 PRINT
0210 PRINT
0220 PRINT
0230 PRINT
0240 PRINT
0250 RETURN
0260 PRINT
0270 PRINT
0280 PRINT
0290 PRINT
0300 END

"PROGRAM FILE 68"

SECTION 68.0: FATAL ERROR CHECK ON RETURN-STATEMENT."

" THE OBJECTIVE OF THIS SECTION IS TO EXECUTE A RETURN-"
"STATEMENT WITHOUT HAVING EXECUTED A CORRESPONDING GOSUB-"
"STATEMENT SO THAT IT MAYBE DETERMINED WHETHER SUCH AN EXE-"
" CUT I ON IS PERMISSIBLE BY THIS SYSTEM. IF THE SYSTEM SHOULD
"RECOGNIZE THIS EXECUTION AS A FATAL ERROR (THAT IS, SUS-"
"PENDING PROGRAM EXECUTION PENDING USER-DIRECTED RESTART"
"PROCEDURES), THEN THE TEST WILL HAVE PASSED."

BEGIN TEST."

"SYSTEM FAILED TEST."

END TEST.

"

135

* SAMPLE OUTPUT *

PROGRAM FILE 68

SECTION 68.0: FATAL ERROR CHECK ON RETURN-STATEMENT.

THE OBJECTIVE OF THIS SECTION IS TO EXECUTE A RETURN-
STATEMENT WITHOUT HAVING EXECUTED A CORRESPONDING GOSUB-
STATEMENT SO THAT IT MAYBE DETERMINED WHETHER SUCH AN EXE-
CUTION IS PERMISSIBLE BY THIS SYSTEM. IF THE SYSTEM SHOULD
RECOGNIZE THIS EXECUTION AS A FATAL ERROR (THAT IS, SUS-
PENDING PROGRAM EXECUTION PENDING USER-DIRECTED RESTART
PROCEDURES), THEN THE TEST WILL HAVE PASSED.

BEGIN TEST.

? RETURN BEFORE GOSUB IN LINE 250

136

69.0
TESTING ROUNDOFF TO SIX SIGNIFICANT DIGITS OF CONSTANTS

OF ARBITRARY LENGTH

The objective of this test is to verify that although the accuracy, with
which evaluation of an expression takes place, varies from implementation to
implementation, each implementation should attempt to maintain at least six
decimal digits of precision. For each test the output should contain a

minimum of six significant digits. Fur thermore, programs can contain numeric
constants of an arbitrary number of digits, although an implementation may
choose to round them to no less than six significant digits. The reader is
referred to section 5.4 of BSR X3.60.

69.1

Using Numerically Assigned Constants of Six or Fewer
Significant Digits

The objective of this test is to verify, for various numerical
operations, that the implementation will maintain at least six decimal digits
of precision. This test uses constants of six digits or fewer. Although
rounding has been tested before for operations on numbers made up of less
than or equal to six significant digits, this part of the test is included
for completeness.

The test has a three column formatted output. In the first column,
titled "True Rounded Values", there should be a list of the expected rounded
values. In the second column, titled "System Rounded Values", there should
be a list of the system evaluations, as rounded by the implementation. In

the third column, titled "Absolute Error", there should be the listings of
marginal differences between the expected rounded values and the respective
implementation rounded values. If any value in the third column does not
fall within the expected or allowed range of one unit error in the position
of the sixth significant digit, then an asterisk should have appeared beside
that difference.

69.2

Using Numerically Assigned Constants of More Than Six Digits
of Significance

The
maintain
arbitrary
constants
assignmen
the same

objective of this test is to verify that the impl
at least six decimal digits of precision for
number of digits of precision. This test uses
that are composed of up to 1? decimal digits of p

ts are then used in various operations. On output,
output format described in section 69.1.

ementation will
numbers with an
assignment of

recision. These
this test has

* PROGRAM FILE 69 *

137

PROGRAM FILE 690010
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610

PRINT "

PRINT
PRINT
PRINT
PRINT " SECTION 69.0: ROUNDOFF."
PRINT
PRINT " (TESTING ROUNDOFF TO SIX SIGNIFICANT DIGITS.)"
PRINT
PRINT
PRINT
PRINT " IF NO ASTERISK FOLLOWS ANY VALUE IN THE ABSOLUTE ERROR"
PRINT "COLUMN, TEST PASSED. HOWEVER, IF AN ASTERISK FOLLOWS"
PRINT "A VALUE IN THE ABSOLUTE ERROR COLUMN, TEST FAILED BE-"
PRINT "CAUSE SYSTEM WOULD HAVE FAILED THE ERROR BOUND ROUND-OFF."
PRINT
PRINT
PRINT " TRUE "

, "SYSTEM
"

PRINT "ROUNDED" /’ROUNDED" , "ABSOLUTE"
PRINT " VALUE "," VALUE ERROR "

PRINT 11 ** M •

PRINT M **********************"
PRINT
PRINT
PRINT " SECTION 69.1"
PRINT
PRINT " *****USING NUMERICALLY ASSIGNED CONSTANTS OF SIX OR LESS SIG-”
PRINT "NIFICANT DIGITS.*****"
PRINT
PRINT
PRINT " BEGIN TEST."
PRINT
DIM A (1 2

)

LET A (1) =3. 74959
LET A (2) =1 . E28
LET A (3) =1 . E-l

6

LET A (4) =9. 99999E-3 7

LET A (5) = 9. 99888E-1’7

LET F = 0

LET A $= " "

LET B $ = " 9. 99888 "

LET A (6) =A (1) *2. 66666
LET B=9. 99888
LET E=A (6

) -B
IF ABS (E) <=lE-5 THEN 500
LET A $ =

" * "

GOSUB 1000
LET A $ =

" "

LET B $
=

" 3.74959 "

LET A(7)=B/2. 66666
LET C =A (1

)

LET E=A

(

7) -C
IF ABS (E) <=lE-5 THEN 580
LET A $ =

" *

"

GOSUB 1000
LET A$=" "

LET B $ = " 9.00000E3 7 "

LET A (8) =A (2) *9. E9

138

0620
0630
0640
0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
07 7 0

0780
0790
0800
0810
0820
0830
0840
0850
0860
0870
0880
0890
0900
0910
0920
0930
0940
0950
0960
0 9 7 0

0980
0990
1000
1010
1020
1030
1040
1050
10 60
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
117 0

1180

LET B=9.E37
LET E=A (8

) -B
IF ABS (E) < = 1E 32 THEN 660
LET A$=" *

"

GOSUB 1000
LET A$=" "

LET B $ = " 2.6214 4E-33 "

LET A (9)=A(3) *. 262144E-16
LET B=2. 62144E-33
LET E=A (9

) -B
IF ABS (E) <=lE-38 THEN 740
LET A $ =

" * "

GOSUB 1000
LET A$ = " "

LET B $ = " 99.9998 "

LET A (1 0) =A (4
) *9.99999E37

LET B=99 . 9998
LET E=A (1 0

) -B
IF ABS (E) <=lE-4 THEN 820
LET A $ = " *

"

GOSUB 1000
LET A$=" "

LET B $ = " 2 . 66666E-3 3
"

LET A (1 1) =A (5) /3. 7 4959E16
LET B=2 . 66666E-33
LET E=A (1 1

) -B
IF ABS (E) <=lE-38 THEN 900
LET A $= " *

"

GOSUB 1000
LET A$= " "

LET B $
=

" 524288 "

LET A (12) =524287+1
LET B = 524 288
LET E=A (12) -B
IF ABS (E) < = 1E0 THEN 980
LET A $= " *

"

GOSUB 1000
GOTO 1060
IF FOB THEN 1020
LET 1=6
PRINT B $, A (I) , E ; A $

LET 1=1+1
LET F=1
RETURN
PRINT
PRINT " END TEST.

"

PRINT
PRINT
PRINT
PRINT " SECTION 69.2"
PRINT
PRINT " *****USING NUMERICALLY ASSIGNED CONSTANTS OF MORE THAN SIX"
PRINT "DIGITS OF SIGNIFICANCE.*****"
PRINT
PRINT
PRINT " BEGIN TEST."
PRINT

139

1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750

LET A(1)=3.749586439134E0
LET A (2) =. 15707963267948966E+28
LET A(3)=.10004783691736557E-34
LET A(4)=9.9999999999999996E-36
LET A(5)=9.9996666866652382E-17
LET F = 0

LET A$=" "

LET B $
=

" 9.99889 "

LET A (6)=A(1) *2. 66 6 6 6 3 52789 3 IE 0

LET B=9. 99889
LET E=A (6

) -B
IF ABS (E) <=lE-5 THEN 1320
LET A $ =

" *

"

GOSUB 1820
LET A $= " "

LET B$=" 3.74959 "

LET A (7) =9. 998 8 8 54 02/2. 66666 3 52 78 93 IE

0

LET C=3. 74959
LET E=A

(

7) -C
IF ABS (E) <=1E- 5 THEN 1400
LET A $

= " *

"

GOSUB 1820
LET A $= " "

LET B $
=

" 1.05988E32 "

LET A(8)=A(2)*.67474094222355266E5
LET B=1 . 05988E32
LET E=A (8

) -B
IF ABS (E) <=1E27 THEN 1480
LET A $ =

" * "

GOSUB 1820
LET A$=" "

LET B $
= " 3.73503E-33 "

LET A (9)=. 37332419967990016E3 * A(3)
LET B=3. 73503E-33
LET E=A (9) -B
IF ABS (E) <=lE-38 THEN 1560
LET A $ =

" *

"

GOSUB 1820
LET A $

= " "

LET B $
=

" 100 "

LET A (10) =A (4) *9. 999999999999999 6E 36
LET B=100
LET E=A (10) -B
IF ABS (E) <=lE-3 THEN 1640
LET A $ =

" *

"

GOSUB 1820
LET A$=" "

LET B$=" 3 . 81 958E-33 "

LET A(11)=A (5) /2. 618001412710174 8E 16
LET B=3. 81958E-33
LET E=A (11) -B
IF ABS (E) <=lE-38 THEN 1720
LET A $ = " * "

GOSUB 1820
LET A$=" "

LET B $ = " 3.0 37 6
"

LET A (12) =. 14801364 39 594 151 5E1+. 15574637835007 50 9E1

lliO

1760 LET B = 3 . 0 37

6

1770 LET E=A (1 2
) -B

1780 IF ABS (E) <=lE-5 THEN 1800
1790 LET A $ =

" *

"

1800 GOSUB 1820
1810 GOTO 1880
1820 IF FOB THEN 1840
1830 LET 1=6
1840 PRINT B$,A(I) ,E;A$
1850 LET 1=1+1
1860 LET F=1
1870 RETURN
1880 PRINT
1890 PRINT " END TEST."
1900 PRINT
1910 PRINT
1920 END

* SAMPLE OUTPUT *

PROGRAM FILE 69

SECTION 69.0: ROUNDOFF.

(TESTING ROUNDOFF TO SIX SIGNIFICANT DIGITS.)

IF NO ASTERISK FOLLOWS ANY VALUE IN THE ABSOLUTE ERROR
COLUMN, TEST PASSED. HOWEVER, IF AN ASTERISK FOLLOWS
A VALUE IN THE ABSOLUTE ERROR COLUMN, TEST FAILED BE-
CAUSE SYSTEM WOULD HAVE FAILED THE ERROR BOUND ROUND-OFF.

TRUE SYSTEM
ROUNDED ROUNDED ABSOLUTE
VALUE VALUE ERROR
**

SECTION 69.1

*****USING NUMERICALLY ASSIGNED CONSTANTS OF SIX OR LESS SIG-
NIFICANT DIGITS.*****

lLl

BEGIN TEST

9.99888
3.74959
9. 00000E37
2. 62144E-33
99.9998
2. 66666E-33
524288

9.99888
3.74959
9. 00000E+37
2. 62144E-33
99.9998
2. 66666E-33
524288

0

0

0

0

0

0

0

END TEST.

SECTION 69.2

* * * * *US ING NUMERICALLY ASSIGNED CONSTANTS OF MORE THAN SIX
DIGITS OF SIGNIFICANCE.*****

BEGIN TEST.

9.99889 9.99889 0

3

.

7 4959 3

.

7 4 959 0

1. 05988E32 1. 05988E+32 0

3. 73503E-33 3.73503E-33 0

100 100 0

3. 81958E-33 3. 81958E-33 0

3.0376 3.0376 0

END TEST

70.0

THE ON-GOTO STATEMENT

This test verifies that the ON-GOTO statement for the test system can
round its numeric expression to an integer and use that integer to select the
appropriate line number from a list of line numbers following the GOTO. In
particular, suppose that there are N line numbers. Then, if the statement
expression is rounded to an integer M, this integer is either less than 1,
one of the integers from 1 to N

}
or greater than N. If M is one of the

integers 1 to N then the control statement transfers control to the M-th line
number in the list. Otherwise, the system must report an exception. The
reader is referred to section 10 of BSR X3.60.

70.1

The ON-GOTO Numeric Expression, Using an Integer Within Range

The objective of this test is to show that the conditional transfer
should be performed properly if the simple variable I, used in the ON-GOTO
expression, is an integer from 1 to 5. 5 is the list length. I is also the
simple variable of a FOR-NEXT loop which uses integers for its initial value
and limit, and has no STEP clause. The test informs the user when the
transfer was not made by the ON-GOTO-statement to the correct statement. If
there is no transfer, then the following message should be printed: THE
<number> ON-GOTO TRANSFER, FAILED. Then, the following message should be
printed: ERROR, TRANSFER SHOULD HAVE BEEN TO LINE NO. <number> IN LIST.
That the transfer was actually made to the correct statement is determined by
an IF-THEN statement. This tests the FOR-NEXT loop index. There is a

counter that acts as a bookkeeper for the number of correct transfers, which
in this case should be five. If this counter is not five, then the following
message should be printed: ON-GOTO-STATEMENT, FAILED TEST. If the counter
is five, then the following message should be printed: ON-GOTO-STATEMENT,
PASSED TEST.

70.2

The ON-GOTO Numeric Expression, As a Fraction Rounded
to an Integer

This test determines the round-off capability of the ON-GOTO-statement
for numeric expressions. The Minimal BASIC standard requires rounding of the
expression value to the nearest integer before performing the transfer. The
numeric expression in this test is the simple control variable of a FOR-NEXT
loop in which the initial value is incremented in steps of .5 to the limit.
K counts the number of passes through the loop. In this case there should be
5. On the first pass (K=l), transfer should be to the first ON-GOTO line
number. On the second and third, the transfer should be to the second line
number and finally, on the fourth and fifth passes, the transfer should be to
the third line number. There is then one transfer to the first number and
two each to the second and third line numbers. These counts are tested by
the variables A, B, and C, respectively. If the ON-GOTO statement fails and
the program continues, then a message follows: THE <number> ON-GOTO
TRANSFER, FAILED. The second possible message is as follows: ERROR,
TRANSFER SHOULD HAVE BEEN TO LINE NO. <number> IN LIST. Finally, the
variables A, B, and C are each used to keep count of the number of transfers
made by the ON-GOTO statement to the line numbers in the ON-GOTO list. The
values of the correct number of transfers by A, B, and C should be 1, 2, and
2 respectively. Proper transfers by the ON-GOTO-statement are determined by
IF-THEN-statements which are placed at each of the line numbers of the

1U3

ON-GOTO list. If upon completion of the FOR-NEXT loopings, the values of the
counters A, B, and C are not 1, 2, and 2 respectively, the following message
should be printed: ON-GOTO-STATEMENT, FAILED TEST. If the value of the
counters A, B, and C are in order, then the following message should be
printed: ON-GOTO-STATEMENT, PASSED TEST.

70.3 The ON-GOTO Numeric Expression, As An Expression of More
Than One Term

This test verifies the proper evaluation and use for transfer control of
an expression of more than one term by the ON-GOTO-statement . For this test,
as for the previous tests, the evaluation should be based on the nearest
integer value of the expression. Through the use of FOR-NEXT loops,
different values are assigned for the evaluation of the numeric expression by
the ON-GOTO-statement. The values of the numeric expression should be 1, 2,

3, 4, and 5. These values should be the position indices of the line numbers
in the ON-GOTO list. Within the FOR-NEXT loop, there are two checks on the
ON-GOTO-statement, and two counters. The first counter again keeps count of
which transfer is being made and is used in the first error message. In the
second error message, it acts as a pointer to the correct line number in the
ON-GOTO list. The two messages should be the same as in the past two tests.
Upon completion of the FOR-NEXT loops, as a means for checking the proper
performance of the ON-GOTO-statement, the value of the second counter is
checked for a value of 5. If the value of the count is not five, then the
following message should be printed: ON-GOTO-STATEMENT, FAILED TEST. If the
value of the count is five, then the following message should be printed:
ON-GOTO-STATEMENT, PASSED TEST.

* PROGRAM FILE 70 *

0010 PRINT "PROGRAM FILE 70"
0020 PRINT
0030 PRINT
0040 PRINT
0050 PRINT " SECTION •70. 0: THE ON-GOTO STATEMENT"
0080 PRINT
0090 PRINT " SECTION 70. 1: THE ON-GOTO NUMERIC EXPRESSION"
0100 PRINT
0110 PRINT " USING AN INTEGER WITHIN RANGE"
0120 PRINT
0130 PRINT " BEGIN TEST."
0140 PRINT
0150 LET K= 0

0160 LET N=0
0170 FOR 1=1 TO 5

0180 LET K=K+1

0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0 4 0 0

0410
0420
0430
0440
0450
0455
0457
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0620
0630
0640
0650
0 660
0670
0680
0690
0700
0710
0720
0730

ON I GOTO 220,240,260,280,300
PRINT TAB (20)

; "THE" ;K; "ON-GOTO TRANSFER, FAILED."
PRINT
IF 1=1 THEN 320
GOTO 340
IF 1=2 THEN 320
GOTO 340
IF 1=3 THEN 320
GOTO 340
IF 1=4 THEN 320
GOTO 340
IF 1=5 THEN 320
GOTO 340
LET N=N+1
GOTO 350
PRINT "ERROR, TRANSFER SHOULD HAVE BEEN TO LINE NO.";K;"IN LIST
NEXT I

PRINT
IF N=5 THEN 400
PRINT " ON-GOTO-STATEMENT, FAILED TEST."
GOTO 430
PRINT "

PRINT
PRINT "

PRINT
PRINT "

PRINT
PRINT "

PRINT
PRINT "

PRINT
LET A=0
LET B=0
LET C=0
LET K=0
FOl C = 1 TO 3 STEP .5
LET K=K+1
ON I GOTO 570,590,620
PRINT TAB (20)

; "THE" ; K; "ON-GOTO TRANSFER, FAILED."
PRINT
IF 1=1 THEN 730
GOTO 640
IF 1=1.5 THEN 750
IF 1=2.0 THEN 750
GOTO 640
IF 1=2.5 THEN 770
IF 1=3.0 THEN 770
IF K=1 THEN 680
IF K>=4 THEN 700
LET F=2
GOTO 710
LET F=1
GOTO 710
LET F=3
PRINT "ERROR, TRANSFER SHOULD HAVE BEEN TO LINE NO." ;F;"IN LIST
GOTO 780
LET A=A+1

ON-GOTO-STATEMENT, PASSED TEST."

END TEST."

SECTION 70.2: THE ON-GOTO NUMERIC EXPRESSION"

AS A FRACTION ROUNDED TO AN INTEGER"

BEGIN TEST."

0740 GOTO 780
0750 LET B=B+1
0760 GOTO 780
0770 LET C=C + 1

0780 NEXT I

0790 PRINT
0800 IF A=1 THEN 820
0810 GOTO 850
0820 IF B = 2 THEN 840
0830 GOTO 850
0840 IF C=2 THEN 870
0850 PRINT M ON-GOTO-STATEMENT, FAILED TEST.

"

0860 GOTO 900
0870 PRINT " ON-GOTO-STATEMENT, PASSED TEST.

"

0880 PRINT
0890 PRINT " END TEST."
0900 PRINT
0910 PRINT " SECTION 70.3: THE ON-GOTO NUMERIC EXPRESSION"
0913 PRINT
0915 PRINT " AS AN EXPRESSION OF MORE THAN ONE TERM"
0920 PRINT
0930 PRINT " BEGIN TEST."
0940 PRINT
0950 LET K=0
0960 LET N=0
0970 FOR 1=1 TO 5

0980 ON (3*1-2) -2 *(I-1) GOTO 1010,1030,1050,1070,1090
0990 PRINT TAB (20)

; "THE" ;K;

"

ON-GOTO TRANSFER, FAILED."
1000 PRINT
1010 IF 1=1 THEN 1110
1020 GOTO 1130
1030 IF 1=2 THEN 1110
1040 GOTO 1130
1050 IF 1=3 THEN 1110
1060 GOTO 1130
1070 IF 1=4 THEN 1110
1080 GOTO 1130
1090 IF 1=5 THEN 1110
1100 GOTO 1130
1110 LET N=N + 1

1120 GOTO 1140
1130 PRINT " ERROR TRANSFER SHOULD HAVE BEEN TO LINE NO." ; K

; "IN LIST
1140 NEXT I

1150 PRINT
1160 IF N=5 THEN 1190
1170 PRINT " ON-GOTO-STATEMENT, FAILED TEST.

"

1180 GOTO 1220
1190 PRINT " ON-GOTO-STATEMENT, PASSED TEST.

"

1200 PRINT
1210 PRINT " END TEST."
1220 PRINT
1230 PRINT
1240 END

146

* SAMPLE OUTPUT *

PROGRAM FILE 70

SECTION 70.0: THE ON-GOTO STATEMENT

SECTION 70.1: THE ON-GOTO NUMERIC EXPRESSION

USING AN INTEGER WITHIN RANGE

BEGIN TEST.

