



NBS1277-1328

CONTAINER BOARD

report no. 96 September 1977

NBS Collaborative Reference Program for Containerboard

Fourdrinier Kraft Board Group American Paper Institute, Inc. and U.S. Department of Commerce, National Bureau of Standards

NBS COLLABORATIVE REFERENCE PROGRAMS

TAPPI Paper and Board (6 times per year)

Bursting strength
Tearing strength
Tensile breaking strength
Elongation to break
Tensile energy absorption
Folding endurance
Stiffness
Air resistance
Grammage

Smoothness
Surface pick strength
K & N ink absorption
pH
Opacity
Blue reflectance (brightness)
Specular gloss, 75°
Thickness
Concora (flat crush)
Ring crush

FKBG-API Containerboard (48 times per year)

Mullen burst of linerboard Concora test of medium

MCCA Color and Appearance (4 times per year)

Gloss at 60° Color and color difference Retroreflectivity

Rubber (4 times per year)

Tensile strength, ultimate elongation and tensile stress Hardness Mooney viscosity Vulcanization properties

ASTM Textiles (3 times per year)

Flammability (FF3-71 and FF5-74)

ASTM Cement (2 times per year)

Chemical (11 chemical components)
Physical (8 characteristics)

AASHTO Bituminous

Asphalt cement (2 times per year) Cutbacks (once a year)

Collaborative Reference Programs B360 Polymer Building National Bureau of Standards Washington, D.C. 20234

CONTAINER BOARD

Collaborative Reference Program for Containerboard

report no. 96 September 1977

E.B. Randall, Jr., J. Horlick Laboratory Evaluation Technology Section, Standards Application and Analysis Division, Institute for Applied Technology

R.G. Powell NBS Research Associate Collaborative Testing Services, Inc.

U.S. Department of Commerce, National Bureau of Standards Fourdrinier Kraft Board Group American Paper Institute, Inc.

Introduction

The Collaborative Reference Program for Containerboard is sponsored by the Fourdrinier Kraft Board Group (FKBG) of the American Insititute of Paper, Inc., with the cooperation of the Technical Association of the Pulp and Paper Industry (TAPPI) and the Collaborative Testing Services, Inc. In this program, samples of three weights of linerboard, nominally 26 lb, 42 lb, and 69 lb and of corrugating medium (26 lt) are randomized separately from uniform narrow rolls and packaged for distribution to the participants. Each month, sufficient test material for four weekly tests, the material for each consisting of 20 test pieces of 42 lb board and 20 test pieces of 26 or 69 lb board, the latter in alternate months, is mailed to participants for Mullen bursting strength, or for each week five sheets of corrugating medium, each sheet for four tests of Concora flat crush strength. The participants return their test results to NBS for analysis and receive two monthly reports from NBS: a "preliminary" (individualized report) comparing a laboratory's results with the industrial mean, and a longer report (as illustrated by this report) showing the data from all participants.

Comments Regarding Report No. 96

Beginning with Report No. 88 (January 1977), Concora medium data and Mullen linerboard data appear in the same combined report.

Edwin B. Randall, Jr., Administrator Collaborative Reference Programs

Laboratory Evaluation Technology Section (301) 921-2946

November 4, 1977

TABLE OF CONTENTS

Page	
1	Explanation of Tables
4	Instrument Codes
5	Use of Average Mean as a Reference Standard
6	Bursting Strength, Linerboard 42H4, weeks 1-4
8	Bursting Strength, Linerboard 6913, week 1
10	Bursting Strength, Linerboard 6914, weeks 2-4
12	Concora Flat Crush, Corrugating Medium 26C2

EXPLANATION OF TABLES

Each table shows laboratory test results for Mullen bursting strength of linerboard or Concora flat crush strength of corrugating medium. The data are divided into three time spans. On the left of each table is an analysis for each week of the month. In the center is cumulative data for the month and on the right is cumulative data for up to 16 weeks.

Conservative statistical tests have been used in excluding extreme data from the analyses. Thus, where the mean (average) for one laboratory is compared with the average for many laboratories, limits have been used that would exclude only one laboratory in a hundred if all laboratories followed exactly the same testing procedure. Consequently, laboratories receiving "X" flags should review their testing procedures, instrument calibration, and control processes. Similar conservative criteria were used in flagging within-laboratory standard deviations and other statistics.

LAB MEANS THIS MONTH
WEEKLY VALUES: CODE V WK-1 WK-2 WK-3 WK-4

- LAB CODE Confidential laboratory identification number known only to the participant and the Collaborative Reference Program staff.
 - V Code for indicating instrument type, units used, and any other variation in test procedure or conditions. A '+' in this column means a non-standard variation. Data marked '+' are not included in the combined averages for all laboratories. (see page 4).
- MEANS THIS MONTH For each laboratory each weekly mean is the average of individual test determinations, usually an average of 20 determinations.

FLAGS (following means and standard deviations) -

- X Data excluded from an AV MEAN or average standard deviation because value deviated from the AV MEAN or average standard deviation by more than 2.576 times the appropriate standard deviation. A laboratory following the prescribed test method could obtain such an extreme value by chance only one time in a hundred. Corrective action is almost certainly required.
- * Data included in the CUMULATIVE AV MEAN but the value deviated from this mean by more than 1.960 and less that 2.576 times the SD CUM MEAN. A laboratory following the prescribed test method could obtain such an extreme value by chance only one time in twenty. Corrective action may be desired.

