A Numerical Solution of the Time Dependent Partial Differential Equations which describe a one-dimensional, Laminar, Premixed Flame

R. L. Brown

Institute for Materials Research
National Bureau of Standards
Washington, D. C. 20234

January 1976
Final

U. S. DEPARTMENT OF COMMERCE
nATIONAL BUREAU OF STANDARDS

A NUMERICAL SOLUTION OF THE TIME DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS WHICH DESCRIBE A ONE-DIMENSIONAL, LAMINAR, PREMIXED FLAME

R. L. Brown

Institute for Materials Research
National Bureau of Standards
Washington, D. C. 20234

January 1976
Final
U.S. DEPARTMENT OF COMMERCE, Elliot L. Richardson, Secretary

Edward O. Vetter, Undor Secretary
Dr. Betey Ancker-Johnson. Assistant Secretary for Science and Technology
NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

A NUMERICAL SOLUPION OF THE 'IIME•DEPENDENC PARTIAL DIFFERENCIAL EQUATIONS WHICH DESCRIBE A ONE-DIMENSIONAL, LAMINAR, PREMIXED FLAME

by
R. L. Brown
Institute for Materials Research National Bureau of Standards Wa shington, D. C. 20234

ABSTRACT

The set of time dependent, parabolic differential equations, which describe the physical and chemical processes in a one-dimensional, laminar, premixed flame is solved by adapting a solution procedure originally developed to solve the two-dimensional steady state boundary layer equations. The flame equations are integrated by an implicit method until the steady state is reached. This corresponds to a flame propagating steadily through a mixture of combustible gases. By a suitable choice of boundary conditions, it is also possible to model a flame which is stabilized on a burner. Solution of the flame equations yields the concentration profiles of the different chemical species as well as the temperature profile. From these one can also calculate the production rates of each species, the rate of each chemical reaction, and the heat release rate at each point in the flame. The velocity of the freely propagating flame can be calculated from the integrals over the whole flame zone ur any of the species production rates. The model incorporates realistic thermodynamic data and transport property data that are functions of both temperature and concentration. A complete documentation of the computer program which accomplishes the integration is presentod.

TABLE OF CONTENTS

I. INTRODUCTION 1
II. METHOD USED 'IO SOLVE THE FLAME EQUATIONS 3
III. DE'TAILED DESCRIPTION OF THE PROGRAM. 9
A. Description of the Main Program SPAID/3 9
B. Description of Subroutine SNITCH(KRATE) 29
C. Description of Subroutine DIFUSE(PRESSS) 31
D. Description of Subroutine OMEGA 33
E. Description of Subroutine INITL/ 1 34
F. Description of Subroutine TRANS(ICALC)/6. 38
G. Description of Subroutine RATCN/3. 47
H. Description of Subroutine ENTRN(J,IFOW) 51
I. Description of Subroutine SCHM1/1 52
J. Description of Subroutine $\operatorname{SCHM} 2(J) / 7$ 53
K. Description of Subroutine CALC(J) 58
I. Description of Subroutine SENTP/1 60
M. Description of Subrautine ZCALC/1. 62
N. Description of Subroutino OUPPUT(L, IEADNG, RUNID, X, INPUT,
IMAX) 63
IV. TEST CASE 74
LISTING OF THE PROGRAM. 84
REFERENCES 131
APDENDIX A. DERIVAIION OF THE ONE-DIMENSIONAL LAMINAR FLAME EQUA'IIONS A1
a) Conservation of Total Mass A1
b) Species Conservation Equations. A2
c) Energy Conservation Equation. A3
APPENDIX B. DENERMINATION OF THE VELOCITY OF A STEADILY PROPAGATING FLAME A_{4}
APPENDIX C. CALCULATION OF DIFFUSION VELOCITIES A6
APPENDIX D. CALCULATION OF THE THERMAL CONDUCIIVITY OF THE FLAME. A8
APPENDIX E. VON MISE'S I'RANSFORMATION OF THE FTAME EQUATIONS A9
APPENDIX F. SPALDING'S 'IRANSFORMATION OF THE FLAME EQUATIONS A11
APPENDIX G. UNITY LEWIS NUMBER APPROXIMATION. A13
APPENDIX H. FINITE-DIFFERENCE FORMS DF THE FLAME EQUATIONS A15
APPENDIX 1. CALCUTATITON OF I'HE SOURCE I'ERMS A2O
a) Calculation of the chernical source term. A21
b) Calculation of the energy source term A24
c) Calculation of source terms arising from diffusion of
molecular weight A24
APPENDIX J. CALCULATION OF THE ENIRAINMEN'I RATES A26
APPENDIX K. BOUNDARY CONDITIONS A28
a) Boundary conditions for a freely propagating flame. A28
b) Boundary conditions for a flame stabilized on a burner A28
APPENDIX L. TRANSFORMATION FROM THE ω,t COORDINATE SYSTEM BACK TO THE y, t SISSEM. A33
APPENDIX M. CALCULATION OF THERMAL AND TRANSPORT PROPERTIES EOR PURE SPECIES A35
a) Binary diffusion coefficients A35
b) I'hermal conductivities A36
c) Heat Capacities A37
d) Enthalpies A37
AFPENDIX N. INTIIAl, PROPILES A38

I. INTRODUCTION

The factors which determine how fast a flame will move through a mixture of combustible gases have been known for many years. Flames of practical interest are generated by chemical reactions involving free radicals. The radical reactions usually have high activation energies and thus are rapid only at elevated temperatures. A flame propagates because the cold gases in its path are raised in temperature by thermal conduction and infused with radicals by mass diffusion from the flame front. It is a simple matter to set up equations for the conservation of energy and mass which give the time dependence of the temperature and concentration of chemical species at different positions in the flame. These equations contain transport parameters and chemical rate constants. The transport parameters consist of mass diffusion coefficients for each chemical species in the mixture and the thermal conductivity of the mixture. The kinetic theory of gases provides the functional dependence of these transport properties on the composition and temperature of the mixture. In addition, it also requires a knowledge of binary diffusion coefficients between pairs of species and the thermal conductivities of the pure species. Although the mathematical expressions for the transport properties are very complex, this constitutes no impediment to the solution of the flame equations; their changes with time are slow and do not require calculation at every integration step. Furthermore, the kinetic theory is sufficiently accurate, and our experimental and theoretical knowledge of diffusion coefficients and thermal conductivities sufficiently good that the transport phenomena impose no major barrier to a flame modeling calculation.
'The significant barrier arises from a lack of accurate rate constants and until the last few years in efficient numerical techniques for solving the flame equations. While the rate constant problem remains, it is now possible to solve the flame equations on a high speed digital computer in times ranging from a few seconds to several minutes depending on the complexity of the flame. The method used in the present approach was originally developed by Patankar and Spalding ${ }^{1}$ to solve the twodimensional steady-state boundary layer equations. One of the two
spatial variables in that problem becomes time in the flame equations, while the other represents the distance through the flame front. The equations for the two systems are otherwise the same.

In reading this report, it is desirable to begin with Section II. This gives a brief discussion of the method used to solve the flame equations. Appendices A and B should then be read. These give a simple derivation of the one-dimensional flame equations and show how the steady-state flame velocity is calculated from the solutions of the equations. These equations contain the diffusion velocities of the various species. The expressions used for these are derived in Appendix C. We have considered here only the diffusion arising from a concentration gradient. That caused by a thermal gradient has been neglected. Appendix D, which shows how the thermal conductivity of the flame was calculated can be skipped on a first reading. Appendices E and F show how the flame equations are transformed to a new spatial variable. This is done in two steps. The first is the Von Mises transformation which eliminates the equation for overall mass conservation. This removes the explicit dependence on the flame velocity in the remaining equations. Next, a transformation devised by Patankar and Spalding is used to convert the equations into the form of the boundary layer equations. Appendix G discusses the assumptions underlying the unity Lewis number approximation and can be skipped. Appendices H through K show how the equations are written in finite-difference form, how the various source terms are calculated, the way the grid size is controlled during the integration of the equations, and how the boundary conditions are incorporated into the calculation. The last three Appendices can be skipped.

After this, one can begin with Section III, which gives a detailed discussion of how the program works. Throughout this section, references are made to relevent parts of the Appendices for detailed discussions of the various calculations.

A test case is presented in Section IV. For this a $\mathrm{H}_{2}-\mathrm{Br} 2$ flame was used. T'his shows the form of the input data and the type of output that the program yields.

II. METHOD USED TO SOLVE THE FLAME EQUATIONS

In this section we present an outline of the method used to solve the flame equations. The details are presented in the Appendices.

The equations which describe a one-dimensional pre-mixed laminar flame can be written in the form of the classical diffusion equation.

$$
\begin{equation*}
\frac{\partial C_{j}}{\partial t}=\frac{\partial}{\partial x}\left(\tau_{j} \frac{\partial C_{j}}{\partial x}\right)+S_{j} \tag{1}
\end{equation*}
$$

C_{j} is the concentration of the j^{\prime} th species. τ_{j} is a diffusion parameter and S_{j} is the chemical source term for j. Both τ_{j} and S_{j} are functions (presumed to be known) of the concentrations of the various species. The independent variables are the time t and a distance x. x is actuslly a transformed spatial variable which is roughly proportional to the distance y which would be measured in the laboratory. ($x=\psi$, see Appendix E.) There is one of these equations for each species in the flame, and also a similar equation for the temperature or the enthalpy. The derivation of these equations is given in Appendices A and E .

