NBSIR 78-1432

Automation of the Ion Energetics Data Center

R. Thompson* W. Webb H. M. Rosenstock

2 24

Institute for Materials Research National Bureau of Standards Washington, D.C. 20234

*Office of Standard Reference Data National Bureau of Standards Washington, D.C. 20234

December 1977

Final

This work was supported in part by the National Institute of General Medical Sciences National Institutes of Health Bethesda, Maryland 20014

AUTOMATION OF THE ION ENERGETICS DATA CENTER

R. Thompson* W. Webb H. M. Rosenstock

Institute for Materials Research National Bureau of Standards Washington, D.C. 20234

*Office of Standard Reference Data National Bureau of Standards Washington, D.C. 20234

December 1977

Final

This work was supported in part by the National Institute of General Medical Sciences National Institutes of Health Bethesda, Maryland 20014

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

Dr. Sidney Harman, Under Secretary

Jordan J. Baruch, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

.

_

Abstract

The Ion Energetics Data Center is engaged in the compilation, evaluation and dissemination of experimental information on gaseous ion energetics. Outputs include bibliographic and tabular information on ionization potentials, appearance potentials, electron affinities and heats of formation of gaseous positive and negative ions. The operation of the data center is discussed. This operation has recently been automated by the development of a set of computer programs, called IONPACK, which minimize the manual effort required for the numerous file manipulations and editing steps necessary to produce the data center output. The functions of the programs are outlined and the associated operating procedures are described in detail. Full documentation of the programs is presented in a separate report.

CONTENTS

1.	THE ION ENERGETICS DATA CENTER
	1.1 Introduction
	1.2 The Subject Matter - Ion Energetics
	1.3 Objectives of the Automation Effort
	1.4 Activities
2.	THE INFORMATION
	2.1 The Abstract
	2.2 The Basic Unit of Information
	2.2.1 Ion
	2.2.2 Reactant
	2.2.3 Other Products
	2.2.4 AP or IP
	2.2.5 Method
	2.2.6 Reference
	2.2.7 Associated Comments
3.	DOCUMENT CONTROL AND STATUS FILES
4.	INTERIM OUTPUT FILES AND ORDERED INFORMATION
	4.1 Output Files
	4.2 Ordering Principles
	4.2.1 Bibliography and Author Index
	4.2.2 Ion Data
	A. Atomic Composition, Complexity and Charge21
	B. Reactant Species
	C. Method
	D. Measured Value
	E. Output

5.	PRESENT STATUS OF THE AUTOMATED SYSTEM
6.	KEYBOARDING THE ABSTRACT
	6.1 Format of the Abstract
7.	CONVERTING ATS KEYBOARDING TO GPSDC FILE
	7.1 Requesting an ATS Archival Tape
	7.2 Converting the Archival Tape to GPSDC
8.	GENERATING THE REQUIRED OUTPUTS
	8.1 Printing the 5 x 8 Cards
	8.2 Sorting the Raw Ion Data File
	8.3 Printing the Raw Ion Data File
	8.4 Program WREFS
	8.5 Sorting the Author Index Entries
9.	ACKNOWLEDGMENTS
10.	LIST OF FIGURES
11.	LIST OF TABLES
12.	REFERENCES
13.	APPENDIX

.

.

بر

AUTOMATION OF THE ION ENERGETICS DATA CENTER

1. THE ION ENERGETICS DATA CENTER

1.1 Introduction

The Ion Energetics Data Center has recently carried out a major automation of its scientific data processing activities. The present report is a detailed description of the newly automated data center activity, prepared in order to provide:

a. an acccurate record of the objectives, mechanics, and procedures of the data center for its own staff.

b. a well defined point of departure for future additions and modifications of the automated system.

c. a detailed example of data center automation which may be of use to other data centers.

The report is divided into three parts describing the technical subject matter and objectives of the data center (Section 1), the structure and function of the automated information processing system (Sections 2 to 5), and, lastly, a detailed operating manual for the technical information specialist responsible for the effective implementation of the various automated information processing steps comprising the system.

1.2 The Subject Matter - Ion Energetics

For purposes of the present report the term ion energetics includes most experimental data which can be interpreted or extrapolated to yield standard heats of formation of gaseous positive ions. Examples of such data include measurements of ionization and appearance potentials by a variety of techniques including vacuum ultraviolet spectroscopy,

photoionization, electron spectroscopy, electron impact, surface ionization, empirical relationships between charge transfer spectra and ionization potentials. These techniques differ greatly in their accuracy depending both on the degree of care and refinement of their experimental realization and, frequently, also on the molecular structure and complexity of the system studied. Details of the various techniques, their accuracies and associated problems of data interpretation are described in a recent critical review.¹

In 1969 and 1977 the Data Center compiled, evaluated, organized and disseminated this type of ion energetics data in the form of published data compilations^{2,3}. A typical page of the 1977 compilation is shown in figure 1. All measurement information pertinent to one ion is organized in a form showing the nature of the ionic species, its electronic state where known, the molecular system studied (reactant), other products formed in the ionization process (where known), the experimental datum and its quoted accuracy or precision, an acronym describing the experimental technique (see Table 4, page 31), the heat of formation derived from the measurement datum for those measurements which are judged most reliable, and the reference number or numbers. The latter are random access ion numbers of the individual articles in the data center document files. The last line of the figure shows a name for the compound $(CH_2)_2^0$ for which a one-line formula representation is not sufficient to uniquely indicate its chemical composition, namely the ring compound 1,2-epoxyethane.

In addition to this main table, the compilation also contains an ion index bibliography, author index, and diverse auxiliary information.

	4.3. 1	he Positive Ion Table	-Continued				
lon	Reactant	Other products	lonization or appearance potential (eV)	Method	Heat of forma- tion (kJ mol ⁻¹)	Ref.	
		CD;					
CD; CD; CD; CD; CD; CD; CD;	CD, CD, CH,CD, C,D, C,D, CD,COOH CD,CI	D CH, CD, Cl	9.832 ± 0.002 14.38 ± 0.03 15.10 ± 0.10 15.54 ± 0.10 15.56 13.8	S Pl El El El Pl			349 1128 2421 2421 171 2637
	$CH_{4}^{*}(^{2}B_{2})$ $CH_{4}^{*}(^{2}A_{1})$	$\Delta H_{10}^{\circ} \le 1150 \text{ kJ}$ $\Delta H_{10}^{\circ} = 2094 \text{ kJ}$	mol ⁻¹ (275 kcal mol mol ⁻¹ (500 kcal mol	⁻¹) ⁻¹)			
CH $\frac{1}{4}({}^{2}B_{2})$ CH $\frac{1}{4}({}^{2}B_$	CH ₄ CH ₅ Sodoy, Chem. I ntly the onset is not sharp and the adi 3, 3092, 3119) have resolved vibrations This is just the difference between the ermined by Nicholson, ref. 1253, and I	istortion, see for examp Phys. Letters 6, 336 (1 iabatic value may be lo al structure near onset ne P1 threshold value g Dibeler <i>et al.</i> , ref. 1120	≤ 12.615±0.010 12.704±0.008 12.71±0.02 12.55±0.05 12.75±0.05 12.75 12.75 12.78 12.9 ≤ 12.70 - 13.00±0.02 12.99±0.05 ble R. N. Dixon, Mol. 970) and refs. 3092, 31 ower. Several PE studi with a separation of ~ iven by Brehm, ref. 203.	P1 P1 P1 P1 P1 PE PE PEN EM RPD RPD RPD RPD Phys. 20, 116, 3119. es 1200 cm ⁻¹ D13, and	≤1150	2857,	3415 1253 1128 2013 2858 3293 2803 3092 3116 2430 2798 224 2776
See also -	- S: 138 P1: 182, 230, 331, 416, 2605, 3115 PE: 1130, 2801, 2829, 2843, 3072, PEN: 2467 EI: 289, 1072, 1129, 2136, 2154, 2	5, 3132 3119, 3132 2414, 2535, 2575, 3435					
$CH_{4}^{*}(^{2}A_{1})$ $CH_{4}^{*}(^{2}A_{1})$ $CH_{4}^{*}(^{2}A_{1})$ $CH_{4}^{*}(^{2}A_{1})$ $CH_{4}^{*}(^{2}A_{1})$	CH. CH. CH. CH. CH.	, ,	22.39 22.4 23.1 (V) 24 23.5-24	PE PE RPD D	2094		3092 3119 3072 2414 2846

Earlier electron impact work (refs. 289, 1072) gave values around 19.4 eV. These are due to autoionization or collision processes, see refs. 2414, 2575, 2846.

CH:	C.H.		14.7±0.5	El	2542
CH	(CH ₂) ₂ O	CO	12.3±0.2	EI	50
·	(1,2-Epoxyethane)				

Figure 1. A typical page of the 1977 compilation.

J. Phys. Chem. Ref. Data, Vol. 6, Suppl. 1, 1977

1.3 Objectives of the Automation Effort

The purpose of the automation effort is to automate to the maximum feasible extent the many routine data management activities associated with the creation, updating, and editing of the many ordered files, all of which are ultimately derivable from the abstracted document. The automated data management system described here is designed to provide a set of computer files which are suited for computer typesetting via the Government Printing Office Linatron machine. Finally, the system is designed to allow the extraction of chemically meaningful subsets of information such as topical bibliographies and information on specific ions or classes of ions. Ultimately, it is hoped to develop a data base that can be interrogated and output via a remote terminal and at the same time to provide ordered, edited material suitable for typesetting. At present, the latter objective has dominated our planning.

It is planned to issue from time to time supplements to the existing compilation which lists the more recent unevaluated measurements and associated references in ordered form. Then, when the unevaluated data file is brought up-to-date, it is planned to combine the material with the 1977 data compilation and to produce a revised, updated compilation.

1.4 Activities

The activities leading to these objectives can be divided into three categories.

a. Searching, abstracting and encoding the abstracted information.

b. Processing of the encoded information to yield various desired files and outputs. We note here explicitly that part of the

processing involves, stripping, sorting and ordering the information on the abstracts.

c. Merging the information with the existing compilation, evaluating and editing the new body of information and producing a new typeset hard copy.

Needless to say, the objective of producing a new compilation which is merged with the existing one imposes the necessity of generating information files which are as similar as possible in format and ordering philosophy to the existing compilation.

2. THE INFORMATION

2.1 The Abstract

The abstract consists of all ion data from a given document with associated citation information. The data are discussed in detail below. This is the fundamental document from which all subsequent files and outputs are derived. Thus it is extremely important to check the accuracy of abstracting and encoding.

A form as filled out by the abstractor is shown in figure 2. The ID number or accession number of the reprint is added to the form and the reprint by the scientific data clerk at the time for encoding. The computer program will associate it with each ion datum.

The author, title and reference are checked and modified by the scientific data clerk for consistency of format and abbreviation.

Since almost all papers employ only one method, the abstractor circles the appropriate method, and the scientific data clerk will associate it with each ion datum as it is encoded. If a paper cites

10 # AUTHUR BENEZRA,	S. A. and Bursey, M. M.	•		INT.	DATE
SHEET # Spectral rearrange	ects on ordening factors in mo ements. Loss of keten from	SS	ABSTR. REF. CK. NOM. CK.	SHO	3/11
Lot & REFERENCE: J. Chem.	Soc. B, ISIN(1971).	•	KEYED IN PROOFED		
CODE ION + STATE	MOLECULE OTHER PRODUC	T APPE	ARANCE F	0T.	UT-
	(2, 4-Di Gluordichichemul acetate)	۵ ×	010		
	(RN 36914-97-9)	•			
C6 H40F2		0	8±0.03		
-	SAMG	•			
		•			
CeHSNR	CkH3F2NHCOCH3 CH3=CO	0	3+0.03		· • • • • • • • • • • • • • • • • • • •
	(N-(2, 4-0, f) udrophenul) acetanio	e) . ()			
	(RN 3h9-36-0)	•			
(JA)		•			
		•			
			9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		• •			
		•			
C2HSO+		8	240.03		
	SAM &				
COMMENTS:	Figure 2. The abstractor's form.		METH. C	S	٩
			EM	PD EDD	SRF
			NRE	CS 0	1 1 1 1 1 1
			3	E AUG	524

two or more methods, provision is made in the other method column for entering the other method acronym.

At the left hand margin of the form, five columns are set aside for flagging symbols which are entered by the scientific data clerk at the time of encoding. The nature and purpose of the flagging is described in a later section.

