REFERENCE

Determination and Verification of Thermal Response Factors for Thermal Conduction Applications

Bradiey A. Peavy

Building Thermal and Service Systems Division
Center for Building Technology
National Engineering Laboratory
National Bureau of Standards
Washington, D.C. 20234

Final Report
April 1978

NBSIR 77-1405

DETERMINATION AND VERIFICATION OF THERMAL RESPONSE FACTORS FOR THERMAL CONDUCTION APPLICATIONS

Bradley A. Peavy

Building Thermal and Service Systems Division
Center for Building Technology
National Engineering Laboratory National Bureau of Standards
Washington, D.C. 20234

Final Report
April 1978
U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

Dr. Sidney Harman, Under Secretary
Jordan J. Baruch, Assistant Secretary for Science and Technology
NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director
by

Bradley A. Peavy

ABSTRACT

New formulas for calculating thermal response factors for multiple-1ayer construction have been developed by a rigorous derivation. A comparison was made of the time for computation between the presently used matrix algebra method and the method given in this paper. Results were obtained using the new method in one-fiftieth to one-half of the computational time necessary to obtain solutions from the matrix algebra method.

Comparisons with another analytical method were performed to verify the accuracy of the response-factor technique.

Key Words: Dynamic conduction heat transfer; heat transfer; thermal response factor; verification.

Bradley A. Peavy

1. INTRODUCTION

The analytical solutions needed to describe temperature or heat flow for steady periodic or transient conduction heat transfer in multi-layer walls, ceilings and floors are quite complicated and are not available for nonlinear conditions such as thermal radiation at surfaces and time-dependent changes in surface film coefficients. It has therefore been expedient to employ "approximation" methods by which non-linear conditions may be satisfied. One such method, which is the result of an analytical formulation, is termed the "response-factor method," and solves for temperatures or heat flows of multi-layer constructions based on the past temperature history.

A response-factor method defined by Kusuda [1]* uses overlapping triangular pulses to compute response factors for a particular construction. These response factors are then used to determine temperatures and heat flows in response to previously occurring events. In order to handle multi-layer constructions for solution of response factors by computers, a matrix algebra was developed for an arbitrary number of layers. There are some inherent difficulties in using this approach, in that the calculation of response factors can be quite time consuming because certain functions

[^0]are not well suited for efficient calculation. A portion of this paper will be devoted to the development of equations which allow for increased computational efficiency. The algorithms presented are sufficient for the determination of up to a seven layer composite, which is probably more than sufficient for possible building constructions.

Unfortunately, the accuracy of the temperatures and heat flows values calculated by response-factor methods has received very little verification. Although it is well known that the thermal properties of building materials are not as well defined as they should be, this is no excuse for not knowing the error incurred by the use of an approximate method for whatever thermal properties may be assigned to a particular program for solution. A portion of this paper will be devoted to a comparison between numerical results from an analytical solution and results from calculations using the response-factor technique.

2. ANALYSIS

For one-dimensional heat flow in an individual layer of one or more parallel layers, the partial differential equation is given by

$$
\begin{equation*}
\frac{\partial^{2} \nu_{m}}{\partial x^{2}}=\frac{1}{\alpha_{m}} \frac{\partial \nu_{m}}{\partial t} \tag{1}
\end{equation*}
$$

where v_{m} is the temperature potential above a datum $\mathrm{plane}, \mathrm{x}$ is a dimension along which heat is flowing, α_{m} is the thermal diffusivity of the layer material, and t is the time. For continuity of temperature and heat flow
between layers, perfect contact is assumed, i.e.,

$$
\nu_{\mathrm{m}-1}=v_{\mathrm{m}}
$$

and

$$
\begin{equation*}
K_{m-1} \frac{d \nu_{m-1}}{d x}=K_{m} \frac{d \nu_{m}}{d x} \tag{2}
\end{equation*}
$$

where K_{m} is the thermal conductivity of the respective layer. Applying the Laplace transform to (1) gives

$$
\begin{equation*}
\frac{d^{2} \bar{\nu}_{m}}{d x^{2}}=q_{m}^{2} \bar{\nu}, \quad q_{m}^{2}=\frac{p}{\alpha_{m}} \tag{3}
\end{equation*}
$$

for which a solution is:

$$
\begin{aligned}
& \bar{\nu}_{m}=A_{m} e^{q_{m}\left(x-b_{m-1}\right)}+B_{m} e^{-q_{m}\left(x-b_{m-1}\right)} \\
& K_{m} \frac{d \bar{\nu}_{m}}{d x}=K_{m} q_{m}\left[A_{m} e^{q_{m}\left(x-b_{m-1}\right)}-B_{m} e^{-q_{m}\left(x-b_{m-1}\right)}\right]
\end{aligned}
$$

where b_{m-1} is the distance from $x=0$ (surface of first layer) to the nearest face of the m-th layer. Applying the continuity conditions (2) gives the following relations

$$
\begin{aligned}
& \frac{2 A_{m-1}}{\left(1+\sigma_{m-1}\right)}=A_{m} e^{-y_{m-1}}+k_{m-1} B_{m} e^{-y_{m-1}} \\
& \frac{2 B_{m-1}}{\left(1+\sigma_{m-1}\right)}=k_{m-1} A_{m} e^{y_{m-1}}+B_{m} e^{y_{m-1}}
\end{aligned}
$$

where

$$
\begin{aligned}
& \sigma_{m-1}=\frac{K_{m}}{K_{m-1}} \sqrt{\frac{\alpha_{m-1}}{a_{m}}} \\
& k_{m-1}=\frac{1-\sigma_{m-1}}{1+\sigma_{m-1}} \\
& y_{m-1}=\frac{\left(b_{m-1}-b_{m-2}\right) \sqrt{p}}{\sqrt{\alpha_{m-1}}}=\frac{\ell_{m-1} \sqrt{p}}{\sqrt{a_{m-1}}}
\end{aligned}
$$

and ℓ_{m-1} is the thickness of the $(m-1)-$ th layer. This process is continued until the constants A_{1} and B_{1} (pertaining to the layer with face exposed at $x=0$) are found in terms of A_{n} and B_{n} (pertaining to the $n-t h$ layer with face exposed at $x=b_{n}$). At $x=0$, the heat $f 1 u x$ is proportional to the temperature difference between the fluid (air, gas or liquid) and the surface, and is represented by the relationship

$$
\begin{equation*}
-R_{1} K_{1} \frac{d v_{1}}{d x}=f(t)-v_{1} \tag{4}
\end{equation*}
$$

where R_{1} is the surface film resistance and $f(t)$ is fluid temperature as a function of time. Similarly, the boundary condition at $x=b_{n}$ is

$$
\begin{equation*}
-R_{2} K_{n} \frac{d \nu_{n}}{d x}=v_{n}-g(t) \tag{5}
\end{equation*}
$$

where R_{2} is the surface film resistance and $g(t)$ is a fluid temperature as a function of time. When either R_{1} or R_{2} is zero, the time temperature function represents temperatures at the respective surfaces. The resulting expressions for the transform of the temperatures in layer 1 and layer n are given by

$$
\begin{equation*}
\bar{v}_{1}=\frac{\bar{f}(p)}{W}\left[P_{1}+Q_{1}+v_{2} \sqrt{p}\left(S_{1}+T_{1}\right)\right]+\frac{H \bar{g}(p)}{W}\left[\sinh x \sqrt{\frac{p}{\alpha_{1}}}+v_{1} \sqrt{P} \cosh x \sqrt{\frac{p}{\alpha_{1}}}\right] \tag{6}
\end{equation*}
$$

and

$$
\begin{align*}
\bar{\nu}_{n} & =\frac{G \bar{f}(p)}{W}\left[\sinh \sqrt{\frac{p}{\alpha_{n}}}\left(b_{n}-x\right)+v_{2} \sqrt{P} \cosh \sqrt{\frac{p}{\alpha_{n}}}\left(b_{n}-x\right)\right]+ \\
& +\frac{\bar{g}(p)}{W}\left[P_{2}+Q_{2}+v_{1} \sqrt{p}\left(S_{2}-T_{2}\right)\right] \tag{7}
\end{align*}
$$

