NBSIR 78-1426

Comparison of the Performance of Three Algorithms for Use in an Automated Transit Information System (ATIS)

Judith F. Gilsinn Elizabeth L. Leyendecker Douglas R. Shier

Institute for Basic Standards Applied Mathematics Division National Bureau of Standards Washington, D.C. 20234

March 1978

Final Report

Technical Report To: Office of Socio-Economic and Special Projects Urban Mass Transportation Administration Department of Transportation Washington, D.C. 20590

NBSIR 78-1426

COMPARISON OF THE PERFORMANCE OF THREE ALGORITHMS FOR USE IN AN AUTOMATED TRANSIT INFORMATION SYSTEM (ATIS)

Judith F. Gilsinn Elizabeth L. Leyendecker Douglas R. Shier

Institute for Basic Standards Applied Mathematics Division National Bureau of Standards Washington, D.C. 20234

March 1978

Final Report

Technical Report To: Office of Socio-Economic and Special Projects Urban Mass Transportation Administration Department of Transportation Washington, D.C. 20590

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

Dr. Sidney Harman, Under Secretary

Jordan J. Baruch, Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

ABSTRACT

This paper compares the performance of three algorithms for computing trip itineraries for use in an automated transit information system. One of the approaches (TIMEXD) is based on a time-expanded network. The other two both compute paths in a bipartite route/stop network; one algorithm (LABCOR) is based on the label-correcting approach and the other (LABSET) on the label-setting approach. The transit networks upon which the performance comparison is based are of two types: a grid network with specified, possibly non-uniform, distances between streets, and a spider web type of network. TIMEXD is fastest on all the larger networks, but it requires most computer storage and outputs paths with more transfers. LABCOR is the slowest, but is guaranteed to produce the best routing, since it always outputs an optimal path with fewest transfers. Computation time estimates extrapolated to large transit networks indicate times of 1.5 to 2.5 seconds per itinerary for TIMEXD and LABSET respectively, well within the acceptable range for such networks.

<u>Key Words</u>: Algorithms; algorithm testing; mass transit; routing; shortest paths; transit; transit information systems; transit routing; transportation; urban transportation.

TABLE OF CONTENTS

	-		Page
1.			····· 1
2.	Algor		riptions
	2.1	Bipartit	e Route/Stop Algorithms 3
		2.1.1	Label-Correcting Bipartite Route/Stop Algorithm
			(LABCOR)
			Label-Setting Bipartite Route/Stop Algorithm (LABSET) 7
	2.2		anded Network Algorithms
	<i>C</i> • <i>C</i>		Departure-Oriented Algorithm (TIMEXD)11
~	-		Arrival-Oriented Algorithm (TIMEXA)12
3.			eneration
4.			gorithm Performance17
	4.1		of the Path Output18
	4.2		Storage Required by the Algorithms
	4.3	Comparis	on of Computation Times
	4.4	Addition	al Analyses
5.	Concl	usion and	Recommendations
6.	Refer	ences	
Ann	endix	A Docum	nentation of Programs for Test-Problem Generation
app	CHULA	and T	tinerary-Finding
	A.1	-	RAD
		A.1.1	Variables and Arrays Used in RAD
		A.1.2	Program Input
		A.1.3	Program Output
		A.l.4	Subroutine LOCAL
		A.1.5	Subroutine EXPRES61
		A.1.6	Variables and Arrays Used in LOCAL and EXPRES61
		A.1.7	Subroutine RSCHED
		A.1.8	Variables and Arrays Used in RSCHED
	A.2		XGRID
		A.2.1	Variables and Arrays Used in XGRID, GRID, and XPRESS65
		A.2.2	Program Input
		A.2.3	
			Program Output
		A.2.4	Subroutine GRID
		A.2.5	Variables and Arrays Used in GRID
		A.2.6	Subroutine XPRESS
		A.2.7	Variables and Arrays Used in XPRESS
		A.2.8	Subroutine XTRANS
		A.2.9	Variables and Arrays Used in XTRANS
			Subroutine XSCHED
		A.2.11	Variables and Arrays Used in XSCHED
			Subroutine TRANS
		A.2.13	Variables and Arrays Used in TRANS

TABLE OF CONTENTS (Continued)

	A.3	Program TRA
		A.3.1 Variables and Arrays Used in TRA72
		A.3.2 Program Input
		A.3.3 Program Output
	A.4	Program ACYCLE
		A.4.1 Variables and Arrays Used in ACYCLE
		A.4.2 Program Input
		A.4.3 Program Output
	A.5	Program LABCOR
	R.)	A.5.1 Variables and Arrays Used in LABCOR
		A.5.2 Program Input
	0 6	A.5.3 Program Output
	A.6	Program LABSET
		A.6.1 Variables and Arrays Used in LABSET
		A.6.2 Program Input
		A.6.3 Program Output
	A.7	Program TIMEXD
		A.7.1 Variables and Arrays Used in TIMEXD80
		A.7.2 Program Input
		A.7.3 Program Output
	A.8	Program TIMEXA
		A.8.1 Variables and Arrays Used in TIMEXA82
		A.8.2 Program Input
		A.8.3 Program Output
	A.9	Program REMOVE
		A.9.1 Variables and Arrays Used in REMOVE
		A.9.2 Program Input
		A.9.3 Program Output
	A.10	File Formats
		A.10.1 Format for File SDATA (Unit 7)85
		A.10.2 Format for File TDATA (Unit 8)
		A.10.3 Format for File NDATA (Unit 9)
		A.10.4 Format for File ADATA (Unit 10)
		A.10.5 Format for File TRIPS (Unit 11)
		A.10.6 Format for File TMIN (Unit 12)
A	Jin D	B. Listings of Programs for Test-Problem Generation and
Appen	IOIX E	Itinerary-Finding
	ר כז	
	D.L	Program RAD
		B.1.1 Subroutine LOCAL
		B.1.2 Subroutine EXPRES
	-	B.1.3 Subroutine RSCHED
	B.2	Program XGRID
		B.2.1 Subroutine GRID102
		B.2.2 Subroutine XPRESS105
		B.2.3 Subroutine XTRANS112
		B.2.4 Subroutine XSCHED114
		B.2.5 Subroutine TRANS117
		Program TRA
	B.4	Program ACYCLE121
		B.4.1 Subroutine SORTP125

TABLE OF CONTENTS (Continued)

B.5	Program	LABCOR
в.6	Program	LABSET
B.7	Program	TIMEXD140
в.8	Program	TIMEXA145
B.9	Program	REMOVE

LIST OF FIGURES

⊥.	Illustrative Bipartite Route/Stop Network	Page
2.	Illustrative Route Schedule	• • 5
3.	Illustrative Time-Expanded Network	9
4.	Example of a Grid Network	.14
5.	Example of a Radial Network	.15
6.	Example of Overtake	.25
7.	Overtake Occurrences in the Test Runs	.26
A.1	Flowchart of the Transit Program System	• 54

LIST OF TABLES

1.	Number of Transfers in Each Path19-24
2.	Comparison of Paths for TIMEXD Using First Path Encountered to a Node Versus Last Path to that Node
3.	Algorithm Timings for Each Path
4.	Comparison of Timings of the Three Algorithms
5.	Correlation of Timings and Network Size Parameters
6.	Linear Regression Coefficients for the Fit of Timing as a Function of the Number of Nodes41
7.	Algorithm Timings (Milliseconds) for LABCOR and LABSET on 40 x 40 Grid Network
8.	Descriptions of the Networks for the Tests45-46
9.	Influence of Transfer Time
10.	Influence of Ratio of Express to Local Speed

L. INTRODUCTION

Most larger transit systems operate a telephone transit information center to provide prospective riders with itineraries for potential trips. Usually transit system staff provide these itineraries by using maps, schedules and routing information to piece together manually a trip to meet the caller's request. The largest systems may have as many as 80 people involved in answering telephoned requests for transit information. Consideration is currently being given to automating the route-finding portion of the transit information activity. Transit system staff would still be required to interpret the caller's request and relay the computer-produced itinerary to the patron. It is expected that automation of the route-finding portion of a call would significantly reduce the longer calls and could result in an overall average reduction of about 20 percent in call length. Other benefits resulting from automation include repeatability of response and lessened requirements for training of telephone-answering staff in city geography and transit system routes. Analysis of the costs and benefits of an automated transit information system is given in [3].

At the heart of an automated system is a procedure (mathematical algorithm) for finding trip it ineraries in a transit network. Such an algorithm would have available to it computerized descriptions of transit stops, routes and schedules, as well as trip origin and destination and either a desired departure or a desired arrival time. Using these data the algorithm would produce an optimal trip itinerary, "optimal" in the sense of describing either a trip which arrived soonest, having departed at or after the desired departure time, or a trip which departed latest to arrive at or before the desired arrival time. In addition to the route-finding algorithm, the computer would also have a procedure for identifying geographically the caller's trip origin and destination and appropriate transit stops accessible to these points. The itinerary produced by the route-finding algorithm would specify boarding time and stop, transfer stops and the arrival and boarding times at such stops whenever transferring is required, arrival stop and time, and routes for each segment. An example of such an itinerary follows:

Board Route RED at 5TH AND ELM at 9:00 A.M., Arrive at 5TH AND OAK at 9:15 A.M.

Board Route BLUE at 5TH AND OAK at 9:17 A.M., Arrive at 10TH AND OAK at 9:25 A.M.

Further discussion of the data structures, programs and procedures involved in an automated transit information system is presented in [1]. Also included in an appendix to that report are the descriptions of three specific route-finding algorithms which are the subject of the analysis presented below. The main objective of [1] was to assess the feasibility of designing algorithms which could compute itineraries fast enough to improve the information system's response to the caller. With feasibility established, the current analysis turns to the choice of algorithm as it relates to the characteristics of a transit system, such as the size and complexity of network structure, the regularity of departures, transfer times, relative speeds of express and local service, and various patterns of preferential service.

Section 2 below contains descriptions, excerpted from [1], of the three algorithms which are compared in the present analysis. Section 3 contains descriptions of the two network-generation programs used to produce transit-like networks on which the algorithms were tested. The results are discussed in Section 4, and recommendations for choice are provided in Section 5. Program documentation and listings appear in appendices.

The results of the analyses described in Section 4 may be summarized as follows. The label-correcting bipartite route/stop algorithm (LABCOR) provides the most desirable trip output of the three algorithms, since it always produces, from among those trips arriving at the same time (under the departure-oriented criterion), that trip requiring fewest transfers. However, LABCOR is significantly slower than the other two algorithms. The time-expanded network algorithm (TIMEXD) is fastest on the test networks, and its speed increases with network size at the lowest rate of the three algorithms. However, TIMEXD requires significantly more storage than the other two algorithms, mainly because of the need to store explicitly each possible transfer. The third algorithm, the label-setting bipartite route/stop approach (LABSET), is slower than TIMEXD but faster than LABCOR. Path output from LABSET has more transfers than that from LABCOR, but not as many as from TIMEXD. Although LABSET requires somewhat more storage than LABCOR, both require significantly less than TIMEXD. Computation times for all three algorithms depend mainly on the number of stops in the transit network. Other factors which have some effect include the number of transfers required, the average transfer time and its variability, and the relative speeds of express and local service.

2. ALGORITHM DESCRIPTIONS

Descriptions of the three algorithms were given in an appendix to [1] but are repeated here to make this report more self-contained. The algorithms rely for their efficiency on specialized representations of the transit data base of stops, routes and schedules. The three algorithms which are analyzed in Section 4 all use the "departure-oriented" optimality criterion for finding a best path, and thus produce a trip which arrives soonest while departing at or after the desired departure time. We include below (and in the appendix) the description of one of the algorithms, the time-expanded algorithm, programmed for the arrivaloriented case. We expect no difference in the performance between departure- and arrival-oriented algorithms and have therefore focussed in the analysis on the departure-oriented criterion.

2.1 Bipartite Route/Stop Algorithms

The nodes of the bipartite route/stop network are of two types, one representing the geographical transit stops and the second representing individual transit routes. Network arcs are also of two types: for each transit stop an arc connects it to those lines stopping there, and for each route an arc connects it to the stops along that route. (The arcs associated with a route appear in the order of the stops along the route.) Thus the network described here is bipartite in the usual graph-theoretic sense that the nodes of the network may be partitioned into two sets in such a manner that arcs connect a node in one set with a node in the other set but do not connect nodes in the same set. Figure 1 displays an example of such a network. Note that a dummy route was introduced for a walk transfer link connecting two other routes. A path in this network is an alternating list of stops and routes, beginning with the origin stop and ending with the destination stop. The route node appearing between each pair of stops specifies the route which should be taken between them. The number of transfers is thus one less than the number of routes appearing in the list, or alternatively, since each stop other than the origin and destination represents a transfer, two less than the number of stops in the path.

The network as described above does not have associated with it the time data specifying each discrete departure. The arcs connecting the routes to the stops actually represent a whole list of scheduled vehicle trips along the route, to be fetched during the course of the algorithm as needed. An example of such a list for one route is given in Figure 2. Each column gives times at a stop and each row represents one transit vehicle's trip along the route. Thus if the arcs emanating from a route node are listed in the order of the stops along the route, a row of Figure 2 represents arrival times at the arc endpoints in order. We will describe two computational schemes based on this network, one using the basic label-correcting procedure and a sequence list ordered by cardinality distance (in this case the number of vehicles used) and the second using the label-setting procedure and a list ordered by temporary label (in this case trip arrival time). A more detailed description of

-3-

Illustrative Bipartite Route/Stop Network

BIPARTE ROUTE/STOP NETWORK

32 Arcs (Each Connection is Two-way)

FIGURE 2

Illustrative Route Schedule

Stop 1	Stop 2	Stop 3	Stop 4
7:00	7:10	7:15	7:30
7:30	7:45	7:55	8:10
8:00	8:15	8:25	8:40
8:30	8:40	8:45	8:55
10:00	10:05	10:09	10:15
12:00	12:07	12:15	12:25
2:00	2:05	2:09	2:15
4:00	4:07	4:15	4:25
4:30	4:40	4:50	5:05
5:00	5:15	5:25	5:40
5:30	5:45	5:52	6:05
6:00	6:10	6:15	6:25
6:30	6:40	6:45	6:55
8:00	8:05	8:09	8:15
10:00	10:05	10:08	10:13

the basic label-correcting and label-setting procedures can be found in [2]. The following notation will be used in describing the schemes.

- R the set of all transit routes r a particular route
- a particular route
- S the set of all transit stops s a particular transit stop
- ORG the origin transit stop
- DST the destination transit stop
- N $R \cup S$, the nodes of the whole bipartite network
- T(i) arrival time at stop i via best path from ORG, for isS
- P(i) node preceding i in best path from ORG. (Note that if is R then $P(i)\varepsilon S$, while if is S then $P(i)\varepsilon R$.)
- L(k) sequence list of nodes in S, developed by the scheme, indicating the order in which they are to be fanned out from. In the label-correcting method L is maintained in cardinality distance order; in the label-setting method, it is ordered by arrival time.
- F(i) position of node i in sequence list L
- u current position in the sequence list
- v last position filled in the sequence list
- END last entry in sequence list L

2.1.1 LABEL-CORRECTING BIPARTITE ROUTE/STOP ALGORITHM (LABCOR)

A computational scheme LABCOR for a label-correcting procedure for use with the bipartite route/stop network is given below.

Initialization: Set $T(i) = \infty$ for all $i \neq ORC$ and set T(ORG) = desired departure time. Set P(i)=0 and $F(i)=\infty$ for all $i\in N$. Set u=0 and v=0.

Step 1: Let i=ORG. Let r be the first listed route stopping at i.

Step 2: Search the schedule for route r for the first departure from i at or after T(i). Let s be the first stop occurring after i in route r.

<u>Step 3</u>: Compare the arrival time at s of the scheduled vehicle found in Step 2 with the current value of T(s). If it is not less, go to Step 6; if it is less, set P(s)=r and P(r)=i. Step 4: If $T(s) = \infty$, go to Step 5. Otherwise let k=F(s). If k>0, remove s from its previous position by setting L(k)=0.

<u>Step 5</u>: Set T(s) = the time of arrival of route r at node s. Let v=v+1. If v>END, set v=1. Set L(v)=s and F(s)=v.

<u>Step 6</u>: Let s be the next stop on route r, and go to Step 3. If there are no more stops on r, let r be the next route stopping at i and go to Step 2. If there are no more routes stopping at i, set F(i)=0.

Step 7: If u=v, stop. Otherwise let u=u+l. If u>END, let u=1. Let i=L(u). If i=0, repeat Step 7. Otherwise let r be the first route stopping at i and go to Step 2.

These computations do actually maintain the sequence list L in cardinality distance order. Note that successive path segments are always by different routes, so that cardinality distance is associated with the number of different routes used in a path. ("Actual" cardinality length of a path in this network is twice the number of routes used since paths consist of an alternating stop-route sequence. However since L contains only stops, it can be used in obtaining directly the number of routes used.) If it is desired to consider only paths using no more than some maximum number of routes, say r computational scheme given above can be modified easily to accommodate this additional constraint, utilizing two additional pointers:

- m the cardinality distance (actually the number of routes) used in the current path from ORG to node i.
- j the position in L of the last node of cardinality distance m.

Both m and j are initialized at 0. The computational scheme is modified by the addition of a Step 6.5 between Steps 6 and 7 above.

Step 6.5: If u=j, let m=m+l. If m=r_{max}, stop. Otherwise, set j=v.

2.1.2 LABEL-SETTING BIPARTITE ROUTE/STOP ALGORITHM (LABSET)

A label-setting scheme LABSET for use with the bipartite route/stop network is similar to that given above, but the sequence list L is kept ordered by arrival time at each node. The length of L is determined by M, one plus the maximum arc length. See [2] for a more complete discussion of the label-setting procedure. Since for transit networks the transferring time must be included in M, it is perhaps easiest to set M at some reasonable trip length level (say 3 hours, or if desired 24 hours).

-7-

<u>Initialization</u>: Set $T(i) = \infty$ for all nodes $i \neq ORG$ and T(ORG) = desired departure time. Set <math>P(i) = 0 for all nodes i. Let u be one plus the desired departure time (mod M).

Step 1: Let i=ORG. Let r be the first route stopping at i.

Step 2: Search the schedule of route r for the first departure from i at or after T(i). Let s be the first stop occurring after i in route r.

<u>Step 3</u>: Compare the arrival time at s of the scheduled vehicle found in Step 2 with the current value of T(s). If it is equal or greater, go to Step 5; if it is less, replace the old T with the new value and set P(s)=r and P(r)=i.

Step 4: Let k=T(s) (mod M). Store s in position k+1 of L.

<u>Step 5</u>: Let s be the next stop on route r and go to Step 3. If there are no more stops on r, let r be the next route stopping at i, and go to Step 2. If there are no more routes stopping at i, continue to Step 6.

Step 6: Let u=u+1. If u>M, let u=1. If L(u)=DST, stop. Otherwise, let i=L(u). If i=0, repeat Step 6. Otherwise let r be the first route stopping at i and go to Step 2.

Note that termination occurs when DST is the node to be fanned out from. Thus if DST is fairly close to ORG the label-setting procedure requires much less calculation than the label-correcting procedure, which terminates only after best paths to all nodes have been found.

2.2 Time-Expanded Network Algorithms

Nodes in the time-expanded network are defined by a pair of entities, the geographical transit stop (a separate node for each route) and a time of day. Thus the geographical node Sixteenth and K Street will become several nodes, one for each time a transit vehicle stops there. The network arcs become transit trips departing one stop at a particular time and arriving at another stop at a different (later) time. Transfer arcs, representing allowable transfers (i.e., those obeying minimum transfer times), must be coded directly. An example of such a network is depicted in Figure 3. In this example there are four transit stops and three bus lines: a local stopping at each stop (its two daily runs are represented by the paths 1+3+6+8 and 12+16+17+20), a faster vehicle starting at the second stop of the first route and proceeding directly to the last stop of that route (with four runs: 5+7, 9+10, 14+15, and 18+19), and one coming from the last stop of the first route

 $[\]operatorname{Rv} X \pmod{M}$ is meant the remainder when X is divided by M. Its calculation is usually available in FORTRAN through the function MOD(X,M).

Illustrative Time-Expanded Network

back to the next-to-last stop of that route (its runs are represented by 2+b, 11+13, and 21+22). Two transfer arcs, j+9 and 14+i8, have been included. Note that in the left transfer, one is prevented by a minimum transfer time restriction from making the earliest vehicle on the second time.

The four stop network has been transformed into one with 22 nodes and 15 arcs. In general, time-expanding the network greatly increases the number of nodes, in fact by a factor equal to the average number of transit vehicle departures per geographical node. Generally it is desirable to decrease rather than increase network gize, but the fact that the resulting time-expanded network is acyclic means that the increase is likely to be beneficial. On an acyclic network the network nodes can be numbered at the outset in such a way that for each arc (1, j), i<j. That is, in the numbering, arcs always lead from lower numbered nodes to those with higher numbers. Of course a similar property also holds true of paths. This limits the search for path extensions to nodes whose numbers are greater than nodes already in the path, so that nodes can be interrogated in the order of their numbering. The node order assumed below is the one determined entirely by the time component of node identity, except for "ties" which cause no trouble unless some arc requires no time to traverse. If only major stops are included this situation is unlikely to occur, but if it were, procedures exist to number nodes having identical time components.

The node numbering procedure allows the network to be broken up into pieces (which will be called pages) so that the computational scheme only needs one of them at a time and can finish with the current one before needing the next.

The computational schemes proposed for computing transit paths in such a network appear below and rely on the basic label-correcting scheme. We will use the following notation:

- n(i) the geographical transit node associated with the network node numbered i
- t(i) the time associated with network node numbered i
- ORG geographical node of transit origin
- DST geographical node of transit destination
- P(i) the network node preceding i in a best path from UKG to the network node numbered i

[&]quot;A network is <u>acyclic</u> if there are no paths containing more than one node and beginning and ending at the same node. Since all arcs in the timeexpanded network go forward in time, no path can return to a node once it has left that node, so this network is acyclic.

DONE the first node associated with DST encountered (i.e. the one for which t is minimum) in a path starting at a node associated with ORG

2.2.1 DEPARTURE-ORIENTED ALGORITHM (TIMEXD)

The computational scheme proceeds through the following steps:

Initialization: DONE = ∞ ; P(i)=0 for each node i.

Step 1: Scan the arc list starting with the first node i for which t(i) is not less than the desired departure time. Let i be the first node encountered with n(i)=ORG.

Step 2: Let a=(i,j) be the first arc originating at node i. If there are none, go to Step 6.

Step 3: If $P(j) \neq 0$, go to Step 5. Otherwise set P(j)=i.

Step 4: If $n(j) \neq DST$, go to Step 5. Otherwise set DONE=min (DONE, j).

<u>Step 5</u>: Let a=(i,j) be the next arc originating at node i, if there is one, and go to Step 3. Otherwise continue.

Step 6: Let i=i+l. Stop if i=DONE.

Step 7: If P(i)=0 and $n(i)\neq ORG$, go back to Step 6. Otherwise go to Step 2.

It is clear from this description that only the nodes numbered between the first departure from ORG after the desired departure time (which we shall call i') and the node DONE are examined as arc origin nodes. In most instances this should be considerably fewer than the total number of nodes in the network. To take advantage of this fact, one may store information about node i in position i-i'+1 in the P array.

The algorithm described above requires only one pass through the nodes, and only a subset of the nodes at that. No sorting or sequencing of nodes is necessary, since nodes are examined in numerical order. Since arcs are stored sorted by origin, only that portion of the network originating at nodes i' through DONE need be referenced for this path calculation. An arc in this application only requires identification of its origin and destination nodes since the t and n pointers describe the relevant arc characteristics.

2.2.2 ARRIVAL-ORIENTED ALGORITHM (TIMEXA)

For the arrival-oriented criterion a modified version of the above scheme may be applied, using the same network and examining the nodes in reverse order starting from the last node associated with DST whose time is before the desired arrival time. This scheme will be described below. Use of two schemes has the advantage that only one copy of the network, the forward star form, need be stored to handle both the departure oriented and arrival oriented criteria. This is particularly necessary for the time-expanded network because of its large size. Different schemes are then applied to the network for the two criteria, the one above for the departure oriented criterion and the one below for the arrival oriented criterion. The following array and variable will be used in describing the scheme, together with the arrays n and t and variables ORG and DST listed above:

- S(i) the network node succeeding i in a best path from the network node numbered i to DST
- FIN the first node associated with ORG encountered (i.e., the one for which t is maximum) in a path ending at a node associated with DST.

The computational scheme proceeds through the following steps:

Initialization: FIN=0; S(i)=0 for all i.

<u>Step 1</u>: Scan the arc list backwards, starting with the last node i for which t(i) is at most the desired arrival time. Let i be the first node encountered with n(i)=DST. Set S(i)=i. Go to Step 6.

Step 2: Let a=(i,j) be the first arc originating at i. If there are none, go to Step 6.

Step 3: If S(j)=0, go to Step 5. Otherwise set S(i)=j.

Step 4: If $n(i) \neq ORG$, go to Step 5. Otherwise set FIN=max(FIN,i).

<u>Step 5</u>: Let a=(i,j) be the next arc originating at node i, if there is one, and go to Step 3. Otherwise continue.

Step 6: Let i=i-l. Stop if i=FIN.

Step 7: If $n(i) \neq DST$, go to Step 2. Otherwise, set S(i)=i and go back to Step 6.

In the runs described in Section 4, only the algorithms using the departure-oriented criterion, LABCOR, LABSET and TIMEXD, were tested. Runs of TIMEXA and TIMEXD suggested that the two algorithms performed similarly. In addition, the symmetry of the criteria and algorithms suggest that the two criteria should be equally efficient to process.

-12-

3. TEST-PROBLEM GENERATION

Two network generation programs have been written to produce the route and schedule information for the algorithm testing described in Section 4. One program generates a p by q grid network in which routes run either horizontally or vertically and transferring is possible at any intersection. Every trip requires at least one transfer, as long as the origin and destination are not on the same horizontal or vertical route. Subsets of the horizontal and vertical streets may be designated as main streets. Express routes begin and end at the outside of the grid, run along main streets, and stop only at intersections of other main streets. An example of such a network is shown in Figure 4, with express routes indicated by the wider lines and stops on express routes as blackened disks.

A second program generates a spider web radial type of network in which routes run inward or outward along radials from a central node and also clockwise or counterclockwise along beltways or partial beltways connecting the radials. Other routes may run from the center out along a radial, diverging from the radial at some point along it. As with the grid network, radials and beltways may be designated as major arteries along which express routes run. The express routes only stop at intersections of other express routes. Any node in the network is accessible from any other node either by traveling to the center along one radial and out along another, or else by traveling around one of the beltways. At least one transfer is required if the origin and destination are not on the same radial or on the same beltway. Figure 5 displays an example of a radial network, with express routes shown as wider lines and stops on express routes as blackened disks.

Schedule information for both types of networks is given by providing the initial run's departure time, the number of runs and the headways for each time period and route. Several routes may be grouped together if they have the same headways and numbers of runs. Distances between grid elements are provided as input to the grid type networks. Distances of nodes out from the center along the radials are input to the radial network generator, as are the angles between radials. Distances along beltway sections are then calculated as circular arc approximations. Using the arc distances, run departure times, and speed factors for either local or express routes, stop times at later nodes along each route can be calculated.

Output from the network generation programs consists, for each route, of the stops along that route and, for each departure along the route, the time it reaches each of the stops.

The networks generated by these programs clearly represent idealizations of transit system structure, but examination of several transit system maps has indicated that many systems have an underlying grid or radial structure or a combination of the two. Any undue simplification

FIGURE 4

Example of a Grid Network

Example of a Radial Network

associated with the topological regularity implicit in the grid and radial structures is counteracted somewhat by the variability in the service availability. In fact, since almost all trips calculated for the analyses in Section 4 required at least one transfer, whereas most transit systems are designed so that many frequently-made trips require no transfer, the pure grid and radial network structures may actually be a more difficult test case than would be real networks of the same size. <u>Post facto</u> justification for using idealized networks in the tests is the finding, reported in Section 4, that the particular network structure is less important in determining algorithm performance than are various measures of the complexity and variability of network parameters.

4. ANALYSIS OF ALGORITHM PERFORMANCE

-17-

The network generation programs described in the previous section were used to produce transit networks with specified characteristics for use in testing the three algorithms, LABCOR, LABSET and TIMEXD. Twentysix different situations were generated, with a particular test network characterized by the network generator used (i.e., grid or radial), the minimum transfer times required, and the network input parameters such as size (number of nodes and runs), frequency of service, and speeds of express and local vehicles. For each test, twenty-five itineraries were calculated, with their origin-destination pairs and times of day chosen to represent "reasonable" trips. The O-D pairs were not formally chosen by any random process and probably overrepresent the longer and more complicated trips, just those which are more difficult and more timeconsuming to calculate. In some cases, no trip was found within the desired time period. In order to ascertain that no trip existed, the algorithms had to process some data; timings for such situations have therefore been included in the analysis.

The tests were run on the UNIVAC 1108 at the National Bureau of Standards (NBS) under the EXEC 8 operating system. The programs were all coded in FORTRAN V, UNIVAC's enhanced version of FORTRAN IV. Care was taken to insure that the programs were coded without utilizing special peculiarities of the UNIVAC 1108 and its FORTRAN compiler. The algorithms were coded to make them as comparable as possible. Timings include only the algorithm calculation portion of each of the programs; they do not include any input/output operations. All problems were core-size problems, that is, the data base for each problem was sized so that it could be accommodated in the main memory of the computer. This simplified programming and eliminated one possible source of bias or variability in performance.

The analyses described below investigate the comparative performance of the three algorithms LABCOR, LABSET, and TIMEXD on small transit networks containing from 40 to 225 nodes. One test example used a grid network containing 1600 nodes, which is similar in size to the transit system in a medium size city. The runs were made primarily to test algorithm performance on a variety of types of networks with varying characteristics. The network generation programs were designed to allow input control of several different network parameters including network size as measured by the numbers of nodes and vehicle runs, network shape as measured by the number of horizontal and vertical routes in a grid or the geometry of a radial network, the variability of schedules, and the relative speeds of express and local service. By careful selection of appropriate input parameters, scenarios representing a variety of reasonable network types can be simulated and variations on these networks can be evaluated. The tests and analyses performed to date do not exhaust all possible tests which could be informative, but they were designed to reveal the general performance of the algorithms across the spectrum of likely input situations.

4.1 Analysis of the Path Output

In comparing the itineraries output by the three algorithms for a given trip, it was necessary to choose the most desirable. When all had the same number of segments, the main difference was usually whether the traveler waited at the origin or at an intermediate stop, a choice with neither alternative always being preferable. When there was a difference in the number of transfers, however, it was believed that the trip with fewer transfers should always be considered preferable. Table 1 displays, therefore, the number of transfers required by each of the three algorithms for each of the 25 requested itineraries in each of the 26 test networks. As noted in the descriptions of the algorithms, LABCOR always produces that trip which arrives first while departing at or after the desired departure time and which also has the fewest transfers. The other two algorithms will produce trips arriving at the same time, but these trips may require more transfers. In fact, 9 percent of LABSET trips and 14 percent of TIMEXD trips required more transfers than LABCOR trips.