After encoding, the written abstract form is attached to the reprint and filed. The encoded form of the abstract is shown in figure 3.

Detailed guidelines for abstracting are given in a separate document.

2.2 The Basic Unit of Information

The basic unit of information of the data base is the numerical value of a measurement relating to a particular ionic species and its associated detail and documentation. We will call this an ion datum. It consists in all cases of the following items of information arranged horizontally

ION REACTANT OTHER AP or IP METHOD REF PRODUCT (eV)

and a number of parenthetical comments.

2.2.1 Ion - The ion is always represented by an empirical molecular formula and a charge. In addition, where pertinent, the electronic state of the ion is also given in parentheses.

Examples: CH_3^+ , Ar^{+4} , $Ne^+(^2P_{3/2})$, $N_2O^+(X^2\Pi_{1/2})$, N_2^{+3} , $C_3H_6^+$

2.2.2 Reactant - This is the species on which the measurement is made. It consists in most, but not all, instances of stable gas phase molecules in their ground electronic state. Occasionally this species may consist

2.2.3 Other Product - In some processes leading to ion energetic information, the ion of interest is formed by fragmentation of the subject molecule, and is thus accompanied by another atomic, ionic or polyatomic fragment species. Such processes include

 $C_{2}H_{6} + e \rightarrow C_{2}H_{5}^{+} + H + 2e$ $CH_{3}C1 + h\nu \rightarrow CH_{3}^{+} + C1^{-}$ $C_{6}H_{5}C_{2}H_{5} + e \rightarrow C_{7}H_{7}^{+} + CH_{3} + 2e$ (Ethylbenzene) $N_{2}O + h\nu \rightarrow NO^{+} + N(^{4}S_{0}) + e$

All products except electrons are tabulated under other products.

In some instances the other product may consist of more than one fragment.

$$B_5H_{11}^{\cdot} + e \rightarrow B_5H_7^{+} + 2H_2 + 2e$$

2.2.4 AP or IP - This is the measured quantity, the appearance potential (AP) or ionization potential (IP). It is always given in electron volts. The probable error of the quantity is always the one given in the source paper, where stated. Occasionally the AP or IP is given as an upper bound, ≤ 10.2 eV or a range 15.4225 - 15.4255 eV or an approximation ~ 10.72 eV.

2.2.5 Method - The ion energetics measurements are carried out by a variety of techniques. They are denoted by two-or three-letter acronyms. The acronyms and names of the methods are given in the accompanying list. The methods are ordered according to generally decreasing reliability, although in some particular instances a

measurement by a "high ranking" method may give a less precise answer than a measurement on the same system by a "lower ranking" method. In general a given paper may give information on one or more ions based on measurements of one or more molecules. But almost always a given paper reports on measurements using only one method. Some of the "methods" are rather indirect, such as use of the Born-Haber cycle or application of semi-empirical relations between charge transfer spectra in solution and gas phase ionization potentials. The methods are described and discussed in detail in reference 1.

2.2.6 Reference - This ties the ion datum to the journal reference and document (reprint) file. It is simply a four-digit accession number.

2.2.7 Associated Comments - There are several purposes for the comments on an ion datum as indicated above. For cyclic compounds a one-line formula representation is inadequate to identify the compound. Therefore it has been decided to provide the name for all such compounds. We have arbitrarily chosen to adopt the Chemical Abstract nomenclature However, this nomenclature system is not static, new names are system. added and old names are ocasionally changed. Thus we have decided to give the CAS Registry Number as well, both for cyclic and acyclic compounds. The Registry Number, although arbitrary, is not subject to change and offers the possibility of entering into other nomenclature and structure representation systems such as the Wisswesser system and schemes for generating formulas and structures by computer techniques. Thus, for acyclic systems we always have the CAS Registry Number and for cyclic systems the CA Name and CAS Registry Number as comments. Besides these two, there are eighteen other comments which given additional information

Table 1. List of Comments and Coding Acronyms (continued)

- RC Mean value of Renner components
- NA Name used by author:

OP The other product(s) is (are)

- MT, NI, TR are used principally as an aid in establishing the validity of other product statement. They may be discarded (or not) in the final revised edition. Use as many as appropriate.
- * One cannot simply give sum of kinetic energies of two successive metastables.
- ** The reason is simply that one looks for evidence that one reaction step occurred.
- *** Used where limits are impossible to assign to spin-orbit components.

**** Used where there are several CTS values.

***** Used for transient species produced in ion source by electron impact.

****** Used for ion pair processes.

3. DOCUMENT CONTROL AND STATUS FILES

In this section we discuss the logistics and file structure associated with the production of a correct archival tape of abstracted information. The general scheme is shown in figure 4. P_1 , P_2 , P_3 , P_4 , P_5 , P_6 , and P_7 refer to computer programs described in section 5.

The literature search identifies articles which may contain information of interest. As the reprints are processed they are stored in an unabstracted reprint file and a document control card is typed and filed alphabetically by first author. This is an accessible reference file for documents on hand. After a batch of reprints have been abstracted, the abstracts are encoded on a Model 37 TTY, a printout of the encoded material is produced, proofed and, if necessary, corrected. The processed reprints and associated abstracts are stored in a separate file ordered by accession number. The corrected abstract tape is now processed to produce the following printed outputs: a printout of the abstracts in serial order of accession number, a printed document control card with ID number and a series of separate cards, one for each ion datum. Additional outputs are discussed in the next section.

The printed document control card then is used to replace the typed card in the document control file, thus indicating which of the documents have been processed. Also if it is needed to refer to a document by conventional author and journal reference it and/or its abstract can be located in the ID ordered file or the printout of abstracts.

The ion datum cards are further sorted by hand according to molecule composition of the ion and generate a card file useful in locating processed information on a particular ion.

4. INTERIM OUTPUT FILES AND ORDERED INFORMATION

4.1 Output Files

It was mentioned above that it is intended to prepare during the course of the work a series of raw data supplements for interim use by the user community prior to issuance of the revised compilation. The supplements will list in ordered form all measurements abstracted for the later calendar years, 1972, 1973 etc. as the work progresses. They would be similar in format to the compilation, and will include bibliographies and author indexes. As these are issued it is intended to establish and maintain a set of cumulative files of this type which will ultimately be merged with the existing compilation.

In order to accomplish this it is necessary to separate the abstract information into certain component parts, generate a means of sorting the required parts, i.e. develop and attach a sort key, cumulate the processed batched into files holding the information for a year, sort the files into ordered files, format them and print them. This is shown schematically in figure 5.

4.2 Ordering Principles

4.2.1 Bibliography and Author Index - The ordering principle for the bibliography is, of course, simply the accession number and the author index is alphabetical with the proviso that composite letters such as $\stackrel{\circ}{A}$, C, $\stackrel{\circ}{C}$, $\stackrel{\circ}{u}$, etc are treated as the corresponding ordinary letters, and hyphens and apostrophes are ignored in the alphabetical ordering process.

4.2.2 Ion Data - The ordering of the ion data is considerably more complex and is based on a hierarchy of four considerations:

Figure 5. Separating the abstract into various files.

a. Atomic composition, complexity and charge of the ion and reactant species.

b. Chemical nature of the reactant species.

c. The measurement method.

d. The numerical value of the measurement.

A. Atomic Composition, Complexity and Charge The ordering principle for atomic composition and complexity is expressed in the following way:

Species are grouped in increasing order according to the element of highest atomic number which they contain.

Within each group they are separated into subgroups consisting of species containing one chemical element, two chemical elements, three ... etc.

Within each subgroup those that contain the additional element(s) of lowest atomic number come first and are ordered by increasing number of atoms starting with the element of lowest atomic number.

All isotopes are ignored except for deuterium and tritium which are ordered according to increasing extent to which they substitute for hydrogen. Thus CH_4 , CH_3D , CH_2D_2 , ... CH_3T and then C_2H_6 , C_2H_5D , $C_2H_4D_2...$

For a species of given atomic composition, the species are listed according to increasing positive charge.

B. Reactant Species

For a given ion the reactant species are again ordered according to the same principle of atomic composition, complexity and charge.

In addition, now, there is further ordering according to chemical structure. First, straight chain and branched chain compounds are

placed before ring compounds, using the fact that all ring compounds have a name associated with them.

The straight-chain compounds of a given isomer are further ordered according to whether in the semi-structural formula representation there are any italicized prefixes indicative of different isomer structure. A complete list of these prefixes is given in Table 2 together with the decimal and octal equivalent numbers which represent them in the sort key (some are only applicable to ring substitution, see below). The applicable ones include <u>n</u>-, <u>sec</u>-, <u>iso</u>-, <u>tert</u>-, <u>cis</u>- and <u>trans</u>-.

Those molecules with no prefixes at all will precede all molecules with prefixes. Finally, if necessary, the CA Registry Number is used for further sorting.

As for the ring compound isomers, they are ordered according to the compound name. Since the nomenclature is quite complex, containing isomer prefixes, numbers locating double bonds or atom connections, as well as italicized or greek letters, the following scheme is employed.

a. Form the "proper name" by scanning the name and extracting the first upper case latin letter and all subsequent lower case latin letters.

b. Add to this string all isomer prefix symbols or phrases, numbers or greek letters in the order that they appear in the entire name. These symbols or phrases are identified by the fact that they are lower case italic followed by a dash (see Table 2, page 23).

c. Substitute for each of the letters phrases, or numbers of the string, an associated numerical value and sort the resulting string of numbers. The decimal equivalent numerical values associated with each letter, phrase or number are given in Table 3.

Table 2. List of Isomer Prefixes in order of sort preference

	Decimal <u>Equiv</u>	Octal Valent		Decimal <u>Equi</u> v	Octal valent
<u>o</u> -	17	021	cyclo-	55	067
<u>m</u> -	18	022	bicyclo-& dicyclo-	60	074
P-	19	023	tricyclo-	65	101
<u>n</u> -	20	024	spiro-	70	106
sec-	25	031	syn-	75	113
iso-	30	036	anti-	80	118
tert-	35	043	endo-	85	125
neo-	40	050	exo-	90	132
cis-	45	055	<u>qra</u> -	95	137
trans-	50	062	opqra-	100	144

Table	3.	Numerica	al Equiv	alents	of	GPSI	OC Symbo	ols,
		Isomer 1	Prefixes	, Meth	ods	and	Chemica	al
		Element	Symbols					

	GPSDC	PREFIX or	
DECIMAL	CHAR.	ELEMENT	METHOD
1	,		
1	:		
2	11-		
3	it S		
4	\$ "		
5	6		
6	<u>ک</u>		
7	•		
8	(
9)		
10	*		S
11	+		
12	9		
13	-		
14			
15	/		PI
16	0		
17	1	0	
18	2	m	
19	3	a	
20	4	n	TPF
21	5		
22	5		
22	7		
2.5	/ 0		
24	8	222	DE
25	9	sec	PE
20	,		
27			
28	<		
29	=		
30	>	iso	AUG
31	?		
32	(g		
33	A		
34	В		
35	С	tert	PEN
36	D		
37	E		
38	F		
39	G		
40	н	neo	EM
41	T		
42	-		
43	к		
44	I		
45	M	nic	RDD
	4.1	000	

Table	3.	Numeríc	a1	Equiva	lents	of	GPSI	C	Symbol	s,
		Isomer	Pre	efixes,	Metho	ods	and	Cł	nemical	
		Element	Sy	mbols	(conti	lnue	ed)			

	GPSDC	PREFIX or	
DECIMAL,	CHAR.	ELEMENT	METHOD
46	Ν		
47	0		
48	Р		
49	0		
50	R	trans	EDD
51	S		
52	T		
53	Ū		
54	V		
55	W	cuclo	NRE
56	X	-9	
57	Ŷ		
58	- 7.		
59	ſ		
60	L	bicuclo	SRP
61	1	2009000	bia
62	1		
63	<u>^</u>		
64			
65	3	triquelo	FD
66	a	ti tegeto	
67	0		
68	d		
60	u Q		
70	e e	enino	SD
70	1	32010	50
71	8 b		
72	11		
7.5	1		
74		21/2	SEO
75	ĸ	syn	3EQ
/0	1		
77	m		
/8	n		
79	0	and the	ET
80	р	anti	E1
18	q		
82	r		
83	S		
84	t	7	0.7
85	u	endo	- SI
86	v		
87	Ŵ		
88	х		
89	У		
90	Z	exo	CTS