where

$$
\begin{array}{ll}
P_{1}=\sum J_{m} \sinh \sqrt{p}\left(N_{m}-x / \sqrt{\alpha_{1}}\right) & Q_{1}=\sum L_{m} \sinh \sqrt{P}\left(E_{m}+x / \sqrt{\alpha} \alpha_{1}\right) \\
S_{1}=\sum J_{m} \cosh \sqrt{p}\left(N_{m}-x / \sqrt{\alpha_{1}}\right) & T_{1}=\sum L_{m} \cosh \sqrt{p}\left(E_{m}+x / \sqrt{\alpha_{1}}\right) \\
P_{2}=\sum J_{m} \sinh \sqrt{p}\left(N_{m}-\left(b_{n}-x\right) / \sqrt{\alpha_{n}}\right) & Q_{2}=\sum L_{m} \sinh \sqrt{p}\left(E_{m}-\left(b_{n}-x\right) / \sqrt{\alpha_{n}}\right) \\
S_{2}=\sum J_{m} \cosh \sqrt{p}\left(N_{m}-\left(b_{n}-x\right) / \sqrt{\alpha_{n}}\right) & T_{2}=\sum L_{m} \cosh \sqrt{p}\left(E_{m}-\left(b_{n}-x\right) / \sqrt{\alpha_{n}}\right) \\
P=\sum J_{m} \sinh \sqrt{p} N_{m} & Q=\sum L_{m} \sinh \sqrt{p} E_{m} \\
S=\sum J_{m} \cosh \sqrt{p} N_{m} & T=\sum L_{m} \cosh \sqrt{p} E_{m}
\end{array}
$$

(The above summations are over $m=1,2, \ldots 2^{n-2}$, n being the number of layers.)

$$
\begin{aligned}
& \mathrm{W}=\mathrm{P}+\mathrm{Q}+\mathrm{V}_{1} \mathrm{~V}_{2} \mathrm{P}(\mathrm{P}-\mathrm{Q})+\sqrt{\mathrm{P}}\left[\mathrm{~V}_{2}(\mathrm{~S}+\mathrm{T})+\mathrm{V}_{1}(\mathrm{~S}-\mathrm{T})\right] \\
& G=2^{n-1} /\left(1+\sigma_{1}\right)\left(1+\sigma_{2}\right) \cdot \cdot\left(1+\sigma_{n-1}\right), \quad H=\frac{G K_{n}}{K_{1}} \sqrt{\frac{\alpha_{1}}{\alpha_{n}}} \\
& N_{m}=\sum_{i=1}^{n} A_{i, m} \frac{\ell_{i}}{\sqrt{\alpha_{i}}}, \quad E_{m}=N_{m}-\frac{2 \ell_{1}}{\sqrt{\alpha_{1}}}, \quad A_{1, m}=1 \\
& V_{1}=R_{1} K_{1} / \sqrt{\alpha}{ }_{1} \quad, \quad V_{2}=R_{2} K_{n} / \sqrt{\alpha_{n}}
\end{aligned}
$$

and J_{m}, L_{m} and $A_{i, m}$ are defined in Table 1.

TABLE 1. Definition For J_{m}, L_{m} and $A_{i, m}$

m	J_{m}	L_{m}	$A_{2, m}$	$A_{3, m}$	$A_{4, m}$	A		${ }^{\text {A }} 7$, m
1	1	k_{1}	1	1	1	1	1	1
2	$\mathrm{k}_{1} \mathrm{k}_{2}$	k_{2}	-1	1	1	1	1	1
3	$\mathrm{k}_{1} \mathrm{k}_{3}$	k_{3}	-1	-1	1	1	1	1
4	$\mathrm{k}_{2} \mathrm{k}_{3}$	$k_{1} k_{2} k_{3}$	1	-1	-1	1	1	1
5	$\mathrm{k}_{1} \mathrm{k}_{4}$	k_{4}	-1	-1	-1	1	1	1
6	$k_{2} k_{4}$	$k_{1} k_{2} k_{4}$	1	-1	-1	1	1	1
7	$k_{3} k_{4}$	$k_{1} k_{3} k_{4}$	1	1	-1	1	1	1
8	$k_{1} k_{2} k_{3} k_{4}$	$k_{2} k_{3} k_{4}$	-1	1	-1	1	1	1
9	$k_{4} \mathrm{k}_{5}$	$k_{1} k_{4} k_{5}$	1	1	1	-1	1	1
10	$k_{3} k_{5}$	$k_{1} k_{3} k_{5}$	1	1	-1	-1	1	1
11	$k_{2} k_{5}$	$k_{1} k_{2} k_{5}$	1	-1	-1	-1	1	1
12	$\mathrm{k}_{1} \mathrm{k}_{5}$	k_{5}	-1	-1	-1	-1	1	1
13	$k_{1} k_{2} k_{3} k_{5}$	$k_{2} k_{3} k_{5}$	-1	1	-1	-1	1	1
14	$k_{1} k_{2} k_{4} k_{5}$	$k_{2} k_{4} k_{5}$	-1	1	1	-1	1	1
15	$k_{1} k_{3} k_{4} k_{5}$	$k_{3} k_{4} k_{5}$	-1	-1	1	-1	1	1
16	$k_{2} k_{3} k_{4} k_{5}$	$k_{1} k_{2} k_{3} k_{4} k_{5}$	1	-1	1	-1	1	1
17	$\mathrm{k}_{5} \mathrm{k}_{6}$	$k_{1} k_{5} k_{6}$	1	1	1	1	-1	1
18	$\mathrm{k}_{4} \mathrm{k}_{6}$	$k_{1} k_{4} k_{6}$	1	1	1	-1	-1	1
19	$k_{3} k_{6}$	$k_{1} k_{3} k_{6}$	1	1	-1	-1	-1	1
20	$\mathrm{k}_{2} \mathrm{k}_{6}$	$k_{1} k_{2} k_{6}$	1	-1	-1	-1	-1	1
21	$k_{1} k_{6}$	k_{6}	-1	-1	-1	-1	-1	1
22	$k_{1} k_{2} k_{3} k_{6}$	$k_{2} k_{3} k_{6}$	-1	1	-1	-1	-1	1
23	$k_{1} k_{2} k_{4} k_{6}$	$k_{2} k_{4} k_{6}$	-1	1	1	-1	-1	1
24	$k_{1} k_{2} k_{5} k_{6}$	$k_{2} k_{5} k_{6}$	-1	1	1	1	-1	1
25	$k_{1} k_{3} k_{4} k_{6}$	$k_{3} k_{4} k_{6}$	-1	-1	1	-1	-1	1
26	$k_{1} k_{3} k_{5} k_{6}$	$k_{3} k_{5} k_{6}$	-1	-1	1	1	-1	1
27	$k_{1} k_{4} k_{5} k_{6}$	$k_{4} k_{5} k_{6}$	-1	-1	-1	1	-1	1
28	$k_{2} k_{3} k_{4} k_{6}$	$k_{1} k_{2} k_{3} k_{4} k_{6}$	1	-1	1	-1	-1	1
29	$k_{2} k_{3} k_{5} k_{6}$	$k_{1} k_{2} k_{3} k_{5} k_{6}$	1	-1	1	1	-1	1
30	$k_{2} k_{4} k_{5} k_{6}$	$k_{1} k_{2} k_{4} k_{5} k_{6}$	1	-1	-1	1	-1	1
31	$k_{3} k_{4} k_{5} k_{6}$	$k_{1} k_{3} k_{4} k_{5} k_{6}$	1	1	-1	1	-1	1
32	$k_{1} k_{2} k_{3} k_{4} k_{5} k_{6}$	$k_{2} k_{3} k_{4} k_{5} k_{6}$	-1	1	-1	1	-1	1

