Comparison of the Performance of Three Algorithms for Use in an Automated Transit Information System (ATIS)

Judith F. Gilsinn

Elizabeth L. Leyendecker
Douglas R. Shier

Institute for Basic Standards
Applied Mathematics Division National Bureau of Standards Washington, D.C. 20234

March 1978
Final Report

Technical Report To:
Office of Socio-Economic and Special Projects
Urban Mass Transportation Administration
Department of Transportation
Washington, D.C. 20590

COMPARISON OF THE PERFORMANCE OF THREE ALGORITHMS FOR USE IN AN AUTOMATED TRANSIT INFORMATION SYSTEM (ATIS)

Judith F. Gilsinn
Elizabeth L. Leyendecker
Douglas R. Shier

Institute for Basic Standards
Applied Mathematics Division
National Bureau of Standards
Washington, D.C. 20234

March 1978
Final Report

Technical Report To:
Office of Socio-Economic and Special Projects
Urban Mass Transportation Administration
Department of Transportation
Washington, D.C. 20590
U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

Dr. Sidney Harman, Under Secretary
Jordan J. Baruch, Assistant Secretary for Science and Technology
NATIONAL. BUREAU OF STANDARDS. Ernest Ambler, Director

ABSTRACT

This paper compares the performance of three algorithms for computing trip itineraries for use in an automated transit information system. One of the approaches (TIMEXD) is based on a time-expanded network. The other two both compute paths in a bipartite route/stop network; one algorithm (LABCOR) is based on the label-correcting approach and the other (LABSET) on the label-setting approach. The transit networks upon which the performance comparison is based are of two types: a grid network with specified, possibly non-uniform, distances between streets, and a spider web type of network. TIMEXD is fastest on all the larger networks, but it requires most computer storage and outputs paths with more transfers. LABCOR is the slowest, but is guaranteed to produce the best routing, since it always outputs an optimal path with fewest transfers. Computation time estimates extrapolated to large transit networks indicate times of 1.5 to 2.5 seconds per itinerary for TIMEXD and LABSET respectively, well within the acceptable range for such networks.

Key Words: Algorithms; algorithm testing; mass transit; routing; shortest paths; transit; transit information systems; transit routing; transportation; urban transportation.

TABLE OF CONTENTS

Page

1. Introduction 1
2. Algorithm Descriptions 3
2.1 Bipartite Route/Stop Algorithms 3
2.1.1 Label-Correcting Bipartite Route/Stop Algorithm (LABCOR) 6
2.1.2 Label-Setting Bipartite Route/Stop Algorithm (LABSET) 7
2.2 Time-Expanded Network Algorithms 8
2.2.1 Departure-Oriented Algorithm (TIMEXD) 11
2.2.2 Arrival-Oriented Algorithm (TIMEXA) 12
3. Test-problem Generation 13
4. Analysis of Algorithm Performance 17
4.1 Analysis of the Path Output 18
4.2 Computer Storage Required by the Algorithms 28
4.3 Comparison of Computation Times 30
4.4 Additional Analyses 44
5. Conclusion and Recommendations 50
6. References 52
Appendix A. Documentation of Programs for Test-Problem Generation and Itinerary-Finding 53
A. 1 Program RAD 56
A.l.l Variables and Arrays Used in RAD 56
A.l. 2 Program Input 59
A.l. 3 Program Output 61
A.1. 4 Subroutine LOCAL 61
A.1. 5 Subroutine EXPRES 61
A.l. 6 Variables and Arrays Used in LOCAL and EXPRES 61
A.1.7 Subroutine RSCHED 63
A.l. 8 Variables and Arrays Used in RSCHED 63
A. 2 Program XGRID 64
A.2.1 Variables and Arrays Used in XGRID, GRID, and XPRESS 65
A.2.2 Program Input 66
A.2.3 Program Output 67
A.2.4 Subroutine GRID 67
A.2.5 Variables and Arrays Used in GRID 67
A.2.6 Subroutine XPRESS 68
A.2.7 Variables and Arrays Used in XPRESS 68
A.2.8 Subroutine XTRANS 70
A.2.9 Variables and Arrays Used in XTRANS 70
A.2.10 Subroutine XSCHED 71
A.2.11 Variables and Arrays Used in XSCHED 71
A.2.12 Subroutine TRANS 72
A.2.13 Variables and Arrays Used in TRANS 72

TABLE OF CONTENTS (Continued)

A. 3 Program TRA 72
A.3.1 Variables and Arrays Used in TRA 72
A.3.2 Program Input 73
A.3.3 Program Output 73
A. 4 Program ACYCLE 73
A.4.1 Variables and Arrays Used in ACYCLE 74
A.4.2 Program Input 75
A.4.3 Program Output 75
A. 5 Program LABCOR 75
A.5.1 Variables and Arrays Used in LABCOR 75
A.5.2 Program Input 77
A.5.3 Program Output 77
A. 6 Program LABSET 77
A.6.1 Variables and Arrays Used in LABSET 77
A.6.2 Program Input 79
A.6.3 Program Output 79
A. 7 Program TIMEXD 79
A.7.1 Variables and Arrays Used in TIMEXD 80
A.7.2 Program Input 81
A.7.3 Program Output 81
A. 8 Program TIMEXA. 81
A.8.1 Variables and Arrays Used in TIMEXA 82
A.8.2 Program Input 83
A.8.3 Program Output 83
A. 9 Program REMOVE 84
A.9.l Variables and Arrays Used in REMOVE 84
A.9.2 Program Input 85
A.9.3 Program Output 85
A. 10 File Formats 85
A.l0.l Format for File SDATA (Unit 7) 85
A.lo.2 Format for File TDATA (Unit 8) 86
A.l0.3 Format for File NDATA (Unit 9) 86
A.10.4 Format for File ADATA (Unit l0) 86
A.10.5 Format for File TRIPS (Unit ll) 86
A.10.6 Format for File TMIN (Unit 12) 86
Appendix B. Listings of Programs for Test-Problem Generation and Itinerary-Finding 87
B. 1 Program RAD 88
B.l.l Subroutine LOCAL 91
B.l.2 Subroutine EXPRES 95
B.l. 3 Subroutine RSCHED 99
B. 2 Program XGRID 100
B.2.1 Subroutine GRID 102
B.2.2 Subroutine XPRESS 105
B.2.3 Subroutine XTRANS 112
B.2.4 Subroutine XSCHED 114
B.2.5 Subroutine TRANS 117
B. 3 Program TRA 119
B. 4 Program ACYCLE 121
B.4.1 Subroutine SORTP 125
B.j Program LABCOR 129
B. 6 Program LABSET. 134
B. 7 Program TIMEXD. 140
B. 8 Program TIMEXA 145
B. 9 Program REMOVE 150
LIST OF FIGURES
Раge

1. Illustrative Bipartite Route/Stop Network 4
2. Illustrative Route Schedule 5
3. Illustrative Time-Expanded Network 9
4. Example of a Grid Network. 14
5. Example of a Radial Network 15
6. Example of Overtake. 25
' Overtake Occurrences in the Test Runs 26
A. 1 Flowchart of the Transit Program System 54

LIST OF TABLES

Page

1. Number of Transfers in Each Path. 19-24
2. Comparison of Paths for TIMEXD Using First Path Encountered to a Node Versus Last Path to that Node 27
3. Algorithm Timings for Each Path 31-36
4. Comparison of Timings of the Three Algorithms 38
5. Correlation of Timings and Network Size Parameters. 39
6. Linear Regression Coefficients for the Fit of Timing as a Function of the Number of Nodes. 41
7. Algorithm Timings (Milliseconds) for LABCOR and LABSET on 40 x 40 Grid Network. 43
8. Descriptions of the Networks for the Tests 45-46
9. Influence of Transfer Time 47
10. Influence of Ratio of Express to Local Speed. 49

Most larger transit systems operate a telephone transit information center to provide prospective riders with itineraries for potential trips. Usually transit system staff provide these itineraries by using maps, schedules and routing information to piece together manually a trip to meet the caller's request. The largest systems may have as many as 80 people involved in answering telephoned requests for transit information. Consideration is currently being given to automating the route-finding portion of the transit information activity. Transit system staff would still be required to interpret the caller's request and relay the computer-produced itinerary to the patron. It is expected that automation of the route-finding portion of a call would significantly reduce the longer calls and could result in an overall average reduction of about 20 percent in call length. Other benefits resulting from automation include repeatability of response and lessened requirements for training of telephone-answering staff in city geography and transit system routes. Analysis of the costs and benefits of an automated transit information system is given in [3].

At the heart of an automated system is a procedure (mathematical algorithm) for finding trip itineraries in a transit network. Such an algorithm would have available to it computerized descriptions of transit stops, routes and schedules, as well as trip origin and destination and either a desired departure or a desired arrival time. Using these data the algorithm would produce an optimal trip itinerary, "optimal" in the sense of describing either a trip which arrived soonest, having departed at or after the desired departure time, or a trip which departed latest to arrive at or before the desired arrival time. In addition to the route-finding algorithm, the computer would also have a procedure for identifying geographically the caller's trip origin and destination and appropriate transit stops accessible to these points. The itinerary produced by the route-finding algorithm would specify boarding time and stop, transfer stops and the arrival and boarding times at such stops whenever transferring is required, arrival stop and time, and routes for each segment. An example of such an itinerary follows:

Board Route RED at 5TH AND ELM at 9:00 A.M., Arrive at 5TH AND OAK at 9:15 A.M.

Board Route BLUE at 5TH AND OAK at 9:17 A.M., Arrive at 10TH AND OAK at 9:25 A.M.

Further discussion of the data structures, programs and procedures involved in an automated transit information system is presented in [l]. Also included in an appendix to that report are the descriptions of three specific route-finding algorithms which are the subject of the analysis presented below. The main objective of [l] was to assess the feasibility of designing algorithms which could compute itineraries fast enough to improve the information system's response to the caller. With feasibility established, the current analysis turns to the choice of
algorithm as it relates to the characteristics of a transit system, such as the size and complexity of network structure, the regularity of departures, transfer times, relative speeds of express and local service, and various patterns of preferential service.

Section 2 below contains descriptions, excerpted from [I], of the three algorithms which are compared in the present analysis. Section 3 contains descriptions of the two network-generation programs used to produce transit-like networks on which the algorithms were tested. The results are discussed in Section 4, and recommendations for choice are provided in Section 5. Program documentation and listings appear in appendices.

The results of the analyses described in Section 4 may be summarized as follows. The label-correcting bipartite route/stop algorithm (LABCOR) provides the most desirable trip output of the three algorithms, since it always produces, from among those trips arriving at the same time (under the departure-oriented criterion), that trip requiring fewest transfers. However, LABCOR is significantly slower than the other two algorithms. The time-expanded network algorithm (TIMEXD) is fastest on the test networks, and its speed increases with network size at the lowest rate of the three algorithms. However, TIMEXD requires significantly more storage than the other two algorithms, mainly because of the need to store explicitly each possible transfer. The third algorjthm, the label-setting bipartite route/stop approach (IABSET), is slower than TIMEXD but faster than LABCOR. Path output from LABSET has more transfers than that from LABCOR, but not as many as from TIMEXD. Although TABSET requires somewhat more storage than LABCOR, both require sigrificantly less than TTMEXD. Computation times for all three algorithms depend mainly on the number of stops in the transit network. Other factors which have some effect include the number of transfers required, the average transfer time and its variability, and the relative speeds of express and local service.

2. ALGORITHM DESCRIPTIONS

Descriptions of the three algorithms were given in an appendix to [1] but are repeated here to make this report more self-contained. The algorithms rely for their efficiency on specialized representations of the transit data base of stops, routes and schedules. The three algorithms which are analyzed in Section 4 all use the "departure-oriented" optimality criterion for finding a best path, and thus produce a trip which arrives soonest while departing at or after the desired departure time. We include below (and in the appendix) the description of one of the algorithms, the time-expanded algorithm, programmed for the arrivaloriented case. We expect no difference in the performance between departure- and arrival-oriented algorithms and have therefore focussed in the analysis on the departure-oriented criterion.

2.1 Bipartite Route/Stop Algorithms

The nodes of the bipartite route/stop network are of two types, one representing the geographical transit stops and the second representing individual transit routes. Network arcs are also of two types: for each transit stop an arc connects it to those lines stopping there, and for each route an arc connects it to the stops along that route. (The arcs associated with a route appear in the order of the stops along the route.) Thus the network described here is bipartite in the usual graph-theoretic sense that the nodes of the network may be partitioned into two sets in such a manner that arcs connect a node in one set with a node in the other set but do not connect nodes in the same set. Figure l displays an example of such a network. Note that a dummy route was introduced for a walk transfer link connecting two other routes. A path in this network is an alternating list of stops and routes, beginning with the origin stop and ending with the destination stop. The route node appearing between each pair of stops specifies the route which should be taken between them. The number of transfers is thus one less than the number of routes appearing in the list, or alternatively, since each stop other than the origin and destination represents a transfer, two less than the number of stops in the path.

The network as described above does not have associated with it the time data specifying each discrete departure. The arcs connecting the routes to the stops actually represent a whole list of scheduled vehicle trips along the route, to be fetched during the course of the algorithm as needed. An example of such a list for one route is given in Figure 2. Each column gives times at a stop and each row represents one transit vehicle's trip along the route. Thus if the arcs emanating from a route node are listed in the order of the stops along the route, a row of Figure 2 represents arrival times at the arc endpoints in order. We will describe two computational schemes based on this network, one using the basic label-correcting procedure and a sequence list ordered by cardinality distance (in this case the number of vehicles used) and the second using the label-setting procedure and a list ordered by temporary label (in this case trip arrival time). A more detailed description of

FIGURE 1

Illustrative Bipartite Route/Stop Network

ORIGINAL NETWORK

Route	$\left.\begin{array}{ll}\text { Stops } \\ \text { I } & 1,2,3 \\ \text { II } & 1,3 \\ \text { III } & 1,2,4 \\ \text { IV } & 5,2,6,7 \\ \text { V } & 8,9 \\ \text { T } & 6,8\end{array}\right)$.

BIFARTE ROUTE/STOP NETWORK

15 Nodes
32 Arcs (Each Connection is Two-way)

FIGURE 2

Illustrative Route Schedule

Stop 1	Stop 2	Stop 3	
	$7: 10$	$7: 15$	$7: 30$
$7: 30$	$7: 45$	$7: 55$	$8: 10$
$8: 00$	$8: 15$	$8: 25$	$8: 40$
$8: 30$	$8: 40$	$8: 45$	$8: 55$
$10: 00$	$10: 05$	$10: 09$	$10: 15$
$12: 00$	$12: 07$	$12: 15$	$12: 25$
$2: 00$	$4: 05$	$2: 09$	$2: 15$
$4: 00$	$4: 40$	$4: 15$	$5: 25$
$4: 30$	$5: 15$	$5: 25$	$5: 05$
$5: 00$	$6: 10$	$5: 52$	$6: 05$
$5: 30$	$6: 40$	$6: 15$	$6: 25$
$6: 00$	$8: 05$	$8: 45$	$6: 55$
$6: 30$	$10: 05$	$10: 08$	$8: 15$
$8: 00$			$10: 13$

the basic label-correcting and label-setting procedures can be found in [2]. The following notation will be used in describing the schemes.

R	the set of all transit routes
r	a particular route
S	the set of all transit stops
s	a particular transit stop
ORG	the origin transit stop
DST	the destination transit stop
N	RUS, the nodes of the whole bipartite network
T (i)	arrival time at stop i via best path from ORG, for icS
$P(i)$	node preceding i in best path from ORG. (Note that if $i \not f$ then $P(i!\varepsilon S$, while if i $i \varepsilon S$ then $P(i) \varepsilon R$.)
$L(k)$	sequence list of nodes in S, developed by the scheme, indicating the order in which they are to be fanned out from. In the label-correcting method L is maintained in cardinality distance order; in the label-setting method, it is ordered by arrival time.
$F(i)$	position of node i in sequence list L
u	current position in the sequence list
v	last position filled in the sequence list
END	last entry in sequence list L

2.1.1 LABEL-CORRECTING BIPARTITE ROUTE/STOP ALGORITHM (LABCOR)

A computational scheme LABCOR for a label-correcting procedure for use with the bipartite route/stop network is given below.

Initialization: Set $T(i)=\infty$ for all $i \neq O R=$ and set $T(O R G)=$ desired departure time. Set $P(i)=0$ and $F(i)=\infty$ for all $i \varepsilon N$. Set $u=0$ and $v=0$.

Step 1: Let $i=0 R G$. Let r be the first listed route stopping at i.
Step 2: Search the schedule for route r for the first departure from i at or after $T(i)$. Let s be the first stop occurring after i in route r.

Step 3: Compare the arrival time at s of the scheduled vehicle found in Step 2 with the current value of $T(s)$. If it is not less, go to Step 6; if it is less, set $P(s)=r$ and $P(r)=i$.

Step 4: If $T(s)=\infty$, go to Step 5. Otherwise let $k=F(s)$. If $\mathrm{k}>0$, remove s from its previous position by setting $L(k)=0$.

Step 5: Set $T(s)=$ the time of arrival of route r at node s. Let $v=v+1$. If $v>E N D$, set $v=1$. Set $L(v)=s$ and $F(s)=v$.

Step 6: Let s be the next stop on route r, and go to Step 3. If there are no more stops on r, let r be the next route stopping at i and go to Step 2. If there are no more routes stopping at i, set $F(i)=0$.

Step 7: If $u=v$, stop. Otherwise let $u=u+1$. If $u>E N D$, let $u=1$. Let $i=L(u)$. If $i=0$, repeat Step 7. Otherwise let r be the first route stopping at i and go to Step 2.

These computations do actually maintain the sequence list L in cardinality distance order. Note that successive path segments are always by different routes, so that cardinality distance is associated with the number of different routes used in a path. ("Actual" cardinality length of a path in this network is twice the number of routes used since paths consist of an alternating stop-route sequence. However since L contains only stops, it can be used in obtaining directly the number of routes used.) If it is desired to consider only paths using no more than some maximum number of routes, say $r_{\text {max }}$, then the computational scheme given above can be modified easily max accommodate this additional constraint, utilizing two additional pointers:
$m \quad$ the cardinality distance (actually the number of routes) used in the current path from ORG to node i.
j the position in L of the last node of cardinality distance m.
Both m and j are initialized at 0 . The computational scheme is modified by the addition of a Step 6.5 between Steps 6 and 7 above.

Step 6.5: If $u=j$, let $m=m+1$. If $m=r_{\text {max }}$, stop. Otherwise, set $j=v$.
2.1.2 LABEL-SETTING BIPARTITE ROUTE/STOP ALGORITHM (LABSET)

A label-setting scheme LABSET for use with the bipartite route/stop network is similar to that given above, but the sequence list L is kept ordered by arrival time at each node. The length of L is determined by M, one plus the maximum arc length. See [2] for a more complete discussion of the label-setting procedure. Since for transit networks the transferring time must be included in M, it is perhaps easiest to set M at some reasonable trip length level (say 3 hours, or if desired 24 hours).

Initialization: Set $T(i)=\infty$ for all nodes $i \neq O R G$ and $T(O R G)=$ desired departure time. Set $P(i)=0$ for all ฉodes i. Let u be one plus the desired departure time (mod M).

Step 1: Let $i=O R G$. Let r be the first route stopping at i.
Step 2: Search the schedule of route r for the first departure from i at or after $T(i)$. Let s be the first stop occurring after i in route r.

Step 3: Compare the arrival time at s of the scheduled vehicle found in Step 2 with the current value of $T(s)$. If it is equal or greater, go to Step 5; if it is less, replace the old T with the new value and set $P(s)=r$ and $P(r)=i$.

Step 4: Let $k=T(s)(\bmod M)$. Store s in position $k+1$ of L.
Step 5: Let s be the next stop on route r and go to Step 3. If there are no more stops on r, let r be the next route stopping at i, and go to Step 2. If there are no more routes stopping at i, continue to Step 6.

Step 6: Let $u=u+1$. If $u>M$, let $u=1$. If $L(u)=D S T$, stop. Other wise, let $i=L(u)$. If $i=0$, repeat Step 6. Otherwise let r be the first route stopping at i and go to Step 2.

Note that termination occurs when DST is the node to be fanned out from. I'hus if DST is fairly close to ORG the label-setting procedure requires much less calculation than the label-correcting procedure, which terminates only after best paths to all nodes have been found.

2.2 Time-Expanded Network Algorithms

Nodes in the time-expanded network are defined by a pair of entities, the geographical transit stop (a separate node for each route) and a time of day. Thus the geographical node Sixteenth and K Street will become several nodes, one for each time a transit vehicle stops there. The network arcs become transit trips departing one stop at a particular time and arriving at another stop at a different (later) time. Transfer arcs, representing allowable transfers (i.e., those obeying minimum transfer times), must be coded directly. An example of such a network is depicted in Figure 3. In this example there are four transit stops and three bus lines: a local stopping at each stop (its two daily runs are represented by the paths $1 \rightarrow 3 \rightarrow 6 \rightarrow 8$ and $12 \rightarrow 16 \rightarrow 17 \rightarrow 20$), a faster vehicle starting at the second stop of the first route and proceeding directly to the last stop of that route (with four runs: $5 \rightarrow 7,9 \rightarrow 10,14 \rightarrow 15$, and $18 \rightarrow 19$), and one coming from the last stop of the first route

[^0]GEOGRAPHICAL
back to the next-to-last stop of that ruste (its runs are represented by $2+4,11+13$, and $21+22$). Tvo tranafer arcs, $3+9$ and $14 \rightarrow 18$, have been included. Note that in the left transfer, une is prevented by a minmum transfer time restriction from making the earllest veblcle on the secund IIne.

The fuur atup network has been lransfurmed latu unt with di nudes ailu 15 arcs. In general, time-expanding the network greatly increases ihe number of nodes, in fact by a factor equal to the average number of transit vehicie departures per geographical aode. Generally it is deairable to decrease rather than increase network gize, but the fact that the resulting time-expanded network is acycilc means that the fncrease is likely to be beneficial. On an acyclic network the network nodes can be numbered at the outset 10 such a way that for each arc (1. $j)$, $1<j$. That is, in the numbering, arcs always lead frow luver numbered nodes to those with higher numbers. Of course a similar property also holds true of paths. This limits the searcb for path extensions to nodes whose numbers are greater than nodes already in the path, so that nodes $:$:an be interrogated in the order of their numberins. The nude urder assumed below is the one determined entirely by the time cumponent of node identity, except for "tles" whilh cause of trouble unless some arc requires no time tu traverse. If only majur stops are included this sltuation is unlikely to occur, but if it were, procedures exist to number nodes havias identical time cumponente.

The node numberlag procedure al lows the network to be broken up bulu pieces (which will be called pages) so that the cumputational scheme only needs one of them at a time and can finish with the current one before needing the next.

The computalional schemes proposed for cumputing transil paths $1 / 1$ such a network appear below and rely on the basic label-correrting scheme. We will use the following notation:
$n(1) \quad$ the geographical transit nude associated wilh the netwurk node numbered 1
(i) the the associated with network node numbered i

ORG geographical node of transil origin
DST geographical node of transit destination
$P(1) \quad$ the network node preceding 1 in a best path from UKG to the network node numbered i

[^1]DONE the first node associated with DST encountered (i.e. the one for which t is minimum) in a path starting at a node associated with ORG
2.2.1 DEPARTURE-ORIENTED ALGORITHM (TIMEXD)

The computational scheme proceeds through the following steps:
Initialization: DONE $=\infty ; P(i)=0$ for each node i.
Step 1: Scan the arc list starting with the first node i for which $t(i)$ is not less than the desired departure time. Let i be the first node encountered with $n(i)=O R G$.

Step 2: Let $a=(i, j)$ be the first arc originating at node i. If there are none, go to Step 6.

Step 3: If $P(j) \neq 0$, go to Step 5. Otherwise set $P(j)=i$.
Step 4: If $n(j) \neq D S T$, go to Step 5. Otherwise set DONE=min (DONE, j).
Step 5: Let $a=(i, j)$ be the next arc originating at node i, if there is one, and go to Step 3. Otherwise continue.

Step 6: Let $i=i+1$. Stop if $i=D O N E$.
Step 7: If $P(i)=0$ and $n(i) \neq 0 R G$, go back to Step 6. Otherwise go to Step 2.

It is clear from this description that only the nodes numbered between the first departure from ORG after the desired departure time (which we shall call i^{\prime}) and the node DONE are examined as arc origin nodes. In most instances this should be considerably fewer than the total number of nodes in the network. To take advantage of this fact, one may store information about node i in position i-i'tl in the P array.

The algorithm described above requires only one pass through the nodes, and only a subset of the nodes at that. No sorting or sequencing of nodes is necessary, since nodes are examined in numerical order. Since arcs are stored sorted by origin, only that portion of the network originating at nodes i' through DONE need be referenced for this path calculation. An arc in this application only requires identification of its origin and destination nodes since the t and n pointers describe the relevant arc characteristics.

2.2.2 ARRIVAL-ORIENTED ALGORITHM (TIMEXA)

For the arrival-oriented criterion a modified version of the above scheme may be applied, using the same network and examining the nodes in reverse order starting from the last node associated with DST whose time is before the desired arrival time. This scheme will be described below. Use of two schemes has the advantage that only one copy of the network, the forward star form, need be stored to handle both the departure oriented and arrival oriented criteria. This is particularly necessary for the time-expanded network because of its large size. Different schemes are then applied to the network for the two criteria, the one above for the departure oriented criterion and the one below for the arrival oriented criterion. The following array and variable will be used in describing the scheme, together with the arrays n and t and variables ORG and DST listed above:

S(i) the network node succeeding i in a best path from the network node numbered i to DST

FIN the first node associated with ORG encountered (i.e., the one for which t is maximum) in a path ending at a node associated with DST.

The computational scheme proceeds through the following steps:
Initialization: $F I N=0 ; S(i)=0$ for all i.
Step 1: Scan the arc list backwards, starting with the last node i for which $t(i)$ is at most the desired arrival time. Let i be the first node encountered with $n(i)=D S T$. Set $S(i)=i$. Go to Step 6.

Step 2: Let $a=(i, j)$ be the first arc originating at i. If there are none, go to Step 6.

Step 3: If $S(j)=0$, go to Step 5. Otherwise set $S(i)=j$.
Step 4: If $n(i) \neq O R G$, go to Step 5. Otherwise set $F I N=\max (F I N, i)$.
Step 5: Let $a=(i, j)$ be the next arc originating at node i, if there is one, and go to Step 3. Otherwise continue.

Step 6: Let $i=i-1$. Stop if $i=F I N$.
Step 7: If $n(i) \neq D S T$, go to Step 2. Otherwise, set $S(i)=i$ and go back to Step 6.

In the runs described in Section 4, only the algorithms using the departure-oriented criterion, LABCOR, LABSET and TIMEXD, were tested. Runs of TIMEXA and TIMEXD suggested that the two algorithms performed similarly. In addition, the symmetry of the criteria and algorithms suggest that the two criteria should be equally efficient to process.

3. TEST-PROBLEM GENERATION

Two network generation programs have been written to produce the route and schedule information for the algorithm testing described in Section 4. One program generates a p by grid network in which routes run either horizontally or vertically and transferring is possible at any intersection. Every trip requires at least one transfer, as long as the origin and destination are not on the same horizontal or vertical route. Subsets of the horizontal and vertical streets may be designated as main streets. Express routes begin and end at the outside of the grid, run along main streets, and stop only at intersections of other main streets. An example of such a network is shown in Figure 4, with express routes indicated by the wider lines and stops on express routes as blackened disks.

A second program generates a spider web radial type of network in which routes run inward or outward along radials from a central node and also clockwise or counterclockwise along beltways or partial beltways connecting the radials. Other routes may run from the center out along a radial, diverging from the radial at some point along it. As with the grid network, radials and beltways may be designated as major arteries along which express routes run. The express routes only stop at intersections of other express routes. Any node in the network is accessible from any other node either by traveling to the center along one radial and out along another, or else by traveling around one of the beltways. At least one transfer is required if the origin and destination are not on the same radial or on the same beltway. Figure 5 displays an example of a radial network, with express routes shown as wider lines and stops on express routes as blackened disks.

Schedule information for both types of networks is given by providing the initial run's departure time, the number of runs and the headways for each time period and route. Several routes may be grouped together if they have the same headways and numbers of runs. Distances between grid elements are provided as input to the grid type networks. Distances of nodes out from the center along the radials are input to the radial network generator, as are the angles between radials. Distances along beltway sections are then calculated as circular arc approximations. Using the arc distances, run departure times, and speed factors for either local or express routes, stop times at later nodes along each route can be calculated.

Output from the network generation programs consists, for each route, of the stops along that route and, for each departure along the route, the time it reaches each of the stops.

The networks generated by these programs clearly represent idealizations of transit system structure, but examination of several transit system maps has indicated that many systems have an underlying grid or radial structure or a combination of the two. Any undue simplification

FIGURE 4
Example of a Grid Network

FIGURE 5
Example of a Radial Network
associated with the topological regularity implicit in the grid and radial structures is counteracted somewhat by the variability in the service availability. In fact, since almost all trips calculated for the analyses in Section 4 required at least one transfer, whereas most transit systems are designed so that many frequently-made trips require no transfer, the pure grid and radial network structures may actually be a more difficult test case than would be real networks of the same size. Post facto justification for using idealized networks in the tests is the finding, reported in Section 4, that the particular network structure is less important in determining algorithm performance than are various measures of the complexity and variability of network parameters.

4. ANALYSIS OF ALGORITHM PERFORMANCE

The network generation programs described in the previous section were used to produce transit networks with specified characteristics for use in testing the three algorithms, LABCOR, LABSET and TIMEXD. Twentysix different situations were generated, with a particular test network characterized by the network generator used (i.e., grid or radial), the minimum transfer times required, and the network input parameters such as size (number of nodes and runs), frequency of service, and speeds of express and local vehicles. For each test, twenty-five itineraries were calculated, with their origin-destination pairs and times of day chosen to represent "reasonable" trips. The O-D pairs were not formally chosen by any random process and probably overrepresent the longer and more complicated trips, just those which are more difficult and more timeconsuming to calculate. In some cases, no trip was found within the desired time period. In order to ascertain that no trip existed, the algorithms had to process some data; timings for such situations have therefore been included in the analysis.

The tests were run on the UNIVAC 1108 at the National Bureau of Standards (NBS) under the EXEC 8 operating system. The programs were all coded in FORTRAN V, UNIVAC's enhanced version of FORTRAN IV. Care was taken to insure that the programs were coded without utilizing special peculiarities of the UNIVAC 1108 and its FORTRAN compiler. The algorithms were coded to make them as comparable as possible. Timings include only the algorithm calculation portion of each of the programs; they do not include any input/output operations. All problems were core-size problems, that is, the data base for each problem was sized so that it could be accommodated in the main memory of the computer. This simplified programming and eliminated one possible source of bias or variability in performance.

The analyses described below investigate the comparative performance of the three algorithms LABCOR, LABSET, and TIMEXD on small transit networks containing from 40 to 225 nodes. One test example used a grid network containing 1600 nodes, which is similar in size to the transit system in a medium size city. The runs were made primarily to test algorithm performance on a variety of types of networks with varying characteristics. The network generation programs were designed to allow input control of several different network parameters including network size as measured by the numbers of nodes and vehicle runs, network shape as measured by the number of horizontal and vertical routes in a grid or the geometry of a radial network, the variability of schedules, and the relative speeds of express and local service. By careful selection of appropriate input parameters, scenarios representing a variety of reasonable network types can be simulated and variations on these networks can be evaluated. The tests and analyses performed to date do not exhaust all possible tests which could be informative, but they were designed to reveal the general performance of the algorithms across the spectrum of likely input situations.