Table 3. Numerical Equivalents of GPSDC Symbols, Isomer Prefixes, Methods and Chemical Element Symbols (continued)

DECIMAL	GPSDC CHAR.	PREFIX or ELEMENT	METHOD
91	{		
02	ť		
92	3		
95	-		
94			DU
95		qra	вн
96			
97			
98			
99			
100		opqra	DM
101		Н	
102		He	
103		Li	
104		Be	
105		В	
106		С	
107		N	
108		0	
109		F	
110		Ne	
111		Na	
112		Ma	
112		A 1	
110		AL Cá	
114		51	
115	-	P	
116	11	S	
11/	Σ	CI	
118	∇	Ar	
119	×	k	
120	5	Ca	
121	8	Sc	
122	•	Ti	
123	-†-	V	
124		Cr	
125	a	Mn	
126	t	Fe	
127	\rightarrow	Со	
128	ŧ	Ni	
129	*	Cu	
130		2 n	
131		Ga	
132		Ga	
133	<i>c</i>	6e	
134	5	AS	
125	d /	56	
100	¥	BE	

Table 3. Numerical Equivalents of GPSDC Symbols, Isomer Prefixes, Methods and Chemical Element Symbols (continued)

DECIMAL	GPSDC CHAR.	PREFIX or ELEMENT	METHOD
136	7	¥ *	
137	A	Ph	
138	0	RD Sm	
130	<u>م</u>	SI V	
140	7	1	
140	-		
141	11	ND	
142 -	2	MO	
14.5	1	IC Dec	
144	Φ	Ru	
145	Ψ	Rh	
146	25	Pd	
147	α	Ag	
148	β	Cd	
149	Υ	In	
150	δ	Sn	
151 .	ε	Sb	
152	ζ	Te	
153	η	I	
154	θ	Xe	
155	к	Cs	
156	λ	Ba	
157	Ц	La	
158	υ	Ce	
159	ξ	Pr	
160	π	Nd	
161	ρ	Pm	
162	σ	Sm	
163	т	Eu	
164	φ	Gd	
165	Ť V	Tb	
166	<u>л</u>	Dv	
167	Ŷ	Ho	
168	ŭ	Er	
169		Tm	
170	2.	Vb	
170	5	I.y	
171		UF	
172	2	To	
173	2		
1/4		W	
1/5		Ke Or	
1/6		US	
177		lr	
178		Pt	
179		Au	
180	• •	Hg	

Table	3.	Numerical	Equival	lents	of	GP SD	C Symbols,
		Isomer Pr	efixes,	Metho	ds	and	Chemical
		Element S	ymbols ((conti	nue	ed)	

	GPSDC	PREFIX or	
DECIMAL	CHAR.	ELEMENT	METHOD
181		T1	
182		Pb	
183		Bi	
184		Po	
185		At	
186		Rn	
187		Fr	
188		Ra	
189		Ac	
190		Th	
191		Pa	
192		U	
193	0	Np	
194	-	Pu	
195	\sim	Am	
196		Cm	
197		Bk	
198		Cf	
199		Es	
200		Fm	
201		Md	
202		No	
203		Lr	
204			
205			
206			
207			
208			
209			
210			
211			
212			
213			
214			
215			
216			
217			
218			
219			
220			
221			
222			
223			

Table	e 3.	Numerical Equiv Isomer Prefixes Element Symbols	alents of GPSDC Symbols , Methods and Chemical ; (continued)	•
		GPSDC	PREFIX or	
DECIMAL		CHAR.	ELEMENT	METHOD
224 225 226 227 228 229 230 231 232				
233				
235				
236				
237				
239				
240				

.

The procedure is illustrated with two examples below with the number string generated from the decimal equivalent endo-5-Chlorobicyclo [2.2.1] hept-2-ene

C h l o r o b i c y c l o h e p t e n e <u>endo</u> 5 2 2 = 35 72 76 79 82 79 66 73 67 89 67 76 79 72 69 80 84 69 78 69 85 21 18 18 1 and anti-Tricyclo [4.2.0.02, 5] octa-3,7-diene

octadiene anti - 4 2 0 0 2 5 y 1 o r - **i** С 52 82 73 67 89 67 76 79 79 67 84 65 68 73 69 78 69 80 20 18 16 16 18 21 1 = In the computer these numbers are represented by their octal equivalent.

The above procedure provides a crude but systematic way of ordering different isomer names. It was be useful for deciding unambiguously on the ordering if, as is typically the case, one has only a dozen or so isomers in a typical case. If on the other hand one had to derive an ordering principle applicable to several hundred isomers a totally different approach may be necessary, such as the use of the Wisswesser line notation.

C. Method

The next level of ordering the information, which is by now categorized by ion and specific reactant molecule, is to order according to measurement technique. The different methods are given in Table 4, and are shown in order of generally decreasing accuracy. This order is not universally valid but is a good first approximation. This ordering is adopted here.

D. Measured Value

Lastly, within these categories the information is ordered according to increasing numerical value of the measurement. The principal purpose of this ordering is to group together the information

Table 3.	Numerical Equivalents of GPSDC Symbols,
	Isomer Prefixes, Methods and Chemical
	Element Symbols (continued)
ŧ	

	GPSDC	PREFIX or	
DECIMAL	CHAR.	ELEMENT	METHOD
224			
225			
226			
227			
228			
229			
230			
231			
232			
233			
234			
235			
236			
237			
238			
239			
240			

The procedure is illustrated with two examples below with the number string generated from the decimal equivalent <u>endo-5-Chlorobicyclo</u> [2.2.1] hept-2-ene

C h l o r o b i c y c l o h e p t e n e <u>endo</u> 5 2 2 = 35 72 76 79 82 79 66 73 67 89 67 76 79 72 69 80 84 69 78 69 85 21 18 18 1 and

anti-Tricyclo [4.2.0.02, 5] octa-3,7-diene

In the computer these numbers are represented by their octal equivalent.

The above procedure provides a crude but systematic way of ordering different isomer names. It was be useful for deciding unambiguously on the ordering if, as is typically the case, one has only a dozen or so isomers in a typical case. If on the other hand one had to derive an ordering principle applicable to several hundred isomers a totally different approach may be necessary, such as the use of the Wisswesser line notation.

C. Method

The next level of ordering the information, which is by now categorized by ion and specific reactant molecule, is to order according to measurement technique. The different methods are given in Table 4, and are shown in order of generally decreasing accuracy. This order is not universally valid but is a good first approximation. This ordering is adopted here.

D. Measured Value

Lastly, within these categories the information is ordered according to increasing numerical value of the measurement. The principal purpose of this ordering is to group together the information

		Numerical Decimal	Equivalent Octal
S	Spectroscopic	10	012
ΡI	Photoionization	15	017
TPE	Threshold Photoelectron Spectroscopy	20	024
PE	Photoelectron Spectroscopy	25	031
AUG	Auger Electron Spectroscopy	30	036
PEN	Penning Ionization	35	044
EM	Electron Monochromator Studies	40	050
RPD	Retarding Potential Difference	45	055
EDD	Energy Distribution Difference	50	062
NRE	N th Root Extrapolation	55	067
SRP	Square Root Plot	60	074
FD	First Derivative	65	101
SD	Second Derivative	70	106
SEQ	Sequential Ionization	75	113
EI	Other Electron Impact	80	118
SI	Surface Ionization	85	125
CTS	Charge Transfer Spectrum	90	132
вн	Born-Haber Cycle	95	137
D	Derived Value	100	144

Table 4. Techniques for Ion Energetics Measurements in Order of Sort Preference

on the various ionization potentials of a given molecule which is obtained by the photoelectron spectroscopy technique. Although the various electronic states of the ions have each a different spectroscopic designation, there is no ordering criterion based on the electronic state which is of wide enough validity for use here.

Comparing the more detailed ordering of ring compound isomers by compound name with the less detailed ordering of chain compound isomers, it is evident that the latter will not be totally ordered in some instances where there are no isomer prefixes and the isomers are distinguished by the one line structural formula alone.

Example: CH₃COCH₃ vs. CH₃CH₂CHO.

Here the ordering according to numerical value alone will be of some help if, as is often the case, the isomers have different IP or AP values.

In any event, the ordering will not always be perfect, and in the future it will be extremely useful to have a means of permitting the ordering of a group of ion datum lines.

E. Output

The interim output is obtained from the ordered raw ion data, bibliography and author index files in the form of computer printout which will be xeroxed or photocopied. In order to do this it will be necessary to strip the sort key from the material prior to printing out. The printout will be carried out on the NBS IBM 360 printer, using the extended character chain printer. This extended character chain comprises a set of characters appropriate to the presentation of scientific information (See Appendix A and table 3).
5. PRESENT STATUS OF THE AUTOMATED SYSTEM

The dashed lines illustrated earlier in figure 5 indicate procedures and programs that remain to be written. A list of the programs and their function is given in Table 5. The programs specially written or adapted for this system are underlined. They are grouped into a package called IONPACK. The system is developed to the point that intermediate control and output files can be prepared. Information subsets and final compilation merging and editing remain to be developed.

When the typist is satisfied, a copy is made to be proofread by the abstractor. When all corrections have been made, an archival tape is requested and GPSDC programs are used to convert the archival tape to a GPSDC file and print the file using the extended character printer. If any mistakes are found in the printout, corrections are made in ATS and a new archival tape is requested.

IPABS1 is used to read this file and generate the files required by the data center. These files are: The abstract print file, the card image file, the reference file and the raw ion data file. DGMDMP is used to print the abstract print file and the card image file. The abstract printout is used as an archival record of the abstracts that have been processed. The card images are printed on 5 x 8 cards. The' cards containing the citations are used as document control care replacements. They indicate which papers have been processed. The ion data cards are sorted manually by ion and provide a manual alternative to the machine readable ion data file. (At a later date these cards may be

Table 5. List of Programs Used

- P₁ ATSIN: Program used to convert an ATS archival tape to a GPSDC file containing abstract information to be used as input for P₂.
- P₂ <u>IPABS1</u>: Reads GPSDC file containing abstract information and generates, working files (abstract print file, card image file, bibliographic data file, raw ion data file with sort key) necessary to produce the required output files.
- P₃ DGMDMP: Prints card image file generated by P₂ (ion data + DOC, control replacements) to produce 5 x⁸ document control replacement.
- P₄ <u>WREF</u>: Inputs bibliographic data file and outputs an unsorted author file with sort key and a reference file.
- P₅ <u>IPSORT</u>: Sorts the raw ion data file generated by P₂.
- P₆ <u>ISTRIP</u>: Inputs the sorted raw ion data file, strips the sort key from the entries and write them out as a GPSDC file.
- $P_7 IPASRT$: Sorts the unsorted author file generated by P_4 .
- P₈ MERGE: To be developed later.

dispensed with). The raw ion data file is added to the year's cumulative raw ion data file. The cumulative files for each year are combined to form a master cumulative file.

IPSORT is used to sort a raw ion data file when the evaluator wishes to see the material ordered by ion. ISTRIP is used to remove the sort key from a sorted ion data file and generate a GPSDC file. DGMDMP is used to print the file on the extended character printer.

The GPSDC file from ISTRIP can be edited using EDBOSS or it can be converted to an ATS archival tape and loaded into ATS for editing. The next sections contain detailed instructions for each computerized step of the procedure, and form an operating manual for the present data center.

6. KEYBOARDING THE ABSTRACT

6.1 Format of the abstract

The abstract is to be keyboarded into the Department of Commerce ATS system using a model 37 teletype or an equivalent terminal. The standard GPSDC method of keyboarding should be used to get the characters that are not in the 96 character ASCII set. Appendix A contains all characters that are defined in GPSDC.⁵

The previous example in figure 3 shows a sample abstract as it would be keyboarded. The document control number is on the first line beginning in position 1. The bibliographic information is next. The first author's surname begins in position 7 followed by his initials. The authors are separated by semicolons. The title is separated from the authors and the journal by double daggers. The Chemical Abstracts abbreviation is used for the journal. The volume number is to be bold

face (put red hats over the number). The bibliographic information ends with the year in parentheses. The lines of bibliographic information shall not extend past position 60. While the first line begins in position 7, continuation lines shall begin in position 9.