The transforms of the heat flux at $x=0$ and at $x=b_{n}$ are found by differentiating (6) and (7) with respect to x and multiplying by minus one and the respective thermal conductivity:

$$
\begin{align*}
& \bar{F}_{1}=\frac{K_{1} \sqrt{p}}{w \sqrt{\alpha_{n}}}\left[\left\{S-T+v_{2} \sqrt{P}(P-Q)\right\} \bar{f}(p)-H \bar{g}(p)\right] \tag{8}\\
& \bar{F}_{n}=\frac{K_{n} \sqrt{p}}{w \sqrt{\alpha}}\left[\bar{G} \bar{f}(p)-\left\{S+T+v_{1} \sqrt{P}(P-Q)\right\} \bar{g}(p)\right] . \tag{9}
\end{align*}
$$

The inversion of (8) and (9) is performed by evaluating the residues at the poles of the denominator $\mathrm{W}=0$, where $\mathrm{p}=-\beta^{2}$ or $\sqrt{\mathrm{p}}=\mathrm{i} \beta$, which gives the relationship

$$
\begin{align*}
W_{\beta} & =\left(1-V_{1} V_{2} \beta^{2}\right) \sum J_{m} \sin N_{m} \beta+\left(1+V_{1} V_{2} \beta^{2}\right) \sum L_{m} \sin E_{m} \beta \\
& +\beta\left[\left(V_{2}+V_{1}\right) \sum J_{m} \cos N_{m} \beta+\left(V_{2}-V_{1}\right) \sum L_{m} \cos E_{m} \beta\right]=0 \tag{10}
\end{align*}
$$

and the differentiation of W with respect to p evaluated at $p=-\beta^{2}$ gives

$$
\begin{align*}
U & =\left(1-V_{1} V_{2} \beta^{2}\right) \sum J_{m} N_{m} \cos N_{m} \beta+\left(1+V_{1} V_{2} \beta^{2}\right) \sum L_{m} E_{m} \cos E_{m} \beta \\
& +\left(V_{2}+V_{1}\right)\left[\sum J_{m} \cos N_{m} \beta-\beta \sum J_{m} N_{m} \sin N_{m} \beta\right] \\
& +\left(V_{2}-V_{1}\right)\left[\sum L_{m} \cos E_{m} \beta-\beta \sum L_{m} E_{m} \sin E_{m} \beta\right] \\
& -2 \beta V_{1} V_{2}\left[\sum J_{m} \sin N_{m} \beta-\sum L_{m} \sin E_{m} \beta\right] \tag{11}
\end{align*}
$$

or $\quad 2 i \beta\left(\frac{d W}{d p}\right)_{p=. \circ \beta^{2}=U \text {. }}$

The residues at the poles $p=-\beta^{2}$ are

$$
\begin{equation*}
F_{1 \beta}=-\frac{2 K_{1}}{\sqrt{\alpha_{1}}} \sum \frac{\beta_{i}^{2}}{U_{i}}\left[\bar{f}\left(-\beta_{i}^{2}\right)\left(D_{1}-V_{2} D_{2} \beta\right)-H \bar{g}\left(-\beta_{i}^{2}\right)\right] e^{-\beta_{i}^{2} t} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{n \beta}=-\frac{2 K_{n}}{\sqrt{\alpha_{n}}} \sum \frac{\beta_{i}^{2}}{U_{i}}\left[G \bar{f}\left(-\beta_{i}^{2}\right)-\left(D_{3}-V_{1} D_{2} \beta\right) \bar{g}\left(-\beta_{i}^{2}\right)\right] e^{-\beta_{i}^{2} t} \tag{13}
\end{equation*}
$$

where

$$
\begin{aligned}
& D_{1}=\sum\left(J_{m} \cos N_{m} \beta-L_{m} \cos E_{m} \beta\right), \quad D_{2}=\sum\left(J_{m} \cos N_{m} \beta+L_{m} \cos E_{m} \beta\right), \\
& D_{3}=\sum\left(J_{m} \sin N_{m} \beta-L_{m} \sin E_{m} \beta\right) .
\end{aligned}
$$

Of particular concern is the evaluation of the first root of (10). This can be done expeditiously by expanding the sines and cosines in their series and considering only the first two terms, in order to obtain an initial estimate of the first root

$$
\begin{align*}
W_{B} & \simeq A_{1} \beta-A_{2} \beta^{3}=0 \\
\text { or } \quad & \beta_{1}^{2} \approx A_{1} / A_{2} \tag{14}
\end{align*}
$$

with

$$
A_{1}=\sum\left(J_{m} N_{m}+L_{m} E_{m}\right)+\left(V_{1}+V_{2}\right) \sum J_{m}+\left(V_{2}-V_{1}\right) \Sigma L_{m}
$$

and

$$
\begin{aligned}
A_{2} & =V_{1} V_{2} \sum\left(J_{m} N_{m}-L_{m} E_{m}\right)+\frac{V_{1}+V_{2}}{2} \sum J_{m} N_{m}^{2}+\frac{V_{2}-V_{1}}{2} \sum L_{m} E_{m}^{2} \\
& +\frac{1}{6} \sum\left(J_{m} N_{m}^{3}+L_{m} E_{m}^{3}\right) .
\end{aligned}
$$

Consider the triangular pulse function of Kusuda [1], where
$f(t)=0$
$\bar{f}(\mathrm{p})=0$
$t \leq 0$
$=t / \delta$
$=1 / \delta p^{2}$
$0<t \leq \delta$
$=2-t / \delta$
$=\left(1-2 e^{-p \delta}\right) / \delta p^{2}$
$\delta<t \leq 2 \delta$
$=0$
$=\left(1-e^{-p \delta}\right)^{2} / \delta p^{2}$
$t>2 \delta$
which when substituted for $\bar{f}(p)$ and $\bar{g}(p)$ in (8) and (9) gives double poles at $\mathrm{p}=0$. Following are limits of the necessary functions of (8) and (9) for evaluating the residues at the double poles.

$$
\operatorname{Lim}_{p \rightarrow 0}\left(\frac{W}{\sqrt{P}}\right)=A_{1}+A_{2} p
$$

$$
\operatorname{Lim}_{p \rightarrow 0} S-T+V_{2} \sqrt{p}(P-Q)=B_{1}+B_{2} p
$$

$$
\operatorname{Lim}_{p \rightarrow 0} \mathrm{~S}+\mathrm{T}+\mathrm{V}_{1} \sqrt{\mathrm{p}}(\mathrm{P}=\mathrm{Q})=\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{p}
$$

A_{1} and A_{2} are defined by (14) and

$$
\begin{aligned}
& B_{1}=\sum\left(J_{m}-L_{m}\right), \quad C_{1}=\sum\left(J_{m}+L_{m}\right) \\
& B_{2}=\frac{1}{2} \sum\left(J_{m} N_{m}^{2}-L_{m} E_{m}^{2}\right)+V_{2} \sum\left(J_{m} N_{m}-L_{m} E_{m}\right) \\
& C_{2}=\frac{1}{2} \sum\left(J_{m} N_{m}^{2}+L_{m} E_{m}^{2}\right)+V_{1} \sum\left(J_{m} N_{m}-L_{m} E_{m}\right) .
\end{aligned}
$$