- S This is a warning to the laboratory but does not affect inclusion or exclusion of the laboratory's results from the corresponding AV MEAN. This flag indicates an extremely high or low within-laboratory standard deviation (SDR, not shown) that could occur by chance only one time in a hundred if the laboratory is following the prescribed test method.
- AV MEAN (at bottom of table) The average for the indicated week of the means for all laboratories, except those laboratories marked '+' in column V and those means marked with an 'X'.
- SDR (not shown) The standard deviation of within-laboratory measurements; i.e., the Standard Deviation of the Replicate measurements made at one time in one laboratory on one package of test pieces.
- AV SDR The average for the indicated week of the SDR's of all the laboratories, except those omitted from the AV MEAN. Also an extremely high or low SDR as compared with the AV SDR based on the remaining laboratories is omitted from the AV SDR and the letter 'S' is placed after the laboratory mean for that week. The AV SDR is an index of the within-laboratory precision for repeated measurements; i.e., a measure of the ability of an average laboratory to repeat its results over a short period of time. It includes measurement error and sample variation.
- SD LABS For each week the standard deviation of the means about the AV MEAN for that week after omitting those means marked with an 'X' or noted '+' in column V. The SD LABS is an index of the among-laboratory precision of the test method as applied by the participating laboratories; i.e., a measure of the ability of laboratories to get comparable results.
- NO. INCL The number of laboratory means included in the AV MEAN for that week.
- NO. OMIT The number of laboratory means reported but omitted from AV MEAN because of non-standard equipment, environment or procedure ('+' in column V) or because of extreme results (X following mean).
- NOT RCD The number of laboratories failing to report data on time or in usable form for this week (but who reported data for at least one of the other weeks of this month), or who received test pieces from a different sample of material and whose data therefore are shown in another table of this report.
- SD SHTS (Concora only) The average for the indicated week of the amongsheet within-laboratory standard deviations. The SD SHTS is an index primarily of the variability among sheets.

THIS MONTH MEAN SDR SDWKS

VALUES THIS MONTH:

- MEAN The average for the indicated laboratory of the reported weekly MEANS THIS MONTH.
- SDR The average for the indicated laboratory of the weekly SDRs for the current month.
- SDWKS For the indicated laboratory, the standard deviation among the laboratory's weekly MEANS THIS MONTH (including those means marked with an 'X').

CUMULATIVE

CUMULATIVE VALUES:

MEAN SDR SDWKS WKS

- MEAN The average for the indicated laboratory of all its weekly means for the number of weeks indicated, including those for the current month. An '*' or 'X' following this CUMULATIVE MEAN indicates the laboratory is running consistently low or high. (See above for explanation of these flags).
- SDR The average for the indicated laboratory of the weekly SDRs for the indicated number of weeks.
- SDWKS For the indicated laboratory, the standard deviation among the laboratory's weekly means (including those means marked with an 'X'). SDWKS is an index of the week to week precision; i.e., a measure of the ability of a laboratory to repeat its results from week to week.
- WKS Number of weeks for which usable results have been reported by that laboratory. At most, 16 weeks of data are included.

GRAND AVERAGES

GRAND AVERAGES: THIS MONTH CUMULATIVE 12 WEEKS

THIS MONTH - Averages for the four weeks of the quantities shown to the left.

CUMULATIVE - Averages for the indicated number of weeks, including the four weeks of the current month.

- AV SDWKS The average of the SDWKS for all laboratories excluding those marked '+' in column V or with an 'X' following the corresponding THIS MONTH or CUMULATIVE MEAN or SDWKS.
- SD CUM MEAN The larger of either (1) the standard deviation of the CUMULATIVE MEANS about the average CUMULATIVE MEAN after omitting those CUMULATIVE MEANS marked with an 'X' or with a '+' in column V, or (2) the CUMULATIVE SD LABS divided by the square root of the number of weeks cumulated. The former will be appreciably larger than the latter only when there are persistent systematic differences among the laboratories.

INSTRUMENT CODES

FOR

MULLEN BURST TESTERS (Column V)

CODE	DESCRIPTION
A	Unknown Model, assumed to be Model AH, Hydraulic Clamp
В	Model A, Air Operated Clamp
С	Model A, Hand Operated Clamp
D	Model AH, with Pressure Transducer
E	Model A, Converted to AH
F	Model AH, Hydraulic Clamp
G	Model A, Hydraulic Clamp
Z	Unknown Model, Please Describe Instrument Make and Model

If an incorrect instrument code has been assigned to your laboratory, please inform us.

Use of Average Mean as a Reference Standard

A large supply of linerboard in three weights was randomized and placed in sealed packages ready for shipment. The supply for each weight of board was divided into several narrow "rolls" or cross-machine "positions" of a larger roll, and each position was separately randomized. Each package contains test pieces from one position only. The position is designated by the number following the letter in the code marked on the package. Thus 42H 1 indicates that this package contains 42 lb board from position 1 of lot H. Samples from the first position are distributed until exhausted, then from the second position, and so forth for each weight of board. Thus for short periods of time (several weeks to months), the samples that the participants test are from the same position of a lot, and for a longer period from the same lot.

The three weights of linerboard distributed in this program may be used as reference standards. The best reference values are the cumulative grand AV MEANs in the latest reports. These values are given at the bottom right of each table. For each weight of board, comparisons should be made first for measurements made on the same position, i.e., for checking your current measurement, use grand AV MEANs that have the same position code as on the packages being tested. The position is shown in the upper left corner of the table. If no report is yet available on the current position, grand AV MEANs from previously tested positions of the same lot may be used as approximate reference values.

Similarly a large supply of a 26 lb corrugating medium was randomized, after dividing into several narrow rolls or positions. The above discussion for linerboard also applies to the corrugating medium.