4.1 Analysis of the Path Output

In comparing the itineraries output by the three algorithms for a given trip, it was necessary to choose the most desirable. When all had the same number of segments, the main difference was usually whether the traveler waited at the origin or at an intermediate stop, a choice with neither alternative always being preferable. When there was a difference in the number of transfers, however, it was believed that the trip with fewer transfers should always be considered preferable. Table l displays, therefore, the number of transfers required by each of the three algorithms for each of the 25 requested itineraries in each of the 26 test networks. As noted in the descriptions of the algorithms, LABCOR always produces that trip which arrives first while departing at or after the desired departure time and which also has the fewest transfers. The cther two algorithms will produce trips arriving at the same time, but these trips may require more transfers. In fact, 9 percent of LABSET trips and 14 percent of TIMEXD trips required more transfers than IABCOR trips.

One type of situation in which a routing algorithm may provide extra transfers occurs when an express vehicle overtakes a local vehicle. This is illustrated in Figure 6. The soonest arrival time for a trip from node 1 to node 5 departing at or after 5:00 is 5:35. Two different itineraries with the same arrival time are possible: The first starts out at 5:00 on the local and arrives at stop 3 at 5:20, transfers to the express at 5:25 and arrives at node 5 at 5:35. The second waits 15 minutes to board the express at node lat 5:15 and takes the express direct to the destination at $5: 35$. Taking the express is preferable since it does not involve a transfer. Examples of the overtake situation occurring in the test runs are shown in Figure 7. In each case the routing produced by LABCOR (and in these cases also by LABSET) waits at an intermediate node for an express route, while TIMEXD takes the local route which is the first vehicle leaving and transfers to the express just before it overtakes the local.

In an attempt to avoid so many transfers by TIMEXD, we tried varying the choice criterion for trips which arrive at the same timeexpanded node (that is, trips which arrive at the same geographical node at the same time). Table 2 shows the results of using two criteria, one which always picks the first trip encountered, which is also the trip whose last segment starts earliest, and a second which picks the trip whose final segment starts latest. Although the latter criterion might seem to correct the difficulties encountered in an overtake situation, it does not always produce trips with fewer transfers as can be seen in Table 2 . These results were obtained for network number 2, which had no express routes and may thus make the second criterion appear less desirable than is actually the case. However, neither criterion seems to reduce appreciably the incidence of extra transfers using TIMEXD.

$\begin{gathered} \text { NETWORK } \\ \text { NOSE } \\ \hline \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	1	1	2	1	0	1	1	0	1	2	1	1	1	1
2	2	1	1	1	1	1	1	1	1	2	1	1	1	1
3	1	1	1	1	0	0	0	0	1	1	1	1	1	1
4	1	1	1	1	0	0	0	0	1	2	1	1	1	1
5	1	1	1	1	2	1	1	2	1	1	1	1	1	1
6	1	1	1	1	3	1	1	1	2	2	0	1	1	1
7	1	1	－	1	0	0	0	0	0	0	1	1	1	1
8	2	1	1	1	0	0	0	0	1	2	1	2	1	0
9	1	1	1	1	1	1	1	1	0	0	1	1	1	1
10	1	1	1	1	0	0	0	0	0	0	1	1	2	1
11	1	1	1	1	2	1	1	2	0	0	1	1	1	1
12	1	1	1	1	0	0	0	0	0	0	1	1	1	1
13	2	1	－	1	0	0	0	0	0	0	1	1	1	1
14	1	1	1	1	2	1	1	2	1	1	1	1	1	1
15	1	1	－	1	1	1	i	1	1	1	1	1	1	1
16	1	1	1	1	2	1	1	1	0	0	2	1	1	0
17	1	1	1	1	0	1	1	0	1	2	1	1	1	1
18	1	1	1	1	1	1	1	1	0	0	1	1	2	1
19	1	1	－	1	0	0	0	C	0	0	2	1	1	1
20	－＊	1	1	1	1	1	I	1	0	0	1	2	1	0
21	1	1	－	1	1	1	1	2	1	1	1	1	1	1
22	1	1	う	1	2	1	1	1	0	0	1	1	1	0
23	1	1	－	1	1	1	1	i	1	2	1	1	1	1
24	1	1	1	1	1	1	1	1	1	0	1	1	1	1
25	2	1	1	1	1	1	－	1	1	2	1	1	2	1

TABLE 1 (Continued)
Transfers for LABCOR

	15	16	17	18	19	20	21	22	23	24	25	26
1	1	1	4	2	1	1	1	1	2	2	1	2
2	2	1	1	2	1	1	1	1	1	1	1	1
3	1	1	3	0	2	1	1	1	2	1	1	1
4	1	1	1	2	1	1	1	1	1	2	2	1
5	1	1	1	1	1	1	1	2	1	1	1	2
6	1	1	3	2	1	1	1	1	1	1	1	1
7	1	1	1	1	1	1	1	1	1	1	1	1
8	2	1	4	0	2	0	0	1	1	1	1	1
9	1	1	1	1	1	1	1	1	1	1	1	1
10	1	1	1	1	2	1	1	1	1	1	1	1
11	1	1	0	1	3	1	1	1	1	1	1	1
12	2	1	1	1	2	1	1	1	1	1	1	1
13	1	1	1	2	1	1	2	1	1	1	1	1
14	1	1	1	0	1	1	1	2	2	1	2	1
15	1	2	1	1	1	1	1	1	2	2	1	2
16	1	1	3	1	1	0	1	1	1	1	1	1
17	1	1	0	1	2	1	1	1	1	1	1	1
18	1	1	2	1	3	1	1	2	1	2	2	2
19	1	1	1	1	1	1	1	1	2	1	1	1
20	0	1	1	2	0	1	1	1	1	1	1	1
21	1	1	1	1	1	1	1	1	2	1	2	1
22	1	1	1	1	0	1	1	2	2	1	0	1
23	1	1	2	1	1	2	1	1	3	1	1	1
24	1	1	2	0	1	2	1	1	1	3	1	1
25	1	1	0	1	1	3	1	2	2	2	2	1

	15	16	17	18	19	20	21	22	23	24	25	26
1	1	1	4	2	1	1	1	1				
2	2	1	2	2	1	1	2	1	1	2	1	2
3	1	1	3	0	2	1	2	1	2	1	1	1
4	1	2	1	2	1	1	1	1	1	1	1	1
5	1	1	1	1	1	1	2	2	2	2	2	2
6	1	1	3	2	1	1	1	1	1	1	1	1
7	1	1	1	1	1	1	1	1	1	1	1	1
8	2	2	4	0	2	0	0	1	1	1	1	1
9	1	2	1	1	1	1	2	1	2	1	1	1
10	1	1	1	1	2	1	1	1	1	1	1	1
11	1	1	0	1	3	1	1	2	2	2	2	2
12	2	1	1	1	2	1	1	1	1	1	2	2
13	1	1	1	2	1	1	2	1	1	1	1	1
14	1	1	1	0	1	1	2	1	1	1	1	1
15	1	2	1	1	1	1	1	2	2	1	2	1
16	1	1	3	1	1	1	2	1	2	2	1	2
17	1	1	0	1	1	0	1	1	1	1	1	1
18	1	1	0	1	2	1	1	1	1	1	1	1
19	1	2	2	1	3	1	2	2	2	2	2	2
19	1	2	1	1	1	1	2	1	2	1	1	1
20	0	1	1	2	0	1	1	1	1	1	1	1
21	1	1	1	1	1	2	1	2	2	2	2	2
22	1	2	1	1	0	1	1	2	2	1	0	1
23	1	1	2	1	1	2	1	1	2	1	O	1
24	2	1	2	0	1	2	1	2	1	3	2	2
25	2	1	0	1	1	3	1	2	2	2	2	1

(рənu!quoう) $[$ TTgVय

$\begin{gathered} \text { NETWORK } \\ \text { NASE } \\ \text { NO } \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	1	3	2	1	0	1	1	0	1	2	1	1	1	1
2	2	3	1	1	1	1	1	1	1	2	1	2	1	1
3	1	1	2	3	0	0	0	0	1	1	1	2	1	1
4	1	1	1	1	0	0	0	0	1	2	2	1	1	1
5	1	1	1	1	2	1	1	2	1	1	1	1	1	1
6	1	1	1	1	3	1	1	1	2	2	0	2	1	1
7	1	4	-	1	0	0	0	0	0	0	2	1	1	1
8	3	4	3	1	0	0	0	0	1	2	1	1	2	0
9	1	1	2	1	1	1	1	1	0	0	1	1	2	1
10	1	1	1	1	0	0	0	0	0	0	1	1	2	1
11	1	3	1	1	2	1	1	2	0	0	1	1	1	1
12	1	3	1	1	0	0	0	0	0	0	1	1	1	1
13	2	3	-	1	0	0	0	0	0	0	1	1	1	1
14	1	3	1	1	2	1	1	2	1	1	1	1	1	1
15	2	1	-	1	1	1	1	3	1	1	1	1	1	1
16	1	1	1	1	3	2	1	I	0	0	2	1	2	0
17	1	1	1	1	0	1	1	0	1	2	1	1	1	1
18	1	1	1	1	1	1	1	1	0	0	1	1	2	1
19	1	1	-	1	0	0	0	0	0	0	2	1	1	1
20	-	1	3	1	1	1	1	1	0	0	1	1	1	0
21	2	1	-	1	1	1	1	3	1	1	1	1	1	1
22	2	1	3	1	2	1	1	1	0	0	1	2	1	0
23	1	1	-	1	1	1	1	1	1	2	1	1	1	2
24	2	1	3	1	1	1	1	1	1	1	1	1	1	2
25	2	1	1	1	1	1	1	1	1	2	1	1	2	2

TABLE 1 (Continued)

$\begin{aligned} & \text { NETWORK } \\ & \text { CASE } \\ & \hline \end{aligned}$	15	16	17	18	19	20	21	22	23	24	25	26
1	1	1	4	3	2	2	1	1	3	2	1	2
2	2	1	3	3	1	1	2	1	1	1	1	1
3	1	1	3	0	2	1	2	1	2	1	1	1
4	1	1	2	2	1	1	1	1	2	1	3	1
5	1	1	4	2	1	1	2	2	2	2	2	2
6	1	1	3	2	1	1	1	1	1	2	1	3
7	1	1	1	1	1	1	1	1	1	1	1	1
8	3	1	6	0	2	0	0	1	1	1	1	1
9	1	1	1	1	1	2	2	1	2	1	1	1
10	1	1	1	1	2	1	1	2	3	1	2	2
11	1	1	0	1	3	1	1	2	2	1	2	1
12	2	1	1	1	2	1	1	1	1	1	1	1
13	1	1	2	2	1	1	2	1	1	1	1	1
14	1	1	1	0	3	1	1	2	3	3	2	1
15	1	2	1	1	1	1	2	1	2	2	1	2
16	1	1	3	1	1	0	1	1	1	1	1	1
17	1	1	0	1	2	1	1	1	2	1	1	1
18	1	1	2	1	3	1	2	2	2	2	2	2
19	1	2	1	1	1	1	2	2	2	1	1	1
20	0	1	1	2	0	1	1	1	1	1	1	1
21	1	1	1	2	1	3	1	2	2	2	2	2
22	1	1	1	2	0	3	1	2	2	2	0	2
23	1	1	2	1	1	2	1	2	3	2	2	3
24	2	1	2	0	1	3	1	1	2	3	1	1
25	2	1	0	3	2	3	1	2	2	2	2	1

No Transfer

Express		
$5: 15$	5	
$5: 35$		

One Transfer

FIGURE 6

Example of Overtake
FIGURE 7
Overtake Occurrences in the Test Runs

2
776

express
49

47
765,767
$69 \stackrel{44}{\sim} 65 \xrightarrow[753,756]{\substack{\text { local } \\ 29}}$
$18 \xrightarrow[721]{\text { 41 }} 17 \xrightarrow{\substack{\text { local } \\ 26}}$
express
48 17
$71 \xrightarrow{\sim} 70$
$754,757 \quad 760$ 1 749，751 $69 \xrightarrow[742]{44} \underset{74,745}{\text { local }}$

Itineraries Produced by LABCOR and LABSET
 Itiner

＊Itineraries are listed in the form：
$\underset{757,760}{ } \xrightarrow{\text { express }}$

べす゚

$$
\begin{aligned}
& \text { route } \begin{array}{l}
\text { route } \\
\text { number } \\
\text { number }
\end{array} \\
& \text { stop } \\
& \text { stop } \\
& \text { depart. } \\
& \text { stopr., depart. } \\
& \text { time arr. } \\
& \text { stime time }
\end{aligned} \text { time } .
$$

TABLE 2
Comparison of Paths for TIMEXD Using First Path Encountered
to a Node Versus Last Path to That Node

TRIP	NUMBER OF TRANSFERS		
	LABCOR	$\begin{gathered} \text { TIMEXD } \\ \text { (last arrival) } \end{gathered}$	$\begin{gathered} \text { TIMEXD } \\ \text { (first arrival) } \end{gathered}$
1	1	3	1
2	1	3	1
3	1	1	1
4	1	1	1.
5	1	1	2
6	1	1	2
7	1	4	4
8	1	4	4
9	1	1	2
10	1	1	2
11	1	3	1
1.2	1	3	1
13	1	3	1
14	1	3	1.
15	1	1	2
16	1	1	2
17	1	1	4
18	1	1	4
19	1	1	3
20	1	1	3
21	1	1	1
22	1	1	1
23	1	1	1
24	1	1	1
25	1	1	1
Average	1.0	1.68	1.88

In conclusion, LABCOR provides the most desirable path output since it always produces an itinerary with the minimum number of transfers. The other two algorithms output a small but significant number of trips with extra transfers (9 percent for LABSET and 14 percent for TIMEXD). When the overtake problem occurs, using TIMEXD may lead to an extra transfer from a local to an express because the express starts later than the local and passes it enroute, arriving first at the destination. Varying the criterion for choosing between ties does not result in a decrease in the number of extra transfers for TIMEXD.

4.2 Computer Storage Required by the Algorithms

The storage required by the algorithms is largely a function of the size and configuration of the network and schedules. The particular form in which the algorithms have been coded for this study does not attempt to optimize use of storage of the basic network data. For instance, in LABCOR and LABSET the routes are stored in a doubly indexed array, ROUTE (i, j), in which the entry for i, j is the j th stop on route i. Thus the size of the array is the number of routes by the maximum number of stops per route. If one or a few routes are long while all others are short, this wastes much storage. The compensating benefit is that of easier reference to a desired piece of data. More efficient storage would involve more complicated indexing than was used in the programming. The decision in favor of the simpler representation was made in the interest of facilitating quick coding. In addition, it is the LABCOR and LABSET algorithms which are most severely affected by this decision, and they require less storage than does TIMEXD for the same network. Since we intended to run all three algorithms on the same problems, we were less concerned with wasting storage space in programming LABCOR and LABSET.

In estimating the storage required by LABCOR and LABSET we will use the following notation:
R number of routes
S number of stops
L maximum number of stops per route
K maximum number of routes per stop
D number of vehicle departures
T number of possible time intervals (e.g. 1440 minutes per day)
Then the storage required by algorithm LABCOR is approximately:

$$
3 R+8 S+(R+D) L+S \cdot K
$$

Similarly the storage required by the algorithm LABSET is:

$$
3 R+10 S+(R+D) L+S \cdot K+T
$$

Additional storage is required for printing paths, but these expressions contain the major elements requiring computer space.

Notation used in estimating the storage for TIMEXD follows:
N number of time-expanded nodes
A number of arcs in the time-expanded network
T number of possible time intervals (as above)
D number of vehicle departures
\& average number of stops per route
k average number of routes per stop.
The algorithm requires

$$
5 \mathrm{~N}+2 \mathrm{~A}+\mathrm{T}
$$

storage locations, exclusive of path printing and incidentals. To relate this to the other two algorithms we approximate N and A as follows:

$$
\begin{aligned}
& N=D \cdot \ell \\
& A=D \cdot \ell+N \cdot k=D \cdot \ell(k+1) .
\end{aligned}
$$

Assuming each vehicle arrival gives rise to a new node, we arrive at an overestimate to the number of nodes. Arcs are of two kinds, those which represent vehicle trips--whose number is the number of vehicle departures times one less than the number of stops per route (approximated as Dl)--, and transfer arcs, whose number is the number of routes stopping at a node times the number of nodes, under the assumption that all possible transfers at each node are available and reasonable. The total requirement then becomes

$$
6 D l+2 D l k+T .
$$

These approximations overestimate storage requirements but are useful for comparison purposes.

In a square grid network of size $\mathrm{P} \times \mathrm{P}$:

$$
\begin{aligned}
& S=P^{2} \\
& R=4 P \\
& L=\ell=P \\
& K \approx k=4
\end{aligned}
$$

so the storage required by LABCOR is

$$
12 P+16 P^{2}+D P
$$

for LABSET is

$$
12 P+18 P^{2}+D P+T
$$

and for TIMEXD is

$$
14 \mathrm{DP}+\mathrm{T} .
$$

For several of the test cases P was about 15, D was about 300 and T was 1440 , making the storage requirements 8200 for LABCOR, 10170 for LABSET, and 64440 for TIMEXD. We note again that the formula for TIMEXD overestimates the storage required, in this case since the actual number of transfers per interior node is 3, rather than 4, and the number possible at peripheral nodes is 2 or 1 .

The difference in storage requirements is greatest for the sort of situation described above when $L=\ell$ and $K=k$. For a radial network it is likely that $K \gg k$, since all routes in or out along radials stop at the center node. Thus in a radial network with 6 spokes, at least 12 routes (and more if there are spike routes *) stop at the center node, whereas most other nodes have at most 4. A full beltway would have at most 7 stops (one stop repeated) but a radial route could have as many as desired. A partial beltway might have only 2 stops. Therefore there is a great variability in the number of stops per route and routes per stop, leading to a difference between K and k and between L and ℓ. Similarly in a rectangular network which is long and thin, storage must be provided as if all routes had as many stops as the longer routes. Thus whenever $K>k$ and/or $L>\ell$, LABCOR and LABSET, because of inefficient storage design, require more storage than they actually use, whereas TIMEXD can be sized more tightly. In spite of not using storage most efficiently, for most of the test cases LABCOR and LABSET required significantly less storage than TIMEXD.

4.3 Comparison of Computation Times

Timings for the 26 test runs and the 25 cases for each run are listed in Table 3. The timings include only processing time, no input or output operations, since test cases were chosen to be small enough not to require reference to external storage. For each run, timings were made on all three algorithms at the same time of day (actually within the same computer run), to ensure that the computer environments were as comparable as possible.

There are many problems with timing an algorithm in a multiprocessing environment, such as the UNIVAC 1108 under the EXEC 8 operating system, in which several programs are active in various stages of processing at one instant in time. In calculating the run time for each algorithm on each case, we used a computer subroutine, CPUSUP, available at NBS for summing the CPU time of a designated section of one program only. However, our experience has been that timings of the same problem

[^2]| TABLE 3ALGORITHM TIMINGS FOR EACH PATHTimings for LABCOR (Milliseconds per Path) | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NETWORK | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| 1 | 164 | 151 | 85 | 106 | 24 | 20 | 21 | 22 | 33 | 29 | 143 | 159 | 158 |
| 2 | 120 | 170 | 98 | 108 | 26 | 23 | 24 | . 27 | 32 | 28 | 102 | 129 | 122 |
| 3 | 165 | 152 | 84 | 100 | 29 | 21 | 21 | 23 | 29 | 30 | 142 | 159 | 158 |
| 4 | 121 | 171 | 99 | 107 | 34 | 23 | 25 | 26 | 27 | 29 | 103 | 137 | 130 |
| 5 | 164 | 150 | 82 | 100 | 26 | 23 | 24 | 25 | 32 | 28 | 142 | 171 | 158 |
| 6 | 121 | 172 | 98 | 106 | 27 | 23 | 24 | 24 | 30 | 29 | 103 | 140 | 133 |
| 7 | 155 | 147 | 65 | 100 | 29 | 29 | 31 | 32 | 33 | 29 | 137 | 166 | 176 |
| 8 | 136 | 179 | 96 | 112 | 33 | 30 | 30 | 31 | 34 | 29 | 124 | 146 | 174 |
| 9 | 153 | 146 | 64 | 100 | 32 | 29 | 29 | 29 | 27 | 28 | 138 | 166 | 187 |
| 10 | 134 | 181 | 96 | 111 | 32 | 25 | 26 | 32 | 28 | 28 | 123 | 144 | 176 |
| 11 | 155 | 148 | 64 | 100 | 25 | 22 | 23 | 28 | 26 | 27 | 139 | 161 | 184 |
| 12 | 135 | 179 | 95 | 112 | 28 | 25 | 28 | 28 | 28 | 28 | 123 | 144 | 158 |
| 13 | 176 | 145 | 22 | 100 | 35 | 31 | 31 | 32 | 24 | 28 | 138 | 168 | 175 |
| 114 | 118 | 170 | 94 | 106 | 36 | 29 | 32 | 34 | 28 | 31 | 107 | 139 | 156 |
| $\underbrace{\omega}_{\omega} 15$ | 176 | 143 | 24 | 100 | 29 | 25 | 25 | 30 | 26 | 28 | 138 | 157 | 178 |
| 116 | 118 | 170 | 94 | 105 | 24 | 23 | 25 | 24 | 27 | 27 | 108 | 129 | 156 |
| 17 | 175 | 145 | 23 | 100 | 24 | 22 | 21 | 22 | 28 | 30 | 138 | 155 | 173 |
| 18 | 118 | 171 | 95 | 106 | 32 | 27 | 28 | 29 | 28 | 28 | 107 | 128 | 153 |
| 19 | 175 | 148 | 7 | 99 | 29 | 27 | 28 | 32 | 28 | 27 | 139 | 164 | 168 |
| 20 | 97 | 172 | 93 | 106 | 23 | 22 | 21 | 24 | 28 | 29 | 95 | 140 | 153 |
| 21 | 173 | 150 | 8 | 101 | 27 | 22 | 24 | 27 | 27 | 28 | 139 | 165 | 168 |
| 22 | 96 | 169 | 92 | 105 | 24 | 21 | 22 | 23 | 26 | 28 | 95 | 139 | 153 |
| 23 | 173 | 148 | 8 | 100 | 32 | 30 | 32 | 33 | 27 | 29 | 139 | 165 | 168 |
| 24 | 97 | 169 | 92 | 105 | 25 | 21 | 24 | 25 | 28 | 29 | 96 | 140 | 152 |
| 25 | 159 | 167 | 92 | 104 | 31 | 27 | 27 | 34 | 26 | 28 | 134 | 167 | 186 |
| AVERAGE | 142.96 | 160.52 | 70.80 | 103.96 | 28.64 | 24.80 | 25.84 | 27.84 | 28.46 | 28.48 | 123.68 | 151.12 | 162.12 |
| STD. DEV. | 27.42 | 13.04 | 33.59 | 4.10 | 3.86 | 3.38 | 3.58 | 3.92 | 2.43 | . 96 | 17.83 | 14.0 | 16.86 |

NETWORK CASE	14	15	16	17	18	19	20	21	22	23	24	25	26
1	151	165	36	47	65	47	87	52	61	63	52	65	52
2	105	121	41	41	37	70	82	54	61	69	52	69	53
3	154	164	35	48	59	69	88	50	61	63	53	68	51
4	109	121	41	47	53	71	88	55	66	68	52	74	53
5	153	165	36	41	50	69	98	53	65	70	59	77	55
6	108	122	41	44	66	79	100	56	65	73	55	56	53
7	150	160	37	24	82	74	98	50	66	84	56	64	57
8	108	132	41	45	52	78	94	54	66	84	57	59	57
9	152	161	37	36	77	74	98	64	65	65	62	60	54
10	101	133	42	54	82	72	101	60	62	64	58	65	53
11	150	161	38	43	65	65	100	57	55	64	52	52	51
12	101	131	42	44	88	43	100	55	63	59	62	66	63
13	156	170	35	52	47	66	88	50	60	71	51	60	57
14	88	112	46	47	57	80	89	58	69	69	53	63	62
15	155	170	36	33	48	70	88	58	66	78	56	50	63
16	89	111	45	51	77	68	81	59	67	75	57	59	60
17	155	169	36	44	69	81	81	57	67	73	57	59	57
18	88	121	46	44	50	83	81	54	67	72	56	60	61
19	154	177	38	40	51	83	81	57	63	79	53	54	54
20	81	99	41	33	34	70	81	60	62	60	52	54	56
21	162	170	37	44	56	67	85	56	62	75	50	54	54
22	94	100	42	39	49	68	85	58	64	67	55	68	60
23	176	175	39	42	47	70	86	51	67	84	59	63	59
24	94	97	41	43	35	68	85	62	64	66	59	60	55
25	180	166	41	51	49	70	85	58	69	69	55	68	53
AVERAGE	128.56	142.92	39.60	43.08	57.8	70.2	89.2	55.92	64.12	70.56	55.32	61.88	56.12
STD.DEV.	32.17	27.43	3.30	6.63	14.93	9.27	7.14	3.72	3.18	7.21	3.33	6.71	3.7

$\stackrel{m}{r}$		O O O O r－	¢ m m
$\xrightarrow{\sim}$	 	\pm \sim 0 M －	\pm 0 - -1
${ }_{-}^{-H}$		영	J J m m
$\stackrel{-}{-1}$		－	10 - 0
8		cu 0 0 0 -1	¢
∞		O ¢ 0 -1	0 0 -
5	 	∞ 0 0 0 1	$\stackrel{\sim}{\sim}$
\bigcirc		-7 -7 0 -1	a \sim \sim
0		∞ 0 \sim \sim	$\stackrel{\text { n }}{\substack{\text { ¢ } \\ \sim}}$
O		N	$\xrightarrow{\infty}$
m	o的 	N \sim \sim \sim	con
O		式	
－		J 0 ∞ ∞	I 0 m
		M ¢ 1 年 4	品

Timings for LABSET (Milliseconds per Path)

NETWORK CASE NO.	14	15	16	17	18	19	20	21	22	23	24	25	26
1	85	99	31	31	60	40	41	53	38	47	50	55	48
2	56	70	20	27	31	32	35	30	20	31	21	28	21
3	55	71	28	38	49	23	37	44	47	47	43	51	41
4	79	50	40	27	49	14	28	63	52	50	48	67	51
5	147	121	35	35	47	32	57	48	36	50	38	46	37
6	95	118	40	38	38	49	27	34	40	28	39	35	34
7	69	99	36	17	16	55	28	46	48	38	49	64	49
8	109	121	42	36	68	57	14	4	7	16	7	10	7
9	118	39	29	31	54	29	39	53	35	47	30	45	27
10	85	39	36	10	38	44	35	45	42	40	39	55	43
11	136	88	10	4	28	29	18	42	30	34	27	36	30
12	54	89	21	39	30	21	52	15	21	21	22	25	22
13	135	169	34	23	25	13	16	30	39	36	46	42	38
14	73	101	17	26	9	56	12	66	35	48	49	46	51
15	90	120	36	23	38	30	25	42	26	27	27	33	27
16	100	51	36	34	50	10	15	39	27	26	27	30	26
17	99	52	24	22	24	51	39	40	23	35	24	25	23
18	60	89	37	32	49	39	12	32	42	32	43	44	41
19	140	159	39	15	50	23	15	51	27	41	33	28	27
20	91	111	41	9	23	36	64	22	29	22	27	28	27
21	76	107	13	16	54	50	71	56	49	39	49	48	52
22	91	70	37	21	57	6	32	54	36	39	46	57	49
23	110	59	23	38	40	61	11	44	50	47	51	52	45
24	73	86	20	38	20	24	37	39	40	39	34	41	37
25	156	176	41	9	50	30	41	24	36	49	42	40	37
AVERAGE	95.28	94.16	30.64	25.56	39.88	34.16	32.04	40.64	35.0	37.16	36.44	41.24	35.60
STD.DEV.	29.77	37.91	9.51	10.71	15.14	15.70	16.58	14.54	10,84	9.87	11.55	13.58	11.67

	01	02	03	04	05	06	07	08	09	10	11	12	13
1	36	58	24	38	35	55	51	38	43	49	27	98	49
2	44	55	31	33	40	42	48	40	22	28	34	54	53
3	45	54	64	49	9	9	12	9	21	21	27	37	68
4	34	51	27	25	15	21	20	15	24	34	42	29	45
5	64	78	65	50	31	52	52	61	21	20	84	78	85
6	64	81	71	48	38	40	43	33	25	23	54	52	76
7	41	78	109	45	26	35	50	36	12	11	57	85	87
8	66	81	117	29	14	16	19	15	49	49	43	55	87
9	26	68	53	46	31	43	48	42	14	14	73	90	50
10	28	65	38	41	13	18	30	24	15	15	62	58	47
11	37	69	37	47	30	38	42	36	16	16	48	50	41
12	44	72	37	46	23	28	41	34	12	11	44	40	41
13	41	78	79	24	9	9	12	8	24	23	32	37	47
14	47	83	35	33	69	68	84	68	24	30	32	34	47
15	62	62	88	40	34	33	35	42	27	23	54	92	49
16	34	63	49	40	58	52	47	40	20	20	47	57	70
17	31	70	38	52	37	51	50	39	56	49	80	81	37
18	43	77	35	36	37	43	40	38	15	15	52	45	54
19	86	87	60	51	18	21	21	16	18	16	77	84	111
20	61	88	77	55	17	22	23	33	20	17	42	51	72
21	56	59	61	32	52	38	42	48	22	21	64	32	29
22	48	57	61	38	56	44	65	53	14	12	35	47	48
23	34	54	67	52	24	25	31	24	26	24	53	94	40
24	54	52	82	43	24	35	51	45	28	22	44	55	64
25	69	63	78	53	23	27	28	23	27	44	87	95	68
AVERAGE	47.80	68,12	59.32	41.84	30.52	34.60	39.40	34.40	24.20	24.28	51.76	61.20	58.60
STD.DEV.	14.97	11.60	24.80	8.91	15.70	15.00	16.76	15.13	11.21	11.91	17.66	22.63	19.57

Timings for TIMEXD（Milliseconds per Path）

$\stackrel{\sim}{\sim}$		J	¢
$\stackrel{\sim}{\sim}$		が	¢
さ		N	\pm 0 0 0 -1
N	9－10	ㄲ	$\stackrel{\text { ¢ }}{\stackrel{\text { ® }}{\text { ®－1 }}}$
N	寸	－	$\stackrel{\text { N }}{\substack{\text { ¢ } \\ \text {－} \\ \hline}}$
$\stackrel{-1}{N}$		さ	m $-\underset{\sim}{-}$ d
삿		さ	$\xrightarrow{-1}$
9		＋1 \cdots m	$\xrightarrow{ \pm}$
$\stackrel{\infty}{\sim}$		¢	J ơd －
$\stackrel{\leftarrow}{-}$	읔ำminco	さ	¢ \cdots 0 \cdots
$\stackrel{0}{\square}$		$\stackrel{\circ}{\circ}$	
$\stackrel{\sim}{n}$		－	m \sim \sim
少		－	－
			亩 寧

may differ by as much as 20 percent depending on the time of day and machine load at the time. By timing all three algorithms on the same network in immediate sequence, we sought to make cross-comparisons on the same problem appropriate and valid. Most runs were made in low activity periods to minimize the influence of other programs being run on the computer at the same time. (It is generally true that the timing of the same program will be greater during periods in which the computer has a heavy load.) Thus care should be exercised in imputing precision to the timings reported here and in extrapolating from them. However, the testing procedure was designed to facilitate comparisons of performance among algorithms.