ON-GOTO-STATEMENT, PASSED TEST.

END TEST.

SECTION 70.2: THE ON-GOTO NUMERIC EXPRESSION

AS A FRACTION ROUNDED TO AN INTEGER

BEGIN TEST.

ON-GOTO-STATEMENT, PASSED TEST.

END TEST

SECTION 70.3: THE ON-GOTO NUMERIC EXPRESSION

AS AN EXPRESSION OF MORE THAN ONE TERM

BEGIN TEST.

ON-GOTO-STATEMENT, PASSED TEST.

END TEST.

147

71.0 SEMANTIC DIAGNOSTIC - ON-GOTO STATEMENT REFERRING TO A
NON-EXISTENT LINE NUMBER

This test verifies that the implementation will recognize when a
transfer to an illegal line number is attempted by the ON-GOTO statement. In
particular, the objective is to determine whether an attempted transfer of
this sort in line 380 will be considered by the implementation as an error
requiring a diagnostic and program termination. On output, there should be
some form of implementation-defined diagnostic. However, should the
implementation fail to recognize this error, the program prints a message
which tells the user that the implementation failed the test. The reader is
referred to section 10.4 of BSR X3.60.

* PROGRAM FILE 71 *

0010 PRINT
0020 PRINT
0030 PRINT
0040 PRINT
0090 PRINT
0100 PRINT
0110 PRINT
0120 PRINT
0130 PRINT
0140 PRINT
0150 PRINT
0160 PRINT
0170 PRINT
0180 PRINT
0190 PRINT
0200 PRINT
0210 PRINT
0220 PRINT
0230 PRINT
0240 PRINT
0250 PRINT
0260 PRINT
0270 PRINT
0280 PRINT
0290 PRINT
0310 PRINT
0320 PRINT
0330 PRINT
0340 PRINT
0350 PRINT
0360 PRINT

"PROGRAM FILE 71"

SECTION 71.0: FATAL ERROR TEST - ON-GOTO-STATEMENT .

"

" THE OBJECTIVE OF THIS SECTION IS TO DETERMINE WHETHER"
"THIS SYSTEM RECOGNIZES THE FOLLOWING AS FATAL ERRORS (THAT"
"IS, SUSPENDING PROGRAM EXECUTION PENDING USER-DIRECTED RE-"
"START PROCEDURES):"

" (1) WHEN AN ON-GOTO-STATEMENT REFERS TO A NON-EXISTENT"
" LINE NUMBER, OR"
" (2) WHEN THE INTEGER OBTAINED AS THE VALUE OF AN EX-"

PRESS ION IN AN ON-GOTO-STATEMENT IS LESS THAN ONE"
" OR GREATER THAN THE NUMBER OF LINE NUMBERS IN THE"
" LIST."

"IF BOTH OF THE ABOVE REFERRALS ARE CONSIDERED FATAL ERRORS,"
"THEN THE TEST WILL HAVE PASSED."

(A REFERRAL TO A NON-EXISTENT LINE NUMBER.)"

BEGIN TEST."

1U8

0370 LET X=1
0380 ON X GOTO 159
0390 PRINT "SYSTEM FAILED TEST."
0400 PRINT
0410 PRINT "

0420 PRINT
0430 END

END TEST."

* SAMPLE OUTPUT *

In order for
reported. A poss

this test
ible error

to pass , a

diagnostic
fatal error must be diagnosed
for this program might be:

and

? UNDEFINED LINE NUMBER 159 IN LINE 380

1U9

72.0 EXCEPTION TEST VALUE OF ON-GOTO EXPRESSION LESS THAN ONE

This test verifies that the implementation recognizes the numeric
expression evaluation with values less than one as an exception. The test
has an ON-GOTO-statement which uses an expression that should round to an
integer less than one at line 170. In this case the expression is a simple
variable with a value of .3 that should be rounded to 0. On output, there
should be some form of implementation-defined diagnostic. However, the test
is structured to print a message of the implementation’s failure should the
test system not recognize the error. The reader is referred to section 10.5
of BSR X3. 60

.

* PROGRAM FILE 72 *

0010 PRINT "PROGRAM FILE 72"

0060 PRINT
0070 PRINT
0080 PRINT
0090 PRINT II SECTION 72.0"
0100 PRINT
0110 PRINT " (VALUE OF ON-GOTO EXPRESSION
0120 PRINT
0130 PRINT
0140 PRINT II BEGIN TEST.
0150 PRINT
0160 LET X= 3

0170 ON X GOTO 190
0180 PRINT
0190 PRINT "SYSTEM FAILED TEST."
0200 PRINT
0210 PRINT II END TEST."
0220 PRINT
0230 END

LESS THAN ONE.)

II

•I

* SAMPLE OUTPUT *

150

PROGRAM FILE 72

SECTION 72.0

(VALUE OF ON-GOTO EXPRESSION LESS THAN ONE.)

BEGIN TEST.

? ON EVALUATED OUT OF RANGE IN LINE 170

151

73.0 EXCEPTION TEST - VALUE OF ON -GOTO
THAN THE NUMBER OF LINE NUMBERS

EXPRESSION GREATER
IN THE LIST

The objective of this test is to compute an integer value for the
numerical expression used in an ON-GOTO-statement . In this case the integer
value should be greater than the number of line numbers listed in the
ON-GOTO-statement. The test determines whether the implementation recognizes
this as an exception. The program has a simple variable, X, assigned the
value 2 in line 170 but an ON-GOTO with one line number in its list in line
180. Then, X is used as the expression in line 180. On output, there should
be some form of implementation-defined diagnostic relating to the error.

should the implementation fail to recognize the error, a message
printed to the user. The reader is referred to section

However

,

will be
X3. 60 .

10.5 of BSR

* PROGRAM FILE 73 *

0010 PRINT "PROGRAM
0060 PRINT
0070 PRINT
0080 PRINT
0090 PRINT •1

0100 PRINT
0110 PRINT " (VALU
0115 PRINT
0120 PRINT H

0130 PRINT
0140 PRINT
0150 PRINT n

0160 PRINT
0170 LET X=2
0180 ON X GOTO 190
0190 PRINT
0200 PRINT “SYSTEM
0210 PRINT
0220 PRINT II

0230 PRINT
0240 END

SECTION 73.0"

(VALUE OF ON-GOTO EXPRESSION GREATER THAN

LINE NUMBERS IN THE LIST

BEGIN TEST."

END TEST."

THE NUMBER OF"

)

"

* SAMPLE OUTPUT *

PROGRAM PILE 73

SECTION 73.0

(VALUE OF ON-GOTO EXPRESSION GREATER THAN THE NUMBER OF

LINE NUMBERS IN THE LIST.)

BEGIN TEST.

? ON EVALUATED OUT OF RANGE IN LINE 180

153

74.0
READ/DATA STATEMENTS

These next eight sections are oriented towards testing (1) whether the
READ-statement assigns values, provided by DATA-statements , to variables, and
(2) whether the RESTORE-statement enables the rereading of those same values.
The values supplied by DATA-statements can be either numeric constants,
string constants, or unquoted strings. All of the data from the totality of
DATA-statements should be collected together into a data sequence. It should
not matter where DATA-statements are located in a program as long as they
occur before the END-statement . However, the order in which the different
types of data occur should determine the order of the variables within the
variable list of the READ-statements . That is, the order of the numeric
variables must match that of the numeric constants within the data sequence
and the same for string variables. If there are variables in READ-statements
with subscripted expresions, then the expressions are evaluated after values
have been assigned to any variables preceding those subscripted variables (to
the left of them in the list). By the use of the RESTORE-statement, the
pointer associated with the data sequence should be reset to the beginning of
the data sequence so that the next READ-statement executed will read data
from the beginning of the sequence once again. The reader is referred to
section 14 of BSR X3.60 for the specifications.

74.1

READ/DATA for Numeric Variables

The objective of this section is to introduce the READ/DATA relationship
by assigning numerical constants to both simple and subscripted variables.

74.1.1

For Simple Variables

This test determines whether a list of numeric constants can be assigned
to a list of simple numeric variables through the READ-statement and
DATA-statement . The test has three numeric constants in the DATA-statement
assigned to three simple variables by a READ. The numeric constants are in
the forms NR1, NR2 , and NR3. On output there should be a message flagging
false assignments by the READ-statement. Each of the error messages should
read as follows: READ ASSIGNMENT FOR VARIABLE NUMBER <number>, FAILED. If
each variable assignment is proper then the following message should be
printed: READ/DATA ASSIGNMENTS FOR SIMPLE VARIABLES, PASSED TEST.

74.1.2

For Subscripted Variables

The objective of this section is to execute READ/DATA assignments for
both singly and doubly subscripted arrays.

74. 1.2.1 As One-Dimensional Arrays

This test uses one-dimensional arrays for four subscripted variables.
Two are assigned values by use of LET-statements . These values have also
been entered into a DATA-list. The other two variables used in the
READ-statement should be assigned the same values as the first two
subscripted variables after the READ-statement has been executed. The values
of the assignments are checked by use of IF-THEN-statements . The test also

154

verifies incidentally that DATA-statements can be placed anywhere in the
program before the END-statement . On output, there should be an error
message for any faulty READ assignments. Each of the error messages should
be printed as follows: READ ASSIGNMENT FOR VARIABLE NUMBER <number>, FAILED.
If each variable assignment is correct, then the following message should be
printed: READ/DATA ASSIGNMENTS FOR ONE-DIMENSIONAL ARRAYS, PASSED.74.1.2.2

As Two-Dimensional Arrays

In this test, two-dimensional arrays are used in a manner similar to
that in 74.1.2.1. Two of the four subscripted variables are assigned values
through the use of LET-statements . The remaining two variables, used in the
READ-list, should be assigned the same values. On output there should be a

printed message for any faulty READ assignment. Each of thpse error messages
should appear as follows: READ ASSIGNMENT FOR VARIABLE NUMBER <number>,
FAILED. If each assignment is correctly made, then the following message
should be printed: READ/DATA ASSIGNMENTS FOR TWO-DIMENSIONAL ARRAYS, PASSED.

74.2

READ/DATA for String Variables

The object of this test is to assign string constants to string
variables by using the READ-statement and DATA-statement . Three string
constants ("ASSIGNING", "STRING", and "CONSTANTS") are assigned to three
string variables (A$, B$, and C$). These assignments are then checked. On
output there should be an error message for any faulty assignment. Each of
these error messages should appear as follows: READ ASSIGNMENT FOR VARIABLE
NUMBER <number>, FAILED. If there are no faulty assignments, then the
following message should be printed: READ/DATA ASSIGNMENTS FOR STRING VARS.,
PASSED TEST.

74.3

READ/DATA for Numerical and String Variables Together

The object of this test is to verify that there should be a single
sequence of data items, rather than separate sequences, for string data and
for numeric data. However, if the DATA-list is a mixture of numeric
constants and string constants, then the order of the mixture of numeric
variables and string variables in the READ-list must correspond to the
mixture in the DATA-list. That is, the type of a datum in the data sequence
must correspond to the type of the variable to which it is to be assigned,
(which means numeric variables require numeric constants as data and string
variables require quoted strings or unquoted strings as data. On output
there should be an error message for any incorrect assignment. Each of the
error messages should appear as follows: READ ASSIGNMENT FOR VARIABLE NUMBER
<number>, FAILED. If all assignments are correct then the following message
should be printed: READ/DATA ASSIGNMENTS FOR NUM/STRG VARS. TOGETHER,
PASSED.

74.4

Evaluation of Subscripted Variables

This test confirms (1) that subscripted expressions in the variable list
are evaluated after values have been assigned to the variables preceding them
(that is, to the left of them) in the list, and (2) that any previous LET
assignments for the index should be ignored. The test first assigns values

155

to the elements of the array A (I) by a LET-statement. After the values have
been assigned to the array A(I), the index I is assigned a value by a

LET-statement in order to select one of the elements of the array A(I).
Then, another value is assigned to the index I by a READ-statement and a
DATA-statement . At this point the index value assigned by the LET-statement
should be nullified, and the index value for I assigned by the READ and
DATA-statements should take precedence. This controls the element assigned
to the subscripted variable A(I) in the READ-1 i st . On output one of two
possible messages should be printed. If the test fails, then the following
message should be printed: EVALUATION OF SUBSCRIPT EXP. IN VARIABLE LISTS,
FAILED. If the test is passed, then the following message should be printed:
EVALUATION OF SUBSCRIPT EXP. IN VARIABLE LISTS, PASSED.

* PROGRAM FILE 74 *

0010 PRINT "PROGRAM FILE 74"

0020 PRINT
0030 PRINT
0040 PRINT
0070 PRINT
0080 PRINT " SECTION 74.1: READ/DATA FOR NUMERIC VARIABLES."
0090 PRINT
0100 PRINT " SECTION 74.1.1: FOR SIMPLE VARIABLES."
0110 PRINT
0120 PRINT " BEGIN TEST."
0130 PRINT
0140 LET K=0
0150 DATA 123456, -4. 76567, 1.111E33
0160 READ M , N ,

0

0170 LET K=K+1
0180 IF M=123456 THEN 200
0190 GOSUB 270
0200 LET K=K+1
0210 IF N=-4. 76567 THEN 230
0220 GOSUB 270
0230 LET K=K+1
0240 IF 0=1 . 11 IE 33 THEN 290
0250 GOSUB 270
0260 GOTO 320
0270 PRINT TAB (12) ; "READ ASSIGNMENT FOR VARIABLE NUMBER" ;K;", FAILED."
0280 RETURN
0290 PRINT "READ/DATA ASSIGNMENTS FOR SIMPLE VARIABLES, PASSED TEST."
0300 PRINT
0310 PRINT " END TEST."
0320 PRINT
0330 PRINT " SECTION 74.1.2: FOR SUBSCRIPTED VARIABLES."
0340 PRINT

156

0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770
0780
0790
0800
0810
0820
0830
0840
0850
0860
0870
0880
0890
0900
0910

PRINT " SECTION 74.1.2.1: AS ONE-DIMENSIONAL ARRAYS."
PRINT
PRINT " BEGIN TEST."
PRINT
DIM A (1 5) r B (15) ,C (15) ,D (15)
LET F = 0

DATA -9, -1.75, -8, -.7 5, -7, .25,-6,1.25,-5,2.25
FOR 1=1 TO 15
READ A (I) ,B (I)

LET C (I) =1—10
LET D (I) =1-2. 75
NEXT I

DATA -4,3.25,-3,4.25,-2,5.25,-1,6.25,0,7.25
LET K=0
FOR 1=1 TO 15
LET K=K+1
IF A (I)=C (I) THEN 530
GOSUB 620
LET K=K+1
IF B (I

) =D (I) THEN 560
GOSUB 620
NEXT I

DATA 1,8.25,2,9.25,3,10.25,4,11.25,5,12.25
IF F=0 THEN 650
PRINT
PRINT " DO TO THE ABOVE ERROR (S) , TEST FAILED."
GOTO 680
LET F=F+1
PRINT TAB (12)

; "READ ASSIGNMENT FOR VARIABLE NUMBER" ; K
;

" , FAILED."
RETURN
PRINT "READ/DATA ASSIGNMENTS FOR ONE-DIMENSIONAL ARRAYS, PASSED."
PRINT
PRINT " END TEST."
PRINT
PRINT " SECTION 74.1.2.2: AS TWO-DIMENSIONAL ARRAYS."
PRINT
PRINT " BEGIN TEST."
PRINT
DIM M (2 , 15) ,N(2,15) , X (2 , 1 5) , Y (2 , 1 5

)

LET F=0
DATA -1, -4. 25, 0,-3. 25, 1, -2. 25, 2,-1. 25, 3,-. 25, 4, . 75
DATA 5,1.75,6,2.75,7,3.75,8,4.75,9,5.75,10,6.75
FOR 1=1 TO 2

FOR J=1 TO 15
READ M (I, J) ,N (I, J)
LET X (I , J) =J-2 *1

LET Y(I,J)=I*J-5.25
NEXT J
NEXT I

DATA 11, 7. 75, 12, 8. 75, 13, 9. 75, -3, -3. 25, -2,-1. 25,-1,. 75
LET K = 0

FOR 1=1 TO 2

FOR J=1 TO 15
LET K=K+1
IF M(I, J)=X (I, J) THEN 910
GOSUB 1020
LET K = K +

1

157

0920 IF N (I, J)=Y (I, J) THEN 940
0930 GOSDB 1020
0940 NEXT J
0950 NEXT I

0960 DATA 0,2.75,1,4.75,2,6.75,3,8.75,4,10.75,5,12.75
0970 DATA 6,14.75,7,16.75,8,18.75,9,20.75,10,22.75,11,24.75
0980 IF F=0 THEN 1050
0990 PRINT
1000 PRINT " DO TO THE ABOVE ERRORS (S), TEST FAILED.' 1

1010 GOTO 1080
1020 LET F=F+1
1030 PRINT TAB (12)

; "READ ASSIGNMENT FOR VARIABLE NUMBER" ;K;", FAILED."
1040 RETURN
1050 PRINT "READ/DATA ASSIGNMENTS FOR TWO-DIMENSIONAL ARRAYS, PASSED."
1060 PRINT
1070 PRINT " END TEST."
1080 PRINT
1090 PRINT " SECTION 74.2: READ/DATA FOR STRING VARIABLES."
1100 PRINT
1110 PRINT " BEGIN TEST."
1120 PRINT
1130 LET K=0
1140 DATA "ASSIGNING" , STRING, "CONSTANTS"
1150 READ A$, B$, C$
1160 LET K=K+1
1170 IF A $=" ASSIGNING" THEN 1190
1180 GOSUB 1260
1190 LET K=K+1
1200 IF B$="STRING" THEN 1220
1210 GOSUB 1260
1220 LET K=K+1
1230 IF C$=" CONSTANTS" THEN 1280
1240 GOSUB 1260
1250 GOTO 1310
1260 PRINT TAB (12)

; "READ ASSIGNMENT FOR VARIABLE NUMBER" ;K; n
, FAILED."

1270 RETURN
1280 PRINT "READ/DATA ASSIGNMENTS FOR STRING VARIABLES, PASSED TEST."
1290 PRINT
1300 PRINT " END TEST."
1310 PRINT
1320 PRINT "SECTION 74.3: READ/DATA FOR NUM . AND STRG . VARS. TOGETHER."
1330 PRINT
1340 PRINT " BEGIN TEST."
1350 PRINT
1360 LET K= 0

1370 DATA MIXING, 123456, "NUMBERS", -4. 76567, AND, 1.111E33
1380 DATA STRINGS, -. 654321 ," IN" , DATA
1390 READ A$,B,C$,D,E$,F,G$,H,I$,J$
1400 LET K=K+1
1410 IF A$="MIXING" THEN 1430
1420 GOSUB 1710
1430 LET K=K+1
1440 IF B=123456 THEN 1460
1450 GOSUB 1710
1460 LET K=K+1
1470 IF C$="NUMBERS" THEN 1490
1480 GOSUB 1710

158

1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1 30

1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970

LET K=K + 1

IF D=-4. 76567 THEN 1520
GOSUB 1710
LET K=K+1
IF E$="AND" THEN 1550
GOSUB 1710
LET K=K+1
IF F = 1 . 111E 33 THEN 1580
GOSUB 1710
LET K=K+1
IF G$="STRINGS" THEN 1610
GOSUB 1710
LET K=K + 1

IF H=-. 654321 THEN 1640
GOSUB 1710
LET K=K + 1

IF I $ = " I N " THEN 1670
GOSUB 1710
LET K=K + 1

IF J$="DATA" THEN 1730
GOSUB 1710
GOTO 1760
PRINT TAB (12) ; "READ ASSIGNMENT FOR VARIABLE NUMBER" ;K;" # FAILED."
RETURN
PRINT "READ/DATA ASSIGNMENTS FOR NUM/STRG VARS. TOGETHER, PASSED."
PRINT
PRINT " END TEST."
PRINT
PRINT " SECTION 74.4: EVALUATION OF SUBSCRIPTED VARIABLES."
PRINT
PRINT " BEGIN TEST."
PRINT
DIM V(10)
FOR 1=1 TO 10
LET V (I) =1 — 4*1^2
NEXT I

LET 1=8
DATA 6 , 3E-33
READ I,V(I)
IF V (8)

0-24 8 THEN 1900
IF V (6) =3E-33 THEN 1920
PRINT " EVALUATION OF SUBSCRIPT EXPS. IN VARIABLE LIST, FAILED."
GOTO 1950
PRINT " EVALUATION OF SUBSCRIPT EXPS. IN VARIABLE LIST, PASSED."
PRINT
PRINT " END TEST.