We are currently using the third lot of linerboard and the second lot of corrugating medium:

Lot	Material	Codes	Used
1	linerboard	A,B,C	October 1969 - April 1973
2	linerboard	D,E,F	September 1972 - September 1976
3	linerboard	G,H,I	October 1976 -
1	corrugating medium	(A)	May 1973 - March 1976
2	corrugating medium	В	April 1976 - February 1977
3	corrugating medium	С	March 1977 -

CULLABERATIVE REFFRENCE PROGRAM REPORT NO. S6 BURSTING STRENGTH (MULLEN), PSI

LAB			MEANS TH	IS MONTH		TH	IS MON	TR		CUMULA		
CODE	٧	W K - 1	WK-2	WK-3	W K - 4	MEAN	SDR	SDWKS	MEAN	SDR	SDWKS	WKS
100	A	126.0	125.1	124.7	126.7	125.7	7.3	. 9	124.5	7.3	1.3	11
101	F	124.8	124.1	124.1	125.5	124.6	6.6	.7	125.7	7.0	1.4	11
103	A	125.0	121.6	122.2	123.2	123.0	9.9	1.5	124.0	8.5	2.6	11
105	A	124.5	126.3	125.3	122.2	124.6	8.3	1.7	124.6	9.1	2.0	8
106	A	122.3	127.2	122.9	124.3	124.2	8.9	2.2	123.9	9.3	2.3	11
-							-					
107	C	126.5	126.5	126.6	131.0	127.7	9.4	2.2	129.5	9.7	5.4X	11
108	D		129.7	133.8	128.3	130.6	9.1	2.9	129.4	9.6	2.6	В
109	F	116.0	118.6		120.4		11.2	2.2	119.2#		3.1	10
110	D	132.4	132.8	125.6	131.6S	130.6	7.5	3.4	131.2	8.5	2.4	11
111	D	130.4	128.2		131.2	130.9	9.0	2.3		10.0		11
** *	D	130.4	120.2	133.8	131.2	150.9	9.0	2.5	130.0	10.0	203	* *
		107 7	128.6	407.0	177 0	100 0		2 0	126 6	9.1	2.9	10
112	A	127.7		127.0	133.2		11.0	2.8	126.6			
113	В	121.8	126.9	123.4	125.3	124.4	7.5	2.2	123.8	7.4		11
114	C	124.8	127.5	125.5	124.8	125.7	9.1	1.3	126.5	9.5	2.7	11
115	В	122.88	119.2	118.2	120.4	120.2	9.7	2.0	119.9	9.6	2.2	11
116	В	124.5	122.9	130.1	127.8	126.3	9.6	3.2	126.4	9.7	2.4	11
117	A	128.4	129.7	121.4	119.2	124.7	7.9	5.1	121.7	8.0	4.8X	11
119	A		120.0	130.1	129.7	126.6	9.6	5.7	125.7	9.1	4.1	9
120	В	129.9	127.5	121.5	127.2	126.5	10.7	3.6	125.9	10.2	3.1	11
121	D	126.3	123.7	123.8	125.2	124.8	9.8	1.2	128.7	9.0	3.6	11
123	A	120.3	119.9	122.8	130.3	123.4	8.8	4.8	123.5		3.3	8
			• • • • •									
125	F	129.2	128.1	124.6	125.4	126.8	8.2	2.2	128.0	8.7	2.8	11
127	A	122.6	123.7	124.3	120.4	122.8	8.8	1.7	122.2	7.8	1.7	11
128	F	126.0	124.4	128.0	120.15		11.7	3.4		10.4	3.2	11
129		120.0	120.8	129.4	121.38	123.8			123.1	4.6X	2.8	10
	A	172 6					6.3	4.9				
130	A	132.6	132.2	129.2	127.4	130.4	9.8	2.5	130.6	9.1	1.6	11
	_	105 07				445 49				0.7		
131	В	105.2X	108.7X		120.5	115.4X		10.2	111.3X		6.8X	11
133	В	120.8	120.2	120.1	123.2	121.1	8.9	1.5	120.3	8.0	1.6	11
134	F	122.8	123.0	123.1	122.1	122.8	8.8	. 4	121.4	8.3	2.8	11
135	A	122.0	127.2	123.3	125.3	124.5	10.1	2.3	122.3	8.8	4.2	11
136	A	118.3	127.0			122.7	6.9	6.2	119.4	6.2X	3.4	8
137	F	124.7	117.8	119.8	122.3	121.2	8.7	3.0	122.4	9.0	2.5	11
138	A	129.6	126.3	131.1	129.8	129.2	10.7	2.0	129.5	10.8	2.5	11
139	В	121.3	126.6	131.1	123.1	125.5	10.5	4.3	125.8	9.5	3.2	11
140	F	129.45	124.3	124.3	125.1	125.8	5.1	2.4	125.9	7.7	2.6	11
141	F	119.0S	121.3	123.1	123.7	121.8	5.1	2.1	122.8	5.2X	3.0	9
142	C	129.4	127.6	127.8	130.7	128.9	9.3	1.5	127.9	8.7	2.6	11
143	В	125.7		124.9	125.2	125.3	8.6	. 4	124.1	9.7	1.0	10
145	F	118.45	112.9X		120.4	121.0	5.0	8.2	121.9	4.7X	8.2X	6
147	A	132.7	130.3	128.7	124.2	129.0	8.3	3.6	128.7	9.2	2.5	11
149	F	123.1	128.4	129.9	126.5	127.0	9.7	2.9	129.0	9.7	3.3	11
• • •	•				120.5		201	203	129.0	201	3.3	* *
151	F	122.2	123.9	124.2	122.9	123.3	8.0	. 9	123.7	7.7	2.0	10
153	E	130.8	132.3									
157				129.3	132.8	131.3	8.6	1.6	131.6*		1.8	11
	A	121.4	123.4	118.4	122.6	121.5	9.4	2.2	123.0		3.5	11
159	A	126.9	127.2	124.6	123.8	125.7	9.6	1.7	126.0	9.4	1.5	11
161	A	126.7				126.7	9.7		126.5	9.8	2.5	8
163	A	122.7		127.7	126.6	125.7	9.7	2.6	125.1	9.8	2.9	10
165	В	128.9		122.5	123.1	124.8	9.9	3.5	126.2	9.3	2.6	10
166	F	117.6	122.5	118.9	122.8	120.5	6.5	2.6	120.8	6.9	1.7	11
167	F	125.9	125.7	125.9	122.7	125.0	6.1	1.6	122.6	5.6X	2.8	11
168	A	133.2S	142.8X	137.3X	139.8X	138.3X		4.1	136.0X		3.4	11
169	A	125.8	126.4	126.4	125.3	126.0	9.4	.5	126.2	9.3	1.1	8
170	A	135.7	130.7	126.5	128.5	130.4	10.0	4.0	128.7	9.9	3.0	11
171	A	126.2	123,9	122.2	125.5	124.5	8.6	1.8	124.5	8.5	4.0	10
172	A	126.4	127.0	125.5	126.7	126.4	7.8	.6	124.8	7.7	1.8	11
173	A	122.8	122.5	122.0	122.4	122.4	6.1	•3	123.1	6.8	.9	11