Table 4 contains a summary of the average and standard deviation of the 25 timings for each of the 26 test runs along with the size parameters describing each test network. TIMEXD is the fastest on the average, but in more than half of the runs LABSET was as fast or faster. In general LABSET is faster than TIMEXD on networks with fewer nodes. Since the networks used in these tests are all fairly small, compared to most real transit systems, one would generally expect TIMEXD to calculate itineraries more quickly for real transit systems. In all but four small networks, LABCOR took more time than did either of the other two algorithms. It is always slower than LABSET, but beats TIMEXD on very small networks. However, we note again that LABCOR always produces paths which are at least as desirable and often more desirable, because they have fewer transfers, than those produced by the other algorithms. On the average for these test runs, these better paths required 77 percent more time to calculate, and the time difference was greater for larger networks. For example, for the five 15 by 15 grid networks, TIMEXD was on the average 2.5 times faster than LABCOR.

The average standard deviations for the LABCOR calculations were smaller than those of either of the other two algorithms, indicating that for a particular network the timings of different cases using LABCOR were closer together than those of LABSET or TIMEXD. However, the standard deviation of the average times for the 26 networks was greatest for LABCOR, which is indicative of greater variation of the timing from network to network. TIMEXD varies least with network. Thus LABCOR has most consistent timing for one network but varies most among different networks, whereas LABSET and TIMEXD show greater variability in timing the different cases for the same network, and TIMEXD varies least from network to network with LABSET varying more but less than LABCOR.

Table 4 lists for each of the 26 test networks the number of nodes and the number of vehicle departures (or runs) for that particular network. These two parameters, along with the product of the two, were thought to most directly characterize the network size. Correlation coefficients and Spearman rank correlation coefficients were calculated to assess the degree of relationship between the timings and each of these parameters. The correlation coefficients are displayed in Table 5. Correlation coefficients are statistics with values between -l and +l. A coefficient of 0 indicates no association; coefficients close to +1 indicate a high association in which as one variate grows the second grows also; a coefficient of nearly -l also indicates a high degree of association but one in which as one variate grows larger the other becomes smaller.

TABLE 4

COMPARISON OP TIMINGS OF THE THREE ALGORITHMS

								TGS (M	ISECO		
	NET	RK	SCP	TION							
NO.	TYPE		E*	NODES	RUNS	μ	σ	μ	σ	μ	σ
1	G	15	15	225	285	143	27	88	31	48	15
2	G	15	15	225	288	161	13	129	19	68	12
3	G	12	14	168	234	71	34	53	25	59	25
4	G	12	14	168	328	104	4	72	23	42	9
5	R	6	11	40	800	29	4	16	7	31	16
6	R	6	11	40	800	25	3	16	8	35	15
7	R	6	11	40	960	26	4	17	8	39	17
8	R	6	11	40	960	28	4	16	8	34	15
9	R	4	16	50	480	28	2	18	7	24	11
10	R	4	16	50	480	28	1	17	6	24	12
11	G	10	20	200	280	124	18	99	33	52	18
12	G	5	40	200	410	151	14	130	42	61	23
13	G	15	15	225	285	162	17	103	33	59	20
14	G	15	15	225	285	128	32	95	30	62	19
15	G	15	15	225	285	143	27	94	38	62	26
16	G	8	8	64	448	40	3	31	10	31	13
17	G	10	8	80	252	43	7	26	11	40	16
18	R	8	7	80	334	58	15	40	15	40	19
19	G	10	12	120	220	70	9	34	16	34	12
20	R	9	6	120	192	89	7	32	17	24	13
21	G	9	9	81	270	56	4	41	15	36	14
22	G	9	9	81	270	64	3	35	11	45	17
23	G	9	9	81	270	71	7	37	10	51	18
24	G	9	9	81	270	55	3	36	12	47	19
25	G	9	9	81	270	62	7	41	14	46	20
26	G	9	9	81	270	56	4	36	12	42	18
AVERAGE						77.5	10.5	52.0	17.7	43.7	16.6
SID. DEV. OF AVG.						46.4	9.8	36.3	10.6	12.7	4.2

*For a grid network (G), 'size' is given by the numbers of horizontal and vertical grid elements; for a radial (R), by the numbers of radials and beltways.
**Statistics for 25 origin-destination pairs in each network.

TABLE 5
CORRELATION OF TIMINGS AND NETWORK
SIZE PARAMETERS

Correlation Coefficients

	LABCOR	LABSET	TIMEXD
	.9653	.9343	.7867
NODES	. .5122	-.4226	-.3711
RUNS	-.8397	.8907	.7076

Spearman Renk Correlation Coefficients

	LABCOR	LABSET	TIMEXD
	.9641	.9122	.7596
NODES	-.3982	-.3082	-.2300
RUNS	.5498	.5329	.4981

The negative correlation between timings and the number of runs seems at first surprising, since one would expect that as the number of runs increases the number of possibilities to be checked at least remains the same and might (particularly for TIMEXD) grow larger. The negative correlation arises in this data set because we were attempting to test fairly large networks, where 'large' is measured relative to the amount of computer storage available to us, 65,000 words. Therefore the product of numbers of nodes and runs (vehicle departures) was relatively fixed. Networks with many nodes had fewer runs, and networks with few nodes had many runs. Timing is definitely positively correlated with the number of nodes, but because of our choice of test examples, the number of nodes was negatively correlated with the number of runs. Thus the timings are negatively correlated with the number of runs. That negative correlation also contributes to the lower correlation of timings with the product of nodes and runs than with the number of nodes alone.

The correlation of timing with the number of nodes is quite high, especially for LABCOR and LABSET as one would expect from the structure of the algorithms in which each step involves examining a new node. The correlation is less pronounced for TIMEXD which must examine timeexpanded nodes whose number depends on both the number of network stops and vehicle departures. The unfortunate (for this purpose) design of the set of computer runs to be performed obscures this relationship because of the negative correlation between nodes and runs.

As an aid in interpolating and in further understanding the relationship between the number of nodes and the timings, linear regressions, with the timing as dependent variable and the number of nodes as independent variable, were performed. That is, we obtained values for the coefficients a_{0} and a_{1} in the following equation:

$$
t=a_{0}+a_{1} N
$$

where t is the timing in milliseconds and N is the number of nodes. The coefficients, their standard deviations and the residual standard deviation of the fit are given in Table 6. This means, for example, that one may use the equation

$$
t_{\text {LABCOR }}=2.22+.637 \mathrm{~N}
$$

to estimate the time required to calculate an average itinerary using the program LABCOR on the UNIVAC 1108. Two caveats must be mentioned. Since the networks used to fit these equations varied in size only from 40 nodes to 225 nodes, it is really not appropriate to use the equations for much larger networks. In addition, the timings reported here were obtained on a particular computer and while we have no reason to suppose relative performance would differ on another machine, actual time is likely to be quite different.

T'ABL.E 6

LINEAR REGRESSION COEFFICIENTS FOR
THE FIT OF TIMING AS A FUNCTION OF THE NUMBER OF NODES

	a_{0}	a_{1}	Std. dev. a_{0}	Std. dev. a_{1}	Lack of fit F ratio \% point
LABCOR	2.22	.637	4.81	.035	12.3
LABSET	-4.94	.482	5.14	.038	87.7
TIMEXD	26.82	.143	3.14	.023	88.5

*This statistic compares the standard deviations of repeated observatinn with the standard deviation of the fit. A value between 3% and 97% jndicates an acceptable linear fit.

As an experiment to check algorithm performance on a larger network, LABCOR and LABSET were run on a 40 by 40 grid network, having therefore 1600 nodes. Actual running times for this network are given in Table 7. We also compared the timings actually obtained with those predicted by the linear regression equations. The estimates are 1021 milliseconds ior LABCOR and 766 milliseconds for LABSET. The estimate for LABCOR is in error by more than a factor of 2 , reinforcing the earlier warning about applying the regression equations outside the range of the original fit. However, the estimate for LABSET is only 14 percent in error, which leads greater credence to this equation in estimating timings for at least medium sized networks. The ratio of the time required by LABCOR to that required by LABSET is greater for this larger network than for all but one of the 26 test runs, indicating that the slope of the line for LABCOR should be greater than for LABSET, as is indeed the case in the regression equations. This means that the time for LABCOR increases at a greater rate with the number of nodes than does that for LABSET.

In [l], computation time for a large network (containing perhaps 3000 nodes) was estimated at approximately one second per itinerary, with the critical time factor being access and transfer of pages of the network and schedule data from peripheral storage to the main memory. Using the regression results in Table 6 we obtain estimates of 1.9 seconds for LABCOR, 1.4 seconds for LABSET, and 0.5 seconds for TIMEXD for the computation time per trip for a large transit system. These estimates do not contain any allowance for input/output, which was estimated in [l] to require an additional one half to one second. If some computations can be done in parallel with the input/output transfers, then the total time could be less than the sum of the two figures, but with the sum as an upper bound, the total time estimates for LABSET and TIMEXD then become 2.4 and 1.5 seconds respectively. Since we know from the timing on a medium-sized network that the regression equation seriously underestimates the time required by LABCOR, in a network of 3000 nodes, it might be expected to be perhaps more than 5 seconds per trip itinerary, a time which may be unacceptably long. The times for IABSET and TIMEXD, although slightly longer than the original estimates in [l], are well within those required to permit demand in a large city to be handled by the information center without irritating delays.

These timings were made on the UNIVAC 1108 computer here at NBS, and the magnitude of computation time on other computers is likelv to be different. However, since the UNIVAC 1108 is a relatively old computer, one would expect that computation times on most other machines would be less than those recorded here or at worst would be of the same order of magnitude.

TABLE 7

ALGORITHM TIMINGS (MILLISECONDS) FOR LABCOR AND LABSET
ON 40×40 GRID NETWORK

PAIR	ORG	DST	LABCOR	LABSET
1	432	539	2915	338
2	432	837	2900	1692
3	432	120	2899	1785
4	432	946	2927	717
5	432	336	2898	1007
6	1247	1454	2537	1326
7	1247	793	2537	1063
8	1247	761	2542	663
9	1247	1142	2570	365
10	1247	1278	2538	1446
11	1026	434	1765	1284
12	1026	698	1762	526
13	1026	1074	1767	803
14	1026	1300	1769	586
15	1026	855	1863	674
16	255	848	1856	810
17	255	666	1857	574
18	255	272	1852	748
19	255	43	1853	1639
20	255	1011	1851	591
21	1273	960	1905	545
22	1273	1179	1890	349
23	1273	1440	1882	878
24	1273	1026	1880	269
25	1273	1543	1885	1148
Average				2192

Characteristics of the 26 test runs used in the analyses above are described more fully in Table 8. These parameters were chosen in such a way as to allow the analysis of the dependence of timing and path calculations on several factors, such as variability of the minimum transfer time requirement, the network shape, various frequency patterns, and the relative speed and frequency of express and local runs.

In assessing the effect of minimum transfer time on the computation of itineraries we will refer to Table 9. No clear pattern of variation of computation time with increase in transfer time holds for all the algorithms. The behavior of LABCOR timings seems to be exactly opposite to that of the other two. LABCOR computation time increases with an increase in the transfer time at the center node of a radial network and decreases as the transfer time increases in a grid. This pattern of increase and decrease is the same as the pattern of increasing and decreasing numbers of transfers, reflecting LABCOR computation time's dependence on the number of transfers. LABSET and TIMEXD times decrease with the long transfer at the center node of the radial network and increase as the grid transfer times increase. The increase in time for calculating paths in a grid network with longer transfer times may result from the generally longer 'trip lengths, which require examining more possible trips before finding a shortest one. The decrease in computer time for producing itineraries in a radial network with more time required to transfer at one (central) node may reflect the fact that although trips may be somewhat longer, the total number of compecing itineraries is still reduced because many of those utilizing the central node are now effectively blocked.

The average number of transfers required increases when the minimum transfer time at the central node is increased, because some one-transfer trips traveling in one radial and out another become two-transfer trips utilizing a beltway. When the minimum transfer time is increased at all nodes in the grid network, it becomes less desirable to transfer since that requires significantly greater unit time, so the average number of transfers decreases.

A second analysis concerns the effect of grid shape on computation. In a previous study [2] of the performance of shortest-path algorithms, it was noted that some label-correcting algorithms performed very badly on elongated grid networks, because they depended critically on the length of the longest shortest path. In our grid transit network, there was some increase in the computation time as the grid became elongated but it is not as pronounced as with the standard shortest path computation, partly because the average number of transfers does not increase as much as the length of the longest shortest path. A comparison of computation times for networks 11 and 12, respectively a 10 x 20 grid and a 5×40 grid (both with 200 nodes), shows increases of 22,31 and 17 percent respectively for LABCOR, LABSET and TIMEXD with the more
TABLE 8

NO.	TYPE	SIZE	NODES	DESCRIPTION
1	G	15 XI 5	225	$\mathbb{N} \rightarrow \mathrm{S}: 6$ runs; $S \rightarrow \mathbb{N}: 3$ runs; $E \rightarrow W: 5$ runs; $W \rightarrow E: 5$ runs
2	G	15×15	225	Edges and center every 5 min., others every 20 min
3	G	12XI4	168	$\mathbb{N} \rightarrow \mathrm{S}$ and $\mathrm{E} \rightarrow \mathrm{W}$ frequently $; S \rightarrow N$ and $W \rightarrow E$ not so frequent
4	G	12X14	168	$\mathbb{N} \rightarrow \mathrm{S}:$ every $6 \mathrm{~min} . ; \mathrm{E} \rightarrow \mathrm{W}$ every 30 min.
5	R	6R,11B	40	2 min . frequency on radials, 3 min . frequency on beltways; 10 min . transfer time at center, 2 min. transfer elsewhere
6	R	6R,11B	40	2 min . frequency on radials, 3 min . frequency on beltways; 2 min . transfer everywhere
7	R	6R,11B	40	1 min. frequency on radials towards center and on full beltway, 10 min. frequency otherwise; 2 min. transfer everywhere
8	R	6R,11B	40	1 min. frequency on radials towards center and on full beltway, 10 min . frequency otherwise; 10 min . transfer at center, 2 min. transfer elsewhere
9	R	4R,16B	50	$5 \mathrm{~min} . \mathrm{frequency} \mathrm{everywhere;} 2 \mathrm{~min}$. transfer everywhere
20	R	4R,16B	50	5 min . frequency everywhere; 10 min . transfer at center, 2 min . elsewhere
11	G	10x20	200	$N \rightarrow S: 6$ runs; $S \rightarrow \mathbb{N}: 3$ runs; $E \rightarrow W: 5$ runs; $W \rightarrow E: 5$ runs
12	G	5×40	200	$N \rightarrow S: 6$ runs; $S \rightarrow N: 3$ runs; $E \rightarrow W: 5$ runs; $W \rightarrow E: 5$ runs
13	G	15 XI 5	225	$N \rightarrow S: 6$ runs starting at $8: 0 C S \rightarrow N: 3$ runs starting at 8:15; $\mathrm{E} \rightarrow \mathrm{W}: 5$ runs starting at $8: 10 \mathrm{~W} \rightarrow \mathrm{E}: 5$ runs starting at 8:05.
24	G	15 XI 5	225	$\mathbb{N} \rightarrow \mathrm{S}: 6$ runs; $S \rightarrow \mathbb{N}: 3$ runs; $\mathbb{E} \rightarrow W: 5$ runs; $W \rightarrow \mathbb{E}: 5$ runs; transfer time 5 min . everywhere

NO.	TYPE	SIZE	NODES	DESCRIPTION
15	G	15X15	225	$\mathbb{N} \rightarrow S: 6$ runs; $S \rightarrow \mathbb{N}: 3$ runs; $E \rightarrow W: 5$ runs; $W \rightarrow E: 5$ runs; transfer time 3 min . everywhere
16	G	8×8	64	Multiple period run with $\mathbb{N} \rightarrow S$ and $E \rightarrow W$ more frequent in period l, all same frequency in period $2, S \rightarrow \mathbb{N}$ and $W \rightarrow E$ more frequent in period 3 ; speed greatest in period 2
17	G	10X8	80	Local: $N \rightarrow S$ and $W \rightarrow E$ have 7 runs, $S \rightarrow N$ and $E \rightarrow W$ have 4 runs; Express: $N \rightarrow S$ and $W \rightarrow E$ have 4 runs, $S \rightarrow \mathbb{N}$ and $E \rightarrow W$ have 2 runs
18	R	$\begin{gathered} 8 \mathrm{R}, 7 \mathrm{~B}, \\ 12 \mathrm{~S} \end{gathered}$	80	Local: frequency every 20 min . out from center, every 30 min . in to center, every 15 min , on 2 beltways, every 20 min . on other beltways Express: frequency every 30 min . out from center, every 60 min . in to center, every 30 min . on beltways; 5 min . transfer at center, 2 min. elsewhere
19	G	12 XI 0	120	Local: 4 runs, Express: 2 runs; transfers 2 min.
20	R	9R, 6B	120	Local: 5 runs, Express : 3 4uns' 5 ,om/ tramsfer at cemter' 2 mi elsewhere
21	G	9X9	81	Local: 6 runs--10 min. apart, Express: 3 runs-- 20 min . apart; 2 min. transfer, ratio of express to local speed l.l
22	G	9×9	81	Local: 6 runs-- 10 min. apart, Express: 3 runs-- 20 min. apart; 2 min . transfer; ratio of express to local speed 2.0
23	G	9×9	81	Local: 6 runs-- 10 min. apart, Express: 3 runs-- 20 min. apart, 2 min . transfer; ratio of express to local speed 3.0
24	G	9×9	81	Local: 6 runs--10 min. apart, Express: 3 runs--15 min. apart, 2 min . transfer; ratio of express to local speed 2.0
25	G	9×9	81	Local: 6 runs-- 10 min. apart, Express: 3 runs- 25 min . apart, 2 min. transfer; ratio of express to local speed 2.0
26	G	9X9	81	Local: 6 runs--10 min. apart, Frmess: 3 runs-- 30 min, apart, 2 min . transfer; ratio of express tc local speed 2.0

TABLE 9

INFLUENCE OF TRANSFER TIME

$\begin{gathered} \text { CASE } \\ \text { NO. } \end{gathered}$	TRANSFER TIME	COMPUTATION TIME *			AVG. NO. OF TRANSFERS		
		LABCOR	LABSET	TIMEXD	LABCOR	LABSET	TIMEXD
6	2	25	16	35	. 68	. 68	.72
5	$\begin{aligned} & 10 \\ & \text { (at center node) } \end{aligned}$	29	16	31	. 88	. 92	. 92
7	2	26	17	39	. 68	. 68	. 68
8	(at center node)	28	16	34	. 76	. 76	. 88
1	2	143	88	48	1.12	1.28	1.32
15	3	143	95	62	1.08	1.16	1.16
14	5	128	94	62	. 84	1.00	. 96

*Computation time is in milliseconds
elongated network. The average number of transfers is greater by 4, 31, and 4 percent respectively for IABCOR, LABSET and TIMEXD on the elongated network, although the number of stops in any diagonal trip (across the whole network) increases by 50 percent. Therefore, despite some increase in both computation time and the average number of transfers with an elongated network, the computations in a transit network are not as sensitive to the network shape as is a standard shortest-path calculation.

The sensitivity of computation time and number of transfers to the relative speeds of express and local service was examined, and the results are displayed in Table 10. As express service becomes more attractive (i.e., faster relative to the local service), the number of transfers increases since most trips try to take advantage of the express service, often transferring from local to express and then back to local. The local service effectively operates as a feeder service for the express service when the speed differential is fairly large. Computation time also increases commensurately with the number of transfers. When express service is provided by a fixed rail system, ratios of 3 to 1 in speed may easily hold. The system changeover from express bus to express rail, as for example in Washington, may bring an increase in the average number of transfers per trip and an increase in the computation time per trip itinerary, even with no increase in the number of stops.

Several other characteristics were examined for effects on either computa+ion time or path output and were found to elicit no discernable patteri of response. Among these are the difference between grid-type and adial-type network structure, variations in the initial departure tim:s (with constant frequency), variation of the time between express runs (again with frequency held constant), and various geographical frequency patterns, such as north-south routes frequent while east-west routes are less so, certain streets having frequent service while others have less, or radial runs frequent toward the center but not as frequent outwards. Although it might be expected that any of these parameters might affect algorithm performance, none had a great effect and no discernable pattern emerged.

TABLE 10

INFLUENCE OF RATIO OF EXPRESS
TO LOCAL SPEED

RUN	RATIO	computation time *			AVG. NO. Of TRANSFERS		
		LABCOR	LABSET	TIMEXD	LABCOR	LABSET	TIMEXD
21	1.1	56	41	36	1.0	1.28	1.28
22	2.0	64	35	45	1.2	1.32	1.40
23	3.0	71	37	51	1.4	1.52	1.84

*Computation time is in milliseconds.

5. CONCLUSION AND RECOMMENDATIONS

This report has discussed the comparative performance of three algorithms for producing itineraries by computer for use in an automated transit information system. The test networks used in the analysis were designed specifically to highlight performance variation as a function of network size and type and ranges of parameter values. The results of the analysis are summarized below in three categories: path output, program size, and timing.

LABCOR is guaranteed to produce, among all trips arriving at the destination at the same time, that trip having fewest number of transfers. In 9 percent of the test cases LABSET produced a trip with more transfers than did LABCOR. TIMEXD had more transfers in 14 percent of the cases. TIMEXD also produced itineraries in which an extra transfer occurred because of an express overtaking a local vehicle. This situation does not occur with LABCOR. Thus in all cases LABCOR produced significantly more desirable itineraries about 10 percent of the time.

Computer storage requirements for LABCOR and LABSET are similar and depend mainly on storing the route and schedule information, which requires the list of stops on each route and the arrival time at each stop for each departure. Other arrays whose sizes depend primarily on the number of stops are required. The storage required by TIMEXD depends mainly on the number of arcs in the time-expanded network, which is determined by the number of vehicle route segments and the number of possjk, ee transfers. The storage for a square 15 by 15 grid with about 300 departures was estimated as 8200 locations for LABCOR, 10,170 for TABSET and 64,440 for TIMEXD. The square grid, which admittedly is a situation least favorable to TIMEXD, nonetheless illustrates the difference between the requirements of the two types of algorithm. Even in a more favorable situation, TIMEXD is likely to require substantially nore computer storage than either of the other two algorithms. In addition, our programming of $L A B C O R$ and LABSET has not taken full advantage of most efficient storage practices, whereas TIMEXD has much less leeway.

TIMEXD is clearly fastest for larger networks, and as shown by the regression equation, its calculation time grows more slowly with an increase in network size. LABCOR, which produces better paths, averaged 77 percent longer computation times and for the larger networks included in the analysis, the 15 by 15 grids, was 2.5 times as slow as TIMEXD. The timing of each of the three algorithms was highly correlated with the number of nodes, with the rate of growth being greatest for LABCOR, moderate for LABSET and lowest for TIMEXD. Timing also depends on network characteristics, such as the number of transfers, the minimum transfer time requirements, the relative speeds of express and local service, and network shape.

A recommendation on the choice among the three algorithms depends in part on the appropriate tradeoff between speed and quality of the output itinerary. If the speed of the LABCOR algorithm is sufficient for the particular application, its clearly-more-desirable itinerary output makes it the algorithm of choice, but if speed is more important
then TIMEXD becomes attractive. Our analysis did not attempt to fine-tune the networks, for instance, to examine individually the transfer arcs included in TIMEXD networks to see if undesirable transfers could be curtailed by removing some of these arcs as spurious candidates. Other heuristics or data manipulations are also possible and might improve the path output from TIMEXD without degrading its performance significantly. TIMEXD also has the disadvantage of requiring a large amount of core storage; both of the other algorithms require much less. LABSET produces paths which may be longer than those output by LABCOR, although this does not happen as frequently as with TIMEXD. LABSET is faster than LABCOR but not as fast as TIMEXD, and requires only slightly more storage than LABCOR. Thus in situations where speed is important but better quality path output than available from TIMEXD is desired, LABSET may be an acceptable compromise.

6. REFERENCES

1. Judith F. Gilsinn, Patsy B. Saunders, and Martin H. Pearl, Path Finding Algorithms and Data Structures for Point-to-Point Trip Management, National Bureau of Standards Report Number NBSIR 75-676, January 1975.
2. Judith Gilsinn and Christoph Witzgall, A Performance Comparison of Labeling Algorithms for Calculating Shortest Path Trees, National Bureau of Standards Technical Note 772, May 1973.
3. Douglas R. Shier and Judith F. Gilsinn, Cost/Benefit Analysis of Automated Transit Information Systems, National Bureau of Standards Report Number NBSIR 77-1253, June 1977.

APPENDIX A
 DOCUMENTATION OF PROGRAMS FOR TEST-PROBLEM GENERATION AND ITINERARY-FINDING

The computer programs used in performing the analyses described in Section 4 are documented in this appendix. A flowchart of these programs appears in Figure A.l, with the programs shown in rectangular boxes, input files in rectangular boxes with a cut-off corner, intermediate data files in boxes with rounded sides, and output in the box labeled "TRIP ITINERARIES". The numbers in the upper right corners of program boxes are keyed to the section in which the progran is documented. For instance, documentation of program RAD is in section A.l. The number in parentheses in either an input or an intermediate file box refers to the logical unit number used in referencing the file. Descriptions of the contents and formats of the files appear in Section A.10. Two programs not appearing in this chart have been included in the documentation, because they would be important parts of an actual information system's computer-program package and because they have been discussed both in [1] and in the text of this report. They are an arrivaloriented version of the time-expanded network algorithm, described in Section 2.2.2, and a program to remove extraneous, non-decision nodes from a transit network. Computer listings of all programs appear in Appendix B.

All programs are written in FORTRAN V, UNIVAC's enhanced version of FORTRAN IV, and were run on the UNIVAC 1108 at NBS under the EXEC 8 operating system. Generally, all programs for a single test case were executed in sequence in the same computer run with network generation followed by necessary preliminary processing, followed immediately by itinerary computation by each of the three algorithms in sequence. Thus for radial networks, the program execution sequence is RAD, TRA, ACYCLE, LABCOR, LABSET and TIMEXD; for grid networks the sequence is similar but omits TRA, thus becoming XGRID, ACYCLE, LABCOR, LABSET, and TIMEXD. Input files TMIN and TRIPS, together with the input required for either the grid or radial network generators, must be prepared in advance. All other files are generated by the programs as they are executed.

Since these programs were coded primarily for use in the analyses described in this report, no special effort was made to limit code to a portable subset of FORTRAN. Program characteristics which affect portability are listed below:
l. Card input is from logical unit 5, printer output is on logical unit 6, and units 7 through 12 are used for various data files.
2. In the path computation prograns, a variable INF, representing a very large integer, is set equal to 999999999 , which may be too large for machines with smaller word sizes.

3. We have used the "PARAMETER $=$ " statement to set, program dimensions. This may be replaced by explicit numerical values wherever the PARAMETER variable occurs.
4. The UNIVAC FORTRAN V sompiler ignores all remaining characters following the character @ on any line. This has been used tw add short comments to lines of code, and all characters after and including the @ on any line.
5. The IMPLICIT INTEGER ($A-Z$) statement makes al variaules of integer type, and may be replaced by a list of all variatles appearing in the code.
6. The "END=" clause in a READ statement transfers control to the statement number given when an end-of-file condition is sensed in input.
7. The path-finding algorithm codes all call the special system subroutine CPUSUP which computes the CPU time in milliseconds since the start of the run. Any equivalent clock routine can be used.

Detailed documentation and user instructions for the programs shown in Figure A.l, together with the two additional codes discussed above, are included in the sections below. In each case there is a narrative describing the program's function, a list of the variables and arrays appearing in the code, a list of the input required and outputs produced together with their formats, and descriptions of subroutines. List,ings of the codes appear in Appendix B.

A.1. PROGRAM RAD

This program generates a user-specified radial, or "spider web", network in which routes go outward from a central node along radial segments or go between radials in circular arcs or portions of such arcs. The user specifies the number of radials, the number of stops and distances between stops along each radial, the stops on radials connected by circular segments (or "beltways"), and the stops at which "spike" routes connect to radials. These latter are routes which proceed from the central node out along a radial but diverge from the radial at some node along it.

By user specification, any radial, beltway or spike can also have an express route. Each route, local or express, has a complementary route which traverses the same set of stops in reverse order. Express routes stop only at intersections with other express routes.

Schedules for each route are computed from input data which include the number of runs, the headway between runs, and the departure time of the first run for each route for each time period. Time between stops is computed from interstop distance by using a user-supplied conversion factor. Both local and express conversion factors are input for each time period.

The main program RAD serves both as a network-description input routine and as a calling routine to generate the radial transit route system. Subroutine LOCAL is called to create the local network and subroutine EXPRES is called to create the express routes. Subroutine RSCHED is called from LOCAL and EXPRES to compute schedules for each route.
A.1.1 Variables and Arrays Used in RAD

Time period input

IPD	- number of time periods used in computing schedules. (Headways are constant during a time period.)
$\begin{aligned} & \mathrm{ZK}(\mathrm{I}), \\ & \mathrm{I}=\mathrm{I}, \mathrm{IPD} \end{aligned}$	- factor used in converting distance to time for local routes for each time period
$\begin{aligned} & \mathrm{XZK}(\mathrm{I}), \\ & \mathrm{I}=1, \mathrm{IPD} \end{aligned}$	- factor used in converting distance to time for express routes for each time period

Radial input

IRAD	- number of radials
ANGLE(r)	- angle of radial r, measured counterclockwise from east
$\operatorname{ISTP}(\mathrm{r})$	- number of stops on radial r not counting the center node
$\operatorname{DSTRAD}(r, j)$	- distance between stops j and $j+1$ on radial r
$\operatorname{REXP}(\mathrm{r})$	- a flag set to l if radial r is an express route

Beltway input

IBELT	- number of beltways
$\operatorname{IBIN}(\mathrm{b})$	- initial (east-most) radial connected by beltway b
$\operatorname{IBFIN}(\mathrm{b})$	- final radial connected by beltway b
$\mathrm{NB}(\mathrm{b})$	- number of radials intersected by beltway b. (Note that beltway b will intersect all radials between $\operatorname{IBIN}(\mathrm{b})$ and $\operatorname{IBFIN}(\mathrm{b})$. If $\operatorname{IBFIN}(\mathrm{b}) \leq \operatorname{IBIN}(\mathrm{b})$ it will intersect radials $\operatorname{IBIN}(\bar{b})$ to IRAD and 1 to $\operatorname{IBFIN}(\mathrm{b})$. When $\operatorname{IBIN}(\mathrm{b})=\operatorname{IBFIN}(\mathrm{b})$ the beltway is a full beltway encircling the center node; otherwise it is only a "partial circle".)

$\operatorname{IBSTP}(\mathrm{b}, \mathrm{i})$ - stop on radial $\operatorname{IBIN}(\mathrm{b})+i \operatorname{l}$ at beltway b , $i=1, \operatorname{NB}(b)$ where the center is counted as stop 1 on each radial. (Note that the length of the beltway segment, between the ith and (i + l) st radials it intersects, is calculated as the average of the circular arc length at the radjus determined by stop IBSTP (b, i) on the ith radial and the circular arc length at the radius determined by stop $\operatorname{IBSTP}(b, i+1)$ on the ($i+1$) radial.)