"

PRINT
PRINT
END

ft**********'******

* SAMPLE OUTPUT *

159

PROGRAM FILE 74

SECTION 74.1: READ/DATA FOR NUMERIC VARIABLES.

SECTION 74.1.1: FOR SIMPLE VARIABLES.

BEGIN TEST.

READ/DATA ASSIGNMENTS FOR SIMPLE VARIABLES, PASSED TEST.

END TEST.

SECTION 74.1.2: FOR SUBSCRIPTED VARIABLES.

SECTION 74.1.2.1: AS ONE-DIMENSIONAL ARRAYS.

BEGIN TEST.

READ/DATA ASSIGNMENTS FOR ONE-DIMENSIONAL ARRAYS, PASSED.

END TEST.

SECTION 74.1.2.2: AS TWO-DIMENSIONAL ARRAYS.

BEGIN TEST.

READ/DATA ASSIGNMENTS FOR TWO-DIMENSIONAL ARRAYS, PASSED.

END TEST.

SECTION 74.2: READ/DATA FOR STRING VARIABLES.

BEGIN TEST.

READ/DATA ASSIGNMENTS FOR STRING VARIABLES, PASSED TEST.

END TEST.

SECTION 74.3: READ/DATA FOR NUM. AND STRG . VARS. TOGETHER.

BEGIN TEST.

READ/DATA ASSIGNMENTS FOR NUM/STRG VARS. TOGETHER, PASSED.

END TEST.

SECTION 74.4: EVALUATION OF SUBSCRIPTED VARIABLES.

BEGIN TEST.

EVALUATION OF SUBSCRIPT EXPS. IN VARIABLE LIST, PASSED.

END TEST.

160

75.0 EXCEPTION TEST - READ-STATEMENT ENCOUNTERS
INSUFFICIENT DATA

The objective of this test is to verify that the implementation will
diagnose whether a variable list in a READ-statement requires more data than
is present in the remainder of the data sequence and reports this as an
exception. The test has a DATA-statement at line 380 which has a DATA-list
that is not in one-to-one correspondence with the variable list for the
READ-statement at line 390. On output, there should appear some
implementation-defined diagnostic reporting the error. However, should the
implementation fail to recognize the error, the test has a message that
reports test failure. The reader is referred to section 14.5 of BSR
X3. 60 .

* PROGRAM FILE 75 *

0010 PRINT
0020 PRINT
0030 PRINT
0040 PRINT
0090 PRINT
0100 PRINT
0110 PRINT
0120 PRINT
0130 PRINT
0140 PRINT
0150 PRINT
0160 PRINT
0170 PRINT
0180 PRINT
0190 PRINT
0200 PRINT
0210 PRINT
0220 PRINT
0230 PRINT
0240 PRINT
0250 PRINT
0260 PRINT
0270 PRINT
0280 PRINT
0290 PRINT
0300 PRINT
0330 PRINT
0340 PRINT
0350 PRINT
0360 PRINT

"PROGRAM FILE 75"

SECTION 75.0: FATAL ERROR CHECK ON READ-STATEMENT.

" THE OBJECTIVE OF THIS SECTION IS TO DETERMINE WHETHER"
"THIS SYSTEM RECOGNIZES THE FOLLOWING AS FATAL ERRORS (THAT"
"IS, SUSPENDING PROGRAM EXECUTION PENDING USER-DIRECTED RE-"
"START PROCEDURES):"

" (1) WHEN THE VARIABLE LIST IN A READ-STATEMENT"
" REQUIRES MORE DATA THAN ARE PRESENT IN THE RE-

"

" MAINDER OF THE DATA SEQUENCE."
" (2) WHEN A STRING DATUM DOES NOT MATCH THE TYPE OF THE"
" NUMERIC VARIABLE TO WHICH IT IS TO BE ASSIGNED."
" (3) WHEN THE CONVERSION OF A STRING DATUM CAUSES A"
" STRING OVERFLOW."

"IF ALL OF THE ABOVE REFERRALS ARE CONSIDERED FATAL ERRORS,"
"THEN THE TEST WILL HAVE PASSED."

(INSUFFICIENT DATA FOR VARIABLE LIST.)"

BEGIN TEST."

l6l

0370 PRINT
0380 DATA -2,16
0390 READ A , B ,

C

0400 PRINT " IF THERE IS A PRINTOUT OF NUMBERS AFTER THIS STATEMENT"
0410 PRINT "THEN THE TEST WILL HAVE FAILED."
0420 PRINT A , B ,

C

0430 PRINT
0440 PRINT " END TEST."
0450 PRINT
0460 END

* SAMPLE OUTPUT *

PROGRAM FILE 75

SECTION 75.0: FATAL ERROR CHECK ON READ-STATEMENT.

THE OBJECTIVE OF THIS SECTION IS TO DETERMINE WHETHER
THIS SYSTEM RECOGNIZES THE FOLLOWING AS FATAL ERRORS (THAT
IS, SUSPENDING PROGRAM EXECUTION PENDING USER-DIRECTED RE-
START PROCEDURES):

(1) WHEN THE VARIABLE LIST IN A READ-STATEMENT
REQUIRES MORE DATA THAN ARE PRESENT IN THE RE-
MAINDER OF THE DATA SEQUENCE.

(2) WHEN A STRING DATUM DOES NOT MATCH THE TYPE OF THE
NUMERIC VARIABLE TO WHICH IT IS TO BE ASSIGNED.

(3) WHEN THE CONVERSION OF A STRING DATUM CAUSES A
STRING OVERFLOW.

IF ALL OF THE ABOVE REFERRALS ARE CONSIDERED FATAL ERRORS,
THEN THE TEST WILL HAVE PASSED.

(INSUFFICIENT DATA FOR VARIABLE LIST.)

BEGIN TEST.

? OUT OF DATA IN LINE 390

162

76.0 EXCEPTION TEST - NON-MATCHING STRING DATUM ASSIGNED TO A
NUMERIC VARIABLE

The objective of this test is to determine whether the implementation
will recognize the attempt to read a string constant in the data sequence by
a numeric variable as an exception. The test attempts to read a quoted
string in a DATA-list by a simple numeric variable in a READ-list. On
output, there should be some form of implementation-defined diagnostic
However, should the implementation fail to recognize the error,
a message printed that tells the user that the implementation
test. The reader is referred to section 14.5 of BSR X3.60.

the test has
failed the

* PROGRAM FILE 76 *

0010 PRINT
0020 PRINT
0030 PRINT
0 0 4 0 PRINT
0090 PRINT
0100 PRINT
0110 PRINT
0120 PRINT
0130 PRINT
0140 PRINT
0150 PRINT
0160 DATA "

0170 READ A
0180 PRINT
0190 PRINT
0200 PRINT
0210 PRINT
0220 PRINT
0230 END

"PROGRAM FILE 76"

" SECTION 76.0"

"(NON-MATCHING STRING DATUM ASSIGNED TO A NUMERIC VARIABLE.)

BEGIN TEST."

SIX"

" EXECUTION OF PROGRAM WAS NOT SUSPENDED, THEREFORE,"
"THE SYSTEM HAS FAILED THE TEST."

END TEST.

"

It

* SAMPLE OUTPUT *

163

PROGRAM FILE 76

SECTION 76.0

(NON-MATCHING STRING DATUM ASSIGNED TO A NUMERIC VARIABLE.)

BEGIN TEST.

? VARIABLE IN LINE 170 INCOMPATIBLE WITH DATA

77.0 EXCEPTION TEST - ATTEMPTING A STRING DATUM OVERFLOW

This test determines at what point, i

recognizes the assigning of a string, cons
as an exception. Processors may accept the
point to this test is that when a processor
18 characters, then some form of diagnostic
program. This test has strings of various
relationship. In fact, strings of lengths
characters are used. On output, either the
there should be some form of implementation-
string overflow error. The reader is
X3.60 .

f possible, the implementation
isting of more than 18 characters
assigning of long strings. The
cannot assign strings longer than
is required with suspension of
lengths assigned by the READ/DATA
19, 20, 30, 40, 50, and 58
strings are properly assigned or

defined diagnostic reporting a
referred to section 14.5 of BSR

* PROGRAM FILE 77 *

0010
0020
0030
0040
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340

PRINT "PROGRAM FILE 77"

PRINT
PRINT
PRINT
PRINT " SECTION 77.0"
PRINT
PRINT " (A STRING OVERFLOW.)
PRINT
PRINT
PRINT " BEGIN TEST."
PRINT
DATA " *********19********"
DATA "*********20*********"
DATA 11 **************30**************"
DATA "*******************40*******************"
DATA "************************50************************"
DATA "****************************58****************************"
READ A$,B$,C$,D$,E$,F$
PRINT " IF THERE IS A PRINTOUT BELOW THIS PARAGRAPH AND NOT AN"
PRINT "INDICATION OF A FATAL ERROR, THEN THIS SYSTEM SATISFIES"
PRINT "MORE IN THIS RESPECT THAN IS REQUIRED BY MINIMAL BASIC."
PRINT "THE NUMBERS TOWARD THE CENTER OR IN THE CENTER OF THE AS-"
PRINT "TERISKS SIGNIFY THE LENGTH OF THE CHARACTER STRINGS ASSO-"
PRINT "CIATED WITH EACH ASSIGNED STRING VARIABLE."
PRINT
PRINT A$
PRINT B

$

PRINT C$
PRINT D$
PRINT E$

165

0 350 PRINT F

$

0360 PRINT
0370 PRINT " END TEST."
0380 PRINT
0390 END

* SAMPLE OUTPUT *

PROGRAM FILE 77

SECTION 77.0

(A STRING OVERFLOW.)

BEGIN TEST.

IF THERE IS A PRINTOUT BELOW THIS PARAGRAPH AND NOT AN
INDICATION OF A FATAL ERROR, THEN THIS SYSTEM SATISFIES
MORE IN THIS RESPECT THAN IS REQUIRED BY MINIMAL BASIC.
THE NUMBERS TOWARD THE CENTER OR IN THE CENTER OF THE AS-
TERISKS SIGNIFY THE LENGTH OF THE CHARACTER STRINGS ASSO-
CIATED WITH EACH ASSIGNED STRING VARIABLE.

*********^9********
********* 20 *********
************** 20 **************
***************** **40 *******************
************************50************************
****************************23****************************

END TEST.

166

78.0 SEMANTIC INTERPRETATION - A NUMERIC VALUE IN A DATA LIST
CAUSES AN UNDERFLOW

This test verifies that the implementation recognizes the semantic
interpretation required when a positive numerical constant, which is too
small to be represented by the machine, is assigned. The READ/DATA
relationship should ignore the value being assigned by making an assignment
of zero to the value and continuing the program. The test has a
DATA-statement which lists a numerical value of the magnitude 9.0E-99999 at

line 360. On output, there should be a message which should tell the user to
look for a zero as a printout following that message. If zero is printed,
then the implementation will have passed the test. The reader is referred to
section 14.4 in BSR X3.60.

* PROGRAM FILE 78 *

0010 PRINT "

0020 PRINT
0030 PRINT
0040 PRINT
0260 PRINT
0270 PRINT
0280 PRINT
0290 PRINT "

0300 PRINT
0310 PRINT "

0320 PRINT
0330 PRINT
0340 PRINT "

0350 PRINT
0360 DATA 9.
0370 READ A
0380 PRINT "

0390 PRINT "

0 4 00 PRINT A
0410 PRINT
0420 PRINT "

0430 PRINT
0440 END

PROGRAM FILE 78"

SECTION 78.0"

(A NUMERIC DATUM CAUSES AN UNDERFLOW.)"

BEGIN TEST."

0E-99999

IF THE NUMBER PRINTED AFTER THIS STATEMENT IS ZERO,
THEN THE SYSTEM WILL HAVE PASSED THE TEST."

END TEST."

II

* SAMPLE OUTPUT *

PROGRAM FILE 78

SECTION 78.0

(A NUMERIC DATUM CAUSES AN UNDERFLOW.)

BEGIN TEST.

IF THE NUMBER PRINTED AFTER THIS STATEMENT IS ZERO,
THEN THE SYSTEM WILL HAVE PASSED THE TEST.
0

END TEST.

168

79.0 EXCEPTION TEST - A NUMERIC VALUE IN A DATA STATEMENT
CAUSES AN OVERFLOW

This test verifies that the implementation will recognize the assigning,
by the READ/DATA relationship, of a number that causes overflow, as an
exception. The exception recovery procedure should cause the
implementation-defined machine infinity to be assigned instead. The test has
a DATA-statement in line 170 which lists a numerical value of magnitude
9 . 99999E99999 . On output, there should be a message telling the user to look
for the implementation-defined machine infinity as a printout following the
message. If a positive machine infinity is printed, then the implementation
will have passed the test. The reader is referred to section 14.5 of BSR
X3. 60 •

* PROGRAM FILE 79 *

0010 PRINT "PROGRAM FILE 79"

0020 PRINT
0030 PRINT
0040 PRINT
0090 PRINT " SECTION 79.0"
0100 PRINT
0110 PRINT " (A NUMERIC DATUM CAUSES AN OVERFLOW, POSITIVE
0120 PRINT " INFINITY.)

"

0130 PRINT
0140 PRINT
0150 PRINT " BEGIN TEST."
0160 PRINT
0170 DATA 9. 99999E99999
0180 READ A
0190 PRINT " IF THE NUMBER PRINTED BELOW THIS STATEMENT IS
0200 PRINT "AND THE MACHINE INFINITY FOR THIS SYSTEM, THEN THE
0210 PRINT "WILL HAVE PASSED ON THIS SYSTEM.

"

0220 PRINT A
0230 PRINT
0240 PRINT " END TEST."
0250 PRINT
0260 END

POSITIVE"

* SAMPLE OUTPUT *

169

PROGRAM FILE 79

SECTION 79.0

(A NUMERIC DATUM CAUSES AN OVERFLOW, POSITIVE MACHINE
INFINITY.

)

BEGIN TEST.

?OVERFLOW IN LINE 180

IF THE NUMBER PRINTED BELOW THIS STATEMENT IS POSITIVE
AND THE MACHINE INFINITY FOR THIS SYSTEM, THEN THE TEST
WILL HAVE PASSED ON THIS SYSTEM.
1 . 70141E+38 . .

END TEST.

170

80.0 EXCEPTION TEST - OVERFLOW CAUSED BY A NUMERIC VALUE
IN A DATA-STATEMENT (CONTINUED)

verifies that
a negative

This test
infinity when
DATA-statement which has the
On output, a message should
machine infinity. If that value is printed
implementation will have passed the test. The
14.5 of BSR X3. 60 .

the implementation
numeric datum ca
numerical constant
be printed telling

will assign negative machine
uses an overflow. There is a
-9. 99999E99999 in line 150.
the user to look for negative

following the message, then
reader is referred to section

* PROGRAM FILE 80 *

0010 PRINT II

0020 PRINT
0030 PRINT
0040 PRINT
0090 PRINT n

0100 PRINT
0110 PRINT
0120 PRINT
0130 PRINT ii

0140 PRINT
0150 DATA - 9

0160 READ A
0170 PRINT 11

0180 PRINT It

0190 PRINT •»

0200 PRINT A
0210 PRINT
0220 PRINT II

0230 PRINT
0240 END

80'

SECTION 80.0: OVERFLOW CAUSED BY A NUMERIC DATUM."

BEGIN TEST."

IF THE NUMBER PRINTED BELOW THIS STATEMENT IS NEGATIVE"

END TEST.

"

* SAMPLE OUTPUT *

171

PROGRAM FILE 80

SECTION 80.0: OVERFLOW CAUSED BY A NUMERIC DATUM.

BEGIN TEST.

?OVERFLOW IN LINE 160

IF THE NUMBER PRINTED BELOW THIS STATEMENT IS NEGATIVE
AND THE MACHINE INFINITY FOR THIS SYSTEM, THEN THE TEST
WILL HAVE PASSED ON THIS SYSTEM.
-1.70141E+38

END TEST.

172

81.0 RESTORING READ DATA

This test verifies that, through the use of the RESTORE-statement , data
from the data sequence can be reread. The test on the RESTORE-statement is
accomplished by first reading each datum of the DATA-list and then assigning
each value read to a variable. These assignments are then checked. If any
faulty assignments are made, then an error message should be printed for each
incorrect assignment. Each of these error messages should be printed as
follows: READ ASSIGNMENT FOR VARIABLE NUMBER <number>, FAILED. If all
assignments were correct, then, using the RESTORE-statement, a second set of
variables should be assigned the same values as the first. The correctness
of the assignments are then checked by IF-THEN comparisons between the values
of the first and the second set of variables. If there are any incorrect
comparisons, then there should be an error message for each incorrect
reassigned value. Each of the error messages should be printed as follows:
REREAD ASSIGNMENT FOR VARIABLE NUMBER <number>, FAILED. If all assignments
in the rereading process were correct then the following message should be
printed: RESTORING DATA TO BE REREAD FOR ASSIGNMENT, PASSED. The reader is

referred to section 14.4 of BSR X3.60.

* PROGRAM FILE 81 *

0010 PRINT "PROGRAM FILE 81"

0020 PRINT
0030 PRINT
0040 PRINT
0090 PRINT " CAUTION: THE NATURE OF THE RESTORE-STATEMENT DOES"
0100 PRINT "NOT ALLOW THIS SECTION TO BE TESTED WITH OTHER SECTIONS"
0110 PRINT "USING A DATA-STATEMENT .

"

0120 PRINT
0130 PRINT " SECTION 81.0: RESTORING READ DATA."
0140 PRINT
0150 PRINT " BEGIN TEST."
0160 PRINT
0170 LET F=0
0180 LET K=0
0190 DATA "RESTORING", 1.23E-9, READ, -9. 876E22, "DATA"
0200 READ A$,B,C$,D,E$
0210 LET K=K+1
0220 IF A$=" RESTORING" THEN 240
0230 GOSUB 570
0240 LET K=K+1
0250 IF B=1 . 23E-9 THEN 270
0260 GOSUB 570
0270 LET K=K+1
0280 IF C$= H READ" THEN 300

173

0290 GOSUB 570
0300 LET K=K+1
0310 IF D=-9 . 876E22 THEN 330
0320 GOSUB 570
0330 LET K=K+1
0340 IF E$="DATA" THEN 370
0350 GOSUB 570
0360 GOTO 600
0370 IF FO0 THEN 600
0380 LET K=0
0390 RESTORE
0400 READ M$, N , 0$, P , Q$
0410 LET K=K+1
0420 IF M$=A$ THEN 440
0430 GOSUB 630
0440 LET K=K+1
0450 IF N=B THEN 470
0460 GOSUB 630
0470 LET K=K+1
0480 IF 0$=C$ THEN 500
0490 GOSUB 630
0500 LET K=K+1
0510 IF P=D THEN 530
0520 GOSUB 630
0530 LET K=K+1
0540 IF Q$=E $ THEN 650
0550 GOSUB 630
0560 GOTO 680
0570 LET F=G+1
0580 PRINT TAB (12) , "READ ASSIGNMENT FOR VARIABLE NUMBER" ; K

;

" , FAILED
0590 RETURN
0600 PRINT
0610 PRINT " THEREFORE, RESTORE TEST WILL NOT CONTINUE.
0620 GOTO 680
0630 PRINT TAB (12)

, "REREAD ASSIGNMENT FOR VARIABLE NO.";K;", FAILED.
0640 RETURN
0650 PRINT "RESTORING READ DATA TO BE REREAD FOR ASSIGNMENT, PASSED.
0660 PRINT
0670 PRINT " END TEST."
0680 PRINT
0690 PRINT
0700 END

* SAMPLE OUTPUT *

PROGRAM FILE 81

CAUTION: THE NATURE OF THE RESTORE STATEMENT DOES
NOT ALLOW THIS SECTION TO BE TESTED WITH OTHER SECTIONS
USING A DATA-STATEMENT.

SECTION 81.0: RESTORING READ DATA.

BEGIN TEST.

RESTORING READ DATA TO BE REREAD FOR ASSIGNMENT, PASSED.

END TEST.

175

82.0

INPUT STATEMENT FOR NUMERIC CONSTANTS

The next several test sections emphasize user interaction with a running
program. This is accomplished through the use of the INPUT-statement (see
section 13 of BSR X3.60). By using the INPUT-statement, data can be
entered as quoted strings, unquoted strings, numeric constants or a mixture
of all three types. However, upon call for data by an input-prompt, there is
a restriction on the order in which data is supplied in the input-reply.
That is, the type of each datum in the input-reply must correspond to the
type of the variable td which it is to be assigned (numeric constants must be
supplied as input for numeric variables, and either quoted strings or
unquoted strings must be supplied as input for string variables). If the
response to input for a string variable is an unquoted string, leading and
trailing spaces are to be ignored. Subscript expressions in the variable
list should be evaluated after values have been assigned to the variables
preceding them, that is, from left to right in the variable list.