The ion data line is flagged by a section mark (a red 2) in position 1. The ion formula begins in position 6. Only the document control number and flags are allowed in positions 1 thru 6. Flags shall always be in position 1. The reactant formula begins in position 27. The other products formula begins in position 47 unless the reactant formula runs over the space allotted, in which case it starts two spaces after the reactant formula. The measured value shall be in positions 57 to 76 the decimal point shall be in position 62. The method shall be in positions 77 to 79. If there is a heat of formation it shall be in positions 85 to 93. The decimal point shall be in position 92. This field will normally be blank.

The name of the reactant follows. It shall begin with an open parenthesis in position 27. If the name is so long that it would extend past position 115, it may be continued on the next line. The name may be followed by up to three comment lines. If the comment is a parenthetical comment, the open parenthesis shall be in position 9. Regular comments shall begin in position 6. Do an extra carriage return before the next ion data line.

An abstract shall be terminated by a dagger (red V) in position 1. It is important that the abstracts be in increasing order of ID number. If they are out of order the abstract and reference files will be out of order.

7. CONVERTING ATS KEYBOARDING TO GPSDC FILE

7.1 Requesting an ATS Archival Tape

The procedure for requesting an archival tape is to first put the document or documents in the archival queue. The command used is \underline{x} ; archive; document name.

The AQR form must then be filled out and sent to operator 0 (zero) and operator 20. A sample form is shown in figure 6. The form must request that the archival tape be sent to NBS via the NBS shuttle.

7.2 Converting the Archival Tape to GPSDC

The program ATSIN is used to convert the ATS Archival tape to a GPSDC file for processing by the programs in IONPACK. The tape must be labeled for use on the NBS computer. The first three letters of the label shall be ION. This may be followed by the last three numbers of the Department of Commerce tape number for the reel. Make a 5 x 8 card with the new tape label and the Department of Commerce tape number. The card will contain the date the material was archived, a description of the material archived, and the date the tape was received. The card shall then be filed in the tape file box. Record all movement of the tape of the 5 x 8 card. Figure 7 shows a sample card.

The job request card, a listing of the run, and a 360 printout of the GPSDC input file are shown in figures 8, 9, and 10 respectively.

The first card is the standard run card. The job is run under N priority. This means it is run overnight for cheaper computer costs. The second card assigns the GPSDC program file. The third card invokes the collector to gather the routines required for this run. The fourth card assigns the ATS archival tape as file 8. The U9V means the tape is 9

AL ATUZATE ARCHI	AC CORDE REPOLST FORM (NOR)	ATS/ATS/ATS			
1. User Nume and G	perator Number: candy schmidt	070			
2. Sureau/Account :	10.: nbs 2501				
3. Telephone Numbe	r: 921 2792				
4. Building and ro	om number: 222 A145				
5. Tape Release Da	te: 6 30 80				
6. Total number of	Documents to be archived: 1				
7. Type of Documen	ts: abstracts				
6. Date of Request	: julv 11, 1977				
9. Oueue Name(arch	ive, archive2, arcnive3):archiv	/ e			
10. Tabe Reel numbe Please snip to me vi you very much. cand	r: a the N2S shuttle the above ta; v	be. Thank			
ADVANCED PREPARATION 907-5526) TO CO-ORDI ARCHIVE PUEUE AT ONC REEL NUMBER.	AUST 2E MADE WITH THE COMPUTE NATE YOUP ARCHIVE REQUEST WITH E. <u>DO NOT DELETE</u> YOUR DOCUMENT	R CENTER PRIOR TO THIS THE COMPUTER CENTER. IS FROM PERANNENT STOPP	PEQUEST. CON PLEASE REPORT SE UNTIL YOU	TACT YOUR A ANY PROPLE YAVE REEN A	NTS PEPPESSINTATIVI NS NITP THE USE (NOTIFIED OF YOUR (

Figure 6. AQR form

009523

CS003 9 Track ATS labeled tape

@ ASG,TJ 8., U9V, CS003

contains abstract entries 3476-3484 6-29-77

Figure 7. GPSDC tape description to be recorded on 5 x 8 card and kept in the tape file box.

PR.	RUN	10		AC	cou	INT NO.	TIME	PAGES	CARDS		NAME		РНС	NE	BIN
N	CANDY	3	340	61-	-sc	HMID	8	1000		С	SCHMIDT		2792		
REI CS	C5003 NO KEYPUNCH						OPERATIONS H	- 🗆 M/	ALL TO:				X WIL	L PIC D TO D TO	K UP 2ND FLOOR 3RD FLOOR
				=	1 1 1				SC 4020					COMP	
					ויין	UPE CAR	DS TIMES		NT MODE		16 MM	INK CC	LOR	PEN	
				E] 0	IGIDATA	(Specify)		PE FILM		HARD COPY	PAPER	ME COUNT		
BR RE	KPTED EL NO.	PGS. EST.	CDS. EST.	N O R	E X T	PART PAPER	SPECIAL FORMS	FRAME	COUNT	TA	PE(S)	TAPE	5)		
				'				Plea	Se ret	uri	n reel.C50	003			
								1						CONT	ON REVERSE
JOB LOADED JOB PICKED UP						NBS-777 (Rev. 9-7	3)	JOB	U.S. DEPAR NATIONAL BU	CARD	OF COMME	RCE	DATE 6/29/77		

Figure 8. Job request card for ATSIN run.

PIELT+LID FILE.ATS ELT007 R72-16 10/21/77 17:47:54 (,0) 0.20 000001 DRUN, N/NR SCHMAR, 34963-SCHMID, IPOT, 5, 200 000002 000 DASG.A GPSDC*DICX8. 000 000003 DMAP,NX GPSDC*DICX8.ATSIN.ATSIN 000 000004 @ASG.TJ 8.. U9V.ICN123 000005 000 DREWIND 8. 000 ADELETE.C IPOT*ION3476. 000006 56 D aASG,UP IPOT*ICN3476..F2 10007 000 2.. IPOT*ION3476. OUSE 000008 000009 000 DXQT ATSIN OTFILE = 2000010 000 000 FILE 2 NEW ION FILE 3476 TO 3484 4JUN77 000011 00012 000 PGWDTH2 = 1600.00 LF2 = 2C 10013 010 LM = 1700C14 PM = 11600015 0 10 000 TABS 6 7 27 47 60 77 88 132 108 00015 CCO DMPOPT = 0000017 . C 22 C 20018 RUN 000019 0.00 DASG,A TEXTPROCESS*LIB. 00020 000 DMAP, NX GPSDC*DICX8.DGMDMP.DGMDMP WRITE ENABLE REEL 1534 000 OMSG.W 34060-SCHMID C 200 21 000022 000 DASG.TJ 11.,8C.1534W 00023 0 3 2 **DMARK** 11. 010 ()00,24 **BOLDSE** 11. C)0025 0 0 0 axor DGMDMP 000026 0:20 INFILE = 20.00 000027 RUN 600628 0.00 DEOF

Figure 9. Listing of ATSIN run.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 19 6 - 22 7 - 25 8	- 28 - 2 1 10 - 1 1 4 1 - 1 2 1 7 1 2 - 40 1	51 55 - 51 55 - 51 55 -	- 56 18 - 59 15 - 62 20	- 65 21 - 68 22 - 71 23	- 74 24 - 77 25 - 80 26	- 63 27 - 66 28 - 69 29	- 52 30 - 55 31 - 98 32	60 101- 35 201- 36 911-	80 011- 122 40
	F.1			E 1	E 1	E 1		EI	E1	E
nt, M. I.; McNull, D. W.; Lumhing, F. P.; vr, J. Plim thermal rearrungement of e to cyanocyclupentadiene, fletra- rw 30, 3415 (1968),	C ₅ H ₆ CN ea (Cyclupentadionecariuulitily) KN-CAS Kadlatry Number 27055-30-5)	C ₅ H ₆ •• 5.0 (1,3-Cyclopentarilene) (#N-CAS Kewlwiry Numuer 542-52-71	loudun, A. G.; and Marknuw, K. 2. †Kling actiona in arowatic systeme. A bitudy rain in auma n.nf-dimethyl-1,1/-11- Org. Mawa Spectrom. <u>3</u> A 1121 (1971).	C10H6(CH31C10H6CH3 ** 11.1*+HARPHILINY1, 2,2*+HAUNTHY1+1 14.1**********************************	C ₁ 046(CU3)C ₁ 046CH3 CU3 13.25 11.1 ⁻⁶ -Bliaphthyl, 2.2 ^{-6-th} wothyl-1 14M-CAS Kewimtry humber 32834-84-71	C ₁ 0H ₆ (CH ₃)C ₁ 0H ₆ (CH ₃ •• 11,1 ⁻ -Blaaphthyl, 3,3 ⁻ -dluethyl-) 14-CAS Keglatry Number 3-042-521	С ₁ 0H6(СИ3)С ₁ 0N6 ^{CN} СИ3 12.25 (1,1 ⁻⁶ -ВІларініруL 3.3 ⁻⁵ -нішеніруL-) (КМ-САХ Кыдінігу Мишьег 3-042-82-51	C ₁ UI6 (CH ₃)C ₁₀ U6 (CH ₃ ** 1.1. ⁴ - Blacphilip1, 7.7 ⁴ - disertiy1 -) (MN-CAS Ma ₄ 1 atry Number 34003-80-0)	C ₁ OH ₂ (CH ₃)C ₁ OH ₂ CH ₃ CH ₃ (1,1 [*] - HIRAPITITY1, 7,7 [*] - JIWUTHY1-1 (KN-CAS ValINTY Number 34003-100-0) C ₁ Oh ₂ (Cl) ₁ - 0 C ₁ Oh ₂ (Cl) ₁ - 0 (1, [*] - HIADITY1)C [*] + 4 [*] - 10 [*]	(#N-CAS Regitary Number 32653-05-31 C1006 CH3)C1006 CH3 C H3 (1,1'-Himphity, 3,8'-41mmityl-) (1,1'-CAS Rewlatry Number 32693-05-31
476 Heiliya, L.; kei and NcAlliati phenytnitreni hviton Letter	с _с н ⁵ и°	C ₆ H 6	Harriw, W. M.; «Aponution red of steric with naphthylw, 40	¢≥≥ ^H i⇔	C21H15	د _{خ ک} ال _ن ع	C21 H15	C22Hia	C21H15 C22H18 C22H18	c ₂₁ His

Figure 10. 360 printout of the GPSDC input file using ASTIN.

tracks, 1600 bpi. The 6th, 7th, and 8th cards assign a file called IPOT*ION3476 as file 2. This name was used because the tape contains abstracts for papers 3476 thru 3484. The 9th card starts execution of the program ATSIN. Cards 10 and 11 tell the program the output file is file 2 and it is to have GPSDC label ION FILE 3476 to 3484. These cards are the beginning of the random order data which is described in more detail in the GPSDC users manual.

The next map card invokes the collector to gather the routines required to print the GPSDC file created by ATSIN. The next two cards assign a tape for DGMDMP to write which is printed on the IBM 1403 printer using the GPSDC train. The label and description is put on a 5 x 8 card and stored in the tape file box (figure 11). The mark and close cards put end of files at the beginning of the tape so that a lot of useless printout is not received if the run does not write on the tape. Combining smaller input files into larger ones is done using EDCARD or EDBOSS. 8. GENERATING THE REQUIRED OUTPUTS

The production of the various required outputs necessitates several steps. The program IPABS1 reads the GPSDC file and writes three new GPSDC files and a binary file. The file input which was generated as file 2 in the previous run is assigned file 1. The file of abstracts to be printed is output on file 2. The file of card images to be printed on 5 x 8 cards is output on file 3. The reference file is written on file 4 and the raw ion data file is written on tape on unit 7. The program DGMDMP is used to generate the tapes used to drive the 360 printer to print the abstracts, the document control card replacements and the ion data cards.

NBS 0409 @ ASG,TJ 11., 8C, 0409 assigned to 30062-WEBBWI To be used as DGMDMP tape Printed abstract entries 3476-3484 29 Jun 77

.

•

Figure 11. Description of tape that is assigned to print the GPSDC file created by ATSIN.

t

The job request card, a listing of the run, a 360 printout of the abstract file, and the 5 x 8 card describing the tape are illustrated in figures 12 through 15 respectively.

Note in the run deck, that the next three cards beginning after the FILE 1 OLD card should have the words ABSTRACT, CARD, and REF beginning in column 26. The dump option card (DMPOPT) will produce a one line dump if DMPOPT = 1, and no dump if DMPOPT = 0. The miscellaneous card (MISC) provides the option of diagnostic printout if desired (e.g. printing the sort key).