LINERBOARD 4284 COLLABORATIVE REFERENCE PROGRAM SEPIEMBER 1977 REPORT NO. 96 BUMSTING STRENGTH (MULLEN), PSI

LAB		MEANS THIS MONTH		В	тн	IS MON	TH	CUMULATIVE				
CODE	V	W K = 1	WK-2	WK-3	W K = 4	MEAN	SDR	SDWKS	MEAN	SDR	SDWKS	WES
174	A	130.5	126.7	125.1	126.3	127.2	9.3	2.3	128.2	9.5	2.0	11
175	A	124.4	126.0	122.9	120.8	123.5	8.3	2.2	123.9	8.6	2.8	11
176	A	128.3	128.0	128.7	125.3	127.6	11.5	1.5	127.3	10.5	2.6	11
177	A	123.5	126.5	121.1	120.6	123.0	7.3	2.7	122.4	8.2	1.8	11
178	A	134.6	130.9	132.0	140.9X	134.6X	11.0	4.5	133.1*	9.9	3.1	11
182	A	127.4	128.8	129.1	129.9	128.8	8.8	1.0	127.3	9.4	1.9	11
184	F	127.6	125.5	122.7	129.2	126.3	8.3	2.8	126.1	8.7	2.5	11
186	E	124.7	125.3	129.0	130.2	127.3	7.9	2.7	123.6	8.4	3.4	11
188	E	124.1	124.1	122.1	126.8	124.3	8.2	1.9	124.0	7.7	1.2	11
198	В	119.7	119.9	118.8	124.0	120.6	6.9	2.3	120.1	7.5	2.8	11
274	A	123.3	123.7	123.2	124.5	123.7	6.2	.6	123.2	6.6	. 8	11
283	A	120.9	120.8	120.1	121.1	120.7	5.7	.4	120.4	5.7X	. 6	11
287	С	131.5	127.1	125.2	127.2	127.8	8.5	2.7	126.0	8.8	3.3	11
327	F	128.6	123.9	130.2	126.1	127.2	9.9	2.8	125.5	9.0	3.2	8
350	F	133.4	133.3	126.6	127.1	130.1	9.1	3.8	127.7	9.7	4.0	11
375	G	130.5	130.9	131.9	127.2	130.1	9.9	2.0	129.3	9.4	2.7	11
568	A	132.9	129.4	128.2	129.1	129.9	5.0	2.0	1_3.9	9.4	2.5	11
569	A	127.8	125.0	124.3	126.6	125.9	8.2	1.6	125.3	7.7	2.6	9
590	A	133.3	133.3	128.9	124.9	130.1	8.4	4.0	129.0	9.6	3.1	11

		WK-1	WK-2	WK-3	WK-4	GRAN THIS MONTH	ND AVERAGES CUMULATIVE 11 WEEKS
AV MI	EAN	126.1	125.8	125.6	125.4	AV MEAN 125.7	125.4
AV SI	DR	8.8	8.7	8.6	8.7	AV SDR 8.7	8.6
SD L	ABS	4.5	3.7	3.8	3.4	SD LABS 3.9	4.0
Nø. II	NCL	70	67	70	70	No.INCL 69.2	70.1
NO. 61	TIK	1	3	1	2	AV SDWKS 2.6	5 2.5
NOT I	RCD	3	4	3	2	SD CUN MEAN	3.0