The standard specifies that in batch mode, input-reply is requested from
an external source by an implementation-defined means. If these tests are
run in batch mode, then the user will have to use the appropriate external
source and program the proper data input form before these codes can be
executed

.

The objective of the program in this section, specifically, is to
determine whether the implementation recognizes the assigning of numerical
constants by the use of the INPUT-statement.

82.1

Input of a Numeric Constant

The objective of this exercise is to test simple interaction by
requesting the user to input a single value at a time. The test requests
that all three of the numeric constant forms (NRl, NR2, and NR3 forms) be
individually entered by the user. Each prompt message (which should be
followed by an input-prompt) tells the user what number, and in what form to
enter the number for a proper response. To allow for possible data input
errors during input-reply responses, each datum is checked by the test for
proper format. If an incorrect value is found to have been entered, the user
will be given only two more possible chance.; to correct his error. If the
input is not correct after that, the following message will be printed:
FAILURE TO ENTER PROPER DATA. After this message, the test will stop. If
all of the proper data is entered, a comparative output should be printed.
There are four columns of output. The first specifies the standard value,
the second an option, if any, the third reports the system value after
input/output conversion, and the final column reports any internal relative
error

.

82.2

Input of Numeric Constants As a Line of Data
Separated by Commas

The objective of this test is again to determine whether numeric
constants (in either of the three forms NRl, NR2, NR3, or all three) can be
assigned by user interaction. In this test, however, the user is requested
to enter several numbers separated by commas rather than a single number as
above. Except for the input-prompts requiring several numbers rather than a

176

single number, the structure of this test and output is similar to section
82.1.

* PROGRAM FILE 82 *

0010 PRINT "PROGRAM FILE 82"
0020 PRINT
0030 PRINT
0040 PRINT
0080 PRINT " SECTION 82.0: INPUT OF NUMERIC CONSTANTS
0090 PRINT
0100 PRINT
0110 PRINT
0120 PRINT
0130 PRINT " SECTION 82.1"
0140 PRINT
0150 PRINT " (AS A SINGLE DATUM VALUE.)"
0160 PRINT
0170 PRINT
0180 PRINT " BEGIN TEST."
0190 PRINT
0200 DIM E (8) ,N (8) ,D (8) ,Z (8)
0202 DATA 8. 13008E-7 , 8.10045E-7, 8.10005E-7, IE-7
0203 DATA 1 . 528 30E-7 , 1.26727E-7, 1.01256E-7, 8. 10045E-7
0204 FOR I = 1 TO 8

0205 READ Z(I)
0206 NEXT I

0210 LET 1=1
0220 LET C=123
0230 LET A $ = " 1 2 3

"

0240 GOSUB 1050
0250 LET C=-12345
0260 LET A$=" -12345"
0270 GOSUB 1050
0280 LET C =1234 5 .

6

0290 LET A$="12345.6"
0300 GOSUB 1050
0310 LET C=-99999 .

9

0320 LET A$=" -99999. 9"

0330 GOSUB 1050
0340 LET C=6 . 54321E-20
0350 LET A$="6. 54321E-20"
0360 GOSUB 1050
0370 LET C=-7 . 891E25
0380 LET A$="-7. 891E25"
0390 GOSUB 1050
0 4 0 0 LET C=-987. 6E-27

177

0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770
0780
0790
0800
0810
0820
0830
0840
0850
0860
0870
0880
0890
0900
0910
0920
0930
0940
0950
0960
0970

LET A$="-987. 6E-27"
GOSUB 1050
LET C=12345E18
LET A$ = " 12345E18"
GOSUB 1050
PRINT
PRINT
PRINT " IF THE RELATIVE ERROR IS OUT OF TOLERANCE,"
PRINT "THEN AN ASTERISK WILL FOLLOW THAT RELATIVE"
PRINT "ERROR SIGNIFYING ONE OF TWO POSSIBILITIES:"
PRINT
PRINT ” (1) USER INPUT ERROR (S)."
PRINT " (2) FAILURE OF THE SYSTEM TO MAINTAIN SIX SIGNIFICANT"
PRINT "DIGITS OF PRECISION."
PRINT
PRINT "OTHERWISE, NO ASTERISKS MEAN TEST PASSED."
PRINT
PRINT
PRINT "STANDARD" , "OPTIONAL" , "SYSTEM" , "RELATIVE"
PRINT " OUTPUT "," OUTPUT ", "OUTPUT"," ERROR "

PRINT
FOR 1=1 TO 8

ON I GOTO 640,690,740,790,830,880,930,980
IF N (I) =0 THEN 670
PRINT " 123 " , "NONE" ,D (I) ,E (I)

;

GOTO 1020
PRINT " 123 " , "NONE" ,D(I) ,E(I)
GOTO 1020
IF N (I) =0 THEN 720
PRINT " - 1 2 3 4 5 " , "NONE" ,D (I) , E (I)

; "*

"

GOTO 1020
PRINT " - 1 2 3 4 5 " , "NONE" , D (I) , E (I

)

GOTO 1020
IF N (I) = 0 THEN 770
PRINT " 12345.6 " , "NONE" ,D (I) ,E (I)

;

GOTO 1020
PRINT " 12345.6 " , "NONE" ,D (I) , E (I

)

GOTO 1020
IF N (I) =0 THEN 810
GOTO 1020
PRINT ”-99999.9 " ,

" NONE" , D (I) , E (I

)

GOTO 1020
IF N (I) =0 THEN 860
PRINT " 6.54321E-20 " ,

" NONE" , D (I) , E (I)

; " *

"

GOTO 1020
PRINT " 6 . 54321E-20 " ,

" NONE " , D (I) , E (I

)

GOTO 1020
IF N (I) =0 THEN 910
PRINT "-7.89100E25 " , "-7. 89100E+25 " ,D (I) , E (I)

; "*"

GOTO 1020
PRINT "-7. 8910 0E 25 " , " -7 . 891 0 0E +25 ",D(I),E(I)
GOTO 1020
IF N (I

) =0 THEN 960
PRINT "-9.87600E-25 " ,

“ NONE" , D (I) , E (I)
; " *

"

GOTO 1020
PRINT "-9. 87600E-25 " ,

" NONE" , D (I) , E (I

)

GOTO 1020

178

0980 IF N (I
) =0 THEN 1010

0990 PRINT " 1.2345E22 1.2345E + 22 " , D (I) , E (I)

; " *

"

1000 GOTO 1020
1010 PRINT " 1.2345E22 " ,

" 1.2345E+22 ”,D(I),E(I)
1020 NEXT I

1030 PRINT
1040 GOTO 1300
1050 LET N (I) =0
1060 PRINT "ENTER THE FOLLOWING NUMERAL AS IS: ";A$
1070 INPUT D (I

)

1080 IF COD (I) THEN 1120
1090 LET E (I)= (C-D (I))/C
1100 LET 1=1+1
1110 RETURN
1120 IF ABS (C-D (I)) >ABS (C) *Z (I) THEN 1160
1130 LET E (I)= (C-D (I))/C
1140 LET 1=1+1
1150 RETURN
1160 FOR J=1 TO 2

1170 PRINT " POSSIBLE INPUT ERROR, PLEASE RE-ENTER DATA IN THE”
1180 PRINT "FOLLOWING FORM: ";A$
1190 INPUT D (I

)

1200 IF C=D (I) THEN 1090
1210 IF ABS (C-D (I)) >ABS (C) *Z (I) THEN 1250
1220 LET E (I) = (C-D (I))/C
1230 LET 1=1+1
1240 RETURN
1250 NEXT J
1260 N (I) =1
1270 LET E (I)= (C-D (I))/C
1280 LET 1=1+1
1290 RETURN
1300 PRINT
1310 PRINT
1320 PRINT
1330 PRINT " SECTION 82.2"
1340 PRINT
1350 PRINT " (AS A LINE OF DATA SEPARATED BY COMMAS.)"
1360 PRINT
1370 PRINT
1380 PRINT " BEGIN TEST."
1390 PRINT
1400 DIM B(3) ,A(3) ,R(3) ,T(3) ,H(3)
1401 DATA 8 . 10373E-7 , 8.10005E-7, 1.01266E-7
1402 FOR I = 1 TO 3

1403 READ H (I

)

1404 NEXT I

1410 LET B (1) =1 2 34
1420 LET B(2)=123.456
1430 LET B (3)=-98. 76E21
1440 PRINT " PLEASE ENTER THE FOLLOWING LIST OF NUMERALS IN THE EX-"
1450 PRINT "ACT ORDER WHICH FOLLOWS: 1 234 , 1 2 3 . 4 56 , -98 . 7 6E 2

1

"

1460 INPUT A (1) , A (2) , A (3

)

1470 LET F=0
1480 FOR 1=1 TO 3

1490 IF B (I) <>A (I

)

THEN 1530
1500 LET R (I) = (B (I

) -A (I)) /B (I

)

179

1510 LET T(I)=0
1520 GOTO 1600
1530 IF ABS (B (I

) -A (I)
) >ABS (B (I)

) *H (I) THEN 1570
1540 LET R(I)= (B(I)-A(I))/B(I)
1550 LET T (I) =0
1560 GOTO 1600
1570 LET R (I) = (B (I

) -A (I)) /B (I

)

1580 LET T (I) =1
1590 LET F=1
1600 NEXT I

1610 IF F=0 THEN 1860
1620 FOR J=1 TO 2

1630 PRINT " POSSIBLE INPUT ERROR, PLEASE RE-ENTER THE FOLLOWING"
1640 PRINT "LIST EXACTLY AS ORDERED: 1234 , 1 23 . 4 56 , -98 . 7 6E 2

1

"

1650 INPUT A (1) , A (2) ,A(3)
1660 GOSUB 1710
1670 IF F < > 0 THEN 1690
1680 GOTO 1860
1690 NEXT J
1700 GOTO 1860
1710 LET F=0
1720 FOR 1=1 TO 3

1730 IF B (I) < >A (I) THEN 1770
1740 LET R (I

) = (B (I
) —A (I)) /B (I

)

1750 LET T (I) =0
1T60 GOTO 1840
17 7 0 IF ABS (B (I)-A(I)) >ABS (B (I)

) *H (I) THEN 1810
1780 LET R(I)= (B(I)-A(I))/B(I)
1790 LET T (I) =0
1800 GOTO 1840
1810 LET R (I

) = (B (I
) -A (I)) /B (I

)

1820 LET T (I
) =

1

1830 LET F=1
1840 NEXT I

1850 RETURN
1860 PRINT
1870 PRINT
1880 PRINT " IF THE RELATIVE ERROR IS OUT OF TOLERANCE,"
1890 PRINT "THEN AN ASTERISK WILL FOLLOW THAT RELATIVE"
1900 PRINT "ERROR SIGNIFYING ONE OF TWO POSSIBILITIES:"
1910 PRINT
1920 PRINT " (1) USER INPUT ERROR (S)

.

"

1930 PRINT " (2) FAILURE OF THE SYSTEM TO MAINTAIN SIX SIGNIFICANT"
1940 PRINT "DIGITS OF PRECISION."
1950 PRINT
1960 PRINT "OTHERWISE, NO ASTERISKS MEAN TEST PASSED."
1970 PRINT
1980 PRINT
1990 PRINT "STANDARD" , "OPTIONAL" , "SYSTEM" , "RELATIVE"
2000 PRINT " OUTPUT "," OUTPUT "/'OUTPUT"," ERROR "

2010 PRINT
2020 FOR 1=1 TO 3

2030 ON I GOTO 2040,2090,2140
2040 IF T (I) =0 THEN 2070
2050 PRINT " 1234 " , "NONE" , A (I) , R (I)

; " *

"

2060 GOTO 2180
2070 PRINT " 1234 " ,

" NONE " , A (I) , R (I

)

180

2080 GOTO 2180
2090 IF T (I) =0 THEN 2120
2100 PRINT M 123.456 " ,

" NONE " , A (I) , R (I)

; " *

"

2110 GOTO 2180
2120 PRINT " 123.456 " , "NONE" , A (I) , R (I

)

2130 GOTO 2180
2140 IF T (I) =0 THEN 2170
2150 PRINT "-9. 8760 0E 22 "

,
"-9 . 87600E + 22 " , A (I) , R (I)

; " *

"

2160 GOTO 2180
2170 PRINT "-9.87600E22 " , “-9 . 87600E+22 M ,A(I),R(I)
2180 NEXT I

2190 PRINT
2200 PRINT
2210 END

* SAMPLE OUTPUT *

PROGRAM FILE 82

SECTION 82.0: INPUT OF NUMERIC CONSTANTS.

SECTION 82.1

{AS A SINGLE DATUM VALUE.)

BEGIN TEST.

ENTER THE FOLLOWING
?123

NUMERAL AS IS: 123

ENTER THE FOLLOWING
7-12345

NUMERAL AS IS : -12345

ENTER THE FOLLOWING
712345.6

NUMERAL AS IS: 12345.6

ENTER THE FOLLOWING
7-99999.9

NUMERAL AS IS: -99999.9

ENTER THE FOLLOWING
76. 54321E-20

NUMERAL AS IS: 6.54 321E-20

ENTER THE FOLLOWING
7-7.891E25

NUMERAL AS IS: -7. 891E25

ENTER THE FOLLOWING
7-987. 6E-27

NUMERAL AS IS: -987. 6E-27

ENTER THE FOLLOWING NUMERAL AS IS : 12345E18

l8l

?12345E18

IF THE RELATIVE ERROR IS OUT OF TOLERANCE,
THEN AN ASTERISK WILL FOLLOW THAT RELATIVE
ERROR SIGNIFYING ONE OF TWO POSSIBILITIES:

(1) USER INPUT ERROR (S)

.

(2) FAILURE OF THE SYSTEM TO MAINTAIN SIX SIGNIFICANT
DIGITS OF PRECISION.

NO ASTERISKS MEAN TEST PASSED.

OPTIONAL
OUTPUT

SYSTEM
OUTPUT

RELATIVE
ERROR

OTHERWISE,

STANDARD
OUTPUT

123
-12345
12345.6

-99999.9
6. 54321E-20

-7. 89100E25
-9. 87600E-25
1.2345E22

NONE
NONE
NONE
NONE
NONE
-7. 89100E+25
NONE
1. 2345E+22

123
-12345
12345.6

-99999.9
6. 54321E-20

-7.89100E+25
-9 . 87600E-25
1. 23450E+22

0

0

0

0

0

0

0

0

BY COMMAS.)

SECTION 82.2

(AS A LINE OF DATA SEPARATED

BEGIN TEST.

PLEASE ENTER THE FOLLOWING LIST OF NUMERALS IN THE EX-
ACT ORDER WHICH FOLLOWS: 1234 , 123 . 456 , -98 . 76E21
21234,123. 456, -98.

"

7 6E21

IF THE RELATIVE ERROR IS OUT OF TOLERANCE,
THEN AN ASTERISK WILL FOLLOW THAT RELATIVE
ERROR SIGNIFYING ONE OF TWO POSSIBILITIES:

(1) USER INPUT ERROR (S)

.

(2) FAILURE OF THE SYSTEM TO MAINTAIN SIX SIGNIFICANT
DIGITS OF PRECISION.

OTHERWISE, NO ASTERISKS MEAN TEST PASSED.

STANDARD OPTIONAL
OUTPUT OUTPUT

SYSTEM
OUTPUT

RELATIVE
ERROR

1234
123.456

-9. 87600E22

NONE
NONE
-9. 87600E+22

1234
123.456

-9.

8

7 600E+22

0

0

0

182

83.0

INPUT OF NUMERIC DATA TO SUBSCRIPTED VARIABLES AND
UNQUOTED STRINGS83.1

Evaluation of a Subscripted Variable in a Variable List

This test determines whether the implementation will allow a variable,
used in a subscript, to be assigned a value in the same input list as the
subscripted variable itself. The assignment of the value must of course be
prior to the use of the variable in the subscript.

The test tells the user by input-prompt messages how to enter a list of
ten given values for ten elements of an array A(I). After the proper input
of the given list of values has been accomplished, the list will be printed
out for user verification. After this printout, the user will be asked by an
input-prompt message to choose one of the digits 1, 2, ..., 10 and then enter
the chosen digit for the value of I in the variable list, and for the
variable A(I) in the variable list, enter the value 54.8. After the values
for I and A (I) have been entered properly, the elements of the array A(I)
will again be printed out for comparison with the first printout of the
elements of A(I). The comparison should show that the subscripted element
which has the selected I value should now have an assigned value of 54.8.

83.2

Allowable Characters for Unquoted String Inputs

The objective of this test is to assign strings using the
INPUT-statement in order to verify that the implementation allows the
assigning of all of the characters specified by the standard for unquoted
strings. These include all plain-string-characters and the character space
(refer to the standard for the description of plain-string-characters). The
test uses input-prompt messages to the user informing him which subset of
plain string characters should be entered and the form or order in which each
subset of characters should be entered for each response. All data are
checked for proper form, and, if the data are entered incorrectly, the user
will be given three chances to enter them correctly. If the data are still
found to be incorrectly entered, the following message will be printed:
FAILURE TO ENTER PROPER DATA. The test will then terminate. If the data are
entered properly, a printout of the characters will be given. The reader is
referred to sections 3 and 13 of BSR X3.60.

* PROGRAM FILE 83 *

0010 PRINT "PROGRAM FILE 83
0060 PRINT
0070 PRINT

183

0080
0090
0100
0110
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0620
0630
0640
0650

PRINT
PRINT " SECTION 83.1"
PRINT
PRINT " EVALUATION OF A SUBSCRIPTED VARIABLE IN A VARIABLE LIST"
PRINT
PRINT
PRINT " BEGIN TEST."
PRINT
PRINT
PRINT
PRINT " AFTER EACH SUCCESSIVE INPUT-PROMPT, ENTER SEQUENTIALLY
PRINT "ONE OF THE FOLLOWING LISTED NUMBERS : 1 . 5 , 2 . 5 , 3 . 5 , 4 . 5 , 5 . 5

,

"

PRINT "6.5,7.5,8.5,9.5,10.5"
FOR 1=1 TO 10
INPUT A (I)

GOSUB 540
NEXT I

PRINT
PRINT " LISTED BELOW ARE YOUR 10 INPUTTED DATA VALUES FOR THE"
PRINT "ARRAY A (I). THE ELEMENTS ARE LISTED IN THE ORDER OF A(l),"
PRINT "A(2) ,A(3) ,...,A(10) FROM TOP TO BOTTOM RESPECTIVELY."
PRINT
FOR 1=1 TO 10
PRINT TAB (29) ,A(I)
NEXT I

PRINT
PRINT " AFTER THE INPUT-PROMPT, YOU ARE TO ENTER ONLY TWO IN-"
PRINT "PUT-VALUES. (1) FOR THE FIRST INPUT-VALUE, SELECT ONE OF"
PRINT "THE DIGITS 1,2, 3,..., 10 AS THE SELECTION OF ONE OF THE ELE-
PRINT "MENTS OF ARRAY A(I). (2) FOR THE SECOND INPUT-VALUE, ENTER
PRINT "THEN NUMBER 54.8."
INPUT I, A (I)

GOSUB 630
PRINT
PRINT " LISTED BELOW ARE AGAIN THE ELEMENTS OF ARRAY A (I) IN"
PRINT "THE SAME ORDER A (1)

, A (2) , A (3) , . . . , A (1 0

)

FROM TOP TO BOTTOM"
PRINT "RESPECTIVELY, BUT IN THIS LIST THE VALUE OF YOUR SELECTED"
PRINT "ELEMENT SHOULD BE 54.8 AND NOT THE VALUE IT HAD IN THE LIST
PRINT "ABOVE."
PRINT
FOR 1=1 TO 10
PRINT TAB (29) ,A(I)
NEXT I

PRINT
GOSUB 780
IF A (I) OI + . 5 THEN 560
RETURN
FOR K=1 TO 3

PRINT " DATA ERROR, PLEASE ENTER DATA AFTER THE INPUT-PROMPT"
PRINT "IN THE FOLLOWING FORM:";I+.5
INPUT A (I

)

IF A (I) =I+.