For the first term in (8), the residue for $0<t \leq \delta$ is

$$
\begin{equation*}
\overline{\mathrm{x}}_{\mathrm{t}}=\frac{\mathrm{K}_{1}}{\delta \sqrt{\alpha_{1}}}\left[\frac{\mathrm{tB}_{1}}{\mathrm{~A}_{1}}+\frac{\mathrm{A}_{1} \mathrm{~B}_{2}-\mathrm{A}_{2} \mathrm{~B}_{1}}{\mathrm{~A}_{1}^{2}}\right] \tag{16}
\end{equation*}
$$

for the last term in (9), the residue is

$$
\begin{equation*}
\overline{\mathrm{z}}_{\mathrm{t}}=\frac{\mathrm{K}_{\mathrm{n}}}{\delta \sqrt{\alpha}}\left[\frac{\mathrm{tC}}{1}{ }_{\mathrm{n}} \mathrm{~A}_{1}+\frac{\mathrm{A}_{1} \mathrm{C}_{2}-\mathrm{A}_{2} \mathrm{C}_{1}}{\mathrm{~A}_{1}^{2}}\right] \tag{17}
\end{equation*}
$$

and for the first term in (9) and the last term in (8), the residue is

$$
\begin{equation*}
\bar{Y}_{t}=\frac{K_{n} G}{\delta \sqrt{\alpha}}\left[\frac{t}{A_{1}}-\frac{A_{2}}{A_{1}^{2}}\right] \tag{18}
\end{equation*}
$$

where

$$
\frac{K_{1} B_{1}}{A_{1} \sqrt{\alpha_{1}}}=\frac{K_{n} C_{1}}{A_{1} \sqrt{\alpha_{n}}}=\frac{K_{n} G}{A_{1} \sqrt{\alpha_{n}}}=\frac{1}{R}
$$

and R is the total thermal resistance of the n-layers $p l u s R_{1}$ and R_{2}.
The response factors X_{1}, Y_{1} and Z_{1} evaluated at $t=\delta$, become

$$
\begin{align*}
& \mathrm{X}_{1}=\bar{x}_{\delta}-\frac{\mathrm{K}_{1}}{\sqrt{\alpha_{1}}} \sum\left(\mathrm{D}_{1}-\mathrm{v}_{2} D_{2} \beta_{i}\right) \psi_{i} \\
& \mathrm{Y}_{1}=\bar{Y}_{\delta}-\frac{\mathrm{K}_{\mathrm{n}} G}{\sqrt{\alpha}} \sum \psi_{\mathrm{n}} \tag{19}\\
& \mathrm{Z}_{1}=\bar{Z}_{\delta}-\frac{\mathrm{K}_{\mathrm{n}}}{\sqrt{\alpha_{n}}} \sum\left(D_{3}-v_{1} D_{2} \beta_{i}\right) \psi_{i}
\end{align*}
$$

where

$$
\psi_{i}=\frac{2}{\delta} \frac{e^{-\beta_{i}^{2}}}{\beta_{i}^{2 U_{i}}}
$$

For X_{2}, Y_{2} and Z_{2} evaluated at $t=2 \delta$,

$$
\begin{align*}
& X_{2}=\frac{1}{R}-\bar{X}_{\delta}-\frac{K_{1}}{\sqrt{\alpha_{1}}} \sum\left(D_{1}-V_{2} D_{2} \beta_{i}\right) \psi_{i}\left(e^{-\beta_{i}^{2} \delta}-2\right) \\
& Y_{2}=\frac{1}{R}-\bar{Y}_{\delta}-\frac{K_{n} G}{\sqrt{\alpha_{n}}} \sum \psi_{i}\left(e^{-\beta_{i}^{2}}-2\right) \tag{20}\\
& Z_{2}=\frac{1}{R}-\bar{Z}_{\delta}-\frac{K_{n}}{\sqrt{\alpha_{n}}} \sum\left(D_{3}-V_{1} D_{2} \beta_{i}\right) \psi_{i}\left(e^{-\beta_{i}^{2} \delta}-2\right)
\end{align*}
$$

and for $t>2 \delta$,

$$
\begin{equation*}
x_{j}=-\frac{K_{1}}{\sqrt{\alpha_{1}}} \sum\left(D_{1}-V_{2} D_{2} \beta_{i}\right) \psi_{i}\left(1-e^{-\beta_{i}^{2} \delta}\right)^{2} e^{-(j-3) \beta_{i}^{2} \delta} \tag{21}
\end{equation*}
$$

For larger values of j, the response factors decrease with increase in j by a common ratio - i.e., for N sufficiently large,

$$
\begin{equation*}
\overline{C R}=e^{-\beta_{1}^{2} \delta}=\frac{X_{j}+1}{X_{j}}=\frac{Y_{j}+1}{Y_{j}}=\frac{Z_{j}+1}{Z_{j}} \tag{22}
\end{equation*}
$$

for all $j \geq \mathrm{N}$, where β_{1} is the first root of (10). Thus for j greater than N, the response factors can be computed by the relationship

$$
x_{j+1}=x_{j} \cdot \overline{C R}
$$

The temperatures $f(t)$ and $g(t)$ may be constructed from a series of triangular pulse functions (15), overlapping in time by an amount δ. By the principle of superposition, the heat flux at time τ is determined from the sum of the products of the response factors and the temperatures from the present time to preceding time intervals of duration δ. The heat flow at time $t=\tau$ and
at the $x=0$ face is then

$$
\begin{equation*}
F_{1, \tau}=\sum_{i=1}\left(X_{i} V_{1, \tau-i+1}-Y_{i} V_{n, \tau-i+1}\right) \tag{23}
\end{equation*}
$$

and the heat flux at $x=b_{n}$ is

$$
\begin{equation*}
F_{n, \tau}=\sum_{i=1}^{\sum}\left(Y_{i} V_{1, \tau-i+1}-Z_{i} V_{n, \tau-i+1}\right) \tag{24}
\end{equation*}
$$

where V is the temperature potential in relation to a fixed datum plane temperature, which is referenced to time, $t=\tau, \tau-1, \tau-2$, etc.

For certain types of constructions, the number of required response factors can become quite large to give a reasonable accuracy to the heat fluxes of (23) and (24). Conduction transfer functions can reduce this number considerably and are defined from the relationship, $F_{1, \tau}-C R F_{1, \tau-1}$ of (23) and similarly from (24). The conduction transfer functions are then defined as follows:

$$
\begin{array}{lll}
X_{1}^{\prime}=X_{1} & Y_{1}^{\prime}=Y_{1} & Z_{1}^{\prime}=Z_{1} \\
X_{j}^{\prime}=X_{j}-\overline{C R} X_{j-1} & Y_{j}^{\prime}=Y_{j}-\overline{C R} & Y_{j-1} \tag{25}
\end{array} z_{j}^{\prime}=Z_{j}-\overline{C R} \quad Z_{j-1} .
$$

Using these functions, the heat flux at $t=\tau$ and $x=0$ becomes

$$
F_{1, \tau}=\overline{C R} \cdot F_{1, \tau-1}+\sum_{j=1}\left(X_{j}^{\prime} V_{1, \tau-j+1}-Y_{j}^{\prime} V_{n, \tau-j+1}\right)
$$

From (21) and (25), it can be seen that the conduction transfer functions are numerically very small numbers as j approaches N , and the number of functions needed for computation purposes is considerably reduced. However,
initially it is necessary to know the value of $\mathrm{F}_{1, \tau-1}$. This must be determined from several iterations over the past temperature history of V_{1} and V_{n}.

3. RESPONSE FACTORS

Using the algorithms of the previous section, the response factors of equations (19), (20), and (21) are calculated from the computer program found in Appendix A. To show time savings in response-factor calculations, identical multi-1ayer constructions were input into both the program of Kusuda [1] and the program of Appendix A. Six multi-layer constructions are shown in Table 2, and the computation times for the two programs are shown in Table 3. As can be seen, considerable time saving is available from the program of Appendix A.

In the example of Table 2, there is an evident lack of enclosed air spaces in the building construction. Kusuda [2] assumed only a purely thermal resistance effect of air spaces during dynamic temperature changes. It is the supposition of the author that both the air space thickness and the heat capacity of the air should be considered for heat transfer calculations. From literature values, the thermal diffusivity of dry air varies from $0.639 \mathrm{ft}^{2} / \mathrm{h}$ at $0^{\circ} \mathrm{F}$ to $.977 \mathrm{ft}^{2} / \mathrm{h}$ at $120^{\circ} \mathrm{F}$, and these values are reduced somewhat by the presence of water vapor. For the program of Appendix A, the thermal diffusivity of air in air spaces is assumed to be $0.75 \mathrm{ft}^{2} / \mathrm{h}$, the air space thickness is assumed to be one inch if not specified by the input card, and the thermal resistance is as defined for steady-state air-space values.