One type of situation in which a routing algorithm may provide extra transfers occurs when an express vehicle overtakes a local vehicle. This is illustrated in Figure 6. The soonest arrival time for a trip from node 1 to node 5 departing at or after 5:00 is 5:35. Two different itineraries with the same arrival time are possible: The first starts out at 5:00 on the local and arrives at stop 3 at 5:20, transfers to the express at 5:25 and arrives at node 5 at 5:35. The second waits 15 minutes to board the express at node 1 at 5:15 and takes the express direct to the destination at 5:35. Taking the express is preferable since it does not involve a transfer. Examples of the overtake situation occurring in the test runs are shown in Figure 7. In each case the routing produced by LABCOR (and in these cases also by LABSET) waits at an intermediate node for an express route, while TIMEXD takes the local route which is the first vehicle leaving and transfers to the express just before it overtakes the local.

In an attempt to avoid so many transfers by TIMEXD, we tried varying the choice criterion for trips which arrive at the same timeexpanded node (that is, trips which arrive at the same geographical node at the same time). Table 2 shows the results of using two criteria, one which always picks the first trip encountered, which is also the trip whose last segment starts earliest, and a second which picks the trip whose final segment starts latest. Although the latter criterion might seem to correct the difficulties encountered in an overtake situation, it does not always produce trips with fewer transfers as can be seen in Table 2. These results were obtained for network number 2, which had no express routes and may thus make the second criterion appear less desirable than is actually the case. However, neither criterion seems to reduce appreciably the incidence of extra transfers using TIMEXD.

NUMBER OF TRANSFERS IN EACH PATH Transfers for LABCOR TABLE 1

ד לג ב	нананаранананаранарана
13	
12	
11	
1 D	00000000000000000000000000000000000000
6	
œ	04000400000400000404044
2	440044004040444444444444444444444444444
9	
Ś	
t-	
(m)	
N	
Ч	
NETWORK NO. CASE	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

"3" indicates no transfers, i.e. a direct trip. * "-" indicates no trip was found.

ntinued)	r LABCOR
Cont	for
TABLE 1 (Transfers

1

26	
25	~~~~~~~~~~~~~~~~~~~~~~~~
24	0 0
53	0 - 0
22	
21	
50	
19	
18	и иоинаноннноонннонано н
17	4 HWHHWHAHOHHHHWONHHHWOO
16	
15	
NETWORK NO. CASE	

TABLE 1 (Continued) Transfers for LABSET

Ľ

1 t	нананарананариановоио
13	ЧЧЧЧЧЧ ОООЧЧЧЧОООЧЧЧЧЧОО
15 T	
11	
10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6	
œ	0 H 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D
7	
9	
5	
7	алалалалаййалалалалалаа
m	0
CV	
Ч	00000100000000000000000000000000000000
NETWORK NO. CASE	00000000000000000000000000000000000000

TABLE 1 (Continued) Transfers for LABSET

I	1	
	26	оннонноннонноннонноннон
	25	
	24	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	23	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	22	
	21	
	20	
	19	
	18	00000000000000000000000000000000000000
	17	4 O O O O O O O O O O O O O O O O O O O
	16	
	15	- ~
NETWORK NO.	CASE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE 1 (Continued) Transfers for TIMEXD

1 1	
14	ипочоночначалочоломии
13	
12	
11	
10	0 H N O H O O O O O O H O O O O O O O O O
6	
ω	0 H O O O O O O O O O O O O O O O O O O
6	аноончоочоноочананана
9	
5	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4	
Μ	<u>04044410004441414441010104</u>
2	mmanaaaanmmmanaaaaaaaaaaaaaaaaaaaaaaaa
NETWORK NO. CASE	5 4 8 9 7 9 8 4 9 7 4 8 9 7 9 8 4 9 7 4 8 9 7 8 4 7 8 4 9 7 8 4 7

TABLE 1 (Continued) Transfers for TIMEXD 1

	26	Q	Г	Г	Ч	0	m	Г	Ч	Г	0	Г	Ч	Ч	Ч	C)	Ч	г	CJ	Ч	Ч	C)	0	m	IJ	г	
	25	Г	Г	Ч	m	0	Ч	Ч	Ч	Г	0	C)	Ч	Ч	0	Ч	Ч	г	CJ	Ч	Ч	C)	0	CJ	1	CJ	
ī	24	0	Ч	Ч	Ч	CJ	CJ	Ч	Ч	Ч	Ч	Ч	Ч	Ч	m	CJ	Ч	Ч	CJ	Ч	Ч	CJ	CJ	CJ	m	CJ	
	23	m	Ч	CJ	CJ	CJ	Ч		Ч	CJ	m	CJ	Ч	Ч	m	CJ	Ч	CJ	CJ	CJ	Ч	CJ	C)	m	CJ	CJ	
	22	Ч	Ч	Ч	Ч	CJ	Ч	Ч	Ч	Ч	CJ	CJ	Ч	Ч	C)	Ч	Ч	Ч	CJ	CJ	Ч	CJ	C)	Q	Г	CJ	
6	51	Ч	CJ	CJ	Ч	CJ	Ч	Ч	0	CJ	Ч	Ч	Ч	CJ	Ч	CJ	Ч	Ч	CJ	C)	Ч	Ч	Ч	Ч	Ч	Ч	
	20	CJ	Ч	Ч	Ч	Ч	Ч	Ч	0	CJ	Ч	Ч	Ч	Ч	Ч	Ч	0	Ч	Ч	Ч	Ч	m	m	CJ	m	m	
	19	CJ	Ч	CJ	Ч	Ч	Г	Ч	CJ	Ч	CJ	m	0	Ч	m	Ч	Ч	0	m	Г	0	Ч	0	Г	Ч	CJ	
	Τα	m	m	0	CJ	CJ	CJ	Ч	0	Ч	Ч	Ч	Г	CJ	0	Г	Ч	Ч	Ч	Ч	CJ	CJ	CJ	Г	0	m	
).⊤	71	m	m	CJ	4	m	Ч	9	Ч	Г	0	Ч	0	Ч	Ч	m	0	CJ	Ч	Ч	Г	Г	CJ	CJ	0	
	ΠO	Ч	Ч	Г	Ч	Г	Г	Ч	Ч	Г	Ч	Ч	Ч	Ч	Ч	CJ	Ч	Ч	Г	CJ	Ч	Ч	Ч	г	Ч	Ч	
L r	ζT	Ч	CJ	Ч	Ч	Ч	Г	Ч	m	Ч	Ч	Ч	CJ	Ч	Ч	Г	Ч	Ч	Ч	Ч	0	Ч	Ч	Ч	CJ -	CJ	
NETWORK NO.	CASE	Ч	CJ	m	4	ŝ	9		00	6	JO	11	12	13	14	15	16	17	18	19	20	21	22	53	24	52	

Local Times

Express Times

No Transfer

	Express	
1		5
5:15		5:35

One Transfer

FIGURE 6

Example of Overtake

FIGURE 7

Overtake Occurrences in the Test Runs

-26-

		NUMBER OF TRANSFE	RS
	LABCOR	TIMEXD	TIMEXD
TRIP		(last arrival)	(first arrival
1	1	3	1
2	l	3	1
3	1	1	1
4	1	1	1
5	1	1	2
6	1	1	2
7	l	4	4
8	1	24	4
9	1	1	2
10	1	1	2
11	1	3	2 1
12	1		
13	1	3	1 1
14	1	3	
15	1	1	1 2
16	1	1	
17	1	1	2 4
18	1	1	
19	1	1	4
20	1	1	3
21	1	1	3
22	1		1
23	1	1	1
24	1	1 1	1
25	1	1	1
	1	Ţ	1
Average	1.0	1.68	1.88

Comparison of Paths for TIMEXD Using First Path Encountered to a Node Versus Last Path to That Node

TABLE 2

In conclusion, LABCOR provides the most desirable path output since it always produces an itinerary with the minimum number of transfers. The other two algorithms output a small but significant number of trips with extra transfers (9 percent for LABSET and 14 percent for TIMEXD). When the overtake problem occurs, using TIMEXD may lead to an extra transfer from a local to an express because the express starts later than the local and passes it enroute, arriving first at the destination. Varying the criterion for choosing between ties does not result in a decrease in the number of extra transfers for TIMEXD.

4.2 Computer Storage Required by the Algorithms

The storage required by the algorithms is largely a function of the size and configuration of the network and schedules. The particular form in which the algorithms have been coded for this study does not attempt to optimize use of storage of the basic network data. For instance, in LABCOR and LABSET the routes are stored in a doubly indexed array, ROUTE (i,j), in which the entry for i,j is the jth stop on route i. Thus the size of the array is the number of routes by the maximum number of stops per route. If one or a few routes are long while all others are short, this wastes much storage. The compensating benefit is that of easier reference to a desired piece of data. More efficient storage would involve more complicated indexing than was used in the programming. The decision in favor of the simpler representation was made in the interest of facilitating quick coding. In addition, it is the LABCOR and LABSET algorithms which are most severely affected by this decision, and they require less storage than does TIMEXD for the same network. Since we intended to run all three algorithms on the same problems, we were less concerned with wasting storage space in programming LABCOR and LABSET.

In estimating the storage required by LABCOR and LABSET we will use the following notation:

R number of routes S number of stops L maximum number of stops per route K maximum number of routes per stop D number of vehicle departures T number of possible time intervals (e.g. 1440 minutes per day) Then the storage required by algorithm LABCOR is approximately:

 $3R + 8S + (R+D)L + S \cdot K$.

Similarly the storage required by the algorithm LABSET is:

 $3R + 10S + (R+D)L + S \cdot K + T.$

Additional storage is required for printing paths, but these expressions contain the major elements requiring computer space.

Notation used in estimating the storage for TIMEXD follows:

N number of time-expanded nodes A number of arcs in the time-expanded network T number of possible time intervals (as above) D number of vehicle departures & average number of stops per route k average number of routes per stop.

The algorithm requires

5N + 2A + T

storage locations, exclusive of path printing and incidentals. To relate this to the other two algorithms we approximate N and A as follows:

$$N = D \cdot \ell$$
$$A = D \cdot \ell + N \cdot k = D \cdot \ell (k+1).$$

Assuming each vehicle arrival gives rise to a new node, we arrive at an overestimate to the number of nodes. Arcs are of two kinds, those which represent vehicle trips--whose number is the number of vehicle departures times one less than the number of stops per route (approximated as Dl)--, and transfer arcs, whose number is the number of routes stopping at a node times the number of nodes, under the assumption that all possible transfers at each node are available and reasonable. The total requirement then becomes

6Dl + 2Dlk + T.

These approximations overestimate storage requirements but are useful for comparison purposes.

In a square grid network of size P x P:

 $S = P^{2}$ R = 4P $L = \ell = P$ $K \approx k = 4$

so the storage required by LABCOR is

$$12P + 16P^2 + DP$$
,

for LABSET is

 $12P + 18P^2 + DP + T$,

and for TIMEXD is

14DP + T.

For several of the test cases P was about 15, D was about 300 and T was 1440, making the storage requirements 8200 for LABCOR, 10170 for LABSET, and 64440 for TIMEXD. We note again that the formula for TIMEXD overestimates the storage required, in this case since the actual number of transfers per interior node is 3, rather than 4, and the number possible at peripheral nodes is 2 or 1.

The difference in storage requirements is greatest for the sort of situation described above when $L = \ell$ and K = k. For a radial network it is likely that K >> k, since all routes in or out along radials stop at the center node. Thus in a radial network with 6 spokes, at least 12 routes (and more if there are spike routes *) stop at the center node. whereas most other nodes have at most 4. A full beltway would have at most 7 stops (one stop repeated) but a radial route could have as many as desired. A partial beltway might have only 2 stops. Therefore there is a great variability in the number of stops per route and routes per stop, leading to a difference between K and k and between L and L. Similarly in a rectangular network which is long and thin, storage must be provided as if all routes had as many stops as the longer routes. Thus whenever K > k and/or L > l, LABCOR and LABSET, because of inefficient storage design, require more storage than they actually use, whereas TIMEXD can be sized more tightly. In spite of not using storage most efficiently, for most of the test cases LABCOR and LABSET required significantly less storage than TIMEXD.

4.3 Comparison of Computation Times

Timings for the 26 test runs and the 25 cases for each run are listed in Table 3. The timings include only processing time, no input or output operations, since test cases were chosen to be small enough not to require reference to external storage. For each run, timings were made on all three algorithms at the same time of day (actually within the same computer run), to ensure that the computer environments were as comparable as possible.

There are many problems with timing an algorithm in a multiprocessing environment, such as the UNIVAC 1108 under the EXEC 8 operating system, in which several programs are active in various stages of processing at one instant in time. In calculating the run time for each algorithm on each case, we used a computer subroutine, CPUSUP, available at NBS for summing the CPU time of a designated section of one program only. However, our experience has been that timings of the same problem

^{*}Spike routes are ones which begin or end at the center node, include stops along one spoke and then deviate from that spoke to one final stop not on any spoke.

NETWORK NO.													
CASE	Ч	N	m	4	2	9	7	8	6	10	ΓΓ	12	13
-	164	151	85	106	24	20	21	22	33	29	143	159	158
1 (1)	120	170	98	108	26	23	24	27	35	28	102	129	122
m	165	152	-84	TOO	29	21	21	23	29	30	142	159	158
4	121	171	66	107	34	23	25	26	27	29	103	137	130
ſŲ,	164	150	82	100	26	23	24	25	32	28	142	171	158
9	121	172	98	106	27	23	24	24	30	29	103	140	133
7	155	147	65	100	29	29	31	32	33	29	137	166	176
ω	136	179	96	112	33	30	30	31	34	29	124	146	17 ⁴⁴
6	153	146	64	100	32	29	29	29	27	28	138	166	187
10	134	181	96	III	32	25	26	32	28	28	123	144	176
11	155	148	64	100	25	22	23	28	26	27	139	161	184
75	135	179	95	2112	28	25	28	28	28	28	123	144	158
13	176	145	22	100	35	31	31	32	24	28	138	168	175
	118	170	94	106	36	29	32	34	28	31	107	139	156
31	176	143	24	100	29	25	25	30	26	28	138	157	178
	118	170	94	105	24	23	25	24	27	27	108	129	156
17	175	145	23	TOO	24	22	21	22	28	30	1.38	155	173
18	118	TLT	95	106	32	27	58	29	58	28	107	128 .	153 153
19	J175	148	2	66	29	27	28	35	58	27	139	164	168
20	76	172	93	J06	23	22	51	24	28	50	95	140	н Л Л
21	173	150	ω	TOT	27	22	24	27	27	23	139	165	168
22	96	169	92	105	24	21	22	23	26	28	95	139	153
23	173	148	Ø	100	32	30	32	33	27	29	139	165	168
24	76	169	92	105	25	21	24	25	58	29	96	140	150
25	159	167	92	104	31	27	27	34	26	28	134	167	186
AVERAGE	142.96	160.52	70.80	103,96	28.64	24.80	25.84	27,84	28.46	28.48	123.68	151.12	162.12
STD.DEV.	27.42	13.04	33.59	h.10	3.86	3.38	3.58	3.92	2.43	.96	17.83	14.0	16.86

TABLE 3 ALGORITHM TIMINGS FOR EACH PATH Timings for LABCOR (Milliseconds per Path)

26	222882225528882322222222222222222222222	56.12	3.7
25	660 660 660 660 660 660 660 660 660 660	61.88	6.71
24	22 22 22 22 22 22 22 22 22 22 22 22 22	55.32	3.33
23	6689776977376646788770 668977697796646788770 6689776977386647888770	70.56	7.21
22	444888888888888888888888888888888888888	64.12	3,18
21	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	55.92	3.72
20	00000000000000000000000000000000000000	89.2	7.14
19	0 80 84 0 8 8 8 9 4 8 4 9 4 4 4 4 9 4 9 4 4 4 4 4	70.2	9.27
18	4 4 4 4 4 9 9 9 4 4 9 4 9 9 9 4 7 9 9 9 9	57.8	14.93
17	てき ひじ やとし や たて とう かい かい かい かい かい ちょう ちょう ちょう ちょう ちょう ちょう ちゃ ちょう ちゃ	43.08	6.63
16	でての ひょし 80005 800 2 802 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2	39.60	3.30
15	1000 1000 1000 1000 1000 1000 1000 100	142.92	27.43
14	19464514 1946514 1946514514 1946514 1946514	128.56	32.17
NETWORK NO. CASE	-32-	AVERAGE	STD.DEV.

Timings for LABCOR (Milliseconds per Path)

TABLE 3 (Continued)

-32-

13	11 888 15 888	102.64	33.36
L L	90000000000000000000000000000000000000	130.24	42.94
11	44 108 108 100 100 100 100 100 100	99.40	33.44
10	00000000000000000000000000000000000000	17.40	6.46
60	80000000000000000000000000000000000000	18.24	6.58
08	10100100100000000000000000000000000000	16.20	7.69
οŢ	10000000000000000000000000000000000000	16.98	8.25
96	18000000000000000000000000000000000000	16.44	7.59
05	КТККВООООВНИЛИОООВТКВВ ГТГОО ГООЛВНИЛИОООВТКВВО ГГГОЛ ГОЛЛНИ ГГ О ООГ ГГ	15.68	7.45
04	н н н н н н н н н н н н н н	7 1 .72	23.48
03	860088684404428644899999999999998888844949989999999999	53.28	24.58
05	11111111111111111111111111111111111111	128.64	18.97
01	7 7 7 7 7 7 7 7 7 7 7 7 7 7	88.04	31.04
NETWORK NO. PAIR	┙┙ぁぁѵѻヶѹѽҶѽӹ҉Ҭӹҧҧҏѻѻ҂ѵѵҡ	AVERAGE	STD.DEV.

TABLE 3 (Continued) Timings for LABSET (Milliseconds per Path) TABLE 3 (Continued)

Timings for LABSET (Milliseconds per Path)

26	344468895884688468846884688468846884688468846884	35.60	71.67
25	のてでよ 888たらのとのでくのくうし たらのよう 850 たれらう れつとと 2 たつとう 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	42°Σ4	13.58
2h	0 4 5 6 4 3 8 6 7 4 6 6 8 4 6 8 8 8 8 7 6 6 8 8 8 8 8 8 8 8 8 8 8 8	36.44	11.55
53	\$%4%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	37.16	9.87
22	86086946848998999869554868687408 865986946828998888859486895488	35.0	10,84
21	₽₩₽₽%%₽%₽%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	40.64	14,54
20	485875848888888888888888888888888888888	32.04	16.58
19	850 53838758587286758758758758758858888888888888	34.16	15.70
18	0000448006408090000000000000000000000000	39.88	15.14
17	6 8882 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	25.56	10.71
16	F 0 3 4 5 5 6 4 5 6 6 4 5 5 6 6 6 6 6 6 6 6 6	30.64	9,51
15	1865 251 266 888 833 155 24 26 1987 251 266 888 833 156 25 1988 25 156 268 88 1988 25 156 26 1988 26 156 26 1988 26 2010 26 2000 2000	94.16	37.91
μL	500 10 10 10 10 10 10 10 10 10	95.28	29.77
NETWORK NO. CASE	-3 ⁴ -	AVERAGE	STD.DEV.

TABLE 3 (Continued)

Timings for TIMEXD (Milliseconds per Path)

13	665089215430944555593369399 6655892153365265355 07153365565555 07153365565555 07153365565555 0715336555 0715336555 0715336555 0715536555 0715536555 0715536555 0715536555 071555555 0715555555 07155555555 0715555555555	58.60	19.57
12	9 2 5 4 7 8 4 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2	61.20	22.63
11	ム れらら かたし 20 ひ た 20 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 4 2 2 4 4 2 4 4 2 4 4 2 4 4 4 2 4	51.76	17.66
10	40000000000000000000000000000000000000	24.28	10,11
60	48040085004447008555505	24.20	12.11
08	8994889028849429884949989984949989849499899899999999	34.40	15.13
Lo	81 H S S R F S S A S F S S S S S S S S S S S S S S	39.40	16.76
90	4995年887日57889888889990000100100000000000000000000	34.60	15.00
05	00000000000000000000000000000000000000	30.52	15.70
40	8 8 8 8 9 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	ή3.L4	8.91
03	48000000000000000000000000000000000000	59.32	24.80
02	00000000000000000000000000000000000000	68,12	09.II
τo	9 5 4 8 8 7 8 8 7 8 8 7 7 7 7 7 7 8 9 8 7 8 8 8 8	47.80	14.97
NETWORK NO. PAIR	-35-	AVERAGE	STD.DEV.

				Timings	for TIMEXD	LLiM)	iseconds	per Path)	(1				
NETWORK NO. CASE	14	15	J.6	17	18	19	20	21	22	23	24	25	26
-36-	22005252635252005520005550 2200555635262005520005526 2005556356205520005520005520005520005520005520055200552005520055200552005520055200552	L V 6 4 V 6 4 8 6 H 8 6 6 6 6 6 6 6 6 7 4 4 7 4 6 7 6 7 6 7 6	218252222222222222222222222222222222222	でらゆ たのて のの ム ム 8 たら 8 でう 5 た 8 でう 8 た 8 でう 5 た 8 たら 8 でう 5 た 8 たら 8 でう 5 た 8 でう 8	40370444448 8450047048800284	0 0 0 1 8 0 0 1 8 0 0 1 0 1 0 0 0 0 0 0	8343887845348454848588888888888888888888	84448704698989898989898989898989898989898989898	42222222222222222222222222222222222222	64664446666684666666666666666666666666	3 5 4 2 3 3 5 5 8 8 8 8 9 7 3 5 5 5 6 5 7 8 8 8 9 7 3 5 5 5 6 5 7 9 5 5 7 9 5 5 7 9 5 5 7 9 5 5 7 9 7 9	4394633252325546464677360666	4668399688230000447828598596400 445964282300004458296
AVERAGE	62.04	62.04	30.96	40.24	39.68	34.16	24.04	36.24	45.00	50.72	46.92	45.84	42.04
STD.DEV.	i9.06	25.93	12.47	16.36	19.04	12.44	12.71	14.43	17.42	17.62	18,84	19.82	18.29

TABLE 3 (Continued)

-36-

may differ by as much as 20 percent depending on the time of day and machine load at the time. By timing all three algorithms on the same network in immediate sequence, we sought to make cross-comparisons on the same problem appropriate and valid. Most runs were made in low activity periods to minimize the influence of other programs being run on the computer at the same time. (It is generally true that the timing of the same program will be greater during periods in which the computer has a heavy load.) Thus care should be exercised in imputing precision to the timings reported here and in extrapolating from them. However, the testing procedure was designed to facilitate comparisons of performance among algorithms.

Table 4 contains a summary of the average and standard deviation of the 25 timings for each of the 26 test runs along with the size parameters describing each test network. TIMEXD is the fastest on the average, but in more than half of the runs LABSET was as fast or faster. In general LABSET is faster than TIMEXD on networks with fewer nodes. Since the networks used in these tests are all fairly small, compared to most real transit systems, one would generally expect TIMEXD to calculate itineraries more quickly for real transit systems. In all but four small networks, LABCOR took more time than did either of the other two algorithms. It is always slower than LABSET, but beats TIMEXD on very small networks. However, we note again that LABCOR always produces paths which are at least as desirable and often more desirable, because they have fewer transfers, than those produced by the other algorithms. On the average for these test runs, these better paths required 77 percent more time to calculate, and the time difference was greater for larger networks. For example, for the five 15 by 15 grid networks, TIMEXD was on the average 2.5 times faster than LABCOR.

The average standard deviations for the LABCOR calculations were smaller than those of either of the other two algorithms, indicating that for a particular network the timings of different cases using LABCOR were closer together than those of LABSET or TIMEXD. However, the standard deviation of the average times for the 26 networks was greatest for LABCOR, which is indicative of greater variation of the timing from network to network. TIMEXD varies least with network. Thus LABCOR has most consistent timing for one network but varies most among different networks, whereas LABSET and TIMEXD show greater variability in timing the different cases for the same network, and TIMEXD varies least from network to network with LABSET varying more but less than LABCOR.

Table 4 lists for each of the 26 test networks the number of nodes and the number of vehicle departures (or runs) for that particular network. These two parameters, along with the product of the two, were thought to most directly characterize the network size. Correlation coefficients and Spearman rank correlation coefficients were calculated to assess the degree of relationship between the timings and each of these parameters. The correlation coefficients are displayed in Table 5. Correlation coefficients are statistics with values between -1 and +1. A coefficient of 0 indicates no association; coefficients close to +1 indicate a high association in which as one variate grows the second grows also; a coefficient of nearly -1 also indicates a high degree of association but one in which as one variate grows larger the other becomes smaller.

TABLE 4

						TIM	INGS (MI	LLISECONT) **	
	NETWO	ORK DES	CRIPTION		LAB		LAB		TIM	EXD
NO.	TYPE	SIZE	* NODES	RUNS	μ	σ	μ	σ	μ	σ
1 2 3 4 5 6 7 8 9 10 11 22 13 14 15 16 17 18 19 20 21 22 23 24 25 26	G G G G R R R R R R G G G G G G G G G G	15 1 12 1 12 1 6 1 6 1 6 1 6 1 10 2 15 1 15 1 15 1 10 8 10 9 9 9 9 9 9 9 9 9 9	5 225 .4 168 .4 168 .1 40 .1 40 .1 40 .1 40 .1 40 .1 40 .1 40 .1 40 .1 40 .200 200 .25 225 .5 225 .5 225 .6 50 .200 200 .5 225 .5 225 .6 120 .9 81 .9 81 .9 81 .9 81 .9 81 .9 81	285 288 234 328 800 960 960 480 480 285 285 285 285 285 285 285 285 285 285	143 161 71 104 29 25 26 28 28 28 28 28 124 151 162 128 143 40 43 58 70 89 56 64 71 55 62 56 77 57 56 77 57 77	27 13 34 4 3 4 2 18 14 17 32 27 3 7 15 9 7 4 3 7 4 3 7 4	88 129 53 72 16 16 17 16 18 17 99 130 103 95 94 31 26 40 34 32 41 35 37 36 41 36	31 19 25 23 7 8 8 8 7 6 33 42 33 30 38 10 11 15 16 17 15 11 10 12 14 12	48 68 59 42 31 35 93 4 24 59 23 10 40 42 34 51 42 42 42 42 42 50 23 40 40 44 45 51 746 42	15 12 25 9 16 15 17 15 11 12 18 23 20 19 26 13 16 19 26 13 16 19 12 13 14 17 18 19 20 18
AVERA	GE				77.5	10.5	52.0	17.7	43.7	16.6
STD.	DEV. OF	AVG.			46.4	9.8	36.3	10.6	12.7	4.2
					1		\$			

COMPARISON OF TIMINGS OF THE THREE ALGORITHMS

*For a grid network (G), 'size' is given by the numbers of horizontal and vertical grid elements; for a radial (R), by the numbers of radials and beltways.

**Statistics for 25 origin-destination pairs in each network.

TABLE 5

CORRELATION OF TIMINGS AND NETWORK

SIZE PARAMETERS

Correlation Coefficients

	LABCOR	LABSET	TIMEXD
NODES	.9653	.9343	.7867
RUNS	5122	4226	3711
NODES × RUNS	.8397	.8907	.7076

Spearman Rank Correlation Coefficients

	LABCOR	LABSET	TIMEXD
NODES	.9641	.9122	.7596
RUNS	3982	3082	2300
NODES × RUNS	.5498	.5329	.4981

The negative correlation between timings and the number of runs seems at first surprising, since one would expect that as the number of runs increases the number of possibilities to be checked at least remains the same and might (particularly for TIMEXD) grow larger. The negative correlation arises in this data set because we were attempting to test fairly large networks, where 'large' is measured relative to the amount of computer storage available to us, 65,000 words. Therefore the product of numbers of nodes and runs (vehicle departures) was relatively fixed. Networks with many nodes had fewer runs, and networks with few nodes had many runs. Timing is definitely positively correlated with the number of nodes, but because of our choice of test examples, the number of nodes was negatively correlated with the number of runs. Thus the timings are negatively correlated with the number of runs. That negative correlation also contributes to the lower correlation of timings with the product of nodes and runs than with the number of nodes alone.

The correlation of timing with the number of nodes is quite high, especially for LABCOR and LABSET as one would expect from the structure of the algorithms in which each step involves examining a new node. The correlation is less pronounced for TIMEXD which must examine timeexpanded nodes whose number depends on both the number of network stops and vehicle departures. The unfortunate (for this purpose) design of the set of computer runs to be performed obscures this relationship because of the negative correlation between nodes and runs.

As an aid in interpolating and in further understanding the relationship between the number of nodes and the timings, linear regressions, with the timing as dependent variable and the number of nodes as independent variable, were performed. That is, we obtained values for the coefficients a_0 and a_1 in the following equation:

$$t = a_0 + a_1 N,$$

where t is the timing in milliseconds and N is the number of nodes. The coefficients, their standard deviations and the residual standard deviation of the fit are given in Table 6. This means, for example, that one may use the equation

$$t_{LABCOR} = 2.22 + .637N$$

to estimate the time required to calculate an average itinerary using the program LABCOR on the UNIVAC 1108. Two caveats must be mentioned. Since the networks used to fit these equations varied in size only from 40 nodes to 225 nodes, it is really not appropriate to use the equations for much larger networks. In addition, the timings reported here were obtained on a particular computer and while we have no reason to suppose relative performance would differ on another machine, <u>actual</u> time is likely to be quite different.

TABLE 6

LINEAR REGRESSION COEFFICIENTS FOR THE FIT OF TIMING AS A FUNCTION OF THE NUMBER OF NODES

	^a 0	al	Std. dev. ^a O	Std. dev. a _l	Lack of fit F ratio %
LABCOR LABSET TIMEXD	2.22 -4.94 26.82	.637 .482 .143	4.81 5.14 3.14	.035 .038 .023	point* 72.3 87.7 88.5

*This statistic compares the standard deviations of repeated observations with the standard deviation of the fit. A value between 3% and 97% indicates an acceptable linear fit.

As an experiment to check algorithm performance on a larger network, LABCOR and LABSET were run on a 40 by 40 grid network, having therefore 1600 nodes. Actual running times for this network are given in Table 7. We also compared the timings actually obtained with those predicted by the linear regression equations. The estimates are 1021 milliseconds for LABCOR and 766 milliseconds for LABSET. The estimate for LABCOR is in error by more than a factor of 2, reinforcing the earlier warning about applying the regression equations outside the range of the original fit. However, the estimate for LABSET is only 14 percent in error, which leads greater credence to this equation in estimating timings for at least medium sized networks. The ratio of the time required by LABCOR to that required by LABSET is greater for this larger network than for all but one of the 26 test runs, indicating that the slope of the line for LABCOR should be greater than for LABSET, as is indeed the case in the regression equations. This means that the time for LABCOR increases at a greater rate with the number of nodes than does that for LABSET.

In [1], computation time for a large network (containing perhaps 3000 nodes) was estimated at approximately one second per itinerary, with the critical time factor being access and transfer of pages of the network and schedule data from peripheral storage to the main memory. Using the regression results in Table 6 we obtain estimates of 1.9 seconds for LABCOR, 1.4 seconds for LABSET, and 0.5 seconds for TIMEXD for the computation time per trip for a large transit system. These estimates do not contain any allowance for input/output, which was estimated in [1] to require an additional one half to one second. If some computations can be done in parallel with the input/output transfers, then the total time could be less than the sum of the two figures, but with the sum as an upper bound, the total time estimates for LABSET and TIMEXD then become 2.4 and 1.5 seconds respectively. Since we know from the timing on a medium-sized network that the regression equation seriously underestimates the time required by LABCOR, in a network of 3000 nodes, it might be expected to be perhaps more than 5 seconds per trip itinerary, a time which may be unacceptably long. The times for LABSET and TIMEXD, although slightly longer than the original estimates in [1], are well within those required to permit demand in a large city to be handled by the information center without irritating delays.