The raw ion data file produced by this run will be kept for some time and will be merged with the yearly cumulative raw ion data file which in turn will be merged with a total cumulative file. Therefore the file should be put on a labeled tape that has been purchased. A description of the file and the date of the run will be written on the 5 x 8 card for the tape that is kept in the tape file box.

The raw ion data file consists of a 55 word sort key followed by the ion data line, name, and comments in GPSDC characters packed two characters per word. There is an octal 777777777777 word separating each line. The file is written on tape using NTRAN and cannot be read as a GPSDC file.

8.1 Printing the 5 x 8 Cards

The DGMDMP program is used to generate the tape for printing the 5 x 8 cards. It is necessary to supply the 5 x 8 card stock to the computer room. Examples of the job request card, a listing of the run, and a 360 printout on 5 x 8 cards are shown in figures 16, 17, and 18 respectively.

8.2 Sorting the Raw Ion Data File

When IPABS1 generates the raw ion data file it puts a sort key at the beginning of each ion data line. The program IPSORT is used to order the data by increasing atomic number of the elements in the

PR.	RUN	10		AC	соц	NT NO.	T1	ME	PAGES	CARDS	NAME		PHC	NE	BIN		
N	IPABS	1	30	06	2-6	EBB W	J	15	1000		W J WEBB						
REE 040	EL NO. 19	WRITE E YES	DNABLE	P	ERI K	PHERAL	OPERATIO H)NS	MA	AL TO:			UP 2ND FLOOR				
ION	101			ю.,	± V ± IN	ERIFY ITERPRE	εT					·	SEN	D TO	SRD FLOOR		
		L		.	1 L	ST CAR	DS TI	MES		<u>sc</u>	4020	1	CAL	COMP			
							NDS TI	MES		T MODE	16 MM	INK CO	DLOR				
				- '	0	THER	(Specily)		DUP	E FILM	HARD COPY	PAPER	PAPER FRAME COU				
BR RE	KPTED El NO.	PGS. EST.	CDS. EST.	NOR	E X T	PART	SPECIA FORMS	1 L 5	FRAME	COUNT	TAPE(S)	TAPE(S)				
040	9	10			*	1	PLAIN		SPECIAL	INSTRU	CTIONS	i top	0 7001	040	0		
									using	GPSDC	train and 1	6 lin	e, reer es/inch	. 040 1.	,		
												CONT. ON REVER					
TOB	LOADED		lob	PIC	KED	UP	V OK	то	NBS-777 U.S. DEPARTMENT OF COMMERCE DATE O (Rev. 9-73) NATIONAL BUREAU OF STANDARDS						DATE		
A T			8Y_				REL	DAO	JOB REQUEST CARD								

Figure 12. Job request card for IPABS1 run.

JIELT LID	FILE.	AB 5
ELTOCY RY	2-16 10/	19/77 18:01:27 (,0)
000001	000	DRUN,N/NR IPABS1,34030-SCHMID, IPOT,15,1000
000002	000	DASG,A GPSDC*DICX8.
000003	000	DASG,A IPOT*IONPACK.
00004	CCO	@ASG,A TEXTPROCESS*LIB.
000005	000	@ASG,A GPSDC*3476-3484.
000006	000	ause 1., GPSDC * 3476-3484.
000007	000	<pre>@DELETE,C IPOT*ABS3476-3484.</pre>
80 2 2 0 0	000	@ASG,UP IPOT *A3S3476-3484.,F2
000009	000	@USE 2., IPOT*ABS3476-3484.
000010	000	DELETE,C IPOT*CRD3476-3484.
000011	000	aASG,UF IFOT*CRD3476-3484.,F2
000012	000	ause 3., IPOT*CRD3476-3484.
000013	000	<pre>@DELETE.C IPOT*REF3476-3484.</pre>
000014	000	@ASG,UP IPOT*REF3476-3484.,F2
000015	000	ause 4., IPot*REF3476-3484.
000016	000	<pre>@ASG,T IPOT*RAWION3476.,8C9,ION01W,4000</pre>
000017	000	DMSG.W 34060-ROSENS WRITE ENABLE TAPE ION01
C00018	CCO	ause 7., IPot*RAWION3476.
900019	000	@MAP,INX IPABS
000020	000	LIB IPOT*IONPACK
0 200 21	000	LIB GPSDC*DICX8
000022	cco	LIB TEXTPROCESS*LIB
000023	000	IN IPABS1
000024	000	DXQT IPABS
C00025	000	FILE 1 OLD
000026	000	FILE 2 NEW ABSTRACTS 3476-3484 28JUN77
C 000 27	000	FILE 3 NEW CARD FILE TEST 28JUN77
000028	000	FILE 4 NEW REF FILE TEST 28JUN77
000029	000	DMPOPT = 0
0 00 0 30	100	MISC JO
000031	0.00	RUN
0 000 32	000	OMARK 7.
000033	eco	OCLOSE 7.
000034	000	@MAP,NX GPSDC*DICX8.DGMDMP,DGMDMP
000035	cco	OMSG, W 30062-WEBBWI WRITE ENABLE REEL 0409
000036	000	DASG.TJ 11.8C.0409W
0 0 0 0 3 7	cco	DMARK 11.
0 000 38	000	aCLOSE 11.
000039	000	DOMDMP
000040	000	INFILE=2
C 00041	000	RUN .
0 000 42	000	ÐĒOF

Figure 13. Listing of IPABS1 run.

*

•

	nt, M. F., McNeil, D. W., Lonning, F. P., and McAllinter,	Τ.	N 0
thermal rereation	arrangement of phenyiniteene to cyanocyclopentadiene. Letters <u>30,</u> 3a15 (1968).		- 9 3 - 12 •
* Z	C ₅ H ₅ CN •• 9.7 6. (Cyclopentadlenecarbonitrile)	3476	- 16 5 - 19 6 - 19
•		- 87 a f	- 27 - 9
ų.	Suc (1,3-Cyclopentadlene) (KN-CAS keglatry Number 5+2+92+7)		- 33 10
k 1 Pe		75 80 8590 951 001 0511 0115	5-y Ln est
7 rie. M. Y	Loudon, A. G., and Mazenwo, K. Z.		- 3 1 6 2
g expansion	reactions in aromatic systems. A study of steric strain i	in wome n.n°-dimethyl-1,1°-binaphthylm.	- 6 3 - 12
. Yaen Spee	:trom. Šω 1123 (1971).		- 15 .5
н З	C ₁₀ H ₆ (CH ₃)C ₁₀ H ₆ CH ₃ •• (1,1 ⁻ -Binaphinpl, 2,2 ⁻ -dimethyl-) (RN-CAS Rewletry Number 32834-84-7)	3477	- 19 5 - 22 7 - 25 8
н 1. В	С ₁₀ И6(СН ₃)С ₁₀ Н ₆ СН ₃ СН ₃ (1,1 [°] -Виларитћу!, 2,2 [°] -dimethyl-) (RN-CAS Regietry Number 32034-04-7)	13 MAR	- 30 9 - 33 10 - 36 1
е . н	C ₁₀ H ₆ (CH ₃)C ₁₀ B ₆ CH ₃ •• 8.00 (1,1 ⁺ +Hinaphthyl, 3,3 ⁺ -dimethyl-) (RN-CAS Regietry Number 34042-82-5),	12 A 7 4 5	- 41 12 - 44 13 - 47 14
H.S.	C ₁₀ R ₆ (CH ₃)C ₁₀ N ₆ CH ₃ CH ₃ 12.25 (1.1 ⁻ HINAPHTNNL, 3.3 ⁻ -dimetnyl-) (KN-CAS Regietry Number 34042-82-5)	7746	- 52 15 - 55 16 - 58 17
H e	C _{IO} H ₂ (CH ₃)C ₁ OH ₂ CH ₃ ** (1,1'-Rinaphth)t,7,7'-dimethyl-) (1×-CAS Reglatry Number 34003-80-0)	12	- 63 18 - 66 19 - 65 20
H.s.	C10H6(CH3)C10H6CH3 CH3 12.75 (1.1-81naphtmyl, 7.77-41methyl-) (PN-CAS Reglatry Number 34003-80-0)	. 7746	- 74 21 - 77 22 - 80 23
H, B	C ₁₀ H ₆ (CH ₃)C ₁₀ H ₆ CH ₃ •• 8.00 (1,1 [*] -Blnaphthyl, 8.8 [*] -dimethyl-) (RN-CAS Registry Number 32653-05-3)	3477	- 85 24 - 86 25 - 91 25
H ₁₅	C ₁₀ H ₆ (CH ₃)C ₁₀ H ₆ CH ₃ CH ₃ (1,1 ⁺ -BLnaphthvl, 9,8 ⁺ -dimethvl ⁺) (RN-CAS Registry Number 32693-05-3)	3477	- 96 27 - 95 28 -102 28

IONO1, 9 track, labeled tape 3-10-76 @ ASG,T RAWION 3476., 8C9, IONO1, 4000 From output file 2, printed abstracts 3476-3486 29 Jun 77

.

Figure 15. Description of tape containing raw ion data file is. recorded on 5 x 8 card and stored in the tape file box.

.

۰,

,

,

PR.	RUN	D		AC	cou	NT NO.	T1	ME	PAGES	CARDS	NAME		PHO	NE	BIN		
N	CDIMO	s	340	030	- 50	HMID	10		2000		W J WEBB		2173	3			
RE 8	el NO. 09	WRITE E	DABLE	P	ERI	PHERAL EYPUNC	OPERATION	NS	[]] MA	NL TO:			X WIL	D TO	UP 2ND FLOOR		
							;т osти	MES		sc	4020	I	CALC	D TO	3RD FLOOR		
						UPE CAP	TI	MES	PRI	NT MODE	16 MM	INK CO					
				1.2 	0.	THER	(Specily)			E FILM	- HARD COPY	PAPER	PAPER FRAME COUNT				
BR RE	KPTED EL NO.	PGS. EST.	CDS. EST.	NOR	E X T	PART	SPECIAI FORMS	L	FRAME	COUNT	TAPE(S)	TAPE(5)				
040	09	600			X		5x8 ca	rds	SPECIAL SYMS usin	DF, 7- g GPSD	F, 7-track, 800 bpi tape, reel 0409, GPSDC train, 16 lines/inch. 5x8 cards						
									atta	ched.				CONT.	ON REVERSE		
JOB	LOADED	JOB PICKED UP				UP	C OK T	0 0 A D	(Rev. 9-7	3)	JOB REQUEST		OF COMME	ROS	DATE		

Figure 16. Job request card for printing card images on 5 x 8 card stock.

a:ELT,LID	FILE.	CRD
ELTC07 872-1	6 10/	19/77 18:54:22 (.0)
000001	000	DRUN,N/NR CDIMGS, 34030-SCHMID, IPOT, 10, 3000
000002	000	DASG, A GPSDC * DICX8.
000003	000	DASG.A. TEXTPROCESS*LIB.
C00004	000	DMSG.W 30062-WEBBWI WRITE ENABLE REEL 0409
00005	000	@ASG,TJ 11.,EC.C409W
000006	000	DMARK 11.
C 20 20 7	000	aclose 11.
000008	000	@ASG,A IPOT*CRD3476→3484.
000009	000	ause 3IPOT*CRD3476-3484.
0 0 0 0 1 0	000	@MAP,NX GPSDC*DICX8.DGMDMP,DGMDMP
00011	000	axat dgmdmp
000012	000	INFILE=3
000013	000	PARAM 2=1
C 00014	000	RUN
000015	000	920F

Figure 17. Listing of run using DGMDMP to print the card image file.

