NBSIR 76-999

Surveillance Test Procedures

H. W. Almer Edited by: Jerry Keller

Institute for Basic Standards National Bureau of Standards Washington, D.C. 20234

February 1976

Final

Issued May 1977

U. S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

al Alexandra III and a

SURVEILLANCE TEST PROCEDURES

H. W. Almer Edited by: Jerry Keller

Institute for Basic Standards National Bureau of Standards Washington, D.C. 20234

February 1976

Final

Issued May 1977

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary Dr. Betsy Ancker-Johnson, Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

,

SURVEILLANCE TEST

PROCEDURES

H. E. Almer

Abstract

Surveillance tests are designed to monitor the values of mass standards between calibrations. Two types are described; both consist of comparisons of the weights of an ordered set of mass standards with each other. The differences found are compared with those computed from the reported mass values. Surveillance limits based on the precision of both the calibration and the surveillance test processes are computed. These limits are estimates of the departure of the measured differences from the expected, or predicted, differences as computed from the reported values. larger change is considered significant. Additional A measurements to identify individual weights which have changed are required when a given comparison indicates that the mass of one or more of the weights involved has changed. Buoyancy corrections are used to correct for the difference in the buoyant effect on weights of differing densities. document the surveillance test results, and control Records help detect trends. Judgments charts concerning recalibration can be made based on the constancy of the weights relative to the use requirements.

Key words: Apparent mass; buoyancy; buoyancy correction; change; comparison; difference; mass; records; set; surveillance limits; surveillance test; test interval; true mass; value; weighing design; weights.

CONTENTS

į

			Page
1.	Introduc	tion	1
2.	Measurem	ent Procedures	1
	2.1 Type	I Surveillance Test	2
	2.2 Type	II Surveillance Test	4
3.	Surveill.	ance Limits	6
		rtainties of Each of the Summations from the bration Mass Measurement Process Known	6
		rtainties for Individuals but not Summations fro Calibration Mass Measurement Process Known	om 6
	3.2.1 Nu	merical Example	7
4.	Identify	ing Weights Which Have Changed	8
	4.1 Anal	ysis of Measurement Results	. 9
	4.2 Nume	rical Examples	10
5.	Buoyancy	Corrections	11
	-	ancy Corrections Computed on True Basis	11
	•	ancy Corrections Computed on Apparent Basis	13
	5.3 App1	ication of Buoyancy Corrections	15
		oyancy Correction Application for ue Mass	15
		oyancy Correction Application r Apparent Mass	16
6.	Records		17
7.	Surveil1	ance Test Interval	17
REF	ERENCES		20
Арр	endix 1.	Weighing Designs for Surveillance Tests	21
		Weighing Designs for Type I Surveillance Tests	2 2
		Weighing Designs for Type II Surveillance Tests	28
App	endix 2.	Surveillance Test Examples	36
		Type I Surveillance Test Example	36
		Type II Surveillance Test Example	51

1. INTRODUCTION

Surveillance test procedures are designed to monitor the values of mass standards between calibrations. This is important because the problem of the continuing validity of the values contained in the report of calibration is always present, and especially so for those who look to others for calibration service. Surveillance test procedures, if properly implemented, so provide a means of detecting gross changes as soon as possible with a minimum expendture of time and effort.

Two types of surveillance tests are described. The first type, designated Type I, uses a minimum number of measurements that involve all of the weights in the set. The second type, designated Type II, requires a larger number of measurements which are grouped so that they are a series of 3-1's weighing designs. This method has some redundancy.

Included in the surveillance test procedures are methods of identifying any weights whose mass values may have changed since they were calibrated, and methods of correcting for the buoyant effect of the atmosphere.

2. MEASUREMENT PROCEDURES

A surveillance test consists of a series of comparisons of the weights of an ordered set of mass standards with each other, according to an appropriate weighing design, and comparing the differences in mass value found by these comparisons with those computed from the values contained in the report of calibration [1]*. Ideally a suitable known weight, other than one of the weights in the set being tested, is used as the standard on which the values found by the surveillance test are based. This also establishes whether or not the whole set has changed proportionally. For sets where the largest weight is one kilogram or less, the nominal value of the weight used as a standard should be that of the largest weight in the set. For example, a set whose largest weight is 100g is being tested. For this set, a 100g weight whose mass value is known would be suitable for use as a standard. For sets having weights greater than one kilogram, a suitable one kilogram weight may be used as the standard. For sets in the avoirdupois system having weights greater than one pound, a suitable one pound weight may be used as the standard. Cenerally the uncertainty of the mass value of a one kilogram, or a one pound standard, is less than the uncertainty of the value of a larger standard.

¹ A title given to the three intercomparisons of three objects A, B, and C, namely the measurements of the differences A-B, A-C, and B-C.

^{*} Figures in brackets refer to similarly numbered references at the end of this paper.

If a weight of the suggested denomination is not available, a suitable known weight of a different denomination, if available, may be used to establish whether or not the whole set has changed. The nominal value of this weight should be equal to that of one of the larger weights in the set being tested, say not less than 20g for a set beginning at 100g, or less than 100g for a set beginning at 1kg. Where the weight used as the standard has the same nominal value as the largest weight in the test set, up to one kilogram, the comparison between the standard and the largest weight of the set is a part of the surveillance test weighing design. Where the nominal value of the weight used to establish whether the whole set has changed is not the same as the largest weight of the test set, the comparison between it and the corresponding weight of the test set is a side measurement and not a part of the surveillance test weighing design.

Where a suitable known weight, other than the weights in the set being tested, is not available, the usual procedure is to base the values found by the surveillance test on the largest weight of the set under test, up to one kilogram. Weights larger than one kilogram may be based on the largest weight of the set. The weighings may be made by either the substitution or the transposition method of weighing [2].

In general, the capacities of the balances selected for surveillance tests should be the smallest available that will accommodate the maximum load to be placed on it. For example, when testing a set of weights ranging from 100g to 1mg, a balance having a capacity of from 100g to 200g would be used for loads from 100g to 20g, and a balance of 20g capacity for loads under 20g. If a balance of say 1g and 2g capacity were available, it would be used for the fractional weights.

2.1 Type I Surveillance Test

In a type I surveillance test, the first measurement is the comparison between the largest weight of the set and a summation of the next smaller weights, from the set, the sum of whose nominal values is equal to that of the largest weight. The next comparison would be between a selected weight from the summation, that is, the summation used in the first comparison, and another summation whose nominal value is equal to that of the selected weight.

This procedure of selecting a weight from each summation and comparing it with a summation of the next smaller weights is repeated until all of the weights of the set have been involved in a comparison. Any given comparison should involve the fewest weights that will permit all of the weights of the set to be included in the chain of comparisons. If a suitable weight having the same nominal value as the largest weight of the set is available for use as a standard, then the first comparison would be between this weight and the largest weight of the set.

If, for example, a set of weights ranging from 100g to lmg is to be tested using the Type I surveillance test procedures where another 100g weight is to be used as a standard, the ratios of the weights to each other are 5, 3, 2, 1. The first comparison would be:

 $100g - S100g = a_1$

The second comparison would be:

 $100g - \Sigma 100g = a_2$ where $\Sigma 100g = 50g + 30g + 20g$

The third comparison would be:

 $20g - \Sigma 20g = a_3$

where $\Sigma 20g = 10g + 5g + 3g + 2g$

This procedure is continued until all of the weights have been compared.

In this example the last comparison would be:

 $3mg - \Sigma 3mg = a_n$

where $\Sigma 3mg = 2mg + 1mg$.

The observed differences in mass values (a_1, a_2, \ldots, a_n) found by these comparisons are compared with the accepted differences, as computed from the reported values, to determine the degree of agreement between the observed and the accepted differences. If the agreement is within the limits for surveillance (see section 3) any indicated changes may be regarded as being insignificant, and the continuing validity of the reported values may be assumed. If the agreement between the observed and the accepted differences is not within the surveillance limits, the indicated changes should be regarded as significant, and the weights exhibiting a significant change should be recalibrated. When the result of a comparison indicates that one or more of the weights has changed significantly, additional measurements are made to identify the weight, or weights, that have changed.

2.2 Type II Surveillance Test

In a Type II surveillance test, the measurements of the first 3-1's weighing design series are between the largest weight of the set, another weight of the same nominal value, and a summation of the next smaller weights from the set also having the same nominal value as the largest weight of the set. The comparisons of the next 3-1's weighing would be between a selected weight from the summation, used in the first 3-1's series, and two other summations, of the next smaller weights, whose nominal values are the same as that of the selected weight. This procedure of selecting a weight from a summation and comparing it with other summations of the next smaller weights according to the 3-1's weighing design is repeated until all of the weights of the set have been involved in the comparisons.

For example, a set ranging from 100g to lmg is to be tested using the Type II surveillance test procedures, where another 100g weight¹ is to be used as a standard. The ratios of the weights to each other are 5, 3, 2, and 1. The first series according to the 3-1's weighing design would be:

	$S100g - 100g = a_1$
	$S100g - \Sigma100g = a_2$
ł	$100g - \Sigma 100g = a_3$
where	S100g is the standard
	100g is the 100g of the set being tested
	$\Sigma 100g = 50g + 30g + 20g$

¹ If a suitable known 100g weight is not available for use as a standard, the first series according to the 3-1's weighing design would be:

 $100g - 100g' = a_1$ $100g - \Sigma 100g - a_2$ $100g' - \Sigma 100g = a_3$

where

100g' is any 100g weight, or a summation whose nominal value is 100g, used to fill the series $\Sigma 100g = 50g + 30g + 20g$. The other series remain as indicated.

The second series would be:

 $30g - \Sigma 30g_1 = a_1$ $30g - \Sigma 30g_2 = a_2$ $\Sigma 30g_1 - \Sigma 30g_2 = a_3$ where $\Sigma 30g_1 = 20g + 10g$ $\Sigma 30g_2 = 20g + 5g + 3g + 2g$

This procedure is continued for each decade until all of the weights in the set have been compared. Unless the set contains an extra lmg weight or another lmg weight whose mass value is known is available, the 3-1's weighing design cannot be used for the last decade. Where the set has only one lmg weight and another is not available to fill the series, the comparisons for the last decade are:

> $5mg - 3mg - 2mg = a_1$ $3mg - 2mg - 1mg = a_2$

These two comparisons are treated as the comparisons in Type I surveillance test. Where the set has two lmg weights, or another lmg weight whose value is known, is available, the last series is:

 $3mg - \Sigma 3mg_1 = a_1$ $3mg - \Sigma 3mg_2 = a_2$ $\Sigma 3mg_1 - \Sigma 3mg_2 = a_3$ where $\Sigma 3mg_1 = 2mg + 1mg_1$ $\Sigma 3mg_2 = 2mg + 1mg_2$

The lmg₂ may be either the second lmg weight of the set or another lmg weight whose mass value is known.

If a weight other than one of the same denomination as the largest weight in the set is used to establish whether or not all the weights of the set have changed proportionately, then some other known weight must be compared to a weight of the set or (e.g. in this case) a known 30g is compared with the 30g of the set.

30g - S30g = a

- 5 -

If this difference agrees with the expected difference as computed from the reported values of the two weights, within the surveillance limit, (see section 3), and the observed differences of the other comparisons are in agreement with the predicted differences, it may be assumed that the set as a whole has not changed significantly.

Because in most of the series used in a Type II surveillance test one of the weights is part of both summations used in a given series, the weighings are made by the substitution method of weighing. For example, in the series involving the 30g weight, $\Sigma 30g_1$, and $\Sigma 30g_2$, the 20g weight is part of both summations.

- 3. SURVEILLANCE LIMITS
- 3.1 Uncertainties of Each of the Summations from the Calibration Process Known [1], [3]

Ideally the surveillance limits are calculated from the standard deviations of the calibration process and surveillance test process as follows:

. (1)

$$s1 = U_c + 3\sigma_d$$

where U_{n} = uncertainty of calibration process

σ_d = standard deviation of one weighing of the surveillance test process

sl = surveillance limit

3.2 Uncertainties for Individuals but not Summations from the Calibration Process Known

Sometimes only the uncertainties associated with the mass values of the weights, as reported in the Calibration Report, are available for estimating the uncertainties of the summations. In this situation, an approximate estimate of the uncertainties is found by taking the square root of the sum of the squares of the uncertainties of the values of the weights in a given comparison [4].

- 6 -

Suppose that the comparison is between a selected weight, W_1 , and a summation consisting of three weights, W_2 , W_3 and W_4 , whose nominal value is equal to that of the selected weight, W_1 . The uncertainty of each value is U_1 , U_2 , U_3 and U_4 respectively.

An approximate estimate of the uncertainty, U_c, for these weights is:

$$U_{c} = \sqrt{U_{1}^{2} + U_{2}^{2} + U_{3}^{2} + U_{4}^{2}}$$
(2)

where U_c is the uncertainty of the calibration mass measurement process and

U_i is the uncertainty for the individual weights as reported on the Report of Calibration.

With this procedure, the expression for the surveillance limit is:

$$s1 = U_c + 3\sigma_d \tag{3}$$

where U is the uncertainty as defined above, and

sl and σ_d have the same meaning as in equation (1).

This process is equally applicable for any number of weights.

For most designs, this procedure gives a somewhat smaller uncertainty than the uncertainties from the calibration process.

3.2.1 Numerical Example

Assume that the following weights and their associated uncertainties are involved in the comparison $100g - \Sigma 100g$.

Weight	Uncertainty
100g	0.015
50g	0.011
30g	0.012
20g	0.010.

- 7 -

$$U_{c} = \sqrt{0.015^{2} + 0.011^{2} + 0.012^{2} + 0.010^{2}}$$

= $\sqrt{0.00025 + 0.000121 + 0.000144 + 0.0001}$
= $\sqrt{0.00059}$
= 0.024 mg

This is an approximate estimate of the uncertainty of the calibration process for this comparison.