BEXP(b) - a flag set to l if beltway b is an express route

Spike input
ISPIKE - number of spikes

```
ISRAD(s) - radial to which spike is connected
ISSTP(s) - stop on radial ISRAD to which spike is
    connected
DSPIKE(s) - length of spike
SEXP(s) - a flag set to l if spike s is an express
    spike
```

Node description

```
KRAD(k) - radial on which node k is located
KSTP(k) - stop on radial KRAD(k) which is node k
NODE(r,j) - node for stop j on radial r
```

Route description

```
MRTE(m,n) - nth stop on route m. (Note that MRTE(l,j)
    = MRTE(2,n - j + l) since routes go in
    both directions and appear in pairs.)
```

$\operatorname{DTEMP}(m, n)$ - distance between stops n and $n+1$ along
route m . (As noted for MRTE, the distances in
$\operatorname{DTEMP}(1, k)$ appear in the reverse order to
$\operatorname{DTEMP}(2, k)$.

Input schedule description
JRUNS - number of runs of this route this time period

JHEAD - headway between runs of this route this time period

PDTM - time of first run of this route this time period

Counters
K - the number of nodes
M1 - current route in one direction

M2 - route in the opposite direction to MI traversing the same stops in reverse order
A.1.2 Program Input

Input to program RAD includes a description of the radial network to be generated and schedule data for each route. The input, read from cards on logical unit 5, consists of three main sections: (1) the trafor logical and route structure of the radials, beltways and spikes, (2) the schedule information for local routes and (3) the schedule information for express routes. The actual card formats are given below in the order in which they are to appear.

Time period input

Contents	Format
IPD	I5
ZK $(I), I=1$, IPD	$8 F 10.1$
XZK $(I), I=1$, IPD	$8 F 10.1$

Radial input
IRAD
I5
For each radial:
REXP
ANGLE, ISTP
(DSTRAD(radial, J), J=1, ISTP)
I5
F10.1, I5
8F10.1
Beltway input
[BEI,T
I5
For each beltway:
BEXP I5
IBIN, IBFIN 215
(IBSTP (beltway, J), J=1, NB) 1615
Spike input
ISPIKE
I5
For each spike:
SEXP
15
ISRAD, ISSTP, DSPIKE 2I5, F10.1

A description of the schedule input data follows. Within each group of schedule data, the order must be the same as the order of the topology input above.

Local radial schedule input

For each radial:

Route going outward from center, one card for each time periud JRUNS, JHEAD, JDTM $3 I 5$

Route going inward toward center, one card for each lime period JRUNS, JHEAD, JDTM 3 I5

Lucal beltway schedule input

For each beltway:

Route going counterclockwise, one card for each time period JRUNS, JHEAD, JDTM $3 I 5$

Route going clockwise, one card for each time period JRUNS, JHEAD, JD'TM

315

Local spike schedule input
For each spike:

Route going outward from center, one card for each time period JRUNS, JHEAD, JDTM 315

Route going inward toward center, one card for each time period JRUNS, JHEAD, JDTM $3 I 5$

Express beltway schedule input
For each express beltway:

Route going counterclockwise, one card for each time period JRUNS, JHEAD, JDTM 315

Route going clockwise, one card for each time period JRUNS, JHEAD, JDTM 315

Express spike schedule input

For each express spike:

Route going outward from center, one card for each time period JRUNS, JHEAD, JDTM $3 I 5$

Route going inward toward center, one card for each time period JRUNS, JHEAD, JDTM $3 I 5$

For each express radial:
Route going outward from center, one card for each time period JRUNS, JHEAD, JDTM 3I5

Route going inward toward center, one card for each time period JRUNS, JHEAD, JDTM 3I5

A.1.3 Program Output

Output consists of the file SDATA (on unit ' ') which gives for each route the number of stops, the number of runs, the list of stops ard the times at each stop for each run. This information is also printed.

A.1. 4 Subroutine LOCAL

Subroutine LOCAL generates the nodes and local routes of a radial transit route system. The network topology description is availabie through three common blocks - RADIAL, BELTWY and SPIKE. The subroutine constructs the node description arrays KRAD, KSTP and NODE as it computes the local radial routes. Local beltway and spike routes are then computed. After each route and its complement are computed, subroutine RSCHED is called to compute the schedules.

A.1.5 Subroutine EXPRES

This subroutine generates the express routes of a radial transit route system. Two-way express routes are computed for radials, beltways and spikes designated by the user to be major routes. Subroutine RSCHED is called to compute the schedule of each route and its complement.

A.1.6 Variables and Arrays Used in LOCAL and EXPRES

Radial description

IRAD	- number of radials
ANGLE (r)	- angle of radial r, measured counterclockwise from east
$\operatorname{ISTP}(\mathrm{r})$	- number of stops on radial r not counting the center node
$\operatorname{DSTRAD}(r, j)$	- distance between stops j and $j+1$ on radial r
$\operatorname{REXP}(\mathrm{r})$	- a flag set to l if radial r is an express route

Beltway description
IBELT - number of beltways
IBIN(b) - initial radial connected by beltway b
IBFIN(b) - final radial connected by beltway b
$\operatorname{DSTBLT}(b, j)-$ distance between stops j and $j+l$ on beltway b
$N B(b) \quad-\quad$ number of radials intersected by beltway b
$\operatorname{IBSTP}(b, i)-$ stop on radial $\operatorname{IBIN}(b)+i-1$ on beltway b, where the center is counted as stop 1

BEXP(b) - a flag set to 1 if beltway b is an express route

Spike description
ISPIKE - number of spikes
$\operatorname{ISRAD}(s)$ - radial to which spike is connected
$\operatorname{ISSTP}(\mathrm{s})$ - stop on radial ISRAD to which spike is connected

DSPIKE(s) - length of spike
NDSPK(s) - node number of stop at end of spike
$\operatorname{SEXP}(s)$ - a flag set to 1 if spike s is an express route

Node description

$$
\begin{array}{ll}
\operatorname{KRAD}(k) & - \text { radial on which node } k \text { is located } \\
\operatorname{KSTP}(k) & - \text { stop on radial } \operatorname{KRAD}(k) \text { which is node } k \\
\operatorname{NODE}(r, j)-\text { node for stop } j \text { on radial } r \\
\operatorname{KEXP}(k) & - \text { true/false express node indicator }
\end{array}
$$

Route description

$$
\begin{aligned}
\operatorname{MRTE}(m, n)- & \text { nth stop on route. (Note that MRTE }(1, j) \\
& =\operatorname{MRTE}(2, n-j+1) \text { since routes go in both } \\
& \text { directions and appear in pairs.) }
\end{aligned}
$$

$$
\begin{aligned}
\text { DTEMP }(m, n)- & \text { distance between stops } n \text { and } n+l \text { along } \\
& \text { route. (As noted for MRTE, the distances } \\
& \text { in DTEMP }(1, k) \text { appear in the reverse order } \\
& \text { to DTEMP }(2, k) .)
\end{aligned}
$$

Counters

```
K - the number of nodes
M1 - current route in one direction
M2 - route in the opposite direction to ML
    traversing the same stops in reverse
    order
```


A.1.7 Subroutine RSCHED

This subroutine computes and outputs schedule information for routes Ml and M2. Input, which is transmitted through calling arguments and the common block GENRAL, includes the stops along routes M1 and M2 stored in MRTE, the distance between stops in DTEMP, the number of stops along these routes in \mathbb{N}, and time period information stored in IPD, ZK and XZK. After schedules for both routes are computed, RSCHED outputs the route number, the number of stops, the number of runs, the list of stops and the times at each stop for each run both to file SDATA and to the printer.

A.1.8 Variables and Arrays Used in RSCHED

N	- number of stops along either of the current pair of routes
$\operatorname{MRTE}(\mathrm{m}, \mathrm{j})$	- jth stop along the route (Stops in $\operatorname{MRTE}(1,-)$ appear in the reverse order to those in $\operatorname{MRTE}(2,-)$.
$\operatorname{DTEMP}(\mathrm{m}, \mathrm{j})$	- distance between stops $\operatorname{MRTE}(m, j)$ and $\operatorname{MRTE}(\mathrm{m}, \mathrm{j}+1)$
MI	- number of the first of the pair of routes being considered
IPD	- number of time periods for which schedules are to be constructed
ZK(i)	- factor for converting distance to time for local routes in period i
XZK (i)	- factor for converting distance to time for express routes in period i

JRUNS(i)	- number of runs of the current route in period i
JHEAD (i)	- headway between runs of the current route in period i
JDTM (i)	- time of first run of the current route in period i
NRUNS	- number of runs of the current route over all periods
MM	- keeps track of which of the pair of routes is the current route
JTIME(ℓ)	- the time that the current vehicle stops at stop MRTE(MM, l)
LOE	- Equal to 1 if RSCHED is being called from LOCAL. Equal to 2 if RSCHED is being called from EXPRES

A.2. PROGRAM XGRID

This program generates a P x Q grid transit network with routes running in the horizontal (west-east, east-west) and the vertical (northsouth, south-north) directions. Stops are numbered consecutively from left to right and from top to bottom. Routes are numbered consecutively in the order: W-E, E-W, N-S and S-N. Express horizontal and vertical routes are numbered in a similar order beginning with route number $2 P+$ $2 Q+1$. Any stop is allowed to be a transfer point between routes which stop at that point. The minimum transfer time between any two routes is considered to depend only on the stop at which the transfer occurs. Routes are assumed to follow regular schedules (constant headways) during each of a number of time periods. A different conversion factor may apply for converting distance into travel time during different periods, and different factors apply to local and to express routes.

The program XGRID makes calls to four subroutines: GRID (which creates the local grid network), XPRESS (which creates express routes), XSCHED (which produces the complete schedule information) and TRANS (which outputs the appropriate transfer information). These subroutines are described in fuller detail below. Input to XGRID includes the number of stops P and the number of stops Q which define, respectively, the vertical and horizontal dimensions of the $\mathrm{P} x \mathrm{Q}$ grid. In addition, the user must specify the interstop distances between successive "rows" and "columns" of the grid, as well as the number of time periods and conversion factors for each period for local and for express routes. Subroutine XPRESS requires designation of the horizontal and vertical
elements to be used for express route: , subroutine XSCHED requires the input of abbreviated schedule information and subroutine TRANS requires the input of (minimum) transfer times at each stop. Output of the grid generator consists of detailed schedule information and transfer information.
A.2.1 Variables and Arrays Used in XGRID, GRID, and XPRESS

Input parameters
P - vertical dimension of grid

Q - horizontal dimension of grid
L(i) - distance between rows i and i - 1
W(i) - distance between columns i and i - l

PDS - number of periods
ZK(j) - converts distance into time for local routes for period j

XZK(j) - converts distance into time for express routes for period j

Route description

```
NN(r) - number of nodes (stops) on route r
NODE(r,i) - the ith node on route r
D(r,i) - the ith interstop distance along route r
RBASE - convenient reference base for absolute
    route numbers
```

Transfer node description
TNODE(j) - the jth transfer node

RTI(j) - route from which a transfer is made at TNODE(j)

RT2(j) - route to which a transfer is made at TNODE(j)
NTRANS - number of transfers

A.2.2 Program Input

Input to the grid generator consists of five types:

1. Structural parameters of the local grid, read in from cards (unit 5) by XGRID.
2. Structural parameters of the express routes, read in from cards (unit 5) by XPRESS.
3. Conversion factors for each period, read in from cards (unit 5) by PGRID.
4. Abbreviated schedule information, read in from cards (unit 5) by TSCHED.
5. Minimum transfer times at each node, found on file TMIN (unit 12) and read by TRANS.

Specific formats for data types l, 2, 3 and 4 are given below.

Local Structural Parameters

Contents
$P, Q,(L(I), I=2, P)$,
$(W(I), I=2, Q)$

Format

Express Structural Parameters

$$
\begin{align*}
& \text { NMP, NMQ } \tag{215}\\
& \begin{array}{l}
\text { (MAINP }(I), \\
(\operatorname{MAINQ}(J), \\
J=l, N M P)
\end{array} \tag{16I5}
\end{align*}
$$

Conversion Factors

$$
\begin{array}{ll}
\text { PDS, (ZK (I), } I=1, P D S) & I 5,(15 F 5.2) \\
(\mathrm{XZK}(I), I=1, \operatorname{PDS}) & (5 \mathrm{X}, 15 \mathrm{F5} 5.2)
\end{array}
$$

Abbreviated Schedule Information
NR, (ROUTE (J), $J=1, N R)$
-- one card for each
group of routes, fol-
lowed by --
RUNS (I), HEAD (I), (DTIME(I,J)
$J=1, N R$)
-- one card per group
fur each time period --
(applies to all routes
in the group)
@EOF

A.2.3 Program Output

Output from the grid generator consists of two files:

1. Detailed schedule information is produced by XSCHED and is written onto file SDATA (unit 7).
2. Transfer information is produced by TRANS and is written onto file TDATA (unit 8).

A.2.4 Subroutine GRID

This subroutine generates the nodes, local routes and transfer data for a P x Q grid network, where $P, Q>1$. The variables $P, Q, R B A S E$ and the arrays LL, W are transmitted from PGRID. The subroutine defines the variable NTRANS and constructs the arrays NN, NODE, D, TNODE, RTI and RT2; these quantities are then made available to other (sub) programs through COMMON.

A.2.5 Variables and Arrays used in GRID

Input parameters

Route description
$\operatorname{NN}(r) \quad-\quad$ number of nodes on route r
NODE (r, i) - the ith node on route r
$D(r, i) \quad-\quad$ the ith interstop distance along route r
Transfer node description
TNODE(j) - the jth transfer node
RTI(j) - route from which a transfer is made at TNODE (j)

RT2(j) - route to which a transfer is made at TNODE(j)
NTRANS - number of transfers

A.2.6 Subroutine XPRESS

This subroutine generates the express routes for a PxQ grid. The variables P, Q, RBASE and the arrays $L L$ and W are transmitted from XGRID. The subroutine increments the variable NTRANS and constructs the arrays NN, NODE, D, TNODE, RT1 and RT2 for the express routes; these quantities are then made available to other (sub) programs through COMMON. XPRESS reads from cards (unit 5) NMP and NMQ and the arrays MAINP and MAINQ identifying those vertical and horizontal elements used by express routes. XPRESS calls subroutine XTRANS to construct transfers.

A.2.7 Variables and Arrays used in XPRESS

Input parameters

P	- vertical dimension of grid
Q	- horizontal dimension of grid
LL(i)	- distance between rows i and i - 1
W(i)	- distance between columns i and i - l
RBASE	- convenient reference base for absolute route numbers

Route description

$$
\begin{array}{ll}
\operatorname{NN}(r) & \text { - number of nodes on route } r \\
\operatorname{NODE}(r, i) \quad-\quad \text { the ith node on route } r \\
D(r, i) \quad-\quad \text { the ith interstop distance along route } r
\end{array}
$$

Transfer node description
TNODE(j) - the jth transfer node
RTI(j) - route from which a transfer is made at TNODE (j)

RT(j) - route to which a transfer is made at TNODE (j)

NTRANS - number of transfers

Express route input

NMP	number of horizontal express routes
NMQ	number of vertical express routes
$M A I N P(i) ~-~$	ith main horizontal element (express routes
	travel along the main elements)
MAINQ(i) - ith main vertical element	

Express route descriptors

SP(i)	- ith main horizontal element, including endpoints if they are not in MAINP
SQ(i)	- ith main vertical element, including endpoints if they are not in MAINQ
NSP	- number of entries in SP
NSQ	- number of entries in SQ
DP(i)	- distance between ith and i + lst elements in SP
DQ(i)	- distance between ith and i + lst elements in SQ
FLAG(i)	- an array designating which transfers are allowed between the current route r and other routes stopping at the same node. FLAG = 0 indicated no transfer; FLAG $=1$ indicates transfer is allowed. The transfers controlled by FLAG are as follows for each value of i : $i=1: r$ to local West East route $i=2$: local West East route to r $i=3: r$ to local East West route $i=4$: local East West route to r i=5: r to local North South route $i=6$: local North South route to r $i=7: r$ to local South North route $i=8$: local South North route to r $i=9: r$ to express East West route $i=10$: r to express West East route i=ll: r to express North South route i=12: r to express South North route

A.2.8 Subroutine XTRANS

This subroutine creates the express route transfers indicated in the array FIAG. The subroutine increments the variable NTRANS and constructs the COMMON arrays TNODE, RT1 and RT2 for express routes at nodes at which vertical and horizontal express routes intersect. (Analogous arrays for nodes at the ends of express routes, along the periphery of the grid, are constructed in XPRESS.)

A.2.9 Variables and Arrays Used in XTRANS

Input parameters

A.C.10 Subroutine XSCHED

This subroutine reads in (from unit 5) a group of routes together with abbreviated schedule information and then produces detailed schedule information for each route and period. The detailed schedule information is written out onto file SDATA (unit 7). The variables PDS, RBASE, $P Q$ and the arrays $N N, N O D E, D, Z K, X Z K$ are transmitted from XGRID.

A.2.11 Variables and Arrays Used in XSCHED

Input variables and arrays

$$
\begin{aligned}
& \text { PDS - number of periods } \\
& \text { RBASE - convenient reference base for absolute } \\
& \text { route numbers } \\
& \mathrm{PQ} \text { - the number of local routes }(2 * \mathrm{P}+2 * \mathrm{Q}) \\
& \mathrm{ZK}(\mathrm{j}) \quad-\quad \text { converts distance into time for period } j \\
& \text { for local routes } \\
& \text { XZK(j) - converts distance into time for period j } \\
& \text { for express routes } \\
& \text { NN(r) - number of nodes on route } r \\
& \operatorname{NODE}(r, i) \quad-\quad \text { the ith node on route } r \\
& D(r, i) \quad-\quad \text { the ith interstop distance along route } r
\end{aligned}
$$

Additional variables and arrays (read from unit 5)
NR - number of routes in a group
ROUTE(j) - the jth route of the group
RUNS(i) - number of runs for period i
HEAD(i) - headway for routes in period i
DTIME(i,j) - initial departure time for route j in period i

Working arrays

A.2.12 Subroutine TRANS

This subroutine writes out onto file TDATA (unit 8) the transfer information previously generated. The transfer time array TMIN is read from unit IN = 12. The variables PQ, RBASE, NTRANS and the arrays TNODE, RTI, RT2 are transmitted from XGRID.

A.2.13 Variables and Arrays Used in TRANS

Input variables and arrays

$P Q$	- number of nodes in grid net
RBASE	- convenient reference base for absolute route numbers
NTRANS	- number of transfers
TNODE(${ }^{\text {j }}$)	- the jth transfer node
RTI (${ }^{\text {) }}$	- route from which a transfer is made at TNODE (j)
RT2 (j)	- route to which a transfer is made at TNODE(j)
$\operatorname{TMIN}(\mathrm{i})$	- minimum transfer time between any two routes at node i

A.3. PROGRAM TRA

This program produces a list of allowable transfers between routes from the route descriptions and minimum transfer times for each node. It is assumed that routes occur in pairs, with routes i and $i+l$ having the same stops in reverse order. Transfers are allowed between all routes stopping at a node except that:

1. One cannot transfer from the first stop on a route,
2. One cannot transfer to the last stop on a route, and
3. One cannot transfer from a route to its reverse counterpart.

A.3.1 Variables and Arrays Used in TRA

MINTRA(i) - minimum time required to transfer between routes at node i

$\operatorname{STP}(\mathrm{k})$	- the kth stop along the current route (used in reading the route information)
NSTP(i)	- the number of routes stopping at node i
$\operatorname{RTE}(i, j)$	- the jth route stopping at node i
$B E(i, j)$	- I if node i is the first node on route $\operatorname{RTE}(i, j) .2$ if node i is the last node on route $\operatorname{RTE}(i, j)$. 0 otherwise.
NODE	- the number of nodes
M	- the number of stops on the current route
N	- the number of routes stopping at the current node

A.3.2 Program Input

Input to TRA consists of one card and two files:

1. Card with number of nodes (I5 format).
2. Schedules from file SDATA on unit 7.
3. Minimum transfer times in file TMIN on unit 12.

A.3.3 Program Output

Program output is the file TDATA which gives, for each node, the route pairs between which transfers are allowed and the minimum time required to transfer between those routes at that node.

A.4. PROGRAM ACYCLE

This program produces an appropriate time-expanded network from given schedule information and transfer data. Each node of the timeexpanded network that is constructed represents a particular (stop, time) pair. Transfers are accommodated by using transfer arcs between nodes; such transfer arcs are labelled with the fictitious route number 9999. Output consists of the time-expanded node and arc data. Nodes are sorted by their time component, while arcs are sorted by their origin node. This program makes use of the subroutine SORTP having arguments $\mathrm{X}, \mathrm{N}, \mathrm{Y}$, XPOS. That routine sorts the \mathbb{N} elements of the array X into nondecreasing order, thus forming array Y. The ith element of array XPOS indicates what position of the original array X corresponds to the ith ordered observation $Y(i)$.

A.4.1 Variables and Arrays Used in ACYCLE

Input variables and arrays

RT	- route number
NN	- number of stops on route
RUNS	- number of runs
NODE (i) - the ith stop along the route	
SCHED(i) - the ith schedule time along the route	
TNODE	- stop at which transfer occurs
RT1	- route from which transfer at TNODE
RT2	- route to which transfer at TNODE
TMIN	- minimum transfer time at TNODE

Constructed arrays
$\mathrm{N}(\mathrm{i}) \quad$ - stop associated with network node i
$\mathrm{~T}(\mathrm{i}) \quad$ - time associated with network node i
$\mathrm{START}(r) \quad$ - first position where information may be
$\operatorname{END}(r) \quad-\quad$ last position where information may be found for route r on node list

LLEN - length of network node list
FROM(j) - starting node of arc in position j of arc list
$\mathrm{TO}(\mathrm{j}) \quad-\quad$ ending node of arc in position j of arc list
$\operatorname{RTE}(j)$ - route number corresponding to arc in position j of arc list

MLEN - length of network arc list
Working arrays
$T T(i) \quad$ - the ith ordered element of T
$\operatorname{TIND}(i) \quad-\quad$ the position in T of the ith element of $T T$
$\operatorname{NEW}(i) \quad-\quad$ the position in $T T$ of the ith element of T
$\mathrm{FF}(i) \quad$ - the ith ordered element of FROM
$\operatorname{FIND}(i) \quad-\quad$ the position in FROM of the ith element

A.4.2 Program Input

Input to ACYCLE consists of the following two files:

1. SDATA (unit 7) contains detailed schedule information for each route.
2. TDATA (unit 8) contains transfer information for each transfer point and routes connecting there.

A.4.3 Program Output

Output from ACYCLE consists of the following two files:

1. NDATA (unit 9) contains the node data for the time-expanded network, sorted by time.
2. ADATA (unit 10) contains the arc data for the time-expanded network, sorted by origin node.

A. 5. PROGRAM LABCOR

This program calculates trip itineraries using the label-correcting bipartite route/stop scheme described in Section l.l. Program input consists of the route and schedule data, minimum transfer times, and a list of trips to be calculated. Output is the itinerary for each trip, the calculation time in milliseconds for each trip, and the average and standard deviation of the calculation times for all trips.
A.5.1 Variables and Arrays used in LABCOR

Stop information

$\operatorname{NR}(s)$	number of routes stopping at s
$\operatorname{ROUTE}(s, j)-j t h ~ r o u t e ~ s t o p p i n g ~ a t ~$	
$\operatorname{MINTRA}(s)$	-minimum time required to transfer between routes at s

Route information

$$
\begin{aligned}
& \text { NS(r) - number of stops on route } r \\
& \operatorname{STOP}(r, i) \text { - ith stop on route } r \\
& \operatorname{SCHED}(k, i) \text { - arrival time at the ith stop of the kth } \\
& \text { departure } \\
& \operatorname{SBEG}(r) \text { - location in SCHED of the first scheduled } \\
& \text { departure for route } r \\
& \operatorname{SEND}(r) \quad-\quad \text { location in SCHED of the last scheduled } \\
& \text { departure for route } r
\end{aligned}
$$

Arrays used in the algorithm

$L(s)$	- sequence list of stops to fan out from
$\mathrm{F}(\mathrm{s})$	- position of stop s in list L
$T(s)$	- arrival time at stop s
$\mathrm{TB}(\mathrm{s})$	- boarding time for vehicle arriving at s at $T(s)$
PS(s)	- stop preceding s in the path to s
PR(s)	- route from PS(s) to s

Arrays used in printing the path
$\operatorname{SPRT}(j) \quad$ - stop
$\operatorname{RPRT}(j)$ - route
$\operatorname{TPRT}(j) \quad-\quad$ arrival time
TBPRT(j) - boarding time
Variables used in timing calculations
RUNTIM - CPU time (in milliseconds) used in calculating one trip

RTIME - sum of RUNTIM's
RTSQ - sum of squares of RUNTIM's

NRUN - number of trips calculated
ROUT - used in printing average and standard deviations

Variables describing the trip to be calculated
ORG - trip origin stop
DST - trip destination stop
TIME - desired departure time

A.5.2 Program Input

Input to LABCOR consists of three files:

1. Schedules from file SDATA on unit 7 .
2. Minimum transfer times in file TMIN on unit 12.
3. Trips to be found in file TRIPS on unit ll.

A.5.3 Program Output

All program output is on the printer and consists, for each desired trip, of the origin, destination and departure time, the trip itself with route, boarding and alighting stops, and times for each segment of the trip and computation time. At the end of the run the average computation time for all trips and its standard deviation are also printed.

A.6. PROGRAM LABSET

This program calculates trip itineraries using the label-setting bipartite route/stop scheme described in Section 2.2. Program input consists of the route and schedule data, minimum transfer times, and a list of trips to be calculated. Output is the itinerary for each trip, the calculation time in milliseconds for each trip, and the average and standard deviation of the calculation times for all trips.

A.6.1 Variables and Arrays used in LABSET

Stop information

$$
\begin{aligned}
& \operatorname{NR}(s) \quad-\quad \text { number of routes stopping at } s \\
& \operatorname{ROUTE}(s, j)-j \text { th route stopping at } s \\
& \operatorname{MINTRA}(s)-\begin{array}{l}
\text { minimum time required to transfer between } \\
\text { routes at } s
\end{array}
\end{aligned}
$$

Route information

NS (r)	- number of stops on route r
$\operatorname{STOP}(\mathrm{r}, \mathrm{i})$	- ith stop on route r
$\operatorname{SCHED}(\mathrm{k}, \mathrm{i})$	- arrival time at the ith stop of the kth departure
$\operatorname{SBEG}(\mathrm{r})$	- location in SCHED of the first scheduled departure for route r
$\operatorname{SEND}(\mathrm{r})$	- location in SCHED of the last scheduled departure for route r

Arrays used in the algorithm

$L(s)$	- sequence list of stops to fan out from
LPRED (s)	- predecessor node to node s in chain of nodes representing a level in sequence list L. If s heads the chain (i.e. HEAD(s) is true), this pointer gives the position of s in the chain of nodes.
LSUCC(s)	- successor node to node s in chain of nodes representing a level in list L
HEAD (s)	- logical variable used to indicate whether s heads a chain in L
$T(s)$	- arrival time at stop s
TB (s)	- boarding time for vehicle arriving at s at $T(s)$
PS (s)	- stop preceding s in the path to s
PR(s)	- route from PS(s) to s

Arrays used in printing the path

$\operatorname{SPRT}(j)$	stop
$\operatorname{RPRT}(j)$	- route
$\operatorname{TPRTP}(j)$	- arrival time
$\operatorname{TBPRT}(j) \quad-\quad$ boarding time	

Variables used in timing calculations

RUNTIM	- CPU time (in milliseconds) used in cal culating one trip
RTIME	- sum of RUNTIM's
RTSQ	- sum of squares of RUNTIM's
NRUN	- number of trips calculated
ROUT	- used in printing average and standard deviations

Variables describing the trip to be calculated
ORG - trip origin stop
DST - trip destination stop
TIME - desired departure time

A.6.2 Program Input

Input to LABCOR consists of three files:

1. Schedules from file SDATA on unit 7.
2. Minimum transfer times in file TMIN on unit 12.
3. Trips to be found in file TRIPS on unit ll.

A.6.3 Program Output

All program output is on the printer and consists, for each desired trip, of the origin, destination and departure time, the trip itself with route, boarding and alighting stops, and times for each segment of the trip and computation time. At the end of the run the average computation time for all trips and its standard deviation are also printed.

A.7. PROGRAM TIMEXD

This program uses a time-expanded representation (see Section 2.2) in order to calculate a "best" itinerary from a given origin to a given destination. The trip produced must not depart the origin before some specified time and must arrive at the destination as early as possible. Program input consists of the node and are data for the
time-expanded network together with a list of trips for which itineraries are required. Schedule times are assumed to be given for 1 through 1600 minutes. Program output consists of an itinerary for each trip, the calculation time (in milliseconds) for each trip as well as the average and standard deviation of calculation times for all trips in the list.

A.7.1 Variables and Arrays used in TIMEXD

Node and arc data

$N(i)$	- stop associated with network node i
T (i)	- time associated with network node i
ARC(i)	- last position where information may be found for node i in arc list
TO(j)	- ending node of arc in position j of arc list
$\operatorname{RTE}(\mathrm{j})$	- route number corresponding to arc in position j of arc list
NN(t)	- node corresponding to the first occurrence of time t or later
NODE	- number of network nodes

Input variables for trip
ORG - desired origin stop of trip
DST - desired destination stop of trip
TIME - time at or after which trip is to begin
Variables and arrays used in the algorithm
DONE - first node for which the destination stop has been encountered

P(i) - predecessor node to node i along the current path
$\operatorname{PRTE}(i) \quad-\quad$ route into node i along the current path
Arrays used in printing the path
PATHN(k) - stop in position k along path
PATHT(k) - time in position k along path

$$
\begin{array}{ll}
\text { PATHR(k) } & - \text { route in position } k \text { along path } \\
\text { Variables used in timing calculations } \\
\text { DIFF } & -\begin{array}{l}
\text { CPU time (in milliseconds) used in cal- } \\
\\
\text { culating one trip }
\end{array} \\
\text { RTIME } & - \text { cumulative sum of DIFF's } \\
\text { RTSQ } & - \text { cumulative sum of squares of DIFF's } \\
\text { NRUN } & -\quad \text { number of trips calculated } \\
\text { ROUT } & -
\end{array}
$$

A.7.2 Program Input

Input to TIMEXD consists of three files:

1. Node data in time-expanded form, sorted in increasing order by time and found on file NDATA (unit 9).
2. Arc data in time-expanded form, sorted by origin node and found on file ADATA (unit l0).
3. Trips to be found, on file TRIPS (unit ll).

A.7.3 Program Output

All program output is produced on the line printer and consists of the following information:

1. The origin, destination and departure time for each trip.
2. The trip itinerary with route, boarding stop, boarding time, alighting stop and alighting time for each segment of the trip.
3. Computation time for the trip calculation.
4. Mean and standard deviation of computation times for all trips.

A.8. PROGRAM TIMEXA

This program uses a time-expanded representation (see Section 2.2) in order to calculate a "best" itinerary from a given origin to a given destination. The trip produced must arrive at the destination by a
specified time and must depart from the origin as late as possible. Program input consists of the node and arc data for the time-expanded network together with a list of trips for which itineraries are required. Schedule times are assumed to be given for 1 through 1600 minutes. Program output consists of an itinerary for each trip, the calculation time (in milliseconds) for each trip as well as the average and standard deviation of calculation times for all trips in the list.

