NBSIR 77-1303

A Simplified Procedure for Calculating the Direct Components of Contrast Rendition Factor and Equivalent Sphere Illumination

Joseph B. Murdoch (IPA)

Center for Building Technology
Institute for Applied Technology
National Bureau of Standards
Washington, D.C. 20234

November 1977

Prepared for
Division of Buildings and Community Systems
Energy Research and Development Administration
Washington, D.C. 20545
*

NBSIR 77-1303 - A Simplified Procedure for Calculating the Direct Components of Contrast Rendition Factor and Equivalent Sphere Illumination by Joseph B. Murdoch

ERRATUM SHEET

The following legends for the figures are reversed and should be interchanged:

$$
\begin{aligned}
& \text { Figures } 3 \text { and } 4 \\
& \text { Figures } 5 \text { and } 6 \\
& \text { Figures } 7 \text { and } 8 \\
& \text { Figures } 9 \text { and } 10 \\
& \text { Figures } 11 \text { and } 12
\end{aligned}
$$

A SIMPLIFIED PROCEDURE FOR
 CALCULATING THE DIRECT COMPONENTS OF CONTRAST RENDITION FACTOR AND EQUIVALENT SPHERE ILLUMINATION

Joseph B. Murdoch (IPA)

Center for Building Technology

 Institute for Applied Technology National Bureau of Standards Washington, D.C. 20234November 1977

Prepared for
Division of Buildings and Community Systems Energy Research and Development Administration Washington, D.C. 20545
U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

Dr. Sidney Harman, Under Secretary
Jordan J. Baruch, Assistant Secretary for Science and Technology
NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director
Contents
Page
I. Introduction 1
II. CRF and ESI -- Theory and Equations 3
III. Four Precalculation Matters
A. Body Shadow 8
B. Intensity Distribution Curve Interpolations 9
C. Approximating Equations for Bidirectional Luminance Factor 12
D. Inverse Square Law Approximations 15
IV. Calculation Procedure 18
V. Calculator Program and User Instruction 30
VI. Three Design Examples
A. Point Luminaire 43
B. Strip Luminaire 47
C. Square Luminaire 47
References 58

Abstract

A procedure is presented which enables the user to compute the direct components of contrast rendition factor (CRF) and equivalent sphere illumination (ESI) for an interior lighting design with the aid of a card-programmable hand calculator. The underlying theory and equations of CRF and ESI are discussed, including a consideration of body shadow, intensity distribution curve interpolations, bidirectional luminance factor approximating equations and Inverse Square approximations.

The procedure is designed so that the user is a participant in the computations as they progress and thus is able to modify a lighting design in "midstream" to improve CRF or ESI. A set of user instructions is included with the calculator programs.

Key Words: Body shadow; contrast rendition; hand calculator; Illuminating Engineering; light design; luminaire effectiveness; luminance factor; office lighting; sphere illumination

Joseph B. Murdoch

I. Introduction

The subjects of contrast rendition factor (CRF) and equivalent sphere illumination (ESI) have received considerable attention in the lighting literature in recent years. ${ }^{1-6}$ More specifically, there has been great interest in developing methods of predicting CRF and ESI prior to the installation of a lighting system, rather than simply trying to measure these quantities after the installation is completed.

Perhaps the best known of the prediction methods is the Lumen 2 procedure developed by D. DiLaura (4). This technique relies on an extensive computer program which discretizes luminaires into source elements, formulates the luminances and illuminances produced by these elements at a task location through the Inverse Square Law, and uses a double Fourier series approximation to replace the discrete functions by continuous ones for calculation purposes. Utilization of the technique requires obtaining the Lumen 2 program and access to a computer or the services of a central computer facility.

The procedure described herein enables the user to compute the direct components of CRF and ESI quickly and simply with the aid of an inexpensive card-programmable hand calculator. Because the user is a participant in the computations as they progress, he is able to determine easily which luminaires are having the greatest effect, either positively or negatively, on CRF and ESI, and thus he is able to try different luminaire locations and orientations in "midstream". Also, again because he and the calculator are
working together, he is able to understand the evaluation procedure and calculations being made -- he is more truly a "designer". And lastly, because the procedure is a simple step-by-step one, a great deal of the mystique that has unfortunately surrounded CRF and ESI in recent years is swept away.

In Section II of this report, the theoretical considerations underlying CRF and ESI are reviewed and the equations necessary for calculating each quantity are presented. In Section III four topics relating to the CRF and ESI calculations are discussed. These are body shadow, intensity distribution curve interpolations, approximating equations for bidirectional luminance factors, and Inverse Square Law approximations. In Section IV, the programmable hand calculator procedure is presented in detail, followed by the calculator programs and user instructions in Section V. The report concludes with three sample designs in Section VI.

Only the direct components of CRF and ESI are considered in this report. Development of an extension to the procedure for computing the reflected components of CRF and ESI will be the subject of future work, as well as an extension to permit the inclusion of daylighting. Also a critical comparison of the author's procedure, Lumen 2, and other procedures for calculating CRF and ESI needs to be made, and this will be dealt with in the future. Lastly, and perhaps most important of all, the issue of whether CRF, ESI or some other metric or combination of metrics, is the best measure of one's ability to perform visual work needs to be explored. It is anticipated that the procedure developed herein, the extension of the procedure to include reflected components, and the
comparison with other predictive procedures will assist in answering this question.
II. CRF and ESI -- Theory and Equations

The geometry which will be used in this section and throughout the report is shown in Figure 1. The task is located at the origin of an x, y coordinate system such that the +y direction is always the direction of viewing. A typical source element is shown, whose center is at x_{e}, y_{e}. It is also useful to describe its location in terms of the azimuth angle ϕ and the polar angle $\theta . \phi$ is 0° in the direction of viewing and positive ϕ is measured clockwise from that direction. Thus ϕ can range from 0° to $\pm 180^{\circ}$. θ is 0° when the source element center is directly over the task and its range is from 0° to $+90^{\circ}$.

Contrast rendition factor (CRF) is defined as the contrast produced by the actual lighting system divided by the contrast produced by the standard reference lighting system -- an illuminated sphere providing equal luminous intensity from all directions. Thus CRF is clearly a measure of the effects caused by the geometric distribution of the light flux from the actual lighting system.

CRF is always defined for a specific task. The only task for which published complete reflectance data as a function of both ϕ and θ are available is the concentric ring pencil task (5). Hence the procedure developed in this report is currently limited to this task, although there is nothing inherent in either procedure that precludes other tasks once the appropriate reflectance data become available.

To obtain CRF, one must first obtain contrast, or, more correctly, luminance contrast ${ }^{1}$, defined as the difference between the luminance of the object (task detail) and its immediate background divided by the
background luminance. Generally the magnitude of this quantity is taken, so that contrast is positive. In equation form

$$
\begin{equation*}
C=\left|\frac{L_{b}-L_{t}}{L_{b}}\right| \tag{1}
\end{equation*}
$$

where " b " denotes background and "t" task. Then

$$
\begin{equation*}
\mathrm{CRF}=\frac{\mathrm{C} \text { actual }}{\mathrm{C} \text { sphere }} \tag{2}
\end{equation*}
$$

C sphere has been calculated as .1675 for the concentric ring pencil task when viewed at 25° from the vertical, the standard viewing angle ${ }^{5}$. Thus, the problem of predicting CRF reduces to the problem of predicting values of L_{t} and L_{b} under the proposed lighting system for the pencil task.

Luminances are obtained as products of illuminances and reflectances. As mentioned previously, reflectance data for the pencil task are available. ${ }^{5}$ These data are in the form of tables of bidirectional luminance factors (B) for both the pencil task and its background. Luminance factor is defined as the luminance of a surface at a certain viewing angle and illuminance divided by the luminance of a perfectly reflecting and diffusing surface under the same conditions of viewing and illuminance. Bidirectional simply means that a given B factor is for a particular pair of azimuth and polar angles. We can write

$$
\begin{equation*}
B=\frac{L_{a}}{L_{r d}}=\frac{L_{a}}{E} \tag{3}
\end{equation*}
$$

where "a" refers to the actual surface and "rd" to the perfectly reflecting and diffusing surface. The second form of Equation 3 arises because the luminance in footlamberts of a perfectly reflecting and diffusing surface is identical to the illuminance in footcandles on that surface.