To solve these equations we set up a two-dimensional grid for the independent variables as shown in Fig. 1. The subscript on C in the figure now denotes a particular grid point on the x axis and is not a species index. The primes denote the values of the C_{m} at the time t^{\prime}. The differential equation (1) gives the value of $\partial c / \partial t$ in terms of the derivatives of the spatial variable. Thus, at a particular grid point m we have,

Figure 1. Grid Structure

$$
\begin{equation*}
\left\{\frac{\partial C}{\partial t}\right\}_{m}=\left\{\frac{\partial \tau}{\partial x}\right\}_{m}\left\{\frac{\partial C}{\partial x}\right\}_{m}+\tau_{m}\left\{\frac{\partial^{2} C}{\partial x^{2}}\right\}_{m}+S_{m} \tag{2}
\end{equation*}
$$

To simplify the discussion, let us assume that $\partial \tau / \partial x=0$; i.e., τ is a constant independent of x. We also will assume that τ is independent of time. This gives
$\left\{\frac{\partial C}{\partial t}\right\}_{m}=\tau\left\{\frac{\partial^{2} C}{\partial x^{2}}\right\}_{m}+S_{m}$
To approximate the spatial derivative, assume that C can be represented by a quadratic function in x in the region from x_{m-1} to x_{m+1}. Thus, let $c=a+b x+c x^{2}$ for $x_{m-1} \leqq x \leqq x_{i n+1}$

From this we get
$\frac{\partial C}{\partial x}=b+2 c x ; \quad\left\{\frac{\partial C}{\partial x}\right\}_{m}=b+2 c x_{m}$
$\frac{\partial^{2} c}{\partial x^{2}}=2 c=\left\{\frac{\partial^{2} c}{\partial x^{2}}\right\}_{m}$
To obtain the parameter c, we must solve the three equations
$C_{m+1}=a+b x_{m+1}+c x_{m+1}^{2}$
$C_{m}=a+b x_{m}+c x_{m}^{2}$
$C_{m-1}=a+b x_{m-1}+c x_{m-1}^{2}$
A little manipulation of these equations yields
$c=\frac{1}{2}\left(C_{m-1}-2 C_{m}+C_{m+1}\right) /(\delta x)^{2}$
where δx is the spacing between the grid points on the x axis. This gives us an approximate expression for $\left\{\partial^{2} \mathrm{C} / \partial x^{2}\right\}_{m}$ in terms of the values of C at the three prid points $\mathrm{m}-1, \mathrm{~m}$, and $\mathrm{m}+1$.

$$
\begin{equation*}
\left\{\frac{\partial^{2} C}{\partial x^{2}}\right\}_{m} \approx \frac{1}{\delta x^{2}}\left(C_{m-1}-2 C_{m}+C_{m+1}\right) \tag{4}
\end{equation*}
$$

From (3) and (4) we have

$$
\begin{align*}
& \left\{\frac{\partial C}{\partial t}\right\}_{m} \approx \frac{\tau}{\delta x^{2}}\left(C_{m-1}-2 C_{m}+C_{m+1}\right)+S_{m} \tag{5}\\
& \left\{\frac{\partial C}{\partial t}\right\}_{m}^{\prime} \approx \frac{\tau}{\delta x^{2}}\left(C_{m-1}^{\prime}-2 C_{m}^{\prime}+C_{m+1}^{\prime}\right)+S_{m}^{\prime} \tag{6}
\end{align*}
$$

Equation (5) gives us an approximate value of $\{\partial c / \partial t\}_{m}$ which could be used to estimate C_{m}^{\prime} from C_{m};
$C_{m}^{1} \approx C_{m}+\left\{\frac{\partial C}{\partial t}\right\}_{m} \delta t$
This is not the best estimate for C_{m}^{\prime}. If C_{m} varied with time as shown in Fig. 2, one could get a value of C_{m}^{\prime} closer to the true value by $u_{s}-$ ing the average of $\partial C / \partial t \mathrm{~m}$ and $\{\partial c / \partial t\}_{m}^{\prime} ;$ i.e.,
$C_{m}^{\prime} \approx C_{m}+\frac{1}{2}\left[\left\{\frac{\partial C}{\partial t}\right\}_{m}+\left\{\frac{\partial C}{\partial t}\right\}_{m}^{\prime}\right] \delta t$ (8)
To be general, let us take a weighted average of the two time derivatives,
$\left\langle\frac{\partial C}{\partial t}\right\rangle=(1-\lambda)\left\{\frac{\partial C}{\partial t}\right\}_{m}+\lambda\left\{\frac{\partial C}{\partial t}\right\}_{m}^{\prime}$ Our estimate for C_{m}^{\prime} will now be

$$
\begin{align*}
C_{m}^{\prime} \approx C_{m} & +\left\langle\frac{\partial C}{\partial t}\right\rangle \delta t \\
= & C_{m}+(1-\lambda) \frac{\delta t}{\delta x^{2}}\left(C_{m-1}-2 C_{m}+C_{m+1}\right)+(1-\lambda) \delta t S_{m} \\
& +\quad \lambda \frac{\delta t \tau}{\delta x^{2}}\left(C_{m-1}^{\prime}-2 C_{m}^{\prime}+C_{m+1}^{\prime}\right)+\quad \lambda \delta t S_{m}^{\prime} \tag{10}
\end{align*}
$$

We are now confronted with the problem of determining S_{m}^{\prime}, the value of the source term at t. For a small change in S_{m}, we have $S_{m}^{1} \approx S_{m}+\frac{\partial S_{m}}{\partial C_{1 m}}\left(C_{1 m}^{1}-C_{1 m}\right)+\ldots \ldots . . .+\frac{\partial S_{m}}{\partial \bar{C}_{N m}}\left(C_{N m}^{1}-C_{N m}\right)$
where the first subscript on C is a species index. The difficulty here is that we don't have values for the $C_{j m}^{1}$ until an equation like (10) is evaluated for each species j. To get around this problem, we assume that all of the partial derivatives $\partial S_{m} / \partial C_{j m}$ are negligible except in the case of the particular species under consideration in (10).

We then have, (dropping the species index),
$S_{m}^{\prime} \approx S_{m}+\frac{\partial S_{m}}{\partial C_{m}}\left(C_{m}^{\prime}-C_{m}\right)$
This is obviously not a good assumption. Nevertheless, we need only a rough estimate of S_{m} at t. As t increases, we eventually reach a steady-state in which $C_{m}^{\prime}=C_{m}$. Therefore S_{m} also stops changing with time. One could probably use the value of S_{m} at time t for S_{m}^{\prime} and still reach the same steady-state. Using (11) to estimate S_{m}^{\prime}, however, allows one to take somewhat larger time steps and consequently speeds up the integration.

Inserting (11) into (10) and rearranging, we get,
$C_{m}^{\prime}=A_{m} C_{m-1}^{\prime}+A_{m}{ }^{\prime}{ }_{m+1}+B_{m}$
where

$$
A_{m}=A(\lambda) / D_{m}(\lambda)
$$

$$
B_{m}=B_{m}(\lambda) / D_{m}(\lambda)
$$

$$
A(\lambda)=\lambda \delta t_{\tau} /(\delta x)^{2}
$$

$$
B_{m}(\lambda)=(1-\lambda) \frac{\delta t_{\tau}}{\delta x^{2}}\left(C_{m-1}+C_{m+1}\right)+\left[1-2(1-\lambda) \frac{\delta t_{\tau}}{\delta x^{2}}-\lambda \delta t \frac{\partial S_{m}}{\partial C_{m}}\right] C_{m}+S_{m} \delta t
$$

$D_{m}(\lambda)=1+2 \lambda \frac{\delta t_{T}}{\delta x^{2}}-\lambda \delta t \frac{\partial S_{m}}{\partial \frac{C_{m}}{}}$
We are free to choose any value between 0 and 1 for the weighting parameter. If we take $\lambda=0$, then
$C_{m}^{\prime}=B_{m}(0) / D_{i n}(0)=\frac{\delta t \tau}{\delta x^{2}}\left(C_{m-1}-2 C_{m}+C_{m+1}\right)+S_{m} \delta t$
This is an example of a so-called explicit difference equation, in which the value of C_{m}^{\prime} is calculated from the concentrations at time t only.

When $\lambda \neq 0$ we have an implicit difference equation. This gives an equation connecting three grid pointsat time t'. This results in a set
of simultaneous algebraic equations (12) which must be solved. This set has the form

$$
\begin{aligned}
& \mathrm{A}_{1} \mathrm{C}_{0}^{1}-\mathrm{C}_{1}^{1}+\mathrm{A}_{1} \mathrm{C}_{2}^{1} \\
& 0 \\
& =-B_{1} \\
& \mathrm{~A}_{2} \mathrm{C}_{1}-\mathrm{C}_{2}^{1}+\mathrm{A}_{2} \mathrm{C}_{3}^{1} \\
& \mathrm{~A}_{3} \mathrm{C}_{2}-\mathrm{Cl}_{3}+\mathrm{A}_{3} \mathrm{C}_{4} \\
& =-B_{2} \\
& =-B_{3} \\
& A_{M-1} C_{M-2}^{\prime}-C_{M-1}^{\prime}+A_{M-1} C_{M}^{\prime}=-B_{M-1}
\end{aligned}
$$

where M is the maximun number of grid points along the x axis.
For this particular system involving three grid points, the solution of the above system of equations can be obtained without having to invert a matrix. Equation (12) can be written in the simpler form,

$$
\begin{equation*}
C_{m}^{\prime}=A_{m}^{*} C_{m+1}^{1}+B_{m}^{*} \tag{13}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{m}^{*}=\frac{A_{m}}{1-A_{m} A_{m-1}^{*}} \\
& B_{m}^{*}=\frac{A_{m} B_{m-1}^{*}+B_{m}}{1-A_{m} A_{m-1}^{*}} \tag{14}
\end{align*}
$$

$A_{1}^{*}=A_{1}$

$$
\mathrm{B}_{1}^{*}=\mathrm{A}_{1} \mathrm{C}_{0}^{1}+\mathrm{B}_{1}
$$

The values of C_{m}^{\prime} at the first and last grid points C_{0}^{1} and C_{M}^{\prime} are always specified by the boundary conditions for the problem. We can solve (12) by first calculating A_{m}^{*} and B_{m}^{*} for all the grid points starting from $m=1$. It is then easy to obtain the C_{m}^{\prime} values successively with (13) starting from C_{M-1}^{1} and working down to C_{1}^{1}.

This implicit method is what we have used to solve the flame equations. The actual form of the difference equations for the species and enthalpy used in the program is derived an Appendix H. While the methods used there to approximate the spatial derivatives are somewhat different from those used in this section, the basic solution method is the same.

III. DETAILED DESCRIPTION OF THE PROGRAM

The following is a step-by-step description of the main program and each of its subroutines. Flow diagrams for most of the routines are provided at the end of each section.

A. Description of the Main Program SPALD/3

The function of SPALD is to control the calculation. It uses various subroutines to calculate the parameters contained in the finitedifference coefficients in Eq. A4O, Appendix H, p. A18. After calculating the coefficients, it then calls a routine CALC which solves the difference equations and yields values of the concentrations and enthalpy a time $t+\delta t$. It continues for as many time steps as the user specifies. No test is made for convergence.