A.8.1 Variables and Arrays used in TIMEXA

Node and arc data

$N(i)$	- stop associated with network node i
$T(i)$	- time associated with network node i
ARC(i)	- last position where information may be found for node i in arc list
T0(j)	- ending node of arc in position j or arc list
$\operatorname{RTE}(\mathrm{j})$	- route number corresponding to arc in position j of arc list
NN(t)	- node corresponding to last occurrence of time t or earlier
NODE	- number of network nodes

Input variables for trip
ORG - desired origin stop of trip
DST - desired destination stop of trip
TIME - time by which trip is to be completed
Variables and arrays used in the algorithm
S(i) - successor node to node i along the current path

SRTE(i) - route out of node i along the current path
Arrays used in printing the path
PATHN(k) - stop in position k along path
PATHT(k) - time in position k along path
$\operatorname{PATHR}(k) \quad-\quad$ route in position k along path
Variables used in timing calculations

DIFF	$-\quad$ CPU time (in milliseconds) used in cal-			
culating one trip		\quad	RTIME	- cumulative sum of DIFF's
:---	:---			
RTSQ	- cumulative sum of squares of DIFF's			
NRUN	- number of trips calculated			
ROUT	-used in printing average and standard de-			

A.8.2 Program Input

Input to TIMEXA consists of three files:

1. Node data in time-expanded form, sorted in increasing order by time and found on file NDATA (unit 9).
2. Arc data in time-expanded form, sorted by origin node and found on file ADATA (unit 10).
3. Trips to be found, on file TRIPS (unit ll).

A.8.3 Program Output

All program output is produced on the line printer and consists of the following information:
l. The origin, destination and departure time for each trip.
2. The trip itinerary with route, boarding stop, boarding time, alighting stop and alighting time for each segment of the trip.
3. Computation time for the trip calculation.
4. Mean and standard deviation of computation times for all trips.

A.9. PROGRAM REMOVE

This program removes unnecessary nodes from a transit network, leaving only those nodes at which transferring is possible and likely. All nodes which are on only one route and which are not the first or last node on that route are deleted since no transferring is possible at any of these nodes. When several routes have a segment in common, intermediate nodes on that segment can be deleted, since any transfers can take place at the initial or final node of the segment. Thus a node is removed whenever it lies between the same two stops on all routes which stop at that node.

Program input consists of the stops on each route from file SDATA. The program then sorts the nodes on the number of routes stopping at the node and deletes all nodes serviced by only one route, as long as the node is not the first or last stop on the route. Finally other nodes are examined to see if they lie on the same segment on all routes. The program prints a list of deleted nodes and the revised network.

A.9.1 Variables and Arrays used in REMOVE

Route Input
$\operatorname{SRTE}(i) \quad-\quad$ stops on each route. REND is used to indicate which section of SRTE refers to a particular route

REND (i) - position in SRTE of the last stop of route i

Stop Description

$\operatorname{RSTOP}(i, j)$ - jth route stopping at node i
$\operatorname{NRTE}(i) \quad-\quad$ number of routes stopping at node i
NIN(i) - is true if node i has not been removed (i.e., node i is in the network) and is false if node i has been removed.

Temporary storage
TEMP (j) - used for input and output of the nodes on a route. Also used as an intermediate array storing the position in each route stopping at a node of that node.

ORDER(i) - used in sorting; the original position of the ith entry in sorted order

SORTN(i) - used in sorting; contains the sorted array in sorted order

TIME(j) - used for storing schedule data
INDEX(j) - used while printing the revised network data. INDEX(j) is the position in the old route stop list of the jth stop in the revised network.

Counters

NRTE	$-\quad$ number of routes
NR	$-\quad$ total number of stops on routes
NEND	number of nodes which begin or end a route
NDEL	$-\quad$ number of nodes deleted
NS	$-\quad$ number of stops on the current route
NT	-number of runs in the schedule for the

A.9.2 Program Input

Input to program REMOVE consists of the file SDATA (on unit 7) containing route descriptions and schedules for the network.

A.9.3 Program Output

Program output is a set of revised routes and schedules written on logical unit 13 in the format for file SDATA. This file can be used instead of SDATA in all subsequent runs (and thus be assigned to unit 7 for other runs).

In addition to creating a revised SDATA file, program REMOVE prints out a list of the deleted nodes and also the revised routes. Two error prints may occur, most commonly because of improper dimensions.

A. 10 FILE FORMATS

A.10.1 Format for File SDATA (unit 7)

Contents
route number, number of stops, number of runs, stops on route2015

For each run on the route:

$$
\text { time at each stop } 20 I 5
$$

A.10.2 Format for File TDATA (unit 8)

```
    For each node and possible transfer:
                node,
from route,
to route,
minimum transfer time 4I5
```

A.10.3 Format for File NDATA (unit 9)

```
stop,
2I5
time
```

A.10.4 Format for File ADATA (unit 10)

```
arc origin node,
arc destination node,
route number\(3 I 5\)
```

A.10.5 Format for File TRIPS (unit 11)

For each desired trip itinerary:
trip origin, trip destination, desired departure time 3I5

CEOF
A. 10.6 Format for File TMIN (unit 12)

```
minimum transfer time
at each node
16I5
```

©eOF

APPENDIX B

LISTINGS OF PROGRAMS FOR TEST-PROBLEM GENERATION

AND ITINERARY-FINDING

B. 1 PROGRAM RAD

```
THIS PROGRAM SFRVES BOTH AS AN INPIIT ROUTTNE ANIN AC N METVER
RNÜTIFE TO GENFR^TF A RADIAL` TRANGIT POUTF SYSTFM.
THE USER SPECIFIFR, THF MIMMEEP OF DADIALS, THE MIRECTION OF EACH
KA\capIAL. THE NIJMRFR OF STOPS AMIO DIGTANICES RETNFEN GTOPS ALONG FACH
RAU|AL. THE USEO ALSO MUST SPECIFY HFLTWAYS WHICH COANECT STOPS NII
UIFFERENT RADIALS AND SOIKES WHICH CONNFCT A STOP ONI A RADIAL WITH A
C POINT NOT ON AI!Y 'YADIAL.
c----------
NATIONAL RJUREA!! OF STANDARDS APRIL.' }197
REVISEG DECEMRER 1975 FIY E. LFYFMIECKER
```

C
C
C
PARAMFTER MRANII=20 T MAX NIMBER CF RANIALS
PARAVFTER ASTPS $=50$, $\because \| V R E R$ OF STODS RFR PADIAL
PARAMETER MN! ODESニMSTPS*MRADII क NUMRER OF NOOES ON RAOIALS
PARAMETER MSTOPS=50 In MIIMRER OF STOPS PFR ROUTF
PARAMETER MRFLT $=10$ Q MAX NUMRFR OF BELTWAYS
PARAMETER MSDIKE=20 TO MAX SJIMRER OF SPIKES
LOGICAL KFXP
INTFGFR REXP, ПFXP, SEXP
COMMOM/HODES/KQAD('ANODES),KSTP(MNODES),KEXP(MNOOES):
1 .!?RE (MRADII:USTPS)
COMMON/GENKAL/MRTF(2.MSTOPS), ПTEMP(2,MSTOPS), ZK(20), XZK (20),IPT
COMMOI/RADIAL/ANGLE (MRADII). ISTP(MRADII), ПSTRAD(MRADII,MSTPS),
1 REXP(MRADII), IRAD
CONMMM/BELTWY/IRIN(MBELT), IRFIN(MRELT), IBSTP (MAELT,MRADII),
1 NB (MRELT), FFEXP (MAELT), DSTBLT (MRELT•MRANII), IRELT
COMPO!!/SPIKE/TSRAD (MSPIKE), ISSTP (MSPIKF) , NSPIKF (MSPIKE).
1
SFXP (MSPIKE), NDSPK (MSPIKE) , ISPIKE
C
C-
C
C VARIABLFS AUH ARQAYS USEC IN THIS PROGRAM
C RADIAL INPIT
C
C
IRAD - NIMBF OF RADIALS
ANGLF (I) - ANGLE OF RADIAL I, MEASURFN COUNTEQCLOCKWISE FROM FAST
ISTP(I) - NIMRER OF STOPS ON RADTAL I. NOT COIINTYNG THE CENTER
DSTRAU(I.J) - DISTANCE BETNEEN STOPS J AIO J+1 ON RADIAL I
REXP(I) - A FLAG SET TO 1 IF RAOIAL I IS AN EXPRFSS ROUTE
GELTWAY INPUIT
IBELT - NIIMZFR OF FBELTWAYS
IEIN(I) - INITIAL RADIAL CONVFCTFO BY BEI.TWAY I
IPFI'I(I) - FTHAL RADIML CONNECTEN BY BELTWAY T
IHSTP (I, I) - STOP OAS RADTAL J ON RFLTWAY I
WEXPII) - A FIAG SET TO I IF RELTWAY I IS AN EXPRFSS ROIITE


```
            NB(I)=TBFIH(I)-IBIN(I)+1
            IF(IEIN(I).GF.IBFIN(I)) NR(I)=TBFIN(I)+IRAD-IRTN(T)+I
            N=NB(i)
            REA[I(5.900) (IBSTP(I,J):J=1.N)
    20 CONTINUE
C
C REAU SPIKF DF.SCRIPTION
C
    REAT(5.900) ISPTKE -
    IF(ISPIKF.EQ.0)GO TO 40
    DO 30 I=1,ISPIKE
    READ(5,900) SEXP(I)
    READ(5,903) TSRAD(I),ISSTP(I),OSPTKE(T)
    30 CONTINUE
    CALL SUBROUTINE LOCAL TO GENERATE LOCAI. ROUTES
40 CALL LOCAL(K.M1:M2)
    CALL SUBROUTINE EXPRES TO GENFRATF EXPRESS ROUTFS
    CALL EXPRES(K.M1.M2)
    ENDFILE UNIT 7 - SCHEDULE INFORMATION FILF.
    ENDFILE 7
    STOP
900 FORMAT(1GI5)
901 FORMAT(F10.1.I5)
902 FORMAT(SF10.1)
903 FORMAT(215.F1O.1)
    END
```


B.1.1 Subroutine LOCAL

SURROITTINE LOCALI (K.M1.M2)
C THIS SUBROITINE GENERATES THE LOCAL RNITES OF A RANIAI TRANSTT ROIITE C SYSTEM. TWO-WAY DOUTFS AFE CONSTRIICTFD CONNERTIAG THF CFAITER WITH THF C END OF EACH RADIAL, THE CEIITEP WITH THE ENOPOIMT OF EACH SPIKF. AMI C THE ENDPOINTS OF FACH RELTNAY. PROGRAN OUTPUT INCLIIDES THE SCHEDULE C FOR EACH ROUTF, THE STOPS ON FACH ROUTF AND THF ROIITES STOPPING AT

```
C EACH STOP.
```

```
        PAPAMETER MRINII=?0 bi MAX NIMMFF' OF- RAПIALS
        PARAMETER MSTFS =50 NUMRFR OF STOPS PER RANIAI
        PARAMETER MNONES=MSTPG*MRADII G MUMBER OF NODES ON RANIALS
        PARAMETER MSTOPS=50 G VUMAER OF STOPS PFR ROIOTF
        PARAMMETER M,BEL T 三10 | MAX NUMRER OF BELTWAYS
        PARAMETER MSPIKE=20 G MAX NUMBER OF SPIKES
        LOGICAL KEXP
        INTEGER RFXP,TEXP,SEXP
        COMMOW/NONES/KRAD(MNODES),KSTP(MNODES),KEXP(MNODEC),
        1 VODE(MRADII.MSTPS)
        COMMON/GENRAL./MRTE(?,MSTOPS),DTEMP(2,MSTOPS), ZK(20), XZK(%0),IPN
        COMMNN/RADIAL/ANGLE(MRADII),ISTP(MRADTI), NSTRAN(MRADII,MSTPS),
        1
                        REXP(MRANII), IRAN
        COMMOH!/BELTWY/TRIM(MMELT),IBFIN(MRELT),IBSTP(MRELT,MRADII),
        1 NR(MMELT). BEXP(MRELT),DSTBLT(MAEIT,MRADII),IRELT
        COMMON/SPIKE/ISRAD(MSPIKE),ISSTP(MSDIKF),NSPIKE(MSPIKE).
        1 SEXP(MSPIKE),NDSPK(MSPIKE),ISPIKE
```

```
VARIABLES AND ARR\YS USED IN THİS PROGRAM
```

VARIABLES AND ARR\YS USED IN THİS PROGRAM
RADIIAL
IRAD - NIJMBFD OF RADIALS
ANGLF(I) - B!!GLE OF RADIAL I. MENSURFN COUNTFRCLOCKWISE FROM FAST
ISTP(I) - NH:ABFR OF STOPS ON PADIAL T. NOT COIMITTNG THE CENTER
DSTRAD(I.J) - DISTANCF BETWEEN STOPS ! AND J+1 ON RAMIAL I
REXP(I) - A FLAG SET TO I IF RADIAL I IS AN EYPRFSS ROUTF
BELTWAY
IBELT - NUMAFR OF BELTWAYS
IEIN(I) - I'IITIAL RADIAL CONNECTFD RY BELTWAY I
IBFIM(I) - FINAL RADIAL CONNECTEN BY RELTWAY T
IRSTP(I;J) - STOP ON RANTAL J ON RELTWAY T
DSTRI.T(I.J) - NISTANCF BETWEEN STOPS I AND J+9 ON' BFLTWAY I
NR(I) - NMMTES OF RADIALS INTFRSFCTEN BY GRLTM,NY T
BEXF(I) - A rlaAG SET TO I IF RELTWAY I IS AN FXPRFSS ROUITF

```
    ISPIKE - NU"1.NER OF SPTKFS
    ISPIKE - NU"1.NER OF SPTKFS
    ISRAD(I) - 2ADIAL TO WHICH GOIKF I IG COMMECTFN
    ISSTP(I) - STOP ON RADIAL TO WHTCH SPTKE I IS COMMECTED
    DS̄PIKE (I) - LENGTH OF SPTKE I
    NDSPK(I) - '!つDE MUMRFR FOR STOP AT ENIN OF SPIKF
    SEXP(I) - A FI_AG SET TO 1 IF SPIKE. IS AN FXPRFSS ROIITF
    NODE DESCRIPT? TH
    KRAD (K) - RMIIAL IODE K IS OV
    KSTP(K) - STOP DiV RADIAL KRAD(K) WHICH IS NOMF K
    KEXP(K) - MOnF IS/IS NOT AN EXPRFSS MODE
    NODE(I;J) - THE NODE FOR STOP J ON RAOIAL I
    ROUTE DESCRIPTION
        MRTE (M,N) - MTH STOP ON ROUTE M. MRTF(1.J)=MRTE(?N-J+1) SINRE
                                ROUTES GO IN ROTH OIRFCTINNS
    DTEMP (N,M) - חISTAIICE BETWEEN STOPS N ANM N+1 ALONG ROUTE
    INITIALIZE
    \(P I=3.1415926^{\circ}\)
C
C COMPUTE RADIALS
C
    DO 2 I=I, JRA')
    \(\operatorname{NODE}(\mathrm{I}, 1)=1\)
    M1 \(=\mathrm{M}_{1}+2\)
    \(\mathrm{M} 2=\mathrm{M} 2+2\)
    \(\operatorname{ISTP} 1=\operatorname{ISTP}(1)+1\)
    \(\operatorname{MRTE}(1,1)=1\)
    \(\operatorname{MRTE}(2, I S T P 1)=1\)
    ¡O \(1 \mathrm{~J}=2 \cdot \mathrm{ISTP}\) ?
C COMPUTE ROUTFS
    \(k=k+1\)
    MRTE (1, J) \(=K\)
    MRTE (2,ISTP \(1+!-J)=k\)
    」J=Jー1
    D=DSTRAD (I.JJ)
    DTEMP ( \(1, \mathrm{JJ})=0\)
    \(\operatorname{DTEMP}(2 \cdot I S T P 1-J J)=\Gamma_{\text {, }}\)
C COMPUTE NOIE DATA
    K \(\bar{R} A \cap(K)=1\)
    \(K S T P(k)=J\)
    NOCE \((I, J)=K\)
1 CONTINIE
    CALL KSCHFO(TSTP1.A1.1)
2 CONTINNJE
    KMAX \(=K\) NMMRER OF NODES ONT PADDALALS

\section*{こ}
c COMPUTE GFLTWAYS
C．．．DO 3 I \(J=7\) ，IBELT
\(M 1=M 1+2\)
\(M_{2}=M_{2}+2\)
\(\mathrm{I}=\mathrm{IBIN}(\mathrm{I} \mathrm{J})\)
\(N=N B\)（IJ）
DO 4 II＝1。N
C COMPUTE ROUTES
J＝IESTP（IJ，II）
NI＝NODE（I，J）
\(\operatorname{MRTE}(1, I I)=N 1\)
\(\operatorname{MRTE}(2, N+1-I T)=1: 1\)
IF（II．EQ．N）GO TO 4
\(I T=I I+1\)
JI＝IFSTP（I．I，TT）
I \(1=1+1\)
IF（I1．GT•IR4D）I1＝I1－IRAC
N2＝NONE（II．J1）
C COMPUTE THE ARC LENGTH AS THE AVERAGE OF THE APC LFNGTHS BETWFEN THE
C TWO RADIALS AT RANII OF STOP J ON RADIAL I AND STOP JI ON RADIAL II A＝ANGLE（I1）－ANGLE（I）
IF（A．LT．0．）\(A=A+2 . * P I\)
R1 \(=0\) 。
JENK＝J－1
DO 31 JJニ1•JEM！
R1＝R1＋DSTRAD（I•JJ）
31 CONTINJE
F． \(2=0\) ．
JEND＝．J1－1
DO 32 JJ＝1．JFin
R2＝R2＋DSTRAD（II．J」）
CONTINJE
\(R=(R 2+R 1) / 2\) 。
\(R=A B S(R)\)
D＝R＊A
\(\operatorname{TTEMP}(1, \bar{I} \mathrm{I})=\)－
「TEMP（2，N－II）＝＇
OSTBLT（IJ．TI）\(=\) ח
\(\mathrm{I}=\mathrm{I}+1\)
IF（I．GT．IRAD）I＝1
4 CONTINJE
CALI 2SCHFn（1IR（IJ）．M1．1）
3 con！titue
```

C
c----------
C COMFUTE SIIKE DCIITES
c-----------
C
IF(ISPIKE.FO.T)RETIHFH
DN 5 I=1.ISPIKF
K=K+1
NOSPK(I)=K
M1=N1+2
M2=M2+?
C compute spike npos
c. COMPIJTE ROUTES
MM=ISSTP(I)+1
MRTE (1,1)=1
MRTE (2,MM)=1
MRTF(1,MM) =K
MRTE(?,1)=k
LSTP=ISSTP(I)
OTEMP(1.LSTP)=NSPTKE(I)
DTEMP(2.1)=DSDIKE(I)
LRAD=ISMAN(I)
JI=vONF(LPAD.?)
N1=NORE(LRAD.LSTP)
MT=M:1
II=1
00 6 J=J1,'1
DTEMP(1.II)=1SSTRAD(LRAD.II)
DTEMP(2.MM-II)=DSTRAD(LR17.II)
II=II I 1
MT=MT-1
MRTE(1,II)=J
MRTE (?,MT)=」
6 CONTINJJE
CALL RSCHF)(*".,M1,!)
5 CONTINME
RETURN
END

```

B．1．2 Subroutine EXPRES
SURROUTINE FXDPFS（K，MI，M2）
C THIS SUBROITIIF SFIERATES THF FXPRFSS ROITFS OF A RAOTAL TRANSIT ROIJTF C SYSTEM．TWO－WAY DOUTFG ARF CONSTRIICTFN FOR RAMIAL．BFLTWAY AMIN SPTKF C EXPRFSS ROUTES．DROGRAM OIITPIIT INCLINES THE SCHFDIIF FOR FACH FXPRESS C ROUTE，THF STOPS DM EACH EXPRFSS ROUTF AM：N THF ROUTFS STOPPIMG AT FACH C STOP．EXPRESS ROUTFS STOP OUUY AT THE：OTHFR MAJOR ROIITES．

PARAMETER MPADII＝2才 ति MAX NUMBFR OF RANTJALS
PARAMETER MSTPS \(=50\) D NUMRER OF STODS DER RAMIAL
PARAMETER NIIONES＝PASTPS＊MRADII I NUMRER OF NOMES ON RANIALS
PAPAMETER MSTOPS \(=50\) i．NIIMRER OF STOPS PFR ROUTF
PARAMFTER MRFLT \(=10\) © MAX NUMBER OF BEITWAYS
PARAMETER MSPIKE＝20 I MAX NUMBER OF SPIKES．

\section*{LOGICAL KFXXP}

INTEGFR REXP，RFXD，SEXP
COMMON／NODES／KRAD（YNODES），KSTP（MNONES）OKEXP（MNOПFS）．
1
NOOE（MRADII，NSTPS）
COMMON／GENRAL／MRTE（2，MSTOPS），ПTEMP（2，MSTOPS），ZK（20），XZK（20），IPN COMMON／RADIAL／ANGLE（MRADII）．ISTP（MRADII），ПSTRAD（MRADII，MSTPS），
1
REXP（MRADII）IRAN
COMMON／BELTWY／IRIN（MRELT），IRFIM（MRELT），IBSTP（MRELT，MRADII）。
1 N3 MAELT），BEXP（MREL．T），DSTBLT（MRELT，MRADII），IPFLT COMMON／SPIKE／ISRAD（MSPTKE），ISSTP（MSPIKF）OTSPIKF（MSPIKE）。
1
SEXP（MSPIKE），NDSPK（MSPIKF），ISPIKE

VARIABLES AND ARRAYS IISEN IH THIS PROGRfM
RADIAL
IRAD－NIMEEF NF RADIALS
ANGLE（I）－ANGLE OF RANIGL Í MEASIIREN CNINTERCLOCKWISE FROM EAST ISTP（I）－NIMMER OF STOPS ON RADTAL T．NOT COIMITING THE CENTER OSTRAB（I，J）－DISTANCE BETWEEN STOPS \(J\) ANC J＋9 ON RADIAL I REXP（I）－A FLAG SET TO，IF RADTAL I IS AN EXPRFSS ROUTE． BELTWAY

IbELT－NUMPER OF BELTWAYS
IEIN（I）－IUITIAL RADIAL CONNECTED BY BEITWAY I
IBFIM（I）－FINAL RADIAL CONNECTEN BY RELTWAY Y IBSTP（I．J）－STOP ON RADIAL J ON RELTWAY I DSTELT（I．J）－חISTANCE BETWEEN STOPS J AND J＋1 ON BELTWAY I NB（I）－NUMZER OF RACIALS INTERSFCTE \(\quad\) BY RELTHAY I SEXP（I）－A FLAG SFT TO 1 IF RELTWAY I IS AN EXPRFSS ROITE
```

C SPIKE
C
C----------
INITIALIZF
C----------
C
KSTOP=0 D KSTOP COUNTS STOPS ON AN EXPRESS ROUTE
DIST=0.0 A OISTANCE ACCITMULATOR FOR EXPRESS ROUTES
C
C----------
COMPUTE EXPRESS SELTWAYS
C----------
DO 20う I=1,I ELT
IF(AEXO(I).NE.1)GO TO 200
M1=M1+2
N'2=M2+2
IR=IRIU(I)
MIJMB=NH3(I)
C*****CALCULATE EXDRESS STOPS ANI INTER-STOP DISTANCFS TN ONE MIRECTION
OD 150 II=1,HNMES
J=IHSTP(I,II)
NO=NONE(IR.J)
IF(IR.EQ.IRIN(I).OR.TR.EQ.IRFIN(I))GO TO 110
IF(REXP(IR).F?.1)GO TO 110.
DÓ ION IS=1.T'GPIKE
IF(ISRAD(IS).NF..IR)GO TO 100
IF(SEXP(IS).r`.1.ANC.ISSTP(IS).GF.J)GO TO 110
10n CONTINUE
go TO 12n
11(KSTOP=RSTON+1
MRTE'(1,KSTOP)=|In
KEXP(ND)=.TRIIE.

```
```

 120 IF(II.FQ.1.OD..NOT.KEXP(NII))GO TC 130
 DTEMP(1,KSTOD-1)=חIST
 DIST=0.0
 130 IF(II.EQ.NUMM:)GO TO 140
 OIST=OIST+DSTTMIT(IOII)
 140 IR=IR+1
 IF(IR.GT.IRAD)IR=1
 150 CONTINUE
 C*****FILL MRTE゙(2,) ANत חTEMP(2,)
DO 16| II=1.KSTOP
MRTE(2.KSTOP+1-II)=MRTE(1:TII)
IF(II.NE.KSTOD) DTEMP(2,KSTOP-II)=DTEMP(1,II)
160 CONTINUE
C*****CALL RSCHED
CALL RSCHED(KSTOP.M1.2)
KSTOP=0
200 CONTINUE
C
C COMPUTE EXPRIESS SPIKES
C
IF(ISPIKE.FQ.0)GO TO 500
DO 400 I=1.ISPIKE
IF(SEXP(I).NE.1)GO TO 400
LRAD=ISRAD(I)
M1=M1+2
M2=M2+2
MM=ISSTP(I)
C*****CALCULATE EXPRESS STOPS ANIN INTER-STOP DISTANCFS IN ONE DIRECTION
DO 350 II=1,MM
ND=NODE (LRAD.II)
IF(II.EQ.1)GO TO }31
IF(KEXP(ND))GO TO 310
IF(II.NE.MM)GO TO 320
IF(REXP(LRAD),EQ.1)GO TO 310
DO 30N IS=1.ISPIKE
IF(I.FQ.IS.OR.ISRAD(IS).NE.LRAR)GO TO 300
IF(SEXP(IS), सO.I.AMT.ISSTP(IS),GE.MM)GO TN 3in
300 CONTIIIUE
GO TO 320
310 KSTOP=KSTOP+1.
MRTF(1.KSTOP)=ND
KEXP(NO)=.TRIIE.
320 IF(II.EQ.I.OR.ONOT.KEXP(NO)IGO TO 330
OTEMP(1,KSTOP-1)=DIST
DIST=?.0
330 IF(II.LT.MM) nIST=DIST+DSTRAD(LRAN.II)
IF(II.EQ.MM) DIST=חIST+DSDIKE('`)
350 COntIfiUE

```
```

C*****CONSIMER STOP AT EMN OF SPTKE
KSTOP=rSTOP+2
MRTF(1.K.STOP)=`חSPK.(I)
DTEMP(1.KSTOR-1)=ワIST
DIST=^.U
C*****FILL MMRTE(?,) AND NTEMD(?,)
DO 36. II=1.VSTOP
MRTE(2.KSTOP+1-II)=MRTE(1,II)
IF(II.:IE.KST\capП) ПTEMP(2.KSTOP-TI)=\TEMP(1.II)
360 CONTI:JUE
C*****CALL RSCHE?
CALL RSCHEN(KSTOP:M1.2)
KSTOP=0
400 CONTINUJE
C
C----\infty-----
C COMPUTE EXPRFSS RAMIALS
C-----------
C
500 50600 I=1.IR, \
IF(REXP(I).NF..1) GO TO 600
M1=M1+2
M2=M2+?
MM=ISTP(I)+1
C*****CALCULATE FXPOFSS STOPS AND INTER-STOP DIGTANCFS-S TH OHE DIRECTION
00 650 II=1.NM
NO=NONE(I, II)
IF(II.rO.1.On.II.EQ.UM)GO TO \&10

```

```

 IF(KEXP(Nn)),,つ TO 610
 GO TO 620
 6 1 0 ~ K S T O P = K S T O P + 1
 MRTE(1.kST\capP)='IO
 620 IF(II.EQ.1)GO TO 630
 IF(II.JE.MPA.ANN..NOT.KFXP(NO))FO TO 630
 DTEMP(1.KSTOF-1)=3IST
 DIST=0.0
 630 IF(II.LT.MN) nIST=חIST+חSTRAN(I.II)
 6 5 0 \text { CONTINUE}
 C*****FILL MRTE(2.) ANO חTEMP(2.)
DO 660 II=1,KSTOP
MRTE(2.KSTOP+1-II)=MRTE(1.II)
IF(II.NE.KSTOD) DTEMP(2.KSTOP-II)=CTEMP(1.TI)
660 CONTTIMUE
C*****CALL RSCHFD
CALL RSCHFN(KSTOP.M1.2)
\angleSTOP=0
6 0 0 ~ C O N T I : N J E ~
RETURN
END

```

\section*{B．l． 3 Subroutine RSCHED}

SUBROITINE RSCHEN（N，M1，LOF）
C THIS SURROIITINF COMPIITEC，AMI DPINTS OIIT SCHEDIIE IMFORMATION FOR
C M1 AND M1＋1．INPIJT INCLIJNES THE STOPC ALONG ROUTFS M1 ANV M1＋1．
C STORED IN MRTF（I，I）ANID MRTE（？，I）RESPECTTVELY，THF NIMARFR OF
C STOPS ALOAG TIESF POUTES IN N，AND THF DISTANCF PFTWFFN STOPG，IN！\(\cap\) ．
C INPUT ALSO INCLUNFS THE VUMBER OF TIMF PERIODS IPD AMD THE FACTOP
\(C\) USEU TO TRANSLATF DISTANCE TO TIME IN EACH PERIOD GTORFD IN TK ANR XZK．
PARAMFTER MSTOPS \(=50\)
PARAMFTER MPOS \(=111\)

DIMENSION JHIJNS（MPDS）．JHFAO（MPDS），JOTM（MPOS），．ITTMF（MSTOPS）
MV＝M1
DO 3 IROUTE \(=1.2\)
NRUNS＝1
JO 10 IPERT＝1．TPD
C REAO THE NUMRER OF RIJNS OF THIS ROIITE THIS PERIOD（JRIINS），THE
C HEAUWAY BETWEEN RUNS（JHEAD），AND THE TIMF OF THE FIRCT RUN（JOTM）．
READ（5．901）JRUNS（IPFRI）．JHEAN（IPFRD）．JDTM（IPERC）
9（1）FORMAT（20I5）
NRUNIS＝MRUMS＋JRIJNS（IPERD）
10 CONTT＇JUE


WRITE（7．901）MM，N•NRUIIS•（MRTE（IROUTE，．1）．J＝1．N！
0021 IPER＇רニ1，IPR
JJ＝JRIINS（IPERT）
IF（J．J．EQ．O）GO TO 21
DO 2 TRUN＝1，JJ
JTIME（1）＝J！Tッタ（IPERC）＋（IR（IN－1）＊JHEAD（IDFRD）
DO 1 L \(=2 \cdot N\)
\(\operatorname{IF}(L O F \cdot E Q \cdot 1) J T I M E(L)=J T I M F(L-1)+\cap T E M P(T R O I T E, L-1) * フ K(I P E R N)\)
IF（LOE．EQ．2）JTIME（L）＝JTIMF（L－1）＋DTEMP（TROUTE，L－1）＊XZK（IPFD！）
1 CONTIIIUE
WRITE（6．902）（JTIME（L），L＝1，N）
902 FORMAT（1กx，2＠I5）
WRITE（7．901）（JTIMF（L），L＝1，N）
2 CONTIUUE
21 CONTINUE
1M＝MM＋1
3 CONTTINE
RETIJRN
EID

\section*{B． 2 PROGRAM XGRID}
```