To obtain measured values of luminance factors as functions of source and viewer locations (with respect to a task location), it is necessary to place a collimated source of light at location \emptyset, θ with respect to the task and place a receiver (photometer) at the chosen 25° task polar viewing angle and at $\emptyset=180^{\circ}$. Then Equation 3 can be rewritten in the forms:

$$
\begin{align*}
& \mathrm{B}_{\mathrm{ti}}(\phi, \theta)=\frac{\mathrm{L}_{\mathrm{ti}}(\phi, \theta)}{\mathrm{E}_{\mathrm{i}}} \tag{4}\\
& \mathrm{~B}_{\mathrm{bi}}(\phi, \theta)=\frac{\mathrm{L}_{\mathrm{bi}}(\phi, \theta)}{\mathrm{E}_{\mathrm{i}}} \tag{5}
\end{align*}
$$

If we know B_{ti} and B_{bi} (which, as mentioned earlier, we do), then we can calculate $L_{t i}$ and $L_{b i}$ if we know E_{i}. Thus, the problem of calculating CRF has now been further reduced to the problem of calculating E_{i}, the horizontal illuminance at the task location produced by the ith source element. (If we were including the reflected component as well, we would also need the illuminance at the task from the jth reflective surface element).

To obtain the horizontal illuminance produced by each source element, we use the Inverse Square Law:

$$
\begin{equation*}
E_{i}=\frac{I_{i}(\phi, \theta) \cos \theta_{i}}{d_{i}^{2}} \tag{6}
\end{equation*}
$$

where I_{i} is the intensity of the ith source element in the direction of the task, θ_{i} is its angle of incidence (angle with the vertical) at the task and d_{i} is the distance from the center of the ith element to the task. Recognizing that $h=d_{i} \cos \theta_{i}$, a more convenient form of Equation (6) is

$$
\begin{equation*}
E_{i}=\frac{I_{i}(\phi, \theta) \cos ^{3} \theta_{i}}{h^{2}} \tag{7}
\end{equation*}
$$

where h is the mounting height of the luminaire above the task.
To use Equation (7), we must first separate each luminaire into elements, such that the largest dimension of each element is small compared with the distance from the element to the task. This is necessary because the Inverse Square Law holds exactly only for point sources and thus we must choose small enough source elements so that each can be treated as a point source.

Having done this, we compute E_{i} for each source element, using Equation (7). With the known values of $B_{t i}$ and $B_{b i}$, we use Equations (4) and (5) to compute L_{ti} and L_{bi}, again for each source element. Next we sum to obtain $L_{t}=\Sigma L_{t i}$ and $L_{b}=\Sigma L_{b i}$ and use Equation (1) to obtain C. Then Equation (2) yields the direct component of CRF, since C sphere is known for the pencil task. If we desire the total direct illuminance on the task (the "raw" lux or footcandles), we sum the values of E_{i} from Equation (7).

We turn now to the calculation of Equivalent Sphere Illumination (ESI), defined as the illuminance from a uniform intensity sphere which would produce a task visibility equivalent to that produced by the actual lighting system.

With CRF in hand, it is not difficult to compute ESI. First, it is necessary to determine relative contrast sensitivity (RCS). 1, 2

RCS is the normalized inverse of the VLl (threshold) Visibility Reference Function and is obtained from the latter by writing

$$
\begin{equation*}
\operatorname{RCS}=\frac{5.74}{C_{1}} \tag{8}
\end{equation*}
$$

where C_{1} is task contrast at threshold. For each value of background luminance, a value of C_{1} may be obtained from the VLI curve. This has
been done, and values of RCS as a function of background luminance are presented in tabular form in Figure 3-32 of (1) and Table 1 of (2). From these tabular values, an empirical equation for RCS has been developed ${ }^{4}$:

$$
\begin{equation*}
\text { RCS }=\left[\frac{2.195721}{1+\frac{1}{2.25\left(L_{\mathrm{b}}\right)^{.2}}}\right] \tag{9}
\end{equation*}
$$

Equation (9) is accurate within one percent for background luminance values between 10 and 1600 footlamberts (35 and 5500 candelas per square meter) .

With RCS and CRF known, the next step is to obtain effective contrast sensitivity, defined by

$$
\begin{equation*}
\operatorname{RCS}_{e}=\operatorname{CRF} \times \operatorname{RCS} \tag{10}
\end{equation*}
$$

RCS_{e} is the relative contrast sensitivity the task would have under sphere lighting. Corresponding to RCS $e_{\text {is }}$ an effective background luminance $L_{b e}$ in the sphere, which may be obtained by reentering Figure 3-32 of (1) or Table 1 of (2) with the known value of RCS $e^{\text {• }}$ Or $L_{b e}$ may be calculated, within the same range of background luminances as before, from the inverse of Equation (9).

$$
\begin{equation*}
L_{b e}=\left[\frac{1}{2.25 \frac{2.195721}{\log \operatorname{RCS}_{e}}-1}\right]^{5} \tag{11}
\end{equation*}
$$

The illumination in the sphere corresponding to $L_{b e}$ is found by dividing $L_{b e}$ by the overall luminance factor B for the 25° viewing angle. The latter is obtained from Equation (3), with $L_{a}=\Sigma L_{b i}$ and $E=\Sigma E_{i}$. Then

$$
\begin{equation*}
\mathrm{E}_{\mathrm{e}}=\frac{\mathrm{L}_{\mathrm{be}}}{\mathrm{~B}_{\mathrm{b}}} \tag{12}
\end{equation*}
$$

E_{e} is, by definition, equivalent sphere illumination (ESI). It is the illuminance under sphere lighting which produces the same task visibility as is provided by the illuminance E from the actual lighting system.

The ratio of the two illuminances, sphere and actual, is defined as the lighting effectiveness factor (LEF). It is simply a measure of how closely the actual lighting system approximates sphere lighting. In equation form

$$
\begin{equation*}
\text { LEF }=\frac{E_{e}}{E} \tag{13}
\end{equation*}
$$

III. Four Precalculation Matters

Although a general procedure for calculating the direct components of CRF and ESI has now been described, there are four matters which need to be addressed before actual calculations can begin.
A. Body Shadow

The effect of the viewer's head and body is to shield certain source elements from the task. Body shadow has been investigated at length in the literature. ${ }^{3,7}$ An "average" head size, upper body size, head tilt and head and body location with respect to the task have been postulated for the 25° viewing angle. These "average" conditions may be summarized in terms of \emptyset and θ by noting that a source element will be shielded from the task by the viewer if

$$
\begin{align*}
& 145^{\circ}<|\phi|<165^{\circ} \text { and } \theta>52^{\circ} \tag{14}\\
& \text { or } 165^{\circ}<|\phi|<180^{\circ} \text { and } \theta>18^{\circ}
\end{align*}
$$

Any source element whose center lies in the shadow defined by these angles is neglected in the calculations of luminance and illuminance. A diagram of body shadow projection onto the luminaire plane for three values of h is shown in Figure 2.

One final point should be made about body shadow. The viewer is assumed to be "zero reflective", so that no luminous flux reaches the task after reflecting from the viewer's head and body. This assumption is certainly questionable, especially for viewers wearing lightcolored clothing.
B. Intensity Distribution Curve Interpolations

Luminaire manufacturers generally present intensity distribution data in 5° or 10° increments in polar angle θ for three values of luminaire azimuth angle ψ^{*}-parallel $\left(0^{\circ}\right)$ perpendicular $\left(90^{\circ}\right)$ and at 45° to the luminaire axis. It is thus necessary to develop interpolation procedures for obtaining intensity values at other θ and ψ angles.

First degree polynomial interpolations, while easy to perform, are quite inaccurate. Second and third degree polynomial interpolations, on the other hand, have been widely used with good results. In this report we will use a second degree polynomial for ψ interpolations (since only three values of intensity are available for each θ) and a third degree polynomial for those in θ. For the ψ interpolation, we have

[^0]\[

$$
\begin{equation*}
I_{(\theta)}=a_{0}+a_{1} \psi+a_{2} \psi^{2} \tag{15}
\end{equation*}
$$

\]

where

$$
\begin{align*}
& a_{0}=I_{o} \\
& a_{1}=\frac{-3 I_{0}+4 I_{45}-I_{90}}{90} \\
& a_{2}=\frac{I_{o}-2 I_{45}+I_{90}}{4050} \tag{16}
\end{align*}
$$

For each value of θ, this interpolation passes a parabola through the intensity values at $\Psi=0^{\circ}, 45^{\circ}$ and 90°, resulting in three coefficients which are then used to calculate $I(\theta)$ for the given value of Ψ. This interpolation is done prior to the θ interpolation, and must be repeated four times for each intensity determination, yielding intensity values labeled I_{1}, I_{2}, I_{3} and I_{4} at four consecutive θ angles, each $\Delta \theta$ apart with two on each side of the given θ value. The procedure is illustrated in Table 1 where it is desired to obtain the intensity at $\Psi=56.9^{\circ}$ and $\theta=43.9^{\circ}$. Here $\Delta \theta=5^{\circ}$ and it is necessary to perform the Ψ interpolation at $\theta=35^{\circ}, 40^{\circ}, 45^{\circ}$ and 50°. The resulting intensity values are $I_{1}=947 \mathrm{~cd}, \mathrm{I}_{2}=857 \mathrm{~cd}, \mathrm{I}_{3}=699 \mathrm{~cd}$ and $I_{4}=505 \mathrm{~cd}$.