SPALD begins by reading the following data:

1) $\operatorname{RUNID}(\mathrm{M}), \mathrm{M}=1,12$

Format(12A6)
This is the run identification. It consists of 12 words, in A6 format, making 72 characters available for whatever identifying remarks the user wishes to employ.
2) $\operatorname{HEADNG}(M), M=1,126$

Format(63A1)
This provides headings for the output profiles. There are 126 characters available. Two cards must be used. The output profiles are listed in 14 columns. The first 12 are for species concentrations and are in E 9.5 format. Column 13 contains the enthalpy profile and is in E10.5 format; this extra space is used for the sign of the enthalpy which can be negative. The last column is for the temperature profile and has E9.5 format. The headings should be spaced within the 126 character range available so that they are aligned at the top of the appropriate column.
3) LH, IO, IOH, LHO2, LH2O2, LX, LHX, IX2, LO2, LH2O, LH2, IN2

Format(14I2)

These are species indices for the $\mathrm{H}_{2}-\mathrm{O}_{2}-\mathrm{N}_{2}$ flame. They should run from 1 to 12. In earlier versions of the program they were used in the subroutine which calculated the chemical source term. Now, however, they are needed only in a portion of the routine which calculates transport properties. They must be included although they are used only for the $\mathrm{H}_{2} \mathrm{O}_{2}$ flame.
4) $\mathrm{LD}, \mathrm{IE}, \mathrm{LC}$

Format(3I2)
These three numbers determine the number of integration steps for which certain subroutines are called at each step. For example, if $L D=20$, then $\operatorname{TRANS}(1)$ is called for the first 20 integration steps. This means that a complete calculation of the transport properties is made at each of the first 20 steps. The second number controls the calling of SCHM1, which calculates the part of the chemical source term arising from the diffusion of the mean molecular weight. SCHM1 is called at each integration step for the first $I E$ steps. The last number controls the reference to SENTP, the routine which calculates the enthalpy source term. This will be called at every step for the first LC steps.
5) LDELAA, LDEELB, LDELC

Format(3I2)
These numbers control the number of time steps for which TRANS(1), SCHM1, and SENTP are not called after the first $I D, L E$, and $L C$ steps, respectively. For example, after calculating the transport properties for the first $I D$ steps, the program, from this point on, will calculate them only at intervals of LDELA steps.

There are two special cases which can arise;
a) Suppose one does not wish to call SCHM1 at any time during the calculation. In most flames, the mean molecular weight changes little throughout the flame so that this part of the chemical source term can be neglected. To do this, let $\mathrm{LE}=0$ and $\operatorname{LDELB}=0$.
b) If one is considering a constant enthalpy flame, SENTP need not be called. To prevent this, let $\mathrm{LC}=0$ and $\mathrm{LDELC}=0$.
6) $\mathrm{N}, \mathrm{NII}, \mathrm{NEE}, \mathrm{OMR}$

Format (3I2, D5.1)
N is the number of slices into which the ω axis from 0 to 1 is divided into to form a grid. It can have a maximum value of 40 . The grid points start atI $=2$ and run to $N+2$. (See Appendix H, p. A19.) Slices between the grid points NII and NEE have equal widths. There is a non-uniform grid spacing near the boundaries with the spacing increasing from $I=N I I$ to 2 and from NEE to $N+2$ so that consecutive slices are in the fixed ratio OMR. This non-uniform spacing is used to increase the number of grid points in the region which has the largest concentration gradients. The spacing of the central grid points is given by the formula,

$$
\left[\frac{O M R * *(N I I-1)+O M R * *(N-N E E+3)-2 * O M R}{O M R-1}+N E E-N I I\right]^{-1}
$$

An example of this grid spacing is shown in Fig. 3 for the case, $N=15, \mathrm{NII}=4, \mathrm{NEE}=14$, and $\mathrm{OMR}=1.5$.

Figure 3
Sample Grid Spacing
The grid points NII and NEE also denote the positions near the hot and cold boundaries, respectively, used in the grid width control procedure. They correspond to the points $H H$ and CC (see Appendix J).
7) JH, JRAD, JM, JMR, JT, J'IR, I'TER, ITER1, JENTRN, JBODYA, JBODYB

Format(11I2)
JH is the index of the enthalpy variable $\mathrm{F}(\mathrm{JH}, \mathrm{I})$. It can have a maximum value of 13. It must be larger by one than the total number of species in the flame. The index of the last species will then be $J H M 1=J H-1$. In the output, the number of the column will correspond
to the first index in $\mathrm{F}(\mathrm{J}, \mathrm{I})$. The enthalpy profile, however, will always appear in column 13.

JRAD is the index of the last minor species. Minor species are always given the lowest index values. Major species start with the index JRADP1 $=\mathrm{JRAD}+1$.
$J M$ and $J M R$ are indices for the mean molecular weight and its reciprocal which are contained in the array FS. The mean molecular weight is $\operatorname{FS}(J M, I)$ and its reciprocal is $\operatorname{FS}(J M R, I)$. We use the values $J M=1$, and $J M R=2$.

JT and JTR are indices for the temperature and its reciprocal which are contained in the array FS. The temperature is FS(JT,I) and its reciprocal is $\operatorname{FS}(J T R, I)$. We use $J T=3$ and $J T R=4$.

ITER is the number of iterations used in the Newton-Raphson procedure to calculate the temperature from the enthalpy value at a grid point. ITER $=2$ has been found to give satisfactory results. (See Appendix M, p. A39.)

I'I'ER1 is not used. Set it equal to zero.
JENTRN is the index of the species which is used to calculate the entrainment rate. A major species is always used for this purpose. (See Appendix J, p. A27.)

JBODYA and JBODYB are indices for third body concentrations which are stored in the array FS. FS(JBODYA,I) is the third body concentration to be used for the reaction $\mathrm{H}+\mathrm{OH}+\mathrm{M} \not \mathrm{H}_{2} \mathrm{O}+\mathrm{M}$, and FS (JBODYB, I) that for the reaction $\mathrm{H}+\mathrm{O}_{2}+\mathrm{M} \not \mathrm{HO}_{2}+\mathrm{M}$ in the $\mathrm{H}_{2} \mathrm{O}_{2}$ flame calculations. These concentrations depend on the mixture composition and are calculated in TRANS. Normally one uses the reciprocal of the mean molecular weight for the third body concentration in the mole/kg concentration units. We let JBODYA $=5$ and $J B O D Y B=6$.
8) $\mathrm{XI}(\mathrm{J}), \mathrm{J}=\mathrm{JRADP1}, \mathrm{JHM} 1$ XE(J) , J=JRADP1, JHM1 Format(5D7.3)

These are the mole fractions of all the major species at the hot and cold boundaries,respectively, at the start of the calculation. For example, consider a $\mathrm{H}_{2}-\mathrm{O}_{2}-\mathrm{N}_{2}$ flame having on the cold side $\mathrm{XE}(\mathrm{LO} 2)=0.063, \mathrm{XE}(\mathrm{LH} 2 \mathrm{O})=0.0, \mathrm{XE}(\mathrm{LH} 2)=0.700$, and $\mathrm{XE}(\operatorname{LN} 2)=0.237$. Assuming that the reaction goes to completion, we get hot side values $X I($ LO2 $)=0.0$
$X I($ LH2O $)=2 . * X E($ LO2 $) /(1 .-X E($ LO2 $))=0.1345$
$X I(\operatorname{LH} 2)=(X E(\operatorname{LH} 2)-2 . * X E($ LO2 $)) /(1 .-X E($ LO2 $))=0.6126$
$X I(\operatorname{LN} 2)=X E(\operatorname{LN} 2) /(1 .-X E(L O 2))=0.2529$
9) $\operatorname{IPRFL}(J), J=J R A D P 1, J H M 1$

Format(5I1)
If $\operatorname{IPRFL}(J)=0$, the initial profile for the major species J decays from the cold to the hot side of the flame. $\operatorname{If} \operatorname{IPRFL}(J)=1$, then we have a growth profile. For the above $\mathrm{H}_{2}-\mathrm{O}_{2}-\mathrm{N}_{2}$ example, $\operatorname{IPRFL}(\mathrm{LO} 2)=0$
$\operatorname{IPRFL}(\mathrm{LH} 20)=1$
$\operatorname{IPRFL}(\operatorname{LH} 2)=0$
$\operatorname{IPRFL}(\operatorname{IN} 2)=1$
10) TCOLD, PRESS, YWIDTH

Format(D6.0, D6.2,D5.1)
TCOLD is the temperature of the cold boundary in degrees K .
PRESS is the pressure of the flame in atmospheres. YWIDTH is the approximate width of the flame front in meters. The program needs a value for this quantity to start the calculation. It uses this to calculate a starting value for the grid width parameter PEI $=\eta=\psi_{C}-\psi_{\mathrm{H}}$. (See Appendix F, p. A11.) Although the grid width is automatically adjusted at each step in the calculation, it is best to start with a value as close as possible to the final value. We have not experimented with the effect of the choice of YWID'H (and thus the initial PEI) on the course of the calculation.
11) $\operatorname{HREF}(\mathrm{J}), \operatorname{DCP}(\mathrm{J}), \operatorname{ECCP}(\mathrm{J}), \operatorname{FCP}(J), \operatorname{WI}(J), J=1, \mathrm{JFM} 1$

Format(4D12.0, D10.2)
HREF(J) is the reference enthalpy value h_{j}^{0} for the species J in joules $/ \mathrm{kg}$. (See Appendix M, Eqs. (A78a) and. (A78b), p. A37 for their definition.) $\operatorname{DCP}(\mathrm{J}), \operatorname{ECP}(\mathrm{J})$, and $\operatorname{FCP}(\mathrm{J})$ are the parameters d_{j}, e_{j}, and f_{j} in the quadratic expression used for the heat capacities of the individual species. The units are joules $/ \mathrm{kg}$-deg. (See Appendix M, Eq. (A76), p. A37.)

It is worth noting here that one needs values of these parameters only for the major species. The enthalpy, $h=\sum_{j} h_{j}{ }_{j}$, so that contributions from species having small Y_{j} are not important in its calculation. The h_{j} (actually $h_{j}^{\%}=M_{j} h_{j}$) also appear in the source term for the enthalpy as the products $h_{j}^{*} \partial \varphi_{j} / \partial \omega$. Here again the contributions from the trace species will be negligible compared to that from the major species. This is so because the values of $\partial \varphi_{j} / \partial \omega$ will be small when φ_{j} is small even though these gradients could be large on a percentage basis. Calculation time could be saved by not summing over the trace species in the enthalpy source term. The effect of neglecting these terms should be examined in future work.