C}\mathrm{ THIS PROGRAMA GETIERATES A DURF GRIN TDANISIT SYSTFM WITH NORTH-SOUTW,
C EAST-WEST ROUTES. THE USER SPECIFIES THF NUMAER OF STOPS D ANN THE
C NUMBER OF STOPS ? WHICH DEFIME,RESPECTIVFI.Y, THE YFRTICALL ANN
C HORIZONTAL DIMENSIONS OF THE P-RY-O GRID. IM AחOTTION THE ISSFR
C MUST SPECIFY THE INTERSTOP DISTANCES L(I) ANN W(I) RFTWFENN SUCCESGIVF
C 'ROWS' AHO 'COLJMNS' OF THE GRID. STOPS WILI RE MMMRFRFD FROM LFFT
C TO RIGHT, TOP T\cap ROTTO゙M IN SFQUENCE, ANYY STOP IS ALTOWFO TO BE A
C TRANSFER NODE BETWEEN ROUTFS, WHICH ARE ASSU^AED TO RIIN WEST-EAST,
C EAST-WEST, NORTH-SOIJTH ANN SOUTH-NORTH ONYY. THE TRANSFFR TIMF
C RETWEEN ROUTES IS ASSIJMEN TO RE CONSTANT AT FACH TRANSFFR STOP.
C ROUTES FOLLOW RFGULAR SCHEDULFS THROUGHOUTT EACH PFRION, AND THFRF
C MAY BE A DIFFERENT CONVERSION FACTOR FOR CONVERTING OISTANCE INTC
C TIME FOR EACH PFFIOD. THIS VFRSION NLLOWS EXPRESS ROITTES
C RY THE SPECIFICATION OF MAJOR X AND Y ROUTES. THFSE ROUTES
C STOP ONLY AT THE OTHER MAJOR ROUTES.
C. NATIONAL BUREIU OF STAMDARDS \cdots.....NAYY, 197%
C
PARAMETER MAXP=50 A DIMENSION P \capF GP}I
PARAMETER MAXQ=50 O OIVENSION O OF GRIN
PARAMFTER MAXPV=10 O- IUMRFR OF PERTODS
PARANFTER IIRTES=200 目 NUMRER OF ROIITES
PARAMFTER MAXII=50 { NUMPER OF NONFS/ROUTE
PARAMETER TRA\ISF=5000 ind N!MNRER OF TRANSFERS
DIMENSION L(MAXP),W(MAXQ), ZK(MAXPO), XTK(MAXPO)
COMMONN NN(IRTES):HODE(NRTES.AAXN):D(NRTES.MAXN).
1
TNODF(TRANSF),RT1(TRAISSF),RT2(TRANISF),NITRANS
C
IN\overline{PUT \overline{PARAMMF}TF\overline{Q}}
P - VERTICAL DIMENSION OF GRTI
Q - I!ORIZONTAL DIMENSION OF GRIN
L(I) - DISTA:ICE BFTWEFN YFRTICAL ROWS I,T-1
Wi(I) - DISTANCE RETWEEN HORIZONTAL COI.UMNS I,T-1
PDS - INUMFIER OF PERIONS
ZK(J) - CONMFRTS゙ IISTANCF INTO TTMMF FOR OFRION J
ROUTE DESCRIPTYON
NN(R) - I|MMOD OF NODES ON ROITTE R
NOUE (P,I) - THE I-TH NOOF ON ROUTE R
O(F,I) - THF I-TH TNTFRSTOP DISTANCE ALONG ROITEE P

```
    C TKAP'SFFFK NINCE IOSSCRIPTIOR:
C TNOCF (L) - THF L-TH TRANGFER NODF
C HTI(I.) - ROIITF FRON WHICH TRANSFEN TC MADF AT TIINEF (I_)
C RT?(L) - POLTF TO WHICH TRANSFFR IS NADE AT TMIOTF(L.)
C HTRAMS - IUMRFF OF TRANIGFFRS

C
IMPLICIT INTEAER \((\wedge-Y)\)
REAL \(\times Z K\)
c
c read strijctural parameters of grin.
c
\(\operatorname{REAF}(5,300) P, \cap,(L(I), I=2, P) \cdot(W(I), I=?, Q)\)
900 FORNAT (16I5)
RHASE=0 Q CONVENIENT REFERENCE PASF FOR ARSNIUTE ROUTE IIIMPFRS
C
C CPEATE IIODES PROITES. TPANSFER DATA.
C
CALL GRID (P,O,1, W,FRBASE)
CALL XPRESS(P,O,L.NORRASE)
C
C READ CONVERSION FACTORS FOR EACH PERIOR.
C
RFAD(5.901) D., 5, (7.K (I), \(I=1, P \cap S)\)
901. FORMAT(I5. (15F5.2))

READ ( \(\left.5.90^{2}\right)(x 7 K(I), I=1, P \cap S)\)
\(9 \cap 2\)
FORMAT (5x.15F5.2)
C
C. COMPUTE COMPLFTF SCHENULE TNFORMATION FOR EACH ROITE ANE PERION.

C
\(P\) () \(=? * D+2 * \cap\)
CALL \(\times\) SCHF)(NN,NODE, D, ZK, X TK, PDS,RRASF,PQ)
C
C THE TRAIISFFR OATA GFNERATED IN GRIO IS PRTNTFI.
\(\mathrm{PO}=\mathrm{P}\) *
CALL TIAAIS(NTUANS,T:ONE,RT1,RT?,PQ,FFACE)
STOP
E!リ

\section*{B.2.1 Subroutine GRID}

SUPROUTINE GRIT(P.OMLL, WRRASE)

```

C DATA FOR ^ P-F,Y-) GRID NETWORK. THE VAPTABLFC P,\cap,RPASE ANR
C THE ARRAYS LL.N IRE TRANSMITTFD FROMA THE MAIN PROGRAM. IT IS
C ASSUMED THAT P,O > 1. NONES ARE NUMDEREN FROM LEFT TO RTGHT,
C TOP TO EOTTOM I:: SFQUENCE. ROUTES ARE ASSUMEN TO PUN WFST-
C EAST,EAST-NEST,!IORTH-SOUTH,SOUTH-NORTH ONI Y. TRANISFFRS ARE
C ALLOWED TO OCCU? RETWEEN ROIJTFS AT ANY NONE.

```
```

NATIONAL BURFAU IF STANDARDS MAY,IOTK

```
NATIONAL BURFAU IF STANDARDS MAY,IOTK
    PARAMFTER \AAXD=50 \ CIMENSION P OF GRIN
    PARAMETER UA OO=50 ( OIMFNSION G \capF GRIT
    PARAMETER NRTIS=2NO (A NUMRER OF ROUTES
    PARAMETER MAXM=50 IN NUMAFR OF NONFS/QNIJTE
    PARANETER TR\ISF =5000 D NUMRER OF TRANSFFRS
    OIMENSION L.L(NAXP),W(MAXQ)
    COMMON NN(NRTES),NODE (NRTFS,MAXN),D(NRTES,MAXN).
    1 TIIODE(TRANSF),RT1(TRAHSF),RT2(TRANSF),NTRANS
C
C
    VARIABLES ANO ARRAYS IJSED IN THIS SURROUTINE
        INPUT PARAMETERS
        P - VERTICAL DIMENSSIOÑ OF GRIT
        O - HORIZONT IL DIMENSION OF GRID
        LLII) = OISTMMCE BETWEEN VERTICAL ROWS I.I-1
        W(I) - DISTANCE BETWEEN HORIZONTAL COLUMNS I,T-1
        RBASE - CONVFNIENT REFERENCF RASF FOR ABSOLUTE ROIITF NIIMRERS
        ROIJTE TESCRIPTIOIJ
        NN(R) - NIIM'IER OF MIODES ON POIITE R
        NODE(R,I) - THE I-TH NODE ONT ROUTE R
        D(R,I) - THF T-TH INTFRSTOP OISTANCE ALONG ROIITE R
            TRANSFER NODE DESCRIPTION
        TNODE(L) - THF L-TH TRANSFEF NODF
        RT1(L) - RO'ITF FROM WHICH TRANSFFR IS MANE AT TNOME(L)
        RT2(L) - FOUTTF TO WHICH TRANSFER IS MADE AT TNONF(L)
        IJTRANS - NUUARFR OF TRAIISFERS
```


IMPLICIT INTFGEP (1-Y)

GENERATE FOR FACH POUTF THE NODES ON IT. ALSO GRFATF INTERSTOP MISTAMCFS
$P P=2 * P$
$P P Q=P P+Q$
$\mathrm{DO} 110 R=1 \cdot P$
$I S=Q *(R-1)$
NODE $(R, 1)=I S+1$
DO $100 \mathrm{I}=2, Q$
NODE (R,I) I IS+I
$D(R, I-1)=W(I)$
100 CONTINUE
110 CONTINIJE
DO 130 RR=1.P
$R=R R+P$
$N N(R)=Q$
$I F=Q * R R+1$
$\operatorname{NODE}(R, 1)=I F-1$
DO 120 I二2. Q
$\operatorname{NODF}(R, I)=I F-I$
$D(R \cdot I-1)=W(Q-I+2)$
120° CONTINUE
130 CONTINJE
DO 150 RR=1. 3
$R=P R+P P$
$N N(F)=P$
$\operatorname{NODE}(R, 1)=R R$
DO 140 I =2, P
$\operatorname{IODF}(R, I)=R R+(I-1) * Q$
$D(R, I-1)=L L(I)$
140 CONTINUE
150 CONTIINE
OO $170 \mathrm{RR}=1$?
$R=R R+\overline{P F Q}$
$N N(R)=F$
$I F=(P-1) * Q+R R$
NODE (R,1)=IF
DO $160 \mathrm{I}=$? $\cdot \mathrm{P}$
$\operatorname{NORF}(P, I)=I F-(I-1) *$?
$n(R \cdot I-1)=L l .(P-T+2)$
160 CONTINUE゙
170 CONTINUE

```
C
    CREATE TVNISFFQ TATA.
    i={0
    L=0
    DO 24n I=1.P
    0) 230, J=1,0
    N=N+1
    IF(I.r...1) GO TO 2.10
    IF(J.rQ.1) Gn TO 200
    L=L+1
    TNODE(L)=N
    RT1(L)=PP+J
    RT2(L)=P+T
    L=L+1
    TMORE(L)=N
    RT1(L)=I
    RT2(L)=PPQ+J
    20U IF(J.FO.Q) f() TO 21.!
    L=L+1
    TNOCE(1_)=11
    RT1(L)=PP+J
    RT2(L)=I
    TNOCE(!)=N
    RT1(L)=P+I
    RT2(L)=PPQ+J
    210 IF(U.FQ.1) G) TO 22.0
    IF(I.EQ.P) GC TO 220
    L=L+1
    THONE(L)=!!
    RT1(L)=1
    RT2(L)=PP+J
    L=L+1
    Ti|OnE (L)=人!
    RT1(L)=PPQ+J
    RT?(L)=P+I
220 IF(J.EO.Q) GN TO 230
    IF(I.FQ.P) GO TO 230
    L=L+1
    TNOLME(L)=N
    RT1(L)=P+I
    RT2(L)=PP+J
    L=L+1
    TNONE(L)=M
    RT1(L)=PPO+J
    RT2(L)=I
23n colitIMME
240 CONTINHE
    NTRONM:1
    RFTUR:
    EMO
```


B.2.2 Subroutine XPRESS

SUBROITINF: XROFSS(F.O.LLDWRRASE)
PARAMETER MD=25
PARAMETER $\because=25$
PARAMETER NRTES $=200$
PARAMETER $\because \triangle Y N=53$
PARAMETER TRANSF=5000
DIMFNSION LL(1).W(1)

1 FLAG(12)
COMMON HN(NRTES), NODE (NRTES, MAXN), D(NDTEG.MAXA:), TNODE (TRANGF), 1 RTI(TRANSF). RTZ(TRANSF). NTRANS
IMPLICIT INTEGFR(A-Y)
READ (5.900) VMP.NMQ
900° FORMAT (1655)
IF (NMP.LE.O.OR.NMQ.LE.O) RETURN
READ (5.900) (MAINP (I), I=1.NMP)
$\operatorname{READ}(5,900)$ (MAINQ(I), $I=1$, NMQ)
$\mathrm{L}=1$
$J=1$
IF (MAINP(i).FQ.1) GO TO $\mathbf{1}^{-}$
SP(1)=1
$\mathrm{L}=2$
$1 \quad S P(L)=\operatorname{MAINP}(J)$
$\mathrm{L}=\mathrm{L}+1$
コニJ +1
IF (J.LE. NMMP) GO TO 1
IF (MAINP (NMP). FQ.P) GO TO ?
$5 P(L)=P$
$L=L+1$
$2 \quad N S P=L-1$
L=1
$j=1$
IF (!MANQ(1).FA.1) ro TO 3
SQ(1)=1
$\mathrm{L}=2$
3 SQ(L) =MAINQ(, J)
L=L+1
$J=J+1$
IF (J.LE.NMQ) GO TO 3
IF (MAINQ(NMO).EQ.Q) GO TO 131
$S Q(L)=Q$
$L=L+1$
131
NSQ=L-1
IEND $=1$
$005 \mathrm{I}=2$, NSP
II=I-1
DP(II) $=0$
IGEG=IEND+1
IFMr=SP(I)

```
        004 J=1, GFG,TFNO
        DP(II) =UP(II)+LL(J)
4 CONTINUE
5 CONTINUE
    IENO=1
    DO 7 I=2,Nc,0
    II=I- - 
    OQ(II)=0
    IFEG=IEND+1
    IENTI=SO(I)
    DO G J=IRFG,IEND
    DQ(II)=DQ(II)+N(J)
6 CONTINNE
7 CONTINUE
    R1=2* (P+Q)
    Q1=NSQ+1
    |O Q I=1, N:RP
    R1=R1+1
R2=R1+IMMP
BASE=(\1AINP(T)-1)*Q
DO 8 J=1.NSQ
NOD=BASE+SQ(J)
NODE (R1,J)=NOn
NODE (R2.01-J)=1.100
IF (J.E(Q.HS()) GO TO &
D(R1,J)=חQ(J)
!)(R2,NSQ-J)=`ว(J)
8 CONTINUE
NN(R1)=NSO
NN(R2)=NSQ
9 CONTINUE
R1=2*(P+Q+NN:D)
P1=N'SP+1
DO 1_I=1@iNM?
R1=R1+1
R2=R1+NMQ
BASE=MAI!NQ(I)
DO 10 J=1.NSP
NOO=FASE+(SP(.j)-1)*Q
MODE (R1:J)=NO?
NODE(R2,P1-J)=NC!
IF (J.EQ.IISP) GO TO 10
D(R),J)=DP(J)
D(R?|!MSP-J)=rin(J)
CONTINUE
NN(R1)=NSP
NN(R2)=NSN
11 CONTIMNJ.
```

```
    PQ=2*P+2*Q
    00 3R L.1=1.NND
    I=MAINP(L1)
    DO 38 L2=1,NMQ
    J=MAINO(L2)
    R=PQ+LI
    DO 12 L=1,12
    FLAG(L)=1
    12 CONTINUE
    FLAG(9)=0
    FLAG(10) =0
    IF (J.NE.1) GO TO 13
    FLAG(1)=0
    FLAG(2)=0
    FLAG (3)=0
    FLAG (5)=0
    FLAG (7) =0
    FLAG(11)=0
    FL^G(12)=0
        IF (J.NE.(0) GO TO 14
    FLAG(1)=0
    FLAG(2)=0
    FLAG(4)=0
    FLAG(6)=0
    FLAG(8)=0
    14 IF (I.NE.1) GO TO 15
    FLAG(7)=0
    FLAG(6)=0
    FLAG(12)=0
    15 IF (I.IJE.P) GO TO 16
    FLAG(5)=0
    FLAG(8)=0
    FLAG(1.1)=0
    16 CALL XTRANS(P,N,FLAG,R,I,J.L1,L2,NMP,NMQ)
    IF (L?.GT.1) GO TO 1R
    IF (SO(1),EQ.MAINO(1)) GO TO 17
    NOD=(I-1)*Q+1
    IF (I.EQ.1) G\cap TO 161
    NTRANS=NTNRANNS}+
    RT1 (NTRANS) =2*P+1
    RT2(NTRANS)=R
    TNODE(NTRANS) =NON
    161 IF (I.EQ.P) GO TO 17
    NTRANS=INTRANS+1
    RT1 (NTRANS) =2*P+Q+1
    RT2(NTRANS)=R
    TNOLE (IITRANS) =NON
    17 IF (SO(NSQ).EO.MAINO(NMQ)) GO TO IS
    MOD=I*O
    IF (I. EQ.1) Gn TO 171
```

```
    NTRANS=NTRANS+1
    RT1(NTRANS)=0
    RT2(NTRANS)=??
    TNODE (MTRANIS)=NOO
171 IF (I.EQ.F) fo TO 1&
    NTRAINS=NTRANS+1
    RT1(NTRANS)=0
    RT2(NTRANS) =2*P+9
    TNODE (NTRANS)=NOD
18 R=PQ+N:MP+1.1
    D0 19 L=1,12
    FLAG(L)=1
19 CONTINUE
    FLAG(9)=0
    FLAG(10)=0
    IF (J.NE.1) GO TO 20
    FLAG(2)=0
    FLAG(3)=0
    FLAG(4)=0
    FLAG(6)=0
    FLAG(8)=0
20 IF (J.NE.Q) in TO 21
    FLAG(1)=0
    FLAG(3)=0
    FLAG(14)=0
    FLAG(5)=0
    FLAG(7)=0
    FLAE(11)=0
21 IF (I.NE.1) 6O TO 22.
    FLAG(7)=0
    FLAG(6)=0
    FLAG(12)=0
22 IF (I.IJE.P) GO TO 23
    FLAG(5)=0
    FLAG(9)=0
    FLAG(11)=0
23 CALL XTRANS(P,Q,FLAG,R.I,J.L1,L2,NMP,NMQ)
    IF (L2.GT.1) GO TO 2.5
    IF (SQ(NSQ).EN.MAINO(NMQ)) GO TO 24
    NOD=I*\
    IF (I.EQ.l) GO TO 231
    NTRANS=NTRANS+1
    RT1(1!TRANS)=?*P+0
    RT2(NTRANS) =R
231
    TNODE (NTRANS) =NON
    IF (I.EQ.P) in Tn 24
    NTRAMSS=INTRANS+1
    RT1(!ITRANS) =2*P+2*Q
    RT2(NTRANS) =%
    TNODE(INTRANS)='10D
```

```
    24 IF (SQ(1).EQ: NAIUO(1)! SOTD P5
        NOD=(I-1)*の+1
        IF (I.EQ.1) Gn TO ?41
        NTRAMS=NTRAMS +1
        \(\operatorname{RT1}(N T R A N S)=?\)
        RT2(NTRANS) \(=2 * P+Q+1\)
        TNODE (NTRANS) =NOD
    241 IF (I.FQ.P) GO TO 25
        IITRANS=NTRANS + 1
        RT1(NTRANS) \(=\mathrm{R}\)
        RT2 (riTRANS) \(=2 * P+1\)
        TNODE (NTRANS) =NOD
\(25-\quad R=P Q+2 * N M P+L ?\)
        FLAG (L) \(=1\)
26 CONTIIUE
        FLAG(11)=0
        FLAG(12) \(=0\)
        IF (J.NE.1) SO TO 27
        FLAG (2) \(=0\)
        \(\operatorname{FLAG}(3)=0\)
        \(\operatorname{FLAG}(10)=0\)
27 IF (J.NE.Q) GO TO 28
        FLAG(1) \(=0\)
        FLAG(4) \(=0\)
        \(F L \bar{A} G(9)=0\)
28 IF (I.NE.1) Gก TO 29
        FLAG(1)=0
        FLAG(3)=0
        \(\operatorname{FLAG}(5)=0\)
        \(\operatorname{FLAG}(6)=0\)
        FLAG (7) \(=0\)
        \(\operatorname{FLAG}(9)=0\)
        \(F \operatorname{LAG}(10)=0\)
29 IF (I.NE.P) GO TO 30
        FLAG(2) \(=\) C
        \(\operatorname{FLAG}(4)=0\)
        \(\operatorname{FLAG}(5)=0\)
        \(\operatorname{FLAG}(6)=0\)
        \(\operatorname{FLAG}(8)=0\)
30 CALL XTRANS(P,O.FLAG.R.I.J.LI,L.2.NMP:NMQ)
    IF (LI.GT.I) GO TO 32
    IF (SP(1).EQ.MAINP(1)) GO TO 31
    NOD=J
    IF (J.EQ.1) GO TO 301
    NTRANS=NTRANS +1
    RT1 (NTRANS) \(=1\)
    RT2 (ATRANS) \(=\) R
    TINODE (NTRANS) =NON
```

$3 \cap 1$ IF（U．FQ．Q）in $T \cap 31$
NTRANS＝NTRAMS＋1
RT1（NTRANS）$=P+1$
RT2（NTRANS）$=$ ？
TNOCE（ITRA：IS）$=!!00$
31 IF（SP（NSP）．F．Q．MAJID（NMP））GO TO 天？
NOD $=(P-1) * 2+, ~ J$
IF（J．E゙Q．1）ヶう TO 311
NTRANS＝NTRANS＋ 1
RT1（NTPANS）$=$ R
RT2（NTRANS）$=2 *$ ？
TNODE（ITRRA：IS）＝IIOD
311 IF（J．FQ．V）\＆n $T \cap 32$
NTRANS＝NTRANS＋1
RT1（nTizAris）$=0$
RT2（NTPAMS）$=P$
TNONE（ ITRAIIS）$=1100$
32 $\quad R=P Q+2 * N M P+N \cdot O+L 2$
DO 321 L＝1•1？
$F \operatorname{L} \wedge G(L)=1$
32．CONTINUE
FLAG（11）＝C
$F L A G(12)=0$
IF（J．NE．1）GO TO 33
$F \operatorname{LLG}(2)=0$
FLAG（3）＝0
FLAG（10）＝0
33 IF（U．NE．Q）הO TO 3,4
FLAG（1）＝n
$F \operatorname{FLG}(4)=0$
$\operatorname{FLAG}(0)=0$
IF（I．NE．1）Gの TO 35
FLAG（2）$=0$
$\operatorname{FLAG}(4)=0$
$\operatorname{FLAG}(6)=0$
$\operatorname{FLAG}(?)=0$
FLAG（R）＝0
IF（I．．ive．P）ro TO 3́6
FLAG（1）$=0$
FLAG（3）＝9
FLAG（5）＝ 0
FLAG（7） 7 ）
$\operatorname{FLAG(r)}=0$
$F \operatorname{FLG}(a)=0$
FLAG（10）＝？
36 CALL XTRANS（O．O．FLAG•R．I．J．L1．L．2．NIMP，NMQ）
IF（1．1．fT．1）6？T？ 39

$N O D=(P-1) * Q+J$

```
    IF (J.EQ.1) s.) TO 361
    NTRANS=NTRANS+1
    RT1(NTRANS)=!
    RT2(NTPANS)=R
    TIIONE (NITRANS) =NOD
    361 IF (J.EQ.Q) G? TO 37
    NTRANS=NTRANS+1
    RT1(NTRANS)=2*口
    RT2(NTRANS)=?
    TNO[ E(MTRAMS)=NOO
37 IF (5P(1),EQ.MAIMP(1)) GO TO 3P
    NOD=J
    IF (U.FQ.1) G2 TO 371
    NTKAN:S=NTRAIIS+1
    RT1(NTRANS)=R
    RT2(HTRANS)=P+1
    TNODE (HTRANS)=NOD
371 IF (J.EQ.Q) %O TO 3?
    NTRANS=NTRAMS+1
    RT1(NTRANS)=\overline{R}
    RT2(1!TRANS)=1
    TNODE (NTRANS)=:MON
38 CONTINUE
    RETURN
    END
```

B．2．3 Subroutine XTRANS
SUBROUTINE XTRANS（P，Q，FLAG：R．I．J．1 1．Lつ，NMP．HMQ）
PARAMETER NRTES＝2त̃O
PARAMFTER MAXN＝50
PARAMETER TRANSF＝5000
COMMON NN（NRTES），NODE（NRTES•MAXN），D（NRTES•MAXN），TNODE（TRANSF），
1 RT1（TRAHISF），RT2（TRANSF），NTRANS
IMPLICIT INTEGER（A－Y）
OIMENSION FLAG（1）
NON二（I－1）＊Q＋J
$P Q=2 * P+2 * 0$
LL＝NTRANS
IF（FLAG（1）．EO．0）GO TO 1
LL＝LL＋1
RT1（Lí）$=$ R
RT2（LL）$=$ I
1 IF（FLAG（2）．Fจ．0）GO TO 2
LL＝LL＋1
RT1（LL）＝I
RT2（L．L）$=$ R
2 IF（FLAG（3）．EQ．0）$\overline{\mathrm{GO}}$ TO 3
$L L=L L+1$
RT1（LL）$=R$
RT2（LL）$=\mathrm{P}+\mathrm{I}$
3 IF（FLAG（4），FQ．O）GO TO 4 $L L=L L+1$
RT1（LL）$=P+I$
RT2（LL）$=$ R
4 IF（FLAG（5）．E2．0）GO TO 5 LL＝LL＋1
$R T 1(L L)=R$
$\frac{R T 2(L L)=2 * P+y}{\text { IF }}(F L A G(6) \cdot E \cap \cdot 0)$ GO TO
LL＝LL＋1
RT1（LL）$=2 * P+J$
RT2（LL）$=$ R
IF（FLAG（7）．E゙ク．0）万O TO 7
LL＝LL＋1
$\overline{\mathrm{RT}} 1(\mathrm{LL})=\overline{\mathrm{R}}$
RT2 $(L L)=2 * P+ว+J$
IF（FLAG（R）．© 2．0）GO TO \＆
LL＝LL＋1
RT1（LL）$=2 * P+\ni+J$
RT2（LL）$=$ R
IF（FLAG［a）．F．2．0）for To 9
LL＝LL＋1
RT1（LL）$=R$
RT2（LL）$=P 0+L$ ！
IF（FLAG（10）．FG．O）fo TO 10
LL＝LL＋1
$R T 1(L L)=R$
RT2（LL）$=P\left(1+N_{i} 1 P+L 1\right.$

10 IF (FLAG(11).FQ.0) GO TO 11 $L L=L L+1$ $R T 1(L L)=R$ $R T 2(L L)=P Q+2 * \wedge M P+L 2$
I1 IF (FI.AG(12).FO.0) GO TO 1? $L L=L L+1$
RT1(I.L) $=R$
$R T 2(L L)=P Q+2 * N M P+N M Q+L ?$
12 LDEGG=NTTRANOS+1
DO 13 L=LBEG.LL
TNODE (L) =NOD
13 CONTINUE
NTRANS $=L L$
RETURN
END

```
B.2.4 Subroutine XSCHED
SUBROUTINE XSCHED(NI!,NONE,N,ZK.XZK,PNS,RBASF,PA)
C THIS SUPROUTINE RFADS IN A GROUP OF POITFE TOGETHFR WTTH
C ABBREVIATED SCHFOULE INFORMATION AND PRODIICES COMPLETF SCHENULF
C INFORMATION FOR ROUTES IN EACH PFRION. THE VARIARIEC PIS.RBASE
C ANU THE ARRAYS NH,NODE,D.ZK ARF TRANSMITTFD FROM THE MAIN PROGRAM.
C THE PROGRAM WRITES OUT THE DFTAIIEED SCHEDILE TNFORMATTON IISTNG
c UNIT OUT = 7.
```

PNRAMETER MAXPD $=10$
PARAMETER HRTES=200
PARAMETER MAXN: 50
PARAMETER NGPOUP=100

```
        NATIONAL BUREAU OF STANDAPDS MAY.1976
```

 NATIONAL BUREAU OF STANDAPDS MAY.1976
 OIMENSION NN(NRTES):NONE(NRTES,MAXN), П(NRTES,MAXN), ZK(MAXPD), -
 OIMENSION NN(NRTES):NONE(NRTES,MAXN), П(NRTES,MAXN), ZK(MAXPD), -
 ROUITE (NGROUP) RUNS (MAXPOI),HFAD(MAXPN).
 ROUITE (NGROUP) RUNS (MAXPOI),HFAD(MAXPN).
 2 \GammaTIME(MAXPD.NGROIJP),SCHFD(MAXN),XZK(MAXPN)
 2 \GammaTIME(MAXPD.NGROIJP),SCHFD(MAXN),XZK(MAXPN)
 C
C---------

```
```

VARIABLES AND ARRAYS IISED IN THIS SUGROUTINE

```
```

VARIABLES AND ARRAYS IISED IN THIS SUGROUTINE

```


```

 INPUT PARAMETFRS
    ```
        INPUT PARAMETFRS
        PDS - NUMFER OF PFRIONS
        PDS - NUMFER OF PFRIONS
        RBASE - CONVENIENT REFERENCE BASF FOR ABSOLUTF ROITE NUMRERS
        RBASE - CONVENIENT REFERENCE BASF FOR ABSOLUTF ROITE NUMRERS
        ZK(J) - CONVERTS'DISTANNCF. INTO TIMF FOR DERIOÑJ
        ZK(J) - CONVERTS'DISTANNCF. INTO TIMF FOR DERIOÑJ
        ROUTE DESCRIPTION
        NN(R) - NIMMNER OF NODES ON ROUTE R
        NODE(R,I) - THE I-TH NONF ON ROUTE R
        U(R,I) - THE I-TH INTERSTOP \capISTANCE ALONG ROIITE R
    ADDITIONAL VARIABLES AND ARRAYS (FROM IINIT 5)
        NIR - IJUMRER OF RÖIITES IN A G\overline{ROUP}
        ROUTE(J) - THE J-TH ROUTF OF THE GROIID
        RUNS(I) - NUMARER OF RUNS FOR PERIOD J
        HEAD(I) - HEADWAY FOR ROUTES IN DERI\capN I
        DTIME(I.J) - INITIAL DEPARTURF TIME FOR ROUTE J TN PERION I
        WORKING ARR̈AY'S
        SCHED(K) - SOIAFDULE TIME FOR K-TH NORF ALONG POUTF
```