For the θ interpolation we have two cases, namely $\Delta \theta=5^{\circ}$ and $\Delta \theta=10^{\circ}$. The pertinent equations are: for $\Delta \theta=5^{\circ}$

$$
\begin{equation*}
I(\psi, \theta)=A_{0}+A_{1} \theta^{\prime}+A_{2} \theta^{\prime 2}+A_{3} \theta^{\prime 3} \tag{17}
\end{equation*}
$$

Table 1: Illustrating Double Interpolation to Obtain $I(\psi, \theta)$

θ	$\mathrm{I}_{0}{ }^{\circ}$	$\mathrm{I}_{45}{ }^{\circ}$	$\mathrm{I}_{56.9^{\circ}}$	$\mathrm{I}_{90^{\circ}}$
35°	290	860	$\left(\mathrm{I}_{1}\right) 947$	1050
40°	260	780	$\left(\mathrm{I}_{2}\right) 857$	940
43.9°			$(\mathrm{I}) 738$	
45°	220	650	$\left(\mathrm{I}_{3}\right) 699$	690
50°	180	490	$\left(\mathrm{I}_{4}\right) 505$	400

First Interpolation: $\psi=56.9^{\circ}$

θ	a_{0}	a_{1}	a_{2}	
35°	290	16.89	-.09383	$I_{1}=947$
40°	260	15.56	-.08889	$I_{2}=857$
45°	220	13.89	-.09630	$I_{3}=699$
50°	180	11.33	-.09877	$I_{4}=505$

Second Interpolation: $\theta=43.9^{\circ}, \theta^{\prime}=8.9^{\circ}$

θ	A_{0}	A_{1}	A_{2}	A_{3}	I
43.9°	947	-9.067	-2.000	.0427	738

$$
\begin{align*}
& A_{0}=I_{1} \\
& A_{1}=\frac{-11 I_{1}+18 I_{2}-9 I_{3}+2 I_{4}}{30} \tag{18}\\
& A_{2}=\frac{2 I_{1}-5 I_{2}+4 I_{3}-I_{4}}{50} \\
& A_{3}=\frac{-I_{1}+3 I_{2}-3 I_{3}+I_{4}}{750}
\end{align*}
$$

and for $\Delta \theta=10^{\circ}$
where

$$
\begin{align*}
& I(\psi, \theta)=A_{o}^{\prime}+A_{1}^{\prime} \theta^{\prime}+A_{2}^{\prime} \theta^{\prime 2}+A_{3}^{\prime} \theta^{\prime} \tag{19}\\
& A_{o}^{\prime}=A_{o}, A_{1}^{\prime}=1 / 2 A_{1} \\
& A_{2}^{\prime}=1 / 4 A_{2}, A_{3}^{\prime}=1 / 8 A_{3} \tag{20}
\end{align*}
$$

The use of θ^{\prime} requires explanation. To avoid large numbers in the calculation of $I(\Psi, \theta)$, it is necessary to shift the $\theta=0^{\circ}$ axis to the value of θ at I_{1}. Thus in the example, $\theta^{\prime}=0$ at $\theta=35^{\circ}$. This yields values of θ^{\prime} between 5° and 10° for $\Delta \theta=5^{\circ}$ and between 10° and 20° for $\Delta \theta=10^{\circ}$ in Equations 17 and 19, respectively. Referring again to Table 1, for $\theta=43.9^{\circ}, \theta^{\prime}=8.9^{\circ}(43.9-35)$.
C. Approximating Equations for Bidirectional Luminance Factors

There is a confusion in the literature over what the visual task actually is in the definition of contrast. The Illuminating Engineering Society Handbook (1) uses the word "object" and defines luminance contrast in terms of object and background luminances. RQQ5 (3), on the other hand, chooses to use flux contrast, and defines this quantity in terms of "target" and background luminances. One might logically assume that the words "object" and "target" mean the same thing, and thus conclude that luminance contrast and flux contrast are identical. Such is not the case however, for by "target", RQQ5 states that it means the task detail and its very immediate background.

The bidirectional luminance factors for the concentric ring pencil task ${ }^{5}$ are based on flux contrast, rather than luminance contrast. Specifically the authors (5) state " . . . task detail consisting of concentric pencil rings and paper spaces . . . ". The same general statement appears in RQQ5.

It is not our purpose here to debate the merits of the two definitions of contrast, although they should be debated. Rather it is our purpose to inform the reader that the only bidirectional luminance factors available are for the pencil task under the conditions stated, that these are being used by others in calculating CRF and ESI, and that they will be used in the computational procedure presented in this report.

Values of B_{t} and B_{b}, including polarization effects, are available in the literature in tabular form ${ }^{3,5}$. The perpendicular and parallel polarized values have been averaged and plotted for the 25° viewing angle and are shown in Figures 3 and 4.

In order to permit calculations of CRF on a programmable hand calculator, it was necessary to develop approximating equations for B_{t} and B_{b}.* Several mathematical models were tried and evaluated for a least squares fit to the data. Ultimately a third degree polynomial in $\ln \theta$, including a ϕ variation proportional to $\sqrt{\phi}$, was chosen.

$$
\begin{align*}
\mathrm{B}=\mathrm{k} & +\left(\mathrm{a}_{0}+\mathrm{a}_{1} \sqrt{\phi}\right) \ln \theta \\
& +\left(\mathrm{b}_{0}+\mathrm{b}_{1} \sqrt{\phi}\right)(\ln \theta)^{2} \tag{21}\\
& +\left(c_{0}+c_{1} \sqrt{\phi}\right)(\ln \theta)^{3}
\end{align*}
$$

*These were derived by J. R. Rosenblatt and D. M. Maxwell of the Statistical Engineering Section, National Bureau of Standards.

Values of the constants in this equation were derived for the standard concentric ring pencil task and its background, using a least squares curve fitting computer program. The results are:

	$\underline{\text { Task }}$	Background
k	.73586	.85206
a_{o}	-.21398	-.12521
a_{1}	.014979	.0059725
$\mathrm{~b}_{\mathrm{o}}$.18815	.10455
$\mathrm{~b}_{1}$	-.013542	-.0053031
c_{0}	-.030878	-.014888
c_{1}	.0020351	.000524257

Equation (21) and the coefficients above are used to obtain B_{t} and B_{b} values for each source element location. They yield B values within a magnitude of .05 of the published data for all values of θ and ϕ except the following:

Task

$$
\begin{align*}
& \phi=0^{\circ} \text { and } 10^{\circ}<\theta<15^{\circ}, 45^{\circ}<\theta<90^{\circ} \\
& \theta=30^{\circ} \text { and } 10^{\circ}<\phi<20^{\circ} \tag{22}
\end{align*}
$$

Background
$\phi=0^{\circ}$ and $\theta=15^{\circ}, 45^{\circ}<\theta<90^{\circ}$
$\theta=85^{\circ}$ and $110^{\circ}<\phi<135^{\circ}$
The maximum error in B_{t} is .07 ; in $B_{b} .10$, the latter occurring at $\theta=85^{\circ}$ (a relatively unimportant angle).
D. Inverse Square Law Approximations

If Equation (7) is multiplied by the appropriate bidirectional luminance factor, we obtain the luminance of the task or its background

$$
\begin{equation*}
L_{i}=\frac{I_{i}(\phi, \theta) B_{i}(\phi, \theta) \cos ^{3} \theta_{i}}{h^{2}} \tag{23}
\end{equation*}
$$

where $B_{t i}$ is used if task luminance $L_{t i}$ is desired and $B_{b i}$ for $L_{b i}$.
In using Equation (23) it is important to choose luminaire element size small enough so that I_{i}, B_{i} and θ_{i} do not vary significantly over the element surface. RQQ5(3) suggests that to accomplish this the angles δ_{1} and δ_{2} in Figure 5 should not exceed 10°.

The angles used in this study to describe the location of a source element are not taken in the planes of δ_{1} and δ_{2}. Rather, as previously discussed, ϕ and θ are used, as shown in Figure 1. The reasons for choosing ϕ and θ are several:

1) They are more physically meaningful.
2) Luminaire intensity distributions are given in terms of these angles.
3) Bidirectional luminance factors are given in terms of these angles.
4) Cosine correction of the Inverse Square Law is done in terms of one of these angles (θ).

The choice of angles having been made, the next problem is to determine acceptable luminaire element sizes and relate them to the chosen angles. Luminaires can be placed in three general categories, namely points, strips and rectangles. A point luminaire is one whose largest source dimension may be considered small with respect to the distance of the source from the task. As a practical matter, in offices and schools, sources 18 inches (45 cm) or less in maximum source
dimension may be considered as points, permitting the entire source to be considered as a single element.