Table 2. Multi-Layer Constructions

	Layer	Thermal		Specific
Layer	Thickness	Conductivity	Density	Heat
Description	ft	Btu/h ft		$1 b / \mathrm{ft}$

Case 1 Two Layers

1	$1-$ IN MINERAL FIBERBOARD	0.833	.035	23.0	.140
2	$4-$ IN LIGHT-WEIGHT CONCRETE	.3333	.100	40.0	.200

Case 2 Three Layers

1	$5 / 8-$ IN PLASTER BOARD	.0521	.094	50.0	.260
2	$3-1 / 2$ IN BATT INSULATION	.2917	.026	2.0	.220
3	$3 / 4-I N$ WOOD SIDING	.0625	.800	36.0	.280

Case 3 Four Layers

1	$1 / 2-I N ~ P L A S T E R ~ B O A R D ~$.0417	.094	50.0	.260
2	$3 / 4-$ IN POLYSTYRENE INSULATION	.0625	.094	.260	
3	$4-$ IN COMMON BRICK	.3333	.417	50.0	.190
4	$4-$ IN FACE BRICK	.3333	.750	130.0	.190

Case 4 Five Layers

1	$1 / 2-$ IN PLASTER BOARD	.0417	.094	50.0	.260
2	1-IN BATT INSULATION	.0833	.026	.220	
3	$4-$ IN L.W. CONCRETE	.3333	.100	.200	
4	$3 / 4-$ IN BOARD INSULATION	.0625	.017	.290	
5	$1-$ IN STUCCO	.0833	.400	2.2	.200

Case 5 Six Layers

1	3/4-IN ACOUSTIC TILE	. 0625	. 035	30.0	. 200
2	4-IN HEAVY WEIGHT CONCRETE	. 3333	1.000	140.0	. 200
3	2-IN ROOF INSULATION	. 1667	. 025	5.7	. 200
4	2-IN H.W. CONCRETE	. 1667	1.000	140.0	. 200
5	3/8-IN FELT	. 0313	.110	70.0	. 400
6	$1 / 2-\mathrm{IN}$ SLAG	. 0417	. 830	55.0	. 400
Case 6 Seven Layers					
1	1/2-IN PLASTER BOARD	. 0417	. 094	50.0	. 260
2	$1-\mathrm{IN}$ BATT INSULATION	. 0833	. 026	2.0	. 220
3	1/2-IN PLYWOOD	. 0417	. 067	34.0	. 290
4	3-IN H.W. CONCRETE	. 2500	1.000	140.0	. 200
5	1/2-IN PLYWOOD	. 0417	. 067	34.0	. 290
6	3/4-IN BOARD INSULATION	. 0625	. 017	2.2	. 290
7	1-IN STUCCO	. 0833	. 400	116.0	. 200

Table 3. Execution Time for Computation of Response Factors, Seconds

Kusuda [1] Appendix A Time Savings

Two layers
Three layers
Four layers
Five layers
Six layers
Seven layers
2.037
.187
1.850
.174
8.711
8.885
.378
.625
.846
1.681
1.524
2.393
.763
8.105

Table 4. Heat Flux at Inside Surface of Wood Frame Construction with Air Space, Btu/h ft ${ }^{2}$

Time (hr)	No heat capacity	$31 / 2^{\prime \prime}$ air space	$51 / 2^{\prime \prime}$ air space
1	1.742	1.021	. 954
2	1.262	1.242	1.203
3	1.359	1.342	1.319
4	1.548	1.525	1.494
5	1.707	1.691	1.666
6	. 964	1.109	1.233
7	- 1.966	- 1.598	- 1.154
8	- 6.113	- 5.684	- 5.024
9	-10.410	- 9.924	- 9.214
10	-14.248	-13.809	-13.144
11	-17.427	-17.065	-16.501
12	-19.720	-19.463	-19.042
13	-20.908	-20.783	-20.544
14	-20.827	-20.849	-20.822
15	-19.497	-19.660	-19.846
16	-17.038	-17.334	-17.718
17	-13.592	-13.996	-14.552
18	- 9.416	- 9.908	-10.599
19	- 4.960	- 5.459	- 6.201
20	- 1.785	- 2.088	- 2.639
21	- . 746	- . 870	- 1.128
22	- . 214	- . 281	- . 414
23	+ . 239	+ . 185	$+.093$
24	. 680	. 628	. 547

The introduction of these changes does alter the response factors and heat flux amplitudes in response to external temperature variations. Table 4 gives heat flux values at the inside surface for a wood-frame construction, with no heat capacity [2], and $31 / 2$ and $51 / 2$ inch air spaces. The external temperature variation is taken from Figure 1.

4. VERIFICATION OF RESPONSE FACTORS

Response factors as defined in this paper are the result of an analytical formulation which employs a past time history of overlapping pulses for the temperatures at or adjacent to surfaces of composite solids to determine the heat flux or temperature at present time. A linear variation in temperature over the time period, (usually one hour) is assumed. The ability of response factors to give accurate values for heat flux has been questioned. For this reason, it is appropriate to compare the numerical results from the response-factor calculation with those from another analytical calculation.

Analytical solutions can be found from equations (6) and (7), where the temperature-time functions can be defined by the trigonometric series,

$$
\begin{equation*}
f(t)=\Sigma\left(A_{n} \cos W_{n} t+B_{n} \sin W_{n} t\right) ; \quad \bar{f}(p)=\Sigma \frac{A_{n} P+B_{n} W_{n}}{p^{2}+W_{n}^{2}} \tag{27}
\end{equation*}
$$

and
$g(t)=C_{0}+\Sigma\left(C_{n} \cos W_{n} t+D_{n} \sin W_{n} t\right) ; \bar{g}(p)=\frac{C_{0}}{p}+\Sigma \frac{C_{n} p+D_{n} W_{n}}{p^{2}+W_{n}^{2}}$

Considering only the steady periodic condition, the residues at the poles at $p=0$ and $p= \pm i w_{n} c$ an be found for the surface temperatures. Heat flow at the surfaces can then be obtained from (4) and (5).

The six examples of Table 2 were used in determination of heat flux for both the response factor and analytical solution. The temperature variation, $g(t)$ shown in Figure 1 was used for the test cases, with $f(t)=0$ and $R_{1}=0.68$ and $R_{2}=.333 \mathrm{hft}^{2} \mathrm{~F} /$ Btu. The coefficients C_{0}, C_{n} and D_{n} were determined from 96 points where there was linear interpolation between the hourly points. This was necessary to assure a nearly linear variation in temperature between the hourly points for the function $g(t)$. When coefficents were determined for 24 and 48 points the agreement between the heat flux for the analytical and response factor was not as good.

Heat flux was computed both from the response factors [(23) and (24)] and the conduction transfer function (26). For all cases examined the heat flux at the inside surface was less than one percent different from the values computed for the analytical solution. At the outside surface, the agreement was not as good, particularly around 5 and 19 hours, where there are sudden changes in the slope of the temperature curve (as shown on Figure 1). The detail figures show that the function $g(t)$ used in the analytical solution varies considerably from the linear form required by the response-factor method in the time period 4 to 5 and 19 to 20. It is expected that if more points were used, there would be a better agreement at the outside surface.

Table 5. Comparison of Heat Flux Values Calculated from Response-Factor and Analytical Methods Btu/h ft^{2}

Case 2.

1	1.128	1.103	.358	.358
2	.487	.503	.442	.442
3	1.177	1.152	.479	.478
4	1.268	1.195	.542	.542
5	.652	.304	.604	.604
6	-9.247	-9.338	.430	.434
7	-15.479	-15.366	-.489	-.486
8	-16.531	-16.412	-1.933	-1.933
9	-16.683	-16.552	-3.456	-3.456
10	-15.951	-15.807	-4.861	-4.862
11	-14.261	-14.108	-6.047	-6.048
12	-11.537	-11.379	-6.930	-6.932
13	-7.701	-7.565	-7.432	-7.434
14	-3.379	-3.286	-7.488	-7.490
15	.709	.783	-7.091	-7.093
16	5.175	5.183	-6.284	-6.284
17	8.621	8.604	-5.110	-5.111
18	12.274	12.076	-3.661	-3.662
19	11.223	10.820	-2.065	-2.064
20	1.296	1.332	-.811	-.806
21	1.226	1.242	-.333	-.332
22	1.366	1.371	-.113	-.113
23	1.520	1.517	.055	.055
24	1.676	1.648	.214	.214

Case 3.