```
C--------
    IMPLICIT INTEFER (\-Y)
    REAL. XZK
C DFFINE OUTPUT UHIT.
    OUT=7
C -READIN A GROUP NF ROITES (SIMILAD IN DUNS.HEANWAYS):
    10 READ(5.900.EII= R0) NR.(ROUTE(J),J=1.NF)
    900 FORMAT(16I5)
C FOR EACH rOUTE I'f the group, rean IN thE SChFDIllF fapamEtERS bY timE
C PERIOD.
C
        NRUNS=0
        DO 20 I=1,PDS
        REAO(5.900) RIJNS(I),HEAD(I)Ö(NTIMF(I`,J),J=10.JR)
        NTRUNS=HRUNNS+RIMNS(I)
        20 CONTINUE
C
C REGIN CONSIDERATION OF EACH ROUTE IN THE GROIJP.
C
        DO70 J=1.NTR
        R=ROUTE(J)
        NN!R=\M(R)
        RT=R+RGASE
c
C PRINT ROUTES AND NODES ON ROUTES.
C
    WRITE(OUT, &OO)RT,NNR,NRUNS, (NORE(D,I),T=1.NNR)
    800 FORMAT(20I5)
C
COMPUTE SCHEDULE INFORMATION.
C
    DO %GC II=1,P\S
    SCHED(1)=DTIME(II,J)
    Z=ZK(II)
    IF (R.GT.PO) T=XZK(II)
    HI)=HEAD(II)
    RNS=RUIS(II)-1
    00 30 I=2, NNS
    SCHED(I)=SCHEN(I-1)+(?*ח(R,I-1))
    30 CONTINIE
```

c
C PRINT SCMEDULE INFORMATION FOD FIRST DFPARTURE IN PFRTON.
WRITE (OUT, 80,) (SCHED̃(I), T=1, NNR)
IF(RNS.EQ.0) GO TO 60
$3050 \mathrm{~K}=1$. RNS
DO 40 I $=1$. PNR
$\operatorname{SCHED}(\mathrm{I})=\operatorname{SCHEn}(\mathrm{I})+\mathrm{HD}$
40 CONT INUE
C
C PRINT SCHEDULE INFORMATION FOR REST OF PERION.
C
WRITE (OUT, ROD) (SCHED(I),I=1,NNR)
50 CONTINUE
60 CONTIIJUE
70 CONT INUE
GO TO 10
80 ENDFILE OUT
RETURN
END

B.2.5 Subroutine TRANS

SUEROIITINE TRANS (NTRANS.TNODE, RT1, RT?, PQ. RRACF)
C THIS SUBROUTINE WRITES OUT USING INIT OUT $=$ a THE TRANSFFR
C. INFORMATION PREVIOUSI_Y GETJERATED GY GRID. THF ROUTE NMMRFRS

C PRINTED ARE ARSOL'JTE (I.E. NUMRERS RIIN CONSECUTIVFIY FROM RRÁSE).
C THE VARIABLES PQ.RBASE. NTRANS AND THF ARRAYS TNODF,RT1,RT2
C ARE TRANSMITTED FROM THE MAIN PROGRAM. THF ADRAY TMTM IS READ FROM C UNIT IN = 12.

PAPAMETER TRANSF $=5000$ in NUMRER OF TRANSFERS
PARAMETER MNODE $=1000$ I NUMBER OF NODES
OIMENSION TNOME(TRANSF), RT1(TRANSF), RT2(TRANSF), TMIN(MNONE)
c

C VARIABLES AND ARRAYS USED IN THIS SURROUTINE
C INPUT PARAMETERS
RRASE - CONVENIENT REFERENCE BASE FOR ABSOLUTF ROIITE NUMAERS
TMIN(I) - MINIMUM TRANSFER IIME BETWEEN ANY TWO ROUTES AT NODE I

TRANSFER NONE DESCRIPTION
TNODE (L) - THE L-TH TRANSFER NODE
RTI(L) - ROUTE. FROM WHTCH TRANSFER IS MANE AT TNODE(L)
RT2(L) - ROUTE TO WHICH TRANSFER IS MADE AT TMOCIF(L)
NTRANS - NUMRFR OF TKANSFERS

IMPLICIT INTEGER (A-Y)
C DEFINE IMPUT AND DUTPUT UNITS.
IN $=12$
OUT $=8$
c
C READ IN MINIMUM TRANSFER TIMES AT EACH NONE.
READ(IN, $90(1)$ (TMIN(I), $I=1, \overline{P Q})$
FORMAT (16I5)
c
C PRINT TRANSFER IIDDE INFORMATION.
C
DO $10 \mathrm{~L}=1$, NTRANS
R1三RT1(L) +RRへ SE
R2=RT2(L)+RBASE
TN=TNODE(L)
WRITE(OUT. RO0) TN•R1•R2.TMIN(TM)
800 FORMAT(415)
10 CONTINUE ENDFILE OIT RETUR:
EID

B. 3 PROGRAM TRA


```
        \(J 1=I I+1\)
        IF (MOD̄(II.2).EQ.1) J1=II+?
        IF (J1.GT.N) an TO 10
        DO 9 JJこJIN N
        IF (RE(L.J.J).FQ.2) GO TO ?
        \(J=R T E(L i J J)\)
        WRITE (8.900) L,I,J,MINTRA(L)
    9 COHTINUE
    10 CONTINUE
        ENDFILE \(3^{-}\)
        STOP
        END
```


B. 4 PRUYRAM ACYCIE

```
THIS PROGRAM PRO\capIICFS AN AFPF\capPRIATF TIMF-EXPANDFN NFTWORK FPOM
GIVEN SCHFOULE IWFOPMATION ANO TD\ISEFR MATA. FACH NODF OF THF
TIME-EXFAINDEN IJFTWORK RFPRFSENTS A PARTICILLAR (STOP,TTMF) PAIR.
TRANSFERS ARE ACCOMMODATED IJSING TRANGFER ARIS WITH THE FICTITIOHS
ROUTE 9999.
NGTIONAL {3URENLI DF STAIIDARINSS JUI.Y. 1976
    COMPILER (XM=1)
    PAPAMFTER NAYS=10| क NUMMEER OF STODS/ROIITF
    PARANFTER NRTFS=?UO त? MUMIIER OF ROUTFS
    PARAMETER MAXV=4500 \cap NIIMRER OF NNRFC
    PARAMFTER MAXA=13000 D NIJMRFR OF APCS
    DIMENSION IIONF (MAXS), SCHEN(MAXST), \subsetTART(NRTES),FNNT(NRTEST
    COMMOH1/GLK1/ N(MAXNI),T(MAXN),TT(MAXN), TIND(MAYN), NEW(MAXN)
    COMMO.J/RI_K2/ FROM(MAXA),TO(MAXA),RTE(MAX^),FF(MAXA),FINN(MAXA)
VBRIARLES ANC ARR^YS USEE IN THIS PROGRAMM
    INPUT VGRIARLFS AMD ARRAYS
        RT - ROIITE N|JNFER
        WN - JUIMRER OF STOPS OIN POUTE
        RUNS - NHNBER OF RIINS
        NODE(I) - THF I-TH STOP ALONG THF ROIITE
        SCHEN(I) - T\IE I-TH SCHEDULE TIMF ALOIIG THE ROIITF
        TNCDF - STOD AT WHICH TRANSFER OCCIIRS
        RT1 - ROUTE FROM 'NHICH TRANSFFR AT THIODE
        RT? - ROUTE TO WHICH TRANSFER AT TNONF
        TMIN - MININEJM TRANSFER TIME AT TNODFF
    LONSTRUCTEN APRRAYS
        II(I) - STOP ASSOCIATFN WITH NETWORK NOOE I
        T(I) - TIME ASSOCIATEN WITH 'JETW\capRK NODE I
        START(R) - FIRST POSITION WHERE TMFORMATION MAY RF FDUNN
                FOP ROUTF R ON MONF LTST
        ENII(R) - LAST FOSITION WHERE INFORMATTON MAY RE FOUNIN
        FOR ROIITE R ON FOOF LIST
```

```
IMPLICIT INITFGFR_(N-Z)
```

CDEFIME INPUT IINTTS．

```
IN1=7 कि IPPUT FILF FOR SCHENIILE חATA
IN2=8 目 INPUT FILE FOR TRANSFER MATA
```

ZEGIN FROCESSINS SCHEDILE INFORMATIOH CREATF NONES ANT ARCS OF THI TIME－EXPAIIDED NETWORK．

$$
\begin{aligned}
& L=0 \\
& N=0
\end{aligned}
$$

PFAD IN ROÜTE \because In SCHEULF DESCRIPTINN．TONSTRUCT NONE ANT ARC LIST． NOTE THAT ONF MUST HAVE NNA >1 ANH RUN＇S >0 ．

10 REAC，（IN1，OOO，RND＝4O）RT，NN，RUNS，（NONE（T），T＝1，NMI）
90n FORNAT（2П15）
START（RT）$=L+1$
DO 30 J＝I•RU．J．
REAC（I＇l1，900）（SCHEI）（I）．I＝I，NH）
L＝L＋1．
$N(L)=r!O D E(1)$
$T(L)=$ SCHED（1）
00 20，Jニ2•NN
$N=N+1$
FROM（11）＝L
TO（N）$=L+1$
RTE（in）＝RT
L＝L＋1
N（L）＝「パE（J）
$T(L)=$ CCHED（J）
20 CONTIMUE
30 CONT INUE

```
        Enn(RT)=L
        GO TO 10
    40 LLEN=L
C READ IN TRANSFER MATA AND IJPDATF. ARC LIST.
c
    50 REAN(TH2.900.FNO=RO) TNONE.RT1,PT?,TMIN
        LSI=START(RT1)
        LF1=ENO(RT1)
        DO 70 L=LS1.LF1
        IF(N(I.).NF.TNODE) की TO 70
        TM=T(L)+TMIN
        LS2=ST^RT(RT?)
        LF2=E!!(RT2)
        DO 60 LL=1 S2.LF2
        IF(N(LL).NF.TMONE) R.O TO 6O
        IF(T(I.L),L.T.TM) GO TO 60
        IF(LL.EQ.LF2)SO TO 55
        IF(N(LL).FQ.N(LL+1))GO TO GN
    55M=M+1
        FROM(04)=L
        TO(f)=1/L
        RTE(M')=9999
        GO TO 70
    6 0 ~ C O N T I N U E ~
    7 0 \text { CONTTINUE}
        MLEN=M
        GO TO 50
C SORT NODE ARRAY GY TIME.
c
    8O CALL SORTP(T.LLEN.TT,TIND)
        DO 90 I=1.LLE'!
        J=TIND(I)
        NEW(J)=I
    OO CONTIMUE
c
C RENUMBER NODFS IH! APC LIST.
C
            DO 100 I=1,MLEN
            Kl二FRn!(I)
            K2=TO(I)
            FPOM(T)=NEW(K1)
            TO(T)="EW(K2)
    100 CONTI*H!E
C SORT APC ARRAY OY ORIGIN NODF.
    CALL SORTP(FPONM,MLFINOFF,FIMNS)
```

```
c
C WRITE DUT NETWORK NODE DATA, SOPTEE ON T.
c
        OUT1=9 n IFFINE nIJTPUT UNIT FOR NONF D^TA.
        DO 110 I=1.LLFN
        J=TIND(I)
        WRITF(OUT1,9ति1) M(J).T(J)
    901 FORMAT(3I5)
    110 CONTINIEE
        ENIFILE OIITI
c
WRITE OUT AKC DATA. SORTED RY ORIGIN NODF.
        OUT2=10 नEFINE OIITPIIT UNITT FOR ARC DATA.
        DO 12n I=1.MLFN
        J=FIN!(I)
        WRITE(nUT2.9n1) FRnM(J),T\cap(J),RTF(J)
    12; CONTIN|E
        E.NC.FILF: OIIT2
        STOF
        Em!
```

SURROUTIIJF SORTP $(X \cdot \cdots \cdot Y, X P O S)$
THIS ROUTIPIE SORTS THF FLFNENTTS OF THF INDIT VFRTOD X AIIN PUTC THE SORTE ELEMEIJTS INTO THE VFCTOR Y．IT AI SO CARRTFS AI ONG THE IA！DEX NIMRFR
OF EACH ORNEDFD OHSERVATIOM－－THAT IS，TT CARRIFC AI ONG THE POCITIOM OF THE I－TH ORDFRFD ORSEFVATIMM（FOR EACH I）AS IT WAS JN THE ORTGINAL UJOROFRED DATA VECTOR X ．THESF PNSITYONS ARE DLACFD TH THE VFCTOR XPOS． THIS ROUTINE IS USFFIIL IN ATTFMPTING TO LOCATF THF MINIMIM，THE MAXIMIM， OR SOME OTHER ORINERED OHSFRVATIOF OF IMTERFST TN THE ORIGINAL＇NOBREEFEN INPUT VECTOR x ．
THE INPIST TO THIS ROIITIME IS THE SINGLF PRFCISTON VECTOR X OF （UHSORTED）ORSERVATIONS．THE JMIFGFR VALUF N（＝SAMPLE SITF）， AN EMPTY SINSLF DRECISION VECTOR Y IMITN WHICH THF SORTFR OPSERVATIONS WILL BE PLACFO，AND AN EMPTY SINGLE PRFCICION VFCTOR XPOS INTO WHICH THE POSITIONS OF THE SORTEC ONSFRVATINNS WTLL AE PIACFत̄．
THE OUTPUT FROM THIS，ROIITINE IS THF STNGLF PRECISTON VFCTOR Y INTO WHICH THE SORTE O OSFRVATIONS HAVF REEN PLACFD．ANO THE SINGLE PRFCISION VECTOR XPOS I＇ITO WHICH THF POSITICAS OF THE SORTFD ORSFRVATIONS HAVE REEN PLACED． RESTRICTIOIS ON THE MAXIMUNA ALLOWPRLE VALIIE OF N－THE OIMENSIONS
OF VECTOFS I！I AND IL（DFFINED AND I！SED INTERNALLY WITHIN THIS ROUTTNE）－ DFTERMINF THF MAXTMIJM ALLOWABLF VALIJE OF M FOR THIS
ROUTINE．IF I＇I ANO IL FACH HAVE OIMENSION K．THFN M MAY NOT FXCEEN
$2 * *(K+1)-1$－FOR THIS KOUTINF AC WRTTTEN．THF DTMENSIONS OF TU AND II． HAVF HEEN GET TO 36．TIリS THE MAXTMIJM ALLOWARLF VALUE OF II IS APPROXIMATELY 137 ZILLION．SINCF THIS EXCEEDS THF MAXIMUM ALLOWARI．EE VALIIE FOR AN IJTEGED VAFIARLE IN．NAY COMPUTERS．AND SINCE A SORT OF 137 RILLIOH ELFMFITS IS PRESENTLY TMPRACTICAL AND IINLTKELY THERFFORF NO TEST FOF WHETHER THE IMPUT SAMPLE SIZF N FXCEETS 137 GILLION HAS REEN INCORPORATED IITO THIS ROIITINF．TT IS THIIS ASSUMF THAT THERF IS MO （PRACTICAL）DCSTRICTIOII ON THF MAXTMUM VAIIIE OF N FOR THIS ROIITINF． PRIMTI＇IG－－IJONF IINLEESS AN FRROR CONOTTTON FXISTC
T－IIS ROUTI＇JE IS SI＇JGLE PRFCISION IN INTERIIAL OPERATIDN． SUARCIITINFS＇IEENFT－NONE
SORTING METHON－－HINARY SORT
REFERE，JCE－－CACM MARCH 1969．PAGE IRG（RINARY SNRT ALGORITHM RY RICHARN C．SINGLFTON．
－－CACN JA＇JIARY 1970．PAGF 54．
－－CAFM OCTORER 1970 ．PAGF F24．
－JACM JA．JIARY 19R1．DAGF $\overline{41}$.
WRITTEI：FYY JANES J。FILLIPFN• STATISTICAL FNGINFFRTNG LARORATORY（20S．03）
NATIONAL RIIREヘII OF STAIINAPDS，mASHINGTON．D．C．2nク34 JllF． 1072
DIMENSION $\times(1.) \cdot Y(1), X P O S(1)$
DIMENSION TU（36），［L（36）
IMPLICIT IMTECER $(A-2)$
CHECK THE INPITT APGIMENTS FOR FRROPS

```
            IFRニ6
            LF(N.LT.1)GOTO5N
```



```
            HOLCOX(1)
            DOGOI=2.N
            IF(X(I),NF.HNL?)GOTOO(
        60 CONTIANJE
            WRITE(IPR, 9)HOLN
            DO61I=1,N
            Y(I)=x(I)
            XPOS(I)=I
        O1 CONTIINUE
            RETURN
    50 WRITE(IPR, 15)
            #R ITE(IPR,47)'1
            RETUIRII
        55 WRITE(IPR,1&)
            Y(1) =x(1)
            XPOS(1)=1.0
            RETURN
        GO CONTINUE
            a FORMAT(IH , 1O&H***** |OH-FATAL DIAGHOSTIC--THE FIRST INPIIT ARGUMF
            I\T (A VECTOR) TO THE SORTP SURROIITINF HAS ALL FLFMENTS = .F15.8.6
            1H******)
        15 FORMAT(1H , つ{H***** FATAL ERPORー-THE SECTNID INPUT ARGUMENT TO THF
            1 SOFTP SURR')IJTINE IS NON-POSITIVE *****)
        19 FORMAT(1H , 10OH***** NON-FATAL DI\triangleGNOSTIC--THE SECONO INPUT APGUMF
            1.IT TO THE SORTP SUBROIJTINE HAS THE VAIUE 1 *****)
            4 7 \text { rOORMAT(IH , उ5H***** THE VALUF OF THE ARGIIMENT IS , I\& , 6H *****)}
```



```
            DO100I=1.N
            Y(I) =X(I)
    1|,7 COMTIMIIE
DEFINE THF XPOS（POSITION）VECTOR．AFFORF SORTING，THIS WILL 3F A VECTOR ：HOSE I－TH FLEMENT IS FOUAI TO I．
D0150I＝1．N
\(X P O S(I)=I\)
15 C CONTIMIJE
CHECK TO SEF IF THF INPUT VECTへR TS ALREANY SORTEN
N \(1=\mathrm{N}-1\)
C020？I＝1．11＂11
\(I P 1=I+1\)
IF（Y（T）．LF．Y（IP1））GOTO2nก
GクTロ25？
20！1 CONTIMIE
RETUR
```

```
251)}4=
    I=1
    J=\
305 IF(I.GE.J)%OTの\overline{ヲ %}
310 K=I
    MIC=(I+J)/?
    AMED=Y(NIN)
    BMEO=XPOS(MI\cap)
    IF(Y(I).LF.A:位))SOTO320
    Y(MID) =Y(I)
    XPOS(MID)=XPOS(I)
```



```
    XPOS(I)=PMFD
    AME\cap=Y(MIn)
    HMEN=XPOS("I'))
320 [=Ј
    IF(Y(J),GF,A.MED)GOTO34U
    Y(MID) =Y(J)
    XPOS(MIl))=XP\capS(J)
    Y(J)=AMEП
    XPOS(.J)=PMEO
    AME\cap=V(MIT))
    BMEC=XPOS(MI?)
    IF(Y(I).L.F.AMED)GOTO340
    Y(MID)=Y(I)
    XPOS(MID)=XPOS(I)
    Y(I) = A'MEO
    XPOS(I)=RMFD
    AMEO=Y(MIO)
    BMEN=XPOS(MIO)
    GOTO340
330 Y(L)=Y\overline{(K)}
    XPOS(L)=XPOS(ん)
    Y(K)=TT
    XPOS(K)=ITT
34% L=L-1
    IF(Y(L).NT.A &FO)GOTO340
    Tr=Y(L)
    ITT=XDOら(し.)
350 K=K+1
    IF(Y(K).LT.A NFO)G)TO35(%
    IF(K.LE.l_)COT\cap330
    LMI=L-I
    JNK=リーK
```



```
    IL(M)=I
    IU(M)=L.
    I=K
    M=M+1
    SOTい?as
```

```
360 IL (M) =K
    IU(M)=J
    J=L
    M=M+1
    GOTO380
370 M=M-1
    IF(M.EQ.0)RETIIRN
    I=IL(M)
    J=IU(M)
3en JMI=J-I
    IF(JMI.GF.11)SOT0310
    IF(I.EQ.1)rOT0.305
    I=I-1
3av I=I+1
    IF(I.EQ.J)GCTつ370
    AMED=Y(I+1)
    BMED=XPOS(I+1)
    IF(Y(I).LF.A'言त゙GOTO
    K=I
395 Y(K+1)=Y(Y)
    XPOS(K+1)=XP\capS(K)
    K=k-1
    IF(AMEN.LT.Y(L))GOTOZOS
    Y(k+1)=AMFO
    XPOS(k+1)=BMEN
    C0Tn3a!
    E!!D
```


C

```
        DO 1 S=1,MS
        NR(S)=0
1 CONTINUE
C READ ROIITE INPUT
C
    NSTOPO}=
    NROUTE=0
    K=1 I NIMMRER OF DEFARTIJRES IN THF SCHEDULF
2 REA[) (7.901,EN!D=6) R,M,KK,(STOP(R,J):J=1,M)
901 FORMAT (20I5)
    NS(R)=M
    IF (R.GT.NROIITF) MIROUTE=R
C
C READ SCHEDULES FOR ROUTE R
    SEEG(R)=K
    DO 3 KS=1.KK
    READ (7.901) (SCHED(K,J),J=1,M)
    K. KK+1
3 CONTINUF
    SEND (R)=K-1
C
C ANO ROUTE P. TO LIST OF ROUTES STOPPING AT FACH STOP IN R'S STOP LYST
C
4O5 I=1MM
    S=STCP(R,I)
    IF (S.GT.NSTOD) NSTOP=S
    NR(S)=NR(ST+1
    J=NR(S)
    ROUTE (S,J)=R
    CONTINUE
    GO TO 2
    READ (12.907) (MINTR^(I),I=1.NSTOD)
*O7 FORMAT (16I5)
C
C READ ORIGIN AND JFSTINATION
C
7 READ (11,OC3.ENN=24) ORG, NST,TIMF
903 FORMAT (3I5)
    WRITE (6,9044) ORGIDST,TIMF
904 FORMAT ('0'///'OTRIP FROM',I5,' TO'.I5.' NFPARTING ONJ OR AFTER'.
    1I5/)
    IF (TINE.GE.1.ANID.TIMF.LLE.1440) GO TO &
    WRITF (6.99?)
992 FORMAT (5X,MO TPIP., DFPARTURE TTME TS O'IT OF RANGE.1/)___-_
B CALL CPIJSIIP(START)
```

C IHITIALITF ARPAYS USFD IN THF ALGORITHM
C
DO $9 \mathrm{~S}=1 \cdot M S$
$T(S)=T N F$
$T R(S)=1 T A F$
$P R(S)=0$
$P S(5)=5$
$F(5)=?$
9 CONTINUE
T \because CRG $=$ TIME -
$u=0$
$V=0$
$I=O P G$
$T T=T(T)$
C START ALGORITHM -...
${ }^{C} 10 \quad N=N R(I)$
$\frac{D O 18 \quad J=1 \cdot N}{R=R O U T}$
$M=\operatorname{MS}(R)$
$0011 \mathrm{JJ}=1 \mathrm{M}$
IF (STOP(ロ, JJ).FQ.I) GO Tn 12
11 CONTIIIUE
C IF STOP (I) NOT FOIND IN ROIJTE R: ERROR ANN STOP
WRITE (6.900) I.R
990 FORMAT ($0 * * *$ FRROR $* * *$ STOP',T5.' NOT FOUNM ON ROIJTE', I5)
STOP
12 IF (JJ.EQ.M) GO TO 18
C IF JJ IS LAST STMP ON ROUTE R CANNOT DEPART STOP I ON ROUTE R
$I B E G=S B E G(R)$
$I E N D=S E N D(R)$
DO 13 K=IREG.IENत
IF (SCHED(K,JJ).GE.TT) GO TO 14
13 COHT IHME
C IF NO DFPPARTURFS ARE AFTER TT, TRY AIINTHEP ROITF
14 TIM=5C:IED(K. 1)
」ここう」+1
C TEST ARRIVAL TIMES AT STOPS ASTER STOP I NAI ROUITF $口$
DO 17 SS=JJ."1
$S=S T D R(R . S 5)$
IF (SCHED(K,S5). RE.T(S)) IN TO 17
$P R(S)=P$
$P S(S)=1$
IF (T(S).GE.TAF) Gn TO 15

C IF S IS ALREANY OM THF LIST L．WOVF S OCYM！TO A NEM POSITION ANID TFRO
C THE OLD POSITIOH

```
… \(\quad \frac{K K}{I F}=F(S) \quad(K K \cdot G T .0) \quad L^{-}(\bar{K} K)=0\)
\(15 \mathrm{~T}(\mathrm{~S})=\operatorname{SCHED}(\mathrm{K} .55)\)
    \(T \mathrm{~B}(\mathrm{~S})=\boldsymbol{T} 1 \mathrm{~A}\)
    C ADD S TO LIST L
    \(16 \quad V=V+1\)
    IF (V.GT.ML) \(V=1\)
```



```
C
C COMPACTIFY LIST I.
C
\(25 \quad W=1+1\)
    10026 IPDS \(=W \cdot M L\)
    IF (LISPOST.
    \(v=v+1\)
    \(S T=L(I P O S)\)
    \(L(V)=S T\)
    \(F(S T)=V\)
    26 CONTINUE
    IF (W.EQ.O) GD TO 16
    Or, 27 IPOS \(=1.4\)
    IF (LIPOS).EQ.O) GO TO 27
    \(v=v+1\)
    IF (V.GT.ML) \(\quad V=1\)
    STEL(IPOS)
    \(L(V)=S T\)
    \(F(S T)=V\)
    27 CONTINUE
    GO TO 16
    \(161 \quad L(V)=5\)
        \(F(S)=v\)
    17 CONTINUE
    18 CONTINUE
        \(F(I)=0\)
        IF (U.NE.0) L(IT)=0
    C STOP WHEN THE LAST STOP PROCESSED WAS THE. L.AST ON THE LIST L
    19 IF (U.E日.V) SO TO 20
    リニリ+1
    IF (U.GT.ML) U=1
    \(I=L(U)\)
    IF (I.EQ.O) Gก TO 19
    TT=T(I) +MINITRA(I)
    GO TO 10
```

```
C
C WRITF OIIT TRIF
C
20 CALL CPUSIIP(FTNISH)
    RUNTI:\because=FINISッ-START
    RTIN'E=QTIMF +RUNTIN
    RTSO=RTSQ+RUNTIM*RUNTIM
    NH:UN=NRUN+1
    WRITE (6.908) RINNTIM
OOB FORMAT (IOX,'RIJN TIME FOR LAPCOR'.IIO.' MTLLISFCONÕS'/)
    IF (PS(DST).F.O.0) GO TO 23
    I=DST
    SPRT (MMMP)=TIST
    K=MP
21 II=PR(I)
    RPRT (K)=II
    T3FRT(K)=TM(!)
    TPRT(K)=T(I)
    I=PS(I)
    SPRT(K)=I
    K=K-1
    IF (I.NE.ORG) GैO TO 21-
    K=K+1
    0O 22 J=K.MP
    JJこう+1
    WRITE (6.905) PFRT(J),SPRT(J),TRPRRT(J),SPRT(JJ),TPDT(J)
905 FORMAT (5X.'BOARD ROUTE ',I5.'. AT STOP.,IS.'AT TTMF.,IS.
    1% ARRIVEAGT STOP,:I5,F AT TIME
22 CONTINUE
    GO TO }
23 WRITE (6.906)
906 FORMAT (5X, 'UV TRIP FOUHO:)
    GO TO ?
24 ROUTEFLOAT(RTYMF)/FLOAT(NRUN)
    WRITE (6.909) ROIIT
gn9 FORMAT ('0'///'OAVERAGE RUN TIME FOR LABCOR IS'.F1?.?.
    1. MILLISECONnŞ")
    ROUT=FLOAT(NR|II)*ROUT*ROUT
    NRUN=NRUN-1
    ROUT=(FLØAT(RTSQ)-ROUT)/FLOAT (NRUNN)
    ROUT=「QRT(RDUT)
    WRITE (6,01J) RO!JT
910 FORMMT ('OST*MMARM DEVIATION OF RIIAITMAE FOR LARCOD IS':F12.?.
    1' MILLISECONTS')
    STOP
    ENMC
```


B. 6 PROGRAM LABSETI

PARANETER *R $=1$ no
$\bar{P} A \bar{R} A M F T E R \quad M N P=M R+1$
PARAMETER MS $=120$
PARAMFTER MSR $=1 \hat{6}$
PARAMF.TER MRS=?
PARANETER $\because \square=2000$
PARANETER :IIP=5
PARAMFTER MAT $=1441$
PARAMETER NMMD=MP+1
IMPLICIT INTEGER (A-Z)
REAL ROUT
LOGICAL HEAD
DIPENSION T(*1S), TQ(MS), DS (MS), PR(MS),L(MAT),NR(MS), NS (MR),
2 SAEG ($\bar{M} M \overline{)}), S \overline{S N D}(\bar{M} A R), S T \cap P(P R, M \cap R), M T M T R A(M S), R O U T F(M S, M R S)$,
3 SCHED (MD, MSR), SPRT (MMP), RPRT (MP), TPRT (MP), TAPRT (MP),LSUCC (MS).
4 LPRED (MS) , HE AD (MS)

```
STOP I:IPUT
    NR(S) - NIJMFER OF ROUTFG STOPPING AT S
    ROUTE (S,J) - JTH ROUTE STOPPIWG AT S
    MINTRA(S) - MINIMUM TIMF TO TRANSFFR BETWEEN ROIITES AT NOLF S
ROUTE IIIPUT
    NS(Q) - NUMRER OF STOPS OY RCUTE R
    STOP(R,I) - ITH STOP O*I ROUTE R
    S\SEG(R) - LOCATION IN THE SCHENULF LTST OF THF FIRST
                                SCHEOULED TFPARTIJRF FOR ROIITF. R
    SENO(R) - LOCATION IN THF SCHEOIIF LTST OF THF LAST
        SCHEIIJFO NFPARTURF FOR ROIITF. D.
    SCHF?(K.I) - ARRIVAL IINF AT THF ITH STOP OF THF KTH \capFPAPTURF
ALGOPITHM
    L(S)
    - SEQIENCE LIST OF STDPS TO FAN OITT FROM
    LPRFD(S)
    LSUCC(S) - SUCCFSSOR NINDF TO NOCF S I.I CHATN OF NODES
        REPRFSSEITIIIG ^ LEVFL IN LICT L.
    HEAD(S) - LOGICAL VARIABLF USFC TO INIICATF WHETHFR S
        HFAOS, A CHNIN IN L.
    T(S)
    - ARRIVAL TINF AT STOP S
    TFi(S)
    -PS(S)
    PR(S)
- PRENECESSOP NIONE T\cap NONF S TIN CHAIN OF NONES
        REPRFSENTIIIG A LEVFL IN SENIIENCF LTST L. IF S
                                HEADC; THE CHAIN (HFA\Gamma(S)=.TRIJE.), THIS POINTFR
                                GIVES THE POSITIOI OF & IN THE CFQIIFNCE LIST.
    - HOARIINSG TIME FOR VFHICIE ARRIVTMIS AT S
    - STJP PRFCE-ING S IN PATH}TO
    - ROIJTE FROM PS(S) TOS
```

C PRINTIIG THF PITH
C SPRT(J) \quad STOP
C RPRT(J) - ROlITF
C TPRT(J) - ARPIVAL TIMF
C^{-}- TEिPRT(J) - EDARUING TTME
INF $=099999999$ In INFINITY 1 ISEN IN THE DATH CALCILATTON
RTIME $=0$
NRUN $=0$
$R T S Q=0$
C
DO $10 \quad S=1 \cdot M S$
$N R(S)=0$
10 CONTINUE
C
C READ ROUTF INPUT
C
NSTOP=0
NROUTE=0
$K=1$ fr NIIMRER OF DEPARTURES IN THF SCHEDUL_F
29 READ (7,270,FUN=50) R,MOKK, (STOP (D,J), J=I'MS
$\operatorname{NS}(R)=M$
IF (R.GT.NROIITE) NROUTE=R
C
C PEND SCHEOULES FOQ ROIJTE R
$\operatorname{SREG}(R)=K$
DO $30 \mathrm{KS}=1, \mathrm{KK}$
READ (7,270) (SCHEก(K,J),J=1,M)
$K=K+1$
30 CONTINUE
$\operatorname{SEMD}(R)=K-1$
C
C. AOD ROUTE R TO LIST OF POUTES STOPPING AT FACH STOP IN R'S STOP LIST
C
DO $40 \quad I=1.4$
S=STOP (K,I)
IF (S.GT.NSTOP) NSTOP=S
$\operatorname{ivR}(S)=\operatorname{IIR}(\bar{S})+1$
$J=N R(S)$
ROUTE $(5, J)=R$
40 CONTINJE
GO TO 20
50 SIBEG (AROIITE + 1) =K
REAN (12.280) (MINTPA(I),I=1,HSTOP)
C REAU DRIGI'I AND IFSTINATION
C