A strip luminaire is one having one dimension small (less than 18 inches) with respect to the distance from source to task, but not the other. Rows of fluorescent lamps fall into this category. For a strip luminaire, it is necessary to divide the luminaire into elemental lengths such that each element may be considered a point luminaire. Figures 6 and 7 illustrate how this should be done for a typical mounting height above the work plane of $h=7 \mathrm{ft}(2.13 \mathrm{~m})$. Figure 6 presents the situation when the rows of luminaires are parallel to the viewing direction; Figure 7 when they are perpendicular.

Before describing the rationale behind Figures 6 and 7, let us discuss how to use them. Assume a row of fluorescent luminaires parallel to the viewing direction and located at $x=0$ (directly over the task). Figure 6 shows the luminaire element lengths that would be used. The first element in the $+y$ direction is $1.2 \mathrm{ft}(.37 \mathrm{~m})$ in length. Successive elements are $1.3 \mathrm{ft}(.40 \mathrm{~m}), 1.5 \mathrm{ft}(.46 \mathrm{~m}), 1.8 \mathrm{ft}(.55 \mathrm{~m}), 2.2 \mathrm{ft}(.67 \mathrm{~m})$, $4 \mathrm{ft}(1.22 \mathrm{~m})$ and $8 \mathrm{ft}(2.44 \mathrm{~m})$ long. In the -y direction, the sizes are the same but we stop at $y=-2.5 \mathrm{ft}(-.76 \mathrm{~m})$ because the body shadow blocks elements beyond that point. If we now consider a row at $\mathrm{x}=8 \mathrm{ft}$ $(2.44 \mathrm{~m})$, longer elements can be used because the row is farther from the task. Thus less elements are needed - two 4-ft (1.22-m) elements and one $8-\mathrm{ft}(2.44-\mathrm{m})$ element in the +y direction and three $4-\mathrm{ft}(1.22-\mathrm{m})$ elements in the -y direction. If there were a row at $x=5 \mathrm{ft}$ (1.52 m), we could use the element lengths for either $\mathrm{x}=4 \mathrm{ft}(1.22 \mathrm{~m})$ or $6 \mathrm{ft}(1.83 \mathrm{~m})$ but would probably choose the former to be a bit more accurate.

Next let us turn 90° so that we are facing the rows. Figure 7 applies and we again read off the element lengths for each row of luminaires present. The element lengths are symmetrical about the y axis; therefore we need consider only those for $+x$ and eventually weight each of them by a factor of 2 .

Figures 6 and 7 were developed from the following guidelines:
First, element lengths were chosen to fit the customary $4-\mathrm{ft}$ ($1.22-\mathrm{m}$) luminaire (there is no element extending between, say, $y=6 \mathrm{ft}(1.83 \mathrm{~m})$ and $y=10 \mathrm{ft}(3.05 \mathrm{~m})$. Second a row was placed directly over the task and parallel to the direction of viewing. The elements in such a row have no variation with ϕ, except in switching from $\phi=0^{\circ}$ in front of the task to $\phi=180^{\circ}$ behind it. Element lengths in this row were chosen so that $\Delta \theta \approx 10^{\circ}$ for each element when $h=7 \mathrm{ft}(2.13 \mathrm{~m})$. For example, the element between $y=4 \mathrm{ft}(1.22 \mathrm{~m})$ and $y=5.8 \mathrm{ft}(1.77 \mathrm{~m})$ has θ values of 29.7° and 39.6°, giving $\Delta \theta=9.9^{\circ} . *$ Third, it was decided that the change in B_{t} in traversing an element should be no more than .10 (the change in B_{t} is greater than the change in B_{b} for the same change in θ or ϕ). An examination of the overhead row, with the element lengths chosen as indicated, shows that ΔB_{t} meets this criterion (when the overhead row is turned 90°, changes in B_{t} are less and the criterion is easily met). Fourth, rows displaced at intervals of $2 \mathrm{ft}(.61 \mathrm{~m})$ from the overhead row were examined. For each row, the $\Delta \theta$ and ΔB_{t} criteria were imposed in selecting element lengths. In addition, $\Delta \phi$ (the change in azimuth angle) was limited to $\approx 22.5^{\circ}$. ${ }^{*}$ (his seems justifiable when it is realized that

[^1]$* *$ One value of $\Delta \phi$ for $\mathrm{d}=2 \mathrm{ft}(.61 \mathrm{~m})$ exceeds this limit, but $\Delta \theta$ and $\Delta \mathrm{B}_{\mathrm{t}}$ are very small for this particular element.
published intensity distribution curves are generally given in only three azimuth planes separated by 45°.

We turn now to the rectangular luminaire and define it as one in which neither luminaire dimension is small compared with the distance from luminaire to task. Such a luminaire must be broken into rectangular elements, in much the same fashion and using the same criteria as in the strip luminaire case. The results, for a $3 \mathrm{ft}(.91 \mathrm{~m})$ by $3 \mathrm{ft}(.91 \mathrm{~m})$ luminaire are shown in Figure 8, again based on a 7 - ft (2.1 m) mounting height. In that figure, each square luminaire is divided into $1,2,4$ or 6 parts, depending on its distance from the task. For example, a 3×3 square luminaire centered at $x=4 \mathrm{ft}(1.22 \mathrm{~m})$ and $y=5 \mathrm{ft} .(1.52 \mathrm{~m})$ should be represented by four square elements, each 1.5 ft (. 46 m) on a side. A luminaire centered at $x=2 \mathrm{ft}(.61 \mathrm{~m})$ and $\mathrm{y}=0$ should be represented by six rectangular elements, each $1 \mathrm{ft}(.30 \mathrm{~m})$ by $1.5 \mathrm{ft}(.46 \mathrm{~m})$.
IV. Calculation Procedure

In this section, a systematic procedure for computing the direct components of CRF and ESI for the concentric ring pencil task using a cardprogrammable hand calculator is presented. The procedure may be outlined as follows: First, the room layout is drawn and task and luminaire location are noted on an $x y$ grid. Second, each luminaire is divided into one or more elements, according to the guidelines in Section IV and Figures 6 through 8. Third, the angular locations (polar and azimuth) of the center of each element are calculated and, from these, the luminous intensity of each element in the direction of the task is obtained. Fourth, bidirectional luminance factors are calculated for the task and its background for each element. Fifth, the illuminance on the task produced by each element is calculated and the results summed to obtain overall
illuminance. Sixth, task and background luminances produced by each element are obtained, and these are summed to obtain overall task luminance and background luminance. Seventh, the direct components of contrast rendition factor (CRF) and equivalent sphere illumination (ESI) for the pencil task are calculated.

The procedure will now be presented in a step-by-step manner in six parts, a preliminary part and a part for each of the five program cards necessary for its execution. The actual programs and user instructions will be presented in Section V.
A. Preliminary Steps

1) Sketch a top view of the room layout to approximate scale, showing luminaire and task locations (an example of a typical room and luminaire layout is shown in Figure 9). Orient the diagram so that the viewing direction is toward the top of the page. Draw an $x y$ coordinate system on the layout, with $+y$ in the direction of viewing, $+x$ to the right, and the task at the origin (o, o).
2) Divide each strip and square luminaire into elements according to Figures 6 through 8. Give each element a number designation and each strip and square luminaire a letter designation. Refer to Figure 9 for an example of dividing, lettering and numbering. For example, in that figure, elements 1 through 7 are 2.5 ft $(.76 \mathrm{~m}), 1.5 \mathrm{ft}(.46 \mathrm{~m}), 1.8 \mathrm{ft}(.55 \mathrm{~m}), 2.2 \mathrm{ft}(.67 \mathrm{~m})$, $4 \mathrm{ft}(1.22 \mathrm{~m})$ and $8 \mathrm{ft}(2.44 \mathrm{~m})$ long, respectively, as obtained from Figure 6. Note symmetry about the viewing direction and identify those elements, and entire luminaires, that will produce equal luminances at the task. For example, corresponding elements

Table 2
Intensity Worksheet

			Symmetric	Asymmetric
θ in deg. $\Delta \theta=5$	θ in deg. $\Delta \theta=10^{\circ}$	$\begin{aligned} & \theta \text { row } \\ & \text { No. } \mathrm{n} \end{aligned}$	I_{0} or I_{90}	Intensity Format $\begin{array}{lll}I_{0} & I_{45} & I_{90}\end{array}$
5	15	1		-
0	5	2		-
5	5	3		-
1.0	15	4		-
15	25	5		-
20	35	6		-
25	45	7		-
30	55	8		-
35	65	9		-
40	75	10		-
45	85	11		-
50	95	12		-
55	105	13		-
60		14		-
65		15		-
70		16		-
75		17		

Luminaire Description:

in rows A and A^{\prime} in Figure 9 produce identical luminances in the calculations and the luminances it produces doubled.