2.8

1.7 5.6 1.1

3.0

S. OX 4.4

6.4

2.8

147.2 12.4

3

7

 ϵ

170 A 155.6 171 A 152.0 172 A 155.1

173 A 153.A

174 A 169.4X 175 A 154.7

A 147.3

176 A 146.2

177

COLLARGRATIVE REFERENCE PROGRAM REPORT NO. 96

BURSTING STRENGTH (MULLEN), PSI CODE V WK-1 WK-2 THIS MONTH CUMULATIVE
MEAN SDR SDWKS MFAN SDR SDWKS WKS WK-2 WK-3 WK-4 151.1 14.2 100 A 151.1 154.3 12.4 151.1 14.2 154.3 12.4 155.1 10.2 151.9 9.6 150.7 12.8 148.8 13.9 151.2 18.4 150.7 16.3 156.5 9.6 152.8 12.0 1.5 101 F 155.1 103 A 150.7 106 A 151.2 2.3 5.1 107 C 156.5 2.5 156.1 14.2 156.4 12.3 151.7 15.3 159.4 17.8 154.5 12.8 156.3 13.0 158.5 14.0 159.0* 15.1 109 F 156.1 110 D 156.4 111 D 151.7 4.8 4.4 112 A 159.4 113 B 154.5 155.6 17.7 151.4 11.5 8.1X 2.0 153.8 15.4 153.8 15.6 148.3 13.1 163.0 10.3 157.2 14.5 156.1 14.3 154.0 16.3 150.7 13.9 157.2 10.1 155.5 15.2 114 C 153.8 115 B 153.8 5.4 4.4 3.4 116 B 148.3 117 A 163.0 4.7 4.9 155.6 16.9 137.7X 15.1 154.0 14.6 155.8 6.0 148.9 17.2 154.4 13.4 147.5 14.0 152.2 12.7 155.5 8.7 121 123 A 137.7X 8.8X 125 F 154.0 3.1 127 A 155.8 128 F 148.9 . 4 146.2* 14.5 152.7 18.4 152.4 15.9 130 A 152.7 4.6 113.1X 10.6 141.9X 14.2 144.6 11.5 144.8 16.5 146.0+ 14.1 131 B 113.1X 22.1X В 144.7# 12.3 3.8 7 133 141.9X 149.6 9.8 134 F 144.6 3.4 141.3X 12.0 2.9 135 A 144.8 156.7 12.7 150.5 11.9 156.6 14.0 153.2 15.1 158.3 11.9 149.4 10.5 152.7 15.1 154.8 15.4 152.0 14.0 154.1 13.8 136 A 156.7 5.0 137 F 150.5 138 A 156.6 2.3 6 5.1 139 B 153.2 140 F 158.3 4.€ 2.8 145.3 9.5 150.5 12.3 149.4 10.7 154.7 6.2 157.5 18.3 151.9 7.2X 141 F 145.3 5.7 142 C 150.5 154.1 12.1 7 4.2 143 B 149.4 147.2 12.2 ٥.۶ 145 F 154.7 147 A 157.5 156.7 9.1 4.7 6 153.8 13.1 3.7 156.2 11.7 151.9 8.8 163.6 16.7 138.7X 15.2 154.2 15.3 149 F 156.2 153.8 12.9 3.5 154.6 11.2 1.9 156.0 11.1 4.3 148.2 15.8 8.9X 151.1 14.5 5.1 151 F 151.9 6 153 E 163.6 157 A 138.7X 8.9X 7 159 A 154.2 155.1 15.3 153.1 13.3 159.3 9.0 152.0 9.7 154.3 5.9 151.5 13.9 149.6 15.1 151.1 12.2 161 A 155.1 163 A 153.1 165 B 159.3 3.9 6 6.3 6 157.1 10.7 151.3 9.0 166 F 152.0 167 F 154.3 3.4 2.6 168 A 154.9 169 A 157.3 154.9 13.5 157.3 10.4 155.6 12.3 152.0 13.7 155.1 8.4 158.6 15.8 154.2 12.4 153.7 14.6 152.3 14.0 154.5 10.9

153.4 8.2 155.1 10.8 169.4X 15.4 156.4 14.9 154.7 16.5 151.9 14.4 146.2 15.9 155.0 15.9 147.3 11.4 147.2 12.4

LINERBOARD 6913

COLLABORATIVE REFERENCE PROGRAM REPORT NO. 96 BURSTING STRENGTH (MULLEN), PSI

SEPTEMBER 1977

LAB			MEANS TE	IS MONTE		TH	IS MON	TH		CUMULATIVE			
CODE	V	₩ <u>¥</u> = 1	M R = 5	WK-3	₩ K = 4	MEAN	SDR	SDWKS	MEAN	SDR	SDWKS	WKS	
178	A	160.2				160.2	20.3		158.5	16.0	5.1	7	
182	A	152.5				152.5	14.0		150.6	15.3	4.8	7	
184	F	159.9				159.9	17.1		149.9	13.8	6.4	7	
186	E	155.6				155.6	10.8		156.0	11.1	1.0	7	
188	E	151.0				151.0	9.9		152.3	10.2	2.4	7	
198	В	154.3				154.3	13.7		149.9	12.9	2.6	7	
274	A	153.4				153.4	7.1		153.9	8.2	. 8	7	
283	Α	153.5				153.5	8.7		155.8	9.9	1.7	7	
287	C	151.2				151.2	18.1		149.6	15.3	3.1	7	
327	F	154.0				154.0	15.6		153.7	14.0	2.5	3	
350	F	153.3				153.3	18.5		151.9	13.9	4.1	7	
375	G	159.5				159.5	€.7		155.0	12.3	3.8	7	
568	Α	161.4				161.4	11.3		154.1	12.9	4.7	7	
569	Α	151.1				151.1	11.7		146.9	13.0	3.1	5	
590	A	154.5				154.5	13.7		151.7	14.3	E.4	7	

					GRAND AV	ERAGES
	W K - 1	# K = S	WE-3	W K - 4	THIS MONTH	CUMULATIVE 7 WEEKS
AV MEAN	154.0				AV NEAN 154.0	152.8
AV SDR	13.0				AV SDR 13.0	12.9
SD LABS	4.0				SD LABS 4.0	4.7
Nd. INCL	65				NG.INCL 65.0	68.1
NO. SMIT	5				AV SDWKS .0	3.7
					SD CUM MEAN	3.1