These timings were made on the UNIVAC 1108 computer here at NBS, and the magnitude of computation time on other computers is likely to be different. However, since the UNIVAC 1108 is a relatively old computer, one would expect that computation times on most other machines would be less than those recorded here or at worst would be of the same order of magnitude.

TABLE 7

ALGORITHM TIMINGS (MILLISECONDS) FOR LABCOR AND LABSET

ON 40 \times 40 GRID NETWORK

PAIR	ORG	DST	LABCOR	LABSET
$ \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 $	432 432 432 432 432 1247 1247 1247 1247 1247 1026 1026 1026 1026 1026 1026 1026 1026 1026 1026 1026 1026 1025 255 255 255 255 255 255 255 1273 1273 1273 1273 1273 1273 1273	539 837 120 946 336 1454 793 761 1142 1278 434 698 1074 1300 855 848 666 272 43 1011 960 1179 1440 1026 1543	2915 2900 2899 2927 2898 2537 2537 2542 2570 2538 1765 1765 1765 1765 1769 1863 1856 1857 1852 1853 1851 1905 1890 1882 1880 1885	338 1692 1785 717 1007 1326 1063 663 365 1446 1284 526 803 586 674 810 574 748 1639 591 545 349 878 269 1148
Average			2192	873
Std.dev.			462.3	443.3

4.4 Additional Analyses

Characteristics of the 26 test runs used in the analyses above are described more fully in Table 8. These parameters were chosen in such a way as to allow the analysis of the dependence of timing and path calculations on several factors, such as variability of the minimum transfer time requirement, the network shape, various frequency patterns, and the relative speed and frequency of express and local runs.

In assessing the effect of minimum transfer time on the computation of itineraries we will refer to Table 9. No clear pattern of variation of computation time with increase in transfer time holds for all the algorithms. The behavior of LABCOR timings seems to be exactly opposite to that of the other two. LABCOR computation time increases with an increase in the transfer time at the center node of a radial network and decreases as the transfer time increases in a grid. This pattern of increase and decrease is the same as the pattern of increasing and decreasing numbers of transfers, reflecting LABCOR computation time's dependence on the number of transfers. LABSET and TIMEXD times decrease with the long transfer at the center node of the radial network and increase as the grid transfer times increase. The increase in time for calculating paths in a grid network with longer transfer times may result from the generally longer trip lengths, which require examining more possible trips before finding a shortest one. The decrease in computer time for producing itineraries in a radial network with more time required to transfer at one (central) node may reflect the fact that although trips may be somewhat longer, the total number of compecing itineraries is still reduced because many of those utilizing the central node are now effectively blocked.

The average number of transfers required increases when the minimum transfer time at the central node is increased, because some one-transfer trips traveling in one radial and out another become two-transfer trips utilizing a beltway. When the minimum transfer time is increased at <u>all</u> nodes in the grid network, it becomes less desirable to transfer since that requires significantly greater unit time, so the average number of transfers decreases.

A second analysis concerns the effect of grid shape on computation. In a previous study [2] of the performance of shortest-path algorithms, it was noted that some label-correcting algorithms performed very badly on elongated grid networks, because they depended critically on the length of the longest shortest path. In our grid transit network, there was some increase in the computation time as the grid became elongated but it is not as pronounced as with the standard shortest path computation, partly because the average number of transfers does not increase as much as the length of the longest shortest path. A comparison of computation times for networks 11 and 12, respectively a 10 x 20 grid and a 5 x 40 grid (both with 200 nodes), shows increases of 22, 31 and 17 percent respectively for LABCOR, LABSET and TIMEXD with the more

IONS OF THE NETWORKS FOR THE TESTS	DESCRIPTION	$\mathbb{N} \rightarrow \mathbb{S}$: 6 runs; $\mathbb{S} \rightarrow \mathbb{N}$: 3 runs; $\mathbb{E} \rightarrow \mathbb{W}$: 5 runs; $\mathbb{W} \rightarrow \mathbb{E}$: 5 runs	Edges and center every 5 min., others every 20 min	$\mathbb{N} \ \rightarrow \ \mathbb{S}$ and $\mathbb{E} \ \rightarrow \ \mathbb{W}$ frequently; $\mathbb{S} \ \rightarrow \ \mathbb{N}$ and $\mathbb{W} \ \rightarrow \ \mathbb{E}$ not so frequent	$\mathbb{N} \rightarrow \mathbb{S}$: every 6 min.; $\mathbb{E} \rightarrow \mathbb{W}$ every 30 min.	2 min. frequency on radials, 3 min. frequency on beltways; 10 min. transfer time at center, 2 min. transfer elsewhere	2 min. frequency on radials, 3 min. frequency on beltways; 2 min. transfer everywhere	l min. frequency on radials towards center and on full beltway, lO min. frequency otherwise; 2 min. transfer everywhere	l min. frequency on radials towards center and on full beltway, 10 min. frequency otherwise; 10 min. transfer at center, 2 min. transfer elsewhere	5 min. frequency everywhere; 2 min. transfer everywhere	5 min. frequency everywhere; 10 min. transfer at center, 2 min. elsewhere	$\mathbb{N} \rightarrow \mathbb{S}$: 6 runs; $\mathbb{S} \rightarrow \mathbb{N}$: 3 runs; $\mathbb{E} \rightarrow \mathbb{W}$: 5 runs; $\mathbb{W} \rightarrow \mathbb{E}$: 5 runs	$M \rightarrow S$: 6 runs; $S \rightarrow N$: 3 runs; $E \rightarrow W$: 5 runs; $W \rightarrow E$: 5 runs	$N \rightarrow S$: 6 runs starting at 8:00 S \rightarrow N: 3 runs starting at 8:15; E \rightarrow W: 5 runs starting at 8:10 W \rightarrow E: 5 runs starting at 8:05.	$N \rightarrow S$: 6 runs; $S \rightarrow N$: 3 runs; $E \rightarrow W$: 5 runs; $W \rightarrow E$: 5 runs; transfer time 5 min. everywhere
DESCRIPTIONS	NODES	225	225	168	168	40	40	40	40	50	50	200	200	225	225
	SIZE	15X15	15X15	12X14	ητχει	6R,11B	6R,11B	6R,11B	6R,11B	4R,16B	4R,16B	LOX20	5X40	15X15	15X15
	TYPE	Ċ	ტ	Ċ	Ċ	рс,	μ	ы	ы	щ	ы	Ċ	Ċ	Ċ	Ċ
	•ON	Ч	CJ	m	4	5	9	2	ŝ	6	го	TT	12	13	7

TABLE 8

DESCRIPTION	$\mathbb{N} \rightarrow \mathbb{S}$: 6 runs; $\mathbb{S} \rightarrow \mathbb{N}$: 3 runs; $\mathbb{E} \rightarrow \mathbb{W}$: 5 runs; $\mathbb{W} \rightarrow \mathbb{E}$: 5 runs; transfer time 3 min. everywhere	Multiple period run with $N \rightarrow S$ and $E \rightarrow W$ more frequent in period 1, all same frequency in period 2, $S \rightarrow N$ and $W \rightarrow E$ more frequent in period 3; speed greatest in period 2	Local: $N \rightarrow S$ and $W \rightarrow E$ have 7 runs, $S \rightarrow N$ and $E \rightarrow W$ have 4 runs; Express: $N \rightarrow S$ and $W \rightarrow E$ have 4 runs, $S \rightarrow N$ and $E \rightarrow W$ have 2 runs	Local: frequency every 20 min. out from center, every 30 min. in to center, every 15 min. on 2 beltways, every 20 min. on other beltways Express: frequency every 30 min. out from center, every 60 min. in to center, every 30 min. on beltways; 5 min. transfer at center, 2 min. elsewhere	Local: 4 runs, Express : 2 runs; transfers 2 min.	<pre>Local: 5 runs, Express : 3 luns' 5 ,om/ tramsfer at center' 2 min. elsewhere</pre>	Local: 6 runs10 min. apart, Express: 3 runs20 min. apart; 2 min. transfer, ratio of express to local speed 1.1	Local: 6 runs10 min. apart, Express: 3 runs20 min. apart; 2 min. transfer; ratio of express to local speed 2.0	Local: 6 runs10 min. apart, Express: 3 runs20 min. apart, 2 min. transfer; ratio of express to local speed 3.0	Local: 6 runs10 min. apart, Express: 3 runs15 min. apart, 2 min. transfer; ratio of express to local speed 2.0	Local: 6 runs10 min. apart, Express: 3 runs25 min. apart, 2 min. transfer; ratio of express to local speed 2.0	Local: 6 runs10 min. apart, Fyrress: 3 runs30 min. apart, 2 min. transfer; ratio of express to local speed 2.0
NODES	225	64	80	80	120	120	81	81	81	81	81	81
SIZE	15X15	8x8	10X8	8R,7B, 12S	12X10	9R,6B	6Х6	6х6	6х6	6х6	6х6	6х6
TYPE	Ċ	Ċ	Ċ	щ	Ċ	ы	Ċ	Ċ	ტ	Ċ	Ċ	Ċ
NO.	15	70	17	81	19	20	21	5	23	24	25	26

TARLE 8 (Continued)

TABLE 9

CASE	TRANSFER	COM	PUTATION T	IME *	AVG. NO. OF TRANSFERS			
NO.	TIME	LABCOR	LABSET	TIMEXD	LABCOR	LABSET	TIMEXD	
6	2	25	16	35	.68	.68	.72	
5	10 (at center node)	29	16	31	, 88	.92	.92	
7	2	26	17	39	.68	.68	.68	
8	10 (at center node)	28	16	34	.76	.76	.88	
1	2	143	88	48	1.12	1.28	1.32	
15	3	143	95	62	1.08	1.16	1.16	
14	5	128	94	62	.84	1.00	.96	

INFLUENCE OF TRANSFER TIME

*Computation time is in milliseconds

elongated network. The average number of transfers is greater by 4, 31, and 4 percent respectively for LABCOR, LABSET and TIMEXD on the elongated network, although the number of stops in any diagonal trip (across the whole network) increases by 50 percent. Therefore, despite some increase in both computation time and the average number of transfers with an elongated network, the computations in a transit network are not as sensitive to the network shape as is a standard shortest-path calculation.

The sensitivity of computation time and number of transfers to the relative speeds of express and local service was examined, and the results are displayed in Table 10. As express service becomes more attractive (i.e., faster relative to the local service), the number of transfers increases since most trips try to take advantage of the express service, often transferring from local to express and then back to local. The local service effectively operates as a feeder service for the express service when the speed differential is fairly large. Computation time also increases commensurately with the number of transfers. When express service is provided by a fixed rail system, ratios of 3 to 1 in speed may easily hold. The system changeover from express bus to express rail, as for example in Washington, may bring an increase in the average number of transfers per trip and an increase in the computation time per trip itinerary, even with no increase in the number of stops.

Several other characteristics were examined for effects on either computation time or path output and were found to elicit no discernable pattern of response. Among these are the difference between grid-type and radial-type network structure, variations in the initial departure times (with constant frequency), variation of the time between express runs (again with frequency held constant), and various geographical frequency patterns, such as north-south routes frequent while east-west routes are less so, certain streets having frequent service while others have less, or radial runs frequent toward the center but not as frequent outwards. Although it might be expected that any of these parameters might affect algorithm performance, none had a great effect and no discernable pattern emerged.

TABLE 10

INFLUENCE OF RATIO OF EXPRESS TO LOCAL SPEED

		COM	PUTATION	rime *	AVG. NO. OF TRANSFERS			
RUN	SPEED RATIO	LABCOR	LABSET	TIMEXD	LABCOR	LABSET	TIMEXD	
21	1.1	56	41	36	1.0	1.28	1.28	
22	2.0	64	35	45	1.2	1.32	1.40	
23	3.0	71	37	51	1.4	1.52	1.84	

*Computation time is in milliseconds.

5. CONCLUSION AND RECOMMENDATIONS

This report has discussed the comparative performance of three algorithms for producing itineraries by computer for use in an automated transit information system. The test networks used in the analysis were designed specifically to highlight performance variation as a function of network size and type and ranges of parameter values. The results of the analysis are summarized below in three categories: path output, program size, and timing.

LABCOR is guaranteed to produce, among all trips arriving at the destination at the same time, that trip having fewest number of transfers. In 9 percent of the test cases LABSET produced a trip with more transfers than did LABCOR. TIMEXD had more transfers in 14 percent of the cases. TIMEXD also produced itineraries in which an extra transfer occurred because of an express overtaking a local vehicle. This situation does not occur with LABCOR. Thus in all cases LABCOR produced significantly more desirable itineraries about 10 percent of the time.

Computer storage requirements for LABCOR and LABSET are similar and depend mainly on storing the route and schedule information, which requires the list of stops on each route and the arrival time at each stop for each departure. Other arrays whose sizes depend primarily on the number of stops are required. The storage required by TIMEXD depends mainly on the number of arcs in the time-expanded network, which is determined by the number of vehicle route segments and the number of possible transfers. The storage for a square 15 by 15 grid with about 300 departures was estimated as 8200 locations for LABCOR, 10,170 for LABSET and 64,440 for TIMEXD. The square grid, which admittedly is a situation least favorable to TIMEXD, nonetheless illustrates the difference between the requirements of the two types of algorithm. Even in a more favorable situation, TIMEXD is likely to require substantially more computer storage than either of the other two algorithms. In addition, our programming of LABCOR and LABSET has not taken full advantage of most efficient storage practices, whereas TIMEXD has much less leeway.

TIMEXD is clearly fastest for larger networks, and as shown by the regression equation, its calculation time grows more slowly with an increase in network size. LABCOR, which produces better paths, averaged 77 percent longer computation times and for the larger networks included in the analysis, the 15 by 15 grids, was 2.5 times as slow as TIMEXD. The timing of each of the three algorithms was highly correlated with the number of nodes, with the rate of growth being greatest for LABCOR, moderate for LABSET and lowest for TIMEXD. Timing also depends on network characteristics, such as the number of transfers, the minimum transfer time requirements, the relative speeds of express and local service, and network shape.

A recommendation on the choice among the three algorithms depends in part on the appropriate tradeoff between speed and quality of the output itinerary. If the speed of the LABCOR algorithm is sufficient for the particular application, its clearly-more-desirable itinerary output makes it the algorithm of choice, but if speed is more important then TIMEXD becomes attractive. Our analysis did not attempt to fine-tune the networks, for instance, to examine individually the transfer arcs included in TIMEXD networks to see if undesirable transfers could be curtailed by removing some of these arcs as spurious candidates. Other heuristics or data manipulations are also possible and might improve the path output from TIMEXD without degrading its performance significantly. TIMEXD also has the disadvantage of requiring a large amount of core storage; both of the other algorithms require much less. LABSET produces paths which may be longer than those output by LABCOR, although this does not happen as frequently as with TIMEXD. LABSET is faster than LABCOR but not as fast as TIMEXD, and requires only slightly more storage than LABCOR. Thus in situations where speed is important but better quality path output than available from TIMEXD is desired, LABSET may be an acceptable compromise.

6. REFERENCES

- Judith F. Gilsinn, Patsy B. Saunders, and Martin H. Pearl, Path Finding Algorithms and Data Structures for Point-to-Point Trip Management, National Bureau of Standards Report Number NBSIR 75-676, January 1975.
- 2. Judith Gilsinn and Christoph Witzgall, A Performance Comparison of Labeling Algorithms for Calculating Shortest Path Trees, National Bureau of Standards Technical Note 772, May 1973.
- 3. Douglas R. Shier and Judith F. Gilsinn, Cost/Benefit Analysis of Automated Transit Information Systems, National Bureau of Standards Report Number NBSIR 77-1253, June 1977.

APPENDIX A

DOCUMENTATION OF PROGRAMS FOR TEST-PROBLEM GENERATION AND ITINERARY-FINDING

The computer programs used in performing the analyses described in Section 4 are documented in this appendix. A flowchart of these programs appears in Figure A.1, with the programs shown in rectangular boxes, input files in rectangular boxes with a cut-off corner, intermediate data files in boxes with rounded sides, and output in the box labeled "TRIP ITINERARIES". The numbers in the upper right corners of program boxes are keyed to the section in which the program is documented. For instance, documentation of program RAD is in section A.l. The number in parentheses in either an input or an intermediate file box refers to the logical unit number used in referencing the file. Descriptions of the contents and formats of the files appear in Section A.10. Two programs not appearing in this chart have been included in the documentation, because they would be important parts of an actual information system's computer-program package and because they have been discussed both in [1] and in the text of this report. They are an arrivaloriented version of the time-expanded network algorithm, described in Section 2.2.2, and a program to remove extraneous, non-decision nodes from a transit network. Computer listings of all programs appear in Appendix B.

All programs are written in FORTRAN V, UNIVAC's enhanced version of FORTRAN IV, and were run on the UNIVAC 1108 at NBS under the EXEC 8 operating system. Generally, all programs for a single test case were executed in sequence in the same computer run with network generation followed by necessary preliminary processing, followed immediately by itinerary computation by each of the three algorithms in sequence. Thus for radial networks, the program execution sequence is RAD, TRA, ACYCLE, LABCOR, LABSET and TIMEXD; for grid networks the sequence is similar but omits TRA, thus becoming XGRID, ACYCLE, LABCOR, LABSET, and TIMEXD. Input files TMIN and TRIPS, together with the input required for either the grid or radial network generators, must be prepared in advance. All other files are generated by the programs as they are executed.

Since these programs were coded primarily for use in the analyses described in this report, no special effort was made to limit code to a portable subset of FORTRAN. Program characteristics which affect portability are listed below:

- 1. Card input is from logical unit 5, printer output is on logical unit 6, and units 7 through 12 are used for various data files.
- 2. In the path computation programs, a variable INF, representing a very large integer, is set equal to 999999999, which may be too large for machines with smaller word sizes.

STAVATUTEI FRIP I ABISET L6 5 2 T IMFXD IABCOF A 不 K FLOWCHART OF THE TRANSIT PROGRAM SYSTEM TRIPS (11) NDATA ADATA (10) (6) 4 ACYULE SDATA (7) 1 m TDATA TTRA (8) (21) NEWL RADIAL DESCRIPT. n) C GRID DESCRIPT. RAD XJRID -54-

FIGURE A.1

- 3. We have used the "PARAMETER =" statement to set program dimensions. This may be replaced by explicit numerical values wherever the PARAMETER variable occurs.
- 4. The UNIVAC FORTRAN V compiler ignores all remaining characters following the character @ on any line. This has been used to add short comments to lines of code, and all characters after and including the @ on any line.
- 5. The IMPLICIT INTEGER (A-Z) statement makes all variables of integer type, and may be replaced by a list of all variables appearing in the code.
- 6. The "END=" clause in a READ statement transfers control to the statement number given when an end-of-file condition is sensed in input.
- 7. The path-finding algorithm codes all call the special system subroutine CPUSUP which computes the CPU time in milliseconds since the start of the run. Any equivalent clock routine can be used.

Detailed documentation and user instructions for the programs shown in Figure A.1, together with the two additional codes discussed above, are included in the sections below. In each case there is a narrative describing the program's function, a list of the variables and arrays appearing in the code, a list of the input required and outputs produced together with their formats, and descriptions of subroutines. Listings of the codes appear in Appendix B.

A.1. PROGRAM RAD

This program generates a user-specified radial, or "spider web", network in which routes go outward from a central node along radial segments or go between radials in circular arcs or portions of such arcs. The user specifies the number of radials, the number of stops and distances between stops along each radial, the stops on radials connected by circular segments (or "beltways"), and the stops at which "spike" routes connect to radials. These latter are routes which proceed from the central node out along a radial but diverge from the radial at some node along it.

By user specification, any radial, beltway or spike can also have an express route. Each route, local or express, has a complementary route which traverses the same set of stops in reverse order. Express routes stop only at intersections with other express routes.

Schedules for each route are computed from input data which include the number of runs, the headway between runs, and the departure time of the first run for each route for each time period. Time between stops is computed from interstop distance by using a user-supplied conversion factor. Both local and express conversion factors are input for each time period.

The main program RAD serves both as a network-description input routine and as a calling routine to generate the radial transit route system. Subroutine LOCAL is called to create the local network and subroutine EXPRES is called to create the express routes. Subroutine RSCHED is called from LOCAL and EXPRES to compute schedules for each route.

A.l.1 Variables and Arrays Used in RAD

Time period input

1 *		
IPD	-	number of time periods used in computing schedules. (Headways are constant during a time period.)
ZK(I), I=1, IPD	-	factor used in converting distance to time for local routes for each time period
XZK(I), I=1, IPD	-	factor used in converting distance to time for express routes for each time period

Radial input

IRAD	-	number of radials
ANGLE(r)		angle of radial r, measured counterclock- wise from east
ISTP(r)	-	number of stops on radial r not counting the center node
DSTRAD(r,j)	-	distance between stops j and j + l on radial r
REXP(r)	-	a flag set to l if radial r is an express route

Beltway input

IBELT		number of beltways			
IBIN(b) -		initial (east-most) radial connected by beltway b			
IBFIN(b)	-	final radial connected by beltway b			
NB(b)	-	number of radials intersected by belt- way b. (Note that beltway b will inter- sect all radials between IBIN(b) and IBFIN(b). If IBFIN(b) \leq IBIN(b) it will intersect radials IBIN(b) to IRAD and 1 to IBFIN(b). When IBIN(b) = IBFIN(b) the beltway is a full beltway encircling the center node; otherwise it is only a "par- tial circle".)			
IBSTP(b,i) i = 1, NB(b					
REXP(h)	-	a flag set to 1 if beltway b is an express			

BEXP(b) - a flag set to l if beltway b is an express route

Spike input

ISPIKE - number of spikes

	ISRAD(s)	-	radial to which spike is connected
	ISSTP(s)	-	stop on radial ISRAD to which spike is connected
	DSPIKE(s)	-	length of spike
	SEXP(s)	-	a flag set to l if spike s is an express spike
Node	description		

KRAD(k)	-	radial on which node k is located
KSTP(k)	-	stop on radial KRAD(k) which is node k
NODE(r,j)	-	node for stop j on radial r

Route description

MRTE(m,n)	-	nth stop on route m. (Note that MRTE(1,j)	
		= $MRTE(2, n - j + 1)$ since routes go in	
		both directions and appear in pairs.)	

DTEMP(m,n)	-							0	
		route m. (A	s note	d for	MRTE,	the	distar	nces	in
		DTEMP(1,k)	appear	in th	ne reve	erse	order	to	
		DTEMP(2,k)	.)						

Input schedule description

JRUNS	- number of runs of this route this time period
JHEAD	- headway between runs of this route this time period
PDTM	- time of first run of this route this time period

Counters

К	-	the number of nodes
Ml	-	current route in one direction
M2	-	route in the opposite direction to Ml traversing the same stops in reverse order

A.1.2 Program Input

Input to program RAD includes a description of the radial network to be generated and schedule data for each route. The input, read from cards on logical unit 5, consists of three main sections: (1) the topological and route structure of the radials, beltways and spikes, (2) the schedule information for local routes and (3) the schedule information for express routes. The actual card formats are given below in the order in which they are to appear.

Time period input

Contents	Format			
IPD ZK(I),I = 1, IPD XZK(I),I = 1, IPD	15 8F10.1 8F10.1			
Radial input				
IRAD	15			
For each radial:				
REXP ANGLE, ISTP (DSTRAD(radial, J), J=1, ISTP)	15 F10.1, 15 8F10.1			
Beltway input				
IBELT	I5			
For each beltway:				
BEXP IBIN, IBFIN (IBSTP (beltway, J), J=1, NB)	15 215 1615			
Spike input				
ISPIKE	15			
For each spike:				
SEXP ISRAD, ISSTP, DSPIKE	15 215, FlO.1			

A description of the schedule input data follows. Within each group of schedule data, the order must be the same as the order of the topology input above. For each radial:

- Route going outward from center, one card for each time period JRUNS, JHEAD, JDTM 315
- Route going inward toward center, one card for each time period JRUNS, JHEAD, JDTM 315

Local beltway schedule input

For each beltway:

- Route going counterclockwise, one card for each time period JRUNS, JHEAD, JDTM 315
- Route going clockwise, one card for each time period JRUNS, JHEAD, JDTM 315

Local spike schedule input

For each spike:

- Route going outward from center, one card for each time period JRUNS, JHEAD, JDTM 315
- Route going inward toward center, one card for each time period JRUNS, JHEAD, JDTM 315

Express beltway schedule input

For each express beltway:

- Route going counterclockwise, one card for each time period JRUNS, JHEAD, JDTM 315
- Route going clockwise, one card for each time period JRUNS, JHEAD, JDTM 315

Express spike schedule input

For each express spike:

- Route going outward from center, one card for each time period JRUNS, JHEAD, JDTM 315
- Route going inward toward center, one card for each time period JRUNS, JHEAD, JDTM 315

For each express radial:

- Route going outward from center, one card for each time period JRUNS, JHEAD, JDTM 315
- Route going inward toward center, one card for each time period JRUNS, JHEAD, JDTM 315

A.1.3 Program Output

Output consists of the file SDATA (on unit 7) which gives for each route the number of stops, the number of runs, the list of stops and the times at each stop for each run. This information is also printed.

A.1.4 Subroutine LOCAL

Subroutine LOCAL generates the nodes and local routes of a radial transit route system. The network topology description is available through three common blocks - RADIAL, BELTWY and SPIKE. The subroutine constructs the node description arrays KRAD, KSTP and NODE as it computes the local radial routes. Local beltway and spike routes are then computed. After each route and its complement are computed, subroutine RSCHED is called to compute the schedules.

A.1.5 Subroutine EXPRES

This subroutine generates the express routes of a radial transit route system. Two-way express routes are computed for radials, beltways and spikes designated by the user to be major routes. Subroutine RSCHED is called to compute the schedule of each route and its complement.

A.1.6 Variables and Arrays Used in LOCAL and EXPRES

Radial description

IRAD	_	number of radials
ANGLE(r)	-	angle of radial r, measured counterclock- wise from east
ISTP(r)	-	number of stops on radial r not counting the center node
DSTRAD(r,j)	-	distance between stops j and j + l on radial r
REXP(r)	_	a flag set to l if radial r is an express route

Beltway description

IBELT	-	number of beltways
IBIN(b)	-	initial radial connected by beltway b
IBFIN(b)	-	final radial connected by beltway b
DSTBLT(b,j)	-	distance between stops j and j + l on belt- way b
NB(b)	-	number of radials intersected by beltway b
IBSTP(b,i)	-	stop on radial IBIN(b) + i - l on beltway b, where the center is counted as stop l
BEXP(b)	-	a flag set to l if beltway b is an express route

Spike description

ISPIKE	- number of spikes
ISRAD(s)	- radial to which spike is connected
ISSTP(s)	- stop on radial ISRAD to which spike is connected
DSPIKE(s)	- length of spike
NDSPK(s)	- node number of stop at end of spike
SEXP(s)	- a flag set to l if spike s is an express route

Node description

KRAD(k)	-	radial on which node k is located
KSTP(k)	-	stop on radial KRAD(k) which is node k
NODE(r,j)	-	node for stop j on radial r
KEXP(k)	_	true/false express node indicator

Route description

MRTE(m,n)	_	nth stop on route. (Note that MRTE (1,j)
		= MRTE (2, n-j+1) since routes go in bot	h
		directions and appear in pairs.)	

DTEMP(m,n) - distance between stops n and n+l along route. (As noted for MRTE, the distances in DTEMP (l,k) appear in the reverse order to DTEMP (2,k).)

Counters

K	-	the number of nodes
Ml	-	current route in one direction
M2	-	route in the opposite direction to Ml traversing the same stops in reverse order

A.1.7 Subroutine RSCHED

This subroutine computes and outputs schedule information for routes Ml and M2. Input, which is transmitted through calling arguments and the common block GENRAL, includes the stops along routes Ml and M2 stored in MRTE, the distance between stops in DTEMP, the number of stops along these routes in N, and time period information stored in IPD, ZK and XZK. After schedules for both routes are computed, RSCHED outputs the route number, the number of stops, the number of runs, the list of stops and the times at each stop for each run both to file SDATA and to the printer.

A.1.8 Variables and Arrays Used in RSCHED

Ν

- number of stops along either of the current pair of routes
- DTEMP(m,j) distance between stops MRTE(m,j) and MRTE(m,j + 1)
- Ml number of the first of the pair of routes being considered
- IPD number of time periods for which schedules are to be constructed
- ZK(i) factor for converting distance to time for local routes in period i
- XZK(i) factor for converting distance to time for express routes in period i

<pre>JHEAD(i) - headway between runs of the current route in period i JDTM(i) - time of first run of the current route in period i NRUNS - number of runs of the current route over all periods MM - keeps track of which of the pair of routes is the current route JTIME(%) - the time that the current vehicle stops at stop MRTE(MM,%) LOE - Equal to 1 if RSCHED is being called from LOCAL. Equal to 2 if RSCHED is being called</pre>	JRUNS(i)	-	number of runs of the current route in period i
<pre>in period i NRUNS - number of runs of the current route over all periods MM - keeps track of which of the pair of routes is the current route JTIME(l) - the time that the current vehicle stops at stop MRTE(MM,l) LOE - Equal to 1 if RSCHED is being called from LOCAL. Equal to 2 if RSCHED is being called</pre>	JHEAD(i)	-	•
<pre>all periods MM - keeps track of which of the pair of routes is the current route JTIME(l) - the time that the current vehicle stops at stop MRTE(MM,l) LOE - Equal to 1 if RSCHED is being called from LOCAL. Equal to 2 if RSCHED is being called</pre>	JDTM(i)	-	
<pre>is the current route JTIME(l) - the time that the current vehicle stops at stop MRTE(MM,l) LOE - Equal to 1 if RSCHED is being called from LOCAL. Equal to 2 if RSCHED is being called</pre>	NRUNS	-	
at stop MRTE(MM, l) LOE - Equal to 1 if RSCHED is being called from LOCAL. Equal to 2 if RSCHED is being called	MM .	-	
LOCAL. Equal to 2 if RSCHED is being called	JTIME(l)	-	-
	LOE	-	LOCAL. Equal to 2 if RSCHED is being called

A.2. PROGRAM XGRID

This program generates a P x Q grid transit network with routes running in the horizontal (west-east, east-west) and the vertical (northsouth, south-north) directions. Stops are numbered consecutively from left to right and from top to bottom. Routes are numbered consecutively in the order: W-E, E-W, N-S and S-N. Express horizontal and vertical routes are numbered in a similar order beginning with route number 2P + 2Q + 1. Any stop is allowed to be a transfer point between routes which stop at that point. The minimum transfer time between any two routes is considered to depend only on the stop at which the transfer occurs. Routes are assumed to follow regular schedules (constant headways) during each of a number of time periods. A different conversion factor may apply for converting distance into travel time during different periods, and different factors apply to local and to express routes.