3476 ledeya, E., Kent, N. E., McNell, D. W., Lossing, F. P., and IcAllister, T. The thermal rearrangement of phenyinitrane to cyanocyclupentadiane, Tetra- hedron Letters 10, 3415 (1968). C6H5N* CSHSCN ++ 9.7 ET 3476 (Cyclopentadienecerbonitrile) (EN-CAS Registry Number 27659-36-5) C 5H 6 с₅н₆ •• 9.0 ET 3476 (1.3-Cyclopentadiene) (RN-CAS Registry Number 542-92-7) 3477 Harris, M. M., Loudon, A. C., and Mazengo, R. Z. Bing expansion reactions in aromatic systems. A study of storic strain in some n.n'-dimethyl-1.1'-binaphthylm. Try. Yaws Spectrom. 5. 1123 (1971). C₁₀H₆(CH₃)C₁₀H₆CH₃ •• A.20 (1,1'-Binephthyl, 2,2'-dlmethyl-) C22813 EI 3477 (RN-CAS Reulstry Number 12534-84-7) C₁₀H₆(CH₃)C₁₀U₆CH₃ •• 8.00 (1,1'-Hinaphthyl, 3,3'-dicethyl-) EL 3477 С22818 (RN-CAS Registry Number 34042-82-5) $C_{1,0}H_6(CH_3)C_{1,0}H_6CH_3CH_3$ 12.25 (1.1'-Hinachthyl, 3.3'-dimethyl-) C21H15 ET 3477 (EN-CAS Begistry Number 34042-32-5) . C₁₀H₆(CH₃)C₁₀H₆CR₃ •• 8.15 (1.1⁻-Binaphthyl, 7.7⁻-dimethyl-) C22¹18 EL 3477 (EN-CAS Registry Number 34003-80-0) $C_{10}H_6(CH_3)C_{10}H_6CH_3 CH_3$ 12.75 (1.1'-Binephthyl, 7.7'-dluethyl-) ET 3477 12.75 C21H15 (RN-CAS Mediatry Number 34003-90-0) C₁₀8₆(C8₃)C₁₀8₅C8₃ •• A.00 (1,1[°]-Binephthyl, 8,4[°]-dleethyl-) ET 3477 C22H18 (RN-CAS Registry Number 32693-05-3) 11.50 ET 3477 C10FA(CF3)C10HACH3 CF3 11.50 (1.1'-Binaprthyl, 8.8'-dimethyl-) C21H15 (RN-CAS Registry Number 32693-05+3) C₁₀R₆(CH₃)C₁₀H₅CH₃ CR₃ IJ.25 (1,1[°]-Hinaunthyi, 2,2[°]-dimethyi-) ET 3477 C21 H15 (WN+CAS Regintry Number 12414-44-71 Figure 18. 360 printout of card images on 5 x 8 card stock using DGMDMP.

ion. The program can be used on the original raw ion data file, the cumulative raw ion data file, or to combine and sort serveral raw ion data files on the same input tape. The sorted raw ion data file produced by this run will be kept for some time. It may be merged with other files to produce cumulative sorted raw ion data files. Therefore the sorted file should be written on a labeled tape that has been purchased. A description of the file and the date of the run shall be written on the 5 x 8 card for the tape that is kept in the tape file box.

Examples of the job request card, a listing of the run, and the 5 x 8 card describing the tape follow in figures 19 - 21.

In this run the input file is assigned as file 7 and is the labeled tape generated by the earlier IPABS run. The output file is a labeled tape and assigned as file 8. The card following the @XQT card is the parameter card for IPSORT in 315 format. The first number is the number of the input file, the second is the number of the output file. The third number is the number of files to be read off the input tape and sorted together.

8.3 Printing the Raw Ion Data File

The program ISTRIP removes the sort keys from the records and writes a GPSDC file. The GPSDC file can then be printed using DGMDMP. This is the method used to print the contents of the sorted files. The program starts each ion on a new page.

The job request card, a listing of the ISTRIP run, and a 360 printout of the sorted ion data are illustrated in figures 22, 23, and 24 respectively.

PR.	RUN	D		AC	cou	NT NO.	TIME	PAGES	CARDS		NAME		DNE	BIN				
N	IPSO	RT	34	030)-S	CHMID	10	1000		WJ	WEBB		2173					
PEE	PEEL NO. WRITE ENABLE PERIPHI IONO2 YES VERI INTE						OPERATIONS H	- M/	AL TO:				X WIL SEN	L PICH	UP 2ND FLOOR 3RD FLOOR			
						ST CARI UPE CAR GIDATA	TIMES TIMES TIMES	PRI PLC	SC NT MODE DT MODE DE FILM	4020 16 35 HA	MM MM ARD COPY	CALCOMP INK COLOR PEN PY PAPER FRAME CO						
8R RE	KPTED EL NO.	PGS. EST.	CDS. EST.	z O r	E X T	PART PAPER	SPECIAL FORMS	FRAME	COUNT	TAPE(5)	TAPE	5)					
								SPECIAI	LINSTRU	CTIONS	•			CONT.	ON REVERSE			
JCB	LOADED	<u> </u>	вл ⁻ 108	PICI	KED	UP	T OK TO RELOAD	N85-777 (Rev. 9-7	3)	JOB R	EQUEST	CARD	OF COMME	ARDS	DATE 7/6/77			

Figure 19. Job request card for IPSORT run.

D:ELT.LID	FILE	SOR
ELTCOT RT	2-16 11/	(03/77 13:39:22 (.0)
000001	61.0	PRUN.N/NR IPSORT.34030-SCHMID.IPOT.17.10)2
00002	000	@ASG.T IPOT*RAWION34768C9.ION01
000003	600	DASG.A NBS*SORTIT.
000004	CCO	DASG.A IPGT*IONPACK.
000005	~ ~ ~ ~	DASG,T IPCT#RAWION2.,8C9.ION52%,4000
000006	0.0	PMSG, W 34060-ROSENS WRITE ENABLE TAPE ICNO2
000007	0.00	OUSE 7IPGT#RAWICN3476.
000008	rco	DUSE P., IPCT#RAWION2.
000009	000	DMAF, INX SORT
0 20 0 1 2	000	LIE IPOT*IONPACK
200011	C 0	LIB NBS#SORTIT
000012	((O	LIB IPOT#IONPACK
000013	610	IN IFSORT
000014	CCO	axot sort
00015	0(0	7 8 1
000016	0 0 0	aEOF

Figure 20. Listing of IPSORT run.

IONO2, 9 track, prelabeled tape 3-10-76 @ ASG,T IPOT*RAWION2., 8C9, IONO2 W, 4000 contains sorted raw ion data 3476-3484 13 Jul 77

Figure 21. Description of the sorted raw ion data file should be recorded on a 5×8 card and kept in the tape file box.

PR.	RUN	0		AC	cou	NT NO.	TIME	PAGES	CARDS	NAME	NAME PHO				
N	ISTRI	P	34	030)-S	CHMID	10	2000		W J WEBB		2173			
REE 040 ION	ACCEL NO. WRITE ENABLE PERIPHER 409 YES KEYPU 0N02 VERIFY INTERF						OPERATIONS H	MAIL TO: [X] WILL PICK UP SEND TO 2ND FL SEND TO 3RD FL							
					11N	IERPRE			SC 4020			CAL	COMP		
				1		JPE CAR	DS TIMES		NT MODE	16 MM	INK COLOR PEN				
				i.		GIDATA	(Specify)		DUPE FILM HARD COPY		PAPER	R FRAME COUNT		E COUNT	
BR	KPTED EL NO.	PGS. EST.	CDS. EST.	z O z	E X T	PART PAPER	SPECIAL FORMS	FRAME	FRAME COUNT TAPE(S) TAPE(S)						
040	09	600			*	1	PLAIN	SYMSD	ECIAL INSTRUCTIONS)9 using	
								GPSDC	train	and 16 line	s/inc	h.			
						, i		1					CONT.	ON REVERSE	
JOB	LOADED		JOB	PIC	ED	UΡ	TX OK TO	NBS-777	2)	U.S. DEPAR	THENT	OF COMME	RCE	DATE	
REL							RELOAD	(Kev. 9-7	3)	JOB REQUEST	CARD			7/13/77	

Figure 22. Job request card for ISTRIP run.

```
FILE.STR
a:ELT,LID
ELTCO7 R72-16 10/18/77 19:53:17 (.0)
                   DRUN, N/NR ISTRIP, 34060-SCHMID, IPOT, 10, 2000 -
            000
000001
            000
                   DASG.A
                           IPOT*IONPACK.
00002
C00003
            000
                   DASG.A
                           GPSDC*DICX8.
000004
            000
                   OASG,A
                           TEXTPROCESS#LIB.
                            IPOT*RAWION2..8C9.ION02
            C C O
                   DASG.T
000005
            000
                   ause
                         7., IPOT*RAWION2.
000006
            000
                   aDELETE,C IPOT*STRIP3476.
000007
                            IPOT*STRIP3476.
            000
                   DASG.UP
80000
                            4..IFOT*STRIP3476.
000009
            000
                   ause
            CC O
                   OMAP, INX STRIP
000010
                     LIB IPCT+IONPACK
000011
            000
            000
                     LIB
                          GPSDC*DICX8
000012
                     LIB TEXTFROCESS*LIB
            000
000013
            0 00
                     IN ISTRIP
000014
000C15
            0 20
                   axot strip
                   FILE 4 NEW
                                             SORTED ION DATA 13JUL77
            000
000016
000017
            000
                   RUN
                                             WRITE ENABLE REEL 0409
            000
                   OMSG,W
                            30062-WEB9WI
000018
            000
000019
                   DASG, TJ
                               11...8C.0409W
000020
             000
                   DMARK 11.
000021
            000
                   aclose 11.
             000
                   DMAP.NX
                              GP SDC + DICX8 . DGMD MP . DGMD MP
000022
             000
                   DXQT DEMDMP
000C23
             000
                   INFILE=4
000024
             000
                   RUN
000025
00026
             000
                   aeof
```

Figure 23. Listing of ISTRIP run.

8.4 Program WREFS

This program is designed to input the bibliographic data file and output a reference file and an unsorted author file. The bibliographic data file is a GPSDC file.

Each entry begins with the identification number enclosed in brackets in columns 1-6 of the first line. The authors begin in column 8. They are separated by semicolons and terminated by a double dagger. The authors are followed by the title which is terminated by a double dagger. This is followed by the citation. The output reference file is identical to the input file except the semicolons between authors are replaced by commas and the double daggers are replaced by blanks. The unsorted author file is generated by writing out each author followed by the idiot number. This file is later sorted and entries for a given author merges to generate the author index.

DGMDMP may be used to print the reference file. A sample test run of WREFS is shown in figure 25.

8.5 Sorting the Author Index Entries

IASORT is designed to sort the author index entries. The Exec 8 version of SORTIT is used to interface with the SORT/MERGE package. IASORT is a main program used to call SORTIT. SORTIT calls two routines IASRDS and IASWRT to read and write files or tapes.

IASTRP is designed to input an author file with sort key, strip off the sort key and output an author index as a GPSDC file. The GPSDC file can then be printed using DGMDMP. A listing of the IASORT run, IASTRP, and a 360 printout of the sorted author file are shown in figures 26, 27, and 28 respectively.

a:SLT.LID	FILE.	WRF	
ELT007 972-	16 11/	23/77 18:21	:09 (.0)
0 0 0 0 0 1	000	BRUN, N/NR	WREFS,34030-WEBBWI, IPOT,10,100
000002	000	DASG.A IP	OT*IONPACK.
000003	000	ASG.A T	EXTPROCESS#LIB.
000004	000	DASG.A GP	SDC+DICX8.
000005	000	DMAP, IS R	EFILE
000006	000	LIB IP	OT*IONPACK.,GPSDC+DICX8.,TEXTPROCESS+LIB.
000007	000	LIB IP	OT # IONPACK GPSDC #DICX8TEXTPROCFSS#LIB.
000008	000	LIB GP	SDC#DICX8
000009	000	IN WREF	S
0 00 0 1 0	000	aASG.A I	POT#REF3476-3484.
000011	000	ause 1	••IPOT*REF3476-3484•
000012	000	ODELETE.C	IPOT#8183476-3484.
000013	000	DASG.PU I	POT #BIB3476-3484.
000014	000	aUSE 2	••IPOT*BIB3476-3484•
000015	000	DELETF.C	IPOT #AU3476-3484 •
000016	000	aASG.PU I	POT # A U3475-3484 .
000017	000	OUSE 3	••IPOT*AU3476-3484•
000018	000	BXQT REFIL	E
000019	000	FILE 1 OLD	
000020	000	FILE 2 NEW	BIBLID, BATCH 3476-3484 27JUL77
000021	000	FILE 3 NEW	AUTHOR BATCH 3476-3484 27JUL77
000022	000	RUN	
000023	000	DEOF	

Figure 25. Listing of WREFS run.