COLLABORATIVE REPERENCE PROGRAM REPORT NO. 96 BURSTING STRENGTE (MULLEN), PSI

							,					
LAB			MEANS TH	IS MONTH		TH	IS MON	TH		CUNUL	ATIVE	
CODE	V	WK-1	WK-2	WK-3	WK-4	MEAN	SDR	SDWFS	MEAN	SDR	SDWKS	WKS
100	A		160.0	164.1	156.2	160.1	11.6	3.9	160.1	11.6	3.9	3
101	F		151.2	151.7	151.2	151.4	9.5	.3	151.4	9.5	.3	3
103	A		154.9	149.8	152.3	152.3	14.5	2.6	152.3	14.5	2.6	
106	A		166.0	160.3	146.6	157.7	14.4	10.0	157.7	14.4	10.0X	3
107	С		152.3	148.8	158.6	153.2	16.4	5.0	153.2	16.4	5.0	3
108	D		156.2	153.4	154.5	154.7	15.4	1.4	154.7	15.4	1.4	3
109	F		156.5		156.3	156.4	16.8	. 1	155.4	16.8	. 1	2
110	D			158.6	163.6		12.1	3.2	162.3	12.1	3.2	3
111	D			163.5	161.1	162.9	16.1	1.5	162.9*	16.1	1.5	3
112	A			156.8	155.1	156.4	15.7	1.2	156.4	15.7	1.2	3
113	В		154.0	155.1	154.3	154.5	11.1	.6	154.5	11.1	. 6	3
114	С			153.1	160.3		13.6	4.4	155.2	13.6	4.4	3
115	В			142.1X			17.4	4.7	147.6	17.4	4.7	3
116	В			157.2	155.8	153.9		4.5	153.9		4.5	3
117	A		161.2	159.2	155.0		9.8	3.1	158.5	9.8	3.1	3
• •								- • •				
119	A		162.2	158.9	162.3	161.2	16.2	1.9	161.2	16.2	1.9	3
120	В		158.1	159.1	154.2		18.9	2.6	157.1		2.6	3
121	D			151.7	153.7		9.8		152.1	9.8	1.5	3
123	A			151.0	158.7	152.2		6.0	152.2		6.0	3
125	F		153.7	152.3	153.4		11.6		153.1		.7	3
123			155.7	152.5	100.4	100.1	11.0	• 1	100.1	11.0	• '	
127	A		155.6	156.0	154.6	155.4	12.2	.7	155.4	12.2	. 7	3
128	F		149.2		151.5	148.8			148.8		2.9	2
129	A		159.9		151.6S	154.5		4.6	154.5		4.6	3
130	A		155.4	158.7	152.0	155.4		3.4	155.4		3.4	3
131	В		114.1X		152.6	138.4X			138.4X		21.2X	
101	.,		114.17	140.5	102.0	100.41	13.0	4 * * *	100.4%	10.0	~** LA	
133	В		150.8	147.5	149.8	149.4	13.8	1.7	149.4	13.8	1.7	3
134	F			149.6	150.9		8.7	.7	150.1	8.7	.7	3
135	è		146.4	152.3	159.8	152.9				13.5	6.7	3
136	A		159.3	152.5	139.0			0.7	159.3		0.7	1
137	F			148.5	150.6		15.8	1 1	149.6	12.0	1 1	3
137	r		149.0	140.5	150.6	149.0	12.0	1.1	149.0	12.0	1.1	3
138	A		151.9	167.5X	149.0	156.2	12 C	10.0	156.2	12.0	10.0X	3
139	В		156.2	155.6	149.7	153.9		3.6	153.9		3.6	3
140	F			155.6	158.3	160.8			160.8		6.7	3
141	F		145.1	144.95		146.6	7.6	2.7	146.6*			3
142	C		154.6	160.3	159.8				158.2		2.7	3
142	-		104.0	100.3	159.0	158.2	15.0	3.2	150.2	15.0	3.2	3
143	В			152.0	151.3	151.6	12 5	.5	151.6	12 5	.5	2
145	F		147.4	156.1	154.3	152.6			152.5	9.2	4.6	3
147	A		151.1	162.1	154.8	156.0		4.6 5.6				3
149	F			160.8	154.5	158.0			155.0	15.1	5.6	
151								3.2	158.0		7.2	3
151	F		153.1	154.0	150.9	152.7	9.5	1.6	152.7	9.9	1.6	3
153	Ē		165.0	158.1	157.1	160.1	12.8	4.3	160.1	12 8	4.3	3
157	A		141.8	148.6	151.7	147.4			147.4*		5.0	
159	Ā		150.0	157.5	143.0X	150.2			150.2			3
163	A		130.0	149.9	148.3				149.1		7.3	3 2
165	В			155.8	149.6	152.7	13.8	1.2			1.2	2
103	ь			133.0	149.0	152.7	10.0	4.4	152.7	10.0	4.4	2
166	F		160.3	153.7	156.1	156.7	9.4	3.3	156.7	9.4	3.3	3
167	F		155.0	149.0	151.0	151.7	8.4	3.1	151.7	8.4	3.1	3
168	A		168.2	160.4	175.9X	168.2%		7.8	168.2X		7.8X	
169	A		155.6	153.7	157.8	155.7	10.9	2.1	155.7	10.9	2.1	3
170	A		164.5	159.9	160.0	161.5	14.4	2.6	161.5	14.4	2.6	3
						.01.3		2.0	101.5	1 - 0 -	2.0	3
171	A		157.7	157.3	159.7	158.2	16.3	1.3	158.2	16.3	1.3	3
172	A		156.9	154.8	159.3	157.0	12.8	2.2	157.0	12.8	2.2	3
173	A		150.5	148.7	152.5	150.6	9.3	1.9	150.6	9.3	1.9	3
174	A		168.9	167.3X	167.9X	168.0X		.8	168.0X		. 8	3
175	A		147.0	152.9	146.0	148.6	12.9	3.7	148.6	12.9	3.7	3
			-	-	-		-				-	