The program XGRID makes calls to four subroutines: GRID (which creates the local grid network), XPRESS (which creates express routes), XSCHED (which produces the complete schedule information) and TRANS (which outputs the appropriate transfer information). These subroutines are described in fuller detail below. Input to XGRID includes the number of stops P and the number of stops Q which define, respectively, the vertical and horizontal dimensions of the P x Q grid. In addition, the user must specify the interstop distances between successive "rows" and "columns" of the grid, as well as the number of time periods and conversion factors for each period for local and for express routes. Subroutine XPRESS requires designation of the horizontal and vertical elements to be used for express routes, subroutine XSCHED requires the input of abbreviated schedule information and subroutine TRANS requires the input of (minimum) transfer times at each stop. Output of the grid generator consists of detailed schedule information and transfer information.

A.2.1 Variables and Arrays Used in XGRID, GRID, and XPRESS

Input parameters

Р	-	vertical dimension of grid
Q	-	horizontal dimension of grid
L(i)	_ `	distance between rows i and i - 1
W(i)	_	distance between columns i and i - l
PDS	_	number of periods
ZK(j)	-	converts distance into time for local routes for period j
XZK(j)	-	converts distance into time for express routes for period j

Route description

NN(r)	-	number of nodes (stops) on route r
NODE(r,i)	_	the ith node on route r
D(r,i)	-	the ith interstop distance along route r
RBASE	_	convenient reference base for absolute route numbers

Transfer node description

TNODE(j)	-	the jth transfer node
RT1(j)	-	route from which a transfer is made at TNODE(j)
RT2(j)	-	route to which a transfer is made at TNODE(j)
NTRANS	-	number of transfers

A.2.2 Program Input

Input to the grid generator consists of five types:

- 1. Structural parameters of the local grid, read in from cards (unit 5) by XGRID.
- 2. Structural parameters of the express routes, read in from cards (unit 5) by XPRESS.
- 3. Conversion factors for each period, read in from cards (unit 5) by PGRID.
- 4. Abbreviated schedule information, read in from cards (unit 5) by TSCHED.
- 5. Minimum transfer times at each node, found on file TMIN (unit 12) and read by TRANS.

Format

Specific formats for data types 1, 2, 3 and 4 are given below.

Local Structural Parameters

Contents

P,Q,(L(I),I = 2,P),	
(W(I), I = 2, Q)	(1615)

Express Structural Parameters

NMP, NMQ		215
(MAINP(I),	I=1,NMP)	(1615)
(MAINQ(J),	J=1,NMQ)	(1615)

Conversion Factors

PDS,(ZK(I),	I=1,PDS)	I5,	(15F5.2)
(XZK(I),I=1,	PDS)	(5X,	15F5.2)

Abbreviated Schedule Information

NR,(ROUTE(J), J=1,NR) one card for each group of routes, fol- lowed by	(1615)
RUNS(I), HEAD(I), (DTIME(I,J) J=1, NR)	(1615)
one card per group	
for each time period	
(applies to all routes	
in the group)	

@EOF

A.2.3 Program Output

Output from the grid generator consists of two files:

- 1. Detailed schedule information is produced by XSCHED and is written onto file SDATA (unit 7).
- 2. Transfer information is produced by TRANS and is written onto file TDATA (unit 8).

A.2.4 Subroutine GRID

This subroutine generates the nodes, local routes and transfer data for a P x Q grid network, where P,Q > 1. The variables P, Q, RBASE and the arrays LL, W are transmitted from PGRID. The subroutine defines the variable NTRANS and constructs the arrays NN, NODE, D, TNODE, RT1 and RT2; these quantities are then made available to other (sub) programs through COMMON.

A.2.5 Variables and Arrays used in GRID

Input parameters

Р	- vertical dimension of grid
Q	- horizontal dimension of grid
LL(i)	- distance between rows i and i - 1
W(i)	 distance between columns i and i - 1
RBASE	- convenient reference base for absolute route numbers

Route description

NN(r)	-	number of nodes on route r	
NODE(r,i)	_	the ith node on route r	
D(r,i)	-	the ith interstop distance along route	r

Transfer node description

TNODE(j)	- the jth transfer node
RT1(j)	 route from which a transfer is made at TNODE(j)
RT2(j)	 route to which a transfer is made at TNODE(j)

NTRANS - number of transfers

A.2.6 Subroutine XPRESS

Ro

This subroutine generates the express routes for a PxQ grid. The variables P, Q, RBASE and the arrays LL and W are transmitted from XGRID. The subroutine increments the variable NTRANS and constructs the arrays NN, NODE, D, TNODE, RT1 and RT2 for the express routes; these quantities are then made available to other (sub) programs through COMMON. XPRESS reads from cards (unit 5) NMP and NMQ and the arrays MAINP and MAINQ identifying those vertical and horizontal elements used by express routes. XPRESS calls subroutine XTRANS to construct transfers.

A.2.7 Variables and Arrays used in XPRESS

Input parameters

	Р	-	vertical dimension of grid	
	Q	-	horizontal dimension of grid	
	LL(i)	-	distance between rows i and i - l	
	W(i)	-	distance between columns i and i - l	
	RBASE	-	convenient reference base for absolute route numbers	
out	e descriptio	n		

NN(r)	-	number of nodes on route r	
NODE(r,i)	-	the ith node on route r	
D(r,i)	_	the ith interstop distance along route r	

Transfer node description

TNODE(j) -	the jth transfer node
RTl(j) -	route from which a transfer is made at TNODE(j)
RT(j) -	route to which a transfer is made at TNODE(j)
NTRANS -	number of transfers

Express route input

NMP	-	number of horizontal express routes
NMQ	-	number of vertical express routes
MAINP(i)	-	ith main horizontal element (express routes travel along the main elements)
MAINQ(i)		ith main vertical element

Express route descriptors

SP(i)	-	ith main horizontal element, including endpoints if they are not in MAINP
SQ(i)	-	ith main vertical element, including end- points if they are not in MAINQ
NSP		number of entries in SP
NSQ	-	number of entries in SQ
DP(i)	-	distance between ith and i + lst elements in SP
DQ(i)	-	distance between ith and i + lst elements in SQ
FLAG(i)	-	an array designating which transfers are allowed between the current route r and other routes stopping at the same node. FLAG = 0 indicated no transfer; FLAG = 1 indicates transfer is allowed. The trans- fers controlled by FLAG are as follows for each value of i: i=1: r to local West East route i=2: local West East route to r i=3: r to local East West route i=4: local East West route to r i=5: r to local North South route i=6: local North South route i=8: local South North route i=8: local South North route i=9: r to express East West route i=10: r to express North South route i=11: r to express South North route

A.2.8 Subroutine XTRANS

This subroutine creates the express route transfers indicated in the array FLAG. The subroutine increments the variable NTRANS and constructs the COMMON arrays TNODE, RTl and RT2 for express routes at nodes at which vertical and horizontal express routes intersect. (Analogous arrays for nodes at the ends of express routes, along the periphery of the grid, are constructed in XPRESS.)

A.2.9 Variables and Arrays Used in XTRANS

Input parameters

-	1		
	P	-	vertical dimension of grid
	Q	-	horizontal dimension of grid
	FLAG(i)	-	array designating which transfers are al- lowed between the current route r and other routes stopping at the same node. FLAG = 0 indicates no transfer; FLAG = 1 indicates transfer is allowed. The transfers con- trolled by FLAG are as follows for each value of i: i=1: r to local East West route i=2: local East West route to r i=3: r to local West East route i=4: local West East route to r i=5: r to local North South route i=6: local North South route to r i=7: r to local South North route i=8: local South North route to r i=9: r to express West East route i=10: r to express North South route i=11: r to express North South route i=12: r to express South North route
	R	-	current express route for which transfers are being calculated
	I	-	local grid horizontal element of current node
	J	-	local grid vertical element of current node
	Ll	-	express horizontal element of current node
	L2	-	express vertical element of current node
	NMP	-	number of horizontal express routes
	NMQ	-	number of vertical express routes

A.2.10 Subroutine XSCHED

This subroutine reads in (from unit 5) a group of routes together with abbreviated schedule information and then produces detailed schedule information for each route and period. The detailed schedule information is written out onto file SDATA (unit 7). The variables PDS, RBASE, PQ and the arrays NN, NODE, D, ZK, XZK are transmitted from XGRID.

A.2.11 Variables and Arrays Used in XSCHED

Input variables and arrays

PDS	-	number of periods
RBASE	-	convenient reference base for absolute route numbers
PQ	-	the number of local routes (2*P+2*Q)
ZK(j)	-	converts distance into time for period j for local routes
XZK(j)	-	converts distance into time for period j for express routes
NN(r)	-	number of nodes on route r
NODE(r,i)	-	the ith node on route r
D(r,i)	-	the ith interstop distance along route r

Additional variables and arrays (read from unit 5)

NR		number of routes in a group
ROUTE(j)	_	the jth route of the group
RUNS(i)	-	number of runs for period i
HEAD(i)	-	headway for routes in period i
DTIME(i,j)	-	initial departure time for route j in period i

Working arrays

SCHED	k) –	schedule	time	for	kth	node	along	route
-------	---	-----	----------	------	-----	-----	------	-------	-------

A.2.12 Subroutine TRANS

This subroutine writes out onto file TDATA (unit 8) the transfer information previously generated. The transfer time array TMIN is read from unit IN = 12. The variables PQ, RBASE, NTRANS and the arrays TNODE, RT1, RT2 are transmitted from XGRID.

A.2.13 Variables and Arrays Used in TRANS

Input variables and arrays

PQ	- number of nodes in grid network
RBASE	- convenient reference base for absolute route numbers
NTRANS	- number of transfers
TNODE(j)	- the jth transfer node
RT1(j)	 route from which a transfer is made at TNODE(j)
RT2(j)	 route to which a transfer is made at TNODE(j)
TMIN(i)	 minimum transfer time between any two routes at node i

A.3. PROGRAM TRA

This program produces a list of allowable transfers between routes from the route descriptions and minimum transfer times for each node. It is assumed that routes occur in pairs, with routes i and i + 1 having the same stops in reverse order. Transfers are allowed between all routes stopping at a node except that:

- 1. One cannot transfer from the first stop on a route,
- 2. One cannot transfer to the last stop on a route, and
- 3. One cannot transfer from a route to its reverse counterpart.

A.3.1 Variables and Arrays Used in TRA

MINTRA(i) - minimum time required to transfer between routes at node i

STP(k)	 the kth stop along the current route (used in reading the route information)
NSTP(i)	- the number of routes stopping at node i
RTE(i,j)	- the jth route stopping at node i
BE(i,j)	 l if node i is the first node on route RTE(i,j). 2 if node i is the last node on route RTE(i,j). 0 otherwise.
NODE	- the number of nodes
М	- the number of stops on the current route
N	 the number of routes stopping at the current node

A.3.2 Program Input

Input to TRA consists of one card and two files:

- 1. Card with number of nodes (I5 format).
- 2. Schedules from file SDATA on unit 7.
- 3. Minimum transfer times in file TMIN on unit 12.

A.3.3 Program Output

Program output is the file TDATA which gives, for each node, the route pairs between which transfers are allowed and the minimum time required to transfer between those routes at that node.

A.4. PROGRAM ACYCLE

This program produces an appropriate time-expanded network from given schedule information and transfer data. Each node of the timeexpanded network that is constructed represents a particular (stop, time) pair. Transfers are accommodated by using transfer arcs between nodes; such transfer arcs are labelled with the fictitious route number 9999. Output consists of the time-expanded node and arc data. Nodes are sorted by their time component, while arcs are sorted by their origin node. This program makes use of the subroutine SORTP having arguments X, N, Y, XPOS. That routine sorts the N elements of the array X into nondecreasing order, thus forming array Y. The ith element of array XPOS indicates what position of the original array X corresponds to the ith ordered observation Y(i).

A.4.1 Variables and Arrays Used in ACYCLE

Input variables and arrays

	RT	-	route number
	NN	-	number of stops on route
	RUNS	-	number of runs
	NODE(i)	-	the ith stop along the route
	SCHED(i)	-	the ith schedule time along the route
	TNODE	-	stop at which transfer occurs
	RT1	-	route from which transfer at TNODE
	RT2	-	route to which transfer at TNODE
	TMIN	-	minimum transfer time at TNODE
s	tructed arra	vs	

Constructed arrays

(

	N(i)	-	stop associated with network node i
	T(i)	-	time associated with network node i
	START(r)	-	first position where information may be found for route r on node list
	END(r)	-	last position where information may be found for route r on node list
	LLEN	-	length of network node list
	FROM(j)	-	starting node of arc in position j of arc list
	ТО(ј)	-	ending node of arc in position j of arc list
	RTE(j)	-	route number corresponding to arc in position j of arc list
	MLEN	-	length of network arc list
Work	ing arrays		
	TT(i)	-	the ith ordered element of T

TIND(i)	- the position in T of the ith element of TT
NEW(i)	- the position in TT of the ith element of T
FF(i)	- the ith ordered element of FROM
FIND(i)	- the position in FROM of the ith element of FF

A.4.2 Program Input

Input to ACYCLE consists of the following two files:

- 1. SDATA (unit 7) contains detailed schedule information for each route.
- 2. TDATA (unit 8) contains transfer information for each transfer point and routes connecting there.

A.4.3 Program Output

Output from ACYCLE consists of the following two files:

- 1. NDATA (unit 9) contains the node data for the time-expanded network, sorted by time.
- 2. ADATA (unit 10) contains the arc data for the time-expanded network, sorted by origin node.

A.5. PROGRAM LABCOR

This program calculates trip itineraries using the label-correcting bipartite route/stop scheme described in Section 1.1. Program input consists of the route and schedule data, minimum transfer times, and a list of trips to be calculated. Output is the itinerary for each trip, the calculation time in milliseconds for each trip, and the average and standard deviation of the calculation times for all trips.

A.5.1 Variables and Arrays used in LABCOR

Stop information

NR(s)		number of routes stopping at s
ROUTE(s,j)		jth route stopping at s
MINTRA(s)	400	minimum time required to transfer between routes at s

Route information

NS(r)	-	number of stops on route r
STOP(r,i)	-	ith stop on route r
SCHED(k,i)	-	arrival time at the ith stop of the kth departure
SBEG(r)	-	location in SCHED of the first scheduled departure for route r
SEND(r)	-	location in SCHED of the last scheduled departure for route r

Arrays used in the algorithm

L(s)	-	sequence list of stops to fan out from
F(s)	-	position of stop s in list L
T(s)	-	arrival time at stop s
TB(s)	-	boarding time for vehicle arriving at s at T(s)
PS(s)	-	stop preceding s in the path to s
PR(s)	-	route from PS(s) to s

Arrays used in printing the path

SPRT(j)	-	stop
RPRT(j)	-	route
TPRT(j)	-	arrival time
TBPRT(j)	-	boarding time

Variables used in timing calculations

RUNTIM	-	CPU time (in milliseconds) used in cal- culating one trip
RTIME	-	sum of RUNTIM's
RTSQ	-	sum of squares of RUNTIM's

NRUN		number	of	trips	calculated
------	--	--------	----	-------	------------

ROUT - used in printing average and standard deviations

Variables describing the trip to be calculated

ORG	-	trip origin stop
DST	-	trip destination stop
TIME	-	desired departure time

A.5.2 Program Input

Input to LABCOR consists of three files:

1. Schedules from file SDATA on unit 7.

2. Minimum transfer times in file TMIN on unit 12.

3. Trips to be found in file TRIPS on unit 11.

A.5.3 Program Output

All program output is on the printer and consists, for each desired trip, of the origin, destination and departure time, the trip itself with route, boarding and alighting stops, and times for each segment of the trip and computation time. At the end of the run the average computation time for all trips and its standard deviation are also printed.

A.6. PROGRAM LABSET

This program calculates trip itineraries using the label-setting bipartite route/stop scheme described in Section 2.2. Program input consists of the route and schedule data, minimum transfer times, and a list of trips to be calculated. Output is the itinerary for each trip, the calculation time in milliseconds for each trip, and the average and standard deviation of the calculation times for all trips.

A.6.1 Variables and Arrays used in LABSET

Stop information

NR(s)	-	number of routes stopping at s
ROUTE(s,j)	-	jth route stopping at s
MINTRA(s)	-	minimum time required to transfer between routes at s

Route information

NS(r)	-	number of stops on route r
STOP(r,i)	-	ith stop on route r
SCHED(k,i)	-	arrival time at the ith stop of the kth departure
SBEG(r)	-	location in SCHED of the first scheduled departure for route r
SEND(r)	-	location in SCHED of the last scheduled departure for route r

Arrays used in the algorithm

L(s)	-	sequence list of stops to fan out from
LPRED(s)	-	predecessor node to node s in chain of
		nodes representing a level in sequence list
		L. If s heads the chain (i.e. HEAD(s)

LSUCC(s) - successor node to node s in chain of nodes representing a level in list L

of s in the chain of nodes.

is true), this pointer gives the position

- HEAD(s) logical variable used to indicate whether s
 heads a chain in L
- T(s) arrival time at stop s
- TB(s) boarding time for vehicle arriving at s
 at T(s)
- PS(s) stop preceding s in the path to s
- PR(s) route from PS(s) to s

Arrays used in printing the path

SPRT(j) - stop
RPRT(j) - route
TPRT(j) - arrival time
TBPRT(j) - boarding time

Variables used in timing calculations

	RUNTIM	-	CPU time (in milliseconds) used in cal- culating one trip
	RTIME	-	sum of RUNTIM's
	RTSQ	-	sum of squares of RUNTIM's
	NRUN	-	number of trips calculated
	ROUT	-	used in printing average and standard deviations
Vari	ables descri	bin	g the trip to be calculated

ORG	-	trip origin stop
DST	-	trip destination stop
TIME	-	desired departure time

A.6.2 Program Input

Input to LABCOR consists of three files:

1. Schedules from file SDATA on unit 7.

2. Minimum transfer times in file TMIN on unit 12.

3. Trips to be found in file TRIPS on unit 11.

A.6.3 Program Output

All program output is on the printer and consists, for each desired trip, of the origin, destination and departure time, the trip itself with route, boarding and alighting stops, and times for each segment of the trip and computation time. At the end of the run the average computation time for all trips and its standard deviation are also printed.

A.7. PROGRAM TIMEXD

This program uses a time-expanded representation (see Section 2.2) in order to calculate a "best" itinerary from a given origin to a given destination. The trip produced must not depart the origin before some specified time and must arrive at the destination as early as possible. Program input consists of the node and arc data for the

time-expanded network together with a list of trips for which itineraries are required. Schedule times are assumed to be given for 1 through 1600 minutes. Program output consists of an itinerary for each trip, the calculation time (in milliseconds) for each trip as well as the average and standard deviation of calculation times for all trips in the list.

A.7.1 Variables and Arrays used in TIMEXD

Node and arc data

N(i)	-	stop associated with network node i
T(i)	-	time associated with network node i
ARC(i)	-	last position where information may be found for node i in arc list
ТО(ј)	-	ending node of arc in position j of arc list
RTE(j)	-	route number corresponding to arc in position j of arc list
NN(t)	-	node corresponding to the first occurrence of time t or later
NODE	-	number of network nodes
Input variable	es for	trip
ORG	-	desired origin stop of trip
DST	-	desired destination stop of trip
TIME	-	time at or after which trip is to begin
Variables and	arrays	s used in the algorithm
DONE	-	first node for which the destination stop has been encountered
P(i)	-	predecessor node to node i along the cur- rent path
PRTE(i)	-	route into node i along the current path
Arrays used in	n print	ting the path
PATHN(k)	-	stop in position k along path
÷		

-80-

PATHT(k) - time in position k along path

PATHR(k) - route in position k along path

Variables used in timing calculations

DIFF	-	CPU time (in milliseconds) used in cal- culating one trip
RTIME	-	cumulative sum of DIFF's
RTSQ		cumulative sum of squares of DIFF's
NRUN	-	number of trips calculated
ROUT	-	used in printing average and standard deviation of trip calculation times

A.7.2 Program Input

Input to TIMEXD consists of three files:

- 1. Node data in time-expanded form, sorted in increasing order by time and found on file NDATA (unit 9).
- 2. Arc data in time-expanded form, sorted by origin node and found on file ADATA (unit 10).
- 3. Trips to be found, on file TRIPS (unit 11).

A.7.3 Program Output

All program output is produced on the line printer and consists of the following information:

- 1. The origin, destination and departure time for each trip.
- 2. The trip itinerary with route, boarding stop, boarding time, alighting stop and alighting time for each segment of the trip.
- 3. Computation time for the trip calculation.
- 4. Mean and standard deviation of computation times for all trips.

A.8. PROGRAM TIMEXA

This program uses a time-expanded representation (see Section 2.2) in order to calculate a "best" itinerary from a given origin to a given destination. The trip produced must arrive at the destination by a specified time and must depart from the origin as late as possible. Program input consists of the node and arc data for the time-expanded network together with a list of trips for which itineraries are required. Schedule times are assumed to be given for 1 through 1600 minutes. Program output consists of an itinerary for each trip, the calculation time (in milliseconds) for each trip as well as the average and standard deviation of calculation times for all trips in the list.

A.8.1 Variables and Arrays used in TIMEXA

Node and arc data

N(i)	-	stop associated with network node i
T(i)	-	time associated with network node i
ARC(i)	-	last position where information may be found for node i in arc list
то(ј)	-	ending node of arc in position j or arc list
RTE(j)	-	route number corresponding to arc in position j of arc list
NN(t)	-	node corresponding to last occurrence of time t or earlier
NODE	-	number of network nodes
Input variable	s for	trip
ORG	-	desired origin stop of trip
DST	-	desired destination stop of trip
TIME	-	time by which trip is to be completed
Variables and	array	s used in the algorithm
S(i)	-	successor node to node i along the current path
SRTE(i)	_	route out of node i along the current path
Arrays used in	prin	ting the path
PATHN(k)	_	stop in position k along path

PATHT(k)	-	time	in	position	k	along	path

-82-

PATHR(k) - route in position k along path Variables used in timing calculations DIFF - CPU time (in milliseconds) used in calculating one trip RTIME - cumulative sum of DIFF's

- RTSQ cumulative sum of squares of DIFF's
- NRUN number of trips calculated
- ROUT used in printing average and standard deviation of trip calculation times

A.8.2 Program Input

Input to TIMEXA consists of three files:

- 1. Node data in time-expanded form, sorted in increasing order by time and found on file NDATA (unit 9).
- 2. Arc data in time-expanded form, sorted by origin node and found on file ADATA (unit 10).
- 3. Trips to be found, on file TRIPS (unit 11).

A.8.3 Program Output

All program output is produced on the line printer and consists of the following information:

- 1. The origin, destination and departure time for each trip.
- 2. The trip itinerary with route, boarding stop, boarding time, alighting stop and alighting time for each segment of the trip.
- 3. Computation time for the trip calculation.
- 4. Mean and standard deviation of computation times for all trips.

A.9. PROGRAM REMOVE

This program removes unnecessary nodes from a transit network, leaving only those nodes at which transferring is possible and likely. All nodes which are on only one route and which are not the first or last node on that route are deleted since no transferring is possible at any of these nodes. When several routes have a segment in common, intermediate nodes on that segment can be deleted, since any transfers can take place at the initial or final node of the segment. Thus a node is removed whenever it lies between the same two stops on all routes which stop at that node.

Program input consists of the stops on each route from file SDATA. The program then sorts the nodes on the number of routes stopping at the node and deletes all nodes serviced by only one route, as long as the node is not the first or last stop on the route. Finally other nodes are examined to see if they lie on the same segment on all routes. The program prints a list of deleted nodes and the revised network.

A.9.1 Variables and Arrays used in REMOVE

	Route Input				
	SRTE(i) ·	-	stops on each route. REND is used to indicate which section of SRTE refers to a particular route		
	REND(i)	-	position in SRTE of the last stop of route i		
	Stop Description				
	RSTOP(i,j)	-	jth route stopping at node i		
	NRTE(i)	-	number of routes stopping at node i		
	NIN(i)	-	is true if node i has not been removed (i.e., node i is <u>in</u> the network) and is false if node i has been removed.		
Temporary storage					
	TEMP(j) ·	-	used for input and output of the nodes on a route. Also used as an intermediate array storing the position in each route stopping at a node of that node.		
	ORDER(i)	-	used in sorting; the original position of the ith entry in sorted order		

SORTN(i)	-	used in sorting; contains the sorted array in sorted order				
TIME(j)	-	used for storing schedule data				
INDEX(j)	-	used while printing the revised network data. INDEX(j) is the position in the old route stop list of the jth stop in the revised network.				
Counters						
NRTE	-	number of routes				
NR	-	total number of stops on routes				
NEND	-	number of nodes which begin or end a route				

NDEL	-	number of nodes deleted
NS	-	number of stops on the current route
NT	-	number of runs in the schedule for the current route

A.9.2 Program Input

Input to program REMOVE consists of the file SDATA (on unit 7) containing route descriptions and schedules for the network.

A.9.3 Program Output

Program output is a set of revised routes and schedules written on logical unit 13 in the format for file SDATA. This file can be used instead of SDATA in all subsequent runs (and thus be assigned to unit 7 for other runs).

In addition to creating a revised SDATA file, program REMOVE prints out a list of the deleted nodes and also the revised routes. Two error prints may occur, most commonly because of improper dimensions.

A.10 FILE FORMATS

A.10.1 Format for File SDATA (unit 7)

Contents

Format

route number, number of stops, number of runs, stops on route

2015

-85-

For each run on the route:

time at each stop 2015

A.10.2 Format for File TDATA (unit 8)

For each node and possible transfer:

node, from route, to route, minimum transfer time 415

A.10.3 Format for File NDATA (unit 9)

stop, 215 time

A.10.4 Format for File ADATA (unit 10)

arc origin node, arc destination node, route number 315

A.10.5 Format for File TRIPS (unit 11)

For each desired trip itinerary:

trip origin, trip destination, desired departure time 315

@EOF

A.10.6 Format for File TMIN (unit 12)

minimum transfer time at each node

GEOF

1615

APPENDIX B

LISTINGS OF PROGRAMS FOR TEST-PROBLEM GENERATION

AND ITINERARY-FINDING

B.1 PROGRAM RAD

C THIS PROGRAM SERVES BOTH AS AN INPUT POUTINE AND AS A DELVER C ROUTINE TO GENERATE A RADIAL TRANSIT POUTE SYSTEM. C THE USER SPECIFIES THE NUMBER OF PADIALS, THE DIRECTION OF EACH C RADIAL. THE NUMBER OF STOPS AND DISTANCES BETWEEN STOPS ALONG FACH C RADIAL. THE USEP ALSO MUST SPECIFY BELTWAYS WHICH CONNECT STOPS ON C DIFFERENT RADIALS AND SPIKES WHICH COMMECT A STOP ON A RADIAL WITH A POINT NOT ON ANY RADIAL. С С C-Ç С NATIONAL BUREAU OF STANDARDS APRIL: 1976 С REVISED DECEMBER 1976 BY E. LEYENDECKER C C--С PARAMETER MRADII=20 R MAX NUMBER OF RADIALS A HUMBER OF STOPS PER PADIAL PARAVETER MSTPS =50 PARAMETER MNODES=MSTPS*MPADII A NUMBER OF NODES ON RADIALS PARAMETER MSTOPS=50 A NUMBER OF STOPS PER ROUTE PARAMETER MBELT =10 O MAX NUMBER OF BELTWAYS PARAMETER MSPIKE=20 WAX NUMBER OF SPIKES LOGICAL KEXP INTEGER REXP REXP SEXP COMMON/NODES/KRAD(MNODES),KSTP(MNODES),KEXP(MNODES), HODE (MRADII, MSTPS) 1 COMMON/GENRAL/MRTE(2,MSTOPS), DTEMP(2,MSTOPS), ZK(20), XZK(20), IPD COMMON/RADIAL/ANGLE(MRADII), ISTP(MRADII), DSTRAD(MRADII, MSTPS), REXP(MRADII), IRAD 1 COMMON/BELTWY/IBIN(MBELT), IBFIN(MBELT), IBSTP(MBELT, MPADII), NB(MBELT), BEXP(MBELT), DSTBLT(MBELT, MRADII), IBELT 1 COMMON/SPIKE/ISRAD(MSPIKE), ISSTP(MSPIKE), PSPIKE(MSPIKE), SEXP(MSPIKE), NDSPK(MSPIKE), ISPIKE 1 С C ---С VARIABLES AND ARRAYS USED IN THIS PROGRAM С С С RADIAL INPUT С IRAD - NUMBER OF RADIALS ANGLE (I) - ANGLE OF RADIAL I, MEASURED COUNTERCLOCKWISE FROM EAST С ISTP(I) - NUMBER OF STOPS ON RADIAL I, NOT COUNTING THE CENTER DSTRAD(I,J) - DISTANCE BETWEEN STOPS J AND J+1 ON RADIAL I C С С REXP(I) - A FLAG SET TO 1 IF PADIAL ! IS AN EXPRESS ROUTE C BELTWAY INPUT С IBELT - NUMBER OF BELTWAYS С IBIN(I) - INITIAL RADIAL CONNECTED BY BELTWAY I C. IBEIN(I) - FINAL RADIAL CONNECTED BY BELTWAY T С IBSTP(I,J) - STOP ON RADIAL J ON RELTWAY I REXP(I) - A FLAG SET TO 1 IF BELTWAY I IS AN EXPRESS ROUTE С

С SPIKE INPUT С ISPIKE - NUMBER OF SPIKES С ISRAD(I) - RADIAL TO WHICH SPIKE I IS CONNECTED ISSTP(I) - STOP ON RADIAL TO WHICH SPIKE I IS CONNECTED С Ċ DSPIKE(I) - LENGTH OF SPIKE I С SEXP(I) - A FLAG SET TO 1 IF SPIKE IS AN EXPRESS ROUTE Ċ NODE DESCRIPTION С KRAD(K) - RADIAL NODE K IS ON KSTP(K) - STOP ON RADIAL KRAD(K) WHICH IS NODE K Ċ С NODE(I, J) - THE NODE FOR STOP J ON RADIAL I С ROUTE DESCRIPTION C MRTE(M,N) - NTH STOP ON ROUTE M. MRTE(1,J)=MRTE(2,N-J+1) SINCE С ROUTES GO IN BOTH DIRECTIONS С DTEMP (N,M) - DISTANCE BETWEEN STOPS N AND N+1 ALONG ROUTE Ć C---С С INITIALIZE С A NODE COUNTER K=1 M1=-1 @ ROUTE COUNTER IN ONE DIRECTION ROUTE COUNTER IN OTHER DIRECTION M2=0 P=3.14159265/180. DEGREES TO RADIANS DO 5 I=1+MNODES -----KEXP(I)=.FALSE. 5 CONTINUE С C READ IN NUMBER OF TIME PERIODS AND CONVERSTION FACTORS С READ(5,900) IPD READ(5,902) (7K(I), T=1, IPD) READ(5,902) (XZK(I),I=1,IPD) С С READ IN RADIAL DESCRIPTION C READ(5,900) IRAD DO 10 1=1, IRAD READ(5,900) REXP(I) READ(5,901) ANGLE(I), ISTP(I) ANGLE(I)=ANGLE(I)*P JSTP=ISTP(I) READ(5,902) (DSTRAD(I,J),J=1,JSTP) 10 CONTINUE С С READ RELTWAY OFSCRIPTION С READ(5,900) IBELT DO 20 I=1, IBELT READ(5,900) PEXP(I) READ(5,900) IBIN(I), IBFIN(I)

```
NB(I) = IBFIN(I) - IBIN(I) + 1
      IF(IBIN(I).GE.IBFIN(I)) NP(I)=IBFIN(I)+IRAD-IBIN(I)+1
      N=NB(I)
      READ(5,900) (IBSTP(I,J),J=1,N)
   20 CONTINUE
С
C
C
      READ SPIKE DESCRIPTION
      READ(5,900) ISPIKE
      IF(ISPIKE.EQ.0)GO TO 40
                                     DO 30 I=1+ISPIKE
      READ(5,900) SEXP(I)
      READ(5,903) ISRAD(I), ISSTP(I), DSPTKE(I)
   30 CONTINUE
Ĉ
С
      CALL SUBROUTINE LOCAL TO GENERATE LOCAL ROUTES
С
   40 CALL LOCAL (K, M1, M2)
ĉ
С
      CALL SUBROUTINE EXPRES TO GENERATE EXPRESS ROUTES
С
      CALL EXPRES(K,M1,M2)
С
С
      ENDFILE UNIT 7 - SCHEDULE INFORMATION FILE
C
      ENDFILE 7
      STOP
  900 FORMAT(1615)
  901 FORMAT(F10.1.15)
  902 FORMAT(8F10.1)
  903 FORMAT(215.F10.1)
      END
```