Also, use Figure 2 or Figures 6 through 8 to ascertain those elements shielded from the task by the viewer. Omit such elements from further consideration.
3) Use the luminaire manufacturer's intensity data to fill out the Intensity Worksheet in Table 2. In that table, I_{o} is the intensity distribution in a vertical plane along the luminaire axis, I_{90} perpendicular to the luminaire axis, and I_{45} midway between.

If the luminaire is symmetric (no variation of intensity with azimuth angle), it is necessary to fill in only one I value for each θ. The symmetric column in Table 2 is used for this purpose. For an asymmetric luminaire, the intensity format column must be completed. The only exception to this latter statement is when a row of asymmetric luminaires passes directly over the task location so that the intensity is always either I_{o} or I_{90}. Then I_{o} values are inserted into the symmetric column if the row is parallel to the direction of viewing and I_{90} values if it is perpendicular to it.

Manufacturer's intensity data is given in either 5° or 10° increments in polar angle θ, and the appropriate $\Delta \theta$ column should be noted in Table 2. Each row of intensity data is given a row number n so that it may be readily identified by the calculator.

There are 17 entries* for each intensity distribution curve (some entries appear twice in each column because of the manner in which interpolations are done for small values of θ). Each entry in the intensity
*Because of calculator storage limitations, intensity data for $\theta>75^{\circ}$ $\left(\Delta \theta=5^{\circ}\right)$ are excluded. This limitation is minor.
format column must be of the form $x x x . x x x x x x$ so that all intensity data may be stored at one time in the calculator. Also each intensity value must be less than $10,000 \mathrm{c}$. The first three x 's represent the value of $\mathrm{I}_{\mathrm{o}} / 10$ rounded to the nearest 10 candelas. Thus, an intensity of 4876 candelas would be entered as 488; an intensity of 876 candelas as 088 . Next, a decimal point is inserted, followed by three x's representing the value of $\mathrm{I}_{45} / 10$ to the nearest 10 candelas and, lastly, by three x's representing $I_{90} / 10$ to the nearest 10 candelas. No decimal point is used between these last two entries.

As an example, suppose $I_{0}=3756 \mathrm{~cd}, I_{45}=976 \mathrm{~cd}$ and $I_{90}=85 \mathrm{~cd}$ for a particular value of θ. Then the entry in the intensity format column is 376.098009.

The reader should note that the 3 -digit representation of intensity is used only when completing the intensity format column for asymmetric luminaires. Actual values of intensity should be used when completing the symmetric luminaire column.
4) Complete the top portion of the CRF-ESI Work Sheet for the Direct Component in Table 3. As before, h is the mounting height of the luminaires above the work plane, the latter being generally 30 inches above the floor. $\Delta \theta$ is either 5° or 10°. Viewing direction can be indicated by a compass direction. Row orientation (p), if rows are present, is either parallel or perpendicular to the viewing direction.* Row or luminaire letters are inserted according to the labeling in Step 2. For example, if the first six elements are in a square

[^2]CRF-ESI Work Sheet for Direct Component
\[

$$
\begin{aligned}
& \text { Room Location } \\
& \text { Luminaire } \\
& \text { Lamp } \\
& \text { Task Location }
\end{aligned}
$$
\]

$$
\begin{aligned}
& \mathrm{h}= \\
& \Delta \theta= \\
& \text { Viewing Direction } \\
& \text { Row Orientation (p) }
\end{aligned}
$$

Row or Luminaire Letter

Table 4
Centers and Lengths of Strip Elements in ft (m)
If a Strip Element

Lies Between Its Length is | Its Center |
| :---: |
| is Located at |

or strip luminaire A, insert the letter A in the rectangular space above elements $1-6$, and place a vertical line in the space between elements 6 and 7.
B. Program 1

1) Using the luminaire location layout from Step Al, enter an x_{e} and y_{e} value in Table 3, rows 1 and 2, for each luminaire element, where $x_{e}\left(y_{e}\right)$ is the distance perpendicular (parallel) to the viewing direction from the task to the center of the luminaire element. In entering x_{e} and y_{e}, be sure to include the sign of each. Centers and lengths of elements for strip luminaires are presented in Table 4 to assist in making these entries.
2) Program Card 1 is read into the calculator, the value of h is entered, and the values of x_{e} and y_{e} for each luminaire element are inserted. The program computes values for $|\phi|, \theta, m$, and ψ for each luminaire element, prints these (if a printer is used) and shows them in the calculator display. These values should be inserted in Table 3 in rows 3 through 6. ϕ ranges from 0° to $\pm 180^{\circ}$ but because of symmetry, only the magnitude of ϕ $(|\phi|)$ is required, and this is calculated from

$$
\begin{array}{ll}
|\phi|=180-\left|\tan ^{-1} \frac{x}{y}\right| & \text { for } y- \\
|\phi|=\left|\tan ^{-1} \frac{x}{y}\right| & \text { for } y+ \tag{25}
\end{array}
$$

θ is obtained from

$$
\begin{equation*}
\theta=\tan ^{-1} \sqrt{\frac{x^{2}+y^{2}}{h}} \tag{26}
\end{equation*}
$$

The parameter m is the element scaling factor, and is required because manufacturers' intensity distribution curves are given for
entire luminaires. There are three situations to consider. In the rectangular luminaire case, the user inserts the number of subdivisions (1, 2,4 or 6) into the calculator and obtains an element scaling factor of $1, .5, .25$ or .167 . For rows, the basic unit is $4 \mathrm{ft}(1.22 \mathrm{~m})$. The user inserts Δl, the luminaire element length, in $f t$ and obtains the scaling factor as $\Delta l / 4$. For point sources, the entire luminaire is always used and $m=1$.

The fourth quantity computed is ψ, the angle at the source. As stated earlier, ψ and ϕ are not necessarily the same, the former being related to the source and the latter to the task. (Refer again to Figure 1 and the diagram in Table 2). It is necessary to calculate ψ only when the source is asymmetric. The following cases exist:

	$\|\phi\|<90^{\circ}$	$\|\phi\|>90^{\circ}$
Luminaire axis parallel to viewing direction	$\psi=\|\phi\|$	$\psi=180^{\circ}-\|\phi\|$
Luminaire axis perpen- dicular to viewing direction	$\psi=90^{\circ}-\|\phi\|$	$\psi=\|\phi\|-90^{\circ}$

The calculator program makes these distinctions after it is given a value for " p ", the row orientation factor ($p=0$ if the rows are parallel to the viewing direction and $p=1$ if they are perpendicular to it).

A final feature of Program Card 1 is that it permits a calculation of body shadow factor if the user so desires. If the user has any doubt after consulting Figure 2 as to whether or not a certain luminaire element is shielded, he can ask the calculator to check. A 1 will appear if the center of the luminaire element is not shielded from the task, a 0 if it is.

C. Program 2

In Programs 2 and 3, intensity as a function of the angles (ψ, θ) is computed for each luminaire element. This is done through a single interpolation in θ if the luminaire is symmetric or if $\psi=0^{\circ}$ or 90° and through a double interpolation in ψ and θ for all other conditions. In the former case, the user omits Program Card 2 and goes directly to Program Card 3. In the latter case, Program Card 2 must be used first.

As mentioned earlier, interpolation in the ψ dimension is done by passing a parabola through the intensity values at $\psi=0^{\circ}, 45^{\circ}$ and 90° and calculating $I(\theta)$ for each of four consecutive values of θ. The user first places the appropriate θ row number n, obtained from Table 2, into row 7 of Table 3. n is the number of the row in which the first intensity interpolation (I_{1}) is done (in the example in Table $1, \mathrm{n}$ is 9 , corresponding to $\theta=35^{\circ}$). He then reads Program Card 2 into the calculator and inserts the intensity data from the format column in Table 2 and the values of ψ and n from Table 3. With these values in storage, the calculator computes I_{1}, I_{2}, I_{3} and I_{4}, the intensities for the four consecutive θ values. These values are either available from the printer or may be observed directly in the calculator display. In either case, the user should place the four intensities in rows 8 through 11 in Table 3.

When Program 2 is omitted (for symmetric luminaires and overhead rows of asymmetric luminaires), the appropriate values of I_{0} or I_{90} from the symmetric column in Table 2 should be inserted in rows 8 through 11 of Table 3.
D. Program 3

Program 3 completes the double interpolation begun in Program 2 for asymmetric luminaires or conducts the single interpolation required for
symmetric luminaires.
After reading Program Card 3 into the calculator, the user inserts a 0 or a 1 to indicate that the increment in θ is either 5° or 10°. He then inserts $\theta, m, n, * I_{1}, I_{2}, I_{3}$ and I_{4}, in that order, and the calculator computes $I(\phi, \theta)$ scaled by the element scaling factor m. This value is printed and also appears in the calculator display. It should be inserted in row 12 of Table 3. The unscaled value of $I(\phi, \theta)$ is also printed, to provide a check for the user that his I value is reasonable in terms of the values of I_{1} through I_{4}. The procedure is then repeated for each luminaire element.