Now let us assume that the standard deviation of one weighing of the surveillance test process is 0.015 mg.

Then the surveillance limit, sl, is:

s1 = 0.024 + 3(0.015)

s1 = 0.024 + 0.045

= 0.069 mg

4. Identifying the Weights Which Have Changed

If, in any comparison, the observed difference differs from the predicted value of the difference by more than the surveillance limits for that comparison, the weight, or weights, that have changed must be identified so that they can be recalibrated. The the weights that have changed may be established by identity of general, these additional measurements. additional In measurements are comparisons between the weights making up the summation that was compared with the selected weight.

Suppose, for example, that the observed difference of

 $20g - \Sigma 20g = a$

where $\Sigma 20g = 10g + 5g + 3g + 2g$

differs from the predicted value of the difference by more than the surveillance limits. Assume, also, that the observed differences in the comparison in which the 20g weight was a part of the summation, $100g - \Sigma 100g$, and the comparison in which the 2g weight was the selected weight, $2g - \Sigma 2g$, are in good agreement with their predicted, or accepted, differences as computed from the reported values. This indicates that neither the 20g weight nor the 2g weight have changed significantly. The following measurements are made and their results analyzed to identify the weight, or weights, whose masses have changed:

$$10g - (5g + 3g + 2g) = a'$$

$$5g - (3g + 2g) = a''$$

$$3g - (2g + 1g) = a'''$$

4.1 Analysis of Measurement Results

If a' differs from the predicted value by more than the surveillance limits and a'' and a''' agree with the predicted value within the surveillance limits, it is probable that the 10g weight has changed. If both a' and a'' differ from the corresponding predicted values by more than the surveillance limits by about the same amount, numerically, but with opposite signs, and a''' agrees with the predicted value within the surveillance limit, it is probable that the 5g weight has changed. If a' and a'' differ from the corresponding predicted values by markedly difference amounts which are greater than the corresponding surveillance limits, and a''' agrees with the corresponding predicted value within the surveillance limit, it is probable that both the 10g and the 5g weights have changed.

If a', a'', and a''' all differ from the corresponding predicted values by more than the surveillance limits, but by about the same amount, it is probable that the 3g weight is the one that has changed. If a' and a'' differ from the corresponding predicted values by about the same amount, but a''' differs from the corresponding predicted value by a markedly different amount, it is probable that both the 5g weight and the 3g weights have changed.

If the results of all three measurements differ from the corresponding predicted values by more than the corresponding surveillance limits, by markedly different amounts, it is probable that all three weights have changed and may require recalibration.

If all three (a', a'', and a''') of the observed differences are in good agreement with the predicted differences, it is still possible that the weights involved in either of the comparisons

 $100g - \Sigma 100g = a_1$ or $2g - \Sigma 2g = a_3$

experienced compensating changes in mass, even though the agreement between the observed differences and the were within the surveillance predicted differences limits. However, this is an unlikely situation. But, if it does occur, the weights that have changed may be identified in the manner described for the comparison 20g and Σ 20g weights, as may the weights between the any measurements where the observed involved in difference does not agree with the predicted difference within the surveillance limits.

- 9 -

In any event, if it is determined that several weights of a given set require recalibration (more than, say, three or four weights in a 100g to 1mg set, or more in a larger set) the entire set should be recalibrated.

4.2 Numerical Example

The following numerical example, using difference measurement $20g - \Sigma 20g$, discussed above, illustrates the procedure.

The observed value of the difference:

$$20g - \Sigma 20g = +0.084mg$$

The predicted value is +0.052mg. The surveillance limit is +0.028mg. The difference between the observed value and the predicted value is:

$$+0.084$$
mg - 0.052mg = 0.032mg

This difference exceeds the surveillance limits and indicates that the mass of one or more of the weights involved has changed. Three weighings were made to determine which weight, or weights, have changed. The results of these measurements are:

			Predicted	0
	Observation		Difference	Surveillance Limit
a'	10g - (5g + 3g + 2g) =	·	-0.057 mg	
a''	5g - (3g + 2g) =	-0.065 mg	-0.032 mg	0.018 mg
a'''	3g - (2g + 1g) =	+0.031 mg	+0.034 mg	0.015 mg

Examining these results, we find that the agreement between the observed value and the predicted value for a''' is well within the surveillance limit, thus virtually ruling out any change in the masses of the 3g and 2g weights. But, the observed values for a' and a'' do not agree with the predicted values within the surveillance limits. Further, the observed values for both a' and a'' differ from the predicted values by about the same amount, but with opposite signs.

> For a' -0.025 - (-0.057) = +0.032 mg For a'' -0.065 - (-0.032) = -0.033 mg

Had it been only for a' that the observed value did not agree with the predicted value, within the surveillance limit, it would be logical to conclude that the mass of the 10g weight had changed. But, for both a' and a'', the observed values of the differences do not agree with the predicted values by about the same amount. numerically, though with opposite signs. Therefore, the conclusion is that the mass of the 5g weight has changed because it is involved in both a' and a'', while the 10g weight is involved only in a'. Further, the 5g weight is in opposed positions in the two equations.

5. BUOYANCY CORRECTIONS

Buoyancy corrections are used to account for the difference in the buoyant effect of the air on weights of differing densities [5]. In some instances it will be necessary to apply buoyancy corrections to the measured differences between weights in surveillance tests because the buoyant effect on the weights may mask real changes in their masses, or apparent changes in mass may be indicated when there is no change. This is true whether the computations of the results are made on the true mass or the apparent mass basis. In general, the buoyancy corrections computed on the true mass basis are numerically greater than buoyancy corrections computed on the apparent mass basis when weights having widely different densities are involved in a given comparison.

It is always good practice to compute, at least roughly, the magnitude of the correction to establish the order of magnitude with reference to the uncertainty of the surveillance test measurement [1]. If the correction is not significant, it can be ignored.

5.1 Buoyancy Corrections Computed on True Mass Basis

When the results of the surveillance test weighings are computed on the true mass basis, the expected differences being computed from the reported mass (true mass) values, the true mass buoyancy correction term, $\rho\Delta V$, for the measured difference may be derived from the weighing equation for the difference between two weights. $(M_{C} - \rho V_{C})g - (M_{D} - \rho V_{D})g = ag$ weighing equation (1) where: M_{C} and M_{D} = the masses of weights C and D, respectively V_{C} and V_{D} = the volumes of C and D, respectively, from the Report of Calibration ρ = air density when weighing was made a = the indicated difference in mass units g = acceleration of gravity

The derivation of the buoyancy correction term, $\rho\Delta V$, for the true mass difference between the two masses C and D is:

$(M_{C} - \rho V_{C})g - (M_{D} - \rho V_{D})g = ag$	weighing equation	(1)
$M_{C} - \rho V_{C} - M_{D} + \rho V_{D} = a$	dividing by g	(2)
$M_{C} - M_{D} = a + \rho (V_{C} - V_{D})$	transposing and collecting terms	(3)
$M_{C} - M_{D} = a + \rho \Delta V$	substituting ΔV for $(V_{C} - V_{D})$	(4)

It is better to use the form of the buoyancy correction term, $\rho(V_{C} - V_{D})$, in equation (3) above when computing the buoyancy correction because its sign is more readily apparent. The following example illustrates this.

The measured difference, a, between 2g and $\Sigma 2g$ is 0.0388mg.

tion

 $\rho = 1.17 \text{ mg/cm}^3$

The true mass difference:

$$2g - \Sigma 2g = +0.0388 + 1.17(0.2564 - 0.1884)$$

$$= +0.0388 + 0.0796 = +0.1184 \text{ mg}$$

If volumes are not listed on the Report of Calibration, they may be computed from:

Volume =
$$\frac{Mass}{Density}$$

5.2 Buoyancy Corrections Computed on Apparent Mass Basis

When the results of the weighings are computed on the apparent mass¹ basis [5], the expected differences being computed from the reported apparent mass values, the apparent mass buoyancy correction term, $\Delta\rho\Delta V$, for the measured differences may be derived from the expression for finding the apparent mass when the true mass and the volume are known.

$$AM_{W} = M_{W} - \rho_{n}(V_{W} - V_{R})$$
⁽⁵⁾

where

AM_W = apparent mass value of weight "W" versus the reference material (R)

(R) at 20 °C

 ρ_n = density of normal air V_W = volume of weight "W" at 20 °C V_R = volume of equivalent mass of the reference material

The derivation of the buoyancy correction term, $\Delta \rho \Delta V$, for the apparent mass difference between the weights C and D is:

$$AM_{C} = M_{C} - \rho_{n}(V_{C} - V_{b})$$
(6)

$$AM_{D} = M_{D} - \rho_{n}(V_{D} - V_{b})$$
⁽⁷⁾

¹ In the United States, the apparent mass is usually expressed as apparent mass versus normal brass in normal air. Normal brass is defined as brass having a density of 8.4 g/cm³ at 0 °C and a co-efficient of cubical expansion 0.000054 per degree C. Normal air is defined as air having a density of 1.2 mg/cm³ at 20 °C.

$$AM_{C} - AM_{D} = M_{C} - \rho_{n}(V_{C} - V_{b}) - M_{D} + \rho_{n}(V_{D} - V_{b}) \text{ subtracting (8)}$$

$$AM_{C} - AM_{D} = M_{C} - M_{D} - \rho_{n}V_{C} + \rho_{n}V_{b} + \rho_{n}V_{D} - \rho_{n}V_{b}$$

$$= a + \rho(V_{C} - V_{D}) - \rho_{n}(V_{C} - V_{D}) \text{ substituting a + } \rho(V_{C} - V_{D}) \text{ for } (M_{C} - M_{D}) \quad (9) \text{ (see equation (3))}$$

$$AM_{C} - AM_{D} = a + (\rho - \rho_{n})(V_{C} - V_{D}) \text{ combining terms (10)}$$

$$= a + \Delta\rho\Delta V \qquad \qquad \text{substituting } \Delta\rho\Delta V \text{ for (11)} \text{ } (\rho - \rho_{n})(V_{C} - V_{D}) \text{ here } AM_{C} \text{ and } M_{D} = \text{ the apparent mass of weights C and D}$$

$$M_{C} \text{ and } M_{D} = \text{ the masses of weights C and D}$$

$$V_{C} \text{ and } V_{D} = \text{ the volumes of C and D, respectively, from the Report of Calibration}$$

$$V_{b} = \text{ the volume of equivalent mass of normal brass, the reference material}$$

$$\rho = \text{ the air density when the weighing was made}$$

$$\rho_{n} = \text{ the density of normal air at 20 °C.}$$

It is better to use the form in equation (10) above when computing the buoyancy correction term because its sign is more readily apparent.

The following example illustrates this:

W

٠

The measured difference, a, between 2g and $\Sigma 2g$ is 0.0388 mg.

Weight	Volume					
2 g		0.2564 cm^3	from	Report	of	Calibration
1 g	0.12820 cm^3		11	T	**	17
500 mg	0.03012 cm^3		**	11	**	11
300 mg	0.01807 cm^3		11	**	**	**
200 mg	<u>0.01205 cm</u> ³		"		11	
Σ2 g		0.1884 cm ³			"	н
ρ = 1.	17 mg/cm ³					
$\rho_n = 1.$	20 mg/cm ³					

The apparent mass difference

$$2g - \Sigma 2g = + 0.0388 + (1.17 - 1.20)(0.2564 - 0.1884)$$
$$= + 0.0388 + (-0.03)(0.0680)$$
$$= + 0.0388 - 0.0020$$
$$= + 0.0368 mg$$

5.3 Application of Buoyancy Correction

The buoyancy correction terms derived above are correct when the mass difference and the volume difference of the weights are taken in the same direction. That is, if the difference between the masses of weights C and D is taken as $M_C - M_D$ then their volume difference must be taken as $V_C - V_D$ or the buoyancy correction will have the wrong sign.

If, when assigning a mass value to one of the two weights being compared with each other, the other weight being used as the standard, a buoyancy correction is used, it is essential that the correct sign be used for the buoyancy correction term.

5.3.1 Buoyancy Correction Application for True Mass

Consider the relationship

$$C - D = a + \rho (V_C - V_D)$$
(1)

If D is the standard then

$$C = a + \rho (V_c - V_p) + D$$
 (2)

substituting for a, ρ , V_{C} , and V_{D} and D their values, we get the true mass value of C, provided the true mass value of D was used.

If C, the first weight in the difference, C - D, is the standard (this is the situation in many weighing designs) then,

$$-D = a + \rho (V_{C} - V_{D}) - C$$
$$D = -a - \rho (V_{C} - V_{D}) + C$$
(3)

and

Substituting for a, ρ , V_C , V_D and C their values, we get the true mass value of D, provided the true mass value of C was used.

Note that the sign of the buoyancy correction term in (3) above is minus. This application is illustrated on the computation sheet for the 3-1's weighing design.

5.3.2 Buoyancy Correction Application for Apparent Mass

Consider the relationship

$$C - D = a + (\rho - \rho_n) (V_C - V_D)$$
 (4)

If D is the standard, then

$$C = a + (\rho - \rho_{\rm p})(V_{\rm C} - V_{\rm p}) + D$$
 (5)

Substituting for a, ρ , ρ_n , V_C , V_D , and D their values, we get the apparent mass value of C, provided the apparent mass value of D was used.

If C, the first weight in the difference, C - D, is the standard (this is the situation in many weighing designs) then,

$$-D = a + (\rho - \rho_{n})(V_{C} - V_{D}) - C$$

and

$$D = -a - (\rho - \rho_n) (V_C - V_D) + C$$
 (6)

Substituting for a, ρ , ρ_n , V_C , V_D and C their values, we get the apparent mass value of D, provided the apparent mass value of C was used.