B.1.1 Subroutine LOCAL

SUBROUTINE LOCAL (K+M1+M2) C THIS SUBROUTINE GENERATES THE LOCAL ROUTES OF A RADIAL TRANSIT ROUTE C SYSTEM. TWO-WAY POUTES ARE CONSTRUCTED CONNECTING THE CENTER WITH THE END OF EACH RADIAL. THE CENTER WITH THE ENDPOINT OF EACH SPIKE, AND C C THE ENDPOINTS OF EACH BELTWAY. PROGRAM OUTPUT INCLUDES THE SCHEDULE C FOR EACH ROUTE, THE STOPS ON EACH ROUTE AND THE ROUTES STOPPING AT С EACH STOP. Ĉ C С NATIONAL BUREAU OF STANDARDS APRIL: 1976 С REVISED DECEMBER 1976 BY F. LEYENDECKER С С 5 C 6 MAX NUMBER OF RADIALS PARAMETER MRIDII=20 O NUMBER OF STOPS PER RADIAL PARAMETER MSTPS =50 PARAMETER MNODES=MSTPS*MRADII A NUMBER OF NODES ON RADIALS PARAMETER MSTOPS=50 A NUMBER OF STOPS PER ROUTE PARAMETER MBELT =10 13 MAX NUMBER OF BELTWAYS MSPIKE=20 PARAMETER O MAX NUMBER OF SPIKES LOGICAL KEXP INTEGER REXP+REXP+SEXP COMMON/NODES/KRAD(MNODES),KSTP(MNODES),KEXP(MNODES), NODE (MRADII, MSTPS) COMMON/GENRAL/MRTE(2, MSTOPS), DTEMP(2, MSTOPS), ZK(20), XZK(20), IPD COMMON/RADIAL/ANGLE(MRADII), ISTP(MRADII), DSTRAD(MRADII, MSTPS), REXP(MRADII), IRAD 1 COMMON/BELTWY/IRIN(MBELT), IBFIN(MBELT), IBSTP(MRELT, MRADII), NB(MBELT), BEXP(MBELT), DSTBLT(MBELT, MRADII), IBELT 1 COMMON/SPIKE/ISRAD(MSPIKE), ISSTP(MSPIKE), DSPIKE(MSPIKE), SEXP(MSPIKE), NDSPK(MSPIKE), ISPIKE 1 C C VARIABLES AND ARRAYS USED IN THIS PROGRAM C C RADIAL Ċ IRAD - NUMBER OF RADIALS С ANGLE(I) - AUGLE OF RADIAL I, MEASURED COUNTERCLOCKWISE FROM EAST С ISTP(I) - NUMBER OF STOPS ON PADIAL T. NOT COUNTING THE CENTER С С DSTRAD(I, J) - DISTANCE BETWEEN STOPS J AND J+1 ON RADIAL I REXP(I) - A FLAG SET TO 1 IF RADIAL I IS AN EXPRESS ROUTE С Ċ BELTWAY С IBELT - NUMBER OF BELTWAYS Ċ IEIN(I) - I'HTIAL RADIAL CONNECTED BY BELTWAY I С IBFIN(I) - FINAL RADIAL CONNECTED BY BELTWAY T IBSTP(I,J) - STOP ON RADIAL J ON BELTWAY T Ĉ DSTRLT(I, J) - DISTANCE BETWEEN STOPS J AND J+1 ON BELTWAY I С C NB(I) - NUMBER OF PADIALS INTERSECTED BY RELIMINY T C BEXP(I) - A FLAG SET TO 1 IF RELTWAY I IS AN FXPRESS ROUTE

```
С-
     SPIKE
       ISPIKE - NUMBER OF SPIKES
С
Ċ
       ISRAD(I) - PADIAL TO WHICH SPIKE I IS CONNECTED
С
       ISSTP(I) - STOP ON RADIAL TO WHICH SPIKE I IS CONNECTED
Ċ
       DSPIKE(I) - LENGTH OF SPIKE I
C
       NDSPK(I) - "DDE NUMBER FOR STOP AT END OF SPIKE
С
       SEXP(I) - A FLAG SET TO 1 IF SPIKE IS AN EXPRESS ROUTE
С
     NODE DESCRIPTION
       KRAD(K) - RADIAL HODE K IS ON
C
С
       KSTP(K) - STOP ON RADIAL KRAD(K) WHICH IS NODE K
С
       KEXP(K) - NODE IS/IS NOT AN EXPRESS MODE
С
       NODE(I,J) - THE NODE FOR STOP J ON RADIAL I
C
     ROUTE DESCRIPTION
С
       MRTE(M,N) - NTH STOP ON ROUTE M.
                                          MRTF(1,J)=MRTE(2,N-J+1) SINCE
С
                    ROUTES GO IN BOTH DIRECTIONS
С
       DTEMP(N,M) - DISTANCE BETWEEN STOPS N AND N+1 ALONG ROUTE
C
C-
С
      INITIALIZE
C-
Ċ
      PI=3.14159265
С
C-
  COMPUTE RADIALS
С
C-----
С
      DO 2 I=1, JRA()
      NODE(1,1)=1
      M1=M1+2
      M2=M2+2
      ISTP1=ISTP(I)+1
      MRTE(1,1)=1
      MRTE(2, ISTP1)=1
      00 1 J=2+ISTP1
C COMPUTE ROUTES
      K = K + 1
      MRTE(1,J)=K
      MRTE(2, ISTP1+1-J)=K
      JJ=J-1
      D=DSTPAD(I,JJ)
      DTEMP(1,JJ)=0
      DTEMP(2, ISTP1-JJ)=D
C COMPUTE NODE DATA
      KRAD(K)=I
      KSTP(K)=J
      NODE(I,J)=K
1
      CONTINUE
      CALL RSCHED(ISTP1,M1,1)
      CONTINUE
2
                CNIMBER OF NODES ON PADIALS
      KMAX=K
```

C (_____ C COMPUTE BELTWAYS Ć----С DO 3 IJ=1, IBELT M1=M1+2 M2=M2+2 I=IBIN(IJ) N=NB(IJ) DO 4 TI=1.N C COMPUTE ROUTES J=IBSTP(IJ,II) N1=NODE(I,J) MRTE(1,II)=N1 MRTE(2,N+1-IT)=01 IF (II.EQ.N) GO TO 4 IT=II+1 J1=IRSTP(IJ+IT) I1=I+1IF (I1.GT.IRAD) I1=I1-IRAD M2=NODE(I1,J1) C COMPUTE THE ARC LENGTH AS THE AVERAGE OF THE ARC LENGTHS BETWEEN THE C TWO RADIALS AT RADII OF STOP J ON RADIAL I AND STOP J1 ON RADIAL 11 A=ANGLE(I1)-ANGLE(I) IF (A.LT.0.) A=A+2.*PI R1=0. JEND=J-1 DO 31 JJ=1+JEND R1=R1+DSTRAD(I,JJ) 31 CONTINUE R2=0. JEND=J1-1 DO 32 JJ=1+JEND R2=R2+DSTRAD(11,JJ) 32 CONTINUE R=(R2+R1)/2. R = ABS(R)D=R*ADTEMP(1,II)= DTEMP(2:N-II)=D DSTBLT(IJ, TI)=D I = I + 1IF (I.GT.IRAD) I=1 CONTINUE 4 CALL RSCHED (IR (IJ) +M1+1) 3 CONTINUE

```
Ċ
(-----
C COMPUTE SPIKE POUTES
C
      IF(ISPIKE.FQ.))RETURN
      DO 5 I=1, ISPIKE
      K=K+1
      NDSPK(I)=K
      M1=M1+2
      M2=M2+2
C COMPUTE SPIKE APCS
C COMPUTE ROUTES
      MM = ISSTP(I) + 1
      MRTE(1,1)=1
      MRTE(2, MM)=1
      MRTE(1,MM)=K
      MRTE(2,1)=K
      LSTP=ISSTP(I)
      DTEMP(1,LSTP)=DSPIKE(I)
      DTEMP(2,1)=DSPIKE(I)
      LRAD=ISRAD(I)
      J1=NODF(LPAD+2)
      N1=NODE(LRAD,LSTP)
      MTIMM
      II=1
      DO 6 J=J1+11
      DTEMP(1,II)=DSTRAD(LRAD,II)
      DTEMP(2,MM-II)=DSTRAD(LRAD,II)
      II = II + 1
      MT=MT-1
      MRTE(1,II)=J
      MRTE(2,MT)=J
6
      CONTINUE
      CALL RSCHED("M+M1+1)
    5 CONTINUE
      RETURM
      END
```

```
SUBROUTINE EXPPES(K,M1,M2)
 THIS SUBROUTINE GENERATES THE EXPRESS ROUTES OF A RADIAL TRANSIT ROUTE
C
           TWO-WAY BOUTES ARE CONSTRUCTED FOR RADIAL. BELTWAY AND SPIKE
C SYSTEM.
C EXPRESS ROUTES. PROGRAM OUTPUT INCLUDES THE SCHEDULE FOR EACH EXPRESS
 ROUTE, THE STOPS ON EACH EXPRESS ROUTE AND THE ROUTES STOPPING AT EACH
С
 STOP. EXPRESS POUTES STOP ONLY AT THE OTHER MAJOR ROUTES.
С
С
C
C
 NATIONAL BUREAU OF STANDARDS
                                  JANUARY 1977
                                                  E.LEYENDECKER
C
Ċ
C
С
                 MRADIJ=20
                              A MAX NUMBER OF RADIALS
      PARAMETER
                 MSTPS =50
                              R NUMBER OF STOPS PER RADIAL
      PARAMETER
                 MNODES=MSTPS*MRADIT
                                       D NUMBER OF NODES ON RADIALS
      PARAMETER
      PARAMETER
                 MSTOPS=50
                             IN NUMBER OF STOPS PER ROUTE
                 MBELT =10
                              Q MAX NUMBER OF BELTWAYS
      PARAMETER
      PARAMETER
                 MSPIKE=20
                             S MAX NUMBER OF SPIKES
      LOGICAL KEXP
      INTEGER REXP, BEXP, SEXP
      COMMON/NODES/KRAD(MNODES), KSTP(MNODES), KEXP(MNODES),
                   NODE (MRADII, MSTPS)
     1
      COMMON/GENRAL/MRTE(2,MSTOPS), DTEMP(2,MSTOPS), ZK(20), XZK(20), IPD
      COMMON/RADIAL/ANGLE(MRADII), ISTP(MRADII), DSTRAD(MRADII, MSTPS),
                    REXP(MRADII), IRAD
     1
      COMMON/BELTWY/IBIN(MBELT), IBFIN(MRELT), IBSTP(MRELT, MRADII),
                    NB(MBELT), BEXP(MBELT), DSTBLT(MBELT, MPADII), IBELT
     1
      COMMON/SPIKE/ISRAD(MSPIKE), ISSTP(MSPIKE), DSPIKE(MSPIKE),
     1
                   SEXP(MSPIKE), NDSPK(MSPIKE), ISPIKE
Ć
C
С
 VARIABLES AND ARRAYS USED IN THIS PROGRAM
C
С
C
     RADIAL
С
       IRAD - NUMBER OF RADIALS
       ANGLE(I) - AMOLE OF RADIAL I, MEASURED COUNTERCLOCKWISE FROM EAST
C
       ISTP(I) - NUMBER OF STOPS ON RADIAL I, NOT COUNTING THE CENTER
С
С
       DSTRAD(I, J) - DISTANCE BETWEEN STOPS J AND J+1 ON RADIAL I
С
       REXP(I) - A FLAG SET TO 1 IF RADIAL I IS AN EXPRESS ROUTE
С
     BELTWAY
С
       IBELT - NUMBER OF BELTWAYS
       IBIN(I) - INITIAL RADIAL CONNECTED BY BELTWAY I
С
C
       IBFIN(I) - FINAL RADIAL CONNECTED BY BELTWAY T
       IBSTP(I, J) - STOP ON RADIAL J ON BELTWAY I
С
С
       DSTBLT(I,J) - DISTANCE BETWEEN STOPS J AND J+1 ON BELTWAY I
С
       NB(I) - NUMBER OF RADIALS INTERSECTED BY BELTWAY I
       BEXP(I) - A FLAG SET TO 1 IF BELTWAY J IS AN EXPRESS ROUTE
С
```

B.1.2 Subroutine EXPRES

```
С
     SPIKE
С
       ISPIKE - NUMBER OF SPIKES
С
       ISRAD(I) - RADIAL TO WHICH SPIKE I IS CONNECTED
С
       ISSTP(I) - STOP ON RADIAL TO WHICH SPIKE I IS CONNECTED
С
       DSPIKE(I) - LENGTH OF SPIKE I
С
       NDSPK(I) - NODE NUMBER FOR STOP AT END OF SPIKE
C
       SEXP(1) - A FLAG SET TO 1 IF SPIKE IS AN EXPRESS ROUTE
С
     NODE DESCRIPTION
С
       KRAD(K) - RADIAL NODE K IS ON
C
Č
       KSTP(K) - STOP ON RADIAL KRAD(K) WHICH IS NODE K
       KEXP(K) - NODE IS/IS NOT AN EXPRESS NODE
С
       NODE(I,J) - THE NODE FOR STOP J ON RADIAL I
С
     ROUTE DESCRIPTION
С
       MRTE(M,N) - MTH STOP ON ROUTE M. MRTE(1,J)=MRTE(2,N-J+1) SINCE
С
                   POUTES GO IN BOTH DIPECTIONS
С
       DTEMP(N+M) - DISTANCE BETWEEN STOPS N AND N+1 ALONG ROUTE
Ċ
C --
С
      INITIALIZE
C -------
С
      KSTOP=0
                    R KSTOP COUNTS STOPS ON AN EXPRESS ROUTE
                    A DISTANCE ACCUMULATOR FOR FXPRESS ROUTES
      DIST=0.0
С
С-
      COMPUTE EXPRESS BELTWAYS
С
C-----
C
      DO 200 1=1,1 -5LT
      IF(BEXP(I).NE.1)G0 TO 200
      M1=M1+2
      M2=M2+2
      IR=IBIH(I)
      MUMB=NB(I)
C*****CALCULATE EXPRESS STOPS AND INTER-STOP DISTANCES IN ONE PIRECTION
      DO 150 II=1+100MB
      J=IRSTP(I,II)
      ND=NODE(IR,J)
      IF(IR.EQ.IBIN(I).OR.IR.EQ.IBFIN(I))GO TO 110
      IF(REXP(IR).FO.1)G0 TO 110
      DO 100 IS=1, TSPIKE
      IF(ISRAD(IS).NE.IR)GO TO 100
      IF(SEXP(IS).TO.1.AND.ISSTP(IS).GF.J)GO TO 110
  100 CONTINUE
      GO TO 120
  110 KSTOP=KSTOP+1
      MRTE(1,KSTOP)=HD
      KEXP(ND)=.TRUE.
```

120	IF(II.EQ.1.0PNOT.KEXP(ND))60 TO 130
	DTEMP(1,KSTOP-1)=DIST
	DIST=0.0
130	IF(II.EQ.NUM:)GO TO 140
10000 T - 00000 A	DIST=DIST+DSTPLT(I,II)
140	IR=IR+1
	IF(IR.GT.IRAD) IR=1
150	CONTINUE
	*FILL MRTE(2,) AND DTEMP(2,)
	DO 160 II=1,KSTOP
	MRTE(2,KSTOP+1-IIJ=MRTE(1,TI)
	IF(II.NE.KSTOP) DTEMP(2,KSTOP-II)=DTEMP(1,II)
160	CONTINUE
	*CALL RSCHED
-	CALL RSCHED (KSTOP, M1, 2)
	KSTOP=0
200	CONTINUE
С	
<u> </u>	
C	COMPUTE EXPRESS SPIKES
C====	e en la e de constante par la servicia de particular de la particular de particular de particular de particular En la constante de constante de constante de la particular de la particular de
С	
	IF(ISPIKE.EQ.0)GO TO 500
	DO 400 I=1, ISPIKE
	IF(SEXP(I).NE.1)GO TO 400
	LRAD=ISRAD(I)
an an a susception and a "To - Advance	M1=M1+2
	M2=M2+2
	MM=ISSTP(I)
C****	CALCULATE EXPRESS STOPS AND INTER-STOP DISTANCES IN ONE DIRECTION
-	DO 350 II=1, MM
	ND=NODE(LRAD.II)
-	IF(II.EQ.1)G0 TO 310
	IF(KEXP(ND))G0 T0 310
	IF(II.NE.MM)GO TO 320
	IF(REXP(LRAD).EQ.1)GO TO 310
	DO 300 IS=1, ISPIKE
	IF(I.EQ.IS.OR.ISRAD(IS).NE.LRAD)GO TO 300
andra arright saiders a prospera	IF(SEXP(IS).EQ.1.AND.ISSTP(IS).GE.MM)GO TO 310
300	CONTINUE
	GO TO 320
310	KSTOP=KSTOP+1
	MRTE(1,KSTOP)=ND
	KEXP(MD)=.TRUE.
320	IF(II.EQ.1.ORNOT.KEXP(ND))GO TO 330
	DTEMP(1,KSTOP-1)=DIST
	DIST=9.0
330	IF(II.LT.MM) DIST=DIST+DSTRAD(LRAD,II)
	IF(II.EQ.MM) DIST=DIST+DSPIKE(T)
350	CONTINUE

350 CONTINUE

```
C*****CONSIDER STOP AT END OF SPIKE
      KSTOP=KSTOP+1
      MRTE(1+KSTOP)=MDSPK(I)
      DTEMP(1,KSTOP-1)=DIST
      DIST=0.0
C****FILL MRTE(2, ) AND DTEMP(2, )
      DO 360 II=1,KSTOP
      MRTE(2,KSTOP+1-II)=MRTE(1,II)
      IF(II.HE.KSTOP) DTEMP(2,KSTOP-TI)=DTEMP(1,II)
  360 CONTINUE
C*****CALL PSCHED
      CALL RSCHED(KSTOP, M1, 2)
      KSTOP=0
  400 CONTINUE
С
· C -----
     COMPUTE EXPRESS RADIALS
С
C -----
Ĉ
  500 00 600 I=1 / IRAD
      IF(REXP(I).NE.1) GO TO 600
      M1=M1+2
      M2=M2+2
      MM = ISTP(I) + 1
C*****CALCULATE FXPRESS STOPS AND INTER-STOP DISTANCES IN ONE DIRECTION
      D0 650 II=1.MM
      MD=NODE(I,II)
      IF(II.FQ.1.00.II.EQ.MM)GO TO 610
      IF(KEXP(ND)), 7 TO 610
      GO TO 620
  610 KSTOP=KSTOP+1
      MRTE(1+KSTOP)=ND
  620 IF(II.EQ.1)GO TO 630
      IF(II. JE. MM. AND. . NOT. KEXP(ND)) 50 TO 630
      DTEMP(1,KSTOP-1)=DIST
      DIST=0.0
  630 IF(II.LT.MM) DIST=DIST+DSTRAD(I.I)
  650 CONTINUE
C****FILL MRTE(2, ) AND DTEMP(2, )
      DO 660 II=1,KSTOP
      MRTE(2,KSTOP+1-II)=MRTE(1,II)
      IF(II.NE.KSTOP) DTEMP(2,KSTOP-II)=CTEMP(1,TI)
  660 CONTINUE
C****CALL RSCHED
      CALL RSCHED (KSTOP, M1, 2)
      KSTOP=0
  600 CONTINUE
      RETURN
      END
```

B.1.3 Subroutine RSCHED SUBROUTINE RSCHED (N, M1, LOF) C THIS SUBROUTINE COMPUTES AND PRINTS OUT SCHEDULE INFORMATION FOR M1 AND M1+1. INPUT INCLUDES THE STOPS ALONG ROUTES M1 AND M1+1. C C STORED IN MRTE(1,I) AND MRTE(2,I) RESPECTIVELY, THE NUMBER OF C STOPS ALONG THESE POUTES IN N. AND THE DISTANCE RETWEEN STOPS IN D. INPUT ALSO INCLUDES THE NUMBER OF TIME PERIODS IPD AND THE FACTOR С C USED TO TRANSLATE DISTANCE TO TIME IN EACH PERIOD STORED IN 7K AND XZK. MSTOPS=50 PARAMETER PARAMETER MPOS=10 COMMON/GENRAL/MRTE(2,MSTOPS), DTEMP(2,MSTOPS), ZK(20), XZK(20), IPD DIMENSION JRUNS(MPDS), JHEAD(MPDS), JDTM(MPDS), JTIMF(MSTOPS) MM=M1 DO 3 IROUTE=1,2 NRUNS=0 DO 10 IPERD=1, IPD C READ THE NUMBER OF RUNS OF THIS ROUTE THIS PERIOD (JRUNS), THE C HEADWAY BETWEEN RUNS (JHEAD), AND THE TIME OF THE FIRST RUN (JDTM). READ (5,901) JRUNS(IPERD), JHEAP(IPERD), JDTM(IPERD) FORMAT (2015) 901 NRUMS=MRUMS+JRUMS(IPERD) 10 CONTINUE WRITE (6,900) MM, N, HRUMS, (MRTE(IROUTE, J), J=1, N) FORMAT('OPOUTE '+ 14+ ' HAS'+ J3+ ' STOPS+ '+ 14+ ' RUNS' /5X+ 'STOPS'+ 2015) 900 WRITE (7,901) MM, N, NRUNS, (MRTE(IROUTE, J), J=1, N) DO 21 IPERD=1, IPD JJ=JRIMS(IPERD) IF (J.J.EQ.0) GO TO 21 DO 2 TRUN=1,JJ JTIME(1)=JDTM(IPERD)+(IRUN=1)*JHEAD(IPERD) DO 1 L=2+N IF(LOF.E0.1)JTIME(L)=JTIME(L-1)+DTEMP(TROUTE,L-1)*7K(IPERD) IF(LOE.EQ.2)JTIME(L)=JTIME(L-1)+DTEMP(TROUTE,L-1)*XZK(IPEPD) CONTINUE 1 WRITE (6,902) (JTIME(L),L=1,N) 902 FORMAT (10X+2015) WRITE (7,901) (JTIME(L),L=1,N) 2 CONTINUE 21 CONTINUE $4M \equiv MM + 1$ CONTINUE 3 RETURM

-99-

END

B.2 PROGRAM XGRID

C Ĉ С EAST-WEST ROUTES. THE USER SPECIFIES THE NUMBER OF STOPS P AND THE NUMBER OF STOPS & WHICH DEFINE, RESPECTIVELY, THE VERTICAL AND С С HORIZONTAL DIMENSIONS OF THE P-BY-O GRID. IN ADDITION THE USER C MUST SPECIFY THE INTERSTOP DISTANCES L(I) AND W(I) BETWEEN SUCCESSIVE С 'ROWS' AND 'COLUMNS' OF THE GRID. STOPS WILL BE NUMBFRED FROM LEFT TO RIGHT, TOP TO BOTTOM IN SEQUENCE. ANY STOP IS ALLOWED TO BE A ē С TRANSFER NODE BETWEEN ROUTES, WHICH ARE ASSUMED TO RUN WEST-EAST, С EAST-WEST, NORTH-SOUTH AND SOUTH-NORTH ONLY. THE TRANSFER TIME С BETWEEN ROUTES IS ASSUMED TO BE CONSTANT AT EACH TRANSFER STOP. ROUTES FOLLOW REGULAR SCHEDULES THROUGHOUT EACH PERIOD, AND THERE С MAY BE A DIFFERENT CONVERSION FACTOR FOR CONVERTING DISTANCE INTO C C TIME FOR EACH PERIOD. THIS VERSION ALLOWS EXPRESS ROUTES BY THE SPECIFICATION OF MAJOR X AND Y ROUTES. THESE ROUTES С STOP ONLY AT THE OTHER MAJOR ROUTES. С С C-----Ç Ĉ NATIONAL BUREAU OF STANDARDS MAY, 1976 С C-С PARAMETER MAXP=50 P DIMENSION P OF GPID PARAMETER MAXQ=50 Q DIMENSION Q OF GPID PARAMETER MAXPD=10 @ NUMBER OF PERIODS A NUMBER OF ROLITES PARAMETER NRTES=200 PARAMETER MAXN=50 Q NUMBER OF NODES/ROUTE PARAMETER TRANSF=5000 @ NUMBER OF TRANSFERS DIMENSION L(MAXP), W(MAXQ), ZK(MAXPD), XZK(MAXPD) COMMON NN(NRTES), MODE(NRTES, MAXN), D(NRTES, MAXN), TNODE (TRANSF), RT1 (TRANSF), RT2 (TRANSF), MTRANS 1 С С-С С VARIABLES AND ARRAYS USED IN THIS PROGRAM С INPUT PARAMETERS С С P - VERTICAL DIMENSION OF GRID С Q - HORIZONTAL DIMENSION OF GRID С L(I) - DISTANCE BETWEEN VERTICAL ROWS I. T-1 С W(I) - DISTANCE BETWEEN HORIZONTAL COLUMNS I.J-1 PDS - NUMBER OF PERIODS С ZK(J) - CONVERTS DISTANCE INTO TIME FOR PERIOD J С С С ROUTE DESCRIPTION NN(R) - NUMPER OF NODES ON ROUTE R С NODE (P,I) - THE I-TH NODE ON ROUTE R С С D(R,I) - THE I-TH INTERSTOP DISTANCE ALONG ROUTE P Ć

```
TRANSFER NODE DESCRIPTION
С
С
       THORE(L) - THE L-TH TRANSFER MODE
C
       RT1(1) - ROUTE ERON WHICH TRANSFER IS MADE AT THOPE(1)
       RT2(L) - POUTE TO WHICH TRANSFER IS MADE AT THOSE(L)
С
       NTRANS - NUMBER OF TRANSFERS
С
Ĉ
C-----
C
      IMPLICIT INTEGER (A-Y)
      REAL XZK
С
С
   READ STRUCTURAL PARAMETERS OF GRID.
С
      READ(5,900) P, 0, (L(I), I=2, P), (W(I), I=2, Q)
  900 FORMAT(1615)
                D CONVENIENT REFERENCE BASE FOR ABSOLUTE ROUTE NUMPERS
      RBASE=0
С
С
   CREATE NODES, ROUTES, TRANSFER DATA.
С
      CALL GRID(P,O,L,W,RBASE)
      CALL XPRESS(P, O, L, W, RBASE)
С
С
   READ CONVERSION FACTORS FOR EACH PERIOD.
С
      READ(5,901) POS, (ZK(I), I=1, PDS)
  901 FORMAT(15,(15E5.2))
      READ (5,902) (X7K(I),I=1,PDS)
      FORMAT (5X+15F5.2)
902
С
С
   COMPUTE COMPLETE SCHEDULE INFORMATION FOR EACH ROUTE AND PERIOD.
C
      PQ=2*P+2*0
      CALL XSCHED (NMI, NODE, D, ZK, XZK, PDS, RBASE, PQ)
С
   THE TRANSFER DATA GENERATED IN GRID IS PRINTED.
С
С
      P0=P*0
      CALL TRANS(NTPANS, THODE, RT1, RT2, PO, RPASE)
      STOP
      EUD
```

B.2.1 Subroutine GRID

```
SUPROUTINE GRID(P. G.LL, W, RBASE)
   THIS SUBROUTINE SENERATES THE NODES, POUTES AND TRANSFER
С
   DATA FOR A P-BY-3 GRID NETWORK. THE VAPTABLES P.O. RPASE AND
С
С
   THE ARRAYS LLIN ARE TRANSMITTED FROM THE MAIN PROGRAM. IT IS
С
   ASSUMED THAT P.O. > 1. NODES ARE NUMBERED FROM LEFT TO RIGHT,
С
   TOP TO BOTTOM IN SEQUENCE. ROUTES ARE ASSUMED TO PUN WEST-
C
   EAST, EAST-WEST, UORTH-SOUTH, SOUTH-NORTH ONLY. TRANSFERS ARE
Ć
   ALLOWED TO OCCUR BETWEEN ROUTES AT ANY NODE.
С
С-
С
  NATIONAL BUREAU OF STANDARDS MAY, 1976
С
С
C-----
С
      PARAMETER MAX0=50 DIMENSION C OF GRID
DARAMETER NRTES=200 D NUMBER OF ROUTES
PARAMETER MAXN=50 D NUMBER OF NOOFCOM
                              A NUMBER OF NODES/ROUTE
      DIMENSION LL(MAXP) , W(MAXQ)
      COMMON NN(NRTES), NODE(NRTES, MAXN), D(NRTES, MAXN),
              THODE (TRANSE), RT1 (TRANSE), RT2 (TRANSE), MTRANS
     1
С
C --
Ĉ
С
   VARIABLES AND ARRAYS USED IN THIS SUPROUTINE
С
С
     INPUT PARAMETERS
С
       P - VERTICAL DIMENSION OF GRID
С
       Q - HORIZONTAL DIMENSION OF GRID
      LL(I) - DISTANCE BETWEEN VERTICAL ROWS I.I-1
С
С
       W(I) - DISTANCE BETWEEN HORIZONTAL COLUMNS I, T-1
С
       RBASE - CONVENIENT REFERENCE BASE FOR ABSOLUTE ROUTE NUMBERS
C
С
     ROUTE DESCRIPTION
С
       NN(R) - NUMBER OF NODES ON POUTE R
С
       NODE (R, I) - THE I-TH NODE ON ROUTE R
       D(R,I) - THE I-TH INTERSTOP DISTANCE ALONG ROUTE R
С
С
С
     TRANSFER NODE DESCRIPTION
С
       TNODE(L) - THE L-TH TRANSFEP NODE
       RT1(L) - ROUTE FROM WHICH TRANSFER IS MADE AT THODE(L)
С
       RT2(L) - ROUTE TO WHICH TRANSFER IS MADE AT TNODE(L)
Ĉ
С
       NTRANS - NUMBER OF TRANSFERS
С
```

```
C -
Ç
      IMPLICIT INTEGER (A-Y)
С
   GENERATE FOR EACH POUTE THE NODES ON IT. ALSO CREATE INTERSTOP DISTANCES
С
Ċ
      PP=2*P
      PPQ=PP+Q
      DO 110 R=1,P
      NN(R)=Q
      IS=Q*(R-1)
      NODE (R, 1) = IS+1
      DO 100 I=2.Q
      NODE(R,I)=IS+I
      D(R, I-1) = W(I)
  100 CONTINUE
  110 CONTINUE
      DO 130 RR=1+P
      R=RR+P
      NN(R)=Q
      IF=Q*RR+1
      NODE(R+1)=IF-1
      DO 120 I=2,Q
      NODE(R,I)=IF-I
      D(R, I-1) = W(Q-I+2)
  120 CONTINUE
  130 CONTINUE
      00 150 RR=1+0
      R=PR+PP
      NN(R)=P
      NODE(R+1)=RR
      DO 140 I=2,P
      NODF (R + I) = RR + (I - 1) * 0
      D(R,I-1)=LL(I)
  140 CONTINUE
  150 CONTINUE
      DO 170 RR=1.0
      R=RR+PPQ
      NN(R)=P
      IF=(P-1)*0+RR
      NODE(R,1)=IF
      00 160 I=2.P
      NOPE(R,I)=IF-(I-1)*Q
      D(R, I-1) = Ll(P-T+2)
  160 CONTINUE
  170 CONTINUE
```