E. Program 4

In Program 4, bidirectional luminance factors for the concentric ring pencil task and its background are calculated using the log cubic Equation (22). The user reads in Program Card 4, inserts the values of $|\phi|$ and θ from Table 3, and the calculator computes B_{t} and B_{b} for each luminaire element, printing and displaying each.

It should be stressed that Program 4 is applicable only to the concentric ring pencil task. However, if bidirectional luminance factor data for other tasks should become available, the program could be altered easily to accommodate them.
F. Program 5

A11 factors necessary for the calculation of the direct components of CRF and ESI have now been assembled except the duplicate element multiplying factor, d. Recall that in Step A2 the user was instructed to observe symmetry and note those luminaires and luminaire elements which produce
*If Program 2 was skipped, values of n should be inserted in row 7 of Table 3 prior to this step.
identical luminances at the task. In row 15 of Table 3, the user should now insert a 2 if that element's contribution is to be doubled and a 0 if it is not, making that wherever a 2 is inserted, that element's mate is not included in the calculations. Then Program Card 5 is read into the calculator, h is inserted, and θ, I, B_{t}, B_{b} and d for each luminaire element are entered, one set at a time. The calculator then computes and displays a running total of task illuminance ($\Sigma \mathrm{E}_{\mathrm{i}}$), task luminance ($\Delta L_{t i}$) and background luminance $\left(\Sigma \mathrm{L}_{\mathrm{bi}}\right) . \sum \mathrm{E}_{\mathrm{i}}$ is also printed. These values are entered in rows 16,17 and 18 in Table 3. Thus, the entries in column k of these rows in Table 3 give the total illuminance and luminances produced by the first k luminaire elements. If it is desired to know the contribution of luminaire element k to the illuminance and luminances, the values of these quantities in column $k-1$ are subtracted from those in column k.

The entries in rows, 16,17 and 18 for the last luminaire element give the direct components of illuminance and luminances for the entire installation. Then the calculator computes and displays the direct components of CRF, ESI and LEF. It also prints these quantities, as well as the values of C, RCS, and RCS ${ }_{e}$.
V. Calculator Program and User Instructions

A. Introduction

A Texas Instruments' SR-52 card programmable hand calculator was used in this study, but any other similar calculator would also suffice. This calculator has 224 program storage locations, 20 data storage locations and 10 user-defined labels. It is not our purpose here to describe in detail the SR-52 or any other calculator. Rather our aim is to provide sufficient information about the SR-52 so that the user can
execute the five programs described in Section IV. For further details about this or other calculators, the user should consult the appropriate instruction manual.
B. Reading a Card

At Step B1 in Section V, the first program card must be read into the calculator. To do this, first press the CLR button; then press the 2ND button and the READ button and insert the program card into the lower slot on the right side of the calculator, with end A towards the calculator. The calculator motor should carry the card through to the opposite side. Next press 2ND and READ again and insert the card with end B towards the calculator. Again it should pass through. The program is now in the calculator memory and the card may be returned to its case.
C. User-Defined Labels

In order for the user to enter data into the calculator, he must be able to tell the calculator not only the data to be entered but where to go in the program to do the entering. The 10 user-defined labels, A through E and A^{\prime} through E^{\prime} provide this latter feature. The second set of these (primed letters) requires the user to press the 2 ND button and then the letter button, much as the shift key on a typewriter causes the upper characters to be printed. Generally, an asterisk (*) is used in place of 2 ND in programming instructions.

Suppose a quantity 17.6 is to be entered using label A. The user would press five buttons, namely 1, 7, ., 6, A to accomplish this. To place the entry in *A' $^{\prime}$ requires six presses -- 1, 7, ., 6, 2ND, A.

Quite often labels are used to start a calculation, rather than to insert data. If so, only the buttons A or ${ }^{*} A$ ', for example, are pressed.
D. Readout

There are two means by which readout is accomplished, namely through the display register and through an auxiliary printer. Halt statements occur throughout the programs so that the final result of a calculation appears in the display register. The auxiliary printer, if used, will also provide the final answer, in printed form. In addition, it will provide certain intermediate answers which the calculator and its display pass by in traveling to the final answer. These printed intermediate answers are not essential to have but are useful in checking results. To repeat, the printer is not essential in carrying out the calculations, but it is convenient to have.

E. Initialization

Each of the five programs begins with an initialization instruction which is executed simply by pressing the E button. The purpose of this is to insure that the data storage and display locations (registers) are cleared before new calculations begin. Pressing E does not affect the program storage locations.
F. Inserting a Minus Number

A negative number is inserted into the calculator by first inserting the positive value of the number and then pressing the $+/-$ button.
G. Instructions and Programs

User instructions for the five programs are given in Table 5. The instructions must be carried out in the order given, unless otherwise indicated. After entering an instruction, the user must wait until the calculator stops, as indicated by a steady display, before entering the next instruction.

Table 5 - User Instructions

Program 1

Entry	Labe 1	Display	Print
	E	0	
h	*A'	h	
${ }^{\text {x }}$	A	x_{e}	
$\mathrm{y}_{\text {e }}$	B	$\mathrm{y}^{\text {e }}$	
	C	$\mid \phi{ }^{\dagger}$	$\|\phi\|$
	D	θ	θ
$6,4,2$ or 1	* ${ }^{\prime}$	m	m
$\Delta \ell$	* ${ }^{\prime}$	m	m
$\mathrm{p}(0$ or 1)	*D'	ψ	ψ
	* ${ }^{\prime}$	S	1 or 0

Comments

1. Pressing E clears display and data storage registers.
2. h need only be inserted once at the outset.
3. In computing $m,{ }^{\prime} B^{\prime}$ is used for square luminaires, ${ }^{\prime} C^{\prime}$ for strip luminaires.
4. In computing ψ, a 0 is inserted if luminaires are parallel to the viewing direction, a 1 if they are perpendicular. ψ need not be computed for symmetric luminaires.
5. S is an optional calculation, but cannot be done until $|\phi|$ and θ are calculated. A 0 is displayed if the viewer shields the center of the luminaire element from the task, a 1 if he does not.

Table 5 (Cont.)
Program 2

Entry	Labe 1	Display	Print
	E	1	
xxx. $\mathrm{xxxxxx}^{\text {d }}$	A	2	first I entry
Xxx. xxxxxx	A	3	second I entry
-	-	-	-
-	-	-	-
-	-	-	-
XxX. $\mathrm{xxxxxx}^{\text {d }}$	A	18	last I entry
ψ	B	4	
n	C	n	
	D	1	$\begin{aligned} & I_{1}(\theta), I_{2}^{(\theta)} \\ & I_{3}(\theta), I_{4}^{(\theta)} \end{aligned}$
	* ${ }^{\prime}$	$I_{1}(\theta)$	
	* B^{\prime}	$\mathrm{I}_{2}^{1}(\theta)$	
	${ }^{+} \mathrm{C}^{\prime}$	$\mathrm{I}_{3}^{2}(\theta)$	
	$*^{\prime \prime}$	$\mathrm{I}_{4}^{3}(\theta)$	

Comments

1. Pressing E clears the display register but not the data storage register. Do not press E again after the first initialization or A again after the I entries have been inserted.
2. If an error is made in an I entry prior to pressing A, press CLR and redo the I entry. If an error is made in an I entry and A has been pressed, press k ST098, where k is one less than the number in the display and then redo the I entry and push A.
3. *A', *B', *C', and KD^{\prime} need not be pressed if a printer is used. Correct keying sequence in this case is EABCDBCD... .

Table 5 (Cont.)

Program 3

Entry	Labe1	Display	Print
	E	1	
$\Delta \theta$ (0 or 1)	A	0 or 1	
θ	B	1	
m	B	1	
n	B	1	
$I_{1}(\theta)$	B	1	
$\mathrm{I}_{2}(\theta)$	B	1	
$\mathrm{I}_{3}^{2}(\theta)$	B	1	
$\mathrm{I}_{4}^{3}(\theta)$	B	1	
	C	scaled I (ϕ, θ)	$\begin{aligned} & I(\phi, \theta), \\ & \text { led } I(\phi, \theta) \end{aligned}$

Comments

1. Pressing E clears display and data storage registers.
2. Entry at A is 0 if $\Delta \theta=5^{\circ}$ and 1 if $\Delta \theta=10^{\circ}$. This is done only once.
3. Entry at B is seven items, in the order given, for each luminaire element. If an error is made in an entry prior to pressing B, press CLR and redo the entry. If an error is made in an entry and B is pressed, press k STO19 where k is the number (1-7) of the incorrect entry. Then redo the entry and press B.
4. Printer shows θ^{\prime} (the transformed value of θ for calculation purposes), the unscaled value of $I_{(\phi, \theta)}$ and the value of $I_{(\phi, \theta)}$ after multiplication by m.