WT (J) is the molecular weight of each species in $\mathrm{kg} / \mathrm{mole}$.
12) DXMIN, DXMAX,STEPS

Format(2D5.0, D6.0)
The size of the time step $D X$ is determined from the formula $D X=D X M I N+((D X M A X-D X M I N) / S I E P S) * L$, where L is the number of the step and SIEPS is a number comparable to the maximum number of steps to be used. 'l'he step size increases linearly from DXMIN to DXMAX when $I_{1}=$ SIPEPS. We normally have DXMIN \ll DXMAX. Thus $D X$ is small at the beginning of the calculation and increases as the steady-state is approached. Other step size control formulas could be investigated. Perhaps the step size could be made inversely proportional to the rate of change of the grid width PEI. As the steady-state is reached, PEI changes little from step-to-step justifying larger values of DX. At the beginning of the calculation, when the profiles are changing rapidly,

PEI will also be changing and the step size would be kept small.

13) LMAX, LPRINT

Format(2I3)
LMAX is the maximum number of steps to be used in a given calculation. IPRINT specifies the step interval at which profiles are to be printed. One page of profiles is printed every LPRINT steps. When L reaches LMAX, the complete output is printed.

14) ALPHA

Format (F3.2)
ALPHA is the parameter ν which appears in the grid control formulas Eqs. A58-60. (See Appendix J, p. A26.) We have been setting ALPHA equal to 0.1.
15) KRAT

Format(I2)
This is the number of chemical reactions. For a particular reaction, the forward and reverse reactions count as one reaction. (Note that KRATE = KRAT.) KRAT can have a maximum value of 30.
16) $\operatorname{FRQ}(K), \operatorname{BETA}(K), \operatorname{EACT}(K), B F L A G(K), \operatorname{EFLAG}(K), K=1, K R A T E$

Format(D6.2,D7.2,D8.2,2L1)
These are the Arrehenius parameters for the forward rate constant of reaction K. If we express the temperature dependence of a rate constant k as $k=A T{ }^{\beta} \exp (-E / R T)$ then
$F R Q(K)=A$
$\operatorname{BETA}(K)=\beta$
$\operatorname{EACT}(K)=E / R\left(\right.$ in $\left.^{o} K\right)$
k must be in units of $\mathrm{m}^{3} / \mathrm{mole}$ and $\mathrm{m}^{6} / \mathrm{mole}^{2}$ for two and three body reactions, respectively.
$\operatorname{BFLAG}(K)=. T R U E$. if $\operatorname{BEFA}(K) \neq 0$, and $\operatorname{EFLAG}(K)=. T R U E$. if
$\operatorname{EACT}(K) \neq 0$.
17) $\mathrm{EQA}(\mathrm{K}), \mathrm{EQB}(\mathrm{K}), \mathrm{EQC}(\mathrm{K}), \mathrm{BOD1}(\mathrm{~K}), \mathrm{BOD2}(\mathrm{~K}), \mathrm{K}=1, \mathrm{KRATE}$

Format(3D11.5,2L1)
The first three quantities are the coefficients in the expansion of the free energy $\Delta \mathrm{F}^{\mathrm{O}}$ of each reaction as a power series in the temperature. We use
$-\triangle F^{\circ}=\operatorname{EQA}(K)+\operatorname{EQB}(K) * T+\operatorname{EQC}(K) * T^{2}$
The values of these coefficients must be such that ΔF° will be in units of kcal/mole.

If $\operatorname{BOD1}(\mathrm{K})=. \operatorname{TRUE}$., then either the forward or reverse reaction is third order. If $\operatorname{BOD2} 2(K)=. T R U E$., then the reverse reaction is third order.
18) $\operatorname{ITEST}(\mathrm{M}), \mathrm{M}=1,10$

Format(10I1)
When set to unity these flags produce various outputs used for checking the operation of the program. They are normally set to zero. An examination of the listing of SPALD will show what quantities are printed. They should be used only for flames with JH $\leqq 6$. With some modification of SPALD they could be used for larger values of JH.

19) INPUT

Format(I2)
When $\operatorname{INPUT}=1$, input profiles are supplied from a data file. This file must contain the concentration and enthalpy profiles and the grid width PEI. This file is taken from logical unit 45 by the statement $\operatorname{READ}(45)((F(J, I), J=1, J H), I=1, N P 3), \operatorname{PEI}$. These can be output profiles from a previous calculation. The output profiles are placed in logical unit 46 by the statement $\operatorname{WRITE}(46)((F(J, I), J=1, J H), I=1, N P 3)$, PEI. (NP3 equals $N+3$) If the user is generating his own input profiles, they must be stored in the above order and be double precision numbers. Note that $F(J, 1)$ and $F(J, N P 3)$ are not actually used and should be given zero values. Remember that $F(J H, I)$ is the enthalpy, and that small values of I refer to the hot side of the flame.

When INPUI $=0$, the initial profiles are generated by INITL.
20) $\operatorname{LORDER}(J), J=1, J H M 2$

Format(14I2)
These numbers specify the order in which one wishes the species equations to be solved. Spalding has found that the efficiency of the calculation is improved by solving the species equations in order of increasing species concentration. The trace species equations are solved first, followed by the major species equations. (Note that JHM2 $=J H-2$; this is the index of the next to the last major species.) The species JHM1 is calculated from the relation $\sum \varphi_{j} M_{j}=1$, and so LORDER(JHM1) need not be specified.

As an example, consider the $\mathrm{H}_{2}-\mathrm{Br}$ flame ($\mathrm{JH}=6$) where the species have been given the indices $\mathrm{Br}=1, \mathrm{H}=2, \mathrm{H}_{2}=3, \mathrm{Br}_{2}=4$, and $\mathrm{HBr}=5$. If we wanted to solve the species equations in the order $\mathrm{H}, \mathrm{Br}, \mathrm{Br}_{2}$, H_{2}, HBr , we would have
$\operatorname{IORDER}(1)=2$
$\operatorname{LORDER}(2)=1$
$\operatorname{LORDER}(3)=4$
$\operatorname{IORDER}(4)=3$
The equation for $J=5$ will automatically be solved last.
(Note that in the test case to be presented later for which this flame was used, we solved the species equations in the order of species index, i.e., we used $\operatorname{LORDER}(J)=1,2,3,4$.
21) $\operatorname{SPECIE}(J), \mathrm{J}=1, \mathrm{JHM} 2$

Format(14L1)
If $\operatorname{SPECIE}(J)=$.FALSE., then the equation for that J is not solved.
22) $\operatorname{REACT}(\mathrm{K}), \mathrm{K}=1$, KRATE

Format(30L1)
If REACT $(K)=$.FALSE., then both the forward and reverse rate constants for reaction K are set to zero.
23) $\operatorname{FFLAG}(K), K=1$, KRATE

RFLAG(K), $\mathrm{K}=1$, KRATE
Format (30L1)

If $\operatorname{FFLAG}(K)=$.FALSE., then the forward rate constant for reaction K is set to zero; if RFLAG(K) =.FALSE., then the reverse rate constant is set to zero.
24) $\operatorname{LA}(K), \operatorname{LB}(K), \operatorname{IRA}(K), \operatorname{LRB}(K), K=1, K R A T E$

Format (4I2)
These numbers specify the reaction mechanism to be used. Consider the $\mathrm{H}_{2}-\mathrm{Br}_{2}$ flame as an example. We use the reactions,
$\mathrm{K}=1 \quad \mathrm{Br}_{2}+\mathrm{M} \rightarrow \mathrm{Br}+\mathrm{Br}+\mathrm{M}$
$K=2 \quad \mathrm{H}_{2}+\mathrm{M} \rightarrow \mathrm{H}+\mathrm{H}+\mathrm{M}$
$\mathrm{K}=3 \quad \mathrm{Br}+\mathrm{H}_{2} \geq \mathrm{HBr}+\mathrm{H}$
$\mathrm{K}=4 \quad \mathrm{H}+\mathrm{Br}_{2} \not \mathbf{\mathrm { HBr }}+\mathrm{Br}$
For a species index assignment $\mathrm{Br}=1, \mathrm{H}=2, \mathrm{H}_{2}=3, \mathrm{Br}_{2}=4, \mathrm{HBr}=5$, we have the following assignment for IA, IB, IRA, and IRB:

K	$\operatorname{IA}(K)$	$\operatorname{IB}(K)$	$\operatorname{IRA}(K)$	$\operatorname{IRB}(K)$
1	4	0	1	1
2	3	0	2	2
3	1	3	5	2
4	2	4	5	1

We see that the indices $L A(K)$ and $L B(K)$ refer to the species entering into the forward reaction, while $\operatorname{LRA}(K)$ and $\operatorname{IRB}(K)$ pertain to those contained in the reverse reaction. There is space for two species on each side of a reaction. The third body M is not counted as a species. In cases where there is only one species aside from M involved in the reaction, one must.always set either $\operatorname{LB}(K)$ or $\operatorname{LRB}(K)$ equal to zero. The index. of the one species present should be assigned to LA(K) or $\operatorname{IRA}(K)$. For example, if we had written reaction 1 as
$\mathrm{Br}+\mathrm{Br}+\mathrm{M} \nrightarrow \mathrm{Br}_{2}+\mathrm{M}$
then the assignment would have been,
$\operatorname{LA}(1)=1, \operatorname{LB}(1)=1, \operatorname{LRA}(1)=4, \operatorname{LRB}(1)=0$.
25) $\operatorname{FLAG}(I), I=1,20$

Format (30L1)
These flags provide a series of options regarding the calculation of transport properties, source terms, and the nature of the output.

FLAG(1) $=$. FALSE. The complete calculation of the transport parameters is made.
$=$. TRUE. Constant and equal transport parameters are used. These are contained in the array PREF and are assigned values in a DATA statement in SPALD, line SPDOO350. Constant, but non-equal values could be used by changing this data statement.