C C CRt	ΞΑΤΕ	TRAUSI	ר קרק) A T A	•	
	00 2 N=N- IF() IF() L=L- TNO(RT1	I.FQ.1 J.FQ.1 H1 DE(L)=1 (L)=PP	1+0) Gn) Gn) Gn +J			
	L=L- TNO RT1 RT2	DE(L)= (L)=I (L)=PP(3+1 N			-44
20Ü	L=L TNOT RT1 RT2	DE(L)= (L)=PP (L)=I	1	то	21.3	
	RT1 RT2	DE(L)= (L)=P+ (L)=PP	Î Q+J	-		
210	IF() L=L- TNO(RT1 RT2 L=L-	DE(L)= (L)=1 (L)=PP) GO H +J			
220	RT2 IF(IF(L=L TNOT RT1	DE(L)=) (L)=P+ (L)=PP	I) GO) GO N			•
	RT1 RT2 CONT	DE(L)=PP((L)=I (L)=I TIMUE TIMUE MNS=L JR*				

B.2.2 Subroutine XPRESS

	SUBROUTINE XPRESS(P,0,LL,W,RBASE) PARAMETER MP=25 PARAMETER M0=25 PARAMETER NRTES=200 PARAMETER MAXN=50 PARAMETER TRANSF=5000 DIMENSION LL(1),V(1) DIMENSION LL(1),V(1) DIMENSION MAINP(MP),MAIN0(M0),DP(MP),DQ(M0),SP(MP),SQ(M0), 1 FLAG(12) COMMON NN(NRTES),NODE(NRTES,MAXN),D(NRTES,MAXN),TNODE(TRANSE),
-	1 RT1(TRANSF),RT2(TRANSF),NTRANS IMPLICIT INTEGER(A-Y) READ (5,900) NMP,NMQ
900	FORMAT (1615) IF (NMP.LE.0.OR.NMQ.LE.0) RETURN READ (5,900) (MAINP(I),I=1,NMP) READ (5,900) (MAINQ(I),I=1,NMQ) L=1 J=1
	IF (MAINP(1).EQ.1) GO TO 1 SP(1)=1 L=2
1	SP(L)=MAINP(J) L=L+1 J=J+1 IF (J.LE.NMP) GO TO 1 IF (MAINP(NMP).FQ.P) GO TO 2 SP(L)=P L=L+1
2	NSP=L-1 L=1 J=1 IF (MAINQ(1).FQ.1) GO TO 3 SQ(1)=1 L=2
3	SQ(L) = MAINQ(J) L=L+1 J=J+1 IF (J.LE.NMQ) GO TO 3 IF (MAINQ(NMQ).EQ.Q) GO TO 131 SQ(L)=Q L=L+1
131	NSQ=L-1 IEND=1 DO 5 I=2,NSP II=I-1
	DP(II)=0 IBEG=IEND+1 IENC=SP(I)

	DO 4 J=18FG, TEND
	DP(II)=DP(II)+LL(J)
4	CONTINUE
5	CONTINUE
	IEND=1
	DO 7 1=2,NSQ
	II=I-1
	DQ(II)=0 -
	IBEG=IEND+1
	IEND=SQ(I)
	DO 6 J=IBFG, IEND
	DQ(II)=DQ(II)+W(J)
,	
6	CONTINUE
7	CONTINUE
	R1=2*(P+Q)
	Q1=N5Q+1
	DO 9 I=1 NMP
	R1=R1+1
	R2=R1+NMP
	BASE = (MAINP(1) - 1) * Q
	DO 8 J=1,NSQ
	NOD=BASE+SQ(J)
	NODE(R1,J)=NOD
	NODE(R2,01-J)=NOD
	IF (J.EQ.NSQ) GO TO 8
	D(R1,J)=DQ(J)
	D(R2, NSQ-J) = DQ(J)
8	CONTINUE
5	NN(R1)=NS0
	NN (R2) = NSQ
9	CONTINUE
,	R1=2*(P+Q+NNP)
	P1=NSP+1
	DO 11 I=1.NMD
	R1=R1+1
	R2=R1+NMQ
	BASE=MAINQ(I)
	D0 10 J=1 + NSP
	NOD=BASE+(SP(J)-1)*9
	NODE (R1, J) = NOD NODE (R2, P1-J) = NOD
	IF (J.EQ. USP) GO TO 10
	$D(R_1,J)=DP(J)$
1.0	D(R2+MSP-J)=Dp(J)
10	CONTINUE
	NN(R1)=NSP
	NN(R2)=NSP
11	CONTINUE

	P0=2*P+2*0
	DO 38 L1=1, NMP
	I=MAINP(L1)
	DO 38 L2=1, NMQ
	J=MAINQ(L2)
	R=PQ+L1
	D0 12 L=1,12
	FLAG(L)=1
10	CONTINUE
12	
	FLAG(9)=0
	FLAG(10)=0
	IF (J.NE.1) GO TO 13
	FLAG(1)=0
	FLAG(2)=0
	FLAG(3)=0
	FLAG(5)=0
de aussi "Reals - La Pratient -	FLAG(7)=0
	FLAG(11)=0
	FLAG(12)=0
13	IF $(J \cdot NE \cdot 0)$ GO TO 14
10	FLAG(1)=0
	FLAG(2)=0
	FLAG(4)=0
	FLAG(6)=0
	FLAG(8)=0
14	IF (I.NE.1) GO TO 15
	FLAG(7)=0
	FLAG(6)=0
	FLAG(12)=0
15	IF (I.1E.P) GO TO 16
	FLAG(5)=0
	FLAG(8)=0
	FLAG(11)=0
16	CALL XTRANS(P, Q, FLAG, R, I, J, L1, L2, NMP, NMQ)
	IF (L2.GT.1) GO TO 18
	IF (SQ(1).EQ.MAINQ(1)) GO TO 17
	NOD = (I - 1) * 0 + 1
	IE (I EO 1) CO TO 1(1
	NTRANS=NTRANS+1
	RT1(NTRANS)=2*P+1
	RT2(NTRANS) = R
	TNODE (NTRANS) = NOD
161	IF (I.EQ.P) GO TO 17
	NTRANS=NTRANS+1
	RT1 (NTRANS) = 2*P+0+1
	RT2(NTRANS)=R
	TNODE (IJTRANS) = NOD
17	IF (SO(NSQ).EQ.MAINO(NMQ)) GO TO 18
	NOD=I*Q
	IF (I.EQ.1) 60 TO 171

171	NTRANS=NTRANS+1 RT1(NTRANS)=P RT2(NTRANS)=P0 TNODE(NTRANS)=NOD IF (I.EQ.P) GO TO 18 NTRANS=NTRANS+1 RT1(NTRANS)=P RT2(NTRANS)=2*P+0 TNODE(NTRANS)=NOD
18	R=PQ+NMP+L1 D0 19 L=1+12 FLAG(L)=1
19	CONTINUE
	FLAG(9)=0
	FLAG(10)=0
	IF (J.NE.1) GO TO 20 FLAG(2)=0
	FLAG(3)=0
1.48947-1. Photo 4.499.499	FLAG(4)=0
	FLAG(6)=0
	FLAG(8)=0
20	IF (J.NE.Q) 60 TO 21
	FLAG(1)=0
- 4	FLAG(3)=0 FLAG(4)=0
	FLAG(5)=0
	FLAG(7)=0
	FLAG(11)=0
	FLAG(12)=0
21	IF (I.NE.1) 60 TO 22
	FLAG(7)=0
	FLAG(6)=0
22	IF (I.NE.P) GO TO 23
	FLAG(5)=0
	FLAG(8)=0
	FLAG(11)=0
23	CALL XTRANS(P,Q,FLAG,R,I,J,L1,L2,NMP,NMQ)
	IF (L2.GT.1) GO TO 25 IF (SQ(NSQ).E0.MAINQ(NMQ)) GO TO 24
-	NOD=I*Q
	IF (I.EQ.1) GO TO 231
	NTRANS=NTRANS+1
	RT1(HTRANS)=2*P+0
	RT2(NTRANS)=R
071	TNODE (NTRANS) = NOD IF (I.EQ.P) 30 TO 24
231	IF (1.EQ.P) 50 10 24 NTRANS=NTRANS+1
	RT1(NTRANS)=2*P+2*0
	RT2(NTRANS)=
	TNODE (HTRANS) = 10D

24	IF (SQ(1).EQ.MAINO(1))	<u>60 TO 25</u>
	NOD = (J - 1) * 0 + 1	
	IF (I.EQ.1) GO TO 241	
	NTRANS=NTRANS+1	
	RT1(NTRANS)=R RT2(NTRANS)=2*P+Q+1	· · · · · · · · · · · · · · · · · · ·
	TNODE (NTRANS) = 2*PTOT [TNODE (NTRANS) = NOD	
241	IF (I.EQ.P) GO TO 25	
241	NTRANS=NTRANS+1	
	RT1(NTRANS)=R	
	RT2(NTRANS)=2*P+1	
	TNODE (NTRANS) = NOD	
25	R=PQ+2*NMP+L2	
- man	DO 26 L=1,12	As an example of a set of a
	FLAG(L)=1	
26	CONTINUE	
	FLAG(11)=0	
	FLAG(12)=0	
	.IF (J.NE.1) GO TO 27	
	FLAG(2)=0	
	FLAG(3)=0	· ·
	FLAG(10)=0	
27	IF (J.NE.Q) GO TO 28	a second second and a second
	FLAG(1)=0	
	FLAG(4)=0	
20	FLAG(9)=0 IF (I.NE.1) GO TO 29	
28	FLAG(1)=0	· ··
	FLAG(3)=0	
	FLAG(5)=0	
	FLAG(6)=0	
	FLAG(7)=0	anna ar an
	FLAG(9)=0	
	FLAG(10)=0	
29	IF (I.NE.P) GO TO 30	
	FLAG(2)=0	na akaraka da na an na
	FLAG(4)=0	
	FLAG(5)=0	
	FLAG(6)=0	
	FLAG(8)=0	
30	CALL XTRANS (P.O.FLAG.R.	I.J.L1.L2.NMP.NMQ)
	IF (L1.GT.I) GO TO 32	
	IF (SP(1).EQ.MAINP(1))	GO TO 31
	NOD=J	
	IF (J.EQ.1) GO TO 301	
	NTRANS=NTRANS+1	
	RT1(NTRANS)=1	
	RT2(NTRANS)=R	
	TNODE (NTRANS) = NOD	

301	IF (J.EQ.Q) 30 TO 31
	NTRANS=NTRAMS+1
	RT1(NTRANS)=P+1
	RT2(NTRANS)=?
	TNODE (TITRATIS) = NOD
31	IF (SP(NSP).EQ.MAINP(NMP)) GO TO 32
	NOD=(P-1)*Q+J
	IF (J.EQ.1) GO TO 311
	NTRANS=NTRANS+1
	RT1(NTRANS)=R
	RT2(NTRANS)=2*P
	TNODE (MTRANS) =NOD
311	IF (J.EQ.Q) GO TO 32
	NTRANS=NTRANS+1
	RT1(NTRANS)=P
	RT2(NTPANS)=P
	TNODE (NTRANS) = NOD
32	R=PQ+2*NMP+N''0+L2
	DO 321 L=1+12
	FLAG(L)=1
321	CONTINUE
	FLAG(11)=0
	FLAG(12)=0
	IF (J.NE.1) GO TO 33
	FLAG(2)=0
	FLAG(3)=0
	FLAG(10)=0
33	IF (J.NE.Q) GO TO 34
	FLAG(1)=0
	FLAG(4)=0
	FLAG(9)=0
34	IF (I.NE.1) GO TO 35
	FLAG(2)=0
	FLAG(4)=0
	FLAG(6)=0
	FLAG(7)=0
	FLAG(R)=0
35	IF (I.NE.P) GO TO 36
0.0	FLAG(1)=0
	FLAG(3)=0
	FLAG(5)=0
	FLAG(7)=0
	FLAG(3)=0
	FLAG(9)=0
36	FLAG(10)=0
50	CALL XTRANS(P, G, FLAG, R, I, J, L1, L2, MMP, NMQ)
	IF (L1.GT.1) 60 TO 38 IF (SP(NSP).E0.MAINP(NMP)) 60 TO 37
	$\frac{1}{1} + \frac{1}{2} + \frac{1}$

	IF (J.EQ.1) GO TO 361 NTRANS=NTRANS+1	~
	RT1 (MTRANS)=P	
	RT2(NTRANS)=R	
700	THODE (NTRANS) = NOD	
361	IF (J.EQ.Q) GO TO 37	
	NTRANS=NTRANS+1	and a construction of the construction
	RT1(NTRANS)=2*P	
	RT2(NTRANS)=R	
	TNOLE (MTRANS) = NOD	
37	IF (SP(1).EQ. MAINP(1)) GO T	0 38
	NOD=J	
	IF (J.F.Q.1) 62 TO 371	
	NTRANS=NTRANS+1	
	RT1(NTRANS)=R	
	RT2(NTRANS)=P+1	
	TNODE (HTRANS) = NOD	
371	IF (J.EQ.Q) 50 TO 38	
	NTRANS=NTRANS+1	n a na andreanna - tha air ann ann ann ann ann ann an ann a' ann ann
	RT1(NTRANS)=R	
	RT2(HTEANS)=1	
	TNODE (NTRANS) = MOD	
38	CONTINUE	
	RETURN	
	END	

B.2.3 Subroutine XTRANS

SUBROUTINE XTRANS(P, 0, FLAG, R, I, J, 1, L2, NMP, NMQ) PARAMETER NRTES=200 PARAMETER MAXN=50 TRANSF=5000 PARAMETER COMMON NN(NRTES), NODE(NRTES, MAXN), D(NRTES, MAXN), TNODE(TRANSF), RT1(TRANSE), RT2(TRANSE), NTRANS 1 IMPLICIT INTEGER (A-Y) DIMENSION FLAG(1) MOD = (I - 1) * Q + JP0=2*P+2*0 LL=NTRANS IF (FLAG(1).EQ.0) GO TO 1 LL=LL+1 RT1(LL)=Ŕ RT2(LL)=IIF (FLAG(2).FQ.0) GO TO 2 1 LL=LL+1 RT1(LL)=IRT2(LL)=RIF (FLAG(3).EQ.0) GO TO 3 2 LL=LL+1RT1(LL)=R RT2(LL)=P+I 3 IF (FLAG(4).EQ.0) GO TO 4 LL=LL+1 RT1(LL)=P+I PT2(LL)=RIF (FLAG(5).50.0) GO TO 5 4 LL=LL+1 RT1(LL)=R RT2(LL)=2*P+J 5 IF (FLAG(6). EQ. 0) GO TO 6 LL=LL+1 RT1(LL)=2*P+J RT2(LL)=R IF (FLAG(7).E0.0) GO TO 7 6 LL=LL+1 RT1(LL) = RRT2(LL)=2*P+3+J- -7 IF (FLAG(8).50.0) GO TO 8 LL=LL+1 RT1(LL)=2*P+0+J RT2(LL)=RR IF (FLAG(9).52.0) GO TO 9 LL=LL+1RT1(LL)=R RT2(LL) = P0+L19 IF (FLAG(10).F0.0) GO TO 10 LL=LL+1RT1(LL)=RRT2(LL)=PO+NHP+L1

10	IF (FLAG(11).F0.0) GO TO LL=LL+1	11		
	RT1(LL)=R			
	RT2(LL)=PQ+2**IMP+L2			
11	IF (FLAG(12). 50.0) GO TO	12	-4468 499-1	den daare ge
	LL=LL+1			
	RT1(LL)=R			
	RT2(LL)=P0+2*NMP+NM0+L2			
12	LBEG=NTRANS+1			
	DO 13 L=LBEG,LL			
	TNODE(L)=NOD			
13	CONTINUE			
	NTRANS=LL			
	RETURN	an uportado	to an another and a strong man approx	
	END			

B.2.4 Subroutine XSCHED

```
SUBROUTINE XSCHED(NU+NODE+D+ZK+XZK+PDS+RBASE+PO)
   THIS SUBROUTINE READS IN A GROUP OF ROUTES TOGETHER WITH
Ć
   ABBREVIATED SCHEDULE INFORMATION AND PRODUCES COMPLETE SCHEDULE
С
   INFORMATION FOR ROUTES IN EACH PERIOD. THE VARIABLES PDS, RBASE
С
С
   AND THE ARRAYS NN+NODE+D+ZK ARE TRANSMITTED FROM THE MAIN PROGRAM.
Ć
   THE PROGRAM WRITES OUT THE DETAILED SCHEDULE INFORMATION USING
С
   UNIT OUT = 7.
Ĉ
C-
Ċ
С
  NATIONAL BUREAU OF STANDARDS MAY, 1976
С
C.
Ĉ
      PARAMETER MAXPD=10
                               D NUMBER OF PERIODS
      PARAMETER URTES=200
                              & NUMBER OF ROUTES
                             D NUMBER OF NODES/ROUTE
      PARAMETER MAXN=50
                             A NUMBER OF ROLITES/GROUP
      PARAMETER NGPOUP=100
      DIMENSION NN(NRTES), NODE(NRTES, MAXN), D(NRTES, MAXN), ZK(MAXPD),
                ROUTE (NGROUP), RUNS (MAXPD), HEAD (MAXPD),
     1
     2
                DTIME(MAXPD, NGROUP), SCHED(MAXN), XZK(MAXPD)
С
C
С
С
   VARIABLES AND ARRAYS USED IN THIS SUPROUTINE
Ĉ
С
     INPUT PARAMETERS
С
       PDS - NUMBER OF PERIODS
С
       RBASE - CONVENIENT REFERENCE BASE FOR ABSOLUTE ROUTE NUMBERS
С
       ZK(J) - CONVERTS DISTANCE INTO TIME FOR PERIOD J
С
С
     ROUTE DESCRIPTION
С
       NN(R) - NUMBER OF NODES ON ROUTE R
С
       NODE(R,I) - THE I-TH NODE ON ROUTE R
С
       U(R+I) - THE I-TH INTERSTOP DISTANCE ALONG ROUTE R
С
С
     ADDITIONAL VARIABLES AND ARRAYS (FROM UNIT 5)
       NR - NUMBER OF ROUTES IN A GROUP
С
С
       ROUTE(J) - THE J-TH ROUTE OF THE GROUP
С
       RUNS(I) - NUMBER OF RUNS FOR PERIOD I
С
       HEAD(I) - HEADWAY FOR ROUTES IN PERIOD I
C
       DTIME(I.J) - INITIAL DEPARTURE TIME FOR ROUTE J IN PERIOD I
С
Ĉ
     WORKING ARRAYS
С
       SCHED(K) - SCHEDULE TIME FOR K-TH NOPE ALONG POUTE
C
```

```
C-----
С
      IMPLICIT INTEGER (1-Y)
      REAL XZK
С
С
   DEFINE OUTPUT UNIT.
С
      0UT=7
С
С
   READ IN A GROUP OF ROUTES (SIMILAP IN RUNS, HEADWAYS).
С
   10 READ(5,900,END=80) NR, (ROUTE(J), J=1, NP)
  900 FORMAT(1615)
C
C
C
   FOR EACH ROUTE IN THE GROUP, READ IN THE SCHEDULE PARAMETERS BY TIME
   PERIOD.
С
      NRUNS=0
      DO 20 I=1,PDS
      READ (5,900) RUNS(I), HEAD(I), (DTIME(I,J), J=1, NR)
      MRUNS=NRUNS+RUNS(I)
   20 CONTINUE
С
č
   BEGIN CONSIDERATION OF EACH ROUTE IN THE GROUP.
С
      DO 70 J=1.NR
      R=ROUTE(J)
      NNR=NN(R)
      RT=R+RBASE
С
  PRINT ROUTES AND NODES ON ROUTES.
С
C
      WRITE (OUT, 800) RT, NNR, NRUNS, (NOPE(P, I), I=1, NNP)
  800 FORMAT(2015)
С
   COMPUTE SCHEDULE INFORMATION.
С
С
      DO 60 II=1,Phs
      SCHED(1)=DTIME(II,J)
      Z=ZK(II)
      IF (R.GT.PO) 7=XZK(JI)
      HD=HEAD(II)
      RNS=RUHS(II)-1
      DO 30 1=2, NNR
      SCHED(I)=SCHEn(I-1)+(Z*D(R,I-1))
   30 CONTINUE
```

C C C	PRINT SCHEDULE INFORMATION FOR FIRST DEPARTURE IN PERIOD.
	WRITE(OUT+800) (SCHED(I)+I=1+NNR) IF(RNS+E0+0) GO TO 60 DO 50 K=1+RNS
	DO 40 I=1+NNR SCHED(I)=SCHED(I)+HD
C	40 CONTINUE
C C	PRINT SCHEDULE INFORMATION FOR REST OF PERIOD.
•	WRITE(OUT+800) (SCHED(I)+I=1+NNR)
	50 CONTINUE 60 CONTINUE
1. Alter water	70 CONTINUE
	GO TO 10 80 ENDFILE OUT
	RETURN
	END

B.2.5 Subroutine TRANS

SUBROUTINE TRANS(NTRANS, TNODE, RT1, RT2, PQ, PBASE) THIS SUBROUTINE WRITES OUT USING UNIT OUT = 9 THE TRANSFER С INFORMATION PREVIOUSLY GENERATED BY GRID. THE ROUTE NUMBERS С С PRINTED ARE ABSOLUTE (I.E. NUMBERS RUN CONSECUTIVELY FROM REASE). THE VARIABLES PO, RBASE, NTRANS AND THE ARRAYS TNODE, RT1, RT2 С С ARE TRANSMITTED FROM THE MAIN PROGRAM. THE APRAY TMIN IS READ FROM С UNIT IN = 12. С C-----Ç С NATIONAL BUREAU OF STANDARDS MAY, 1976 C C-С PARAMETER TRANSF=5000 I IN NUMBER OF TRANSFERS R NUMBER OF NODES PARAMETER MNODE=1000 DIMENSION TNODE(TRANSF), RT1(TRANSF), RT2(TPANSF), TMIN(MNODE) C. C-С С VARIABLES AND ARRAYS USED IN THIS SUPROUTINE С С INPUT PARAMETERS С RBASE - CONVENIENT REFERENCE BASE FOR ABSOLUTE ROUTE NUMPERS С TMIN(I) - MINIMUM TRANSFER TIME BETWEEN ANY TWO POUTES AT NODE I C С TRANSFER NODE DESCRIPTION С TNODE(L) - THE L-TH TRANSFER NODE Ç RT1(L) - ROUTE FROM WHICH TRANSFER IS MADE AT TNODE(L) С RT2(L) - ROUTE TO WHICH TRANSFER IS MADE AT THODE(L) С NTRANS - NUMBER OF TRANSFERS С C-C IMPLICIT INTEGER (A-Y) C С DEFINE INPUT AND OUTPUT UNITS. C IN=12 OUT=8 С Ć READ IN MINIMUM TRANSFER TIMES AT EACH NODE. C READ(IN, 900) (TMJN(I), I=1, PQ) 900 FORMAT(1615)

C C PRINT TRANSFER HODE INFORMATION. C DO 10 L=1.NTRANS R1=RT1(L)+RBASE R2=RT2(L)+RBASE TN=TNODE(L) WRITE(OUT.800) TN.R1.R2.TMIN(TN) 800 FORMAT(415) 10 CONTINUE ENDFILE OUT RETURM

END

B.3 PROGRAM TRA

	PARAMETER MNODE=200
	PARAMETER MM=20
	PARAMETER MN=50
	DIMENSION RTE(MNODE, MN), STP(MM), MINTRA(MNODE), NSTP(MNODE),
	1 BE(MNODE, MN)
	IMPLICIT INTEGER (A-Z)
	DO 1 I=1.MNODE
	NSTP(I)=0
	DO 1 J=1, MN
	BE(I,J)=0
1	CONTINUE
	READ (5,900) NODE
900	FORMAT (2015)
	READ (12,903) (MINTRA(1), I=1, NODE)
903	FORMAT (16I5)
2	READ (7,900, END=6) R, M, NRUNS, (STP(1), I=1, M)
	DO 4 I=1 · M
	J=STP(I)
at a new contract of	N=NSTP(J)+1
	RTE(J,N)=R $NSTP(J)=N$
	IF (I.GT.1) GO TO 3
	$BE(J_{1}N)=1$
	GO TO 4
3	IF (I.LT.M) GO TO 4
	BE (J, N) =2
4	CONTINUE
- T	DO 5 L=1+NRUNS
	READ (7,901) DUMMY
901	FORMAT (A6)
5	CONTINUE
	60 TO 2
6	CONTINUE
	DO 10 L=1,NODE
	N=NSTP(L)
	DO 10 11=1+N
	IF (BE(L+II).EQ.1) GO TO 10
	I=RTE(L,II)
	J1=II-1
	IF (MOD(II,2),EQ.0) J1=II-2
	IF (J1.LT.1) GO TO 8
	DO 7 JJ=1,J1
···	IF (BE(L,JJ).FQ.2) GO TO 7
	J=RTE(L,JJ)
-	WRITE (8,900) L, I, J, MINTRA(L)
7	CONTINUE

0		
8	J1=II+1	
	IF (MOD(II:2), EQ.1) J1=II+2	
	IF (J1.GT.N) GO TO 10	
	DO 9 JJ=J1+N	1
	IF (BE(L+JJ)+EQ+2) 60 TO 9	
	J=RTE(L,JJ)	
	WRITE (8,900) L,I,J,MINTRA(L)	
9	CONTINUE	
10	CONTINUE	
	ENDFILE 8	-
	STOP	
	END	
	the set of the set	

-

GIVEN SCHEDULE INFORMATION AND TRANSFER DATA. FACH NODE OF THE TIME-EXPANDED NETWORK REPRESENTS A PARTICULAR (STOP, TIME) PAIR. TRANSFERS ARE ACCOMMODATED USING TRANSFER ARCS WITH THE FICTITIOUS ROUTE 9999. NATIONAL BUREAU OF STANDARDS JULY, 1976 ---------COMPTLER (XM=1) PARAMETER MAYS=100 © NUMBER OF STOPS/ROUTE PARAMETER NRTES=200 © NUMBER OF ROUTES PARAMETER MAXN=4500 O NUMBER OF NODES PARAMETER MAXA=13000 Q NUMBER OF APCS DIMENSION HODE (MAXS), SCHED (MAXS), START (NRTES), FHD (NRTES) COMMON /BLK1/ N(MAXN), T(MAXN), TT(MAXN), TIND(MAXN), NEW(MAXN) COMMON /BLK2/ FROM(MAXA), TO(MAXA), RTE(MAXA), FF(MAXA), FIND(MAXA) -------VARIABLES AND ARRAYS USED IN THIS PROGRAM INPUT VARIABLES AND ARRAYS RT - ROUTE MUMBER NN - NUMBER OF STOPS ON POUTE RUNS - NUMBER OF RUNS NODE(I) - THE I-TH STOP ALONG THE ROUTE SCHED(I) - THE I-TH SCHEDULE TIME ALONG THE ROUTE TNODE - STOP AT WHICH TRAMSFER OCCURS RT1 - ROUTE FROM WHICH TRANSFER AT THODE RT2 - ROUTE TO WHICH TRAMSFER AT TNODE TMIN - MINIMUM TRANSFER TIME AT THODE CONSTRUCTED APRAYS H(I) - STOP ASSOCIATED WITH NETWORK NODE I T(I) - TIME ASSOCIATED WITH NETWORK MODE I START(R) - FIRST POSITION WHERE INFORMATION MAY BE FOUND FOP ROUTE & ON NODE LIST END(R) - LAST POSITION WHERE INFORMATION MAY BE FOUND FOR ROUTE & ON MODE LIST

-121-

С Ċ С С С С С С С С С С С С С С С

С С

Ċ

С

С

С

С

C

С С C С С С С С С С

С С С

С

B.4 PROGRAM ACYCLE

THIS PROGRAM PRODUCES AN APPROPRIATE TIME-EXPANDED NETWORK FROM

```
Ç
       LLEN - LENGTH OF NETWORK NODE LIST
       FROM(J) - STARTING NODE OF ARC IN POSITION J OF APC LIST
С
Ĉ
       TO(J) - ENDING NODE OF ARC IN POSITION J OF APC I IST
       RTE(J) - ROUTE NUMPER CORRESPONDING TO ARC IN POSITION J
С
                OF ARC LIST
С
С
       MLEN - LENGTH OF NETWORK ARC LIST
Ċ
C
     WORKING ARRAYS
С
       TT(I) - THE I-TH OPDERED ELEMENT OF T
      TIND(I) - THE POSITION IN T OF THE I-TH FLEMENT OF TT
      NEW(I) - THE POSITION IN TT OF THE I-TH ELEMENT OF T
      FF(I) - THE I-TH ORDERED ELEMENT OF FROM
      FIND(I) - THE POSITION IN FROM OF THE I-TH ELEMENT OF FE
   IMPLICIT INTEGER (A-Z)
  DEFINE INPUT UNITS.
      IN1=7 @ INPUT FILE FOR SCHEDULE PATA
             @ INPUT FILE FOR TRANSFER DATA
      IN2=8
  REGIN PROCESSING SCHEDULE INFORMATION. CREATE NODES AND ARCS
  OF THE TIME-EXPANDED NETWORK.
     ∟=0
     M≡0
  READ IN ROUTE AND SCHEDULE DESCRIPTION. CONSTRUCT NODE AND ARC LIST.
  NOTE THAT ONE MUST HAVE NN > 1 AND RUNS > 0.
  10 READ(IN1,900, MND=40) RT, NM, RUNS, (NODE(T), T=1, NM)
 900 FORMAT(2015)
     START(RT)=L+1
     DO 30 JJ=1, RUNS
     READ(111,900) (SCHED(1), I=1, NN)
     L=L+1
     N(L) = MODE(1)
     T(L) = SCHED(1)
     NN .2= 02 00
     M = M + 1
     FROM(M)=L
     TO(M) = L + 1
     RTE(M)=RT
     L=L+1
     N(L) = MODE(J)
     T(L) = SCHED(J)
   20 CONTINUE
   30 CONTINUE
```