Table 5 (Cont.)
Program 4

Entry	Labe 1	Display	Print
	E	0	
$\phi \mid$	A	$\phi \mid$	
θ	B	θ	
	C	B	B
	D	$B_{b}^{\text {t }}$	$B_{b}^{\text {t }}$

Comments

1. Pressing E clears display and data storage registers.

Table 5 (Cont.)

Program 5

Entry	Labe1	Display	Print
	E	0	
h	*E'	h	
θ	A	1	
$I(\phi, \theta)$	A	1	
B	A	1	
B^{t}	A	1	
d (8 or 2)	A	1	
	B	$\sum \mathrm{E}{ }_{i}$	ΣE_{i}
	C	$\Sigma L_{\text {i }}{ }_{\text {i }}$	
	D	$\Sigma L^{\text {Li }}$	
	*A'	CRF ${ }^{1}$	C, CRF
	*B'	ESI	RCS, RCS ${ }_{\text {e }}$
	*C'	LEF	LEF e

Comments

1. Pressing E clears display and data storage registers.
2. h should be entered once at the outset.
3. $\theta, \mathrm{I}(\phi, \theta), \mathrm{B}_{t}, \mathrm{~B}_{\mathrm{b}}$ and d must be entered in order. If an error is made in an entry before A is pressed, press CLR and redo the entry. If an error is made in an entry and A is pressed, press k ST019, where k is the number $(0-4)$ of the incorrect entry. Then redo the entry.
4. d is 0 if the luminaire element under consideration at x, y does not have a counterpart at $-\mathrm{x}, \mathrm{y}$. It is 2 if it does.
5. $\sum L_{t i}$ and $\sum \mathrm{L}_{\mathrm{b} i}$ may not be computed until $\Sigma \mathrm{E}_{\mathrm{i}}$ is found.
6. Normally, calculations of $\sum E_{i}, \Sigma L_{t i}$ and $\sum L_{i}$ are completed before *A' is pressed to obtain CRF. Thei ${ }^{1}$ B' $^{\prime}$ may ${ }^{\text {b }}$ be pressed to obtain ESI and *C' to obtain LEF, if desired. However, if the user wishes, intermediate values of CRF and ESI may be obtained by pressing *A' and *B' earlier. This allows the user to obtain the CRF due to a single row of luminaires, for example.
7. After calculations of overall CRF and ESI are completed, intermediate values of $\Sigma E_{i}, \Sigma L_{t i}$ and $\Sigma L_{b i}$ may be stored by the user and then used to calculate intermediate balues of CRF and ESI. For $\sum E_{i}$, enter its value and then press $S T 007$. For $\sum L_{t i}$, enter its value and press ST009; for $\sum L_{b i}$ enter its value and press ST011.

Table 6 Program 1

01046	05176	1009	15015
01016	10^{1010}	1018	1517
10243	O－	10246	159
00800	068	10818	15808
010481	05401	104	15495
01081	1550	10504	1550
－106－4E	156	1069	15E6
01011	1574	10768	15701
01042	1501	10961	1581
01090	0591	10946	15946
010	06	11 O 10	1608
01181	161	11143	1610
0124θ	0646	11201	1681
01812	1168	11301	$16 \% 46$
0148	0648	114 F	16415
01500	0601	11.51	165
D1E 04	日6E000	116	16.47
01781	0678	117 175	16781
01846	0601	11895	16 E
01913	10901	1196	16919
0 O	076	120	170
口1 口100	07181	1218	1710
OE	07646	12 E	17209
10\％	07614	12%－10	1780
104 53	074	1249	174
0254	0750	1250	17548
	OTE 04	1267	1FED1
02704	17\％ 40	12701	1770
OES	0788	12 El	1769
029		12946	17988
08010	08010	1307	18069
0101	0810	1314	18181
183 54	0810	132	15246
0839		136	$18 \% 6$
0842	18430	1347	18443
	185	135	18501
ロ6 80	0864	136	186
187 7\％	0870	1379	1879
03694	188 01	1368	189 9
19G4E	0898	1396	18981
114 T 7	0102	1401	1900
04143	09134	1418	1910
［49 011	093	1429	19%
04800	090	14378	$19 \% 00$
0448		1440	19400
14．4	096	14581	19500
－14 04	0961	14E 4 ¢	19610
04700	06	14778	197
10489	0917	14848	198100
10901	0980	149610	19600

TABLE 6
Program 2

TABLE 6
Program 3

Table 6 Program 4

The actual programs, as printed by the auxiliary printer, are given in Table 6. In each program step, the left (3-digit) entry is the program step number and the right (2-digit) number is the coded instruction. VI. Three Design Examples
A. Point Luminaire

Consider the installation in Figure 10 and the associated intensity and CRF-ESI worksheets in Tables 7 and 8 . Four high pressure sodium units are being used to light a small lobby and two task locations have been identified.

Proceeding through the steps of Section V, we first draw coordinate systems on the room layout, one for each task, with $+y$ in the direction of viewing and each task located at the origin of its coordinate system. We consider each luminaire as a point source in this case and thus do not have to subdivide the luminaires into elements. Because the luminaires are symmetrical, we need fill in only one column on the Intensity Worksheet, noting that intensity values are given in 5 degree increments in θ. Following this, we complete the top portion of the CRF-ESI Worksheet. Because we are considering entire luminaires as elements, each element number is a luminaire number also, and we can use the luminaire letter row to designate which of the two tasks is being considered.

We are now ready to carry out Programs 1 through 5. Element scaling factors are 1 throughout, because each luminaire is a single element. Ψ need not be calculated and Program 2 may be omitted because the luminaires are symmetrical. The duplicate element multiplier is 2 for element 1 and task location 1 and 0 for all other elements. Thus the column for element 2 under task location 1 is omitted.

Table 7

Intensity Worksheet

Luminaire Description:
High Pressure Sodium Unit

CRF-ESI Work Sheet for Direct Component-Example A

Following computation of illuminance and luminances, CRF, ESI and LEF values are obtained for each task location. Note that this requires Program 5 to be run essentially twice, once for Tl and again for T2.
B. Strip Luminaire

Only the dissimilarities between this example and the previous one will be discussed. Refer to Figure 11 and the associated worksheets in Tables 9 and 10. In this instance, the luminaires are strips, fluorescent batwing units. Each row is given a letter label and elements are selected from Figure 6 and numbered. Referring to the intensity worksheet, the I_{o} column is used for row A, because ψ is o for this row, and Program 2 is omitted. However, for row B, the intensity format column must be completed and Program 2 used to find the four intensities, I_{1} through I_{4}, row A has no symmetrical counterpart, but row B does. Hence $d=o$ for row A and 2 for row B and elements in row B^{\prime} are not labeled or included in the calculations. The remainder of the calculations proceed as in Example A.
C. Square Luminaire

This final example involves $3 \mathrm{ft} x 3 \mathrm{ft}$ ($1.01 \mathrm{~m} x 1.01 \mathrm{~m}$) crosslamp fluorescent luminaires with prismatic lenses. Figure 12 and the associated work sheets in Tables 11 and 12 apply. In this case, intensity data, given in 10 degree increments, is inserted in the I_{o} or I_{90} column because the luminaire is symmetrical. Thus, Program 2 may be omitted. Also ψ need not be calculated. Each luminaire is subdivided into elements according to Figure 8, and, because of the task location and viewing direction, each element has a d factor of 2 and thus one-half of the elements may be omitted from the calculations. The remainder of the calculations are as in Example A.