FLAG(2) $=$.FALSE. If the flame contains a buffer gas like N_{2} in a low temperature $\mathrm{H}_{2} \mathrm{O}_{2}-\mathrm{N}_{2}$ flame, its mass fraction can be considered to remain constant throughout the flame. This buffer will be assigned the species index JHM1. The relation between the mass fractions gives $\sum_{J=1}^{J H M Y_{J}}+Y_{J H M 2}+Y_{J H M 1}=1$.
When $Y_{\text {JHM1 }}$ is the buffer mass fraction and is kept constant, $Y_{\text {JHM2 }}$ can be calculated from this equation and its species equation need not be solved. Therefore when this option is used one must also have SPECIE(JHM2) = .FALSE.
$=$. TRUE. The buffer concentration is allowed to vary. This option must be used for flames containing no buffer species.

FIAG(3) $=$. FAISE. The pressure oquals 1 atmosphere.
$=$. TRUE. The pressure is different from 1 atmosphere.
FLAG(4) (Not used)

FIAG(5) $=$.FALSE. The enthalpy source term is not calculated. This option can also be achieved by using LC $=0$ and $\operatorname{LDELC}=0$.
$=$.TRUE. The enthalpy source term is calculated.
FLAG(6) (Not used)
l'LAG $(7)=$. PALst . I'he transport properties for the ozone decomposition flame are not calculated.
$=$.TRUE. The transport properties for the ozone flame are calculated.

FLAG(8) $=$.FALSE. The transport properties for the hydrogen-bromine flame are not calculated.
$=$.TRUE. The transport properties for the hydrogen-bromine flame are calculated.

FLAG(9) $=$.FALSE. The rate constants as a function of distance through the flame are not printed in the final output.
$=$. TRUE. The rate constants are printed.

FILAG(10) $=$.FALSE. The rates of each reaction at each point in the flame are not printed in the final output.
$=$.TRUE. The reaction rates are printed.

FLAG(11) $=$.FALSE. Heat release rates for individual reactions at each point in the flame are not printed in the final output.
$=$.TRUE. Heat release rates for the reactions are printed.

FLAG(12 through 20) (Not used)

This completes the input data requirements for SPALD.

After reading this data SPALD calls the subroutine SWITCH. Its function is to set three flags, G1, G2, and G3, which describe the nature of each reaction. These flags are then used in the calculation of the chemical source term by subroutine SCHM2.

FIAG(1) is then tested. If false the routine DIFUSE is called. This calculates binary diffusion coefficients for the $\mathrm{H}_{2}-\mathrm{O}_{2}-\mathrm{N}_{2}$ flame from Lennard-Jones parameters. The values of these parameters are contained in a DATA staternent in DIFUSE.

The index JSI'OP is set equal to JHM3. FLAG(2) is then tested; if true, then the buffer gas will vary and JSTOP is equated to JHM2.

The flag INPUP is tested. If INPUI $=1$, profiles are read from a file located in logical unit 45.

The quantities L, LCOUNT, X, and DX are initialized. I is the number of the step, LCOUNT is the number of steps taken since the last profile print-out, X is the time variable, and $D X$ is the time step size.

The grid structure is calculated by a call to OMEGA.
The flag INPUT is again tested and if equal to zero INITL is called to calculate the initial profiles.

After these preliminaries, the point 706 is reached to which the program returns after every integration step. This therefore represents the beginning of each step. TRANS (1) is then called if a complete transport calculation is to be made, otherwise TRANS (0) is called. TrANS (0) calculates the temperature at each grid point from the enthalpy and stores it in FS(JT, I). TRANS(1) in addition calculates the transport parameter array PREF(J,I).

The flag INPUP is tested once again and, if zero, an initial value of PEI is determined by calling ZCALC with PEI $=1.0$. This routine produces a value of $Y(I)$, the laboratory spatial variable, at the cold boundary grid point N.P2. PEI is then taken to be the ratio YWIDTH/Y(NP2). To see the rationale behind this, refer to Eq. (A7O), Appendix L. This formula gives for $Y(N P 2)$
$Y(N P 2)=2 \eta \sum_{i=2}^{N+2} \frac{\omega_{i+1}-\omega_{i}}{\rho_{i+1}-\rho_{i}}$
The quantities ω_{i} were calculated in OMEGA, and the ρ_{i} were calculated in TRANS (1). We want to have a value of $\eta(=$ PEI $)$ such that $Y(N P 2)=Y W I D T H$. By calling ZCALC with PEI $=1.0$, we get the quantity
$2 \sum_{i=2}^{N+2} \frac{\omega_{i+1}-\omega_{i}}{\rho_{i+1}-\rho_{i}}$
Dividing YWIDTH by this gives a value of PEI which makes $Y(N P 2)=Y W I D T H$.

SPALD next calculates the quantities PEID2 $=\frac{1}{2} \eta$, $\operatorname{PEIOMD}(I)=$ $\eta\left(\omega_{i+1}-\omega_{i}\right)$, and PEIOM2(I) $=\frac{1}{2} \eta\left(\omega_{i+1}-\omega_{i-1}\right)$.

RATCN is then called to calculate the values of the rate constants at each point in the flame.

To calculate the entrainment rates $\dot{\mathrm{m}}_{\mathrm{C}}$ and $\dot{\mathrm{m}}_{\mathrm{H}}$ (see Appendix J, p. A26), it is necessary to have a value of $R(J E N T R N, I)$; this is the production rate of species JENTRN in noles $/ \mathrm{kg}-\mathrm{s}$. Since this is normally calculated by SCHM2 later in the program, on the first integration step it is. necessary to call SCHM2(JENTRN) to calculate the production rate for this species.

SPALD then evaluates the finite-difference coefficients $A(J, I)$, $B(J, I)$, and $D(J, I)$ (minus the source term). These are the quantities $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$, and $\mathrm{D}+2 \mathrm{~S}_{\mathrm{F}}$ of Eq. (A40), Appendix H, p. A18.

If desired, the chemical source term arising from the diffusion of the mean molecular wieght is then calculated by a call to SCHM1.

The finite-difference coefficient C(J,I) (minus the source term) is then calculated. This is the quantity $\mathrm{Cl}-2 S_{P}$ of Eq. ($A<0$).

The chemical source terins S_{P} and S_{F} are then calculated for each species by a call to SCHM2(J). Also calculated by this routine are the production rates $R(J, I)$. Following this, $C(J, I)=C^{\prime}$ and $D(J, I)=$ D are calculated.

New species concentrations for time $t+\delta t$ (i.e., $X+D X$) are then calculated by calling CALC(J) in the order specified by the numbers IORDER(J).

Next, the hot boundary condition $\{\partial \varphi / \partial \omega\}_{H}=0$ is set by equating the concentration at the hot boundary point to the value at the adjacent grid point; i.e., we set $F(J, 2)=F(J, 3)$.

The value of the concentration of the JHM1 species is then calculated from the relation $\sum_{j} \varphi_{j} M_{j}=1$; if the buffer concentration is being kept constant, then the concentration of the JHM2 species is calculated from this relation.

If the enthalpy is allowed to vary, its source term is calculated by a call to SENTP and its new value at $t+\delta t$ is calculated by calling CALC(JH).

The step counters L and LCOUNT are then incremented. If an output point has been reached, flame velocities are calculated for each species by a call to $\operatorname{ENTRN}(J, 1)$. These velocities should be the same for each species. In practice, this will happen only for the major species (see Eq. (A25) Appendix F, p. A12). The laboratory distances Y(I) are then calculated by calling ZCALC and the partial results are printed out by a call to OUPPUP. When $L=I M A X$, the call to OUTPUT produces a complete print out. In addition, the profiles for concentrations and enthalpy are stored in logical unit 46.

If L is not equal to LMAX, then the program returns to point 706 and the calculations are repeated.

SPALD/3 (cont.)

SPALD/3 (cont.)

B. Description of Subroutine SWITCH(KRATE)

This subroutine sets three flags G1, G2, and G3 which denote the presence and location of a particular species J in a particular reaction K. These flags are initially set to the .FALSE. position. SWITCH sets $G 3(K, J)$ to .TRUE. if the species J appears twice on either side of the reaction equation. If it appears on the left side of the equation, G1 (K,J) is set to .TRUE.; if on the right side, both G1 (K, J) and G2(J, K) are made .TRUE..

As an example, consider the following reactions which are tested for the presence and location of species A.

Reaction Values of the Flags after Calling SWITCH

$A+B \rightleftarrows C+D$.TRUE.	.FALSE.	.FALSE.
$C+D \rightleftarrows A+B$.TRUE.	.TRUE.	.FALSE.
$A+A \not C C+D$.TRUE.	.FALSE.	.TRUE.
$C+D \neq A+A$.TRUE.	.TRUE.	.TRUE.
$B+D \neq E+F$.FALSE.	.FALSE.	.FALSE.

These flag values are used in SCHM2 in the calculation of the chemical source terms.

C. Description of Subroutine DIFVJE(PRESS)

This routine calculates the temperature independent portion of the binary diffusion coefficients for the $\mathrm{H}_{2}-\mathrm{O}_{2}-\mathrm{N}_{2}$ flame from LennardJones parameters. These parameters are assigned values in the DATA statement starting at line DIFOO100. M is an array containing the molecular weights in $\mathrm{gm} / \mathrm{mole}$; EK is the Lennard-Jones potential parameter ϵ_{j} / k in ${ }^{\circ} K$; and S is the parameter σ_{j} in ${ }^{\circ}$. These are listed in order of species index. The quantities calculated are $D A(I, J)$ and $D B(I, J)$ which are the temperature independent portion of Eqs. (A72) and (A73), Appendix M, p. A36. Also calculated is the cut-off temperature below which $\operatorname{DA}(I, J)$ is used rather than $\operatorname{DB}(I, J)$. This is $\operatorname{TDIV}(I, J)=$ $3 \varepsilon_{i j} / k$. I and J are species indices. The index I runs from 1 to JHM2, while J goes from JRADP1 to JHM1. This means that DIFUSE calculates these quantities for interactions between minor and major species, major and major, but not minor and minor.

If FLAG(3) $=$.TRUE., then DIFUSE divides $D A$ and $D B$ by the pressure PRESS.

SUBROUTINE DIFUSE(PRESS)

D. Description of Subroutine OMEGA

This routine takes the values of N, NII, NEE, and OMR and calculates the grid structure. (See SectionIII-A, p.11.) The quantities determined are
$O M(I)=\omega_{i}$
$\operatorname{OMD}(I)=\omega_{i+1}-\omega_{i}$
$\operatorname{ROMD}(I)=1 \cdot / O M D(I)$
$\operatorname{OMP}(I)=\omega_{i}+\omega_{i+1}$
$\operatorname{BOM}(I)=\omega_{i+1}-\omega_{i-1}$
$\operatorname{BOMT3}(I)=3 . * \operatorname{BOM}(I)$
Note that lines $0 M G 00300$ and 310 can be removed since the variables OMI and OME which are calculated there are not used.