Note that the sign of the buoyancy correction term in (6) above is minus. This application is illustrated on the computation sheets for the 3-1's weighing design as used in the example for the Type II surveillance test (see appendix 2).

- 16 -

6. RECORDS

Records are an essential part of any measurement program. In a surveillance test program, adequate records are necessary to document the continuing validity of the reported mass values and to realize the full value of the program. Such records may be simple, or elaborate, as long as they contain the information needed to document the claimed validity of the mass values. Α notebook or card file should be maintained containing a description of the test system. This should include a statement of the procedures, a list of standards (if any) and weighing instruments, test intervals, and a tabulation of the accumulated of tests. The records should also include the identity results of the weights, the expected, or predicted, values of the differences measured as computed from the reported values, and the surveillance limits. The calibration report should be an integral part of the records. In addition, where the Type II Surveillance Test is used, the estimate of the standard deviation should be compared for each 3-1's series, compared with the long term estimate of the standard deviation and recorded. This information, combined with the original data sheets, forms an adequate record. A large operation may require a more elaborate record keeping system.

Control charts [3] similar to the one illustrated on page 18 are a useful addition to the surveillance test records. Control charts show more readily than tabulations whether a trend in the values of the differences being measured is developing. Such trends, when detected, can signal the need for recalibration before the values of the mass standards become invalid.

7.SURVEILLANCE TEST INTERVAL

The purpose of surveillance test procedures is to assure continuing validity of the values contained in the calibration report and to prevent, or at least minimize, the possibility of using the weights as standards when their reported values are no longer valid. But, when and how frequently should the surveillance test procedures be used in order to achieve this goal? Because of the many variables affecting the stability of the weights, such as the type of weights, the use to which the weights are put, the care they receive, etc., a categorical answer covering all situations cannot be given.

SURVEILLANCE TEST CONTROL CHART

SET RANGE: 100g - 1g CALIBRATION TEST NO. NBS 200390

		1	T TI	E	XPE			SU			ANC	E		• : •		l i i							1.1.1	1::!	÷.:	
COMPAR	ISON		•••		DI	FF.		-	LI	MI							••••									MG
				 					•			-							<u>!:</u>	•						
									.02	6	3					i		•		-						. 020
								+0	.02										1.							+.020
																					<u> </u> ! · :					
-100g	- SI(00g		0	.04	0	•		· · · ·																	
													• <u>•</u> ••								· · · · ·					
																	:	-	•					titi Thir		
								-0	.10	0	•				• •		-									100
	- <u>-</u>		, , , , , , , , , , , , , , , , , , ,										-													
												-														1
																	-									
								+0	-0€	4												† :				+.005
															::: 											
					•									· · ·		• =		· · · · · · · · · · · · · · · · · · ·				· · · ·				
100					.06		0		-1								• • • •									
-100g	- 21	uug		-0	.00			•		i.						. .		•			-]
	1	1		•	• •		1										•]
											Q.															 13 ⁴
							-		.15	4				· · ·	1.					•						
								+0	.07	96	0		• •					-								+.07
		-					+						• † .										1			
			1				† †													•					• • • •	
							+ !.						+ ·= ·			Ti -										
		-			 -											-										1
									- . .				• •	÷ •:		••••										
	- 22	dg	1	ŧ0.	051	6-	•	<u> </u>		+	+	+	1	 	+				•							4
				-:-						 .		ŧ		1 1												
		•	+							 		ł —		<u> </u>				<u> </u>					1:::			-
	•						÷ .	· ·		•••			•								l. 1					
								+	 -			+	: 			+'-					<u> </u>		+			
_	• • •			1 ·							1		•				-						-		.	
·			+	+	; ;:	-	:	0). O:	36	9	-]										• • •	+.0:
	* * *		: .					- (0.04	9	5					+							+			+.0:
	· · · ·	+	·	 			-						•	-	1	ļ	4 -				 - 		ļ			
							1						•		 				i				i I			
	- Σ3	8	· · · · · ·	7 0'.	037	0	: শু		:		1		:				1				1			ļ	i 1	1
- 9		1											:						• • • • ()	į.				· · · .	ļ	
							; ; - · · ·										 			ļ	ļ			 		
		-			• •		•	-(5.0	19	: ;@-		: +						 							+.0
	÷ •		1	1	1	1	1	1	1 :			1	1	1	1 .		!	1	1	1	1 .	1		1	1	1

The following suggestions, where they are applicable, may serve as general guide lines for the use of surveillance tests and the interval between surveillance tests.

- 1. Immediately upon the receipt of a newly calibrated set of weights, comparisons should be made to verify the values reported.
- If this is a set for which no history exists, the comparisons should be repeated monthly, or bimonthly until the degree of stability of the weights has been demonstrated.
- 3. Where sufficient information about a set of weights has been developed to predict their performance with some degree of certainty, this information may be used in determining the interval between surveillance tests.
- 4. If there has been an accident with the weights, such as dropping them on the floor, at least the weights involved in the accident should be given a surveillance test before being used as standards to be sure that their reported values are still valid.
- 5. If a facility performs a large number of calibrations, its procedures should provide "built-in" checks on standards and if the standards checked on are part of the set in question, the information developed from these "built-in" checks can be used to determine when a surveillance test is needed.
- Where the number of calibrations performed is small, the standards may be given a surveillance test just prior to using the standards in the calibration of other weights.

- 19

REFERENCES

- Pontius, P. E., Measurement Philosophy of the Pilot Program for Mass Calibration, Nat. Bur. Stand. (U.S.), Tech. Note 288, 39 pages (1968).
- [2] Almer, H. E., Method of Calibrating Weights for Piston Gages, Nat. Bur. Stand. (U.S.), Tech. Note 577, 49 pages (1971).
- [3] Pontius, P. E., Cameron, J. M., Realistic Uncertainties and The Mass Measurement Process, Nat. Bur. Stand. (U.S.), Monogr. 103, 17 pages (1967).
- [4] Youden, W. J., Statistical Methods for Chemists, John Wiley & Sons, New York (1541).
- [5] Nat. Bur. Stand. (U.S.), Handbook 77, Precision Measurement and Calibration, Volume III, Optics, Metrology and Radiation, Circular 3, pp. 671/53 to 683/65. This handbook is available for reference in most Government Depository Libraries throughout the United States.

APPENDIX I. WEIGHING DESIGNS FOR SURVEILLANCE TESTS

The weighing design used in a given surveillance test depends on the range of the set and ratio of the weights in the set to each other. Some suggested weighing designs for weight sets having 5, 3,2,1; 5,2,2,1 and 5,2,1,1, Σ 1 ratios are shown for various ranges. Other designs may be developed by using the principles outlines in section 2 for situations where the suggested weighing designs do not apply. The surveillance test weighing designs are shown with metric units of mass. But with a given design, customary units of mass can be substituted for the metric units, provided the ratios of the weights to each other are the same in both systems.

Set - Range: 1kg to 1mg

Ratio 5, 3, 2, 1

 $1 \text{kg} - \text{S1kg} = a_1 \star$ S1kg = Standard 1kg $1 \text{kg} - \Sigma 1 \text{kg} = a_2$ $\Sigma 1 kg = 500g + 300g + 200g$ $200g - \Sigma 200g = a_{2}$ $\Sigma 200g = 100g + 50g + 30g + 20g$ $20g - \Sigma 20g = a_{\mu}$ $\Sigma 20g = 10g + 5g + 3g + 2g$ $2g - \Sigma 2g = a_5$ $\Sigma 2g = 1g + 500mg + 300mg + 200mg$ $200 \text{mg} - \Sigma 200 \text{mg} = a_{6}$ $\Sigma 200 \text{mg} = 100 \text{mg} + 50 \text{mg} + 30 \text{mg} + 20 \text{mg}$ $20 \text{mg} - \Sigma 20 \text{mg} = a_7$ $\Sigma 20mg = 10mg + 5mg + 3mg + 2mg$ $3mg - \Sigma 3mg = a_g$ $\Sigma 3mg = 2mg + 1mg$

* If a known lkg weight suitable for use as a standard is not available, this "a" is omitted and lkg - Σ lkg becomes the first "a", 200g - Σ 200g = a₂, 20g - Σ 20g = a₃, etc.

Set - Range: 100g to 1mg Ratio: 5, 3, 2, 1 $100g - S100g = a_1 *$ S100g = Standard 100g Weight $100g - \Sigma 100g = a_2$ $\Sigma 100g = 50g + 30g + 20g$ $20g - \Sigma 20g = a_3$ $\Sigma 20g = 10g + 5g + 3g + 2g$ $2g - \Sigma 2g = a_{\mu}$ $\Sigma 2g = 1g + 500mg + 300mg + 200mg$ $200 \text{mg} - \Sigma 200 \text{mg} = a_{5}$ $\Sigma 200 \text{mg} = 100 \text{mg} + 50 \text{mg} + 30 \text{mg} + 20 \text{mg}$ $20mg - \Sigma 20mg = a_6$ $\Sigma 20 \text{mg} = 10 \text{mg} + 5 \text{mg} + 3 \text{mg} + 2 \text{mg}$ $3mg - \Sigma 3mg = a_7$ 3mg = 2mg + 1mg

For sets in which the smallest weight is lg, the last "a" would be:

- $3g \Sigma 3g = a$ $\Sigma 3g = 2g + 1g$
- * If a known 100g weight suitable for use as a standard is not available, this "a" is omitted and 100g Σ 100g becomes the first "a", 20g Σ 20g = a₂, etc.

Ratio: 5, 2, 2, 1 Set - Range: 1kg to 1mg $1 \text{kg} - \text{S1kg} = a_1 *$ S1kg = Standard 1kg Weight $1 \text{kg} - \Sigma 1 \text{kg} = a_2$ $\Sigma 1 \text{kg} = 500 \text{g} + 200 \text{g}_1 + 200 \text{g}_2 + 100 \text{g}_2$ $100g - \Sigma 100g = a_3$ $\Sigma 100g = 50g + 20g_1 + 20g_2 + 10g$ $10g - \Sigma 10g = a_4$ $\Sigma 10g = 5g + 2g_1 + 2g_2 + 1g$ $1g - \Sigma 1g = a_5$ $\Sigma 1g = 500 \text{mg} + 200 \text{mg}_1 + 200 \text{mg}_2 + 100 \text{mg}_3$ $100 \text{mg} - \Sigma 100 \text{mg} = a_{\text{f}}$ $\Sigma 100 \text{mg} = 50 \text{mg} + 20 \text{mg}_1 + 20 \text{mg}_2 + 10 \text{mg}_2$ $10 \text{mg} - \Sigma 10 \text{mg} = a_7$ $\Sigma 10 mg = 5 mg + 2 mg_1 + 2 mg_2 + 1 mg_3$

* If a known lkg weight suitable for use as a standard is not available, this "a" is omitted and lkg - Σ lkg becomes the first "a", and 100g - Σ 100g = a_2 , 10g - Σ 10g = a_3 , etc.

Set - Range: 100g - lmg Ratio: 5, 2, 2, 1 $100g - S100g = a_1^*$ S100g = Standard 100g Weight $100g - \Sigma100g = a_2$ $\Sigma100g = 50g + 20g_1 + 20g_2 + 10g$ $10g - \Sigma10g = a_3$ $\Sigma10g = 5g + 2g_1 + 2g_2 + 1g$ $lg - \Sigmalg = a_4$ $\Sigmalg = 500mg + 200mg_1 + 200mg_2 + 100mg$ $100mg - \Sigma100mg = a_5$ $\Sigma100mg = 50mg + 20mg_1 + 20mg_2 + 10mg$ $10mg - \Sigma10mg = a_6$ $\Sigma10mg = 5mg + 2mg_1 + 2mg_2 + 1mg$

For the set in which the smallest weight is lg, the last "a" would be:

 $5g - \Sigma 5g = a$ $\Sigma 5g = 2g_1 + 2g_2 + 1g$

* If a known 100g weight suitable for use as a standard is not available, this "a" is omitted and 100g - Σ 100g becomes the first "a", and 10g - Σ 10g = a₂, etc.

Set - Range: 30kg - 1mg Ratio: 5, 3, 2, 1 $30 \text{kg} - \Sigma 30 \text{kg} = a_1$ $\Sigma 30 \text{kg} = 20 \text{kg} + 10 \text{kg}$ $10 \text{kg} - \Sigma 10 \text{kg} = a_2$ $\Sigma 10 \text{kg} = 5 \text{kg} + 3 \text{kg} + 2 \text{kg}$ $2kg - \Sigma 2kg = a_3$ $\Sigma 2 kg = 1 kg_1 + 1 kg_2$ $1 \text{kg}_1 - \Sigma 1 \text{kg} = a_4$ $\Sigma 1 kg = 500g + 300g + 200g$ $200g - \Sigma 200g = a_5$ $\Sigma 200g = 100g + 50g + 30g + 20g$ $20g - \Sigma 20g = a_6$ $\Sigma 20g = 10g + 5g + 3g + 2g$ $2g - \Sigma 2g = a_7$ $\Sigma 2g = 1g + 500mg + 300mg + 200mg$ $200 \text{mg} - \Sigma 200 \text{mg} = a_8$ $\Sigma 200 \text{mg} = 100 \text{mg} + 50 \text{mg} + 30 \text{mg} + 20 \text{mg}$ $20mg - \Sigma 20mg = a_q$ $\Sigma 20mg = 10mg + 5mg + 3mg + 2mg$ $2mg - \Sigma 2mg = a_{10}$ $\Sigma 2mg = 1mg_1 - 1mg_2$

Set - Range: 100g - lmg Ratio: 5, 2, 1, 1, 51 $100g - 5100g = a_1*$ 5100g = 5tandard 100g weight $100g - 5100g = a_2$ $50g + 20g + 10g_1 + 10g_2 + 510g$ $10g_1 - 510g = a_3$ $510g = 5g + 2g + 1g_1 + 1g_2 + 51g$ $1g_1 - 51g = a_4$ $51g = 500mg + 200mg + 100mg_1 + 100mg_2 + 5100mg$ $100mg_1 - 5100mg = a_5$ $50mg + 20mg + 10mg_1 + 10mg_2 + 510mg$ $10mg_1 - 510mg = a_6$ $510mg = 5mg + 2mg + 1mg_1 + 1mg_2 + 1mg_3$

When comparing the unit of weight of a given decade of weights with summation of smaller weights from a weight set in which the ratio of the weights to each other 5, 2, 1, 1, 1, it is necessary to include all of the set's weights smaller than the unit weight to which summation is being compared. For example: in the comparison $100g - \Sigma 100g$, the $\Sigma 100g$ includes all of the weights in the set smaller than 100g; and in the comparison $10g - \Sigma 10g$ the $\Sigma 10g$ includes all of the weights smaller than 10g and so on.