Outside Surface		Inside Surface	
Resp.	Anal.	Resp.	Anal
39.450	39.437	-5.468	-5.468
34.607	34.609	-4.867	-4.866
32.679	32.668	-4.295	-4.295
30.798	30.768	-3.763	-3.763
27.171	27.036	-3.271	-3.270
2.856	- 2.920	-2.816	-2.816
- 38.739	- 38.726	-2.408	-2.408
- 65.508	- 65.481	-2.110	-2.109
- 84.931	- 84.961	-2.012	-2.011
- 96.946	- 96.894	-2.170	-2.169
-101.138	-1 01.076	-2.590	-2.589
- 96.975	- 96.904	-3.238	-3.237
- 83.896	- 83.828	-4.058	-4.057
- 63.289	- 63.233	-4.978	-4.978
- 37.984	- 37.933	-5.916	-5.916
- 8.151	- 8.124	-6.786	-6.787
21.992	22.007	-7.509	-7.510
53.149	53.093	-8.015	-8.016
71.912	71.763	-8.254	-8.255
58.711	58.703	-8.195	-8.197
52.360	52.354	-7.857	-7.858
48.294	48.290	-7.332	-7.332
45.399	45.394	-6.722	-6.722
43.178	43.164	-6.901	-6.091

Comparison of calculated heat flux values from the analytical and response factor methods is shown in Table 5 for Cases 2 and 3.

5. CONCLUSIONS

Formulas for calculating thermal response factors for plane multi-layer constructions have been developed as given by equations (19), (20), and (21). A computer program to obtain response factors based on these formulas is found in the Appendix. A comparison was made of the time for computation of response factors between the matrix algebra method of Kusuda [1] and the method given in this paper. A considerable saving in computation time is realized by the methods of this paper.

Presently, the response-factor calculations for constructions with air spaces assume only a purely thermal resistance effect of air spaces during dynamic temperature variations [2]. The heat transfer across an air space involves the nature of the bounding surfaces, the intervening air, orientation of the space and the direction of heat flow: and hence the three modes of heat transfer--radiation, convection, and conduction-influence heat flow in an air space. It would be impractical to simulate the three modes of heat transfer for constantly changing air space surface temperatures, but it is felt that a reasonable approximation should include both the heat capacity and air space thicknessfor dynamic heat transfer calculations. These were included in the computer program of the Appendix. The introduction of these changes gives different values for the response factors and resulting heat-flux amplitudes.

Response factors are analytical formulations from the partial differential equations for heat conduction. When properly applied, the responsefactor method gives correct values for temperature and heat flow for conduction heat transfer problems.

6. REFERENCES

1. T. Kusuda, Thermal Response Factors for Multi-Layer Structures of Various Conduction Systems, ASHRAE Transactions, Vol. 75, 1969.
2. T. Kusuda, NBSLD, The Computer Program for Heating and Cooling Loads in Buildings, NBS-BSS-69, U.S. Government Printing Office, Wash., D.C. 20402.
3. CONVERSION FACTORS TO METRIC (S.I.) UNITS

Physical Quantity	To Convert \qquad	To	Multiply By
Length	ft	m	$3.0480 \mathrm{E}-1$
Area	$f t^{2}$	m^{2}	$9.2903 \mathrm{E}-2$
Temperature	F	C	(F-32)/1.8
Density	$1 \mathrm{bm} / \mathrm{ft}{ }^{3}$	$\mathrm{kg} / \mathrm{m}^{3}$	$1.6018 \mathrm{E}+1$
Thermal Conductivity	Btu/h ftF	W/mK	$1.7296 \mathrm{E}+0$
Thermal Resistance	h $\mathrm{ft}^{2} \mathrm{~F} / \mathrm{Btu}$	$\mathrm{m}^{2} \mathrm{~K} / \mathrm{W}$	$1.7623 \mathrm{E}-1$
Thermal Diffusivity	$\mathrm{ft}^{2} / \mathrm{h}$	$\mathrm{m}^{2} / \mathrm{s}$	$2.9900 \mathrm{E}-3$
Heat Flux	Btu/h ft^{2}	$\mathrm{W} / \mathrm{m}^{2}$	$3.1525 \mathrm{E}+0$
Specific Heat	Btu/lbmF	$\mathrm{j} / \mathrm{kgK}$	4.1840 E+3
Time	h	s	$3.6000 \mathrm{E}+3$