E. Description of Subroutine INITL/ 1

This program begins by defining the function $10 \omega^{3}-15 \omega^{4}+6 \omega^{5}$ which is used to generate S-shaped profiles. It then tests the variable $\operatorname{INPRFL}(J)$, where J is the index of a major species. If .FALSE., then the initial profile for J is a decay profile and is calculated from the formula
$X I(J)+(X E(J)-X I(J))\left(10 \omega^{3}-15 \omega^{4}+6 \omega^{5}\right)$
If .TRUE., then J has a growth profile which is calculated by interchanging XI and XE and inserting $1-\omega$ for ω in the above formula. This yields mole fraction profiles. To convert them to units of moles $/ \mathrm{kg}$, INITL calculates the average molecular weight at a particular grid point from the formula $\langle M\rangle=\sum_{j} x_{j} M_{j}$. The desired profiles are gotten by dividing the mole fraction profiles by $\langle M\rangle$.

At this point a small subroutine INPRFL is called to set the initial profiles for the trace species. Normally, the trace species are assumed to have ngeligible concentrations at the cold boundary grid points. In setting up INPRFL, do not use equal concentrations at the two boundary grid points, 2 and NP2. This would result in a division by zero on the first call to ENTRN. (See ENTRN, lines ENT00190, 210, and 230.)

INITL next calculates $\mathrm{ET}(\mathrm{J}, \mathrm{JP} 2)$, the enthalpy at the cold boundary grid point for all the major species. This will be in units of joules $/ \mathrm{kg}$. From these quantities and the composition at the cold boundary, the total enthalpy value $h_{C}=F(J H, N P 2)$ is calculated. The enthalpy at the hot boundary, $F(J H, 2)$, is then set equal to h_{C} and the temperature there is calculated from this and the initial hot side composition by the Newton-Raphson method discussed in Appendix N, p. A39. From the two temperatures TCOID and THOT an S-shaped temperature profile is calculated. Finally, the enthalpy at each grid point is given the cold boundary grid point value.

F. Description of Subroutine TRANS(ICALC)/6

This subroutine calculates the temperature, the mean molecular weight, the density, and the transport parameters for three flames; ozone decomposition, $\mathrm{H}_{2}-\mathrm{Br}_{2}$, and $\mathrm{H}_{2}-\mathrm{O}_{2}-\mathrm{N}_{2}$. It begins by calculating the temperature and its reciprocal from the enthalpy by the NewtonRaphson procedure described in Appendix \mathbb{N}, p. A39. At the same time it also calculates the mean molecular weight and its reciprocal at each grid point.

The quantity ICALC is then tested; if it equals zero, then TRANS jumps to the next grid point. Under this condition the transport properties are not calc्ulated. If ICALC equals one, then TRANS continues by calculating the density $\mathrm{RHO}(\mathrm{I})$ at each grid point. FLAG(3) is tested, and if .TRUE., the density is multiplied by PRESS which, in this case, will be different from unity; if .FALSE., then this multiplication is not made.

FLAG(7) is tested and if.TRUE., transport properties are calculated for the ozone decomposition flame. The desired parameters are $\Delta_{j} \rho^{2}$ for diffusion, and $\lambda \rho / C_{p}$ for thermal conductivity. The average heat capacity $C_{p}(=C P M I X)$ is first calculated and from this and the density, $\lambda \rho / C_{p}(=\operatorname{PREF}(J H, I))$ is calculated from the expression $2.2026 \times 10^{-3} T^{\frac{1}{2}} \rho / C_{p}$. For this flame a Lewis number of 0.94 was used so that the quantities $\Delta_{j} \rho^{2}(=\operatorname{PREF}(J, I))$ are all given the values $0.94 * \operatorname{PREF}(J H, I)$. The program then jumps to statement 57.

If FLAG(7) was .FALSE., FLAG(8) is tested; if.TRUE., transport properties are calculated for the $\mathrm{H}_{2}-\mathrm{Br}_{2}$ flame. We used the following expressions to calculate the diffusion parameters;
$\Delta_{\mathrm{Br} \rho^{2}=0.155 \times 10^{-4}(\mathrm{I} / \mathrm{TCOLD})^{1.67} \rho^{2}, ~}^{2}$
$\Delta_{H} \rho^{2}=1.05 \times 10^{-4}(T / T C O L D)^{1.67} \rho^{2}$
$\Delta_{\mathrm{H}_{2}} \rho^{2}, \Delta_{\mathrm{Br}_{2}} \rho^{2}, \Delta_{\mathrm{HBr}} \rho^{2}=0.101 \times 10^{-4}(\mathrm{~T} / \mathrm{TCOLD})^{1.67} \rho^{2}$
The thermal conductivity of the mixture was taken to be
$\lambda \rho / C_{p}=3.34944 \times 10^{-2}(T / I C O I D)^{0.67} \rho /$ CPMIX.
The program then jumps to statement 57.

If FLAG(8) was .FALSE., FLAG(1) is tested; if .TRUE., the program jumps to the next grid point. This is the situation where we are using constant values for the transport parameters. If FIAG(1) =.FALSE., then TRANS proceeds to calculate the transport properties for the $\mathrm{H}_{2} \mathrm{O}_{2}-\mathrm{N}_{2}$ flame. It begins by calculating the binary diffusion coefficionts using the values of $\operatorname{DA}(I, J)$ and $D B(I, J)$ determined in DIFUSE. Since each species at a particular grid point uses either $T^{1.94}$ or $T^{1.67}$ as the factor multiplying $D A$ or $D B$, it is desirable to avoid doing these exponentiations more than once per grid point. This feat is accomplished by assigning. TRUE. values to the variables TAGA and TACB (initially . FALSE.) if either $T^{1.94}$ or $T^{1.67}$ has already been calculated for a particular species. Testing these flags on subsequent passes through the DO loop allows one to avoid repeated evaluation of $T^{1.94}$ or $T^{1.67}$. The temperature dependent binary diffusion coefficients are stored in the array $D D(K I, K J)$, where $K I$ and KJ are species indices.

The diffusion coefficients Δ_{j} are then calculated from the $D D(K I, K J)$ values and the concentrations $F(J, I)$ by means of Eq. (A9), Appendix C, p. A7. Diffusion parameters $\operatorname{PREF}(J, I)=\Delta_{j} \rho^{2}$ are then calculated.

TRANS next calculates the thermal conductivity of the mixture from the formula given in Appendix D, p. A8. For this, it is necessary to have values of the temperature dependent coefficients $A_{i j}$ defined by Eq. (A11), Appendix D, p. A8. These were calculated from this formula by a separate program, and the results fit by a least squares procedure to a power series in the temperature. These expressions for the $A_{i j}$ are given by lines TRNO1510 through 01620. Note that the values are stored in the DD array since the binary diffusion coefficients previously storad there are no longer needed. Also given just before these are the power series expansions of the thermal conductivities of the pure major species; lines TRNO1420 through 01450. These are placed in $\operatorname{CON}(J)$. Note that it is for these arrays that the indices LO2, IH2O, LH2, and IN2 are required. From the $A_{i j}$ and $\operatorname{CON}(J)$ values, the mixture thermal conductivity is calculated. This is then converted to the thermal conductivity parameter $\operatorname{PREF}(J H, I)=\lambda_{\rho} / C_{p}$.

FLAG(5) is then tested. If .FALSE., TRANS goes to the next grid point. If .TRUE., the enthalpy source term is being calculated and values of $\operatorname{ENT}(J, I)$, the enthalpy of each species at each grid point are determined.

After the calculations have been completed for all the grid points, ICALC is tested. If equal to zero, a return to SPALD occurs. If equal to one, TRANS proceeds to calculate the values of the reciprocal of the mean molecular weight at the control volume boundaries. This is taken to be the average value of $\operatorname{FS}(J M R, I)$ at two adjacent grid points, and is stored in $\operatorname{RMB}(I)$. The same thing is also done for the diffusion and thermal conductivity parameters, and the results placed in $\operatorname{PREF}(J, I)$ and PREF(JH,I). Thus, these arrays will contain the control volume boundary values and not the grid point values.

If FLAG(5) $=$.TRUE., several quantities appearing in the enthalpy source term are evaluated. Note that both parts of the enthalpy source term are calculated together and not separately as in the case of the chemical source term.

TRANS/6 (cont.)

G. Description of Subroutine RATCN/3

This subroutine takes the Arrhenius parameters and calculates the forward rate constants for each reaction; from these, and the free energies of reaction, it then calculates the rate constants for the reverse reactions.

RATCN starts by calculating the quantities (RT) $)^{-1}$ at each grid point. R is the gas constant and has the value $8.2057 \times 10^{-5} \mathrm{~atm}-\mathrm{m}^{3} / \mathrm{mole}$-deg. These are stored in $\operatorname{RGI}(I)$ and are used later in the calculation of the reverse rate constants.

The calculation of the forward rate constants starts by the testing of FFLAG(K); if .FALSE., RATCN sets RATE(K,I) to zero and goes to the next K value. This option allows one to examine the effect of neglecting the forward rate without having to change the Arrhenius parameters which may have been used in a previous calculation.

Next, BFLAG(K) and EFLAG(K) are tested together; if both are .FALSE., then both β and E / R are zero for this reaction and so exponentiation can be avoided. In this case RATE(K,I) is given the value $\operatorname{FRQ}(K)$, the Arrhenius frequency factor, and RATCN moves to the next K. If either BFLAG(K) or EFLAG(K) or both are .TRUE., BFLAG(K) is tested and if . $\operatorname{FALSE} ., \operatorname{RATE}(K, I)$ is given the value $\operatorname{FRQ}(K) * \operatorname{DEXP}(-\operatorname{EACT}(K) / F S(J T, I))$. If $\operatorname{BFLAG}(K)=. T R U E$., then EFLAG(K) is tested and if .FALSE., RATE (K, I) takes the value $\operatorname{FRQ}(K) *(F S(J T, I) * * 3 E T A(K))$. If $\operatorname{EFLAG}(K)=. T R U E .$, then $\operatorname{RATE}(K, I)$ is given the value $\operatorname{FRQ}(K) * F S(J T, I) * * \operatorname{BETA}(K)) * \operatorname{DEXP}(-\operatorname{EACT}(K) /$ FS(JT, I)). Only in this last case is it necessary to calculate the complete Arrhenius expression.