* If a known 100g weight suitable for use as a standard is not available, this "a" is omitted and $100g - \Sigma 100g$ becomes the first "a" and $10g - \Sigma 10g = a_2$, etc.

Design 7		
Set – Range: 1kg	to lmg	Ratio: 5, 3, 2, 1
Series l	Slkg - lkg = a_1^* Slkg - Σ lkg = a_2 lkg - Σ lkg = a_3	
	Slkg = Standard lkg Σ lkg = 500g + 300g + 200g	
Series 2	$300g - \Sigma 300g_1 = a_1$ $300g - \Sigma 300g_2 = a_2$ $\Sigma 300g_1 - \Sigma 300g_2 = a_3$	
	$\Sigma 300g_1 = 200g + 100g$ $\Sigma 300g_2 = 200g + 50g + 30g + 20g$	g
Series 3	$30g - \Sigma 30g_1 = a_1$ $30g - \Sigma 30g_2 = a_2$ $\Sigma 30g_1 - \Sigma 30g_2 = a_3$	
	$\Sigma 30g_1 = 20g + 10g$ $\Sigma 30g_2 = 20g + 5g + 3g + 2g$	
Series 4	$3g - \Sigma 3g_1 = a_1$ $3g - \Sigma 3g_2 = a_2$ $\Sigma 3g_1 - \Sigma 3g_2 = a_3$ $\Sigma 3g_1 = 2g + 1g$ $\Sigma 3g_2 = 2g + 500mg + 300mg + 2$	OOmg

 $300 \text{mg} - \Sigma 300 \text{mg}_1$ Series 5 = a₁ $-\Sigma 300 \text{mg}_2 = a_2$ 300mg $\Sigma 300 \text{mg}_1 - \Sigma 300 \text{mg}_2 = a_3$ $\Sigma 300 mg_1 = 200 mg + 100 mg$ $\Sigma 300 \text{mg}_2 = 200 \text{mg} + 50 \text{mg} + 30 \text{mg} + 20 \text{mg}$ $30 \text{mg} - \Sigma 30 \text{mg}_1$ Series 6 = a₁ $-\Sigma 30 \text{mg}_2 = a_2$ 30mg $\Sigma 30 \text{mg}_1 - \Sigma 30 \text{mg}_2 = a_3$ $\Sigma 30 \text{mg}_1 = 20 \text{mg} + 10 \text{mg}$ $\Sigma 30 \text{mg}_2 = 20 \text{mg} + 5 \text{mg} + 3 \text{mg} + 2 \text{mg}$ Series 7 $3mg - \Sigma 3mg_1 = a_1$ $-\Sigma 3mg_2 = a_2$ 3mg $\Sigma 3mg_1 - \Sigma 3mg_2 = a_3$ $\Sigma 3mg_1 = 2mg + 1mg_1$ $\Sigma 3 mg_2 = 2mg + 1mg_2 **$

* If a known lkg weight, suitable for use as a standard is not available, any lkg or Σlkg may be used to fill the series. Then the lkg of the set is used as the standard and the first series of measurements is:

```
lkg - lkg' = a_1lkg - \Sigma lkg = a_2lkg' - \Sigma lkg = a_3
```

where lkg' is either the lkg weight or the Σlkg used to complete the series.

** The lmg, is an extra lmg weight used to fill the last series.

Design 8	
Series - Range:	00g to 1mg Ratio: 5, 3, 2, 1
Series 1	$S100g - 100g = a_1^*$
	$S100g - \Sigma100g = a_2$
	$100g - \Sigma 100g = a_3$
	$\Sigma 100g = 50g + 30g + 20g$
Series 2	$30g - \Sigma 30g_1 = a_1$
	$30g - \Sigma 30g_2 = a_2$
	$\Sigma 30g_1 - \Sigma 30g_2 = a_3$
	$\Sigma 30g_1 = 20g + 10g$
	$\Sigma 30g_2 = 20g + 5g + 3g + 2g$
Series 3	$3g - \Sigma 3g_1 = a_1$
	$3g - \Sigma 3g_2 = a_2$
	$\Sigma 3g_1 - \Sigma 3g_2 = a_3$
	$\Sigma 3g_1 = 2g + 1g$
	$\Sigma 3g_2 = 2g + 500mg + 300mg + 200mg$
Series 4	$300 \text{mg} - \Sigma 300 \text{mg}_1 = a_1$
	$300 \text{mg} - \Sigma 300 \text{mg}_2 = a_2$
	$\Sigma 300 \text{mg}_1 - \Sigma 300 \text{mg}_2 = a_3$
	$\Sigma 300 mg_1 = 200 mg + 100 mg$
	$\Sigma 300 \text{mg}_2 = 200 \text{mg} + 50 \text{mg} + 30 \text{mg} + 20 \text{mg}$

$30 \text{mg} - \Sigma 30 \text{mg}_1 = a_1$
$30 \text{mg} - \Sigma 30 \text{mg}_2 = a_2$
$\Sigma 30 \text{mg}_1 - \Sigma 30 \text{mg}_2 = a_3$
$\Sigma 30 \text{mg}_1 = 20 \text{mg} + 10 \text{mg}$
$\Sigma 30 \text{mg}_2 = 20 \text{mg} + 5 \text{mg} + 3 \text{mg} + 2 \text{mg}$
$3mg - \Sigma 3mg_1 = a_1$
$3mg - \Sigma 3mg_2 = a_2$
$\Sigma 3mg_1 - \Sigma 3mg_2 = a_3$
$\Sigma 3mg_1 = 2mg + 1mg_1$
$\Sigma 3mg_2 = 2mg + 1mg_2 **$

* If a known 100g weight suitable for use as a standard is not available, any 100g weight or $\Sigma100$ g weight may be used to fill the first series. Then the 100g of the set is used as the standard and the first series of measurement is:

100g	-	100g'	=	al	
100g	-	Σ100g	=	a ₂	
100g'	-	Σ100g	=	a ₃	

where 100g' is either the 100g or the Σ 100g used to complete the series.

** The lmg₂ is an extra lmg weight used to fill the last series.

1e

Set - Range: 1kg to 1mg Ratio: 5, 2, 2, 1 Series 1 $S1kg - 1kg = a_1^*$ S1kg $-\Sigma$ 1kg = a_2 $1 \text{kg} - \Sigma 1 \text{kg} = a_3$ $\Sigma 1 \text{kg} = 500\text{g} + 200\text{g}_1 + 200\text{g}_2 + 100\text{g}_2$ $200g_1 - 200g_2 = a_1$ Series 2 $-\Sigma 200g = a_2$ 200g1 $200g_2 - \Sigma 200g = a_3$ $\Sigma 200g = 1.00g + 50g + 20g_1 + 20g_2 + 10g$ $20g_1 - 20g_2 = a_1$ Series 3 $-\Sigma 20g = a_2$ 20g1 $20g_{2} - \Sigma 20g = a_{3}$ $\Sigma 20g = 10g + 5g + 2g_1 + 2g_2 + 1g$ Series 4 $2g_1 - 2g_2 = a_1$ $2g_1 - \Sigma 2g = a_2$ $2g_2 - \Sigma 2g = a_3$ $\Sigma 2g = 1g + 500mg + 200mg_1 + 200mg_2 + 100mg_2$

Series 5	$200 \text{mg}_1 - 200 \text{mg}_2 = a_1$
	$200 \text{mg}_1 - \Sigma 200 \text{mg} = a_2$
	$200 \text{mg}_2 - \Sigma 200 \text{mg} = a_3$
	$\Sigma 200 \text{mg} = 100 \text{mg} + 50 \text{mg} + 20 \text{mg}_1 + 20 \text{mg}_2 + 10 \text{mg}_2$
Series 6	$20mg_1 - 20mg_2 = a_1$
	$20 \text{mg}_1 - \Sigma 20 \text{mg} = a_2$
	$20 \text{mg}_2 - \Sigma 20 \text{mg} = a_3$
	$\Sigma 20mg = 10mg + 5mg_1 + 2mg_1 + 2mg_2 + 1mg$
Series 7	$2mg_1 - 2mg_2 = a_1$
	$2mg_1 - \Sigma 2mg = a_2$
	$2mg_2 - \Sigma 2mg = a_3$
	$\Sigma 2mg = 1mg_1 + 1mg_2 **$

* If a known lkg weight suitable for use as a standard is not available, any lkg weight or Σlkg weight may be used to fill the series. Then the lkg of the set is used as the standard and the first series of measurements is:

1kg	-	1kg'	=	al
1kg	-	Σlkg	=	a ₂
lkg'	-	Σlkg	=	aa

where lkg' is either the lkg weight or the Elkg used to complete the series.

** The lmg₂ is an extra lmg weight used to fill the last series.

- 33 -

Series 1

Set - Range: 30kg to 1mg

 $30 \text{kg} - \Sigma 30 \text{kg}_1 = a_1$ $30 \text{kg} - \Sigma 30 \text{kg}_2 = a_2$ $\Sigma 30 \text{kg}_1 - \Sigma 30 \text{kg}_2 = a_3$ $\Sigma 30 \text{kg}_1 = 20 \text{kg} + 10 \text{kg}$ $\Sigma 30 \text{kg}_2 = 20 \text{kg} + 5 \text{kg} + 3 \text{kg} + 2 \text{kg}$

Ratio: 5, 3, 2, 1

Series 2 $3kg - \Sigma 3kg_{1} = a_{1}$ $3kg - \Sigma 3kg_{2} = a_{2}$ $\Sigma 3kg_{1} - \Sigma 3kg_{2} = a_{3}$ $\Sigma 3kg_{1} = 2kg + 1kg.$ $\Sigma 3kg_{2} = 2kg + 1kg.$

Series 3 $lkg. - lkg.. = a_1$ $lkg. - \Sigma lkg = a_2$ $lkg.. - \Sigma lkg = a_3$

 $\Sigma 1 kg = 500g + 300g + 200g$

Series	4	300g	-	Σ300g ₁	= a ₁		
		300g	-	Σ300g ₂	= a ₂		
		Σ300g ₁	-	Σ300g ₂	= a ₃		
		Σ300g ₁	=	200g +	100g		
		$\Sigma 300g_2$	-	200g +	50g +	30g +	20g

Series 5	$30g - \Sigma 30g_{1} = a_{1}$ $30g - \Sigma 30g_{2} = a_{2}$ $\Sigma 30g_{1} - \Sigma 30g_{2} = a_{3}$ $\Sigma 30g_{1} = 20g + 10g$ $\Sigma 30g_{2} = 20g + 5g + 3g + 2g$
Series 6	$3g - \Sigma 3g_{1} = a_{1}$ $3g - \Sigma 3g_{2} = a_{2}$ $\Sigma 3g_{1} - \Sigma 3g_{2} = a_{3}$ $\Sigma 3g_{1} = 2g + 1g$ $\Sigma 3g_{2} = 2g + 500mg + 300mg + 200mg$
. 1	
Series 7	$300 \text{mg} - \Sigma 300 \text{mg}_1 = a_1$
	$300 \text{mg} - \Sigma 300 \text{mg}_2 = a_2$
	$\Sigma 300 \text{mg}_1 - \Sigma 300 \text{mg}_2 = a_3$
	$\Sigma 300 \text{mg}_1 = 200 \text{mg} + 100 \text{mg}$
	$\Sigma 300 \text{mg}_2 = 200 \text{mg} + 50 \text{mg} + 30 \text{mg} + 20 \text{mg}$
Series 8	$30 \text{mg} - \Sigma 30 \text{mg}_1 = a_1$
	$30 \text{ mg} - \Sigma 30 \text{ mg}_2 = a_2$
	$\Sigma 30 \text{mg}_1 - \Sigma 30 \text{mg}_2 = a_3$
	$\Sigma_{20ma} = 20ma \pm 10ma$
	$\Sigma 30 \text{mg}_1 = 20 \text{mg} + 10 \text{mg}$ $\Sigma 30 \text{mg}_1 = 20 \text{mg} + 5 \text{mg}_2 + 2 \text{mg}_3 + 2 \text{mg}_3$
	$\Sigma 30 \text{mg}_2 = 20 \text{mg} + 5 \text{mg} + 3 \text{mg} + 2 \text{mg}$
Series 9	$3mg - \Sigma 3mg_1 = a_1$
	$3mg - \Sigma 3mg_2 = a_2$
	$\Sigma 3mg_1 - \Sigma 3mg_2 = a_3$
	$\Sigma 3mg_1 = 2mg + 1mg_1$
	$\Sigma 3 mg_2 = 2 mg + 1 mg_2$

Type I Surveillance Test Example

Example of a Type I surveillance test for a set of metric mass standards according to design 2, appendix 1. This set was calibrated by the National Bureau of Standards. The National Bureau of Standards Report of Calibration Test No. 200390 is reproduced on pages 45-48. The standards used (other than the set) are listed below together with their apparent mass corrections and The balances used and their standard deviation uncertainties. for one double substitution weighing are also listed. The double substitution weighing method is used. The standard deviation of the calibration mass measurement process is not known, so an estimate is computed from the reported uncertainties, as described in section 3.2, and used in computing the surveillance limits.