5

THEN 550
NEXT K
GOTO 770
IF I <1 THEN 670
IF I>10 THEN 670
IF A (I) 0 54.8 THEN 670

0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770
0780
0790
0820
0830
0840
0 8 50
0860
0870
0880
0890
0900
0910
0920
0930
0940
0950
0960
0970
0980
0990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240

RETURN
FOR J=1 TO 3

PRINT " DATA ERROR, RE-ENTER YOUR SELECTED DIGIT OF THE DIGITS"
PRINT "1, 2, 3, . . . , 10 AS THE FIRST DATA INPUT AND THE NUMBER 54.8 AS"
PRINT "THE SECOND DATA ENTRY. PLEASE MAKE ALL ENTRIES AFTER THE"
PRINT "INPUT-PROMPT."
INPUT I , A (I

)

IF I <1 THEN 760
IF I>10 THEN 760
IF A (I) =54 . 8 THEN 660
NEXT J
PRINT "

PRINT
PRINT "

PRINT
PRINT
PRINT
PRINT
PRINT "

PRINT
PRINT "

PRINT
PRINT
PRINT "

PRINT
PRINT "

PRINT "OF
PRINT
PRINT " ABCDEFGHI JKLM"
PRINT "NOPQRSTUVWXYZ"
PRINT "0123456789"
PRINT "*

() :
$=><"

PRINT "- %;+.?/ "

INPUT A$
INPUT B

$

INPUT C$
INPUT D$
INPUT E

$

GOSUB 1380
PRINT
PRINT " AFTER THE INPUT-PROMPT, ENTER THE DIGIT 1, SPACE OVER"
PRINT "EIGHT SPACES, AND THEN TYPE THE DIGIT 1 AGAIN."
INPUT F

$

GOSUB 1660
PRINT
PRINT
PRINT " UNQUOTED-STRING-CHARACTER= SPACE/PLAIN-STRING-CHARACTER"
PRINT
PRINT " PLAIN-STRING-CHARACTERS.

"

PRINT
PRINT " ABCDEFGHI JKLMNOPQRSTUVWXYZ 0123456789* () :$ = ><- %;+.?/"
PRINT
PRINT " IF THE LINE OF CHARACTERS PRINTED BELOW, APPEAR IN THE"
PRINT "SAME FORM AS THE LINE OF CHARACTERS ABOVE, CHECK TEST PASS-"
PRINT "ED."
PRINT
PRINT A$;B$;C$;D$;E$

FAILURE TO ENTER PROPER DATA."

END TEST."

SECTION 83.2"

ALLOWABLE CHARACTERS FOR UNQUOTED STRING INPUTS"

BEGIN TEST."

AT EACH SUCCESSIVE INPUT-PROMPT, ENTER ONE OF THE ROWS"
CHARACTERS BELOW AS THEY APPEAR FROM TO TO BOTTOM:"

185

1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800

PRINT
PRINT " SPACE (IMBEDDED)."
PRINT
PRINT * IF AFTER THE COLUMN NUMBERED HEADINGS, THERE ARE EIGHT"
PRINT "COUNTABLE SPACES BETWEEN THE ONES- CHECK TEST PASSED."
PRINT
PRINT "00000000011111111112222222222333333333344444444445";
PRINT "5555555556666666666777-
PRINT "1234567890123456'7 890123456'7 89012345678901234567890";
PRINT "1234567890123456789012"
PRINT F$
PRINT
GOTO 1760
IF A$<>"ABCDEFGHIJKLM" THEN 1440
IF B $ <>"NOPQRSTUVWXYZ " THEN 1440
IF C$<>" 0123456789" THEN 1440
IF D$<>"*() :$=><" THEN 1440
IF E $ <

> " - %;+.?/" THEN 1440
RETURN
FOR 1=1 TO 3

PRINT " DATA ERROR, PLEASE SUCCESSIVELY ENTER AFTER EACH INPUT"
PRINT "PROMPT ONE OF THE LIST OF CHARACTERS AS THEY APPEAR FROM"
PRINT "TOP TO BOTTOM."
PRINT
PRINT " ABCDEFGHI JKLM

"

PRINT "NOPQRSTUVWXYZ

"

PRINT "0123456789"
PRINT "* () :

$=><"
PRINT %;+.?/ "

INPUT A$
INPUT B

$

INPUT C$
INPUT D$
INPUT E$
IF A$<>" ABCDEFGHI JKLM" THEN 1640
IF B $ <> " NOPQRSTUVWXYZ " THEN 1640
IF C$<>" 0123456789" THEN 1640
IF D$<>"*() :$=><" THEN 1640
IF E$= " - %;+.?/" THEN 1430
NEXT I

GOTO 1750
IF F § < > " 1 1" THEN 1680
RETURN
FOR 1=1 TO 3

PRINT " DATA ERROR, PLEASE ENTER AFTER THE INPUT-PROMPT THE"
PRINT "DIGIT 1, SPACE OVER EIGHT SPACES, AND THE TYPE THE DIGIT 1"
PRINT "AGAIN."
INPUT F

$

IF F $
=

" 1 1" THEN 1670
NEXT I

PRINT " FAILURE TO ENTER PROPER DATA."
PRINT
PRINT " END TEST."
PRINT
PRINT
END

186

.

* SAMPLE OUTPUT *

PROGRAM FILE 83

SECTION 83.1

EVALUATION OF A SUBSCRIPTED VARIABLE IN A VARIABLE LIST

BEGIN TEST.

AFTER EACH SUCCESSIVE INPUT-PROMPT, ENTER SEQUENTIALLY
ONE OF THE FOLLOWING LISTED NUMBERS : 1 . 5 , 2 . 5 , 3 . 5 , 4 . 5 , 5 . 5

,

6.5.7.5.8.5.9.5.10.5
?1 .

5

?2 .

5

?3.

5

?4.

5

?5.

5

?6 .

5

77.5
?8 .

5

?9 .

5

?10.

5

LISTED BELOW ARE YOUR 10 INPUTTED DATA VALUES FOR THE
ARRAY A (I)

.

THE ELEMENTS ARE LISTED IN THE ORDER OF A(l),
A (2) , A (3) , . . . ,A(10) FROM TOP TO BOTTOM RESPECTIVELY.

1.5
2.5
3.5
4.5
5.5
6.5

5

8.5
9.5
10.5

AFTER THE INPUT-PROMPT, YOU ARE TO ENTER ONLY TWO IN-
PUT-VALUES. (1) FOR THE FIRST INPUT-VALUE, SELECT ONE OF
THE DIGITS 1,2, 3,..., 10 AS THE SELECTION OF ONE OF THE ELE-
MENTS OF ARRAY A (I). (2) FOR THE SECOND INPUT-VALUE, ENTER
THEN NUMBER 54.8.
75,54.8

LISTED BELOW ARE AGAIN THE ELEMENTS OF ARRAY A (I) IN
THE SAME ORDER A (1) , A (2) , A (3) , . . . , A (1 0

)

FROM TOP TO BOTTOM

187

RESPECTIVELY, BUT IN THIS LIST THE VALUE OF YOUR SELECTED
ELEMENT SHOULD BE 54.8 AND NOT THE VALUE IT HAD IN THE LIST
ABOVE.

1.5
2.5
3.5
4.5
54.8
6.5
7 .5
8.5
9.5
10.5

END TEST.

SECTION 83.2

ALLOWABLE CHARACTERS FOR UNQUOTED STRING INPUTS

BEGIN TEST.

AT EACH SUCCESSIVE INPUT-PROMPT, ENTER ONE OF THE ROWS
OF CHARACTERS BELOW AS THEY APPEAR FROM TO TO BOTTOM:

ABCDEFGHI JKLM
NOPQRSTUVWXYZ
0123456789
* 0 :$ = ><
- %;+.?/
7ABCDEFGHI JKLM
7NOPQRSTUVWXYZ
70123456789
?* 0 :$ = ><
?- %;+.?/

AFTER THE INPUT-PROMPT, ENTER THE DIGIT 1, SPACE OVER
EIGHT SPACES, AND THEN TYPE THE DIGIT 1 AGAIN.
71 1

UNQUOTED-STRING-CHARACTER= SPACE/PLAIN -STRING-CHARACTER

PLAIN-STRING-CHARACTERS.

ABCDEFGHI JKLMNOPQRSTUVWXYZ 0123456789* () :$ = ><- %;+.?/

IF THE LINE OF CHARACTERS PRINTED BELOW, APPEAR IN THE
SAME FORM AS THE LINE OF CHARACTERS ABOVE, CHECK TEST PASS-
ED.

ABCDEFGHI JKLMNOPQRSTUVWXYZ 0123456789* () : $ = ><- %;+.?/

188

SPACE (IMBEDDED).

IF AFTER THE COLUMN NUMBERED HEADINGS, THERE ARE EIGHT
COUNTABLE SPACES BETWEEN THE ONES- CHECK TEST PASSED.

000000000111111111122222222223333333333444444444455555555556666666666777
123456789012345678901234567890123456789012345678901234567890123456789012
1 1

END TEST.

84.0

INPUTTING MIXED DATA
84.1

Testing Leading and Trailing Spaces on Unquoted Strings

This test verifies that the implementation recognizes that leading and
trailing spaces should be ignored when used with unquoted strings. The test
has messages printed to the user. These instructions supply the information
which the user should follow for each input-reply response. On output, the
test generates two rows of digits to act as column labels. Following this
output, t ie user inputs should be printed to verify that trailing and leading
spaces are ignored by the implementation. The reader is referred to section
13.4 of BSR X3. 60 .

84.2

Inputting Leading and Trailing Spaces in Quoted Strings

This test shows that the implementation should recognize all leading and
trailing spaces used in quoted strings. The test generates appropriate data
input instructions to the user. These instructions supply the information
the user should follow for each input-reply response. The test checks the
correctness of the input values. Should the user fail to properly enter the
data requested according to the printed instructions, the test will terminate
its execution by printing the following message: FAILURE TO ENTER PROPER
DATA. If the user correctly enters the data two rows of digits should be
printed to act as column labels and the results entered by the user.

84.3

Inputting Mixed Data

This test shows that numeric constants and string constants can be
entered in mixed form as the DATA-list for an input response. All data
entered by the user will be checked for proper form as specified by the
input-prompt messages. As in the previous tests, if any data is entered
incorrectly, the user will be given three chances to enter the data
correctly. If after the three chances the data is still entered incorrectly,
the following message will be printed: FAILURE TO ENTER PROPER DATA and
termination of the test will follow. However, if the data is entered
correctly, an output should be printed in two columns. In the first column
the required output will be printed and in the second column, the test system
output will be printed.

* PROGRAM FILE 84 *

0010 PRINT "PROGRAM FILE 84"
0020 PRINT

190

0030
00 4 0

0090
0100
0110
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0 4 00
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0620
0630
0640

SECTION 84. I"

BEGIN TEST."

INPUT SHOULD NOT EXCEED 72 CHARACTERS PER LINE."

PRINT
PRINT
PRINT "

PRINT
PRINT "TESTING LEADING AND TRAILING SPACES ON UNQUOTED STRINGS,
PRINT
PRINT
PRINT "

PRINT
PRINT "NOTE:
PRINT
PRINT
FOR 1=1 TO 3

PRINT " AFTER THE INPUT-PROMPT, AS A CHOICE OF INPUT, MAKE"
PRINT "YOUR SELECTION FROM THE DIGITS 0 , 1 , 2 , 3 , . . . , 9 IN ACCORDANCE"
PRINT "WITH THE FOLLOWING STEPS."
PRINT
PRINT " (1) SPACE OVER ABOUT FIVE SPACES, THEN TYPE YOUR"
PRINT "SELECTED DIGIT."
PRINT “ (2) SPACE OVER ABOUT FIVE SPACES, FOLLOW THIS ACTION"
PRINT "BY TYPING THE COMMA PUNCTUATION MARK, THEN TYPE YOUR NEXT"
PRINT "SELECTED DIGIT."
INPUT G$,H$
PRINT
PRINT
PRINT " IF AFTER THE COLUMN NUMBERED HEADINGS, YOUR TWO"
PRINT "SELECTED DIGITS ARE PRINTED STARTING IN COLUMN ONE WITHOUT"
PRINT "ANY SPACES SEPARATING THEM, TYPE YES AFTER THE INPUT-PROMPT"
PRINT "WHICH FOLLOWS, AND IF NOT, TYPE NO."
PRINT
PRINT
PRINT "00000000011111111112222222222333333333344444444445";
PRINT "5555555556666666666777"
PRINT "12345678901234567890123456789012345678901234567890";
PRINT "1234567890123456789012"
PRINT G$; H

$

INPUT 1$
IF I $="YES" THEN 490
GOSUB 540
NEXT I

GOTO 650
PRINT " TEST PASSED."
GOTO 520
PRINT " TEST FAILED."
PRINT
GOTO 680
PRINT
PRINT " IF THE OUTPUT WAS INCORRECT BECAUSE YOU DID NOT FOLLOW"
PRINT "THE INPUT DIRECTIONS CORRECTLY, THEN YOU SHOULD TYPE YES"
PRINT "WHEN THE INPUT-PROMPT APPEARS AFTER THIS PARAGRAPH AND BY"
PRINT "DOING SO YOU WILL HAVE ANOTHER CHANCE TO ENTER DATA COR-"
PRINT "RECTLY. HOWEVER, IF YOU DID FOLLOW THE INPUT DIRECTIONS"
PRINT "CORRECTLY, TYPE A NO WHEN THE INPUT-PROMPT APPEARS AFTER"
PRINT "THIS PARAGRAPH."
INPUT
IF J $ = " NO" THEN 510
RETURN

191

0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770
0780
0790
0800
0810
0820
0830
0840
0850
0860
0870
0880
0890
0900
0910
0920
0930
0940
0950
0960
09‘7 0

0980
0990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210

PRINT
PRINT " FAILURE TO ENTER DATA CORRECTLY."
PRINT
PRINT " END TEST."
PRINT
PRINT
PRINT
PRINT
PRINT " SECTION 84.2"
PRINT
PRINT "INPUTTING LEADING AND TRAILING SPACES IN QUOTED STRINGS."
PRINT
PRINT
PRINT " BEGIN TEST."
PRINT
PRINT " AFTER THE INPUT-PROMPT, ENTER DATA WITHIN THE QUOTE-"
PRINT "MARK SYMBOLS OF PUNCTUATION IN ACCORDANCE WITH THE FOLLOW-"
PRINT "ING PROCEDURES:"
PRINT
PRINT " (1) SPACE OVER EXACTLY FIVE SPACES, THEN TYPE THE WORD"
PRINT "THAT FOLLOWS: SPACED"
PRINT " (2) SPACE OVER EXACTLY FIVE SPACES, FOLLOW THIS ACTION"
PRINT "BY TYPING THE COMMA PUNCTUATION MARK, THEN TYPE THE WORD"
PRINT "THAT FOLLOWS: APART"
INPUT L$,M$
GOSUB 1040
PRINT
PRINT " IF AFTER THE COLUMN NUMBERED HEADINGS, THE WORD SPACED"
PRINT "IS PRINTED STARTING IN THE SIXTH COLUMN AND THE WORD APART"
PRINT "IS PRINTED STARTING IN THE SEVENTEENTH COLUMN, CHECK TEST"
PRINT "PASSED."
PRINT
PRINT "00000000011111111112222222222333333333344444444445";
PRINT "555555555666666666677''"
PRINT "12345678901234567890123456789012345678901234567890"

;

PRINT "1234567890123456789012"
PRINT L$;M$
PRINT
GOTO 1220
IF L$<>" SPACED "THEN 1070
IF M$<> "APART" THEN 1070
RETURN
FOR 1=1 TO 3

PRINT " DATA ERROR, PLEASE ENTER DATA AFTER THE INPUT-PROMPT"
PRINT "WITHIN THE QUOTE-MARK SYMBOLS OF PUNCTUATION IN ACCORDANCE"
PRINT "WITH THE FOLLOWING STEPS:"
PRINT
PRINT " (1) SPACE OVER EXACTLY FIVE SPACES, THEN TYPE THE WORD"
PRINT "THAT FOLLOWS: SPACED"
PRINT " (2) SPACE OVER EXACTLY FIVE SPACES, FOLLOW THIS ACTION"
PRINT "BY TYPING THE COMMA PUNCTUATION MARK, THEN TYPE THE WORD"
PRINT "THAT FOLLOWS: APART"
INPUT L$, M

$

IF L $ <
>
" SPACED "THEN 1200

IF M$="APART " THEN 1060
NEXT I

PRINT " FAILURE TO ENTER PROPER DATA."

192

1220
1230
1240
1250
1260
1270
1280
1290
1293
1295
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750

PRINT
PRINT " END TEST.”
PRINT
PRINT
PRINT
PRINT
PRINT " SECTION 84.3"
PRINT
PRINT " INPUTTING MIXED DATA."
PRINT
PRINT " BEGIN TEST."
PRINT
PRINT " AFTER THE INPUT-PROPT, ENTER DATA ACCORDING TO THE"
PRINT "STEPS WHICH FOLLOW, AND SEPARATING THE PERFORMANCE OF EACH"
PRINT "STEP FROM EACH OTHER WITH THE COMMA PUNCTUATION MARK:"
PRINT
PRINT " (1) WITHIN THE QUOTE-MARK SYMBOLS OF PUNCTUATION, TYPE"
PRINT "THE WORD THAT FOLLOWS: QUOTED"
PRINT " (2) TYPE THE NUMERAL THAT FOLLOWS: 1.23456"
PRINT " (3) TYPE THE WORD THAT FOLLOWS: UNQUOTED"
INPUT N $, 0 , P$
GOSUB 1510
PRINT
PRINT "NEEDED" , "SYSTEM"
PRINT "OUTPUT" , "OUTPUT"
PRINT
PRINT "QUOTED", N$
PRINT " 1.23456 ",0
PRINT "UNQUOTED" ,P$
PRINT
GOTO 1710
IF N$O"QU0TED" THEN 1550
IF 001.23456 THEN 1550
IF P$O "UNQUOTED" THEN 1550
RETURN
FOR 1=1 TO 3

PRINT " DATA ERROR, PLEASE ENTER DATA AFTER THE INPUT-PROMPT"
PRINT "ACCORDING TO THE STEPS WHICH FOLLOW, AND SEPARATE THE PER-"
PRINT "FORMANCE OF EACH STEP FROM EACH OTHER WITH THE COMMA PUNC-"
PRINT "TUATION MARK:"
PRINT
PRINT " (1) WITHIN THE QUOTE -MARK SYMBOLS OF PUNCTUATION, TYPE"
PRINT "THEN WORD THAT FOLLOWS: QUOTED"
PRINT " (2) TYPE THE NUMERAL THAT FOLLOWS: 1.23456"
PRINT " (3) TYPE THE WORD THAT FOLLOWS: UNQUOTED"
INPUT N $, 0 , P$
IF N $ <> "QUOTED" THEN 1690
IF 001.23456 THEN 1690
IF P$= "UNQUOTED" THEN 1540
NEXT I

PRINT " FAILURE TO ENTER PROPER DATA."
PRINT
PRINT " END TEST."
PRINT
PRINT
END

193

* SAMPLE OUTPUT *

PROGRAM FILE 84

SECTION 84.1

TESTING LEADING AND TRAILING SPACES ON UNQUOTED STRINGS.

BEGIN TEST.

NOTE: INPUT SHOULD NOT EXCEED 72 CHARACTERS PER LINE.

AFTER THE INPUT-PROMPT, AS A CHOICE OF INPUT, MAKE
YOUR SELECTION FROM THE DIGITS 0 , 1 , 2 , 3 , . . . , 9 IN ACCORDANCE
WITH THE FOLLOWING STEPS.

(1) SPACE OVER ABOUT FIVE SPACES, THEN TYPE YOUR
SELECTED DIGIT.

(2) SPACE OVER ABOUT FIVE SPACES, FOLLOW THIS ACTION
BY TYPING THE COMMA PUNCTUATION MARK, THEN TYPE YOUR NEXT
SELECTED DIGIT.
? 2 ,8

IF AFTER THE COLUMN NUMBERED HEADINGS, YOUR TWO
SELECTED DIGITS ARE PRINTED STARTING IN COLUMN ONE WITHOUT
ANY SPACES SEPARATING THEM, TYPE YES AFTER THE INPUT-PROMPT
WHICH FOLLOWS, AND IF NOT, TYPE NO.

000000000111111111122222222223333333333444444444455555555556666666666'7 7'7

123456"'8901234 56 78901234567890 123456"'890 1234567 89012345678901234 56789012
28
?YES

TEST PASSED.

END TEST.

SECTION 84.2

INPUTTING LEADING AND TRAILING SPACES IN QUOTED STRINGS.

BEGIN TEST.

19 1*

AFTER THE INPUT-PROMPT, ENTER DATA WITHIN THE QUOTE-
MARK SYMBOLS OF PUNCTUATION IN ACCORDANCE WITH THE FOLLOW-
ING PROCEDURES:

(1) SPACE OVER EXACTLY FIVE SPACES, THEN TYPE THE WORD
THAT FOLLOWS: SPACED

(2) SPACE OVER EXACTLY FIVE SPACES, FOLLOW THIS ACTION
BY TYPING THE COMMA PUNCTUATION MARK, THEN TYPE THE WORD
THAT FOLLOWS: APART
?" SPACED ", "APART"

IF AFTER THE COLUMN NUMBERED HEADINGS, THE WORD SPACED
IS PRINTED STARTING IN THE SIXTH COLUMN AND THE WORD APART
IS PRINTED STARTING IN THE SEVENTEENTH COLUMN, CHECK TEST
PASSED.