After calculating all of the forward rate constants, RATCN evaluates all of the equilibrium constants. Consider the general reaction, $R_{1}+R_{2}+\ldots \ldots \ldots \ldots+R_{r} \underset{k^{\prime}}{\stackrel{k}{\rightleftarrows}} P_{1}+P_{2}+\ldots \ldots \ldots \ldots+P_{p}$ R_{i} and P_{i} represent one molecule of a species, so two symbols may represent the same molecule. The equilibrium constant in terms of the partial pressures of the various species is $K_{p}=\frac{\Pi_{i=1}^{p} P_{P_{i}}}{\prod_{i=1}^{r} P_{R_{i}}}=\exp \left(-\Delta F^{0} / R T\right)$

We want the equilibrium constant in terms of concentrations; this is related to K_{p} by the expression $K_{c}=K_{p}(R T)^{-n}$, where $n=p-r$ and R is the gas constant in $\operatorname{atm}-m^{3} /$ mole-deg. Since $K_{c}=k / k^{\prime}$, we have for the reverse rate constant $k^{\prime}=k\left(R^{\prime} T\right)^{n} / K_{p}$.

To calculate k^{\prime} RATCN firsts tests RFLAG(K); if. FALSE., it sets the reverse rate constant $k^{\prime}(=\operatorname{RATER}(K, I)$) to zero and goes to the next K value. If this flag is. TRUE., then it calculates $-\Delta F^{\circ} / R T$ from the expression $-E Q A(K) / T-E Q B(K)-E Q C(K) * T$, evaluates $\exp \left(-\Delta F^{\circ} / R T\right)$, and storesthe results in $\operatorname{ECON}(I)$. (Note that $\operatorname{EQA}(K), \operatorname{EQB}(K)$, and EQC(K) as read by SPALD give ΔF° in kcal/mole. SPALD immediately multiplies them by $1000 / R$, where $R=1.9869 \mathrm{cal} / \mathrm{mole}-$ deg to give $\Delta F^{\circ} / R$.) BOD1 (K) is tested next; if .FALSE., then the number of molecules does not change in the reaction; $n=0$ and $\operatorname{RATER}(K, I)$ is given the value $\operatorname{RATE}(K, I) /$ $\operatorname{ECON}(I)$. If $\mathrm{BOD1}(\mathrm{~K})$ is .TRUE., then we have a 3 -body reaction with a unity change in the number of molecules. $B O D 2(K)$ is tested to find out the sign of n. If $B O D 2(K)=$.FALSE., then $n=-1$ and RATER(K, I) is given the value $\operatorname{RATE}(K, I) * \operatorname{RGT}(I) / E C O N(I)$; if .TRUE., then $n=+1$ and it has the value $\operatorname{RaTE}(K, I) /(\operatorname{ECON}(I) * \operatorname{RGI}(I))$. (Remember that $\operatorname{RGT}(I)=(R T)^{-1}$.)

SUBROUTINE

H. Description of Subroutine ENTRN(J, IFOW)

The purpose of ENTRN is to calculate the so-called entrainment rates $\dot{\mathrm{m}}_{\mathrm{C}}$ (=RME) and $\dot{\mathrm{m}}_{\mathrm{H}}$ (=RMI). RME is the mass flow rate in $\mathrm{kg} / \mathrm{m}^{2}-\mathrm{s}$ across the cold boundary and RMI that across the hot boundary. When a steady-state is attained, RME and RMI become equal. Their values depend on the concentrations of the species JENTRN at the hot and cold boundaries and at the points NEE and NII. The grid width PEI is changed if RME and RMI have different values. By this means the grid can be kept centered about the region containing the largest concentration gradients. (See Appendix J, p. A26.) This routine also calculates the flame velocity.

During the course of the integration ENTRN is called with $J=$ JENTRN and IFOW $=0$. The routine begins by evaluating the integral $\eta \int_{0}^{1} \frac{R_{j}}{\rho M_{j}} d \omega$,
where R_{j} is the mass production rate of species j in $\mathrm{kg} / \mathrm{m}^{3}-\mathrm{s}$. The quantity $R_{j} / \rho M_{j}$ has units of moles/kg-s and is the quantity stored in the array $R(J ; I)$. An approximation with three grid points is used for this integral. This is given by Eq. (A61), Appendix J, p. A27.

The flame velocity is gotten by dividing the value of the above integral by the density at the cold boundary grid point, RHO(NP2).

IFOW is then tested; if equal to zero, ENTRN continues by calculating RME and RMI from Eqs. (A58), (A59), and (A60), Appendix J, p. A26. The grid width PEI is then incremented by the amount (RMI - RME) CDX .

The condition IFOW $=1$ is used at an output point. Then ENTRN is called for $J=1$ through JHM1 to calculate the flame velocity from the production rates of each species. In principle, these velocities should be the same in the steady-state flame. When $I F O W=1, R M I$ and RME are not calculated.
I. Description of the Subroutine SCHM1/1

This short routine calculates the chemical source term arising from the diffusion of mean molecular weight. (See Eq. (A57), Appendix I, p. A24.) Concentration values at the control volume boundaries are required; these are calculated from the average of two adjacent grid points and stored in $B F(J, I)$. The other quantities required are all evaluated elsewhere. Values of this source term are placed in the array SC1 (J,I).

J. Description of Subroutine SCHM2 $(J) / 7$

This subroutine calculates the part of the chemical source term arising from the chemical reactions.

SCHM2 begins by testing G1(K,J); if .FALSE., then species J does not appear in reaction K and the program moves to the next K value. If . TRUE., then K is tested to see if it equals 5 or 10. These are the reactions $\mathrm{H}+\mathrm{OH}+\mathrm{M} \vec{\rightleftarrows} \mathrm{H}_{2} \mathrm{O}+\mathrm{M}$ and $\mathrm{H}+\mathrm{O}_{2}+\mathrm{M} \vec{\leftarrow} \mathrm{HO}_{2}+\mathrm{M}$ in the $\mathrm{H}_{2}-\mathrm{O}_{2}-\mathrm{N}_{2}$ flame which have the special third-body concentrations FS(JBODYA,I) and FS(JBODYB, I). This routine can also be used for the ozone decomposition and the $\mathrm{H}_{2}-\mathrm{Br} 2$ flames because both require fewer than 5 reactions. To use SCHM2 for other flames, it will be necessary to remove the following lines:
SC200260
SC200270
SC200420

SC200480
If K is not equal to 5 or 10 , then $B O D 1(K)$ is tested; if .FALSE., K does not contain a three-body reaction and SCHM2 proceeds to calculate the forward and reverse rates of the reaction. These are put into FOR(I) and $\operatorname{REV}(I)$. At this point, these rates are in units of moles $-\mathrm{m}^{3} / \mathrm{kg}^{2}-\mathrm{s}$ and will later be multiplied by the density to give them in units of moles $/ \mathrm{kg}-\mathrm{s}$. If $\mathrm{BOD1}(\mathrm{~K})=$. TRUE., then K contains a three-body reaction and BOD2 (K) is tested to find out whether it is the forward or the reverse reaction. If $\operatorname{BOD} 2(K)=$. HALSH., then it is the forward reaction and $\operatorname{FOR}(I)$ and Rriv(I) are calculated accordingly. If $B O D 2(K)=. T R U E$., then the opposite situation holds. $F O R(I)$ and $\operatorname{REV}(I)$ are now combined in various ways depending on the values of the flags G1, G2, and G3. The results are placed in $S U(J, I)$ and $S D(J, I)$. This process is repeated for all the K values, and the results added to $\operatorname{SJ}(J, I)$ and $\operatorname{SD}(J, I)$.

After multiplying $S U(J, I)$ and $S D(J, I)$ by the density RHO(I), the production rate of species $\mathrm{J}, \mathrm{R}(\mathrm{J}, \mathrm{I})$, is obtained by adding them together. The final desired quantities are gotten by dividing the value in
$\mathrm{SD}(\mathrm{J}, \mathrm{I})$ by the concentration of $\mathrm{J}, \mathrm{F}(\mathrm{J}, \mathrm{I})$, and multiplying both $\mathrm{SD}(\mathrm{J}, \mathrm{I})$ and $S U(J, I)$ by $\frac{1}{2} \eta \Omega$.

For an example of how this routine functions consider the reaction mechanism discussed in Appendix I, p. A21. There are two reactions

$$
\begin{gathered}
\mathrm{k}_{1} \\
A+B+D \\
k_{1}^{\prime} \\
A+A+M \underset{2}{k_{2}^{\prime}} E+M \\
k_{2}^{\prime}
\end{gathered}
$$

We want to calculate the source term parameters $S_{P}(A)$ and $S_{F}(A)$ for the species A defined in Eq. (A53), p. A23.
For $K=1$, we have $\operatorname{BOD1}(1)=$. FAISEE.

$$
\begin{aligned}
& \operatorname{BOD2}(1)=. \text { FALSE } . \\
& \mathrm{G1}(1, \mathrm{LA})=. \text { TRUE } . \\
& \mathrm{G} 2(1, \mathrm{LA})=. \text { FALSE } . \\
& \mathrm{G} 3(1, \mathrm{LA})=. \text { FALSE } .
\end{aligned}
$$

For $K=2$, we have $\operatorname{BOD1}(2)=. T R U E$.

$$
\begin{aligned}
& \operatorname{BOD} 2(2)=. \text { FALSE } \\
& \mathrm{G} 1(2, \mathrm{IA})=. \text { TRUE. } \\
& \mathrm{G} 2(2, \mathrm{IA})=. \text { FALSE. } \\
& \mathrm{G} 3(2, \mathrm{IA})=. \text { TRUE. }
\end{aligned}
$$