Standards	Apparent Mass Corr. (mg)	Volume (cm ³)	Uncertainty (mg)
S100 g	- 0.019	12.822	0.015
h 10mg	+ 0.0450	0.0037	0.0006
h 5mg	+ 0.0045	0.0018	0.0005

Balance Laboratory Designation	Standard Deviation (mg)	Capacity (g)
H - 200	0.015	200g
M - 10	0.003	20g

In the following, " U_s " will denote the uncertainty of the standard and "S.D." the standard deviation of the process:

100g - S100g For $U_s = 0.015 \text{mg}$ S.D. = 0.015mg s1 = 0.015 + 3(0.015) = 0.060 mg

In the following, "U_c" will denote the uncertainty (see Equation (2) Page 7, and "S.D." the standard deviation of the process:

For
$$100g - \Sigma 100g$$

 $U_c = \sqrt{.015^2 + .011^2 + .012^2 + .010^2}$
 $= \sqrt{.000225 + .000121 + .000144 + .0001}$
 $= \sqrt{.00059}$
 $U_c = 0.024mg$
S.D. = 0.015mg
s1 = 0.024 + 3(0.015) = 0.069mg
For $20g - \Sigma 20g$

F

$$U_{c} = \sqrt{.010^{2} + .013^{2} + .007^{2} + .004^{2} + .003^{2}}$$

= $\sqrt{.0001 + .000169 + .000049 + .000016 + .000009}$
= $\sqrt{.000343}$.
$$U_{c} = 0.019 \text{ mg}$$

S.D. = 0.003 mg
s1 = 0.019 + 3(0.003) = 0.028 mg

For
$$2g = 22g$$

 $u_c = \sqrt{.0032^2 + .0030^2 + .0016^2 + .0011^2 + .0008^2}$
 $= \sqrt{.00001 + .000009 + .00000256 + .0000012 + .00000064}$
 $= \sqrt{.00002341}$
 $u_c = 0.0048$
S.D. = 0.003mg
s1 = 0.0048 + 3(0.003) = 0.014mg
For 200mg - $\Sigma 200mg$
 $u_c = \sqrt{.0008^2 + .0008^2 + .0005^2 + .0005^2 + .0005^2}$
 $= \sqrt{.00000064 + .00000064 + .00000025 + .00000025 + .00000025}$
 $= \sqrt{.00000203}$
 $u_c = 0.0014mg$
S.D. = 0.003mg
s1 = 0.0014 + 3(0.003) = 0.010mg
For 20mg - $\Sigma 20mg$
 $u_c = \sqrt{.00000272 + .00059^2 + .00049^2 + .00052^2 + .00045^2}$
 $= \sqrt{.00000176 + .000000348 + .000000240 + .000000270 + .00000020}$
 $= \sqrt{.00001234}$
 $u_c = 0.0011mg$
S.D. = 0.003mg
s1 = 0.0011 + 3(0.003) = 0.010mg

For
$$3mg = 2.3mg$$

 $U_c = \sqrt{.00052^2 + .00045^2 + .00059^2}$
 $= \sqrt{.000000270 + .000000202 + .000000349}$
 $= \sqrt{.00000082}$.
 $U_c = 0.00091mg$
S.D. = 0.003mg

s1 = 0.00091 + 3(0.003) = 0.0099mg

For the weighings made on the smaller balance, the uncertainty of the values of the weights is small compared to the standard deviation of that balance. Therefore, for all practical purposes, three times the standard deviation of the balance may be taken as the surveillance limit for these weighings. The buoyancy corrections, $\Delta p \Delta V$, are computed according to the procedure set forth in section 5.2, using the formula:

buoyancy correction = $(\rho - \rho_n)(V_c - V_p)$ Consider the weighing 100g - S100g = a where $\rho = 1.17 \text{mg/cm}^3$ air density at time of weighing $\rho_n = 1.20 \text{mg/cm}^3$ density of normal air $V_c = 12.821 \text{cm}^3$ volume of 100g weight of set under test, from Report of Calibration $V_p = 12.822 \text{cm}^3$ volume of S100g standard buoyancy correction = (1.17 - 1.20)(12.821 - 12.822) = (-0.03)(-0.001)= +0.00003 mg

This amount is insignificant compared to the surveillance limit of 0.060mg and may be ignored. Similarly, the differences in the volumes in the weighings $100g - \Sigma 100g$ and $20g - \Sigma 20g$ are small enough so that the buoyancy corrections are negligible. But, in the weighings $2g - \Sigma 2g$ and $200mg - \Sigma 200mg$ weights of differing densities are involved. Consequently, the volumes of the individual weight and the summation of weights are different.

The volumes are:

For the weighing $2g - \Sigma 2g$:

 Weights
 Volumes

 2g
 0.2564cm³

 1g
 0.1282cm³

 500mg
 0.0301cm³

 300mg
 0.0181cm³

 200mg
 0.0120cm³

 Σ2g
 0.1884cm³

The actual air density, ρ , is the same as for $100g - \Sigma 100g$.

buoyancy correction = (1.17 - 1.20)(0.2564 - 0.1884)= (-0.03)(+.0680)= -0.0020mg

This buoyancy correction, while relatively small compared to the surveillance limit, is not insignificant and must be applied to the measured difference between 2g and $\Sigma 2g$.

For the weighing $200mg - \Sigma 200mg$:

Weights	Volumes
200mg	0.01205cm ³
50mg 30mg	0.00602 cm ³ 0.00301 cm ³ 0.01111 cm ³ 0.00741 cm ³
Σ200mg	0.02755cm ³
<pre>buoyancy correction =</pre>	(1.17 - 1.20) (0.01205- 0.02755)
=	(-0.03) (+0.01550)
=	-0.00046mg

This buoyancy correction is small compared to the surveillance limits for this comparison and in most cases can be ignored.

For the weighing $20mg - \Sigma 20mg$:

<u>Weights</u>	Volumes
20mg	0.00741cm ³
10mg	0.00371cm ³
5mg	0.00185cm ³
3mg	0.00111cm ³
2mg	0.00074cm ³

Σ20mg

 0.00741cm^{3}

The volumes of the two masses are equal, therefore the buoyancy correction is zero.

For the weighing $3mg - \Sigma 3mg$:

Weights

3mg

0.00111 cm³

Volumes

2mg 0.00074cm³ 1mg 0.00037cm³

Σ3mg

0.00111cm³

The volumes of the two masses are equal, therefore the buoyancy correction is zero. The expected differences are computed from the reported values as follows: (see report on page 47).

For the weighing 100g - S100g:

Weights	Values			
	100g	S100g		
100g	-0.058mg			
S100g		-0.019mg		
Sums	-0.058mg	-0.019mg		
Expected Diff. =	-0.039mg			

For the weighing $100g - \Sigma 100g$:

Weights	Value	Values		
	100g	Σ100g		
100g	-0.0589mg			
50g		-0.0133mg		
30 g		-0.0134mg		
20g		+0.0330mg		
Sums	-0.0589mg	+0.0063mg		
Expected Diff	= -0.065 mg			

For the weighing $20g - \Sigma 20g$:

Weights	Values		
	20g	Σ20g	
20g	+0.0330mg		
10g		-0.0378mg	
5g		-0.0065mg	
3g		+0.0191mg	
2g		+0.0066mg	
Sums	+0.0330mg	-0.0186mg	
Expected Diff	$= \pm 0.051 \text{fm} \alpha$		

Expected Diff. = +0.0516mg

For the weighing $2g - \Sigma 2g$:

Weights	Values		
	2g	Σ2g	
2g	+0.0066mg		
1g		-0.0216mg	
500mg		-0.0005mg	
300mg		-0.0041mg	
200mg		-0.0049mg	
Sums	+0.0066mg	-0.0311mg	
Expected Diff. =	= +0.0377mg		

.

For the weighing $200 \text{mg} - \Sigma 200 \text{mg}$:

<u>Weights</u>	Valu	Values		
	200mg	Σ200mg		
200mg	-0.0049mg			
100mg		+0.0008mg		
50mg		+0.0074mg		
30mg		-0.0049mg		
20mg		-0.0020 mg		
Sums	-0.0049mg	+0.0013mg		
Expected Diff	= -0.0062 mg			

For the weighing $20mg - \Sigma 20mg$:

Weights	Values		
	20mg	Σ20mg	
20mg	-0.0020mg		
10mg		+0.0028mg	
5mg		+0.0065mg	
3mg		+0.0030mg	
2mg		-0.0142mg	
Sums	-0.0020mg	-0.0019mg	
Expected Diff. =	-0.0001mg		

•

For the weighing $3mg - \Sigma 3mg$:

.

.

Weights	Values			
	3mg	Σ3mg		
3mg	+0.0030mg			
2mg		-0.0142mg		
lmg		+0.0091mg		
Sums	+0.0030mg	-0.0051mg		
Expected Diff. =	+0.0081mg			

-.

•

SHMMARY

FOR CONVENIENCE. THE RESULTS MODE ARE SUMMARIZED IN OF THIS TADIES Τ ΑΝΟ ΤΤ+ THE VALUES ASSIGNED ADE "ITH PEFEPENCE TO THE STANDARDS INFITTIFIED ON THE DATA THE UNCERTAINTY FIGURE IS SHEFTS. EXPRESSION OF THE OVERALL AN UNCEPTAINTY USING THREE STANDARD THE DEVIATIONS AS A LIMIT TO FEFECT OF ENDOM ERPORS OF THE MEASHREMENT ASSOCIATED "ITH THE MEASUREMENT PROCESSES. THE MAGNI-TURE OF SYSTEMATIC SPRCES FROM OTHER THAN THE SOUPCES USE 0F ACCEPTED VALHES FOR CERTAIN STAFTING STAUDARDS APE CONSIDERED MEGITGIBLE. IT SHOULD OF NOTEP THAT THE PAGINTUDE OF THE HINCED-TATETY REFLECTS THE PERFORMANCE OF THE MEASUPENENT PROCESS 11557 TP ESTABLISH THESE VALUES. THE MASS UNIT, AS REALIZABLE IN ANOTHER " TEL MEASHPENENT PBOCE2c n r CONSTRAIN BY AN AMOUNT CHICK IS A CONSTRATION OF THE UNCEPTAINTY OF THIS PROCESS AND THE PROCESS IN WHICH THESE STANDARDS ARE USED.

THE ESTIMATED HASS VALUES LISTED IN TAPLE I ARE BASED ON AL EXPLICIT TREATHENT OF DISPLACEMENT NUTIMES' L'C'' + TENE AVEC'' + ACC TH VACUO, MASS TH THE PENTOHIAN SENCE. THE MISPLACEMENT VOLUME ARSOCIATES чэтн гасн A 21 HE 15 LISTED AS YUL AS THE VOLUMETRIC COFFFICIENT OF FXDAMSTON. THESE HSEP, TOGETHER VALHES SHOULD RE TTH APPROPRIATE CORRECTION FUL THE RHOYANT EFFECTS 0 F ∃ H T ENVIRONMENT, TO ESTABLISH CONSIST-FUT MASS VALUES FOR OPJECTS "HICH DIFFER STATIFICANTLY TH DEHSITY AND VOR FOR PENSIREMENTS "HICH MUST RE MADE TH DIFFERING ENVIRONMENTS. THE RELATION ILB AVOR = . 4535923786 IS USED AS DEDUTRED.

THE ESTIMATED MASS VALHES LISTED IN TAPLE IT ARE BASED ON AN IMPLICIT TREATMENT OF DISPLACEMENT VOLUMES. F.G., TAPPARENT NASS . • APPARENT MASS VERSUS BRASS . APPARENT MASS VERSUS DENSITY P. THE VALUES ARE LISTED A 5 CORRECTIONS TO BE APPLIED TO THE LISTED HOMINAL VALUE (A POSITIVE CORRECTION INDICATES THAT THE MASS IS LARGER THAN THE STATED NOMINAL VALUE nγ THE AMOUNT UF THE CORPECTION) . THESE VALUES ARE COMPLITED FROM THE VALUES BASED ON AN EXPLICIT TREATMENT OF DISPLACE-MENT VOLUMES USING THF FOLLOWING DEETNING PELATIONS AND ARE UNCERTAIN BY THE AMOUNT SHOWN 1.17 TABLE T.

THE ADJUSTMENT OF WEIGHTS TO MINIMIZE THE DEVIATION FROM NO 11-NAL ON THE BASIS OF INDRMAL BRASS! (TH ACCORDANCE WITH COR. A RELOW) IS WIDESPREAD IN THIS COUNTRY. AND TH MANY PAPTS OF THE GORLD. VALUES STATED OF FITHER BASIS ARE THTEPHALLY CONSISTENT AND OFFINITE. THERE IS, HOWEVER, A SYSTEMATIC DIFFERENCE RETULEN THE VALUES ASSIGNED ON EACH BASIS. THE VALUE ON THE BASTS OF DENSITY P+31 BETTIG 7 HICROGRAMS/GPAN LAP-GER THAN THE VALUE ON THE BASTS OF HOPMAL RPASS. THIS SYSTEMATIC DIFFERENCE IS CLEARLY DETECTABLE OF MANY DIPECT OFADING PALANCES.