000000000111111111122222222223333333333444444444455555555556666666666777
1234 5678901234 56 789012345678 90 123456"7 8 90 123456789012 34 567890123456789012

SPACED APART

END TEST.

SECTION 84.3

INPUTTING MIXED DATA.

BEGIN TEST.

AFTER THE INPUT-PROPT, ENTER DATA ACCORDING TO THE
STEPS WHICH FOLLOW, AND SEPARATING THE PERFORMANCE OF EACH
STEP FROM EACH OTHER WITH THE COMMA PUNCTUATION MARK:

(1) WITHIN THE QUOTE-MARK SYMBOLS OF PUNCTUATION, TYPE
THE WORD THAT FOLLOWS: QUOTED

(2) TYPE THE NUMERAL THAT FOLLOWS: 1.23456
(3) TYPE THE WORD THAT FOLLOWS: UNQUOTED

?" QUOTED" , 1. 23456, UNQUOTED

NEEDED
OUTPUT

QUOTED
1.23456

UNQUOTED

SYSTEM
OUTPUT

QUOTED
1.23456

UNQUOTED

END TEST

85.0 EXCEPTION TEST TYPE OF DATUM INCORRECT

This test verifies that the implementation recognizes when the type of a

datum does not match the type of the variable to which it is assigned (see
section 13.5 of BSR X3.60). If an improper datum type is entered, the
implementation should consider this an exception. The recovery procedure
requires that the user be allowed to resupply the input value.

The test begins with a message asking the user to enter, as an
input-reply, the string of characters: SIX. This string is non-numeric,
which is not the type the system expects. Thus, the implementation should
request a resupply of data. If not, then the implementation does not meet
the standard specifications. If the system does ask the user to resupply
data, then the user should enter the numeric constant 1.

* PROGRAM FILE 85 *

0010 PRINT
0020 PRINT
0030 PRINT
0040 PRINT
0300 PRINT
0310 PRINT
0320 PRINT
0330 PRINT
0340 PRINT
0350 PRINT
0360 PRINT
0370 PRINT
380 PRINT "

"PROGRAM FILE 85"

SECTION 85.0"

TYPE OF DATUM INCORRECT FOR VARIABLE IT IS ASSIGNED TO."

••**** *NOTE ; for THIS PART OF THE TEST, TO STOP THE CONTINU-
OUS REQUEST BY THE SYSTEM TO RESUPPLY THE INPUT-REPLY"
"(IF IT SHOULD OCCUR), JUST ENTER UPON A REQUEST THE DIGIT 1
*****”

0390 PRINT
0400 PRINT
0410 PRINT " BEGIN TEST."
0420 PRINT
0430 PRINT "AFTER THE INPUT-PROMPT, ENTER THE WORD: SIX"
0440 INPUT A
0450 IF A=1 THEN 480
0460 PRINT "TEST WAS NOT PROPERLY EXECUTED."
0470 GOTO 490
0480 PRINT "TEST WAS PROPERLY EXECUTED."
0490 PRINT
0500 PRINT " END TEST."
0510 PRINT
0520 END

M

196

* SAMPLE OUTPUT *

PROGRAM FILE 85

SECTION 85.0

TYPE OF DATUM INCORRECT FOR VARIABLE IT IS ASSIGNED TO.

*****NOTE: FOR THIS PART OF THE TEST, TO STOP THE CONTINU-
OUS REQUEST BY THE SYSTEM TO RESUPPLY THE INPUT-REPLY
(IF IT SHOULD OCCUR), JUST ENTER UPON A REQUEST THE DIGIT 1.

BEGIN TEST.

AFTER THE INPUT-PROMPT, ENTER THE WORD: SIX
?SIX
?ILLEGAL DATA, PLEASE RESUPPLY
?1
TEST WAS PROPERLY EXECUTED.

END TEST.

197

86.0 EXCEPTION TEST FOR INPUT - TOO MUCH DATA IN DATA LIST

The objective of this test is to determine whether the implementation
recognizes too much data in the input data-list as an exception (see section
13.5 of BSR X3.60). Upon recognition of the error, the implementation
should allow the user to resupply his input data-list. The test has an
instruction message that informs the user to input the data-list: 5, -35.
The test, however, has only one numeric variable in its variable-list for the
INPUT statement. Therefore the user should be requested, by the test system,
to resupply the input-list. Once this message appears the test has been
passed by the host system. In order to terminate the program the user should
enter the constant 1.

* PROGRAM FILE 86 *

0010 PRINT "PROGRAM F

0020 PRINT
0030 PRINT
0040 PRINT
0120 PRINT n

0130 PRINT
0140 PRINT II

0150 PRINT
0160 PRINT
0170 PRINT «•****NOTE
0180 PRINT "OUS REQUE
0190 PRINT "RESUPPLY
0200 PRINT "DIGIT 1.*
0210 PRINT
0220 PRINT
0230 PRINT II

0240 PRINT
0250 PRINT "AFTER THE
0260 LET A = 9999
0270 INPUT A
0280 IF A = 1 THEN 310
0290 PRINT "TEST WAS
0300 GOTO 320
0310 PRINT "TEST WAS
0320 PRINT
0330 PRINT II

0340 PRINT
0350 END

SECTION 86.0"

TOO MUCH DATA IN DATA-LIST. "

BEGIN TEST."

END TEST.

"

198

* SAMPLE OUTPUT *

PROGRAM FILE 86

SECTION 86.0

TOO MUCH DATA IN DATA-LIST.

*****NOTE: FOR THIS PART OF THE TEST, TO STOP THE CONTINU-
OUS REQUEST BY THE SYSTEM—THAT IS, IF IT SHOULD OCCUR—TO
RESUPPLY THE INPUT-REPLY, JUST ENTER UPON A REQUEST THE
DIGIT 1.*****

BEGIN TEST.

AFTER THE INPUT-PROMPT, ENTER THE NUMBERS AS FOLLOWS: 5,-35
?5 , -35
?TOO MUCH DATA. PLEASE RESUPPLY
?5 , -35
?TOO MUCH DATA. PLEASE RESUPPLY
?1
TEST WAS EXECUTED PROPERLY

END TEST.

199

87.0 EXCEPTION TEST - INSUFFICIENT DATA IN
DATA-LIST

The objective of this test is to determine whether the implementation
will recognize too little data in the input-list as an exception (see section
13.5 of BSR X3.60). Upon recognition of the error, the implementation
should allow the user to resupply the input data. The test has a message
printed to the user to enter the number 64. However, the program requires
more than one numeric variable in the input-list. Therefore there should be
an implementation prompt to resupply the input-list. The user should
continue to supply the value 64 several times to determine whether the system
continues to prompt. Finally the user should enter the list: 1,2 in order
to terminate the test.

* PROGRAM FILE 87 *

010 PRINT "PROGRAM F

060 PRINT
070 PRINT
080 PRINT
090 PRINT •1

100 PRINT
110 PRINT n

120 PRINT
130 PRINT
140 PRINT " *****note
150 PRINT "OUS REQUE
160 PRINT "RESUPPLY
170 PRINT "DIGITS AS
180 PRINT
190 PRINT
200 PRINT II

210 PRINT
220 PRINT "AFTER THE
230 INPUT A, B
240 IF A

<

>1 THEN 260
250 IF B = 2 THEN 280
260 PRINT "TEST WAS
270 GOTO 290
280 PRINT "TEST WAS
290 PRINT
300 PRINT II

310 PRINT
320 END

SECTION 87.0"

INSUFFICIENT DATA IN DATA-LIST. "

BEGIN TEST.

END TEST."

200

* SAMPLE OUTPUT *

PROGRAM FILE 87

SECTION 87.0

INSUFFICIENT DATA IN DATA-LIST.

*****NOTE: FOR THIS PART OF THE TEST, TO STOP THE CONTINU-
OUS REQUEST BY THE SYSTEM—THAT IS, IF IT SHOULD OCCUR—TO
RESUPPLY THE INPUT-REPLY, JUST ENTER UPON A REQUEST THE
DIGITS AS FOLLOWS: 1,2.*****

BEGIN TEST.

AFTER THE INPUT-PROMPT, ENTER THE FOLLOWING NUMBER: 64
?64
7INSUFFICIENT DATA IN LIST. PLEASE RESUPPLY.
?64
PINSUFFICIENT DATA IN LIST. PLEASE RESUPPLY.
?64
7INSUFFIC IENT DATA IN LIST. PLEASE RESUPPLY.
? 1,

2

TEST WAS EXECUTED PROPERLY.

END TEST.

201

88.0 NUMERIC UNDERFLOW ON INPUT

The objective of this test is to determine whether the implementation
will diagnose as an exception the input of a numeric value too small to be
represented by the test system (see section 13.4 of BSR X3.60). Upon
recognition of the excepti on , the implementation should replace the value with
zero and continue the program. The test has a message printed asking the
user to input the numerical value of 10.0E-99999. After entering this value
the system will test the input variable to determine whether it has been
assigned the value 0. If not, then a message will indicate that the program
did not execute properly.

* PROGRAM FILE 88 *

0010
0020
0030
0040
0090
0100
0110
0120
0130
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320

SECTION 88.0"

THE CONVERSION OF A NUMERIC DATUM CAUSES AN UNDERFLOW.

BEGIN TEST."

PRINT "PROGRAM FILE 88"

PRINT
PRINT
PRINT
PRINT "

PRINT
PRINT "

PRINT
PRINT
PRINT
PRINT "

PRINT
PRINT "AFTER THE APPEARANCE OF THE INPUT-PROMPT, ENTER THE FOLLOW-"
PRINT "ING NUMBER: 10.0E-99999"
INPUT A
IF A=0 THEN 280
PRINT "TEST WAS NOT EXECUTED PROPERLY."
GOTO 290
PRINT "TEST WAS EXECUTED PROPERLY."
PRINT
PRINT "

PRINT
END

END TEST."

* SAMPLE OUTPUT *

202

PROGRAM FILE 88

SECTION 88.0

THE CONVERSION OF A NUMERIC DATUM CAUSES AN UNDERFLOW.

BEGIN TEST.

AFTER THE APPEARANCE OF THE INPUT-PROMPT, ENTER THE FOLLOW-
ING NUMBER: 10.0E-99999
?10. 0E-99999
TEST WAS EXECUTED PROPERLY.

END TEST.

203

89.0 EXCEPTION TEST - NUMERIC OVERFLOW

The objective of this test is to determine whether the implementation
will recognize, as an exception, a numeric value in an input-list that is too
large to be represented in the test system (see section 13.5 of BSR
X3.60). Upon recognition of the error, the implementation should allow
the user to resupply the input-list. The test has an instruction printed to
the user to enter the value 9 . 99999E99999.
should prompt the user to resupply data since

As in section 88.0, the system
an overflow was registered.

Again in order to terminate the system request the user should type 1.

* PROGRAM FILE 89 *

0010
0020
0030
0 0 4 0

0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
INPUT
IF A =

PRINT
GOTO
PRINT
PRINT
PRINT
PRINT
END

"PROGRAM FILE 89"

" SECTION 89.0"

" THE CONVERSION OF A NUMERIC DATUM CAUSES AN OVERFLOW. "

• * * * * *NOTE : FOR THIS PART OF THE TEST, TO STOP THE CONTINU-"
"OUS REQUEST BY THE SYSTEM—THAT IS IF IT SHOULD OCCUR—TO"
"RESUPPLY THE INPUT-RELY, JUST ENTER UPON A RE JUEST THE"
"DIGIT 1 .*****

"

" BEGIN TEST."

"AFTER THE APPEARANCE OF THE INPUT-PROMPT, ENTER THE FOLLOW-"
"ING NUMBER: 9 . 999 9 9E 999 9

9

"

A
1 THEN 280
"TEST WAS NOT EXECUTED PROPERLY."

290
"TEST WAS EXECUTED PROPERLY."

END TEST."

****** * * *********

201*

* SAMPLE OUTPUT *

PROGRAM FILE 89

SECTION 89.0

THE CONVERSION OF A NUMERIC DATUM CAUSES AN OVERFLOW.

*****NOTE : FOR THIS PART OF THE TEST, TO STOP THE CONTINU
OUS REQUEST BY THE SYSTEM—THAT IS IF IT SHOULD OCCUR—TO
RESUPPLY THE INPUT-RELY, JUST ENTER UPON A REQUEST THE
DIGIT 1.*****

BEGIN TEST.

AFTER THE APPEARANCE OF THE INPUT-PROMPT, ENTER THE FOLLOW
ING NUMBER: 9 . 99999E99999
?9. 99999E99999
POVERFLOW IN INPUT DATA. PLEASE RETYPE
?9. 99999E99999
POVERFLOW IN INPUT DATA. PLEASE RETYPE
? 1.

0

TEST WAS EXECUTED PROPERLY.

END TEST.

205

90.0

TESTING THE INT AND SGN FUNCTIONS
90.1

The INT Function

The objective of this test is to use the INT function which returns the
largest integer not greater than the argument specified (see section 8 of BSR
X3.60). The test uses simple numeric-variables as the argument for the
function. Assignments of various numerical values are made to the simple
variable used as the argument parameter. On output, the test has three
column labels printed. In sequential order the labels should read as
follows: ARGUMENT, NEEDED EVALUATION, ACTUAL EVALUATION. The first column
lists the values assigned to the function argument. The second lists the
required evaluations by INT for each argument. Finally, the third column
lists those values generated by the implementation-supplied INT function.

90.2

The SGN Function

This test initiates the use of the SGN function, which supplies -1 if
the argument is negative, 1 if the argument is positive and 0 if the argument
is 0. This test, except for the use of the SGN function instead of the INT
function, is similar to section 90.1 and has a similarly formatted output.

* PROGRAM FILE 90 *

0010 PRINT
0020 PRINT
0030 PRINT
0040 PRINT
0050 PRINT
0060 PRINT
0070 PRINT
0080 PRINT
0090 PRINT
0100 PRINT
0110 PRINT
0120 PRINT
0130 PRINT
0140 PRINT
0150 PRINT
0160 PRINT
0170 PRINT
0180 PRINT
0190 PRINT
0200 PRINT

"PROGRAM FILE 90"

SECTION 90.0."

(TESTING APPLICATIONSS OF THE INT AND SGN FUNCTION. II

" SECTION 90.1: THE INT FUNCTION."

" BEGIN TEST."

EACH EVALUATED FAILURE OF THE INT FUNCTION WILL BE DE-"
"NOTED BY AN ASTERISK BEING PRINTED ON THAT COMPARATIVE ROW"

206

0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0620
0630
0640
0650
0660
0 67 0

0680
0690
0700
0 7 10
0 7 20
0 7 30

PRINT "OF OUTPUT. CHECK TEST PASSED IF THERE ARE NOT ANY ASTER-"
PRINT "ISKS."
PRINT
PRINT
PRINT " "," NEEDED "," ACTUAL "

PRINT " ARGUMENT EVALUATION" , " EVALUATION

"

PRINT
FOR 1=1 TO 10
READ M ,

N

LET X=INT (N

)

IF XOM THEN 340
PRINT N , M , X

GOTO 350
PRINT N,M,X;
NEXT I

PRINT
DATA 1,1. 99999,0,. 987 654, 12345, 12345.

6

DATA -1,-. 339872, -8, -7. 2, -9 8766, -98765.

4

DATA -10,-9.99999,127,127.999,-128,-127.999
DATA -1,-. 987654
PRINT
PRINT
PRINT
PRINT " SECTION 90.2: THEN SGN FUNCTION."
PRINT
PRINT " BEGIN TEST."
PRINT
PRINT
PRINT " EACH EVALUATED FAILURE OF THE SGN FUNCTION WILL BE DE-"
PRINT "NOTED BY AN ASTERISK BEING PRINTED ON THAT COMPARATIVE ROW"
PRINT "OF OUTPUT. CHECK TEST PASSED IF THERE ARE NOT ANY ASTER-"
PRINT "ISKS."
PRINT
PRINT
PRINT " "," NEEDED "," ACTUAL "

PRINT " ARGUMENT "," EVALUATION" ," EVALUATION"
PRINT
FORI =1 TO 10
READ M 1 , N

1

LET Xl=SGN (Nl)
IF XlOMl THEN 640
PRINT Nl , Ml , Xl
GOTO 650
PRINT Nl , Ml , Xl ; " *

"

NEXT I

PRINT
DATA -1,-. 930896, 1,12345, -1,-1. 222
DATA 0, 0. 00000,1, 2. 18 7 65, -1,-0. 00023
DATA 1,99999,0,0,-1,-888.99
DATA 1,1.99999
PRINT
PRINT
END

207

* SAMPLE OUTPUT *

PROGRAM FILE 90

SECTION 90.0.

(TESTING APPLICATIONS OF THE INT AND SGN FUNCTIONS.)

SECTION 90.1: THE INT FUNCTION.

BEGIN TEST.

EACH EVALUATED FAILURE OF THE INT FUNCTION WILL BE DE-
NOTED BY AN ASTERISK BEING PRINTED ON THAT COMPARATIVE ROW
OF OUTPUT. CHECK TEST PASSED IF THERE ARE NOT ANY ASTER-
ISKS.

ARGUMENT
NEEDED

EVALUATION
ACTUAL

EVALUATION

1.99999
0.987654
12345.6

-0.3398^2
-7.2
-98765.4
-9.99999
127.999

-127.999
-0.987654

1

0

12345
-1
-8

-98766
-10
127

-128
-1

1

0

12345
-1
-8
-98766
-10
127

-128
-1

SECTION 90.2: THEN SGN FUNCTION.

BEGIN TEST.

EACH EVALUATED FAILURE OF THE SGN FUNCTION WILL BE DE-
NOTED BY AN ASTERISK BEING PRINTED ON THAT COMPARATIVE ROW
OF OUTPUT. CHECK TEST PASSED IF THERE ARE NOT ANY ASTER-

208

ISKS

ARGUMENT
NEEDED

EVALUATION
ACTUAL

EVALUATION

-0.930896 -1 -1

12345 1 1

-1.222 -1 -1

0 0 0

2.18765 1 1

-2. 30000E-4 -1 -1

99999 1 1

0 0 0

-888.99 -1 -1

1.99999 1 1

209

91.0

PRINTING STRINGS BEYOND THE MARGIN

The objective of this section is to determine how the implementation
handles printing beyond its specified margin. Since the margin is
implementation defined this section uses specifically constructed long
strings, tabbed over a large number of spaces in some of the tests, in order
to take into account variable margin specifications. The reader is referred
to section 12.4 of BSR X3.60.

91.1

Printing Concatenated Strings

The objective of this test section is to determine how the print
delimiters effect printing strings of characters beyond the implementation-
defined margin for a given system.

91.1.1

Using Semicolons With Quoted Strings

The objective of this test is to verify that the implementation, upon
the evaluation of any print item, which generates a string whose length is
greater than the implementation-defined margin, will generate an end-of-line
each time the columnar position of the current line exceeds the margin.
Printing then must begin at the first position in the next line. The test
has several print statements that output string constants of 50 characters
each. Each print-list ends with a semicolon, except for the last. The exact
output for this test will depend on the implementation-defined margin;
however, the output should show a continuous string of digits up to and
including the last columnar position for the implementation-defined margin.
If there are any characters remaining they must begin in column one of the
next line.

91.1.2

Using Commas With Quoted Strings

The objective of this test is similar to section 91.1.1. In this test,
the print delimiter used is a comma. However, there is a significant amount
of difference between the two outputs. For this test the string of digits
should not be continuous (i.e., there should be spaces within the string of
printed digits). The number of spaces depends on the implementation-defined
zone lengths. The output must show that the digits should be printedup to
and including the last columnar position for a defined margin, with printing
then continuing on the next line.

91.1.3

Using Semicolons With Assigned Strings

The objective of this test is to determine whether the assignment of
strings that exceed the margin will affect the evaluation of a print-item.
The print-list in this exercise generates a string, whose length is greater
than the defined margin. The implementation should still generate an
end-of-line each time the columnar position of the current line exceeds the
margin. The test begins by assigning strings of various lengths to string
variables. These strings vary from lengths of 1 character to 18 characters.
The assigned variables are then printed using semicolon delimiters. The
output for this test should generate a similar display to that described in

210

section 91.1.1.

91.1.4 Using Commas With Assigned Strings

The objective of this test is similar to section 91.1.3, except, in this
test the print separator used in the variable-list for the PRINT statement is

the comma. The structure of this test, except for the comma as
print-separator, is similar to the structure of test section 91.1.3, however,
the strings assigned to the string variables are all of equal length. The
output for this test should appear similar to that of section 91.1.2.

91.2 Simple TAB Tests Beyond The Margin

The objective of this test section is to determine whether the
implementation recognizes the standard specified relationship between the TAB
argument and the implementation-defined margin .

91.2.1 TAB Argument is Less Than the Value of the Current
Print Position

The objective of this test is to determine whether the implementation
will, upon evaluating a TAB argument whose rounded value is less than the
columnar position of the current line, generate an end-of-line and enough
spaces to set the columnar position of the new current line to the required
position. This test prints a message that there should be no printed
characters after the period at the end of the message. If there are, then
the tabbing has failed this test.