	1		
	a:ELT.LID	FILE .	ASR
	ELT007 R72-	16 01/	18/78 20:19:03 (.0)
	0 0 0 0 0 1	000	@RUN,N/NR IASORT, 34030-WEBBWI, IPOT, 10, 300
	000002	600	DASG.A NBS*SCRTIT.
	000003	000	DASG.A IPCT+IONPACK.
	000004	C O O	DASG.A GPSDC*DICX8.
	000005	C 0 O	DASG.A TEXTPROCESS*LIB.
	00006	000	DASG.A IPOT*AU3476-3484.
	000007	000	DUSE 1., IPCT*AU3476-3484.
	800008	COO	DELETE.C IPOT*ASR3476-3484.
ļ	000009	000	@ASG,UP 1PCT*ASR3476-3484.
	000010	000	OUSE 4 IPOT*A SR3476-3484.
	000011	000	@MAP,IX ASRT
	000012	000	LIB IPOT#IONPACK
Ì	000013	000	LIB NBS#SORTIT
	000014	000	LIB GPSDC*DICX8
	000015	000	LIB TEXTPROCESS*LIB
	000016	000	IN IASORT
	000017	000	DXQT ASRT
	000018	000	FILE 1 OLD
	000019	000	FILE 4 NEW SORTED AUTHORS 3476-3484 06JAN
	000020	000	PGWDTH 4 = 110
	000021	000	PGLENG 4 = 160
	000022	000	DMPOPT = 1
	000023	000	INFILE = 1
	000024	000	OTFILE = 4
	000025	000	RUN
	000026	600	0EOF
1			

Figure 26. Listing of IASORT run.

1			
ļ	D:ELT,LID	FILE .	AST
Į	ELTCO7 R72-	16 01/	18/78 20:19:03 (,0)
Ì	000001	C 0 0	QRUN,N/NR IASTRP,34030-WEBBWI,IPJT,10,2000
ļ	000002	000	DASG,A IPCT*IONPACK.
ł	500003	000	DASG, A GPSDC*DICX8.
	000004	000	DASG,A TEXTPROCESS*LID.
ļ	00005	C O O	DASG, A TEXTPROCESS*LIB.
i	000006	000	DASG.A IPOT*ASR3476-3484.
	0 C 0 0 0 7	000	∂USE 1IPCT*ASR3476-3484.
	00008	000	<pre>@DELETE.C IPOT*AUTHR3476.</pre>
ļ	00009	C O O	PASG.UP IPOT*ALTHR3476.
	000010	000	ause 2., IPCT*AJTHR3476.
ļ	000011	000	OMAP, IX ASTRP
	000012	C 7 O	LIB IPCT*ICNPACK
I	000013	CCO	LIB GPSDC*DICX8
ļ	000014	000	LIB TEXTPROCESS*LIB
	000015	000	IN IASTRP
	000016	000	ωxGT ASTRP
	000017	COC	FILE 1 OLD AUTHORS WITH SCRT KEY ATTACHED 04JCT77
	000018	000	FILE 2 NEW STRIPPED UNSORTED AUTHORS 040CT77
	000019	000	*INFILE 1
	000020	COC	*CTFILE 2
ł	000021	CCO	DMPCPT=1
1	000022	COC	*RUN
ļ	000023	C O O	@MSG.W 34030-WEBBWI WRITE ENABLE REEL 0409
	000024	CCO	DASG, TJ 11., 8C, 0409W
	000025	000	DMARK 11.
ļ	000026	000	aclose 11.
	000027	000	DMAP,NX GPSDC*DICX8.DGMDMP.DGMDMP
	000028	000	OXQT DGMDMP
	000029	CO 0	FILE 2 OLD
	000030	000	INFILE=2
	000031	000	RUN
l	660032	000	0EOF
1			

Figure 27. Listing of IASTRP run.

Rook 1 Page 1 *3035.	4045505560.,.c570758085909595100- y Ln eedd
Benezra, S. A., 3480	
Benezro, S. A., 3483	~ ~ U
Bursey, M. N., 3440	۳. ا
15ursey, N. N., 3433	1 12 4
Cooks, K. G., 7479	1 1 1 0
Gauple, A. A., 3~4-	- 16 E
Gilbert, J. K., 3134	- 21 7
Harris, N. W., 24 ⁻⁷	- 2,4 B
Hedaya, E., 347ė	
Howe, [., 3476	1 30 10
Jalonen, J., 3481	
Kent, N. E., 7476	· 35 15
Linda, P., 34A2	F I 5E
Lossing, F. P., 2476	2 D 1 2
Loudon, A. G., 3477	45 15
Marino, G., 3482	· 48 10
MAZENUR, K. Z., 3477	51 17
McAllister, T., 3476	54 1 H
McVell, D. W., 3476	57 19
Pignutaro, S 3492	1 60 20
Pihlaja, K., 3401	
Stumie, J. N., 3476	
Tillett, J. G., J464	e 5 23
Trobulkow-Roux, E., 3476	₹ 0 0,5 1-
Williume, D. H., Ca79	CS .12

Figure 28. 360 printout of sorted author file.

9. ACKNOWLEDGMENTS

We are indebted to Mr. Keith Draxl and Mrs. Candyce Schmidt for their numerous helpful suggestions and assistance in the preparation of this publication. Special appreciation goes to Mrs. Carla Messina, and Dr. William H. Evans for programming contributions. We also thank Mrs. Janice L. Jones for her valuable secretarial assistance.

10. LIST OF FIGURES

- Figure 1. A typical page of the 1977 compilation.
- Figure 2. The abstractors form.
- Figure 3. Encoded form of the abstract as it would be keyboarded using model 37 teletype.
- Figure 4. Schematic of the production of an archival tape of abstracted information.
- Figure 5. Separating the abstract into various files.
- Figure 6. AQR form.
- Figure 7. GPSDC tape description to be recorded on 5 x 8 card and kept in the tape file box.
- Figure 8. Job request card for ATSIN run.
- Figure 9. Listing of ATSIN run.
- Figure 10. 360 printout of the GPSDC input file using ATSIN.
- Figure 11. Description of tape that is assigned to print the GPSDC file created by ATSIN.
- Figure 12. Job request card for IPABS1 run.
- Figure 13. Listing of IPABS1 run.
- Figure 14. 360 printout of the abstract file created by IPABS1.
- Figure 15. Description of tape containing raw ion data file is recorded on 5 x 8 card and stored in the tape file box.
- Figure 16. Job request card for printing card images on 5 x 8 card stock.
- Figure 17. Listing of run using DGMDMP to print the card image file.
- Figure 18. 360 printout of card images on 5 x 8 card stock using DGMDMP.
- Figure 19. Job request card for IPSORT run.
- Figure 20. Listing of IPSORT run.
- Figure 21. Description of the sorted raw ion data file should be recorded on a 5 x 8 card and kept in the tape file box.
- Figure 22. Job request card for ISTRIP run.
- Figure 23. Listing of ISTRIP run.
- Figure 24. 360 printout of a sorted ion data file using ISTRIP.
- Figure 25. Listing of WREFS run.
- Figure 26. Listing of IASORT run.
- Figure 27. Listing of IASTRP run.
- Figure 28. 360 printout of sorted author file.

11. LIST OF TABLES

- Table 1. List of Comments and Coding Acronyms.
- Table 2. List of Isomer Prefixes in order of sort preference.
- Table 3.
 Numerical Equivalents of GPSDIC Symbols, Isomers Prefixes,

 Methods and Chemical Element Symbols.
- Table 4.
 Techniques for Ion Energetics Measurements in Order of

 Sort Preference.
- Table 5. List of Programs Used.

12. REFERENCES

- 1. H. M. Rosenstock, "The Measurement of Ionization and Appearance Potentials" Int. J. Mass Spectrom. Ion Phys. 20, 139, (1976).
- J. L. Franklin, J. C. Dillard, H. M. Rosenstock, J. T. Herron, K. Draxl, and F. H. Field, "Ionization Potentials, Appearance Potentials, and Heats of Formation of Gaseous Positive Ions," NSRDS-NBS <u>26</u>, 1-285 (1969).
- H. M. Rosenstock, K. Draxl, B. W. Steiner and J. T. Herron, "Energetics of Gaseous Ions," J. Phys. Chem. Ref. Data, Supplement No. 1, Vol. 6, 1-783, 1977.
- 4. D. Sims, "Abstractor's Instructions", in preparation.
- B. C. Duncan and D. Garvin, "Complete Clear Text Representation of Scientific Documents in Machine-Readable Form", NBS Tech. Note 820 (February 1974).
13. APENDIX A NGS Composite and Red Snift Symbols Table - August 1976 Version.

Symbol	Туре	Compon	ents	llame	NBS No.
А А А А Я Я А	А А А А Я Я Я	A A A A A A	· · · ·	A Angstrom A acute A circumflex A grave A umlaut A tilde A cedilla	33 257 318 258 259 260 314 465
מסמים אם ואס ומ	a, a, a, a m (a, a m a) a	a a a a a a a a a		a angstrom a acute a breve a macron a circumflex a grave a umlaut a tilde a hook	65 261 319 366 368 262 263 264 315 3 75
B b	B b			B b	34 66
ပလလက္ စြင္	0 0 0 8 C	C C C C C	· · · · #	C C acute C breve C macron copyright C cedilla	35 466 320 390 428 287
۵.0 x 4 4 4	6 10 10 10 10 10 10 10 10 10 10 10 10 10	с с с		c c acute c breve cent c cedilla	67 347 356 294 238
D d	D d			D d	36 68
田 12 12 12 12 1 12 12	មាម ទោក ទោក ទោ	E E E E E E		E E grave E circumflex E acute E macron E umlaut E tilde E cedilla	37 267 266 265 394 268 467 468
କ. କ. କ. କ. କ	ତ କ କ କ କ	e e e e		e e acute e breve e macron e circumflex e grave	69 269 367 369 270 271

¥ ¥

APPENDIX A (continued)

1185	composite and	ned Shi	it symbols to	lore - August 197	b versi
Symbol	Туре	Compo	nents	Name	NBS Ho
ଞ ୦ କୃ	<u>ଞ</u> ବ ବ	е е е	11 ~ s	e umlaut e tilde e hook	272 469 378
F F f	F F f	F	-	F F macron f	38 397 70
い い な む な む な む む む む	ය ය ප ප ප ප ප ප ප ප ප ප	G G ខ ខ ខ ខ	· · · · ·	G G breve G macron g f tilde g breve g breve g prave	39 470 387 71 348 357 358
H II h	H Ħ ħ	Н		H H macron h	40 328 72
		I I I I I I	2 	I I acute I circumflex I grave I umlaut I degree I tilde	4 1 3 3 1 2 7 3 3 3 3 2 7 4 3 8 4 4 7 1
				i i acute i breve i tilde i macron i circumflex i grave i umlaut i hook	72 332 381 472 370 275 334 276 376
J j	Jl j			J j	42 74
К Қ Қ	K K	K k	,	K K cedilla k cedilla	43 341 75 342
		L L L 1 1	/ =	L Polish L pound L macron l l acute l breve iolish l	44 345 441 396 76 343 344 346
11	11			•	45

	A	PPENDIX A (continued)		
NBS	Composite and	d Red Sni	ft Symbols	Table - Augu	ust 1976 Version.
Symbol	Туре	Compo	nents	Hame	NB5 40.
m	<u>ت</u> ا			it:	77
ក	ñ	m	~	m tilde	379
14	11			14	46
п	1	[]	460	H tilde	230
n	ń	11	•	11 acute	349
n	n			n	78
ñ	ñ	n	~	n tilde	290
ń	ń	n	*	n acute	350
ň	ń	n	*	n breve	360
ñ	ក	n	~	n macro	n 392
ą	ą	n	,	n cedil	la 359
0	0			U	47
Ó	Ó	0	*	ú acute	335
O	0	U	^	0 circu	aflex 277
Ó	Ó	0	•	0 rrave	337
0	C	0	**	0 umlau	t 278
0	0	Ó	~	0 tilde	316
Ø	Ø	0	/	Danish	0 292

		C
0	*	Ú acute
Û	2	0 circumflex
0	•	0 rrave
0	**	0 umlaut
Ō	~	Otilde
0	/	Danish O
		0
0		o acute
0		obreve
0	***	c macron
Ő	~	o circumflex
ő	•	o grave
0	11	ourlaut
0	~	o tilde
0	/	Danish o
		Р
		ą
		Ċ
		q
		R
R	#	registered
		r
r	•	r acute
r	•	r breve
r	9	r cedilla
5		5 macron
5		J acute
3	,	S cedilla