APPENDIX A
Appendix A gives a Fortran listing of computations for the response factors and includes input of data identical to that of Kusuda [1].

```
        PRGGRAM FGR CGMPUTING RESPONSE FACTORS GP MULTI-LATER BUILDING
                CONSTROCTIGNS (ONE TG SEVEN LAYERS) FOR THERMAL CONDOCTION
        APPLICATIONS
            INPOT
        DEL- TIMB INCREMENI (EQO 15)
    JA= NOMBER OF LAYRRS IN CENSTRUCTION (MAY INCLUDE SURFACE FILMS)
THERMOPEYSICAL PRGPERTIES OF EACH LAYER (ONE CARD PBR LATERO1OF7.O)
    SURFACE PILM RESISTANCES MAY BE INCLUDED AS LAYERS* IN 'RE' GNLY
            IF INCLUDED FOR BOTH EIDES - "JA' SHOULD NOT EXCRED 9
    ORDERING OF LATERS FROM INSIDE IO OUTSIDE
            L = TEICENBSS OF EACH LAYER
            E - THERMAL CONDOCIIVITT OF LAYER
            D = DENSITY OF LATER
            SP= SPECIFIC HEAT CF LAYER
            RE- THERMAL RESISTANCE (POR AIP SPACES GR SURFACE FILMS ONZY)
DESCRIPTIGN GF EACB LAYER (GNE CARD PER LAYEROGAG)
            RM* CONTAINS DESCRIPIIONS PGR EACH LAYER (HOLLERITA)
blank Card INDICAIES NG mORE CONSTRUCTIONS TG BE INPUTTED
            SOBRODTINE RGOTS - CGMPOTBS REOTS OF BQD }1
            SOBROUTINE ABC - COMPUTES (I*&) TERMS FOR BQOS 16.17.18
                                    (I*O) SUMMATIEN TERMS FOR EQOS 10.11
            GUTPOT
            THERMGPHYSICAL PROPERTIES GF EACH LAYER AND DESCRIPTIGNS
    L(N),I(N),D(N),SP(N),RE(N),RM(I,N),I=8,G (EICLUDING SURFACE FILMS)
            STATEMENT - SURFACE FILMS INCLODED GR EXCLODED
            I = PRINTOUT OF IERMS USED IN COMPOTING EQUS 16.17.16
            BB,BC,BD,BE,BF,BG - TERMS OF BQUS 16.17.18
            I = REGTS GF EQO }1
            CR= COMMON RATIO EOU 22
    RESPGNSE FACIGRS
    ZI(N),TY(N),ZZ(N), N-1.IB IB DEFINED 日Y BOU 22
    PARAMETER F=60,G=100
    DIMENSIEN S(G4),B(7),C(6),B(G), L(B),E(B),D(B),SP(B), RE(B),RM(B,6),
    1AL(7),I(F),T(F),W(F),T(F),IX(G),TI(G),ZZ(G)
        COMMEN/CBA/S,C
        REAL E,L
100 FGRMAT (1017)
102 PGRMAT (10P7.0)
105 PGRMAT (GAG)
201 FGRMAT (1OP12.6)
202 FORMAT (3F16.B)
203 FGRMAT (IIO,F11.4,F10.3,F10.1,F10.3,FB.2,2I,646)
205 FORMAT (26日 BUILDING CONSTROCTION NO.I4)
206 PGRMAT (33日 RGOTS GF CHARACTERISTIC EQUATION)
207 PGRMAT (24# RESPGNSE FACTERS Z,Y,Z)
208 PORMAT(1H1)
209 FGRMAT(1E)
210 FGRMAT (56# RESPGNSE FACTGRS ARE CALCOLATED FRGM SURFACE TG SURPAC
    AB)
212 FGRMAT (56日 RESPONSE FACTGRS INCLODE SURFACE PILM RESISTANCES - RI
    A=F6.3.8H AND R2OF6.3)
212 FORMAT (14& COMMON RATIG=F9,6)
    READ (5.102) DEL
    1P=0
```

```
97 vRITE (6, 208)
99 READ (5,100) JA
    J అJム
    R1=0
    22=.0
    IF (J.BO.O) बe Te 200
    READ (5.102) L(1), [(1), D(1), EP(1), RE(1)
    IA=2
    IR(D(1).GI..001) GO TO 98
    R1=28(1)
    J=J-1
    IA*1
98 De 101 N=IA,J
101 READ (5,102) L(N),K(N),D(N),SP(N),RE(N)
    IR=IR*1
    READ (5,105)(RM(1,I),T=1,6)
103 DE 104 N=IA,J
104 READ (5,105)(RM(N,I),I=1,6)
    IF (D(J).GI. .001) OG TE 106
    R2=知E(J)
    J=J=1
106 LF (J.GT.7.OR.J.EQ.O) Ge TO 200
    DO 110 N=1, J
        IF (D(N)) 109.107.109
107 AL(N)=.75
            IF (L(N).LT..001) L(N)=.083333
            E(N)=L(N)/RE(N)
            GO TO 110
109 AL(N)=K(N)/(D(N)*SP(N))
110 CENTINUE
    AA=0
19 DG 20 N=&.7
            B(N)=0
            IF (N.LE.J) }\DeltaA=|\Delta*L(N)/R(N
    20 IF (N.LE.J) B(N)=L(N)/SQRT(AL(N))
    AD=1.
    IF (J.EQ.1) GO IC 1
    I-J=1
    DE 21 N=1,I
        E(N)=E(N*1) #SQPT(AR(N)/AL(N*1))/N(N)
        C(N)=(N.-E(N))/(1.*E(N))
21 AD=2.娄AD^1.*E(N))
    G0 TO (1,2,3,4,5,6,7),J
    7S(32)-B(7)-B(6)*B(5)-B(4)*B(3)-B(2)*B(1)
        B(31)=B(7)-B(6)*B(5)-B(4)*B(3)*B(2)*B(1)
        B(30)=B(7)-B(6)*P(5)-B(4) -B(3)*B(2)*B(1)
        S(29)=B(7)-B(6)*B(5)*B(4)*B(3)*B(2)*B(1)
        S(28)-P(7)-B(6)-B(5)*B(4)-B(3)*B(2)*B(1)
        S(27)=B(7)-P(6)*B(5)-B(4)-B(3)-B(2)*B(1)
        B(26)-B(7)-B(6)*B(5)*B(4)-B(3)-B(2)*B(1)
        S(25)=B(7)-B(6)-B(5)*B(4)-B(3)-B(2)\bulletB(1)
        S(24)=B(7)-B(6)*B(5)*B(4)*B(3)-B(2)* B(1)
        S(23)-B(7)-B(6)-B(5)*B(4)*B(3)-B(2)*B(1)
        S(22)=B(7)-B(6)-B(5)-B(4)*B(3)-B(2)*B(1)
        S(21)=B(7)-B(6)-B(5)-B(4)-B(3)-B(2)*B(1)
        S(20)=B(7)-B(6)-B(5)-B(4)-B(3)*B(2)*B(1)
        S(19)=B(7)-B(6)-B(5)-B(4)*B(3)*B(2)*B(1)
        S(18)-B(7)-B(6)-B(5)*B(4)*B(3)*B(2)*B(1)
        S(17)=B(7) =B(6)*B(5)*B(4)*B(3)*B(2)*B(1)
    6S(16)=B(7)*B(6)-B(5)*B(4)-B(3)*B(2)*B(1)
```

```
    B(15)=B(7)*B(6)-B(5)* B(4)-B(3)-B(2)* B(1)
    S(14) &B(7)*B(6)-B(5)*B(4)*B( 3)*B(2)*B(1)
    S(13) = B(7)*B(6)-B(5) -B(4)*B(3) - B( 2)*B(1)
```



```
    S(10)=B(7)&B(6) -B(5) &B(4)*B(3)*B(2)*B(1)
    S( 9)*B(7)*B(6) &B(E)*B(4)*B(3)*B(2)*B(1)
s S( 8)=B(7)&B(6)*B(5) &B(4)*B(3)&B(2)*B(1)
    S( 7) =B(7)*B(6)*B(5) & B(4)&B(3)&B(2)*B(1)
    8( 6) = B(7)*B(6)*B(5)-B(4)-B(3)*B(2)*B(1)
    S( 5) &B(7)&B(6)&B(5) -B(4)-B(3)-8(2)&B(1)
4 S(4)=B(7)*B(6)*B(5)*B(4)०B(3)*B(2)*B(1)
    8( 3) B( 7)&B(6)&B(5)&B(4) -B( 3) & B( 2)*B(1)
3 S( 2) &B(7)&B(6)&B(5)*B(4)*B(3)-B(2)&B(1)
2 8( 1) &B(7)&B(6)&B(5)&B(4)&B(3)&B(2)*B(1)
    GE TO 9
& S(1)=B(1)
9 DO B N=1.32
            I~N*32
8 S(I)=S(N)=2.#B(1)
    AB-E(1)/SQET(AL(1))
    AC=E(J)/SORT(AL(J))
    *1*R1#AB
    *2-12#AC
    I-1
    CAII ABC(CA,I.J.I)
    CA-V1*V2
    CB= v2-\nabla1
    CC=\nabla2-V1
    BA= Z(2)* Z(6)*CB*E(1)*CCEX(5)
    BB=AB#(I(1)-\Sigma(5))/BA
    BC=AC&(I(1)0I(5))/BA
    BD=AC#AD/BA
```



```
    BI=(I(3)-I(7) )/2.*V2#(I(2)0I(6))
    BN*(I(3)*I(7t)/2.* % | (z(2)0I(6))
    BE=AB#(BA#BI-BH*(I(1)-I(5) ) )/(DEL#BA*BA )
    BF=AC* BA*BJ-BH*(I(&)* I(5) ) )/(DEL*BA*BA)
    BG=\triangleAC&AD*BH/ (DEL&BA*BA)
    I(1)=SQET(BA/BH)
    CALI ROETS(AB,AC,AI,V&,V2,DEL, Y, I, T,W,J,M)
    IX(1)0BB*BE
    2Z(1)0BC*BF
    YY(&)=BD*BG
    II(2)=-BE
    22(2)-0BF
    IX(2)=0BG
    DG 50 Nol.M
        IX(&)-\SigmaI(1)-E(N)
        2Z(1)=2Z(1)-N(N)
        YY(1)=YY(1)-T(N)
```



```
        IX(2)-\X(2)-I(N)#CA
        z2(2)=2z(2)-\omega(N)=CA
        IY(2)=YY(2)-T(N)#CA
    CR=EXP(-DEL#Y(&)|#2)
    D| 56 I=3,G
        \\(1)=00
        IY(I)=00
        22(I)=.0
```

```
            1801
            CC=1-3
            CA=CC=T(1)=䒜2#DEI
            IF (CA.GI.20.) ©6 TO 59
    DO 55 N*I.M
        CA=DEL苃T(N)=#2
        CB-CC=CA
        IF (CB.GI.40.) OE IO 56
        CDOBIP( -CA )
        CD=EXP( -CB )*(1.-CD )=...2
        ME(I)=\SigmaY(I)=I(N)=CD
        ZZ(I)=ZZ(I)=E(N)*CD
    55
    52 CA=ABS(II(I)/XI(I-1)-CR)*ABS(IY(I)/YY(I-1)-CR)
    CA*CA*ABS(2z(I)/2z(I-1)-CR)
    IF (CA.II..00003) GG Te 59
    S9 vRITE (6,205) IR
    DO 204 I=1.J
204 ERITE (6,203) I,I(I),I(I), D(I),SP(I),RE(I),(RM(I,N),N=1,6)
    #EITE (6,209)
    IF (J.EQ.JA) vRIIE (6,210)
    IF(J.NE.JA)WRITE (6,211) &1.R2
    #MITE (6,206)
    GRITE (6,201) (T(N),N=1,5)
    #RITE (6.209)
    *RITE (6,207)
    TRITE (6,202) (EX(N),YM(N),ZZ(N),N-1,IB)
    |RITE (6.212) CR
    GO TE 97
200 8TOP
    END
```