91.2.2 TAB Assigned Strings Less Than Current Position

The objective of this test, except for assigning the string of
characters to be tabbed to a string variable, is the same as that for section
91.2.1. In terms of output there should be no difference between this
section and the output of section 91.2.1.

* PROGRAM FILE 91 *

001

0

PRINT "PROGRAM FILE 91"

0020 PRINT
0030 PRINT
0 0 4 0 PRINT
0120 PRINT " SECTION
0130 PRINT
0140 PRINT
0150 PRINT " SECTION 91.1.1:

91.1: CONCATENATED STRINGS."

USING SEMICOLON, QUOTED STRINGS."

211

0160 PRINT
0 1 7 0 PRINT
0180 PRINT
0190 PRINT M

0200 PRINT
0210 PRINT "1234 5678901234 567890 1

0220 PRINT "1234 5678901234 567890 1

0230 PRINT "1234 5678901234 567890 1

0240 PRINT "1234 56 7 8901234 56 7 890 1

0250 PRINT "1234 5678901234 567890 1

0260 PRINT
0 27 0 PRINT II

•

0280 PRINT
0290 PRINT
0300 PRINT
0310 PRINT II SECTION
0320 PRINT
0330 PRINT
0340 PRINT
0350 PRINT "

0360 PRINT
0 3 7 0 PRINT "1234 5678901234 56 7 8 9 0 1

0380 PRINT "1234 56 7 8901234 56 7 890 1

0390 PRINT "1234 56 7 8901234 56 7 890 1

0400 PRINT "1234 56 7 8901234 56 7 890 1

0410 PRINT "1234 5678901234 56 7 890 1

0420 PRINT
0430 PRINT n

0440 PRINT
0450 PRINT
0460 PRINT
0 4 7 0 PRINT ii SECTION 91
0480 PRINT
0490 PRINT
0500 PRINT
0510 PRINT ii

0520 PRINT
0530 LET A $

_ n ii

0540 LET B $
„ M

2
II

0550 LET C$ = "12"
0560 LET D$ = "123 n

05 7 0 LET E $ = "123 4"

0580 LET F $ ="12345"
0590 LET G$ = "123 456"
0 6 00 LET H $ = "123 4 567"
0610 LET 1$ = "123 4 5 6 7 8

"

0620 LET J$ = "123 4 56 7 89

"

0630 LET K$ = "123 456 7 890"
0640 LET L$ ="12345678901"
0650 LET M$ = "123 456789012"
0660 LET N $ = "123 4567890123 n

0670 LET 0$ = "123 456 7 8901234"
0680 LET P$ = "123 456 7 89012345"
0690 LET Q$ = "123 456 7 890123456"
0 7 0 0 LET R$ = "123 4567890123 4567"
0710 LET S$ = "123 456789012345678"
0720 PRINT

BEGIN TEST."

56 7 89012345678901234567890"
56 7 890123456 7 890123456 7 890"
56 7 890123456 7 890123456 7 890"
56 7 890I23456 7 8901234567890"
5678901234567890123456 7 890"

END TEST."

1.2: USING COMMA, QUOTED STRINGS."

BEGIN TEST."

56 7 890 1234 56 7 890 1 234 56 7 890
56 7 890 1234 56 7 890 1 234 56 7 890
567 890 1234 56 7 890 1 234 56 7 890
567 890 1234 56 7 890 1 234 56 7 890
567 890 1234 56 7 890 1 234 56 7 890

END TEST."

: USING SEMICOLON, ASSIGNED STRINGS.

BEGIN TEST."

234
234
234
234
234

91.

234
234
234
234
234

1.3

212

0730
0 7 40
0750
0 7 60
07 7 0

0 7 80
0 7 90
0800
0810
0820
0830
0840
0850
0860
0870
0880
0890
0900
0910
0920
0930
0940
0950
0960
09 7 0

0980
0990
1000
1010
1020
1030
1040
1050
1060
10 7 0

1080
1090
1100
1110
1120
1130
1140
1150
1160
1 1 7 0

1180
1190
1200
1210
1220
1230
1240
1250
1260
1 2 7 0

1280
1290

PRINT A$;B?;C$;D$;E$;F$;G$;H$;I$;J$;K$;L$;M$;N$;0$;P$;Q$;R$;S$
PRINT
PRINT " END TEST."
PRINT
PRINT
PRINT
PRINT " SECTION 91.1.4: USING COMMA, ASSIGNED STRINGS."
PRINT
PRINT
PRINT
PRINT " BEGIN TEST."
PRINT
LET A$=" 1234567890"
LET B$=" 1234567890"
LET C$="123456 7 890"
LET D$=" 1234567890"
LET E$="123456 7 890"
LET F$=" 1234567890"
LET G$=" 1234567890"
LET H$=" 1234567890"
LET I$=" 1234567890"
LET J$=" 1234567890"
LET K$=" 1234567890"
LET L$=" 1234567890"
LET M$=" 1234567890"
LET N$=" 1234567890"
PRINT "00000000011111111112222222222333333333344444444445";
PRINT "5555555556666666666 77 7"

PRINT " 123456789012345678901 234567890123456 7 890123456 7 890";
PRINT "123456 7 890123456789012"
PRINT A$,B$,C$,D$,E$,F$,G$,H$,I$,J$,K$,L$,M$,N$
PRINT
PRINT " END TEST.

"

PRINT
PRINT
PRINT
PRINT " SECTION 91.2: TAB-CALL WITHIN AND BEYOND MARGIN."
PRINT
PRINT
PRINT " SECTION 91.2.1: TABBING QUOTED STRINGS WHEN TAB-CALL lb"
PRINT " LESS-THAN THE CURRENT PRINT POSITION."
PRINT
PRINT
PRINT
PRINT " BEGIN TEST."
PRINT
PRINT "00000000011111111112222222222333333333344444444445";
PRINT " 5555555556666666666 777 "

PRINT "1234567890123456 7 890123456 7 890123456 7 890123456 7 890";
PRINT "123456 7 890123456 7 89012"
PRINT "NO PRINT, THIS LINE, AFTER PERIOD ."; TAB (1 5);"

X

"

PRINT
PRINT " X SHOULD BE ON LINE FOUR, COLUMN 15."
PRINT
PRINT " END TEST."
PRINT
PRINT

213

1300 PRINT
1310 PRINT II

1320 PRINT II

1330 PRINT
1340 PRINT
1350 PRINT
1360 PRINT II

1 3 7 0 PRINT
1380 LET A $ =

1390 PRINT II

1400 PRINT II

1410 PRINT II

1420 PRINT II

1430 PRINT II

1440 PRINT
1450 PRINT II

1460 PRINT
1 4 7 0 PRINT "

1480 PRINT
1490 PRINT
1500 END

SECTION 91.2.2: TABBING ASSIGNED STRINGS WHEN TAB-CALL
LESS-THAN THE CURRENT PRINT POSITION."

BEGIN TEST."

00000000011111111112222222222333333333344444444445"
5555555556666666666 77 7"

123456 7 890123456 7 890123456 7 8901234567890123456 7 890"
123456 7 8 90123456789012"
NO PRINT, THIS LINE, AFTER PERIOD .

" ; TAB (1 5) ; A

$

X SHOULD BE ON LINE FOUR, COLUMN 15.

END TEST.

"

IS"

* SAMPLE OUTPUT *

PROGRAM FILE 91

SECTION 91.1: CONCATENATED STRINGS.

SECTION 91.1.1: USING SEMICOLON, QUOTED STRINGS.

BEGIN TEST.

12 3456 78 90 12 3456 7 8 9 0 1 2 34 567 890 123456 78901234 5 6 7 8 90 12 3456 7 8 90 1 234 56 7 890 12
34 56 7 8 90 12 34 5 6 7 8 901234 56 7 89 012 3 4 5 6 7 8 90123456 7 890 12 34 5 6 7 8 90 123456 7 89012 34
56 7890 12 34 56 7890 123456 78 901 234 56 7 890 123456 7 8 9012 34 56 7 890 12 3456 7 8901234 56
78 9012 34 56 78 9012 345678 90 123 456 7 890

END TEST.

SECTION 91.1.2: USING COMMA, QUOTED STRINGS

BEGIN TEST

12345678901234567890123456789012345678901234567890 1234567890123456
7890123456789012345678901234567890 123456789012345678901234567890
12345678901234567890 12345678901234567890123456789012345678901234
567890 12345678901234567890123456789012345678901234567890

END TEST.

SECTION 91.1.3: USING SEMICOLON, ASSIGNED STRINGS.

BEGIN TEST.

11212312341234512345612345671234567812345678912345678901234567890112345
678901212345678901231234567890123412345678901234512345678901234561234567
8901234567123456789012345678

END TEST.

SECTION 91.1.4: USING COMMA, ASSIGNED STRINGS.

BEGIN TEST.

0000000001111111111222222222233333333334444444444555555555566666666667??
123456789012345678901234567890123456789012345678901234567890123456789012
1234567890 1234567890 1234567890 1234567890 1234567890
1234567890 1234567890 1234567890 1234567890 1234567890
1234567890 1234567890 1234567890 1234567890

END TEST.

SECTION 91.2: TAB-CALL WITHIN AND BEYOND MARGIN.

SECTION 91.2.1: TABBING QUOTED STRINGS WHEN TAB-CALL IS
LESS-THAN THE CURRENT PRINT POSITION.

BEGIN TEST.

0000000001111111111222222222233333333334 444 444444555555555 566666666667-7^
123456789012345678901234567890123456789012345678901234567890123456789012
NO PRINT, THIS LINE, AFTER PERIOD.

X

215

X SHOULD BE ON LINE FOUR, COLUMN 15.

END TEST.

SECTION 91.2.2: TABBING ASSIGNED STRINGS WHEN TAB-CALL IS
LESS-THAN THE CURRENT PRINT POSITION.

BEGIN TEST.

000000000111111111122222222223333333333444444444455555555556666666666 777
123456789012345678901234567890123456 7 890123456 7 890123456 7 890123456 7 89012
NO PRINT, THIS LINE, AFTER PERIOD.

X

X SHOULD BE ON LINE FOUR, COLUMN 15.

END TEST

92.0
TABBING STRINGS BEYOND THE MARGIN

92.1

Quoted Strings

The objective of this test is to determine whether the implementation
will, upon evaluating a TAB argument whose rounded value is greater than the
implementation defined margin, reduce the value of n by an integral multiple
of m so that it is in the range l<=n<=m. In particular, n should be set
equal to n-m*INT ((n-1) /m) . The reader is referred to section 12.4 of B3R
X3.60. The test begins by requesting that the user input the value for
the implementation-defined margin. The test then sequentially tabs 100
simple one character strings. Each TAB argument is increasedbya value of 13
(i.e., the arguments are sequentially ordered 13, 26, 39, ..., 1300). On
output, the test generates column count indices in order to verify each
columnar position. Each printout should be sequentially labelled by the
digits 1, 2, 3, ..., 100. Upon completion of the tab-call printout, messages
should be printed out indicating in which columns the strings should begin.

92.2

Assigned Strings

The objective of this test, except for the assigning of the string of
characters, that are to be tabbed, to a string variable, is the same as the
objective stated for test section 92.1. This test uses READ/DATA statements
to assign the strings Al, A2, A3, ...» A100 to the string variable A$ which
is the print-item used in conjunction with the tab-calls. As in test section
92.1, 100 tabbings are used with the same value increment for the tab
arguments. On output this test has a similar format to test 92.1.

* PROGRAM FILE 92 *

0010 PRINT
0020 PRINT
0030 PRINT
0040 PRINT
0090 PRINT
0100 PRINT
0110' PRINT
0120 PRINT
0130 PRINT
0140 PRINT
0150 PRINT
0160 PRINT
0170 PRINT
0180 PRINT
0200 INPUT

"PROGRAM FILE 92"

" SECTION 92.1: TABBING QUOTED STRINGS BEYOND THE CURRENT"
" PRINT POSITION AS WELL AS BEYOND THE MAR-"
" GIN."

•• BEGIN TEST."

" NOTE: IN ORDER TO GET A PROPER OUTPUT, PLEASE ENTER"
"THE MARGIN VALUE FOR THIS SYSTEM AFTER THE INPUT-PROMPT"
M

21 ?

02113

0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0 4 00
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0700
0710
0 7 2 0

0730
0740
0750
0760
0770

DIM A (1 0 0

)

GOSUB 720
LET N=0
FOR 1=1 TO 100
LET N =N + 1

3

PRINT TAB (N) ; "X" ;

I

LET A (I) =N-M*INT ((N-l) /M)
NEXT I

GOSUB 720
PRINT
FOR 1=1 TO 100
PRINT " X" ; I

; "SHOULD APPEAR BEGINNING IN COLUMN" ; A (I) ;
"

.
"

NEXT I

PRINT
PRINT " END TEST.

"

PRINT
PRINT
PRINT
PRINT "SECTION 92.2: TABBING ASSIGNED STRINGS BEYOND THE CURRENT
PRINT " PRINT POSITION AS WELL AS BEYOND THE MAR-
PRINT " GIN."
PRINT
PRINT
PRINT
PRINT " BEGIN TEST."
PRINT
GOSUB 7 20
LET N=0
DATA Al,A2,A3,A4,A5,A6,A?,A8,A9,Al0,All,Al2,Al3,Al4,Al5,Al6
DATA A17,A18,A19,A20,A21,A22,A23,A24,£ 15 , A26 , A2 7 , A28 , A2 9 , A30
DATA A31,A32,A33,A34,A35,A36,A37,A38,A39,A40,A41,A42,A43,A44
DATA A45,A46,A4 7 ,A48,A49,A50,A51,A52,A53,A54,A55,A56,A5 7 ,A58
DATA A59,A60,A61,A62,A63,A64,A65,A66,A67,A68,A69,A 7 0,A 7 1,A 7 2

DATA A 7 3,A 7 4,A75,A 7 6,A 7 7,A78,A 7 9,A80,A81,A82,A83,A84,A85,A86
DATA A87, A88,A89,A90, A91, A92, A93,A94, A95, A96, A9 7

, A98, A99, A100
FOR 1=1 TO 100
READ A $

LET N =N + 1

3

PRINT TAB (N) ;A$
LET A (I) =N-M*INT ((N-l) /M)
NEXT I

GOSUB 7 20
PRINT
RESTORE
FOR 1=1 TO 100
READ A $

PRINT A$;

" SHOULD BEGIN IN COLUMN" ; A (I)

;

"
.

"

NEXT I

PRINT
PRINT " END TEST."
GOTO 1470
FOR 1=1 TO M
ON 1+INT (1/100) GOTO 740, 7 60, 780, 800, 820, 840, 860, 880, 900, 920
LET A $ = " 0

"

GOTO 930
LET A $ = " 1

"

GOTO 930

0780 LET A $ = " 2

"

0790 GOTO 930
0800 LET A $ = " 3

”

0810 GOTO 930
0820 LET A $ = " 4

"

0830 GOTO 930
0840 LET A $ = " 5

"

0850 GOTO 930
0860 LET A $ = " 6

"

08 7 0 GOTO 930
0880 LET A $ = " 7

"

0890 GOTO 930
0 900 LET A $ = " 8

"

0910 GOTO 930
0920 LET A $ = " 9

"

0930 PRINT A$

;

0940 NEXT I

0950 FOR 1=1 TO M
0960 LET P= (1+INT (1/10) -10* (INT (1/100))

)

0970 ON P GOTO 980,1000,1020,1040,1060,1080,1100,1120,1140,1160
0980 LET A $ = " 0

"

0990 GOTO 1170
1000 LET A $ = " 1

"

1010 GOTO 1170
1020 LET A $ = " 2

"

1030 GOTO 1170
1040 LET A $ =

H 3

"

1050 GOTO 1170
1060 LET A $

=
"
4

"

1070 GOTO 1170
1080 LET A $ = " 5

"

1090 GOTO 1170
1100 LET A §

=
"
6

"

1110 GOTO 1170
1120 LET A $ = " 7

"

1130 GOTO 1170
114 0 LET A $

=
"
8

"

1150 GOTO 1170
1160 LET A $

=
" 9

"

1170 PRINT A $

;

1180 NEXT I

1190 LET N=0
1200 FOR 1=1 TO M
1210 LET J=I-1
1220 LET N=N+1
1230 ON N-10* (INT (J/10)) GOTO 1240,1260,1280,1300,1320,1340,1360,1380,1400
1240 LET A $ = " 1

"

1250 GOTO 1430
1260 LET A $ = '* 2

"

1270 GOTO 1430
1280 LET A $

=
"
3

"

1290 GOTO 1430
1300 LET A $ = " 4

"

1310 GOTO 1430
1320 LET A $ = " 5

"

1330 GOTO 1430
1340 LET A$=" 6

"

219

1350 GOTO 1430
1360 LET A $ = " 7

"

1370 GOTO 1430
1380 LET A$="8"
1390 GOTO 1430
1400 LET A$=" 9

"

1410 GOTO 1430
1420 LET A $ = " 0

"

1430 PRINT A$

;

1440 NEXT I

1450 PRINT
1460 RETURN
1470 PRINT
1480 END

* SAMPLE OUTPUT *

PROGRAM FILE 92

SECTION 92.1: TABBING QUOTED STRINGS BEYOND THE CURRENT
PRINT POSITION AS WELL AS BEYOND THE MAR-
GIN.

BEGIN TEST.

NOTE: IN ORDER TO GET A PROPER OUTPUT, PLEASE ENTER
THE MARGIN VALUE FOR THIS SYSTEM AFTER THE INPUT-PROMPT
?7 2

00
000000000111111111122222222223333333333444444444455555555556666666666 7 7 7

123456 7 890123456 7 890123456 7 890123456 7 890123456 7 8901234567890123456 7 89012

X

X 2

X 3

X 6

X 7

X 8

X

X

X 5

X 10
X

220

11
X 12

X 13
X 14

X 15

X 17
X 16

X 18
X 19

X 20
X 21

22
X 23

X 24

X 25
X 26

X 28
X 27

X 29
X 30

X 31
X 32

33
X 34

X 35
X 36

X 37

X 38
X 39

X 40
X 41

X 42
X 43

44
X 45

X 46

X 4 7

X 48
X 49

X 50
X 51

X 52
X 53

X 54

55
X 56

X 57
X 58

X 59

X 61
X 60

X 62
X 63

221

X 64

X 65

X 67
X 68

X 69

X 66

X 70
x ?i

72
X 73

X 74

X 75

X 78
X 79

X 80
X 81

X 76
X 77

X 82

X

83
X 84

X 85

X 89
X 90

X 91

X

X 86
X 87

X 88

X 92
X 93

X

94
X 95

X 96
X 97

X 98
X 99

X 100
00
0000000001111111111222222222233333333334444444444555555555566666666667-7-?
123456789012345678901234567890123456789012345678901234567890123456789012

X 1 SHOULD APPEAR BEGINNING IN COLUMN 13 .

X 2 SHOULD APPEAR BEGINNING IN COLUMN 26 .

X 3 SHOULD APPEAR BEGINNING IN COLUMN 39 .

X 4 SHOULD APPEAR BEGINNING IN COLUMN 52 .

X 5 SHOULD APPEAR BEGINNING IN COLUMN 65 .

X 6 SHOULD APPEAR BEGINNING IN COLUMN 6 .

X 7 SHOULD APPEAR BEGINNING IN COLUMN 19 .

X 8 SHOULD APPEAR BEGINNING IN COLUMN 32 .

X 9 SHOULD APPEAR BEGINNING IN COLUMN 45 .

X 10 SHOULD APPEAR BEGINNING IN1 COLUMN 58 .

X 11 SHOULD APPEAR BEGINNING IN1 COLUMN 71 .

X 12 ; SHOULD APPEAR BEGINNING IN1 COLUMN 12 .