CORRECTION A - *APPAPENT MASS VERSHS DEASS! OF MEIGHT IN AIR ASAINST DEASS! IS DETERMINED BY A HYPOTHETICAL "FIGHING OF THE WEIGHT AT 20 CELSIUS IN AIR HAVING A DENSITY OF 1.2 MGZCE3, WITH A (NORMAL PRASS) STANDARD HAVING A DENSITY OF 8.4 GZCM3 AT D CULSIUS WHOSE COFFETCIENT OF VOLUBETRIC EXPANSION IS D. DD D54 PER DEGREE OF ITS TONE MASS OF "FIGHT IN VACUO.

1/30/70

COMPANY X NEW YORK, NEW YORK SET OF MASS STANDARDS 100G TO 1MG TEST NUMBER 232.09/200390

CORRECTION B - 'APPARENT MASS VERSUS DENSITY 8.0' IS DETERMINED BY A HYPOTHETICAL WEIGHING OF THE WEIGHT, IN AIR HAVING A DENSITY OF 1.2 MG/CM3, WITH A STANDARD HAVING A DENSITY OF 8.0 G/CM3 AT 20 CELSIUS, AND WHOSE VALUE IS BASED ON ITS TRUE MASS OR WEIGHT IN AIR.

SAMPLE REPORT (CONTINUED)

COMPANY & NET YORK, NET YORA SET OF 1455 STANDARDS 16 14 TO 184 TEST NUMBER 232.39/2003300

- TABLE I

	MASS	UNCEPTATIETY	VOI AT 20	COFF OF EXP
ITE**	(6)	(G)	((43)	
1896	100.00102471	.11001596	12.82964	. 100045
506	59.00352848	.0001128	6.41032	•000045
396	32.00031168	.00031166	3.84519	.100045
206	29.00024971	. 0 3 9 0 0 9 6	2.56413	. 100045
196	10.0007056	• P 1001287	1.23206	• 000945
55	5.00004767		•64173	.000045
36	3.00005156		. 39462	.000045
20	2.0002831	.00400325	.25641	. 100045
16	. 99999 8 924	· 0.745 6296	-12820	.000045
5,712,5	. 40995470	neonal55	.03012	. <u>naĝaza</u>
30016	. 29997462	•00000107	.91807	.000020
20000	·13638930	.0100079	·01205	• nngn29
10016	. 10000375	· 01010076	.00602	.000020
$\mathbf{c} \in \mathcal{D}(\mathbf{c})$. 757-7396	• n 3 m n n 5 4	• 0° 30 E	.00023
3016	.03055415	. 0000054	.01111	.000069
25.MG		• n 1 n n n n 0 0 4 4	.00741	. 100069
1 שויה	. 71 770583	• <u>Paran</u> 759	• 65371	.100069
546		. net nan 49	.00195	•020069
3	305 395	.000c0052	.00111	.000069
2**6	· 00198436	• <u>1 11 00 145</u>	·01074	• 009069

.05101943 .0500059 .05037 .000069

SAMPLE REPORT (continued)

EMG.

1/3 / 7

- 48 -

1006	5 8 9 3	. 64073
596	01333	• 33615
306	31342	. 19627
206	• • • • • • • •	.17277
126	**3781	.03209
56	00651	
36	.01905	· 14/17
26		. 32362
16	7163	01461
500MG	00055	. 17294
3 JAME		10199
20010	10405	***356
10546	. "CAR2	
SCMG	7 4 7	. 7775
3046	- • · · · · · 4 · R R	30469
2 9 M G	70198	77194
1040	• C 7 7 8 7	. 70289
5**6	. 50652	. 30456
316	• ~ • 395	. 10397
215	1424	71473
116	.1913	.7.7913

TARIE IT

COR.A (MG) COR.B (MG)

COMPANY X NET YORK, NEE YORK SET OF MASS STANDAPDS 1976 TO 146 TEST NUMBER - 232+29/201391

ITEM.

1/3:/ 7

FORM NBS-345.06 Sheet U.S. DEPARTHENT OF COMMETCE ATIONAL BUREAU OF STANDARDS 23.5 °C Humidity Unit (WID.) 40 % SUBSTITUTION WEIGHING Unit (Cr. & DIII.) Barometer Single Pon Domped Bolonces 748.2 **OBSERVATION SHEET** mg 1.17 ρ = Observer C.B.G. Dete Set NBS Test No. Balance H-200 200390 10-12-72 Load Dial Setting Scale Reading Computations ٥, -0,04 1009 2.34 100.09 -0.05 - a 04 x 10.045 = 11 0.04 5 100 9 2.38 . 11 5 100g the 10m 2.44 . .. Espected Diff. 0.039 12.39 1009 . 02 -0.07 11 -0.07 × 10.045 -0.07 × 10.045 10.05 = 2.36 1000 . ,, £ 100g 2.43 11 + h 10 mg 11 12.48 ٠ ,, 0.065 Espected Diff 1009 + h 10 mg mg 12.41 +0.05 a _3 209 + 0.06 20.0 2.52 × 10.045 + Q . 06 11 520g 10.05 2.47 . 11 th 10 mg 12.51 . Espected Diff. = +0.516 20g+h 10mg 12.57 o a Obs. Ds = $M_s =$

Te perature 23.6 °C	FORM NBS-34	5.06	U.S. DEPARTMENT OF COMMETICE NATIONAL BUREAU OF STANDARDS	Shre:
Humidity 40 0/0				Unit (Wise)
Barometer 748.0		SUBSTITUTION WEIGHING Single Pan Domped Balances		
P= 1.17		OBSER	VATION SHEET	Unit (Cr. & Dill.) Mg
Observer Balance		Date	Set NBS Te	
C.B.G M- Load	the second secon	10-12-2 Scale Reading		00390
				· 04
29	2.09	0.342	+ 0.040 + 0.041	
529	"	0.302	+ 0.040 × 5.0051 =	
E 2 g + h 5 mg	47	5.307	Buoyancy cr. Diff.	-0.002 " + 0.038 "
29 + h 5 mg		5.348	Espected Diff. =	+0.0375 mg
200 mg	0.20	0,223	-0.007 -0.006	····· ⁰ 5
5200 mg	- 11	0.230	-0.006 × 5.0054 5.006	=-0.006 mg
E 200 mg + h 5 mg	11	5.236	Buoyancy cr. Diff.	+0.0046 " -0.0014 "
200 mg + h 5 mg	1) •	5.230	Espected Diff. =	-2.0062 "
20 mg	0.02	0.228	-0.001	······································
E 20 mg		0.229	0.000 × 5.0054 5.006 =	Q:000 mg
E 20 mg + h 5 mg	"	5.235		***********
20mg + h 5mg		5.235	Espected Diff. =	- 0: 0001 mg
3 mg	0.00	3.338	+ 0.008 + 0.010	······ ⁰ 7
E3 mg		3.330	+ 0.009. × 5.0054 + 0.009. × 5.005	= + <u>0.009</u> mg
E 3 mg + h 5 mg		8.335		••••••••••
3 mg + h 5 mg		8.345	Expected Diff. =	+0.0081 mg
				••••••••••••••••••••••••••••••••••••••
				· · · · · · · · · · · · · · · · · · ·
	•			•
n	• P			•
			Obs. D _s = M _s =	

Type II Surveillance Test Example

This example of a Type II Surveillance Test is for a set of metric mass standards according to Design 7, appendix 1. This set was calibrated by the National Bureau of Standards and reported under National Bureau of Standards Report of Calibration, Test No. 200390. The report is reproduced on page 47. This is the same set which was used for the example of the Type I Surveillance Test. The only standards (other than the set under test) used in this example are the sensitivity weights listed below, with their apparent mass corrections and uncertainties. The balances used and their standard deviation for a double substitution weighing are also listed. The double substitution method of weighing is used. The standard deviation of the calibration mass measurement is not known, so an estimate is computed from the reported uncertainties of the weights being tested, as described in section 3.2, and used in computing the surveillance limits.

	nsitivity Weight	Apparent Mass Corr. (mg)	Uncertainty (mg)
	h10mg	+ 0.0450	0.0006
	h 5mg	+ 0.0045	0.0005
Balan (Laboratory D		Standard Deviation (mg)	Capacity
	н-200	0.015	200g
	M-10	0.003	20g

Computation of Surveillance Limit (sl)

In the following "U" will denote the uncertainty (see Equation (2) Page 7) and "S.D." the estimate of the standard deviation. $\sigma_{\rm B}$ denotes the standard deviation of the balance used.

For series 1: 100g, 100g', Σ100g

Weight	U _c (mg)
100g 100g' 50g 30g	0.015 UNKNOWN MASS USED TO FILL SERIES 0.011 0.012
20g	0.010

Standard deviation of balance H-200 = 0.015mg

^U c	=	$\sqrt{.015^2 + .011^2 + .012^2 + .010^2}$	
	=	$\sqrt{.000225 + .000121 + .000144 + .0001}$	-
	=	√.00059	
U _c	=	0.024mg	
S.D.	=	3√2/3σ _B	
	=	3√2/3(.015)	
	=	3√.666666 (.015)	
	=	3(.81649)(.015)	
S.D.	=	0.037mg	

sl for $\Sigma 100g = 0.024 + 0.037 = 0.061mg$

Since 100g' is assumed to be an unknown weight, a surveillance limit for it cannot be computed.

For series 2: 30g, $\Sigma 30g_1$, $\Sigma 30g_2$

Weight	U _c (mg)
30g	0.012
20g	0.010
10g	0.013
5g	0.0067
3g	0.0045
2g	0.0032

Standard deviation of balance H-200 = 0.015mg

$$U_{c} = \sqrt{.012^{2} + .010^{2} + .013^{2}}$$

= $\sqrt{.000144 + .0001 + .000169}$
= $\sqrt{.000413}$
 $U_{c} = 0.020mg$
S.D. = SAME AS IN SERIES 1 (0.037mg)
sl for $\Sigma 30g_{s} = 0.020 + 0.037 = 0.057mg$

$$U_{c} = \sqrt{.012^{2} + .010^{2} + .0067^{2} + .0045^{2} + .0032^{2}}$$

$$= \sqrt{.000144 + .0001 + .0000448 + .00002025 + .00001024}$$

$$= \sqrt{.000319}$$

$$U_{c} = 0.018mg$$

S.D. = SAME AS IN SERIES 1 (0.037mg)

sl for $\Sigma 30g_2 = 0.018 + 0.037 = 0.055mg$

•

For series 3: 3g, $\Sigma 3g_1$, $\Sigma 3g_2$

.

•

٠

Weight	U _c (mg)		
3 g	.0045		
2 g	.0032		
1 g	.0030		
500mg	.0016		
300mg	.0011		
200mg	.0008		

Standard deviation of balance M-10 = 0.003mg

$$U_{c} = \sqrt{.0045^{2} + .0032^{2} + .0030^{2}}$$

$$= \sqrt{.00002025 + .00001024 + .000009}$$

$$= \sqrt{.00003949}$$

$$U_{c} = 0.0063 \text{ mg}$$
S.D. = $3\sqrt{2/3}\sigma_{B}$

$$= 3\sqrt{2/3}(.003)$$

$$= 3\sqrt{.66666} (.003)$$

$$= 3(.81649)(.003)$$
S.D. = 0.0073 mg
S1 for $\Sigma 3g_{1} = 0.0063 + 0.0073 = 0.014 \text{ mg}$

$$U_{c} = \sqrt{.0045^{2} + .0032^{2} + .0016^{2} + .0011^{2} + .0008^{2}}$$

$$= \sqrt{.00002025 + .00001024 + .00000256 + .00000121 + .00000054}$$

$$= \sqrt{.0000349}$$

$$U_{c} = 0.0059 \text{ mg}$$
S.D. = SAME AS FOR $\Sigma 3g_{1}(0.0073 \text{ mg})$

s1 for $\Sigma 3g_2 = 0.0059 + 0.0073 = 0.013mg$

For series 4: 300mg, $\Sigma 300mg_1$, $\Sigma 300mg_2$

Weight	U _c (mg)
300mg	0.0011
200mg	0.0008
100mg	0.0008
50mg	0.0005
30mg	0.0005
20mg	0.0005

Standard deviation of balance M-10 = 0.003 mg $U_c = \sqrt{.0011^2 + .0008^2 + .0008^2}$ $= \sqrt{.00000121 + .00000064 + .00000064}$ $= \sqrt{.00000249}$ $U_c = 0.0016 \text{mg}$ S.D. = SAME AS IN SERIES 3 (0.0073mg) s1 for $\Sigma 300 \text{g}_1 = 0.0016 + 0.0073 = 0.0089 \text{mg}$ $U_c = \sqrt{.0011^2 + .0008^2 + .0005^2 + .0005^2} + .0005^2$ $= \sqrt{.00000121 + .0000064 + .00000025 + .00000025 + .00000025}$ $= \sqrt{.0000026}$ $U_c = 0.0016 \text{mg}$ S.D. = SAME AS FOR $\Sigma 300 \text{mg}_1 (0.0073 \text{mg})$

sl for $\Sigma 300 \text{mg}_2 = 0.0016 + 0.0073 = 0.0089 \text{mg}_2$

For series 5: 30mg, $\Sigma 30mg_1$, $\Sigma 30mg_2$

Weight	U _c (mg)
20-0	0.00054
30mg	
20mg	0.00046
10mg	0.00059
5mg	0.00049
3mg	0.00052
2mg	0.00045