С

С

С

С С

С С

С

C С

С

С

С

С Ć

С

Ü Ċ

```
END(RT)=L
      GO TO 10
   40 LLEN=L
С
   READ IN TRANSFER DATA AND UPDATE ARC LIST.
С
   50 READ(IN2,900, END=80) TNODF, RT1, RT2, TMIN
      LS1=START(RT1)
      LF1=END(RT1)
      DO 70 L=LS1,LF1
      IF(N(L).NE.THODE) SO TO 70
      TM=T(L)+TMIN
      LS2=START(RT2)
      LF2=EHD(RT2)
      DO 60 LL=1 S2+LF2
      IF(N(LL).NE.TNODE) GO TO 60
      IF(T(1,L).LT.TM) GO TO 60
      IF(LL.EQ.LF2) 30 TO 55
      IF (N(LL).FQ.N(LL+1)) GO TO GA
   55 M=M+1
      FROM(M)=L
      TO(M)=LL
      RTE(M)=9999
      GO TO 70
   60 CONTINUE
   70 CONTINUE
      MLEN=M
      GO TO 50
С
   SORT NODE ARRAY BY TIME.
С
С
   80 CALL SORTP (T.LLEN, TT, TIND)
      DO 90 1=1.LLE'
       J=TIND(I)
      NEW(J)=I
   90 CONTINUE
С
   RENUMBER NODES IN ARC LIST.
С
С
       DO 100 I=1, MLEN
       K1=FR0-1(I)
       K2=10(I)
       FROM(I)=NEW(K1)
       TO(T) = HEW(K2)
  100 CONTINUE
С
   SORT APC ARRAY BY ORIGIN NODF.
С
С
       CALL SORTP(FROM, MLEN, FF, FIND)
```

С

```
С
C
   WRITE OUT NETWORK NODE DATA, SOPTED ON T.
С
      0UT1=9
               O DEFINE OUTPUT UNIT FOR MODE DATA.
      DO 110 I=1+LLEN
      J=TIND(I)
      WRITE(OUT1,971) N(J),T(J)
  901 FORMAT(315)
  110 CONTINUE
      ENDFILE OUT1
С
  WRITE OUT ARC DATA, SORTED BY ORIGIN NODE.
С
C
      OUT2=10 @ DEFINE OUTPUT UNIT FOR ARC DATA.
      DO 120 I=1.MLFN
      J=FING(I)
      WRITE(OUT2,901) FROM(J),TO(J),RTF(J)
  120 CONTINUE
      ENDEILE OUT2
      STOP
      E:ID
```

THIS ROUTINE SORTS THE ELEMENTS OF THE INPUT VECTOR X AND PUTS THE SORTED ELEMENTS INTO THE VECTOR Y. IT ALSO CARRIES ALONG THE INDEX MUMBER OF EACH ORDERED OBSERVATION--THAT IS, IT CARRIES ALONG THE POSITION OF THE I-TH ORDERED OBSERVATION (FOR EACH I) AS IT WAS IN THE ORIGINAL UNORDERED DATA VECTOR X. THESE POSITIONS ARE PLACED IN THE VECTOR XPOS. THIS ROUTINE IS USEFUL IN ATTEMPTING TO LOCATE THE MINIMUM, THE MAXIMUM, OR SOME OTHER ORDERED OBSERVATION OF INTEREST IN THE ORIGINAL UNORDERED INPUT VECTOR X. THE INPUT TO THIS ROUTINE IS THE SINGLE PRECISION VECTOR X OF (UNSORTED) ORSERVATIONS, THE INTEGER VALUE N (= SAMPLE SIZE), AN EMPTY SINGLE PRECISION VECTOR Y INTO WHICH THE SORTED OPSERVATIONS. WILL BE PLACED, AND AN EMPTY SINGLE PRECISION VECTOR XPOS INTO WHICH THE POSITIONS OF THE SORTED OBSERVATIONS WILL BE PLACED. THE OUTPUT FROM THIS POUTINE IS THE SINGLE PRECISION VECTOR Y INTO WHICH THE SORTED OBSERVATIONS HAVE BEEN PLACED, AND THE SINGLE PRECISION VECTOR XPOS INTO WHICH THE POSITIONS OF THE SORTED OBSERVATIONS HAVE BEEN PLACED. RESTRICTIONS ON THE MAXIMUM ALLOWARLE VALUE OF N--THE DIMENSIONS OF VECTORS IN AND IL (DEFINED AND USED INTERNALLY WITHIN THIS ROUTINE) DETERMINE THE MAXIMUM ALLOWABLE VALUE OF M FOR THIS ROUTINE. IF I'L AND IL EACH HAVE DIMENSION K. THEN N MAY NOT EXCEED 2**(K+1) - 1. FOR THIS ROUTINE AS WRITTEN, THE DIMENSIONS OF TU AND IL HAVE BEEN SET TO 36, THUS THE MAXIMUM ALLOWABLE VALUE OF N IS APPROXIMATELY 137 BILLION. SINCE THIS EXCEEDS THE MAXIMUM ALLOWABLE VALUE FOR AN INTEGEP VARIABLE IN MANY COMPUTERS, AND SINCE A SORT OF 137 BILLION ELEMENTS IS PRESENTLY IMPRACTICAL AND UNLIKELY, THEREFORE NO TEST FOR WHETHER THE INPUT SAMPLE SIZE N EXCEEDS 137 BILLION HAS BEEN INCORPORATED INTO THIS ROUTINE. IT IS THUS ASSUMED THAT THERE IS NO (PRACTICAL) RESTRICTION ON THE MAXIMUM VALUE OF N FOR THIS ROUTINE. PRIMTING--NONE UNLESS AN ERROR COMPTTION EXISTS THIS ROUTINE IS SINGLE PRECISION IN INTERMAL OPERATION. SUPROVITINES VEEDED--NONE SORTING METHOD-BINARY SORT REFERENCE--CACH MARCH 1969, PAGE 186 (RINARY SORT ALGORITHM BY RICHARD C. SINGLETON. --CACM JANUARY 1970, PAGE 54. --CACM OCTOBER 1970, PAGE 624. -- JACM JAHUARY 1961, PAGE 41. WRITTER BY JAMES J. FILLIPEN, STATISTICAL ENGINEERING LABORATORY (205.03) NATIONAL BUREAU OF STANDAPDS, MASHINGTON, D.C. 20234 JUNE 1972 DIMENSION Y(1), Y(1), XPOS(1) DIMENSION JU(36), IL(36) IMPLICIT INTEGER (A-Z)

3.4.1 Subroutine SORTP

SUBROUTINE SORTP(X+"+Y+XPOS)

CHECK THE INPUT APGUMENTS FOR FRRORS

```
IPR=6
      IF (N.LT.1) GOT050
      IF (N.EQ.1) GOTO55
      HOLD=X(1)
      D0601=2,N
      IF(X(I).NE.HOLD)GOT09(
   60 CONTINUE
      WRITE(IPR, 9)HOLD
      D0611=1,N
      Y(I) = X(I)
      XPOS(I)=I
   61 CONTINUE
      RETURN
   50 WRITE(IPR, 15)
      WRITE(IPR,47)
      RETURI
   55 WRITE(IPR,18)
      Y(1) = X(1)
      XPOS(1)=1.0
      RETURN
   90 CONTINUE
    9 FORMAT(1H + 108H***** HON-FATAL DIAGNOSTIC--THE FIRST INPUT ARGUME
     INT (A VECTOR) TO THE SORTP SUBROUTINE HAS ALL ELEMENTS = +F15.8+6
     1H *****)
   15 FORMAT(1H , 21H**** FATAL ERPOR--THE SECOND INPUT ARGUMENT TO THE
     1 SOFTP SUBROUTINE IS NON-POSITIVE *****)
   18 FORMAT(1H + 100H***** NON-FATAL DIAGNOSTIC--THE SECOND INPUT APOUME
     1'IT TO THE SORTP SUBROUTINE HAS THE VALUE 1 *****)
   47 FORMAT(1H & 35H**** THE VALUE OF THE ARGUMENT IS . IS
                                                                16H *****)
С
      COPY THE VECTOR X INTO THE VECTOR Y
Ĉ
      D0100I=1+N
      X(I) \equiv X(I)
  100 CONTINUE
      DEFINE THE XPOS (POSITION) VECTOR. BEFORE SORTING, THIS WILL
      BE A VECTOR WHOSE I-TH FLEMENT IS FOUND TO I.
Ċ
С
      001501=1,N
      XPOS(I)=I
  150 CONTINUE
C
      CHECK TO SEE IF THE INPUT VECTOR IS ALREADY SORTED
С
С
      N-1=N-1
      50200I=1+0/1
      IP1=I+1
      IF(Y(T).LF.Y(TP1))G0T0200
      G0T0250
  200 CONTINUE
      RETURE
```

0

250 4=1 $I \equiv 1$ U=U 305 IF(I.GF.J)GOTA370 310 K=I MID=(I+J)/2 AMED=Y(MID) BMED=XPOS(MID) IF(Y(I).LF.AMED) 60T0320 Y(MID) = Y(I)XPOS(MID) = XPOS(T)Y(I) = AME()XPOS(I)=PMED AMED=Y(MID) HMED=XPOS(MID) 320 L=J IF(Y(J).GE.AMED)GOT0340 Y(MID)=Y(J)XPOS(MID)=XPOS(J) Y(J)=AMED XPOS(J)=BMED AMED=Y(MID) BMED=XPOS(MID) IF(Y(I).LF.AMED)GOT0340 Y(MID)=Y(I)XPOS(MID)=XPOS(I) Y(I)=AMED XPOS(I)=BMED AMED=Y(MID) BMED=XPOS(MID) GOT0340 330 Y(L) = Y(K)XPOS(L)=XPOS(K) Y(K) = TTXPOS(K) = ITT340 L=L-1 IF(Y(L).5T.A (ED) G0T0340 TT=Y(L) ITT=XPOS(L) 350 K=K+1 IF(Y(K).LT.A 'FD)G0T0350 IF(K.LE.L)GOTO330 LMI=L-I J™K≡J+K IF (LMI.LE.JMK) GOT0360 IL(M) = IIU(M)=L I=K $M \equiv M + 1$ SOTUBAL

360	IL(M) = K IU(M) = J		
	J=L M=M+1		÷ •
370	GOTO380 M=M-1	an senatery is series at interesting to a series of the	
	IF (M.EQ.O) RETURN		
	I=IL(M)		
-	J=IU(M)		
380	JMI=J-I		
	IF(JMI.GE.11)30T0310 IF(I.EQ.1)G0T0305		
	I=I-1		
390	I = I + 1		-
	IF(I.EQ.J)GOT0370		
	AMED=Y(I+1)		
	BMED=XPOS(I+1)	المستعملين والمعالية المعالم المعالم المعالم	
	IF(Y(I).LF.AVED)GOT0390		
7.05	x = 1		
242	Y(K+1)=Y(K) XPOS(K+1)=XPOS(K)		
	K=K-1		
	IF(AMED.LT.Y(K))G0T0395		
	Y(K+1)=AMED		· · · · · · · · · · · · · · · · · · ·
	XPOS(K+1)=BMED		
	COT0390		
	E11D		

```
PARAMETER MR-100
                            R MAX NUMPER OF ROUTES
    PARAMETER
               MMR=MR+1
    PARAMETER
               MS=120
                            Q MAX NUMBER OF STOPS
                            R MAX POSITIONS IN L
    PARAMETER
               ML=MS
                            WAX MUABER OF STOPS PER ROUTE
    PARAMETER
               MSR=12
                             & MAX NUMBER OF ROUTES PER STOP
    PARAMETER
               MRS=20
               MD=3000
                            WAX NUMBER OF VEHICLE DEPARTURES
    PARAMETER
                             & MAX MUMBER OF SEGMENTS PER PATH
    PARAMETER
               MP=6
    PARAMETER
                MMD=MP+1
    IMPLICIT INTEGER (A-Z)
    REAL ROUT
    DIMENSION
                T(MS), TB(MS), PS(MS), PR(MS), L(ML), F(MS), NR(MS),
                NS(MR), SREG(MMR), STOP(MR, MSR), MINTRA(MS),
   1
               ROUTE (MS, MRS), SCHED (MD, MSR), SPPT (MMP), RPRT (MP),
   2
                TPRT(MP), TBPRT(MP), SEND(MMP)
   3
ARPAYS USED IN THIS PROGRAM
   STOP IMPUT
                  - NUMBER OF ROUTES STOPPING AT S
      MR(S)
      ROUTE(S, J) - JTH ROUTE STOPPING AT S
                  - MINIMUM TIME REQUIRED TO TRANSFER RETWEEN ROUTES
      MINTRA(S)
                    AT NODE S
   ROUTE INPUT
      NS(R)
                  - NUMBER OF STOPS ON ROUTE R
                  - ITH STOP ON ROUTE R
      STOP(R,I)
                  - LOCATION IN THE SCHEDULF LIST OF THE FIRST
      SREG(R)
                    SCHEDULED DEPARTURE FOR ROUTE P
                  - LOCATION IN THE SCHEDULE LIST OF THE LAST
      SEND(R)
                    SCHEDULED DEPARTURE FOR ROUTE R
      SCHED(K,I) - ARRIVAL TIME AT THE ITH STOP OF THE KTH DEPARTURE
   ALGORITHM
                  - SEQUENCE LIST OF STOPS TO FAN OUT FROM
      1(5)
                  - POSITION OF STOP S IN LIST L
      F(S)
                  - ARRIVAL TIME AT STOP S
      T(S)
                  - BOARDING TIME FOR VEHICLE ARRIVING AT S
      TB(S)
                  - STOP PRECEDING S IN PATH TO S
      PS(S)
                  - ROUTE FROM PS(S) TO S
      PR(S)
   PRINTING THE PATH
      SPRT(J)
                  - STOP
      RPRT(J)
                  - ROUTE
                  - ARRIVAL TIME
      TPRT(J)
      TRPPT(J)
                  - BOARDING TIME
    INF=999999999
                            A INFINITY USED IN THE PATH CALCULATION
    RTS0=0
    RTIME=0
    NRUH=0
```

C C

C C

Ć

С

Ċ

C

С

C

С

С

С

с С

С

Ç

C C

С

С

С

С

С

С

С

С

С

B.5 PROGRAM LABCOR

```
C
      DO 1 5=1,MS
      NR(S)=0
      CONTINUE
1
C
C READ ROUTE INPUT
С
      NSTOP=0
      NROUTE=0
                6 NUMBER OF DEPARTURES IN THE SCHEDULE
      K=1
2
      READ (7,901,END=6) P,M,KK,(STOP(R,J),J=1,M)
901
      FORMAT (2015)
      NS(R) = M
      IF (R.GT.NROUTE) NROUTE=R
С
 READ SCHEDULES FOR ROUTE R
С
С
      SBEG(R)=K
      DO 3 KS=1,KK
      READ (7,901) (SCHED(K,J), J=1,M)
      K \equiv K \pm 1
      CONTINUE
3
      SEND(R)=K-1
С
 ADD ROUTE R TO LIST OF ROUTES STOPPING AT FACH STOP IN R'S STOP LIST
С
С
4
      00 5 I=1,M
      S=STOP(R+I)
      IF (S.GT.NSTOP) NSTOP=S
      NR(S) = NR(S) + 1
      J=NR(S)
      ROUTE (S, J)=R
5
      CONTINUE
      GO TO 2
      READ (12,907) (MINTRA(I), I=1, NSTOP)
Ũ
307
      FORMAT (1615)
С
C READ ORIGIN AND DESTINATION
С
7
      READ (11,903,END=24) ORG, DST, TIME
      FORMAT( 315)
903
      WRITE (6,904) ORG, DST, TIME
      FORMAT ('0'///'OTRIP FROM', 15, ' TO', 15, ' DEPARTING ON OR AFTER',
904
     115/)
      IF (TIME.GE.1.AND.TIME.LE.1440) GO TO 8
      WRITE (6,992)
      FORMAT (5X, IND TRIP. DEPARTURE TIME IS O'T OF RANGE. 1/)
992
      60 TO 7
      CALL CPUSUP(START)
8
```

C C INI C	TIALIZE ARRAYS USED IN THE ALGORITHM
	D0 9 S=1:MS T(S)=INF TB(S)=INF PR(S)=0 PS(S)=0 F(S)=0
9	CONTINUE T(ORG)=TIME U=0 V=0 I=ORG TT=T(I)
	RT ALGORITHM
C 10	N=NR(I) DO 18 J=1.N R=ROUTE(I.J) M=NS(R) DO 11 JJ=1.M IF (STOP(R.JJ).F0.I) GO TO 12
11 C IF	CONTINUE STOP(I) NOT FOUND IN ROUTE R. EPROR AND STOP WRITE (6,990) I.R
990	FORMAT ('0*** FRROR *** STOP', 15, NOT FOUND ON POUTE', 15) STOP
12 C IF	IF (JJ.EQ.M) GO TO 18 JJ IS LAST STOP ON ROUTE R CANNOT DEPART STOP I ON ROUTE R IBEG=SBEG(R)
13	IEND=SEND(R) DO 13 K=IBEG,IEND IF (SCHED(K,JJ).GE.TT) GO TO 14 CONTINUE
	NO DEPARTURES ARE AFTER TT, TRY ANOTHEP ROUTE
14	GQ IC 18 TIM=SCHED(K,JJ) JJ=JJ+1
C TES	DO 17 SS=JJ+" STARRIVAL TIMES AT STOPS AFTER STOP I ON ROUTE R DO 17 SS=JJ+" S=STOP(R+SS)
····	IF (SCHED(K:SS).GE.T(S)) GO TO 17 PR(S)=R PS(S)=I
	IF (T(S).GE.INF) GO TO 15

C IF S IS ALREADY ON THE LIST L, MOVE S DOWN TO A NEW POSITION AND ZERO C THE OLD POSITION KK=F(S) IF (KK.GT.0) L(KK)=0 T(S) = SCHED(K, SS)15 TB(S)=TIM C ADD S TO LIST L 16 V = V + 1IF (V.GT.ML) V=1 ____ ... IF (V. UE.U) 50 TO 161 С C COMPACTIFY LIST L C - -25 W=U+1 DO 26 IPOS=W.ML IF (L(IPOS). 10.0) GO TO 26 V=V+1ST=L(IPOS) L(V)=STF(ST)=V CONTINUE 26 W=U-1 IF (W.EQ.0) GO TO 16 00 27 IPOS=1.4 IF (L(IPOS).EQ.0) GO TO 27 V=V+1IF (V.GT.ML) V=1 ST=L(IPOS) L(V)=STF(ST)=V 27 CONTINUE GO TO 16 161 L(v)=SF(S)=V17 CONTINUE 18 CONTINUE F(I)=0IF (U.NE.0) L(U)=0 C STOP WHEN THE LAST STOP PROCESSED WAS THE LAST ON THE LIST L 19 IF (U.EQ.V) GO TO 20 U=U+1 IF (U.GT.ML) U=1 I=L(U)IF (I.EQ.0) GO TO 19 TT=T(I) + MINTRA(I)GO TO 10

С	
	ITE OUT TRIP
С	
50	CALL CPUSHP (FINISH)
	RUNTIV=FINISH-START
	RTIME=RTIME+RUNTIM RTSQ=RTSQ+RUNTIM*RUNTIM
	NRUN=NRUN+1
	WRITE (6,908) RUNTIM
908	FORMAT (10X, RUN TIME FOR LAPCOR, 110, MILLISECONDS!/)
100	IF (PS(DST).E9.0) 60 TO 23
	I=DST
	SPRT(MMP)=DST
	K=MP
21	II=PR(I) PPRI(K)=II
	TBPRT(K)=TB(I)
	TPRT(K)=T(I)
	I=PS(I)
	SPRT(K)=I
600%	K=K-1 IF (I., E. ORG) GO TO 21
	K=K+1
	DO 22 J=K,MP
	WRITE (6,905) PPRT(J), SPRT(J), TBPRT(J), SPRT(JJ), TPPT(J)
905	FORMAT (5X, BOARD ROUTE ', 15, AT STOP ', 15, AT TIME', 15,
	1' ARRIVE AT STOP ', 15, ' AT TIME' 15)
22	CONTINUE
	GO TO 7
23	WRITE (6,906)
906	FORMAT (5X, 140 TRIP FOUND:)
B. L.	
24	ROUTEFLOAT(RTIME)/FLOAT(NRUN)
000	WRITE (6,909) ROUT FORMAT (101///10AVERAGE RUN TIME FOR LABCOR IS1+F12.2+
909	1' MILLISECONDS')
	ROUT=FLOAT (NRUN) *ROUT * POUT
	NRUN=NRUN-1
-	ROUT=(FLOAT(RTSO)-ROUT)/FLOAT(NRUM)
	ROUT=SQRT(ROUT)
	WRITE (6,91) ROUT
910	FORMAT ('OST MDARD DEVIATION OF RUN TIME FOR LARCOP IS', F12.2,
	1' MILLISECONDS')
	STOP
	END

4

B.6 PROGRAM LABSET PARAMETER MR=100 O MAX NUMBER OF ROLITES PARAMETER MMP=MR+1 A MAX NUMPER OF STOPS PARAMETER MS=120 PARAMETER MSR=12 A TAX MUNBER OF STOPS PEP ROUTE D MAX NUMBER OF ROUTES PER STOP PARAMETER MRS=20 PARAMETER MD=3000 R MAX NUMPER OF VEHICLE DEPARTURES PARAMETER HP=6 A MAX NUMBER OF SEGMENTS PER PATH PARAMFTER MAT=1441 A MAX ARRIVAL TIME+1 PARAMETER MMP=MP+1 IMPLICIT INTEGER (A-Z) REAL ROUT LOGICAL HEAD DIMENSION T(MS), TR(MS), PS(MS), PR(MS), L(MAT), NR(MS), NS(MR), 2 SBEG(MAR), SEND(MMR), STOP(MR, MSR), MINTRA(MS), ROUTF(MS, MRS), 3 SCHED(MD; MSR); SPRT(MMP); RPRT(MP); TPRT(MP); TPPRT(MP); I SUCC(MS); 4 LPRED(MS), HEAD(MS) ARRAYS USED IN THIS PROGRAM STOP THPUT NR(S) - NUMPER OF ROUTES STOPPING AT S ROUTE(S, J) - JTH ROUTE STOPPING AT S MINTRA(S) - MINIMUM TIME TO TRANSFER BETWEEN ROUTES AT NODE S ROUTE INPUT - NUMBER OF STOPS ON ROUTE R NS(R) - ITH STOP ON ROUTE R STOP(R,I) - LOCATION IN THE SCHEDULE LIST OF THE FIRST SBEG(R) SCHEDULED DEPARTURE FOR ROUTE R - LOCATION IN THE SCHEDULE LIST OF THE LAST SEND(R) SCHEDULED DEPARTURE FOR ROUTE R. - ARRIVAL TIME AT THE ITH STOP OF THE KTH DEPARTURE SCHED(K, I) ALGOPITHM L(S)- SEQUENCE LIST OF STOPS TO FAN OUT FROM - PREDECESSOR NODE TO MODE S IN CHAIN OF NODES LPRED(S) REPRESENTING A LEVEL IN SEQUENCE LIST L. IF S HEADS THE CHAIN (HEAD(S)=.TRUE.), THIS POINTER GIVES THE POSITION OF S IN THE SEQUENCE LIST. - SUCCESSOR MODE TO MODE S I'L CHATN OF NODES LSUCC(S) REPRESENTING A LEVEL IN LIST L. HEAD(S) - LOGICAL VARIABLE USED TO INDICATE WHETHER S HEADS A CHAIN IN L. - ARRIVAL TIME AT STOP S T(S) TR(S) - POARDING TIME FOR VEHICLE ARRIVING AT S - STOP PRECETING S IN PATH TO S PS(S) - ROUTE FROM PS(S) TO S PR(S)

С

C Ç C

С

С

C C

C

C

C

С. С

Ċ

С

С

C

С

C

C C

С

C C

C

С

С

Ć

С

PRINTING THE PATH С С SPRT(J) - STOP С - ROUTE RPRT(J) С TPRT(J) - ARRIVAL TIME C TEPRT(J) - BOARDING TIME С INF=999999999 INFINITY USED IN THE PATH CALCULATION RTIME=0 NRUN=0 RTSQ=0 Ĉ DO 10 S=1,MS NR(S)=010 CONTINUE C C READ ROUTE INPUT C NSTOP=0 NROUTE=0 K=1 @ NUMBER OF DEPARTURES IN THE SCHEDULE READ (7,270, FND=50) R.M.KK, (STOP(P,J), J=1, M) 20 NS(R)=MIF (R.GT.NROUTE) NROUTE=R C С READ SCHEDULES FOR ROUTE R С SBEG(R)=K DO 30 KS=1,KK READ (7,270) (SCHED(K,J),J=1,M) K = K + 130 CONTINUE SEND(R) = K - 1С C ADD ROUTE R TO LIST OF POUTES STOPPING AT FACH STOP IN R'S STOP LIST C DO 40 J=1.1 S=STOP(R,I) IF (S.GT.NSTOP) NSTOP=S NR(S) = NR(S) + 1J=NR(S) ROUTE (S, J)=R 40 CONTINUE GO TO 20 50 SBEG(NROUTE+1)=K READ (12,280) (MINTPA(I), I=1, NSTOP) С C READ ORIGIN AND DESTINATION

С

READ (11,290, END=260) ORG, DST, TIME 60 WRITE (6,300) ORG, DST, TIME IF (TIME.GE.1. AND.TIME.LE.1440) GO TO 70 WRITE (6,300) ORG, DST, TIME WRITE (6,310) GO TO 60 70 CALL CPUSUP (START) С C INITIALIZE ARRAYS USED IN THE ALGORITHM C DO 80 S=1+5 T(S)=INF TB(S)=INF PR(S)=0 PS(S)=0 LSUCC(S)=0LPRED(S)=0 HEAD(S)=.FALSE. 80 CONTINUE T(ORG)=TIME I=ORG TT=T(I)U=TIME+1 DO 90 SEU,MAT 90 L(S)=0C С START ALGORITHM С 100 N=NR(I)DO 200 J=1,N R=ROUTE(I,J) M=NS(R) DO 110 JJ=1,1 IF (STOP(R,JJ).E0.I) GO TO 120 110 CONTINUE С C IF STOP(I) NOT FOUND IN ROUTE R. ERROR AND STOP C WRITE (6,320) I,R STOP 120 IF (JJ.EQ.M) GO TO 200 C C IF JU IS LAST STOP ON ROUTE & CANNOT DEPART STOP I ON POUTE & С IBEG=SBEG(R) IEND=SEND(P) DO 130 K=IREG, IEND IF (SCHED(K,JJ).GE.TT) 60 TO 140 130 CONTINUE

С C IF NO DEPARTURES ARE AFTER TT, TRY ANOTHER ROUTE С GO TO 200 140 TIM=SCHED(K, JJ) JJ=JJ+1C C TEST ARRIVAL TIMES AT STOPS AFTER STOP I ON ROUTE R С DO 190 SS=JJ+1 S=STOP(R+SS) IF (SCHED(K, SS). GE. T(S)) GO TO 190 IF (T(S).GE.IVE) GO TO 170 С С IF S IS ALREADY ON THE LIST, REMOVE IT. C X=LSUCC(S) Y=LPRED(S) IF (HEAD(S)) GO TO 150 LSUCC(Y) = XIF (X.NE.0) GO TO 160 GO TO 170 150 L(Y) = XIF (X.EQ.0) GO TO 170 HEAD(X) = . TRUE . 160 LPRED(x)=YС C PUT S ON THE SEQUENCE LIST. С 170 Y = SCHED(K, SS) + 1X = L(Y)L(Y) = SLSUCC(S) = XHEAD(S)= TRUE. LPRED(S)=YIF (X.EQ.0) GO TO 180 LPRED(x) = SHEAD(X) = .FALSE.180 T(S)=SCHED(K,SS) TB(S)=TIM PR(S)=RPS(S)=I190 CONTINUE 200 CONTINUE С C STOP WHEN POINTER REACHES DST OR WHEN A COMPLETE PASS C PRODUCES NO NEW ADDITIONS TO THE SHORTEST PATH TREE. С

-137-

210	I=L(0) IF (I+E+0) fo TO 211
	U=U+1 IF (U.GT.MAT) GO TO 220 GO TO 210
211	IF (I.EQ.PST) GO TO 220 TT=T(I)+MINTPA(I) V=LSUCC(I)
з.	L(U)=V IF (V.FQ.0) GO TO 100
	LPRED(V)=U HEAD(V)=.TRUF. GO TO 100
С	
C	TE OUT TRIP
550	CALL CPUSUP (FINISH) RUNTIM=FINISH-START
	RTIME = RTIME + RUNTIM
	RTSQ=RTSQ+RUNTIM*RUNTIM
	NRUN=NRUN+1 WRITE (6,340) RUNTIM
	IF $(PS(DST) \cdot EQ \cdot 0) = GO = TO = 250$
	I=DST
	SPRT(MUP)=DST
<u>^</u> 70	
230	II=PR(I) RPRT(K)=II
	TBPRT(K) = TB(I)
	TPRT(K)=T(I)
	I=PS(I)
	SPRT(K)=I
	K=K-1 IF (I.NE.ORG) GO TO 230
	K=K+1
	DO 240 J=K, MD
	JJ=J+1
240	WRITE (6,350) RPRT(J), SPRT(J), TBPRT(J), SPRT(JJ), TPRT(J) CONTINUE
2.40	GO TO 60
250	WRITE (6,360)
04.0	GO TO 60
260	ROUT=FLOAT(RTIME)/FLOAT(NRUN) WRITE (6,370) ROUT
	ROUT=FLOAT (NPUN) *ROUT*ROUT
	NRUMENRUN-1
	ROUT=(FLOAT(RTSO)-ROUT)/FLOAT(NRUN) ROUT=SORT(ROUT)
	WRITE (6,390) POUT
	STOP

С

C C

ENP

С 270 FORMAT (2015) FORMAT (1615) FORMAT (315) 280 200 300 FORMAT ('0'/// OTRIP FROM', 15, ' TO', 15, ' DEPARTING ON OR AFTER', 15 2/) FORMAT (5X, 10 TRIP. DEPARTURE TIME IS OUT OF RANGE. 1/) 310 FORMAT ('0*** ERROR *** STOP: 15: NOT FOUND ON ROUTE: 15) 320 FORMAT (10X, RUN TIME FOR LABSET , 110, MILLISECONDS'/) 340 FORMAT (5X, BOARD ROUTE ', 15, AT STOP ', 15, AT TIME', 15, 2 ' ARRIVE AT STOP ', 15, AT TIME'T5) 350 360 FORMAT (5X, 'NO TRIP FOUND ') FORMAT ('0'///'OAVERAGE RUN TIME FOR LABSET IS + F12.2. 370 1' MILLISECONDS') FORMAT ('OSTANDARD DEVIATION OF RUN TIME FOR LARSET IS'+F12.2. 380 1' MILLISECONDS')