222

X 13 SHOULD APPEAR BEGINNING IN COLUMN 25
X 14 SHOULD APPEAR BEGINNING IN COLUMN 38

X 15 SHOULD APPEAR BEGINNING IN COLUMN 51
X 16 SHOULD APPEAR BEGINNING IN COLUMN 64
X 17 SHOULD APPEAR BEGINNING IN COLUMN 5

X 18 SHOULD APPEAR BEGINNING IN COLUMN 18
X 19 SHOULD APPEAR BEGINNING IN COLUMN 31
X 20 SHOULD APPEAR BEGINNING IN COLUMN 44
X 21 SHOULD APPEAR BEGINNING IN COLUMN 5^

X 22 SHOULD APPEAR BEGINNING IN COLUMN 70

X 23 SHOULD APPEAR BEGINNING IN COLUMN 11
X 24 SHOULD APPEAR BEGINNING IN COLUMN 24
X 25 SHOULD APPEAR BEGINNING IN COLUMN 37
X 26 SHOULD APPEAR BEGINNING IN COLUMN 50
X 27 SHOULD APPEAR BEGINNING IN COLUMN 63
X 28 SHOULD APPEAR BEGINNING IN COLUMN 4

X 29 SHOULD APPEAR BEGINNING IN COLUMN 17
X 30 SHOULD APPEAR BEGINNING IN COLUMN 30
X 31 SHOULD APPEAR BEGINNING IN COLUMN 43
X 32 SHOULD APPEAR BEGINNING IN COLUMN 56
X 33 SHOULD APPEAR BEGINNING IN COLUMN 69
X 34 SHOULD APPEAR BEGINNING IN COLUMN 10
X 35 SHOULD APPEAR BEGINNING IN COLUMN 23
X 36 SHOULD APPEAR BEGINNING IN COLUMN 36
X 37 SHOULD APPEAR BEGINNING IN COLUMN 49
X 38 SHOULD APPEAR BEGINNING IN COLUMN 62
X 39 SHOULD APPEAR BEGINNING IN COLUMN 3

X 40 SHOULD APPEAR BEGINNING IN COLUMN 16
X 41 SHOULD APPEAR BEGINNING IN COLUMN 29
X 42 SHOULD APPEAR BEGINNING IN COLUMN 42
X 43 SHOULD APPEAR BEGINNING IN COLUMN 55
X 44 SHOULD APPEAR BEGINNING IN COLUMN 68
X 45 SHOULD APPEAR BEGINNING IN COLUMN 9

X 46 SHOULD APPEAR BEGINNING IN COLUMN 22
X 47 SHOULD APPEAR BEGINNING IN COLUMN 35
X 48 SHOULD APPEAR BEGINNING IN COLUMN 48
X 49 SHOULD APPEAR BEGINNING IN COLUMN 61
X 50 SHOULD APPEAR BEGINNING IN COLUMN 2

X 51 SHOULD APPEAR BEGINNING IN COLUMN 15
X 52 SHOULD APPEAR BEGINNING IN COLUMN 28
X 53 SHOULD APPEAR BEGINNING IN COLUMN 41
X 54 SHOULD APPEAR BEGINNING IN COLUMN 54
X 55 SHOULD APPEAR BEGINNING IN COLUMN 6"7

X 56 SHOULD APPEAR BEGINNING IN COLUMN 8

X 57 SHOULD APPEAR BEGINNING IN COLUMN 21
X 58 SHOULD APPEAR BEGINNING IN COLUMN 34
X 59 SHOULD APPEAR BEGINNING IN COLUMN 4 1

X 60 SHOULD APPEAR BEGINNING IN COLUMN 60
X 61 SHOULD APPEAR BEGINNING IN COLUMN 1

X 62 SHOULD APPEAR BEGINNING IN COLUMN 14

X 63 SHOULD APPEAR BEGINNING IN COLUMN 27
X 64 SHOULD APPEAR BEGINNING IN COLUMN 40
X 65 SHOULD APPEAR BEGINNING IN COLUMN 53
X 66 SHOULD APPEAR BEGINNING IN COLUMN 66
X 67 SHOULD APPEAR BEGINNING IN COLUMN 7

X 68 SHOULD APPEAR BEGINNING IN COLUMN 20
X 69 SHOULD APPEAR BEGINNING IN COLUMN' 33

223

X 70 SHOULD APPEAR BEGINNING IN COLUMN 46
X 7 1 SHOULD APPEAR BEGINNING IN COLUMN 59

X 72 SHOULD APPEAR BEGINNING IN COLUMN 72
X 73 SHOULD APPEAR BEGINNING IN COLUMN 13
X 74 SHOULD APPEAR BEGINNING IN COLUMN 26 •

X 7 5 SHOULD APPEAR BEGINNING IN COLUMN 39 •

X 76 SHOULD APPEAR BEGINNING IN COLUMN 52 *

X 77 SHOULD APPEAR BEGINNING IN COLUMN 65 #

X 78 SHOULD APPEAR BEGINNING IN COLUMN 6 .

X 79 SHOULD APPEAR BEGINNING IN COLUMN 19
X 80 SHOULD APPEAR BEGINNING IN COLUMN 32

X 81 SHOULD APPEAR BEGINNING IN COLUMN 45
X 82 SHOULD APPEAR BEGINNING IN COLUMN 58
X 83 SHOULD APPEAR BEGINNING IN COLUMN 71
X 84 SHOULD APPEAR BEGINNING IN COLUMN 12

X 85 SHOULD APPEAR BEGINNING IN COLUMN 25
X 86 SHOULD APPEAR BEGINNING IN COLUMN 38
X 87 SHOULD APPEAR BEGINNING IN COLUMN 51
X 88 SHOULD APPEAR BEGINNING IN COLUMN 64 #

X 89 SHOULD APPEAR BEGINNING IN COLUMN 5 .

X 90 SHOULD APPEAR BEGINNING IN COLUMN 18
X 91 SHOULD APPEAR BEGINNING IN COLUMN 31
X 92 SHOULD APPEAR BEGINNING IN COLUMN 44
X 93 SHOULD APPEAR BEGINNING IN COLUMN 5 7

X 94 SHOULD APPEAR BEGINNING IN COLUMN 70
X 95 SHOULD APPEAR BEGINNING IN COLUMN 11 .

X 96 SHOULD APPEAR BEGINNING IN COLUMN 24 #

X 97 SHOULD APPEAR BEGINNING IN COLUMN 3 7 *

X 98 SHOULD APPEAR BEGINNING IN COLUMN 50 #

X 99 SHOULD APPEAR BEGINNING IN COLUMN 63 1

X 100 SHOULD APPEAR BEGINNING IN COLUMN 4 .

END TEST.

SECTION 92.2: TABBING ASSIGNED STRINGS BEYOND THE CURRENT
PRINT POSITION AS WELL AS BEYOND THE MAR-
GIN.

BEGIN TEST.

00
000000000111111111122222222223333333333444444444455555555556666666666 777
1234567890123456 7 890123456 7 8901234567890123456 7 890123456 7 890123456 7 89012

A

1

A 2

A3
A 4

A 6

A7
A8

A9

A 5

22k

1

A12
A13

A 1

4

A17
A 1

8

A19
A20

A23
A24

A25

A 28
A 2 9

A30
A 3

1

A 34
A 35

A36

A39
A40

A41
A42

A 1

0

A

1

A 1

5

A 1

6

A 2

1

A 2 2

A26
A2~>

A 32
A 3 3

A3
-
?

A 3 8

A 4 3

A44

A45
A46

A 50
A 5

1

A52

A 56
A 5?

A61
A62

A63

A4 7

A48
A 4 9

A 5 3

A 5 4

A 5 5

A 58
A59

A 6 0

A64
A65

225

A66
A67

A68
A69

A70
A"7 !

72
A73

A74
A75

A76
A 77

A78
A 7 9

A 8 0

A81
A82

A8

A84
A85

A86
A87

A88
A89

A90
A91

A92
A93

A94
A95

A96
A97

A98
A99

A 1 0 0

00
000000000111111111122222222223333333333444444444455555555556666666666 77 7

12345678901234 56 7 890123456 7 8901234567890123456 7 890123456 7 890123456 7 89012

A

1

SHOULD BEGIN IN COLUMN 13 .

A 2 SHOULD BEGIN IN COLUMN 26 .

A3 SHOULD BEGIN IN COLUMN 39 .

A 4 SHOULD BEGIN IN COLUMN 52 .

A 5 SHOULD BEGIN IN COLUMN 65 .

A 6 SHOULD BEGIN IN COLUMN 6 .

A 7 SHOULD BEGIN IN COLUMN 19 .

A8 SHOULD BEGIN IN COLUMN 32 .

A9 SHOULD BEGIN IN COLUMN 45 .

A 1

0

SHOULD BEGIN IN COLUMN 58 .

All SHOULD BEGIN IN COLUMN 71 .

A 1

2

SHOULD' BEGIN IN COLUMN 12 .

A 1

3

SHOULD BEGIN IN COLUMN 25 .

A 1

4

SHOULD BEGIN IN COLUMN 38 .

A15 SHOULD BEGIN IN COLUMN 51 .

226

k

A 1

6

SHOULD BEGIN IN COLUMN 64
A 1

7

SHOULD BEGIN IN COLUMN 5

A 1

8

SHOULD BEGIN IN COLUMN 18
Al 9 SHOULD BEGIN IN COLUMN 31
A 20 SHOULD BEGIN IN COLUMN 44
A 2

1

SHOULD BEGIN IN COLUMN 57
A22 SHOULD BEGIN IN COLUMN 70
A23 SHOULD BEGIN IN COLUMN 11
A24 SHOULD BEGIN IN COLUMN 24
A 25 SHOULD BEGIN IN COLUMN 37
A26 SHOULD BEGIN IN COLUMN 50
A 27 SHOULD BEGIN IN COLUMN 63
A 28 SHOULD BEGIN IN COLUMN 4

A29 SHOULD BEGIN IN COLUMN 17
A30 SHOULD BEGIN IN COLUMN 30
A31 SHOULD BEGIN IN COLUMN 43
A 32 SHOULD BEGIN IN COLUMN 56
A 33 SHOULD BEGIN IN COLUMN 69
A 34 SHOULD BEGIN IN COLUMN 10
A 35 SHOULD BEGIN IN COLUMN 23
A 36 SHOULD BEGIN IN COLUMN 36
A37 SHOULD BEGIN IN COLUMN 49
A 38 SHOULD BEGIN IN COLUMN 62
A 39 SHOULD BEGIN IN COLUMN 3

A40 SHOULD BEGIN IN COLUMN 16
A 4 1 SHOULD BEGIN IN COLUMN 29
A42 SHOULD BEGIN IN COLUMN 42
A43 SHOULD BEGIN IN COLUMN 55
A 4 4 SHOULD BEGIN IN COLUMN 68
A45 SHOULD BEGIN IN COLUMN 9

A46 SHOULD BEGIN IN COLUMN 22
A4‘* SHOULD BEGIN IN COLUMN 35
A 48 SHOULD BEGIN IN COLUMN 48
A49 SHOULD BEGIN IN COLUMN 61
A 50 SHOULD BEGIN IN COLUMN 2

A 51 SHOULD BEGIN IN COLUMN 15
A 52 SHOULD BEGIN IN COLUMN 28
A53 SHOULD BEGIN IN COLUMN 41
A 54 SHOULD BEGIN IN COLUMN 54
A55 SHOULD BEGIN IN COLUMN 6 7

A 56 SHOULD BEGIN IN COLUMN 8

A5 7 SHOULD BEGIN IN COLUMN 21
A 58 SHOULD BEGIN IN COLUMN 34
A59 SHOULD BEGIN IN COLUMN 47
A60 SHOULD BEGIN IN COLUMN 60
A 6

1

SHOULD BEGIN IN COLUMN 1

A62 SHOULD BEGIN IN COLUMN 14
A 6 3 SHOULD BEGIN IN COLUMN 2i

A64 SHOULD BEGIN IN COLUMN 40
A65 SHOULD BEGIN IN COLUMN 53
A66 SHOULD BEGIN IN COLUMN 66
A67 SHOULD BEGIN IN COLUMN 7

A68 SHOULD BEGIN IN COLUMN 20
A69 SHOULD BEGIN IN COLUMN 33
A 7 0 SHOULD BEGIN IN COLUMN 46
A71 SHOULD BEGIN IN COLUMN 59
A72 SHOULD BEGIN IN COLUMN 72

A73 SHOULD BEGIN IN COLUMN 13
A 7 4 SHOULD BEGIN IN COLUMN 26
A75 SHOULD BEGIN IN COLUMN 39
A 7 6 SHOULD BEGIN IN COLUMN 52
All SHOULD BEGIN IN COLUMN 65
A 1 Q SHOULD BEGIN IN COLUMN 6

A79 SHOULD BEGIN IN COLUMN 19
A 80 SHOULD BEGIN IN COLUMN 32
A81 SHOULD BEGIN IN COLUMN 45
A82 SHOULD BEGIN IN COLUMN 58
A83 SHOULD BEGIN IN COLUMN 7 1

A84 SHOULD BEGIN IN COLUMN 12
A85 SHOULD BEGIN IN COLUMN 25
A86 SHOULD BEGIN IN COLUMN 38
A8 7 SHOULD BEGIN IN COLUMN 51

A88 SHOULD BEGIN IN COLUMN 64
A89 SHOULD BEGIN IN COLUMN 5

A90 SHOULD BEGIN IN COLUMN 18
A91 SHOULD BEGIN IN COLUMN 31
A 9 2 SHOULD BEGIN IN COLUMN 44
A93 SHOULD BEGIN IN COLUMN 57
A 94 SHOULD BEGIN IN COLUMN 70
A 95 SHOULD BEGIN IN COLUMN 11
A 96 SHOULD BEGIN IN COLUMN 24
A97 SHOULD BEGIN IN COLUMN 37
A 98 SHOULD BEGIN IN COLUMN 50
A99 SHOULD BEGIN IN COLUMN 63
A 1 0 0 SHOULD BEGIN1 IN COLUMN 4

93.0 EXCEPTION TEST - STRING OVERFLOW

A preliminary test of acceptable assigned string lengths was done in
section 57.0. At that time string s of length 19, 20, 30, 40, 50, and 58
characters were used. Since program lines had to be restricted to 7 2

characters, inordinately long strings, used as program constants, could not
be tested. However, with the INPUT statement longer strings can be
introduced. The present test is based upon the assumption that a BASIC
processor will have an input buffer of some maximum length, which may be
unknown to the user. But, if the user enters a sufficiently long string, an
overflow is inevitable. In order to execute this test one must assume that
characters can be continuously typed on a terminal and that a carriage return
or line feed character is not introduced into the string unless they are
specifically entered by the user (say by a RETURN key). The user begins the
test by entering 18 characters. All succeeding entries will be in multiples
of 36. The user will then be asked to enter a sequence of strings of
increasing length. If no overflow is encountered at an entry the user will
be asked to enter a longer string. When a string overflow is finally
encountered, the test system must provide a message to the user indicating the
overflow and requesting input reentry (see section 13.5 of BSR X3.60).
The user should then type STOP since the system would have responded properly
to the string overflow. The authors have experienced at least one system
that allowed a string entry of more than 145 characters before an overflow
message was encountered.

* PROGRAM FILE 93 *

10 PRINT "

20 PRINT
30 PRINT
40 PRINT
50 PRINT "

60 PRINT
7 0 PRINT "

90 PRINT
100 PRINT
120 PRINT
130 PRINT
135 PRINT
140 PRINT
145 PRINT
150 PRINT
160 PRINT
1 7 0 PRINT
175 PRINT
180 PRINT

PROGRAM FILE 93"

SECTION 93.0"

CONVERSION OF A STRING INPUT DATUM CAUSES A STRING OVERFLOW"

" BEGIN TEST"

"THERE ARE TWO CRITERIA THAT MUST BE MET TO PASS THIS TEST. "

"FIRST, IF A STRING OVERFLOW IS ENCOUNTERED THEN THE USER "

"MUST BE ALLOWED TO REENTER THE STRING INPUT. SECOND, THE "

"FIRST STRING INPUT OF 18 CHARACTERS MUST BE ACCEPTED "

"WITHOUT ANY DIAGNOSTIC."

"UPON ENCOUNTERING AN OVERFLOW AND A REQUEST TO REENTER DATA"
"THE USER SHOULD TYPE STOP, WHICH TERMINATES THE PROGRAM."

229

190
210
220
230
240
250
260
270
280
285
290
320
325
330
340
345
350
360
370
380
385
390
400
410
415
420
430
440
450
460
465
4 6 7

468
4 7 0

PRINT "UPON INPUT PROMPT ENTER THE 18 CHARACTERS SHOWN BELOW."
PRINT
PRINT "XXXXXXXXXXXXXXXXXX"
INPUT A$
IF A$O"ST0P" THEN 2 7 0

PRINT "THIS SYSTEM HAS FAILED TO ACCEPT AN 18 CHARACTER STRING."
GO TO 4 7 0

PRINT
PRINT "FURTHER INPUT STRINGS WILL BE IN MULTIPLES OF 36 CHARACTER."
LET Q = 0

PRINT
PRINT "PLEASE DUPLICATE THE CHARACTER STRINGS DISPLAYED BEFORE EACH"
PRINT "INPUT PROMPT."
FOR I = 1 +Q * 1 0 0 TO 100+Q*100
PRINT
LET L = 36*1
PRINT "NEW INPUT STRING:"; L ;

" CHARACTERS"
FOR J = 1 TO L
PRINT "X";
NEXT J

PRINT
INPUT A$
IF A$<> "STOP" THEN 430
PRINT "IF STOP WAS TYPED DUE TO AN OVERFLOW MESSAGE THEN TEST"
PRINT "HAS PASSED WITH THIS MESSAGE."
GO TO 4 7 0

NEXT I

PRINT
PRINT "NO OVERFLOWS UP TO THIS POINT. THE USER MUST CONTINUE."
PRINT "IF STOP IS TYPED BEFORE AN OVERFLOW THEN THE TEST IS"
PRINT "INVALID AND MUST BE RUN AGAIN."
LET Q = Q + 1

GO TO 320
END

* SAMPLE OUTPUT *

PROGRAM FILE 93

SECTION 93.0

CONVERSION OF A STRING INPUT DATUM CAUSES A STRING OVERFLOW

BEGIN TEST

230

THERE ARE TWO CRITERIA THAT MUST BE MET TO PASS THIS TEST.
FIRST, IF A STRING OVERFLOW IS ENCOUNTERED THEN THE USER
MUST BE ALLOWED TO REENTER THE STRING INPUT. SECOND, THE
FIRST STRING INPUT OF 18 CHARACTERS MUST BE ACCEPTED
WITHOUT ANY DIAGNOSTIC.

UPON ENCOUNTERING AN OVERFLOW AND A REQUEST TO REENTER DATA
THE USER SHOULD TYPE STOP, WHICH TERMINATES THE PROGRAM.

UPON INPUT PROMPT ENTER THE 18 CHARACTERS SHOWN BELOW.

xxxxxxxxxxxxxxxxxx
? XXXXXXXXXXXXXXXXXX

FURTHER INPUT STRINGS WILL BE IN MULTIPLES OF 36 CHARACTER.

PLEASE DUPLICATE THE CHARACTER STRINGS DISPLAYED BEFORE EACH
INPUT PROMPT.

NEW INPUT STRING: 36 CHARACTERS
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
7XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

NEW INPUT STRING: ^2 CHARACTERS
XX
7XXX
X

NEW INPUT STRING: 108 CHARACTERS
xx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
? XXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX XX XX XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

NEW INPUT STRING: 144 CHARACTERS
XX
XX
7XXX
XX
X

NEW INPUT STRING: 180 CHARACTERS
XXX XXXXXXXXX
XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
7XXXxxxxxxxxxxxxxxxxxx
XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
? I N PUT STRING TOO LONG. PLEASE REENTER.
?STOP

231

NBS-1 14A (REV. 7-73)

U.S. DEPT. OF COMM.
BIBLIOGRAPHIC DATA

SHEET

1. PUBLICATION OR REPORT NO.

NBS IR 78-1420-3

2. Gov’t Accession
No.

3. Recipient’s Accession No.

4. TITLE AND SUBTITLE

NBS Minimal BASIC Test Programs - Version 1

User’s Manual
Volume 3 - Control Statements, Data Structure, Program Input

5. Publication Date

January 1978

6. Performing Organization Code

7. AUTHOR(S)

David E. Gilsinn and Charles L, Sheppard
8. Performing Organ. Report No.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

10. Project/Task/Work Unit No.

6401121
11. Contract/Grant No.

12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)

National Bureau of Standards

13. Type of Report & Period
Covered

Final

14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

16. ABSTRACT (A 200-word or less tactual summary ol most significant information. II document includes a significant
bibliography or literature survey, mention it here.)

This volume is the third of four volumes that comprise the user's guide to the
NBS Minimal BASIC Test Programs. The programs test whether a BASIC processor accepts
the syntactical forms and produces semantically meaningful results according to the
specifications given in BSR X3.60 Proposed American National Standard for Minimal
BASIC . The object of this volume is to complete the testing of the control
structures, introduce new data structures, and test the user interactive capability
of the language. There are sixty individual programs in this volume that cover
looping structures, array variables, exception tests, subroutines, multiway branch
structures, data declarations and interactive data inputs. The entire set of
programs is available on tape.

17. KEY WORDS (six to twelve entries ; alphabetical order; capitalize only the first letter of the first key word unless a proper
name; separated by semicolons)

BASIC} BASIC standard; BASIC validation; compiler validation; computer programming
language; computer standards.

18. AVAILABILITY [L Unlimited

For Official Distribution. Do Not Release to NTIS

Order From Sup. of Doc., U.S. Government Printing Office
Washington, D.C. 20402, SD (at. No. Cl ^

Order From National Technical Information Service (N ITS)
Springfield, Virginia 22151

19. SECURITY CLASS
(THIS REPORT)

UNCI. ASSUMED

20. SECURITY (LASS
(THIS PAGE)

UNCLASSIFIED

21. NO. OF PAGES

239

22. Price

USCOMM.nC 2 904 .i P’4