Table 9

Intensity Worksheet

\checkmark			Symmetric	Asymmetric	
θ in deg. $\Delta \theta=5$	θ in deg. $\Delta \theta=10$	$\begin{aligned} & \theta \text { row } \\ & \text { No. } n \end{aligned}$	I_{0} or I_{90}	In	$\begin{gathered} \text { ensity For } \\ \mathrm{I}_{45} \end{gathered}$
5	15	1	349	03	. 037039
0	5	2	348	03	. 035035
5	5	3	349	03	. 037039
10	15	4	351	03	- 044053
15	25	5	351	03	- 055073
20	35	6	354	03	- 070094
25	45	7	326	03	. 081105
30	55	8	307	03	. 087109
35	65	9	285	02	. 086105
40	75	10	260	02	. 078094
45	85	11	217	02	. 065069
50	95	12	179	01	. 049040
55	105	13	159	01	. 034031
60		14	146	01	- 025028
65		15	127	01	. 019025
70		16	106	01	. 016022
75		17	78	00	. 013019

Luminaire Description:
Batwing Fluorescent

Table 10
CRF-ESI Work Sheet for Direct Component-Example B

Room Location Figure 11

Luminaire Batwing Fluorescent
Lamp 40 CW Fluorescent

Table 10
CRF-ESI Work Sheet for Direct Component - Example B

Room Location Figure 11	$\mathrm{h}=\underline{6.2 \mathrm{ft}}$
Luminaire Batwing Fluorescent	$\Delta \theta=\underline{5 \mathrm{deg} .}$
Lamp 40 CW Fluorescent	Viewing Direction North
Task Location T	Row Orientation (p) 0

Table 11
Intensity Worksheet

\checkmark			Symmetric	Asymmetric
θ in deg. $\Delta \theta=5^{\circ}$	θ in deg. $\Delta \theta=10$	$\theta \text { row }$ No. n	I_{0} or I_{90}	Intensity Format $I_{0} \quad I_{45} \quad I_{90}$
5	15	1	1535	-
0	5	2	1575	-
5	5	3	1575	-
10	15	4	1535	-
15	25	5	1440	. ${ }^{\text {- }}$
20	35	6	1270	-
25	45	7	995	-
30	55	8	600	-
35	65	9	370	-
40	75	10	210	-
45	85	11	70	-
50	95	12	0	-
55	105	13	0	-
60		14		-
65		15		-
70		16		-
75		17		-

Luminaire Description:
3x3 Crosslamp with Prismatic
Enclosure

CRF-ESI Work Sheet for Direct Component - Example C
Room Location Figure 12
Luminaire $3 x 3$ Crossiamp
$\begin{array}{ll}\text { Lamp } \frac{40 \mathrm{CW} \text { Fluorescent }}{} \quad \text { Viewing Direction South } \\ \text { Task Location } \mathrm{T} & \text { Row Orientation (p) }\end{array}$
Row or Luminaire Letter $\quad \square \quad . \quad 3$
B Source Element Number

	6	7	8	9	10	11	

n
n
\vdots
n
n
n
n
n
n
n
n

I \square
I

B	C

∞	n	n
		n

$\stackrel{\rightharpoonup}{4}$
$\stackrel{0}{0}$

$\mathrm{h}=\frac{6.2 \mathrm{ft}}{}$
$\Delta \theta=10 \mathrm{deg}$.
Row or Luminaire Letter A A

Row or Luminaire Letter			A				B				C			
			Source Element Number											
Program	Step No.	Quantity	1	2	3	4	5	6	7	8	9	10	11	
4	13	$\mathrm{B}_{\mathrm{t} 1}$. 712	. 737	. 797	. 611	. 631	. 634	. 611	. 736	. 742	. 770	. 766	
	14	${ }^{\text {bi }}$ i	. 841	. 851	. 896	. 758	. 776	. 779	. 757	. 879	. 890	. 913	. 901	
5	15	Duplicate Element d Multiplier	2	2	2	2	2	2	2	2	2	2	2	
	16	EEi	12.7	26.1	38.8	40.8	43.9	48.8	51.8	54.9	56.9	59.9	64.8	
	17	$\Sigma L_{t 1}$	9.1	18.9	29.1	30.3	32.2	35.3	37.2	39.4	40.9	43.2	47.0	
	18	$\Sigma L_{\mathrm{bi}_{1}}$	10.7	22.1	33.5	35.0	37.4	41.2	43.5	46.2	47.9	50.7	55.2	
	19	CRF												
	20	ESI												
	21	LEF												

Table 12
CRF-ESI Work Sheet for Direct Component - Example C
$\Delta \theta=\frac{10 \text { deg. }}{\text { Viewing Direction South }}$

References

1. Illuminating Engineering Society, IES Lighting Handbook, 5th ed., edited by Kaufman, J., 1972.
2. RQQ Report No. 4, A method of Evaluating the Visual Effectiveness of Lighting Systems, Illuminating Engineering 65, 505-513 (1970).
3. RQQ Report No. 5, The Predetermination of Contrast Rendition Factors for the Calculating of Equivalent Sphere Illumination, Journal of IES 2, 149-166 (1973).
4. DiLaura, D. L., On the Computation of Equivalent Sphere Illumination, Journal of IES 4, 129-149 (1975).
5. Blackwell, H. R., and DiLaura, D. L., Application Procedures for Evaluation of Veiling Reflections in Terms of ESI: II. Gonio Data for Standard Pencil Task, Journal of IES 2, 254-283 (1973).
6. McNamara, A. C., The Potential of Location Within a Room in Producing ESI, Journal of IES 5, 169-176 (1976).
7. Blackwell, H. R., and Helms, R. N., Application Procedures for Evaluation of Veiling Reflections in Terms of ESI; I. General Principles, Journal of IES 2, 230-253 (1973).

Figure 1. Geometrical Relationships Between $x_{e}, y_{e}, h, \phi, \psi$ and θ.

Figure 2. Body Shadow Diagram for 25° Viewing Angle.

Figure 3. Bidirectional Luminance Factors for Concentric Ring Pencil Task 250 viewing angle.

Figure 4. Bidirectional Luminance Factors for Concentric Ring Pencil Task Background - 25° Viewing Angle.

Figure 5. RQQ5(3) Source Element Angular Coordinates.

Figure 6. Strip Luminaire - Element Length vs. Location for Parallel Viewing. Dashed line denotes body shadow boundary for $h=7 \mathrm{ft}$ $(2.1 \mathrm{~m})$. y axis numbers are locations of ends of elements.

Figure 7. Strip Luminaire - Element Length vs. Location for Perpendicular Viewing. Dashed line denotes body shadow boundary for $\mathrm{h}=7 \mathrm{ft}$ (2.1 m). x axis numbers are locations of ends of elements.

Figure 8. $3 \mathrm{ft}(.91 \mathrm{~m}) \times 3 \mathrm{ft}(.91 \mathrm{~m})$ Luminaire - Element Size and Number vs. Location. Dashed line denotes body shadow boundary for $h=7 \mathrm{ft}$ $(2.1 \mathrm{~m})$. Number pairs are x, y coordinates.

Figure 9. Typical Room and Luminaire Layout.

Figure 10. Lighting Layout Diagram for High Pressure Sodium Installation (Point Luminaire).

Figure 11. Lighting Layout Diagram for Fluorescent Batwing Installation (Strip Luminaire).

Figure 12. Lighting Layout Diagram for 3 x 3 Fluorescent Crosslamp Installation (Square Luminaire).

NBS.114A (REV. 7-73)

U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. NBSIR 77-1303	2. Gov't Accession No.	3. Recipient's Accession Nu.
4. TITLE AND SUBTITLE A Simplified Procedure for Calculating the Direct Components of Contrast Rendition Factor and Equivalent Sphere Illumination			5. Publication Date November 1977 6. Performing Organization Code
7. AUTHOR(S) Joseph B. Murdoch			8. Performing Organ. Report No.
9. PERFORMING ORGANIZA NATIONAL DEPARTM WASHINGT	ON NAME AND ADDRESS UREAU OF STANDARDS T OF COMMERCE $\text { I, D.C. } 20234$		10. Project/Task/Work Unit No.
12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)			13. Type of Report \& Period Covered
			14. Sponsoring Agency Code
15. SUPPLEMENTARY NOTES			

16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.)

A procedure is presented which enables the user to compute the direct components of contrast rendition factor (CRF) and equivalent sphere illumination (ESI) for an interior lighting design with the aid of a card-programmable hand calculator. The underlying theory and equations of CRF and ESI are discussed, including a consideration of body shadow, intensity distribution curve interpolations, bidirectional luminance factor approximating equations and Inverse Square approximations.

The procedure is designed so that the user is a participant in the computations as they progress and thus is able to modify a lighting design in "midstream" to improve CRF or ESI. A set of user instructions is included with the calculator programs.
17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolons)
Body shadow; contrast rendition; hand calculator; Illuminating Engineering; light design; luminaire effectiveness; luminance factor; office lighting; sphere illumination

18. AVAILABILITY [X Unlimited \square For Official Distribution. Do Not Release to NTIS	19. SECURITY CLASS (THIS REPORT) UNCL ASSIFIED	21. NO. OF PAGES
Order From Sup. of Doc., U.S. Government Printing Office Washington, D.C. 20402, SD Cat. No. C13	20. SECURITY CLASS (THIS PAGE)	22. Price
X Order From National Technical Information Service (NTIS) Springfield, Virginia 22151	UNCLASSIFIED	\$5.24

[^0]: $\bar{*} \phi$ and ψ are not necessarily the same angles. ϕ is the azimuth angle at the task with respect to the viewing direction whereas ψ is the azimuth angle at the luminaire with respect to the luminaire axis. See Figure 1.

[^1]: $\overline{\star 7 \mathrm{ft}(2.13 \mathrm{~m}) \text { was }}$ chosen as an "average" mounting height above the work plane for offices. For a given element size and location, as h increases, $\Delta \theta$ decreases.

[^2]: *The procedure does not accommodate oblique viewing of rows.