,

,

3

S

\$

5

5

17 1

neute

breve Gedilla

48 80 49

81

52 34

0 0 0 0 0 0 0 0	
ø	
P	
p	
Q	
q	

日日でからい

10 CM CM

T t

P Q q	
K. Brŕřr	
43 CX CX CX	
en en en en	

P

τ t 0 0 M

APPENDIX A (continued)

ž

*	NDC		1 0 5 4 - 0 5	106 March - 1		107(11
Ħ	NR2	composite and	i Ked Sr	ilit Symbols	s table - August	1976 Vers
	Symbol	Туре	Comp	oonents	Name	NR2 NG
	ţ	ţ	t	3	t cedilla	364
	U	u			υ	53
	σ	σ	U	-	U tilde	475
	Ú	Ú	U	,	U acute	339
	0	0	U	^	U circumfle	x 201
	Ŭ	Ŭ	U	``	U grave	282
	U	U	U	11	U umlaut	233
	u	u			u	85
	a	Q	u	~	u tilde	476
	ů	ú	u		u acute	340
	ū	ă	u		u macron	.372
	ŭ	u	u	~	u degree	373
	u	ų	u	· · · · · · · · · · · · · · · · · · ·	u circumfle	x 284
	u	u	u		u grave	205
	ŭ	a	u		u unitaut	235
	R	Ŷ.	u	9	u nook	377
	V	V			V	54
	V	v			V	86
	V	W			12	55
	W	W			N2	ರ7
	Х	Х			Х	56
	X	X	Х	-	X macron	391
	х	х			x	5
	x	x	x	~	x macron	395
	Y	Y			Y	5 7
	У	У			у	39
	ý	ý	У	•	y acute	374
	Z	Z			2	58
	2	2	Z		2 acute	477
	2	2	Z	`	2 grave	478
	Z	Z			2	00
	ž	ž	Z	•	degree over	2
					or z dot	354
	ź	ź	2		2 acute	355
	Ž	ź	2	*	g breve	365

·m 2.

NBS Composite and Red Shift Symbols Table - August 1976 Version.

Symbol	Type	Compon	ents	Name	NB.	.0.
α α β γ Γ δ Δ	a b C d D			alpha beta gamma Gamma delta Delta	147 148 149 136 150 137	
e έ 5 η Θ	e é z h O	e 0	-	epcilon epcilon acute zeta eta Theta	151 383 152 153 138	
θ 1. χ Λ λ	a i L 1			theta iota Kappa Lambdh lambda	154 151 155 139 156	
ц У О Е	m n j			mu nu ellipse or pmicron xi	157 158 194 159	
Ξ Π Π Φ Σ	J PPB R S C			xi pi product rho sigma Sigma sum	140 160 141 116 161 162 142 142	
τ υ τ Φ	τ υ υ Φ Φ	0 0		tau upsilon Upsilon phi Phi	163 182 143 164 144	
χ ψ ω	x y Y W			Chi psi Psi omera Omera	165 166 145 107 146	

73

APPENDIX A (continued)

¥

*	NBS	Composite and	Red Shift Symbol	ls Table - August 197	76 Version
	Symbol	Туре	Components	llame	NES Ho.
	ŧ	1		Exclamation	1
				double prime	2
		,		nrime accent acut	or
				anostroube	7
	0				22
	11	d		accent stave) 2
	17	₩ F		number or Seraten	3
	Ę.	Ş		dollar birn	4
	Ъ	jo		percent	5
	\$	Se .		ampersand	U
	9	e		commercial at	64
	((left parenthesis	6
))		right parenthesis	9
	[[left bracket	59
]]		right bracket	61
	{	{		left brace	91
	}	}		right brace	93
	¥	×		asterisk	10
				period	14
	:			colon	26
		•		comma	12
	, ,	9 • 5		semicolon	27
	1	/		slant/slash	15
	, \	$\hat{\lambda}$		reverse slash	60
	ì			vertical bar	92
	2	2		question mark	31
	•	•		nlug	11
	+	+		minus	12
	-	-		huphon	100
		-		thick dock	100
		*			100
	=	=		equal	29
	<	<		less than	23
	>	>		greater than	30
	~	~		tilda	94
	~	~		eircuriflex	62
		-		underline	63
	×	X		multiplied by	119
	∇	11		dol	118
	9	1 4 6 J		differential	170
	0	с- л		dismand	171
	Ħ	H ()		d Lamond	120
	П	11		Tozenje	130
	11	B		product	110
	2	C		sun	11/
	°r	0		ellipse	194
		Ι		internal	133
	ø	Ċ.		contour interral	401
	J_{\checkmark}	*		square root	135
	÷ +	+	- :	divided by	297
	+	+		(10.5	11
	<u>+</u>	+	+	plus or ninus	291
	Ŧ	Ĩ.	*	Contactor , lut	302

74

*

NBS Composite and Red Shift Symbols Table - August 1976 Version. *

Symbol	Туре	Compon	ents	Name	HBS No.
< > >	<	>	-	less than greater than greater than	28 30
2 4 3 ()	* * * *	< < > < >		or equal less than or equal not less than not greater than average brace average brace	299 293 311 312 109 110
र 8 ~ २	R C V =			varies directly as infinity equivalent; similar nearly equal	125 121 195 173
= ★ + = =	≡ ≭ ∓ ∓ ₹	= = ```	/	is congruent not equal not equal is identical ' not identically equal logical not	301 295 313 300 443 131
¥	¥	V	-	logical for all	406
5	{ ()	<		is a subset intersection of two sets contained as	112 107
Ų ₽) X	£	Ν	union of two sets is not a subset of	108 402
₽ a € ∋ # • 1 †	2 1 2 1 2 1 2 1 0 2 1 1 0 1 1 1 1 1 1 1	}	-	is not contained as a subset there exists is an element of such that reversible reaction center dot paragraph dagger	403 113 404 405 188 175 189 123
Ţ.	41 ‡	8	=	double dagger	124
 ¤ ¢ £	+ 5 X V L	x c L	5 0 1 =	two dot leader three dot leader currency cent pound	180 393 442 294 441
® © \$	8 6	k C	1) {	registered copyright section	427 425 120

APPENDIX A (continued)

NES Composite and Red Snift Symbols Table - August 1976 Version

Symbol	Туре	Compon	ents	Ifrite	- HBS No.
H 6 9 90 	- - - - -	` `	e a	accent loute accent prave accent unlaut open quote close quote accent cedilla degree macron breve tildn circumtlex underline	7 32 2 450 451 12 122 190 174 94 62 63
	0 1 2 3 4	0 1 2 3 4		zero macron one macron two macron three macron four macron	330 321 322 323 324
12617125	5 6 7 8 9	5 6 7 8 9		five macron Six macron Seven Acron Cight referen nine macron	325 316 327 328 129
1/2 1/2 1/3 2/3 1/4 3/4	2 2 3 3 4 8	1 2 1 2 1 . 3	2 - 2 - 3 - 4 - 4	one half bar one half one third two thirds one fourth three fourths	453 452 456 457 454 454
1/6 5/6 1/8 3/8 5/8 7/8	ර 6 3 8 8	1 5 1 3 5 7	いいといい	one sixth five sixths one eighth three eighths five eighths seven eighths	462 403 458 459 460 461

*

NBS Composite and Red Shift Symbols Table - August 1976 Version. *

Symbol	Туре	Compon	ents	llame	HBS	No.
↓ ↓ ↑ ↑ ¶ 11	K Ø 4 6 7	6 < • >	7	reversible reaction left=right arrow 3 bonds right left arrow right bond corner right arrow	183 416 308 129 307 127	
+++ </td <td>8 9 3 5</td> <td>8 \ \</td> <td>9 3 5</td> <td>up arrow down arrow double head arrow N.K. arrow S.E. arrow</td> <td>126 123 413 409 410</td> <td></td>	8 9 3 5	8 \ \	9 3 5	up arrow down arrow double head arrow N.K. arrow S.E. arrow	126 123 413 409 410	
-	и О	/ /	•	N.E. arrow S.W. arrow left high vertical bar right horizontal bar left horizontal bar	411 412 98 183 184	t.
/	;			right high vertical bar hyphen thick dash single bond left long slant	185 106 100 97 15	
	#	1	1	single bond right reverse slash left vertical bar double bond left double bond right vertical double box vertical triple box	99 60 101 103 104 nd	172 417
:	• 3 4 5 2 ? -			S.W. dot N.W. dot N.E. dot S.E. dot centered dot big centered dot	178 176 177 179 175 132	
0	,			box with round corners open box	193 168	
	۲ ۲	< > V	•	left corner right corner top corner bottor corner	109 110 186 187	

APPENDIX A (continued)

÷

¥	NBS	Composite	and Red	Shift	. Symbols	s Table -	- Aug	gust	1976	Vers	ion
	Symbol	Туре	С	Components		Name			NBS No.		
		3	1		?	mystery	no.	1	24	81	
		2	2		?	mystery	no.	2	1	82	
		3	3	5	?	mystery	no.	3	Ľ	83	
		2	4		?	mystery	no.	4	4	84	
		5	5	1	?	mystery	no.	5	Ľ	85	
		6	б		?	mystery	no.	6	L	86	
		?	7		?	mystery	no.	7	7	87	
		3	8	j	?	mystery	no.	8	L	88	
		ç.	9		?	rystery	no.	9	1	150	

ND3-114A (REV 7-73)

U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. NBSIR 78-1432 (NIH)2. Gov No.	't Accession 3. Recipient'	s Accession No.							
4. TITLE AND SUBTILE		5. Publicatio	n Date							
Automation of	the Ion Energetics Data Center									
	6. Performing	6. Performing Organization Code								
7. AUTHOR(S)	· · · · · · · · · · · · · · · · · · ·	8. Performine	Organ, Report No.							
R Thompson,										
9. PERFORMING ORGANIZAT	ION NAME AND ADDRESS	10. Project/T	ask/Work Unit No.							
DEPARTMEN	BUREAU OF STANDARDS	11. Contract/	Grant No.							
WASHINGTO	N, D.C. 20234									
12. Sponsoring Organization Na	me and Complete Address (Street, City, State, ZIP) 13. Type of B	eport & Period							
National Inst	itute of General Medical Sciences	Covered								
National Inst	itutes of Health									
Bethesda, Mar	yland 20014 ·	14. Sponsorin	14. Sponsoring Agency Code							
15. SUPPLEMENTARY NOTES										
14 ABSTRACT (A 200 mod										
bibliography or literature su	ress factual summary of most significant informati irvey, mention it here.)	on. It document includes a s	ignificant							
The Ion	Energetics Data Center is engaged	in the compilation.								
evaluation and	d dissemination of experimental in	formation on gaseou	5							
ion energetic	s. Outputs include bibliographic	and tabular information	tion							
on ionization	on ionization potentials, appearance potentials, electron affinities									
and heats of	formation of gaseous positive and	negative ions. The	om # 1							
operation of	the data center is discussed. In	s operation has rec	entiy							
IONPACK, which	h minimize the manual effort requi	red for the numerou	s file							
manipulations	and editing steps necessary to pr	oduce the data cent	er							
output. The	output. The functions of the programs are outlined and the associated									
operating pro-	operating procedures are described in detail. Full documentation of									
the programs	is presented in a separate report.									
17. KEY WORDS (six to twelve name; separated by semicolo	entries; alphabetical order; capitalize only the firs	t letter of the first key word	unless a proper							
Abstract; app	earance potential; archival tape;	computer program; d	ata base;							
data base man	agement; empirical molecular formu	la; GPSDC; ion ener	getics;							
ionization po 18. AVAILABILITY	Eential [7] Unlimited	19. SECURITY CLASS	21. NO. OF PAGES							
		(THIS REPORT)								
For Official Distribution	n. Do Not Release to NTIS	UNCL ASSIFIED	81							
Order From Sup. of Doc Washington, D.C. 20402	., U.S. Government Printing Office 2, SD Cat. No. C13	20. SECURITY CLASS (THIS PAGE)	22. Price							
Corder From National Te Springfield, Virginia 22	chnical Information Service (NTIS) 151	UNCLASSIFIED	\$6.00							
the second se										

USCOMM-DC 29042-P74

.