 SUBREOTINE \(A B C(1, Z, J, I)\)
 DIMENSION 2(1), T(64), V(64,4)
 CEMMGN/CBA/S(64), C(6)
 E-1
 IF (I.BO.1) GO IO 20
 Mol
 IF (J.GI.1) M-2 = \#J/4
 De 6 Nol. M
 De 8 I-1. 2
 LON
 IF (I.BQ.2) LON•32
 Bexes(I)
 \(A=\sin (B)\)
 玉-CAs(B)
 V(1.1)=A
 V(1,2) B
 v(L, 3) \(-\mathrm{Bes}(\mathrm{L})\)
 V(I, 4) \(\mathrm{A} A=S(L)\)
 DO 14 NEI. 64
 \(I(N)=V(N, I)\)
 $\begin{array}{ll}14 \\ 15 & T\end{array}=0$
v=. 0
10 GO TO ($1,2,3,4,5,6,7), J$
$4=C(1) *(C(2) * T(24) * C(3)=T(26) * C(4) *(T(27) * C(2) * C(3) * T(32) *) * T(17)$
$4 * C(5)=(4 * C(2) *(C(3) * T(29) * C(4) * T(30)) \cdot C(3) * C(4) * T(31)) \cdot C(2) * T(20)$


```
    A=A*B*C(3)#(T(15)*C(1)*C(2)每T(22))*C(1)#T(21)
    Y=Y*C(\delta)事
    A =C(2)*(C(3)eC(4)*T(60)*C(3)*C(5)*T(61)*C(4)*C(5)*T(62))
```



```
    B=T(53)*C(1)急A*B)*C(3)*(C(4)*T(57)*C(5)*T(58))*C(4)*C(5)*T(59)
```



```
    Y=Y*C(5)## (4*C(3)*(T(10)*C(2)*(C(1)*T(13)*C(4)*T(16)))
    A=T(44)*C(1)*(C(4)*T(41)*C(3)*T(42)*C(2)*T(43)) CO(3)*C(4)#T(47)
    m=T+C(5)*(A*C(2)*(C(3)*T(45)*C(4)#(T(46)*C(1)*C(3)*T(48)) ) )
```



```
    4 F=F*C(3)*(C(1)*T(3)*C(2)#T(4))
    w-w.0}\mp@subsup{}{}{\circ}\textrm{C}(3)\mp@code{(T(35)
3 Y-Y*C(1)#C(2)*T(2)
    |-v*C(2)*T(34)
2 Y* % I(1)
    #=W`c(1) =T(33)
    z(I)*&
    2(I*4) - |
16 E0E*8
    IF(I.EQ.1) GO Te 22
    IF (E.LE,4) GG IC 12
    RETORN
1 Z(IX)=T(1)
    2(E*4)=.0
    GO TO }1
20 DG 21 N=1.64
21 T(N)=1.
    O0 IO }2
22 DG 23 N=1.64
23 T(N)=T(N)=S(N)
    IF (E.LE.4) OOTTE 15
    RETORN
    BND
    SOBROUTINE ReCTS(AB,AC,AD,V1,V2,DEL,B,Z,P,R,J,M)
    DIMENSIEN B(1),2(1),P(1),R(1), T( 8)
    IOO
    \nabla=\nabla1**2
    O=V2•V8
    H-v2- V1
    8-2.
    0^0.02
    M-3
    EO
    A=.005
    CALL ABC(A,I,J,I)
```



```
    z*2(1)
    B0.15*8
4 CALI ABC( X, Y, J.I)
```



```
    IF (ABS(A).LT.1.EOC) ©O TO 7
```

```
    IF (I.GT.2) ©0 IO 6
```

C INCREMENTING TO GBIAIN FIRST ZBRO - AND APPROIIMATE POR GTHERS
IF (ABD) 5.5 .0
5 IOI-E
E-E/2.
IF (M.BQ.1) OC Te 4
E-E•1
COTC
8 I-I•E
GE IC
C NEWTONGRAPBSON METEOD FER GELVING BOU \&

$I=X=A / 0$
E-I•8
C NOT TO EICEED BOTB ITERATION
IF (E.GT. B) © TO 7
OCTO
$7 \mathrm{~B}(\mathrm{M})=\mathrm{I}$
$A=E Z P(-X \in \mathbb{B} \quad \mathrm{DEL})$

P(M) EEBACBAD

IF (XEXBDEL.GT.30.) RETURN
IF (M, EQ.6O) RETURN
$\mathrm{E}=0$
IF (M.GI.1) Ge TO 1
IF (I.GT..S) Ge Te
$P=3.5$
$\mathrm{v}=.002$

1) $I=\mathrm{E}+0$
CALI ABC(X,I,J,I)

IF (M.EQ.1) E=I/4。
IF (M.GT.1) $B=(I \oplus B(M-1)) / P$
M•M•I
I=I•E
0 OTO
END

FEDERAL INFORMATION PROCESSING STANDARD SOFTWARE SUMMARY

13. Narrative

Program computes thermal response factors of multi-layer building constructions (one to seven layers) for thermal conduction applications. Provision is made for including or excluding surface film thermal resistances. Input includes time increment (1 hour, $1 / 2$ hour, etc.), number of layers, thermal properties and descriptions of each layer. Output includes the thermal response factors, X, Y and Z. Main program is amendable to use as a subprogram in a larger program for use in thermal conduction applications.
14. Keywords

Dynamic conduction heat transfer, thermal response factors

15. Computer manufr and model	16. Computer operating system	17. Programing language(s)	18. Number of source program state- ments
UNIVAC 1108	FORTRAN V		

23. Other operational requirements
24. Software availability

Available		
X	\square	Limited

25. Documentation availability

Available	
\square	Inadequate
\square	

26. FOR SUBMITTING ORGANIZATION USE

NBS-114A (REV. 7-73)

U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLIC ATION OR REPORT NO. NBSIR 77-1405	2. Gov't Accession No.	3. Recipient's Accession No.
4. TITLE AND SUBTITLE DETERMINATION AND VERIFICATION OF THERMAL RESPONSE FACTORS FOR THERMAL CONDUCTION APPLICATIONS			5. Publication Date April 1978 6. Performing Organization Code
7. AUTHOR(S) Bradley A. Peavy			8. Performing Organ. Report No.
9. PERFORMING ORGANIZATION NAME AND ADDRESS NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20234			10. Project/Task/Work Unit No. $4626528(7426528)$ 11. Contract/Grant No.
12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)			13. Type of Report \& Period Covered Final
			14. Sponsoring Agency Code
15. SUPPIEMENTARY NOTES			
16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.) New formulas for calculating thermal response factors for multiple-layer construction have been developed by a rigorous derivation. A comparison was made of the time for computation between the presently used matrix algebra method and the method given in this paper. Results were obtained using the new method in one-fiftieth to one-half of the computational time necessary to obtain solutions from the matrix algebra method.			
Comparisons with another analytical method were performed to verify the accuracy of the response-factor technique.			

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name, separated by semicolons) Dynamic conduction heat transfer; heat transfer; thermal response factor; verification.
18. AVAILABILITY
\square Unlimited

■ For Official Distribution. Do Not Release to NTIS
\square Order From Sup. of Doc., U.S. Government Printing Office Washington, D.C. 20402, SD Cat. No. C13
\square Order From National Technical Information Service (NTIS) Springfield, Virginia 22151

19. SECURITY CLASS (THIS REPURT) UNCLASSIFIED	21. NO. OF PAGES		
20. SECURITY CLASS (THIS PAGE) UNCLASSIFIED	22. Price		
USCOMM-DC 29042.P74			

[^0]: * See references cited at end of text