B.7 PROGRAM TIMEXD

<u><u> </u></u>	**************************************
С	THIS PROGRAM USES A TIME-EXPANDED REPRESENTATION IN ORDER TO
C	CALCULATE THE BEST PATH FROM A GIVEN ORIGIN TO A GIVEN DESTIN- ATION TO DEPART AFTER A SPECIFIED TIME (AND ARRIVE AS EARLY AS
C	POSSIBLE). INPUT CONSISTS OF THE NODE AND ARC DATA FOR THE
C	
Č	TIME-EXPANDED NETWORK TOGETHER WITH A LIST OF TRIPS FOR WHICH TRIP ITINERARIES ARE REQUIRED. OUTPUT CONSISTS OF AN ITINERARY
C C	FOR EACH TRIP, THE CALCULATION TIME IN MILLISECONDS FOR EACH
C	TRIP AS WELL AS THE AVERAGE AND STANDARD DEVIATION OF CALCULATION TIMES FOR ALL TRIPS IN THE LIST.
c	TIMES FOR ALL INTES IN THE LIST.
c	
č	
č	NATIONAL BUREAU OF STANDARDS JULY, 1976
c	NATIONAL BOREAG OF STANDARDS GOLTF 1970
c	
Ç	
Č.	PARAMETER MT=1600 D NUMBER OF MINUTES
	PARAMETER MAX=100 Q NUMBER OF ROUTES/PATH
	PARAMETER NODES=4500 @ NUMBER OF NODES
	PARAMETER ARCS=13000 @ NUMBER OF ARCS
	DIMENSION N(MODES), T(NODES), P(MODES), ARC(MODES), PRTE(NODES), NN(MT)
	1 ,TO(ARCS), RTE(ARCS), PATHN(MAX), PATHT(MAX), PATHR(MAX)
	REAL ROUT
Ċ	
С	
С	
С	VARIABLES AND ARRAYS USED IN THIS PROGRAM
C	
С	NODE AND ARC DATA
C C	N(I) - STOP ASSOCIATED WITH NETWORK NODE I
	T(I) - TIME ASSOCIATED WITH NETWORK NODE I
C C	ARC(I) - LAST POSITION WHERE INFORMATION MAY BE
c	FOUND FOR NODE I IN ARC LIST
c_	TO(J) - ENDING NODE OF ARC IN POSITION J OF ARC LIST
č	RTE(J) - ROUTE NUMBER CORRESPONDING TO ARC IN POSITION
č	J OF ARC LIST
č	NN(T) - NODE CORRESPONDING TO THE FIRST OCCURRENCE OF
· · · · · · · · · · · · · · · · · · ·	TIME T OR LATER
Č	NODE - NUMBER OF NETWORK NODES
Ċ	
	INPUT VARIABLES FOR TRIP
с С	
C	ORG - DESIRED OPIGIN STOP OF TRIP
	DST - DESIRED DESTINATION STOP OF TRIP
C C	DST - DESIRED DESTINATION STOP OF TRIP

VARIABLES AND ARRAYS USED IN THE ALGORITHM DONE - FIRST NODE FOR WHICH THE DESTINATION STOP HAS BEEN ENCOUNTERED P(I) - PREDECESSOR NODE TO NODE I ALONG CURRENT PATH PRTE(I) - ROUTE INTO MODE I ALONG THE CURRENT PATH ARRAYS USED IN PRINTING THE PATH PATHN(K) - STOP IN POSITION & ALONE PATH PATHT(K) - TIME IN POSITION & ALONG PATH PATHR(K) - ROUTE IN POSITION & ALONG PATH VARIABLES USED IN TIMING CALCULATIONS DIFF - CPU TIME (IN MSECS.) USED IN CALCULATING ONE TRIP RTIME - CUMULATIVE SUM OF DIFF'S RTSQ - CUMULATIVE SUM OF SQUARES OF DIFF'S NRUN - NUMBER OF TRIPS CALCULATED ROUT - USED IN PRINTING AVERAGE AND STANDARD DEVIATION OF TRIP CALCULATION TIMES IMPLICIT INTEGER (A-Z) - - -READ THE NETWORK NODE DATA, SORTED ON T. ASSUME ALL T(I) > 0. THE SCHEDULE TIMES ARE GIVEN UP TO 1600 MINUTES. -----I=1 TT=0 IN1=9 @ INPUT UNIT FOR NODE DATA 100 READ(IN1,900, END=103) N(I), T(I) 900 FORMAT(315) IF(T(I).EQ.TT) GO TO 102 TN=TT+1 TMET(I) DO 101 J=TN+TM NM(J) = I101 CONTINUE TT=T(I) 102 I=I+1 GO TO 100 103 NODE=1-1 READ THE ARC DATA, SORTED BY ORIGIN NODE. L=1 K=1 O THEFT UNIT FOR ARC DATA IN2=10

C C

С

С

C C

С С

```
104 READ(IN2,900,END=107) T,TO(L), PTE(L)
       IF(I.FO.K) GO TO 106
       KM=I-1
       DO 105 J=K.KM
       ARC(J) = L - 1
  105 CONTINUE
      K=I
  106 L=L+1
      GO TO 104
  107 DO 108 J=I.NODE
       ARC(J)=L-1
  108 CONTINUE
      WRITE (6,910)
  910 FORMAT(1H1)
      NRUN=0
       RTIME=0
      RTSQ=0
С
C
Ĉ
     READ ORIGIN, DESTINATION AND DESIRED STARTING TIME (ASSUMED TO BE
     BETWEEN 1 AND 1440, INCLUSIVE).
C
      IN3=11 @ IMPUT UNIT FOR TRIP DATA
  200 READ(IN3,900,END=500) ORG,DST,TIME
      WRITE(6,911) ORG, DST, TIME
  911 FORMAT(//1H0, TRIP FROM', 15, ' TO', 15, ' DEPARTING ON OR AFTER',
     115/)
      IF(TIME.LT.1.0R.TIME.GT.1440) GO TO 405
      IF(TIME.GT.TT) GO TO 406
      CALL CPUSUP(STIME)
0
0
0
     INITIALIZE PATH ARRAY.
      DO 201 I=1,NODE
      P(I)=0
      PRTE(I)=0
  201 CONTINUE
Ċ
Ċ
     BEGIN CALCULATION OF ROUTES FROM OPG TO DST.
С
      DONE=NODE+1
      I=NN(TIME)
  202 IF(N(I).EQ.ORG) GO TO 203
      I = I + 1
      IF(I.GT.NODE) GO TO 406
      GO TO 202
  203 L=ARC(I-1)+1
      IF(I.EQ.1) L=1
      END=ARC(I)
      PRTI=PRTE(I)
```

```
204 IF(END.LT.L) 50 TO 206
      IF(RTE(L).EQ.9999.AND.PRTI.E0.9999) 60 TO 205
      J=TO(L)
      P(J)=T
      PRTE(J)=RTE(L)
      IF (N(J) .NE.DST) GO TO 205
      IF (DONE . GT . J) DONE=J
  205 L=L+1
      GO TO 204
  206 I=I+1
      IF(I.GT.NODE) 60 TO 406
      IF(I.EQ.DONE) GO TO 300
      IF(P(I).E0.0.AND.N(I).NE.ORG) GO TO 206
      GO TO 203
С
С
     STORE INFORMATION ABOUT SELECTED ROUTE FROM ORG TO DST.
Ć
  300 M=DONE
      K=MAX+1
  301 K=K-1
      R=PRTE(M)
      PATHN(K) = N(M)
      PATHT(K) = T(M)
      PATHR(K)=R
  302 M=P(M)
      IF(N(M).E0.0RG) G0 T0 303
      IF(PRTE(M).NF.R) GO TO 301
      GO TO 302
  303 K=K-1
      PATHN(K)=ORG
      PATHT(K) = T(M)
      CALL CPUSUP(FTIME)
С
C
     PRINT ROUTE IMFORMATION.
С
      KM=MAX-1
      DO 304 L=K+K'
      LL=L+1
      IF (PATHN(L). FO. PATHN(LL)) GO TO 304
      WRITE(6,901) PATHR(LL), PATHN(L), PATHT(L), PATHN(LL), PATHT(LL)
  901 FORMAT(5X, BOARD ROUTE', 15, AT STOP', 15, AT TIME', 15,
     1' ARRIVE AT STOP', 15, ' AT TIME', 15)
  304 CONTINUE
  305 DIFF=FTIMF-STIME
      NRUN=NRUN+1
      RTIME=RTIME+DIFF
      RTSQ=RTSQ+DIFF*DIFF
      WRITE(6,902) DIFF
  902 FORMAT(1H0, PUP) TIME FOR TIMEXD = ', 16, MILLISECONDS')
      GO TO 205
```

END

	B.8 PROGRAM TIMEXA ******** TIMEXA: ARPIVAL OPIENTED CRITERION ************************************
C C	
C C	NATIONAL BURFAU OF STANDARDS JULY, 1976
C C	
Ÿ.	PARAMETER MT=1600 @ NUMBER OF MINUTES PARAMETER MAX=100 @ NUMBER OF ROUTES/PATH
	PARAMETER NODES=4500 @ NUMBER OF NODES PARAMETER ARCS=13000 @ NUMBER OF ARCS
	DIMENSION N(NODES), T(NODES), S(NODES), ARC(NODES), SRTE(NODES), NN(MT) 1 , TO(ARCS), RTE(ARCS), PATHN(MAX), PATHT(MAX), PATHR(MAX)
	REAL ROUT
C C	
C C	VARIABLES AND ARRAYS USED IN THIS PROGRAM
CCC	NODE AND ARC DATA
C C	N(I) - STOP ASSOCIATED WITH NETWORK NODE I
C C	T(I) - TIME ASSOCIATED WITH METWORK NODE I ARC(I) - LAST POSITION WHERE INFORMATION MAY BE
C C	FOUND FOR NODE I IN ARC LIST TO(J) - ENDING NODE OF ARC IN POSITION J OF ARC LIST
C.	RTE(J) - ROUTE NUMBER COPRESPONDING TO ARC IN POSITION J OF ARC LIST
C C	NN(T) - NODE CORRESPONDING TO THE LAST OCCURRENCE OF TIME T OR EARLIER
C C	NODE - NUMBER OF METWORK NOPES
С	INPUT VARIABLES FOR TRIP
C C C	ORG - DESIRED ORIGIN STOP OF TRIP DST - DESIRED DESTINATION STOP OF TRIP
C C	TIME - TIME BY WHICH TRIP IS TO BE COMPLETED

С VARIABLES AND ARRAYS USED IN THE ALGORITHM. Ĉ C S(I) - SUCCESSOR NODE TO MODE I ALONG CURRENT PATH Ċ C SRTE(I) - ROUTE OUT OF NODE I ALONG THE CURRENT PATH Ć ARRAYS USED IN PRINTING THE PATH С Ĉ PATHN(K) - STOP IN POSITION K ALONG PATH С PATHT(K) - TIME IN POSITION K ALONG PATH PATHR(K) - ROUTE IN POSITION K ALONG PATH С С VARIABLES USED IN TIMING CALCULATIONS Ĉ С DIFF - CPU TIME (IN MSECS.) USED IN CALCULATING ONE TRIP Ĉ RTIME - CUMULATIVE SUM OF DIFF'S С Ĉ RTSQ - CUMULATIVE SUM OF SQUARES OF DIFF'S С NRUN - NUMBER OF TRIPS CALCULATED ROUT - USED IN PRINTING AVERAGE AND STANDARD DEVIATION Ć С OF TRIP CALCULATION TIMES С С С IMPLICIT INTEGER (A-Z) Ć READ THE NETWORK NODE DATA, SORTED ON T. ASSUME ALL T(I) > 0. С THE SCHEDULE TIMES ARE GIVEN UP TO 1600 MINUTES. C С I=1TT=1 IN1=9 D INPUT UNIT FOR NODE DATA 100 READ(IN1,900,END=103) N(I),T(I) 900 FORMAT(315) IF(T(I).EQ.TT) GO TO 102 TM=T(T)-100 101 J=TT, T'A NN(J) = I - I101 CONTINUE TT=T(I) 102 I=I+1 GO TO 100 103 NODE=I-1 DO 110 J=TT, 1600 NN(J)=NODE 110 CONTINUE С READ THE ARC DATA, SORTED BY ORIGIN NODF. С С L=1 K=1

```
IN2=10 D IMPUT UNIT FOR ARC DATA
104 READ(IN2,900, END=107) I, TO(L), PTF(L)
    IF(I.EQ.K) GO TO 106
    KM=I-1
    DO 105 J=K+KM
    ARC(J) = L - 1
105 CONTINUE
    K=I
106 L=L+1
    GO TO 104
                                        me tage -
107 DO 168 J=1,NODE
    ARC(J)=L-1
108 CONTINUE
    WRITE(6,910)
910 FORMAT(1H1)
    NRUN=0
    RTIME=U
    RTSQ=0
   READ ORIGIN, DESTINATION AND DESIRED ARRIVAL TIME (ASSUMED TO BE
   BETWEEN 1 AND 1440, INCLUSIVE).
    IN3=11 R INPUT UNIT FOR TRIP DATA
200 READ(IN3,900, END=500) ORG, DST, TIME
    WRITE(6,911) ORG, DST, TIME
911 FORMAT(//1H0, TRIP FROM', 15, ' TO', 15, ' ARRIVING BY', 15/)
    IF (TIME.LT.1. OR. TIME.GT. 1440) GO TO 405
    CALL CPUSUP(STIME)
   INITIALIZE SUCCESSOR ARRAY.
    DO 201 I=1,NODE
                                           S(T)=0
    SRTF(I)=0
201 CONTINUE
   BEGIN CALCULATION OF ROUTES FROM ORG TO DST.
    IF(TIME.LT.160) TIME=TIME+1440
    I=NN(TIMF)
    IF(I. FQ. 0) GO TO 406
202 IF(N(I).EQ.DST) GO TO 203
    T \equiv T = 1
  IF(I.EQ.0) GO TO 406
    GO TO 202
203 S(I)=1
204 I=I-1
    IF(I.53.0) GO TO 406
205 IF(N(I).E0.DST) GO TO 203
    L=ARC(I-1)+1
    IF(I.E0.1) L=1
    END=APC(I)
```

Ċ.

C C

С

C C

С

C

С С

```
206 IF(END.LT.L) 60 TO 204
      J=TO(L)
      IF(S(J).EQ.0) GO TO 207
      IF(RTE(L).EQ.9999.AND.SRTE(J).FQ.9999) GO TO 207
      S(I)=J
      SRTE(I)=RTE(L)
      IF(N(I).E0.095) GO TO 300
      GO TO 204
  207 L=L+1
      GO TO 206
Ĉ
С
     STORE INFORMATION ABOUT SELECTED ROUTE FROM ORG TO PST.
С
  300 M=I
      K=0
  301 K=K+1
      R = SRTE(M)
      PATHN(K) = N(M)
      PATHT(K) = T(M)
      PATHR(K)=R
  302 M=S(M)
      IF(N(M).ER.DST) GO TO 303
      IF(SRTE(M).NE.R) GO TO 301
      GO TO 302
  303 K=K+1
      PATHN(K)=DST
      PATHT(K) = T(M)
      CALL CPUSUP(FTIME)
C
С
     PRINT ROUTE INFORMATION.
С
     KK=K-1
     00 304 L=1,KK
      LL=L+1
      IF(PATHN(L).EQ.PATHN(LL)) GO TO 304
      WRITE(6,901) PATHR(L), PATHN(L), PATHT(L), PATHN(IL), PATHT(LL)
  901 FORMAT(5X, 'BOARD ROUTE', IS, ' AT STOP', IS, ' AT TIME', IS,
     1' ARRIVE AT STOP', 15, ' AT TIME', 15)
  304 CONTINUE
  305 DIFF=FTIME-STIME
      NRUN=NRUN+1
      RTIME=RTIME+DIFF
      RTSQ=RTSQ+DIFF*DIFF
      WRITE(6,902) DIFF
  902 FORMAT(1H0, RUN TIME FOR TIMEXA = ', I6, MILLISECONDS!)
      GO TO 200
  405 WRITE(6,905) TIME
                 1X, TIME 115,2X, SHOULD BE BETWEEN 1 AND 1440 --- TRY A
  905 FORMAT(
     1GAIN')
      GO TO 200
```

406 CALL CPUSUP(FTIMF)
WPITE(6,906)
906 FORMAT(1X, NO TRIP EXISTS FROM ORIGIN TO DESTINATION APRIVING
1WITHIN 160 MINUTES PRIOP TO THE REQUESTED TIME TRY AMOTHER ARR
2IVAL TIME)
GO TO 305
500 ROUT=FLOAT(RTIME)/FLOAT(NRUM)
WRITE(6,907) ROUT
907 FORMAT(///1H0, 'AVERAGE RUN TIME = ', F12.2, ' MILLISECONDS')
ROUT=FLOAT(NRUN)*ROUT*ROUT
NRUN=NRUN-1
ROUT=(FLOAT(RTSQ)-ROUT)/FLOAT(NRUM)
ROUT=SQRT (ROUT)
WRITE(6,908) ROUT
908 FORMAT(///1H0, STANDARD DEVIATION OF RUN TIMES = 1, F12.2,
1' MILLISECONDS')
STOP
END

B.9 PROGRAM REMOVE

	THIS PROGRAM REMOVES UNNECESSARY NODES FROM A TRANSIT METWORK, LEAVING ONLY THOSE NODES AT WHICH TRANSFERPING IS POSSIBLE AND LIKELY.
	PARAMETER MNODE = 500 Q MAX NUMBER OF NODES
	PARAMETER MRTE = 1000 Q MAX NUMBER OF ROUTES
	PARAMETER VESTOP = 10 D MAX NUMBER OF ROUTES STOPPING AT A
~	
С	NOPE
	PARAMETER MSRTE = 50 R MAX NUMBER OF STOPFS PER ROUTE
	PARAMETER MSEG = 10000 D MAX NUMBER OF ROUTE SEGMENTS PLUS
Ĉ	ONE EXTRA FOR EACH ROUTE
	IMPLICIT INTEGER (A-Z)
	LÖGICAL NIN
	DIMENSION SRTE(MSEG), REND(MRTE), NIN(MNODE), ORDER(MNODE),
	1 RSTOP (MNODE, MRSTOP), NRTE (MNODE), TEMP (MSRTF),
_	2 SOPTN(MNODE), TIME(MSRTE), INDEX(MSRTE)
С	
С-	
Ĉ	
С	ARRAYS USED IN THIS PROGRAM
C	
c	SRTE - STOPS ON EACH ROUTE. REND IS USED TO INDICATE WHICH
	SECTION OF THE ARRAY SRTE REFERS TO A PARTICULAR ROUTE
С	
С	REND - POSITION IN SPIE OF THE LAST STOP IN FACH ROUTE
С	NIN - IS TRUE IF NODE HAS NOT BEEN REMOVED (I.E. NODE IS IN)
С	IS FALSE IF NODE HAS BEEN REMOVED (I.F. NODE IS OUT)
C	ORDER - USED IN SORTING, GIVES THE ORIGINAL POSITION OF THE
С	ITH ENTRY IN SORTED ORDER
C	RSTOP - FOR EACH NODE, LISTS THE ROUTES STOPPING AT THAT NODE
Č	NRTE - NUMBER OF ROUTES STOPPING AT FACH NODE
c	TEMP - TEMPORARY STORAGE FOR INPUT AND OUTPUT OF NODES ON A
C	ROUTE. ALSO USED AS AN INTERMEDIATE ARRAY STORING THE
С	POSITION IN EACH ROUTE STOPPING AT A NODE, OF THAT
С	HODE
Ċ	SORTH - USED IN SORTING THE NODES ON NUMBER OF ROUTES STOPPING
С	AT EACH. STORES THE SORTED NUMBER OF POUTES
С	
C-	
C	
c	INITIALIZE ARRAYS
Č	
C	
	DO 1 I=1,MMIONE
	NRTE(I)=0
	NIN(I)=.TRUE.
1	CONTINUE

```
С
C.
Ċ
C READ ROUTES
С
      K=0
   K KEEPS TRACK OF THE CURRENT ROUTE READ IN
С
      N=0
   N IS THE MAXIMUM NODE NUMBER ENCOUNTERED SO FAR
С
      NR=0
   NR IS THE NUMBER OF TOTAL STOPS IN ROUTES
С
      NEND=0
C NEND IS THE NUMBER OF MODES WHICH BEGIN OR END A ROUTE
      READ (7,900, END=4) K, NS, NT, (TEMP(1), I=1, NS)
2
      FORMAT (2015)
900
      DO 201 J=1,NT
      READ (7,900) (TIME(I), I=1, NS)
      CONTINUE
201
С
 THE ROUTE INPUT IS READ IN THE FOLLOWING FORMAT -
С
 FOR EACH ROUTE -
C
Ċ
       CARD 1. COLS. 1-5 CONTAIN THE NUMBER OF STOPS IN THIS ROUTE
       THE STOPS OI THE ROUTE ARE THEN LISTED IN ORDER, SCOLS. PER STOP.
C
       ADDITIONAL CARDS ARE USED IF NEEDED, WITH THE DATA STARTING IN
С
       COL. 6, AGAIN 5 COLS. PER STOP.
C
C STORE THIS ROUTE IN THE ARRAY SRTE, CHECK MAXIMUM NODE NUMBER, ADD
C THIS ROUTE TO THE ROUTES STOPPING AT FACH STOP IN THE ROUTE.
      DO 3 L=1,NS
      I=TFMP(L)
      IF (I.GT.N) N=T
      MR=NR+1
      SRTE(NR)=I
      NRTE(I)=NRTE(\tau)+1
      NN=NRTE(I)
      RSTOP(I, NN)=K
3
      CONTINUE
      REND(K)=NR
      GO TO 2
С
C
С
C SORT NODES ON THE NUMBER OF ROUTES STOPPING AT EACH
C
       NRTEK
11
      REWIND 7
      CALL SORTP(NRTF, N, SORTN, ORDER)
C NRT IS THE NUMBER OF ROUTES
```

C C. C C REMOVE ALL ONE-ROUTE NODES WHICH DO NOT REGIN OR END A ROUTE С ENTRY=1 C WE PROCESS THE NODES IN THE ORDER THEY APPEAR IN THE APRAY ORDER. C ENTRY IS THE CURRENT POSITION IN OPLEP. 5 K=OPDER(ENTRY) C K IS THE CURRENT NODE WHICH IS BEING TESTED FOR REMOVAL MENRTE(K) IF (M-1) 10,5,11 R=PSTOP(K,1)6 C FIND THE STOPS ON ROUTE R IN THE ARRAY SPTE BEG=REND(R-1)+1IF (P.EC.1) RFG=1 C IF K IS THE FIRST STOP ON ROUTE R, K CANNOT OF REMOVED IF (K.EQ.SRTE(BEG)) GO TO 9 BEG=BEG+1 END=REND(R) C IF K IS THE LAST STOP ON ROUTE R. K CANNOT BE REMOVED IF (K.EQ.SRTE(END)) GO TO 9 END=FND-1 IF (END.GE.BEG) GO TO 7 C ALL ROUTES MUST HAVE AT LEAST 2 STOPS WRITE (6,991) K,R,BEG,END FORMAT ('0*** FRROR *** WHILE REMOVING NODE', 15, ' FROM POUTE', 991 115, ROUTE LIST RANGE (', 15, ', ', 15, ') IS TOO SHORT'/) GO TO 10 C REMOVE NODE K FROM ROUTE R DO 8 I=BEG,END 7 IF (SRTE(I).MF.K) GO TO 8 SRTF(I)=0NIN(K)=.FALSE. GO TO 10 CONTINUE 8 C NODE K MUST APPEAR IN ROUTE R WRITE (6,992) K,R,REG,END 992 FORMAT ('0*** ERROR *** NODE', 15, ' NOT FOUND IN POUTE', 15, 1' ROUTE LIST RANGE(', 15, ', ', 15, ') //) GO TO 10 NEND=NEND+1 9 C INCREMENT THE CURRENT ENTRY IN THE LIST SORTED BY NUMPER OF POUTES C STOPPING AT EACH MODE 10 ENTRY=ENTRY+1 IF (ENTRY.LE. 1) GO TO 5

С C C EXAMINE OTHER NODES FOR POSSIBLE REMOVAL С С C L IS THE POSITION OF THE ROUTE CURRENTLY BEING EXAMINED IN THE LIST OF C ROUTES STOPPING AT NODE K C R IS THE CURRENT ROUTE L=111 R=RSTOP(K,L) 12 C FIND THE POSITIONS OF ROUTE & IN THE LIST SRTF, AND FIND THE POSITION C WITHIN THAT ROUTE OCCUPIED BY K BEG=REND(R-1)+1IF (R.EQ.1) 3EG=1 PREV=SRTE(BEG) C CHECK THAT K IS NEITHER THE FIRST NOR LAST NODE ON ROUTE R IF (PREV.EQ.K) GO TO 24 BEG=BEG+1 END=REND(R) IF (SPTE(FND).EQ.K) GO TO 24 END=END=1 IF (END.GE.BES) 60 TO 13 C EACH ROUTE HAS AT LEAST 2 NODES WRITE (6,991) K.R.REG, END C SEARCH FOR K AS AN INTERMEDIATE STOP ON ROUTE R GO TO 25 13 DO 17 J=BEG, FND I=SRTE(J) IF (I.EQ.0) GO TO 17 IF (I.NE.K) 60 TO 16 NEXT=SRTE(J+1) IF (NEXT.GT.0) GO TO 15 JJ=J+5 NEXT=SRTE(JJ) 14 IF (NFXT.GT.P) GO TO 15 JJ=JJ+1GO TO 14 15 TEMP(L)=J GO TO 18 16 PREVET 17 CONTINUE C NODE K MUST BE FOUND ON ROUTE R WRITE (6,992) K.R. GO TO 25 18 IF (L.GT.1) GO TO 20 C STORE MINIMUM OF PREV AND NEXT IN P, MAXIMUM IN Q IF (PREV.GT. 'JEXT) GO TO 19 P=PREV Q=NEXT GO TO 22

19 PENEXT Q=PREV GO TO 22 C TEST IF PREV AND NEXT ARE THE SAME AS P AND Q. THAT IS WHETHER THE C PREVIOUS AND NEXT NODES ON ROUTE R ARE THE NODES ADJACENT TO K ON C OTHER ROUTES 4748-1 V 20 IF (PREV.GT. NEXT) GO TO 21 IF (PREV.NE.P) GO TO 25 IF (NEXT.NE.Q) GO TO 25 GO TO 22 IF (NEXT.NF.P) GO TO 25 21 IF (PREV.NE.0) GO TO 25 C CHECK NEXT ROUTE STOPPING AT K L = 1 + 122 IF (L.LE.M) GO TO 12 C REMOVE NODE K, ZERO SRTE, AND SET NIN=FALSE DO 23 L=1,M J=TEMP(L) SRTE(J)=0NIN(K)=.FALSF. 23 CONTINUE GO TO 25 24 NEND=NEND+1 C CHECK NEXT NODE FOR POSSIBLE REMOVAL 25 ENTRY=ENTRY+1 IF (ENTRY.GT.") GO TO 26 K=OPDER(ÉPTRY) M=NPTF(K) GO TO 11 С (---Ċ C PRINT OUT NODES WHICH HAVE BEEN DELETED С 26 WRITE (6,901) 901 FORMAT ('1THE FOLLOWING NODES WERE DELETED'/) J=0 NDEL=0 DO 27 I=1.1 IF (MIM(I)) SO TO 27 J=J+1NDEL=NDEL+1 TEMP(J)=I IF (J.LT.25) GO TO 27

902 27	WRITE (6,992) (TEMP(J),J=1,25) FORMAT (5X,2515) J=0 CONTINUE IF (J.LT.0) GO TO 28 WRITE (6,902) (TEMP(I),I=1,J) WRITE (6,903) NOEL,NEND
903 C	FORMAT ('0', 14, '' NODES DELETED'/IF, ' NODES BEGIN OR END & ROUTE!)
(
c	
C PRI	NT OUT REVISED ROUTES WITH DELETED NODES OMITTED
28	WRITE (6,904)
904	FORMAT ('IREVISED ROUTES'//' RTE', 10X, 'STOPS'/)
	END=0
	00 30 I=1.NRT
	READ (7,900) II, NS, NT
	BEG=END+1
	END=REND(I)
	DO 29 J=BEG,EID
	IF (SRTE(J).EQ.0) GO TO 29
	K=K+1
	INDEX(K)=J
	TEMP(K)=SRTE(J)
29	CONTINUE
005	WRITE (6,905) I, (TEMP(J), J=1,K)
905	FORMAT (15+2X+2515/(7X+2515)) WRITE (13+900) II+K+NT+(TEMP(J)+J=1+K)
	DO 292 IT=1, IT
	READ (7,900) (TIME(J), J=1, NS)
	D0 291 IJ=1,K
	J=INDEX(IJ)
	TIME(IJ)=TIME(J)
291	CONTINUE
land of the	WRITE (13,900) (TIME(J), J=1,K)
292	CONTINUE
30	CONTINUE
	END FILE 13
	STOP
	END

NBS-1	14A	(REV.	7-73
-------	-----	-------	------

U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. NBSIR 78-1426	2. Gov't Accession No.	3. Recipient	's Accession No.
4. TITLE AND SUBTITLE	NB31K 70-1420		5. Publicatio	Dave
	Performance of Three Algorit		March	
an Automated 'Iransı	t Information System (ATIS)		6. Performin	g Organization ⁻ Code
7. AUTHOR(S)			8. Performing	g Organ. Report No.
	leyendecker, D. R. Shier			5 organit nepolit not
9. PERFORMING ORGANIZAT	ION NAME AND ADDRESS		,	Fask/Work Unit No.
NATIONAL E	BUREAU OF STANDARDS		205040	
	T OF COMMERCE		11. Contract/	Grant No.
WASHINGTO	N, D.C. 20234			
12. Sponsoring Organization National Bureau of	me and Complete Address (Street, City, S	tate, ZIP)	13. Type of F Covered	Report & Period
A-428, 101 A	Standards			
Washington, DC 202	234		14. Sponsorin	g Agency Code
15. SUPPLEMENTARY NOTES				
LE COLL DEMENTANT NOTES				
16. ABSTRACT (A 200-word or bibliography or literature su	less factual summary of most significant	information. If docume	nt includes a s	ignificant
	the performance of three a	laonithra for		
	in an automated transit in			
	s hased on a time-expanded			
	bipartite route/stop networ			
	correcting approach and the			
	The transit networks upon w			
	pes: a grid network with s			
	treets, and a spider web ty			
	etworks, but it requires mo			
	nsfers. LABCOR is the slow			
	ince it always outputs an o			
	timates extrapolated to lar			
	seconds per itinerary for		ET respect:	ively,
well within the acc	eptable range for such netw	orks.		
17. KEY WORDS (six to twelve on name; separated by semicological separated separat	entries; alphabetical order; capitalize on ons)	ly the first letter of the	tirst key word	unless a proper
	hm testing; mass transit; r	outing: chartes	t naths: ti	
transit information			-	
	systems; transit routing;		-	
18. AVAILABILITY	Systems; transit routing;		urban tran	
18. AVAILABILITY	Unlimited	transportation;	urban tran TY CLASS EPORT)	nsportation.
For Official Distribution	Unlimited n. Do Not Release to NTIS ., U.S. Government Printing Office	transportation;	urban trai TY CLASS EPORT) SIFIED TY CLASS	nsportation.
For Official Distribution Order From Sup. of Doc. Washington, D.C. 20402	Unlimited Do Not Release to NTIS U.S. Government Printing Office SD Cat. No. C13 chnical Information Service (NTIS)	transportation; 19. SECURIT (THIS R) UNCLAS 20. SECURI	urban tran TY CLASS EPORT) SIFIED TY CLASS AGE)	163