```
5(1 REAN (11.290.FNח=260) NRG,नST,TINF
        WRITE (6.39C) ORG.OST.TIME
        \overline{IF}(TIME.GE.1.ANND.TIME.LE.1440) GÕ TO \ō
        WRITE (6.300) NRG.DST,TIMF
        WRITE (6,3.10)
        GO TO 60
70 CALL CDUSUP (START)
C
C INITIALIZE ARRAYS USED IN THE ALGORITHM
C
        00 80 S=1:S
        T(S)=INF
        TB(S)=INF
        PR(S)=0
        PS(S)=0
        LSUCC(5)=0
        LPRED(S)=n
        HEAD(S)=.FALSE.
80 CONTINUE
        T(ORG)=TIME
        IEORG
        TT=T (I)
        U=TIME +1
90- - DO 90 S=U.MAT
c
C START ALGORITHM
C
100 N=NR(I)
        -\frac{DO 200 J=1,N}{R=ROUTE(I,J)}
        M=NS(R)
        DO 110 JJ=1.'1
        IF (STI)P(R.JJ).E\cap.I) GO TO 120
110 continue
C
C\IF STOP(I) NOT F'OINDD IN ROUTE R, ERROR ANN STCP
C
    WRITE (6.320) I.R
    STOP
120 IF (JJ.EQ.*1) GO TO 200
C IF JJ IS L.AST STOP ON ROUTE R CANNOTT IEPART STOP I ON ПOUTF. R
C
    IBEG=S!SEG(R)
        IEND=SFND(R)
        DO 13n K=IREG.IENN
        IF (SCHEN(K,J)).GF.TT) 万OO T2 140-
130 CONTINUE
```

```
C
C IF NO DEPAKTURES IRE \FTER TT, TRY ANOTHED ROIITF
C
    G0 TO 200
    140 TIM=SCHEO(K.JJ)
    C
    C TEST ARRIVAL TIMES AT STOPS AFTER STOR I OII ROIITE R
C
    00 19N SS=J.l."1
        S=STOP(R.SS)
        IFF}(SCMED(\vec{K},SS),GF.\overline{T}(S)) Gn TO 19
        IF (T(S).GF.I`F) GO TO 170
    C
    C IF S IS AlREAOY OH THE I.IST, RFMOVF IT.
    x=LSUCC(S)
        Y=LPRED(S)
        IF (HEAD(S)) Gn T.O 150
        LSUCC(Y)=X
        IF (X.NE.0) fo TO 150
        GO TO 170
150 L(Y)=X
        IF (\overline{X.F口.0)}
        HEAD (X)=.TRUE.
    160 LPRED(x)=Y
C
C PUT S OR: THE SEQUENCF LIST.
C
        X=L(Y)
        L(Y)=S
        LSUCC(S)=X
        HEAD(S)=:TRIE.
        LPRED(S)=Y
        IF (X.EQ.O) Gn TO 1gO
        LPRED(x)=S
        HEAO(x)=.FALSE.
        T(S)=SCHEN(K,SC)
        TB(S)=TIM
        PR(5)=R
        PS(5)=I
    190 CONTIMIE
    200 CONTINUE
    C
    C STOF WHEN POINTER RFACHES OST OR yHEN A COMPLFTE DASS
    C PRODUCES HO NEG ANIITTOIS TO THF SHORTFST DATH TREF.
C
```

```
210 I=L(!.)
    IF (I.'it.n) in TO 211
    リニU+1
    IF (U.FT.MAT) ro TO 220
    GO TO 21?
211 IF (I.FQ.\GammaST) Go TO 220
    TT=T(I)+MIITRA(I)
    V=LSUCC(I)
    L(U)=v
    IF (V.FO.O) SO TO 100
    LPREE (V)=11
    HEAC(V)=.TRUF.
    go Tr 10n
C
C WRITE OUT TRIP
C
2?0 CALL CHUSIJP (FIHISH)
    RUNTIM=FI!ISH-START
    RTINE =RTIMF +RIINTIM
    RTSO=RTSQ+RUTNTIM*RUNTIM
    NRUN=NRUN+1
    WRITE '(6.340) RUNNTMM
    IF (PS(OST).FO.0) GO TO 250
    I=OST
    SPRT (MI.P)=DST
    K=MP
230 II=PR(I)
    RPRT(K)=I I
    TRPRRT(K)=TP(T)
    TPRT(K)=T(I)
    I=PS(I)
    SPRT(K)=I
    K=k-1
    IF (I.|E.ORG) GO TO 230
    k=k+1
    10 240 J=KMMD
    コここい+1
    WFITE (0.350) RPRT(J),SPRT(J),TBPRT(l),SPRT(JJ),TPRT(J)
240 CONTINUE
    GO TO 60
250 WRITE (6.360)
    GO TO 60
260 ROUT=FLOAT(RTIMF)/FLOAT(NRNN)
    WRITF (6.37CH) P(IUT
    ROUT=FLOAT(NRIN)*ROUT*ROUT
    NRUNI= FIRUNI-1
    ROUT=(FLOAT(RTSO))-ROUT)/FLOAT(NRUNM)
    ROUT=S?RT(ROUTT)
    WRITF (5.3n0) D(illT
    STOF
```

```
C
270 FORNAT (2NI5)
280 FORMAT (15I5)
290 FORMAT (3I5)
300゙ FORMAT ('OT/I/TOTRIP FROM'.IF.' TOJ.IF.' MFPARTING ON OR AFTERO,IG
    2/)
310 FORNAT (5x, ::O TRIP. NFPARTURF TTME IS OIIT OF RANGE.'/)
340 FORMAT (10X.'RIJN TIME FOR LABSFT'.IIO.' MTLLISFCONNS'/)
```



```
2 ' ARPIVE AT STOP ',IS.' AT TIME'TF)
360 FORMAT (5X."NO TRIP FOUNN')
370}\mathrm{ FORMAT ('0'///'OAVEFAGE RUN TIME FOR LABSFT IS',F1P.2.
    1' MILLISECONNS')
380 FORMAT ('OSTANDARN DEVIATION OF RUN TIME FOR LARSFT IS..F12.2.
    1' MILLISECONIS!')
C
C
ENR
```


B. 7 PROGRAM TIMEXD

| $\frac{C}{C}$ | ********** TIMEXD: DEPARTURE ORTENTE \cap CRITERION ********** THIS PROGRAM USES A TIME-EXPANDEO REPRESENTATION IN ORDER TO |
| :---: | :---: |
| C | CALCULATE THF BFST PATH FROM a GIVEN ORIGIN Tn A GIVFN DESTIN- |
| c | ATION TO DEPART AFTER A SPECIFIED TIME (AND ARRIVF AS EARLY AS |
| C | POSSIBLE). INJP'IT CONSISTS OF THE NODE AND ARC DATA FOR THE |
| \bar{C} | TIME-EXPANDED NETWORK TOGETHER WITH A LIST OF TRIPS FOR WHICH |
| C | TRIP ITINERARIES ARE REQUIREJ. OUTPIIT CONSISTS OF AN IT INERARY |
| \bar{C} | FOR EACH TRIP, THE CALCULATİN TIME IN MILLISECONOS FOR EACH |
| C | TRIP AS WELL AS THE AVFRAGE AND STANDARD DEVIATION OF CALCULATION |
| \bar{c} | TIMES FOR ALL TRIPS IN THE LIST. |
| C | |
| C | |
| C | |
| \bar{C} | NATIONAL SUREAU OF STANDARDS JULY. 1976 |
| C | |
| C | |
| C | |
| | PARAMETER MT $=1600$ - NUMAFR OF MTNUTFS |
| | PARAMETER $\because A X=100$. . . MUMPER OF ROIJTES/PATH |
| | PARAMETER NOTES $=4500$ D NUMRER OF NOIES |
| | PARAMETER $A R C S=13000$ Q NUMPER OE ARCS |
| | DIMENSION N(MONFS), T(NODES), P(NODFS), $\triangle R C(N \cap D F S), ~ P R T E(N O D E S), ~ N N(M T) ~$ |
| | -TO(ARCS), RTE (ARCS), PATHN(MAX), PATHT (MAX), PATHR(MAX) |
| | REAL ROUT |
| C | |
| C | |
| c | |
| C | VARIARLES AND ARRAYS USED IN THIS PROGRAM |
| C | |
| C | NODE AIID ARE DATA |
| c | |
| C | N(I) - STOP ASSOCIATEN WITH NETWORK NODE I |
| C | T(I) - TIME ASSOCIATED WITH NETWORK MODE I |
| C | ARC(I) - LAST POSITION WHERE INFORMATION MAY RE |
| c | FOUND FOR NODE I IN $\triangle R C$ LIST |
| c | TO(J) - ENDING NODE OF ARC IN POSITION J OF ARC LIST |
| C | RTE (J) - ROUTE NUMBER CORRESPONDING TO ARC IN POSITION |
| \bar{C} | J OF ARC LIST |
| C | NN(T) - NODF CORRESPONDIVG TO THE FIRST OC.CURRENCF OF |
| C | TIME T OR LATER |
| C | NODE - MUMBER OF NETWORK NODES |
| \bar{C} | |
| C | INPUT VARIABLES FOR TRIP |
| C | |
| c | ORG - DESIRFN OPIGIN STOP OF TRIP |
| C | DST - DESIRED DESTINATION STOP OF TRTD |
| c | TIME - TIME IT OR AFTER WHICH TRIP IS TO REGIN |


```
    104 READ(IN2,900.FND=107) T,TO(L),PTE(L)
        IF(I.FO.K) 与^ TO 1C.6
    KM=I-1
    00}105 J=k\cdot\mp@subsup{K}{}{N
    ARC(J)=L-1
105 CONTINUE
    K=I
    106 L=L+1
    GO TO 104
107%00 10& J二I.N!\capNE
    ARC (J)=L-1
108 CONTINUE
    WRITE (6.910)
910 FORMAT(1H1)
    NRUN=0
    RTIME二O
    RTSQ=0
200 REAN(IN3.900, FIID=500) ORG.OST.TI!AF
    WRITE(6.911) TRG,IST.TIME
911 FORMAT(//1HO. TRIP FROM!.I5:. TO",I5,'.DEPARTIMG ON OR AFTER'.
    115%)
    IF(TIME.LT.1.OR.TIME.GT.1440) GO TO 405
    IF(TIME.GT.TT) GO TO 406
    CALL CPUSIJP(STIME)
    INITIALIZE PATH ARRAY.
        DO 201 I=1.NOnE
        P(I)=\
        PRTE(I)=0
    201 CONTINUIE
CC BEGIN CALCULATTON NF ROUTFS FRON ORG TO DST.
DONE=NODE +1
    I=NN(TIMF.)
202 IF(N(I).EQ.ORG) GO TO 203
    I=I+1
    IF(I.GT NONE) GOTO 406
    GO TO 202
203 L=ARC (I-1)+1
    IF(I.FQ.1) L_=1
    END=ARC(I)
    PRTI=PRTE(I)
```

```
    204 IF(E|IT).LT.L) s0 TO 206
            IF(RTE(L).EQ.7090.AND.PRTY.EN.9990) GO TO 205
            J=TO(L_)
            P(J)=T
            PRTE(J)=RTF(L)
            IF(N(J).\JF.DST) GO TO 205
            IF(DONE.GT.J) :ONNE=J
    205 L=L+1
            GO TO 204
    206 I=I +1
            IF(I.GT.NONE) &\cap TO 4GG
            IF(I.FO.DOIIE) GO TO 3OO
            IF(\overline{P}(I)\cdotE\overline{Q}\cdot0.AND.N(I).NE.\capRG) GO TO 2OG
                    GO TO 203
    300 M=DONE
            K=MA}\overline{X}+
    301 K=K-1
            R=PRTE(M)
            PATHN(K)=N(Ni)
            PATHT(K)=T(M)
            PATHR(K)=R
    302 M=P(M)
            IF(N(M).EQ.OPG) GO TO 303
            IF(PRTE (M).NF.R) GO TO .301
            GO TO 302
    303 K=K-1
            PATHN(K)=ORG
            PATHT(K)=T(M)
            CALL CPIJSIIP(FTIME)
                            C PRINT FOUTE IVIFORANTTON.
                            KM=MAX-1
                            DO 3[4 L=K.K*A
    LL=L+1
    IF(PATHN(L).Fح.PATHN(LL)) GO TO 304
    WRITE(6,901) DATHR(LL),PATHN(L),PATHT(I),DATHN(LL),PATHT(LL)
    901 FORMAT(5X, 'BOARD RNIJTE',I5,' AT STOP',T5,' AT TIMFT, \
        1' ARRIVE AT STOP',IS'' AT TIMF',I5)
    304 CONITINUE
    305 DIFF=FTINF-STIME
            NRUN=NIRUN+1
            RTIME=RTIME+'TFFF
            RTSQ=RTSQ+NIFF*NIFF
            WRITE(6,902) TIFF
    902 FORMAT(1HO, NUHH TIMF FOR TTMEXN = ',IG:' MTLLTSFCOMDS')
            GO TO 20「;
```

```
405 WLRITF(6,905) TIME
905 FORMAT(1X,'TTMF',IS.2X,'SHOULE BE RETWFEN I ANN 1440 =-- TRY ASAIN
    1')
        GO TO 200
406 CALL CPUSUP(FTTME)
    WRITF(5,906)
306 FORMATI IX,NNO TRIP EXISTS FRON ORIGIN TO DFSTINATION LEAVING W
    1ITHIN 160 MI'HITFS AFTER THE RFQUESTEN TIMF =- - TRY ANOTHER DEPARTU
    2RE TIME')
        GO TC 305
500 ROUT=FLOAT(RTTME)/FLONT (NRIHH)
        WRITE(6.907) QnlIT
907 FORMAT(///1Hר, 'AVERAGE RUN TIME =',F1`.2.' MILITSFCONOS')
    ROUT=FLOAT(NR|H!)*RO|IT*ROUT
    MRUN=MPUH-1
    ROUT=(FLOAT(RTS(*)-ROUT)/FL\capAT(NRUN)
    R\capUT=SURT (FO!!T)
    WRITr(5.90&) !OOUT
9ח8 FORWATI///1H\cap.'STANIIAPN DEVIATYON OF RIIN TIMES =',F12.2.,
    1' MILLISECONJS')
        STOP
    END
```


B. 8 PROGRAM TIMEXA

THIS PROGRAM USES T TI AE-EXP N NEF REPRESFATATION TAT NROFR TO CALCULATF THE BFST PATH FROM A GIVEM ORIGTN TO A RIVFN MESTTHATION TC ARRIVE REFORF A SPECIFJFN TTMF IAND DEPART AS LATF MS POSSIALEI. INPIIT COHSISTS OF THE NORF ANI ARC חATA FOR THF TIME-EXPAUOE N NETWORK TOGFTHER WITH A LIST OF TRIPS FOR WHICH TRIP ITINERAPIES ARF. REQUIREN. OUTDUT CONSISTS OF AN ITINERARY For each trip. the calculation time jn millisfcoñ̃s fin eát TRIP AS WELL AS THE AVFRAGF. AND STANCARD חEVTATION OF CALCULATION TIMES FOR ALL TRIPS IU THF LIST.

NATIONAL BURFAW OF STANİARN゙S JULY, 1976

VARIABLES AHD ARRAYS USED IN THIS PROGRAM
NODE AND ARC DATA
N(I) - STOP ASSOCIATED WITH MFTWORK NODE I $T(I)$ - TIME ASSOCIATED WITH HETVORK NODE I ARC(I) - LAST POSITION WHFRE INFORMATTON MAY DF FOIININ FOR NODE I IN ARC LIST TO(J) - ENDING MODE OF ARC IN POSITION \rfloor OF ARC IIST RTE (J) - ROUTE NUMAER CORRESPONDTNG TO ARC IN POSITION J OF ARC LIST
NN(T) - MODF CORRESPONDING TO THE LAST OCCIIRRFIICF OF
TIMF. T OR EARLIER
NODE - NUMBER OF NETWORK NORES
INPUT VARIARLES FOR TRIP
ORG - DESIRF ORIGIN STOP OF TRID
DST - DESIRED DESTINATION STOP OF TRIP TIME - TIME aY whICH TRIP IS TO dE COMPLFTED

```
VARIABLES AND ARRAYS USED IN THE ALGORITHM
    S(I) - SUCCESSOR NODE TO MODE I ALONG CURRENT PATH
    SRTE(I) - RO!ITE OUT OF NODE I AL\capNG THE CURRENT PATH
```

ARRAYS USED IN PRINTING THE PATH
PATHN(K) - STOP IN POSITION K ALONG PATH
PATHT(K) - TIME IN POSITION K ALONG PATH
PATHR(K) - POLITE IN POSITION K. ALONG PATH
VARIABLES MISE IN TIMING CALCULATIONS
DIFF - CPU TIME (IN MSECS.) USED IN CALCIILATING ONE TRIP RTIME - CUMULATIVE SUM OF DIFFS
RTSQ - CUMULATIVE SUM OF SQUARES OF MIFFS
RUN - NUIABER OF TRIPS CALCULATE
ROUT - USED IN PRINTING AVERAGE AND STANIAAREG DEVIATION OF TRIP CALCULATION TIMES

IMPLICIT INTEGER (ADZ)
C READ THE NETWOחK NODE DATA, SORTED OI! T. ASSIJME ALL T(I) >0.
C THE SCHEDULE TIMES ARE GIVF.N UP TO 1600 MINUTES.
c
$\mathrm{I}=1$
$T T=1$
IN1ニ9 a IIIPUT UIIIT FOR NODE DATA
100 READ(IN1,900.FNM=103) N(I),T(I)
900 FORMAT (3I5)
IF (T(I).EQ.TT) GO TO 102
$T M=T(T)-1$
$00101 \mathrm{~J}=\mathrm{TT} \cdot \mathrm{T}^{*}$
NN(J)=I-1
101 CONTIN!JE
$T T=T(I)$
102. $I=I+1$
(GO) TO 100
103 NODE $=I-1$
$00110 \mathrm{~J}=\mathrm{TT}, 1600$
NN(J) = NODE
110 CONTINUE
C
C READ THE ARC DATA, SORTER BY ORIGIN NODE.
$L=1$
$k=1$


```
    206 IF(ENח.LT.L) GO TO 204
        J=T\cap(L)
    IF(S(J).E(j.0) fO TO 207
```



```
    S(I)=」
    SRTE(I)=RTE(L_)
    IF(N(I).FO.DQS) Gつ TO 300
    GO TO 204
207 L=L+1
    GO TO 206
C
    300 M=I
    K=0
    301 K=K+1
    R=SRTE(M)
    PATHN(K)=N(M)
    PÄTHT (K) =T(M)
    PATHR(K)=R
    302 M=S(M)
        IF(M(M1).EQ.DST),GO TO 303
        GO TO 302
    303 K=K+1
    PATHN(K)=DST
    PATHT(K)=T(M)
    CALL CPUSIJP(FTIME)
C
C PRINT QOUTE IIIEORMATION.
C
    KK=K-1
    UO 304 L=1.KK
    LL=L+1
    IF(PATHN(I_).FQ.PATHN(LL)) GO TO 304
    WRITE(G.9\cap1) DATHR(L),PATHN(L),P^THT(L),P^THN(IL),PATHT(LL)
901 FORMAT(5X.'BYARD ROUTE'.I5.' AT STOP',T5.' AT TIMF'.I5.
    1' ARRIVE AT STOP!,I5.' AT TIME'.I5)
304 CONTINNUE
305 DIFF=FTIMF-STIME
    NRUN=NRUU!+1
    RTIME=RTIME+\PiIFF
    RTSQ=RTSQ+חIFF*DIFF
    WRITE(6.902) \IFF
902 FORMATIIHO. DUNT TIME FOR TIMEYA = ,If,.'MTLLISECONIDSTT
    GO TO 200
4 0 5 ~ W R I T E ~ ( 6 . 9 0 5 ) ~ T I N E ~
905 FORMAT( 1X.'TIME.,J5.2X.'SHOULN RE RETWFEN 1 ANM 1440 --- TRY A
    1GAIN')
    GO TO 200
```

406 CALL CPUSUP (FPIMF)
WPITE (6, 906)
906 FORMAT $1 X$, MO TRIP FXISTS FROM ORIGIN TO OFSTINATION ARRIVTNG IWITHIN 160 MIVIITES PRIOR TO TLIE RFQUECTED TIMF -- TPY AMOTHFR ARR ¿IVAL TIME') GO TO 305
500 ROUT $=F L O A T(R T I M E) / F L O A T$ (NRUII) WRITE (6,407) २OUT
907 FORMAT (///1HO, 'AVFRAGE RUN TIMF = , F12.2.' MILIISFCONOS.) ROUT=FLOAT (NRUIJ) *ROUT *ROUT TIRUN=NRUN-1 ROUT = (FLOAT (RTSQ)-ROUT)/FLOAT (NRUT:) ROUT $=$ SORT (ROUT) WRITE (6.908) ROUT
90R FORMAT (///1HD.'STANDARN DEVIATION OF RIIN TIMES = , F1?.2. 1^{\prime} MILL.ISECONOS')
STOP
EN?

C THIS PROGRAM REMOYFS UNNECFSS*RY VODEC FROM A TRANEIT METWORK LFAVIMG C ONLY PHOSE NODES AT WHICH TRAASFERPING IS POSSIRLE ANT LIKELY. C

PARAMFTER
PARAMFTER
PARAMETER
PARAMETER
PARAMETER ASEG $=10000$
IMPLICIT INTEGER ($A-Z$)
LOGICAL NIN
DIMENSION SRTE(MSEG), REND (MRTF), NIN(MNODF),ORMER(MNONF),
1
2
C
\qquad

ARRAYS IJSED IN THIS PROGRMM

SRTE - STOPS ON EACH ROUTE. RENM IS USED TO I!DICATE WHICH SECTION OF THE ARRAY SRTE REFFRS TO A PARTICULAR ROUTE
REIIC - DOSITION IN SRTE OF THE LAST STOP IN FACH ROUTE
NIH - IS TRUE IF NODE HAS NOT REFN RFMOVFÑ (I.E NODE IS IN) IS FALSE IF NODE HAS REEN REMOVED (T.F. NODE IS OUT)
ORDER - IJSFC IN SORTIIIG, GIVFS THF ORTGINAL POSITION OF THF. ITH ENTRY IN SORTED ORDER
RSTOP - FOR EACH NODE, LISTS THE ROUTFS STOPPTNG AT THAT NODE
NRTE - HIVIIER OF ROUTFS STOPPING $\triangle T$ FACH NODF
TEMP - TEMPORARY STORAGE FOR INPIIT ANO OUTPUT OF NONES ON A ?OUITE. ALSO USED AS AN INTERMEDIATF ARRAY STORING THF POSITION IN EACH ROUTF STOPPING AT A NODE, OF THAT HODE
SORTN - IJSEN IN SORTING THF NONES ON NIMMER OF ROUTES STOPPING AT EACH. STORES THE SORTFN NIMPFR OF DOUITES
C
C READ ROUTES
C
K $=0$
C K KEEPS TRACK OF THE CURPFAT ROUTE RFAD IN
$\mathrm{N}=0$
C II IS THE MAXIMUM NODE HUMRER FNCOUNTFRED SO FAR
$N R=0$
C NR IS THE NUMBE? OF TOTAL STOPS IN ROUTES
NEND=0
C IJENU IS THE MIUMRE? OF MNDF.S WHITCH REGTN OR ENC A ROIITF
$2 \operatorname{READ}(7,900 \cdot E \cap \cap=4) \mathrm{K} \cdot \mathrm{NS}, N T \cdot\left(T E^{M} \mathrm{P}(\mathrm{T}), I=1, N S\right)$
900 FORMAT (20I5)
DO $201 \mathrm{~J}=1 \mathrm{NT}$
READ (7.900) (TIME(I), I=1,NS)
201 CONTINUE
C
C THE ROUTE INPIJT IS READ IN THE FOLLOWTNG FORMAT -
C FOR EACH ROUTE -
C CARD 1. COLS. $1-5$ CONTAIN THF NUMRFR OF STOPS IN THIS ROUTF
THE STOPS O: THF ROUTE ARE THFN IISTEN IN ORMFR, 「COLS. PER GTOP.
adoitional carns are usen if neenen, with the mata starting tn
COL. S. AGAIN 5, COLS. PER STOP.
C STORE THIS ROUTE TH THF. MRRAY SRTE, CHECK MAXTMIM NODF MIMRER, ADI
C THIS ROUTE TO THE ROUTES STOPPING AT FACH GTOD IN THE ROLITE.
DO 3 L=1.NS
$I=T F M P(L)$
IF (I.GT.N) $N=T$
NR=NR+1
SRTE (riR) = I
$\operatorname{NRTE}(I)=\operatorname{NRTE}(T)+1$
NN=NRTE (I)
RSTOP (I.NAN) =K
3 COHTII!UE
$\operatorname{REND}(K)=N R$
GO TO 2
C
C SORT NOIES ON THE HUNFR OF ROUTFS STAPPING AT EACH
C
NRT=K
REWINO 7
CALL SORTP(NRTE. N. SORTH.OROEP)
C NRT IS THF NUMAER OF ROUTES

```
C
    C----\infty----------------
C
C REMOVE ALL ONE-ROITE NONES WHICH DO HOT RFGIN OR EMIR A ROUUTF
C
        EMTRY=1
    C WE PROCFSS THE NONES IH THF ORNER THFY APDFAR IN THE ARRAY ORDER.
    C ENTRY IS THE CURRFIIT POSITION IN OP:,ER.
    5 K=OPDER(ENITRY)
    C K IS THE. CURRENT NODE WHICH IS BFIN'G TESTFN FOR REMOVAI
        M=NPTETK)
        IF (M-1) 1\cap,5,11
6 R=PSTOP(K,1)
C FINL THE STOPS O:I ROUTE R IN THE ARRAY SPTF
        BEG=REND (R-1)+1
        IF (P.EG.1) REG=1
C゙ IF K IS THE FIRST STOP ON ROUTE R, K CNNNOT EF REMOVFN
        IF (K.FQ.SRTS(RFG)) GO TO G
        BEG=BFG+1
        END=REND(R)
    C IF K IS THE LAST STOP ON ROUTF R. K CANNOT BE REMOVED
        IF (K.EQ.SRTE(END)) GO TO 9
        END=END=1
        IF (ENL).GE.EESS) GO TO 7
    C ALL ROUTES MUST HAVE AT LEAST }2\mathrm{ STOPS
        WRITE (6.991) K.R.REGOEND
    991 FORMAT (O*** FRROR *** WHILE RFMOVING NONF.,T5.1F\overline{R\capM ROUTF',}
        1I5.' ROUTE LIST RANGE (',I5,',',I5.') IS TOn SHORT'/)
        GO TO 10
    C REMOVE NONE K FRO:N ROUTE R
7 DO & I=BEG.E.In
        IF (SRTE(I).:'F.K) SO TO &
        SRTF(I)=0
        NIN(K)=.FALSE.
        GO TO 10
8 CONTINME
C NODE K. NIUST APPEAR IN ROUTE R
```



```
        1' ROUTE. LIST RANGE(',I5,'.',I5,')'/)
        GO TO 10
9 NEND=NENN+1
C INCREMENT THE CURRENT EMITRY II THF LIST SNRTEI GY NIMMDFR OF RCUTEE
C STOPPING AT EACH NIDOE
10 ENTRY=ENTRY+1
        IF (ENTRY.LE.'I) GO TO 5
```


$P=M F X T$
$Q=P R E V$
GO TO 2?
C TEST IF PREV AND NEXT ARF THE SAME IS P MND \cap, THAT IS WHETHFR THF
C PREVIOUS AID HFXT NONFS OH ROITE R ARF THF NONES ANJACENT TO K ON
C OTHER ROUTFS
20 IF (PREV.GT.JFXT) GO TO 22
IF (PREV.NE.P) GO TO 25
IF (NEXT.NIF.Q) GO TO 25
50 TO 22
21 IF (NEXT.NF.P) GO TO 25
IF (PREV.NE.R) GO TO 25
C CHECK NEXT ROUTE STOPPING AT K ${ }^{-}$
$22 \quad L=L+1$
IF (L.LE.M) GO TO 12
C REMOVE NONE K. ZERO SRTE, AIJD SET MIN=FALSF
DO $23 L=1$ M
$J=T E M P(L)$
SRTE (J) $=\overline{0}$
$\operatorname{NIN}(K)=$.FALSF。
23 CONTINUE
GO TO 2.5
24 NEND=NENO+1
C CHECK NEXT NODE FOR POSSIBLE REMOVAL
25 ENTRY 2 ENTRY +1
IF (ENTRY.GT."') GO TO 26
K=OPDER (E!'TRY)
$M=\operatorname{NRTF}(K)$
GO TO 11

C PRINT OUT NODES NHICH HJVE REEN DELETFD
C
26 WRITE (6.901)
901 FORMAT ("1 THF FOLLOWING NODES WERF OELFTEก./)
少 0
NOEL=0
DO $27 \mathrm{I}=1 . \mathrm{H}$
IF (MIU(I)) গn TC 27
$J=J+1$
NDEL=NUEL+1
$\operatorname{TEMP}(J)=1$
IF (J.LT.?5) GO T0 ?7

| U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SheET | 1. PUBIICATION OR REPORT NO NBSIR 78-1426 | 2. Gov'i Accersion No. | 3. Reripient's Accession No. |
| :---: | :---: | :---: | :---: |
| 4. TITIE AND SUBTITLE
 Comparison of the Performance of Three Algorithms for Use in an Automated Transit Information System (ATIS) | | | 5. Publication Date March 1978 |
| | | | 6. Performing Organization' ${ }^{\text {code }}$ |
| 7. AUTHOR(S)
 J. F. Gilsinn, E. Leyendecker, D. R. Shier | | | 8. Performing Organ. Report No. |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS
 NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20234 | | | 10. Proles /Task/Work Inir No. 2050402 |
| | | | 11. Contract/Grant No. |
| 12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP) National Bureau of Standards $A-428,101$
 Washington, DC 20234 | | | 13. Type of Report \& Period Covered |

15. SUPPLEMENTARY NOTES
16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.)
This paper compares the performance of three algorithms for computing trip itineraries for use in an automated transit information system. One of the approaches (TIMEXD) is based on a time-expanded network. The other two both compute paths in a bipartite route/stop network; one algorithm (LABCOR) is based on the label-correcting approach and the other (LABSET) on the labelsetting approach. The transit networks upon which the performance comparison is based are of two types: a grid network with specified, possibly non-uniform, distances between streets, and a spider web type of network. TIMEXD is fastest on all the larger networks, but it requires most computer storage and outputs paths with more transfers. LABCOR is the slowest, but is guaranteed to produce the best routing, since it always outputs an optimal path with fewest transfers. Computation time estimates extrapolated to large transit networks indicate times of 1.5 to 2.5 seconds per itinerary for TIMEXD and LABSET respectively, well within the acceptable range for such networks.
17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolons)
Algorithms; algorithm testing; mass transit; routing; shortest paths; transit; transit information systems; transit routing; transportation; urban transportation.
18. AVAILABILITY \mathbb{X} Unlimited

■ For Official Distribution. Do Nor Release to NTIS
[] Order From Sup. of Doc., U.S. Government Printing Office Washington, D.C. 20402, SD Cat. No. C13
[\mathbf{X} Urder From National Technical Information Service (NTIS) Springfield, Virginia 22151

| 19. SECURITY CLASS
 (THIS REPURT) | 21. NO. OF PAGES |
| :---: | :---: |
| UNCI. ASSIFIED | |$\quad 163$

[^0]: ${ }^{*}$ Thy $X(\bmod M)$ is meant the remainder when X is divided by M. Its calculation is usually available in FORTRAN through the function MOD (X,M).

[^1]: A network is acycilic if there are no pulbs combalmbe wore llan une fode and beginning and ending at the amme node. Silmee all ares in the limeexpanded network go forward in time, no path can return to a node once it has left that node, so this network is acyclic.

[^2]: *Spike routes are ones which begin or end at the center node, include stops along one spoke and then deviate from that spoke to one final stop not on any spoke.