LINERBOARD 6914

COLLABORATIVE REFERENCE PROGRAM REPORT NO. 96 BURSTING STRENGTH (MULLEN), PSI

SEPTEMBER 1977

LAB			NEANS TH	IS MONT	9	TH	IS MON	тн		CUMUL	ATIVE	
CUDE	V	W E - 1	MK-5	WF-3	WK-4	MEAN	9DR	SDWES	MEAN	SDR	SDWKS	WKS
176	A		151.98	156.3	162.3	156.9	18.7	5.2	156.9	18.7	5.2	3
177	A		160.2	148.2	148.9	152.5	10.0	6.7	152.5	10.0	6.7	3
178	A		151.4	152.8	168.6X	157.6	14.6	9.6	157.6	14.6	9.6X	?
182	A		150.5	159.6	158.2	156.1	13.0	4.9	156.1	13.0	4.9	3
184	F		154.2	158.3	149.9	154.1	14.5	4.2	154.1	14.5	4.2	3
186	E		155.8	158.5	165.0X	159.8	11.5	4.7	159.8	11.5	4.7	3
188	Е		154.8	152.0	151.9	152.9	8.8	1.6	152.9	8.8	1.6	3
198	В		155.3	158.0	157.7	157.0	14.3	1.5	157.0	14.3	1.5	3
274	A		154.1	153.1	153.3	153.5	8.4	. 5	153.5	8.4	. 5	3
283	A		156.4	155.3	156.3	156.0	8.6	.6	15€.0	8.6	. 6	3
287	С		156.2	155.0	151.7	154.3	13.8	2.4	154.3	13.8	2.4	3
327	F		159.5	154.9	156.6	157.0	12.4	2.3	157.0	12.4	2.3	3
350	F		155.4	147.4	155.8	152.9	16.1	4.7	152.9	16.1	4.7	3
375	G		157.9	160.6	153.8	157.4	13.5	3.4	157.4	13.5	3.4	3
568	A		161.5	156.3	157.9	158.6	13.6	2.7	158.6	13.6	2.7	3
569	A		153.0	151.2	153.2	152.5	13.8	1.1	152.5	13.8	1.1	3
590	A		163.5	158.3	155.2	159.0	17.1	4.2	159.0	17.1	4.2	3

	W K = 1	WK-2	WE-3	₩K-4	GRAND THIS MONTH	AVERAGES CUMULATIVE 3 WEEKS
AV MEAN		155.6	154.7	154.4	AV NEAN 154.5	154.9
AV SDR		13.4	13.3	12.6	AV SDR 13.1	13.1
SD LABS		5.9	4.5	4.0	SD LARS 4.8	4.8
NO. INCL		68	67	66	Nd.INCL 67.0	67.0
NO. GHIT		1	3	5	AV SDWKS 3.6	3.0
NOT RCD		7	2	1	SD CUM MEAN	3.8