Standard deviation for balance M-10 = 0.003mg

$$U_{c} = \sqrt{.00054^{2} + .00046^{2} + .00059^{2}}$$

$$= \sqrt{.000000291 + .0000002116 + .0000003481}$$

$$= \sqrt{.000008513}$$

$$U_{c} = 0.00092mg$$
S.D. = SAME AS IN SERIES 4 (0.0073mg)
s1 for $\Sigma 30mg_{1} = 0.00092 + 0.0073 = 0.0082mg$

$$U_{c} = \sqrt{.00054^{2} + .00046^{2} + .00049^{2} + .00052^{2} + .00045^{2}}$$

$$= \sqrt{.000002916 + .0000002116 + .0000002401 + .0000002704 + .000002025}$$

= **V**.0000012162

 $U_c = 0.0011 \text{mg}$

S.D. = SAME AS FOR $\Sigma 30mg_1(0.0073mg)$

sl for $\Sigma 30 \text{mg}_2 = 0.0011 + 0.0073 = 0.0084 \text{mg}_2$

Veight	U _c (mg)
5mg 3mg	0.00049 0.00052
2mg	0.00045

Standard Deviation of Balance M-10 = 0.003mg $U_c = \sqrt{.00049^2 + .00052^2 + .00045^2}$ $= \sqrt{.0000002401 - .0000002704 + .0000002025}$ $= \sqrt{.000000713}$ $U_c = 0.00084mg$ s1 = .00084 + 3(.003) = .00084 + .009 = 0.0098mgFor $3mg - \Sigma 3mg$

Weight	U _c (mg)
3mg	0.00052
2mg	0.00045
lmg	0.00059

Standard Deviation of Balance M-10 = 0.003mg $U_c = \sqrt{.00052^2 + .00045^2 + .00059^2}$ $= \sqrt{.0000002704 + .0000002025 + .0000003481}$ $= \sqrt{.000000821}$ $U_c = 0.00091mg$ s1 = 0.00091 + 3(.003)= 0.00091 + .009 = 0.0099mg

Buoyancy Corrections

The buoyancy corrections $\Delta \rho \Delta V$ are computed according to the procedure set forth in section 5.2 using the formula:

Buoyancy Correction =
$$(\rho - \rho_n)(V_c - V_D)$$

In this example, only two of the comparisons, $3g - \Sigma 3g_2$ and $300mg - \Sigma 300mg$, are between weights having different densities. A buoyancy correction need be computed only for these two comparisons. All of the other comparisons are between weights having the same density, so their volume differences are virtually zero and the buoyancy corrections are also virtually zero.

The buoyancy correction for the comparison $3g - \Sigma 3g_2$, a_2 of series 3, is:

Weights			Volumes	
3g			0.3846 cm ³	from Report of Calibration
	2g	0.2564 cm 3		11
	500mg	0.0301cm ³		н
	300mg	0.0181cm ³		11
	200mg	0.0120cm ³		11
Σ3g			0.3166 cm ³	11
1 1 1 1	3			1.

 $\rho = 1.16 \text{mg/cm}^3$ Air density at time of weighing

 $\rho_{\rm p} = 1.20 \, {\rm mg/cm^{3}}$ Normal air density

Buoyancy correction = (1.16 - 1.20)(0.3846 - 0.3166) = -0.0027mg

This is the figure entered on the 3-1's computation sheet under the $\Sigma 3g_2$ column on the $-\Delta \rho \Delta V$ line, Sheet 2, Series 3. Note that it is $-\Delta \rho \Delta V$ that is called for and the buoyancy correction is -0.0027mg, therefore, the buoyancy correction is entered as +0.0027mg. (See section 5.3.2).

The buoyancy correction for the comparison $300 \text{mg} - \Sigma 300 \text{mg}_2$, a_2 of series 4, is:

<u>Weight</u>			<u>Volume</u>	
300mg			0.0181cm ³	From Report of Calibration
	200mg	0.0120cm^{3}		11
	50mg	0.0030cm^{3}		**
	30mg	0.0111cm ³		28
	20mg	0.0074cm ³		22
Σ300mg			0.0335cm ³	**

ρ	$= 1.16 \text{ mg/cm}^{-3}$	Air density at time of weighing
ρ _n	$= 1.20 \text{mg/cm}^3$	Normal air density

Buoyancy Correction = (1.16 - 1.20)(0.0181 - 0.0335) = +0.0006mg

This is the figure entered on the 3-1's computation sheet under the Σ_{300mg_2} column on the $-\Delta\rho\Delta V$ line, Sheet 2, Series 4. Note that it is $-\Delta\rho\Delta V$ that is called for and that the buoyancy correction is +0.0006mg, therefore the buoyancy correction is entered as - 0.0006 mg. (See section 5.3.2).

а.

The expected differences are computed from the reported values as follows: (See report on page 47).

Series 1: ElOOg

Weight		Ap	parent Value	
50g			-0.01	
30 g			-0.01	34mg
<u>20g</u>			+0.03	30mg
Σ100g	Expected	Value	+0.000	53mg

Series 2: $\Sigma 30g_1$

20g			+0.0330mg
<u>10g</u>			-0.0378mg
Σ30g,	Expected	Value	-0.0048mg

Series 2: $\Sigma 30g_2$

20g			+0.0330mg
5g			-0.0065mg
3g			+0.0191mg
2g			+0.0066mg
Σ30g ₂	Expected	Value	+0.0522mg

Series 3: $\Sigma 3g_1$

2g		+0.0066mg
<u>lg</u>		-0.0216mg
Σ3g ₁	Expected Value	-0.0150mg

Series 3: $\Sigma 3g_2$

2g		+0.0066mg
500mg		-0.0005mg
300mg		-0.0041mg
200mg		<u>-0.0049mg</u>
Σ3g ₂	Expected Value	-0.0029mg

ł

Series 4: 2300mg

		<u>Weight</u>			Apparent Mass Value
		200mg			-0.0049mg
		<u>100mg</u>			+0.0008mg
		$\Sigma 300 mg_1$	Expected	Value	-0.0041mg
Series 4:	Σ300mg ₂				
		200mg			-0.0049mg
		50mg			+0.0074mg
·		30mg			-0.0049mg
		20mg			-0.0020mg
		$\Sigma 300 mg_2$	Expected	Value	-0.0044mg
Series 5:	Σ30mg _l				
		20mg			-0.0020mg
		<u>10mg</u>			+0.0028mg
		$\Sigma 30 mg_1$	Expected	Value	+0.0008mg
Series 5:	Σ30mg ₂				
		20mg			-0.0020mg
		5mg			+0.0065mg
		3mg			+0.0030mg
		2mg			-0.0142mg
		$\Sigma 30 mg_2$	Expected	Value	-0.0067mg

.

	Apparent	Mass Value
Weight	5mg	Σ5mg
5mg	+0.0065mg	
3mg		+0.0030mg
2mg		-0.0142mg
Sums	+0.0065mg	-0.0112mg
Expected Difference		-0.0047mg

Series 6: For weighing $3mg - \Sigma 3mg$

	<u> </u>	<u>Σ3mg</u>
3mg	+0.0030mg	
2mg		-0.0142mg
lmg		+0.0091mg
Sums	+0.0030mg	-0.0051mg
Expected Difference	-0.0021mg	

POMM NBS-345 36 Tempetature Sheet U.S. DEPARTMENT OF COMMERCE NATIONAL SUREAU OF STANDARDS °C 24.1 1 Series 1 Humidity Uait (WID.) 4000 SUBSTITUTION WEIGHING Barometer Single Pon Damped Balances 747.2 mm Unit (Cr. & DIII.) p= 1.16 mg/cm³ **OBSERVATION SHEET** NBS Test No. 200 390 Date Set Observer Balaace S. K.O. H-200 11-1-72 Lond **Dial Setting** Scale Reading Computations ۵, +0.37 2.38 100 100.09 +0.38 10.045 +0.38 0.38 X 11 10.05 2.01 100 . . 12.06 10 mg . 11 1009 12.44 ۵, - 0.08 ., 2.39 . - 0.09 10.045 ... - 0.085 X 21009 2.47 . " 12.53 10 mg . . 12.44 1009 • α, -0.44 11 2.03 100'0 • - 0.46 10.045 11 0.45 - 0.45 5100 2.47 . 11 12.53 . 11 12.01 100 9 . a . a 100g. Used to file the serves.... 100'q = an + 209 + 309 5 100g = 509 Obs. D_s = $M_s =$

			Sheet 2	Series !
			Date//	-1-12
	St	d. 1, 1 ₁ , 1 ₂		
	Std. 1	<u> </u>	1 ₂ 0	bservations
	+	-	`	a ₁
	+		-	a2
		+	-	a ₃ .
К – А М	Cor. Std. 1 = 1009- Std. 1	- 0.058 x 100'9 11	ng <u>E 100 g</u> 12	Check
+ 0.38	0	-2	-1	-3
- 0.08	́о	-1	-2	· -3
- 0. 45	0	1	-1	0
- 0.058	3-0.174	- 1.304	3 +0,056	9_
in ⇒				across
d = um/d	<u> </u>	3-0.435	<u>3</u> +0.019	
ΔοΔγ				
st. True ass Cor.				
pp. Ilass vs. rass Cor. ccupted Cor. m Report	- 0.058 mg - 0.058 mg	- 0 <u>. 435 mg</u> #	+0.019 mg +0.007 mg	· ·
	Δ1	Δ2	Δ3	Check
+0.38	1	-1	1	1
2 - 0.08	-1	1	-1	-1
3 <u>-0.45</u> un =	1 +0.01	-1 -0.01		l loum across
d =	3	-0.0033	3 +0.0033	

* This is an unknown

Temperature 24.1 °C Humidity 40 %	РОЛМ NBS-34 (е-1-61)	P	U.S. DEPARTHENT OF COMMERCE INTIONAL BUREAU OF BTANDARDS TION WEIGHING	2
Barometer 747.3 mm		-	Domped Bolances Unit (Cr. & Dill.)	,{
P= 1.16 mg/cm ³		OBSERV	ATION SHEET 200390	1
Observer 0 Balance		Date	Set NBS Test No.	
S.V.O. H-2		11-1-7-		!
Load	Dial Setting	Scale Reading	Computations	
30g	30.09	2.30	309-£309, =	α,
E30g,		2.33	$\frac{-0.01}{-0.02 \times 10.045} = -0.02 $	ng
"+ -h 10 mg	"	12.39	-0.02 × 10.06	. •
30g + h 10 mg	11 •	12.38		
30g	<i>''</i>	2.28	30g - 230g2 =	• ⁰ 2
£30g2	•	2.34	$\frac{-0.06}{-0.065} \times \frac{10.045}{10.06} = -0.06$	ng
· " + h 10 mg	11 •	12.39		0
30g+h10 mg	n	12.32		-
£30g,	•	2.30	£309, - £3092 =	- ^a 3 -
£30g2		2.37	-0.08 -0.075 × 10.045 10.06 = -0.07	ng
" th 10 mg		12.43		-
530g, th 10 mg	•	12.35		
	•			- a
· · ·		•		-
tup -		•		-
		•		-
$\Sigma 309$, = $209 +$	10 g	•		- a -
E3092 = 209 +	5g +	39 + 29		-
	•	•		-
	•	•		-
	n		Obs. D _s = M _s =	

..

Sheet 2 Series 2 Date 11-1-72 Std. 1, 1, 1, 12 12 Std. 1 Observations 1₁ + a a, a3 - 0.013 mg = K - A M Cor. Std. 1 Z 30g2 309 Std. 1 Σ 30g. 1, 12 . Check -2 a1 -0.02 0 -1 -3 a2 -0.06 0 -1 -2 -3 a3 -0.07 0 1 · -1 0 -0,013 K 3 9 3 0.039 -0.009 +0.171 E down Sun = Σ across 3-0.003 d = 3+0.057 3 -0.013 Sum/d -ΔρΔV Est. True Mass Cor. App. Mass vs. -0.013 mg -0.003 mg +0.057 mg Brass Cor. accepted Cor. -0.005 mg - 0.013 mg from Report Δ_1 Δ2 Δ3 Check a, -0.02 -1 1 1 1 a, -0.06. -1 -1 1 -1 a3 -0.07 $\frac{-1}{10.03}$ ____1] -0.03 -0.03 Σ doum Sun = E across 3 d 3+0.01 = 3-0.01 Sum/d == 0.17 mg V3×10-4