COKRUG.MEDIUM 2:0C2 COLLABORATIVE REFERENCE PROGRAM REPORT NO. 96 REPORT NO. 96 FLAT CRUSH STRENGTH (CONCORA), LB

LAB		MEANS THI		44.0		S Men			CUMULA		DUT O
CGDE A	W K - 1	₩ K = 2	MK-3	₩ K = 4	MEAN	SDR	SDWKS	MEAN	SDR	SDWKS	WKS
100	64 7		60.0	61.4	40.8	2 7	. 7	62.5	2.8	. 8	15
100	64.7	6 6 A	62.2		62.8	2.7	1.7	66.6X		2.4	8
105		66.4	68.0X	69.0X 67.8	67.2X 66.0	3.1 4.3	1.4	65.2	3.7	1.5	16
106	64.4	66.0	65.7S					63.9		1.4	16
110	66.5	62.8	63.7	65.0	64.5	2.3	1.6		1.8		
113	64.2	64.4	63.5	62.4	63.6	2.9	• 9	63.0	2.8	1.0	16
114	61.2	62.3	63.2	63.0	62.4	2.5	.9	61.2	2.8	1.6	14
115	57.4X	62.5	62.2	62.1	61.2	3.3	2.5	60.5*		2.3	15
			60.5	61.6	60.5	2.0	1.4	61.3	2.3	1.5	16
116	58.5X	61.5				2.9	1.1	63.0	3.2	.9	13
119	60 6	63.0	63.8	61.7	62.8			63.6	3.2	2.5	16
120	62.6	€4.3	€6.2	58.7	63.0	3.2	3.2	03.0	3.2	2.0	10
125	68.3X	67.2	66.3	66.7	67.1X	2.7	.9	67.9X	3.1	1.5	16
128	62.4	62.5	62.1	63.1	62.5	2.6	. 4	62.0	2.8	. 9	16
138	62.3	61.9	63.3	64.1	62.9	3.5	1.0	63.7	3.3	1.4	16
140	64.3	62.6	62.7	64.3	63.5	3.1	1.0	62.8	3.0	1.1	16
143	61.0	60.9	02.1	62.1	61.4	2.5	.6	62.1	2.6	.7	15
143	01.0	00.9		02.1	01.4	2.5	• •	02.1	2.0	• •	
164	63.0	62.9	62.4	62.9	62.8	2.5	.З	63.0	2.5	.6	15
167	66.1	67.4	64.2	63.3	65.3	2.9	1.8	64.5		1.4	16
177	63.3	62.0	62.5	62.5	62.6	2.6	•6	63.1	2.5	1.0	16
182	64.2	67.3	65.3	64.6	65.4	3.1	1.4	65.0	3.3	.9	11
188	€2.0	63.8	61.0	60.7	61.9	2.1	1.4	62.8	2.1	1.2	16
100	C 2.0	03.0	01.0	00.7	0,		* * *	02.0		- • •	• `
198	61.8	61.6	€2.0	60.7	61.5	3.4	.6	62.9	3,5	1.6	14
237	63.0	62.1	62.8	62.3	62.6	2.8	. 4	62.4	2.9	1.0	16
250	64.8	61.1	63.4	61.5	62.7	2.3	1.7	62.1	2.0	1.6	11
269	61.5	61.1	61.7	61.3	61.4	2.2	.3	61.1	2.2	. 8	16
274	63.3	63.2	63.2	63.6	63.3	2.2		63.2	2.3	.4	16
283	63.9	63.5	63.0	63.7	63.5	2.3	. 4	63.6	2.1	. 5	16
284	65.4	65.8	65.8	66.7	65.9	3.4	•5	66.0	3.6	1.2	16
287	62.6	63.6	65.4	66.1	64.4	3.1	1.6	64.8	3.3	1.4	16
292	60.3	61.9	61.3	65.2	62.2	3.1	2.1	62.0	2.7	1.7	16
327	60.7	63.4	62.0	62.4	62.1	3.1	1.1	61.7	2.9	1.2	12
350	67.8X			68.0	67.9X		. 1	67.7X		1.9	14
351	60.2	62.2	60.7	60.8	61.0	1.9	.8	61.2	1.8	1.3	16
353	61.2	64.2	64.9	66.1	64.1	3.0	2.1	62.9	3.0	1.6	16
355	64.2	61.3	61.6	61.2	62.1	2.3	1.4	61.0	2.4	1.1	16
357	63.3	63.9	63.6	63.0	63.5	1.9	. 4	62.8	2.2	1.3	12
7/4				(7.0				(7.0			
361	65.1	64.8	65.3	63.9	64.8	2.8	.6	63.9	2.5	.9	15
363	61.9	62.2	64.6	59.5	62.1	3.1	2.1	62.5	3.0	2.0	16
365	61.3	60.3	59.8	60.2	60.4	2.3	• 7	60.9	2.6	. 9	16
367	64.8	65.0	65.0	64.8	64.9	3.5	•1	65.4	3.3	1.4	15
369	62.4	61.9	61.8	62.9	62.2	2.6	.5	62.9	2.8	.7	16
377		64.3	63.8	65.2	64.5	3.8	.7	63.6	3.1	. 9	14
379	62.6	63.3	62.9	63.8	63.2	2.5	.5	63.2	2.9	1.0	15
361	57.4X		62.4	59.8			2.4				16
383					60.5	2.5		62.8	2.7	2.4	
	64.3	63.9 58.0%	63.0	64.0	63.8	3.1	.5	63.3	3.2	1.1	16
385	59.8	30.0%	65.7	60.9	61.1	3.1	3.3	61.4	3.1	2.6₹	16
387	62.4	64.5	61.5	€3.2	62.9	3.1	1.3	63.4	3.1	1.3	16
391	64.6	63.6	64.4	63.8	64.1	2.4	.5	64.2	2.4	.7	13
393	62.6	63.7	63.7	63.2	63.3	1.9	•5	64.0	2.5	.9	16
395	65.1	63.8	64.4	67.0	65.1	3.0	1.4	64.6	3.1	ç	16
397	61.9	61.8	60.0	63.2	61.7	2.8	1.3	62.5	2.7	2.0	15
						0				0	
399	63.4	59.3	60.8	62.0	61.4	2.6	1.7	61.3	2.5	2.0	16
568	62.7	62.0	63.2	62.5	62.6	3.8	.5	61.1	3.2	2.0	16
572		63.9	63.3	67.7	65.0	3.4	2.4	65.4	3.5	2.1	15
578	62.0	64.5	64.0	64.0	63.6	2.6	1.1	62.4	2.7	4 . OX	16
579	64.3	64.0			64.2	1.6	.2	64.0	2.2	.7	14

	WK = 1	WK-2	WK-3	WK - 4	GRAND AVERAGES THIS MENTH CUMULATIVE 16 WEEKS	5
AV MEAN	63.1	63.3	63.2	63.3	AV MEAN 63.2 63.2	
AV SDR	2.8	2.7	2.9	2.8	AV SDR 2.8 2.8	
SD LABS	1.6	1.7	1.6	2.2	SD LABS 1.8 1.8	
NO. INCL	47	52	51	53	NG.INCL 50.7 51.2	
NO. GMIT	5	1	1	1	AV SDWKS 1.1 1.3	
NOT RCD	3	2	3	1	SD CUM MEAN 1.3	
SD SHTS	1.7	1.8	1.9	1.9		

NB3-114A (REV. 7.73)				
BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. FKBG CRP 96	2. Gov't Accession No.	3. Recipient	's Accession No.
4. TITLE AND SUBTITLE			5. Publicatio	on Date
CONTAINER	November 4, 1977			
Collaborat	6. Performing Organization Code			
7. AUTHOR(S)	8. Performing Organ, Report No. NBSIR 77-1320			
9. PERFORMING ORGANIZAT	10. Project/Task/Work Unit No. 4015578			
NATIONAL E DEPARTMEN WASHINGTON	11. Contract/Grant No.			
12. Sponsoring Organization Nam	13. Type of F	Report & Period		
Collaborative Testi Great Falls, Virgin	Final			
Fourdrinier Kra	14. Sponsoring Agency Code			
15. SUPPLEMENTARY NOTES				
with that of other progrmas is the pro This is one of the within and between and standards commi		An important has of the state of erages for each other informat:	by-product of the test participar ion for par	of the ting art. nt, rticipants
name; separated by semicolo	·			
	ence program; Containerboar Testing calibration.	d; Laboratory ev	aluation;	Precision;
18. AVAILABILITY	Unlimited	19. SECURIT (THIS RE		21. NO. OF PAGES
X For Official Distribution	SIFIED	19		
Order From Sup. of Doc Washington, D.C. 20402	TY CLASS AGE)	22. Price		
Order From National Te Springfield, Virginia 22	UNCLAS	SIFIED		