 $S = \sqrt{(\Delta_1)^2 + (\Delta_2)^2 + (\Delta_3)^2}$ =

Temperature 24.2°C	РОЯМ NBS-345 (0-1-01)	5 36	U.S. DEPARTHENT OF COMMERCE ATIONAL BUREAU OF STANDARDS	Sheet
Humidicy 40 0%			TION WEIGHING	Vair (W10.)
Barometer 747.2			Damped Balances	Unit (Cr. & DIII.)
P= 1.16 mg/cm3			ATION SHEET	·
Observer U Balance		Date 11-1-7	2 Set NBS Tes	200390
Load	Dial Setting	Scale Reading	Computation	3
39	3.009	0.340	3g - 539, = +0.034	····· ^a ,
E39,	" "	0.301	+0.037	
" th 5 mg	"	5.306	+ 0.038 × 5.0045	* + 0 · 038 mg
39 + h 5 mg	<i>''</i>	5.343		
39)) •	0.324	39 - 5392 = + 0.019	······································
$\Sigma 3g_2$	11	0.305	$\frac{+0.017}{+0.018} \times \frac{5.0045}{5.005} =$	
0	•		7 0.018 × 5.005 -	+0.018
" + h 5 mg	•	5.310		*************
3g + h 5mg) •	5.327		
53g,	• 1	0.304	$\Sigma 3g_1 - \Sigma 3g_2 =$	····· "3
E392	i) •	0.319	-0.015 -0.014 <u>5,0045</u> -0.0145 × 5.005 =	- 0.014
" + h. 5 mg	11	5.324		· · · · · · · · · · · · · · · · · · ·
E392+h 5mg	"	5.310		• • •
- a 2 J				•••••••••••••••••••••••••••••••••••••••
	•	·		
	•	•		
	· · ·			**********
				•
$\Sigma 39, = 29 + 1$	2			·
			100 0	
$\sum 3g_2 = 2g + 50$	J 7 3	00 mg t	in my	
		1		
P	e R	•		•
			Obs. D _s = M _s =	
				· · · · · · · · · · · · · · · · · · ·

sheet & Serves I	Sheet	2	Series	З
------------------	-------	---	--------	---

Date 11-1-72

Std. 1, 1, 1,

	Sta.	• • • • 1 • • 2		
	Std. 1	1,	1 ₂ Ob	servations
	+	-		a ₁
	+		-	a ₂
		+		a ₃
К – А М С		0.0191 mg \$ 39.	6.3.2	
	39 Std. 1	$\Sigma 3g, 0$ 1_1	E392 12	Check
a1 + 0.038 mg	0	-2	-1	-3
a ₂ +0.018	0	-1	-2	-3
a3 -0.014	0	1	· -1	0 -
K + 0. 0191	<u>3</u> + 0.0573	3-0.0507	-0.0027 Ed	9
Sun ≈	40.0575	-0.0507	, ~	lown across
d =	3+0.0191	3-0.0139	3-0.0009	
Sum/d	+0.0191	-0.0139	-0.0009	
-ΔρΔV			+ 0.0027	
Est. True Mass Cor.				
App. Mass vs.				
Brass Cor.	+ 0.0191 mg	-0.0139	+ 0. 0018 mg - 0. 0027 m	
accepted Cor. from Report	+ 0.0191 mg	-0.0150	- 0.0021 mm	Ĵ
<i>v</i> .	Δ	Δ2	Δ3	Check
a1 +0.038	1	-1	1	1
a2 +0.018	-1	1	-1	-1
a ₃ - 0. 014	1+0.006	-1 -0.006	1	1
Sura =	+0.006	-0.006		oum Cross
d ⊨	3 +0.002	3-0.002	<u>-0.002</u>	1055
Sum/d =				
	$S = \sqrt{(\Delta_1)}$	$\frac{1}{2} + (h_2)^2 + (\dot{h}_2)^2$,)· = 1/1:	2 × 10-6 = 0.0035 mg
				J

Temperature 24.2 °C	FGAN NBS34	5.66	U.S. DE ARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS	Sheet
Humidity 40 % Berometer			TION WEIGHING	Unit (Wise)
747.2 mm	-	-	Damped Balances	Unit (Cr. & Dill.)
P= 1.16 mg/cm ³			VATION SHEET	
	<u> </u>	Date 11-1-72	Set NBS Tes	200390
Lond	Dial Setting	Scale Reading		
7	0.30	0.291	300 mg - 2300 mg, =	· ····································
300 mg	0.50	0.291	+ 0.082	
E 300 mg,	н	0.289	+ 0.001 5.0045	
			+ 0.0015 × 5.005 =	+0.001 mg
" + h 5 mg	**	5.294		*
9				
300 mg + h 5 mg	•	5.295		*********
U U			300 mg - 2 300 mg2 =	
300 mg	•	0.297	+0.001	
. 0			- 0.001 5.0045	
E 300 mg2	•	0.296	0.000 × 5.004 =	0.200 mg
"+1.5		5.300		
" + h 5 mg	•	3.300		
200 4150	14	5.299		
300 mg th 5 mg			5200 - 5300 -	^a 3
5300 mg,		0.295	E300mg, - E300mg2.	
	11		+0.081 +0.003	
E 300 mg2		0.294	3.0075	+0.002
0	11		+0.002 \$ 5.005- =	Jacob Starting
" + h 5 mg	•	5.299		**********
0				
Z300mg, th 5mg	•	5.232		•
0				a
	•	•		
			-	************
		1		•
		•		*
E 242 2-		00 mg		••••••••••••••••••••••••••••••••••••••
E 300 mg, = 20	amg. + 1	.0		•
- 200 - 2 - 2 - 2		mg. + 30	mg + 20 mg	• • • • • • • • • • • • • • • • • • • •
$\Xi 300 m_{g_2}^2 = 200$	mg + 50	J	0 0	
				••••••••
	•	•		•••••••••••••
R			Obs. D _s ::	•
			M _s =	
L		J		

Sheet 2 Series 4

Date 11-2-72

Std. 1, 1, 1,

		· 1, 1 ₁ , 1 ₂		
	Std. 1	<u> </u>		a
				a ₁
	+	1	-	a2
		+	-	a ₃
К – А М	Cor. Std. 1 =	- 0.0040 ~	ng	
	300 mg Std. 1	£ 300 mg, 11	2 300 mg ₂ 12	Check
a ₁ <u>+0.001</u>	0	-2	-1	-3
a ₂ 0.000	0	-1	-2	-3
23 10.002	0	1	-1	0
k <u>-0.0040</u>	3-0.0120	3-0.0120	3-0.0150	9
Sua =	-0.0120	-0.0120	L 1	down across
d ==	<u> </u>	<u> </u>	3	
Sum/d	- 0. 0040	-0.0040	-0.0050	
-ΔρΔV			-0.0006	
Est. True Mass Cor.				
App. Mass vs.				
Brass Cor.	-0.0040 mg	- 0.0040 mg - 0.0041 mg	-0.0056 m	°F
Recepted Cor. non Report	- 0.0040 mg	- 0.0041 mg	-0.0099 m	ng
/	Δ1	Δ2	Δ3	Check
e1 +0.001	1	-1	1	1
a ₂ 0.000	-1	1	-1	-1
a ₃ + 0.003		-1	1	
Sum =	+ 0.003	-0.003		oரா cross
d ≕	3	3	3 ² a	01055
d ⊨			an mark i	

 $S = \sqrt{(\lambda_1)^2 + (\lambda_2)^2 + (\lambda_3)^2} = \sqrt{3 \times 10^{-6}} = 0.0017 mg$

Temperature 24.2 °C	PUMM NBS34	5.56	U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS	Sheet Series 5
Humidity 40 70 Berometer	SUBSTITUTIO		TION WEIGHING	Uait (# 10.)
747.1 mm	Single Pan Damped Balances			Usit (Cr. & DIII.)
P= 1.16 mg/cm 3		OBSER	VATION SHEET	
Observer Baiaace S. V. O. M	-10	Date 11-1-7.	2 Set NBS Tes	1 No. 00 390
Load		Scale Reading	and and the second s	
		0		• 0,
30	0.039	0.285 m	30 mg - 230 mg, =	
30 mg			0.000	
F3	0.03	0.291	-0.004 5.0045	
£30 mg,		0.271	$\frac{-0.007}{-0.005} \times \frac{5.0045}{5.005} =$	-Q.005 mg
" .]	"	5 201		
+ h 5 mg	•	5.296		***********
0	4.			*
30 mg + h 5 mg	•	5.292		
0 0	11		30 mg - £ 30 mg2 =	······································
30 mg	•	0.283	-0. 804	
\mathcal{T}	,1		0 002	•
530 mg2		0.287	- 0 0035 V	-0.003 mg
			5.006 -	- J. J. mg
" + h 5 mg	"	5.293		•
30 mg + h 5 mg	41	5.290		•
Somgites my	•	5.210		
E			E30 mg, - E30 mg; =	· · · · · · · · · · · · · · · · · · ·
E30 mg,	•	0.291	+0.006	
			10005 - 115	*
530 mg2	•	0.285		+0.02
			+0.0055× 5.005	***********
" + h 5 mg		5.290		*
E 30 mg, + h 5 mg		5.295		* *
t t				• 0
				• • • • • • • • • • • • • • • • • • • •
				· · · · · · · · · · · · · · · · · · ·
			•	
·				
			·	*
	· ·	•		•
	•	•		
				a
				*
	<u> </u>			
	•	•		
P.	· ·	•		•
			Obs. D. =	
		•	M _s = .	
		- 7	·1	

			Sheet 2	Series 5	
			Date	-2-72	
	Std.	. 1, 1 ₁ , 1 ₂			
	Std. 1	11	1, 01	servations	
	+			a ₁	
	+		-	^a 2	
		+	-	a ₃	
К-АИ	Cor. Std. 1 = 30 mg Std. 1	-0.0049 ma E30 mg, 0 11	£ 30 mg + 12	Check	
a ₁ -0.005	0	-2	-1	-3	
a ₂ -0.003	0.	-1	-2	-3	
23 +0.005	0	1	-1	0	
K = 0.0049 Sum =	- 0.0147	3+0.0033		9_ Jown	
d = Sum/d	3-0.0049	3 + 0.00/1	3-0.0029	across	
-ΔρΔV		generalization many says of the general			
Est. True Mass Cor.					
App. Mass vs. Brass Cor. Accepted Cor. from Report	-0.0049 mg - 0.0049 mg	+0.0011 mg +0.0008 mg	- <u>0.0029</u> mg -0.0061 mg	t 2	
0. 1	Δ1	Δ ₂	۵ <u>3</u>	Check	
a ₁ -0,005	1	-1	1).	•
a ₂ -0.003	-1	1	1]	
$a_3 + 0.005$ Sum =	1 + 0. 0 0 3	-1 - 0.003	1 +0.003 X d		
d = Sum/d =	3+0.001	3-0.001	3 + 0.001	cross	
	$S = \sqrt{(\Lambda_1)}$	$^{2} + (\Lambda_{2})^{2} + (\Lambda_{3})^{2}$)' = 1/-	$3 \times 10^{-6} = 0.0$	0017m

mg

Te peroture 24.3 °C	FORM N85-34	5.04	U.S. DEPARTMENT O NATIONAL BUREAU OF	F CONNERCE	Sheet
Humidity 40 %				1 Series 6 Vaie (W10.)	
Barometer 747.3 mm			Damped Balances		
p= 1.16 mg/cm ³		-	VATION SHEET		Unit (Cr. & Dill.)
Observer / Beisece		Date	Set	NBS Tes	200390 n No.
5.V.O.	M-10	11-1-7			
Lond	Dial Setting	Scale Reading		Computations	
5 mg	0.00	0.257	5 mg - 2 : + 0.018	5.mg =	•••••••••
E5 mg		0.239	+ 0.016 + 0.017 X	5.0045	+0.017 mg
" + h 5 mg	11 •	5.244		5,005	
5 mg + h 5 mg	4	5.260			
3 mg	11	0.241	3 mg - 230 +0.004	mg =	ـد ⁰
£ 3 mg	H	0.232	+0.009 +0.008 +0.00 8 5 x	5.0045	
	•	5,238	+ 0.00 7 5 X	5.006 =	+0.008 mg
" + h 5 mg	•				••••••••••••••••••••••••••••••••••••••
3 mg + h 5 mg	•	5.246			•
					a
	•	ļ			

	•	•	+		
					* * * * * * * * * * * * * * * * * * *
					•••••••••
					*
					a
	•	•			•
					••••••••••••••••••••••••••••••••••••••
	•	•			•
			_		
	· · ·	•			
					•
	•	•			•
	·				• • • • • •
	•	•	-		
					•
	· · ·	•			
					· · · · · · · · · · · · · · · · · · ·
	•	•	-		
	• •	•			•
			Obs. $D_s = \dots + M_s = \dots +$		

"

NBS-114A (REV. 7-73) U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. NBSIR 76-999	2. Gov't Accession No.		's Accession No.	
4. TITLE AND SUBTITLE	SURVEILLANCE TESTS		5. Publicatio	on Date	
	PROCEDURES		Februar	y 1976	
		6. Performing Organization Code			
7. AUTHOR(S) H. E. Alme	er Edited by: Jerry Ko ION NAME AND ADDRESS	eller	NBSI	g Organ. Report No. R 76–999 Fask/Work Unit No.	
NATIONAL I DEPARTMEN	SUREAU OF STANDARDS IT OF COMMERCE N, D.C. 20234		11. Contract/	-	
12. Sponsoring Organization Na	13. Type of Report & Period Covered Final				
Same as No. 9				14. Sponsoring Agency Code	
15. SUPPLEMENTARY NOTES					
16. ABSTRACT (A 200-word or bibliography or literature so	less factual summary of most significan arvey, mention it here.)	t information. If docume	entincludes a s	significant	
describ ordered differe reporte precisi process departu predict A larg measure changed the mas Buoyand in the Records charts recalib weights	ments to identify indivi- are required when a given s of one or more of the we y corrections are used to buoyant effect on weights document the surveillance help detect trends. oration can be made base and the use requirements.	risons of the we with each oth ith those compute ith those compute its are estimate ences from the estimate from the repor- significant. idual weights in comparison ind ights involved ha correct for the of differeng e test results, a Judgments ed on the consta	her. The ed from the ed on the lance tes es of the kpected, on ted values Additional which have icates that as changed difference densities and contro concerning ancy of the	n e e t t e t t e t t unless a proper	
name; separated by semicol comparison; diffe	ons) Apparent mass; buoyancy rence; mass; records; set; al; true mass; value; weigh	; buoyancy corre surveillance lin	ection; cha nits; surve	ange:	
18. AVAILABILITY	[X] Unlimited	19. SECURI (THIS R	TY CLASS EPORT)	21. NO. OF PAGES	
For Official Distribution	on. Do Not Release to NTIS	UNCL A	SSIFIED	77	
Order From Sup. of Doc Washington, D.C. 2040	2, U.S. Government Printing Office 2, <u>SD Cat. No. C13</u>	20. SECUR (THIS I		22. Price	
Order From National T Springfield, Virginia 22	econical Information Service (NTIS) 2151	UNCLAS	SIFILD	\$5.00	
				USCOMM-DC 29042-P	