When $K=1$, SCHM2 places in $S U(I A, I)$ and $S D(I A, I)$, respectively, the quantities $k_{1}^{\prime} \varphi_{C} \varphi_{D}$ and $-k_{1} \varphi_{A} \varphi_{B}$. Moving to $K=2$, it adds to $S U(L A, I)$ and $S D(L A, I)$, the quantities $2\left(k_{2} \varphi_{A} \varphi_{A} \varphi_{M} \rho+k_{2}^{1} \varphi_{E} \varphi_{M}\right)$ and $-4 k_{2} \varphi_{A} \varphi_{A} \varphi_{M} \rho$. Note that φ_{M}, the concentration of the buffer species, is taken to be the reciprocal of the mean molecular weight, $F S(J M R, I) . S U(L A, I)$ and $\operatorname{SD}(L A, I)$ are then both multiplied by the density. At this point they have the values
$S U(I A, I)=k_{1}^{\prime} \rho \varphi_{C} \varphi_{D}+2 k_{2} \rho^{2} \varphi_{A} \varphi_{A} \varphi_{M}+2 k_{2}^{\prime} \rho \varphi_{E} \varphi_{M}$
$S D(I A, I)=-k_{1} \rho \varphi_{A} \varphi_{B}-1+k_{2} \rho^{2} \varphi_{A} \varphi_{A} \varphi_{M}$
The production rate $R(I A, I)$ of species A is the sum of $S U(L A, I)$ and $S D(L A, I)$.
$S U(I A, I)$ and $S D(L A, I)$ are not yet equal to the parameters $S_{P}(A)$ and $S_{F}(A)$. These are obtained by dividing $S D(I A, I)$ by φ_{A} and multiplying both $S D(L A, I)$ and $S U(L A, I)$ by $\frac{1}{2} \eta \Omega=\frac{1}{2} \eta\left(\omega_{i+1}-\omega_{i-1}\right)=\operatorname{PEIOM} 2(I)$. The result is
$S U(L A, I)=S_{P}(A)=\frac{1}{2} \eta \Omega\left(k_{1}^{\prime} \rho \varphi_{C} \varphi_{D}+2 k_{2} \rho^{2} \varphi_{A}^{2} \varphi_{M}+2 k_{2}^{1} \rho \varphi_{E} \varphi_{M}\right)$
$S D(I A, I)=S_{F}(A)=\frac{1}{2} \eta \Omega\left(-k_{1} \rho \varphi_{B}-4 k_{2} \rho^{2} \varphi_{A} \varphi_{M}\right)$
This is the same as that shown in Eqs. (A51) and (A52), Appendix I, p. A23.

SUBROUTINE SCHM2(J)/7

DO: $I=2, N P 2$
$\operatorname{FOR}(I)=\operatorname{RATE}(K, I) * F(\operatorname{LA}(K), I) * F(L B(K), I) * F S(J B O D Y A, I) * R H O(I)$ $\operatorname{REV}(I)=\operatorname{RATER}(K, I) * F(\operatorname{IRA}(K), I) * F S(J B O D Y A, I)$

DO: $I=2, N P 2$
$\operatorname{FOR}(I)=\operatorname{RATE}(K, I) * F(\operatorname{LA}(K), I) * F(I B(K), I) * F S(J B O D Y B, I) * R H O(I)$ $\operatorname{REV}(I)=\operatorname{RATER}(K, I) * F(\operatorname{IRA}(K), I) * F S(J B O D Y B, I)$

DO: $I=2, N P 2$
$\operatorname{FOR}(I)=\operatorname{RATE}(K, I) * F(L A(K), I) * F(I B(K), I)$
$\operatorname{REV}(I)=\operatorname{RATER}(K, I) * F(\operatorname{IRA}(K), I) * F(\operatorname{LRB}(K), I)$

```
DO: I=2,NP2
FOR(I)=RATE(K,I)*F(IA (K),I)*FS(JMR,I)
REV(I)=RATER(K,I)*F(I&AA(K),I)*F(IRB(K),I)*FS(JMR,I)*RHO(I)
```


K. Description of Subroutine CALC(J)

This is the subroutine which solves the finite-difforonce oquations (A 42), Appendix H, p. A19. To see how this program functions, consider a 4 point grid system $(N=3)$, with the grid index running from 2 to 5. There will be two unknowns, Φ_{3} and Φ_{4}, for which E_{q}. (A42) yields two equations,
$\Phi_{3}=\frac{A_{3}^{1}}{D_{3}} \Phi_{4}+\frac{B_{3}^{1}}{D_{3}} \Phi_{2}+\frac{C_{3}^{1}}{D_{3}}$
$\Phi_{4}=\frac{A_{4}^{\prime}}{D_{4}} \Phi_{5}+\frac{\mathrm{B}^{\prime}}{\mathrm{D}_{4}} \Phi_{3}+\frac{\mathrm{C}_{4}^{\prime}}{\mathrm{D}_{4}}$
$A^{\prime}, B^{\prime}, C^{\prime}$, and D are given by Eqs. (A40), p. A13 and the values Φ_{2} and Φ_{5} at the hot and cold boundaries, respectively, are known from the boundary conditions. By simple elimination, we obtain
$\Phi_{3}=\frac{\frac{A_{3}^{\prime} A_{4}^{\prime}}{D_{3} D_{4}} \Phi_{5}+\frac{A_{3}^{\prime} C_{4}^{\prime}}{D_{3} D_{4}}+\frac{B_{3}^{\prime}}{D_{3}} \Phi_{2}+\frac{C_{3}^{\prime}}{D_{3}}}{1-\frac{A_{3} B_{4}^{\prime}}{D_{3} D_{4}}}$
$\Phi_{4}=\frac{A_{4}^{\prime}}{D_{4}} \Phi_{5}+\frac{B_{4}^{\prime}}{D_{4}}\left\{\frac{\frac{A^{\prime} A_{4}^{\prime}}{D_{3} D_{4}} \Phi_{5}+\frac{A_{3}^{\prime} C_{4}^{\prime}}{D_{4} D_{4}}+\frac{B^{\prime}}{D_{3}} \Phi_{2}+\frac{C_{1}^{\prime}}{D_{3}}}{1-\frac{A_{3}^{\prime} B_{4}^{\prime}}{D_{3} D_{4}}}\right\}+\frac{C_{4}^{\prime}}{D_{4}}$
Let u_{s} go through CALC step-by-step and see how it solves these equations.
There are 5 arrays to be considered; $A(J, I), B(J, I), C(J, I), D(J, I)$, $F(J, I)$, and also a variable T. Initially, $A(J, I), B(J, I), C(J, I)$, and $D(J, I)$ contain the values of $A^{\prime}, B^{\prime}, C^{\prime}$, and D which were evaluated by SPALD with Eqs. ($A<0$). $F(J, I)$ contains the values of Φ_{i} from the previous step. The contents of $A(J, I), B(J, I), T$, and $F(J, I)$ as CALC is executed change as follows: (Note that NP1 $=4$, and the number in parentheses is the number of the step executed.)

A little algebra will show that the contents of $F(J, 3)$ and $F(J, 4)$ after these 7 steps is the same as that given by Eqs. (15) and (16).

After solving (A42) for all the grid points, CALC tests for megatide species concentrations. If the test is positive, it puts a very small positive number in $\mathbb{F}(J, I)$.

L. Description of Subroutine SENTP/ 1

This routine calculates the total enthalpy source term which is given by the sum of Eqs. (A55) and (A56), Appendix I, p. A24. To see how it works consider the enthalpy equation (A23), Appendix F, p. A11. The complete source term is
$\mathscr{A}=\frac{1}{\eta^{2}} \frac{\partial}{\partial \omega}\left\{\sum_{j} h_{j}\left(\frac{\Delta_{j} \rho^{2} \partial\left(\varphi_{j}\langle M\rangle\right)}{\langle M\rangle}-\frac{\lambda \rho}{C_{p}} \frac{\partial \varphi_{j}}{\partial \omega}\right)\right\}$
SENTP calculates
$S=\eta \int_{-}^{+} \mathscr{S}_{d \omega}=\frac{1}{\eta} \sum_{j}\left[\left\{\frac{h_{j}^{\mu_{j}} j^{\rho^{2}}}{\langle M\rangle}\right\}_{+}\left\{\frac{\partial\left(\varphi_{j}\langle M\rangle\right.}{\partial \omega}\right\}_{+}-\left\{\frac{h_{j}^{*} \Delta_{j} \rho^{2}}{\langle M\rangle}\right\}_{-}\left\{\begin{array}{l}\partial\left(\varphi_{j}\langle M\rangle\right) \\ \partial \omega\end{array}\right]_{-}\right.$

The transport parameters were calculated in TRANS and represent values at the control volume boundaries. They are
$\operatorname{HDRM}(J, I)=\left\{\frac{h_{j}^{*} \Delta_{j} \rho^{2}}{\langle M\rangle}\right\}_{+}$
$\operatorname{HDRM}(J, I-1)=\left\{\frac{h_{j}^{*} \nu_{j} \rho^{2}}{\langle M\rangle}\right\}_{-}$
$\operatorname{TRCP}(J, I)=\left\{\frac{h_{i}^{*} \lambda}{\mathrm{C}_{p}} \mathrm{C}_{\mathrm{p}}\right\}+$
$\operatorname{TRCP}(J, 1-1)=\left\{\begin{array}{c}h_{j}^{*} \lambda \rho \\ C_{p}\end{array}\right\}_{-}$
The derivatives are approximated by
$\left\{\frac{\partial\left(\varphi_{j}\langle M\rangle\right.}{\partial \omega}\right\}_{+} \approx(F(J, I+1) * F S(J M, I+1)-F(J, I) * F S(J M, I)) * R O M D(I)$
etc.,
where $\operatorname{ROMD}(I)=1 /\left(\omega_{i+1}-\omega_{i}\right)$
It would be desirable to rewrite SENTP so that the part arising from the diffusion of the mean molecular weight was calculated separately. Thus, it could easily be neglected if desired.

M. Description of Subroutine ZCALC/1

This short routine calculates the value of the laboratory spatinl variable $y_{i}(=Y(I))$ which corresponds to a particular value of the spatial variable ω_{i} in the Spalding coordinate system. It does this by evaluating the integral
$y=\eta \int_{0}^{\omega} \frac{d \omega}{\rho}$
by means of the approximation given by Eq. (A70), Appendix L, p. A34.

N. Description of Subroutine OUFPUT(L, HEADNG, RUNID, X, INPUC, IMAX)

This subroutine generates and controls the printing of a variety of output information. At intervals of LPRINT steps during the integration a single page of output is generated. This contains the values at each grid point of the species concentrations, the enthalpy, and the temperature. It also prints the velocities calculated from the production rates of each species, the grid width PEI, and the entrainment rates RME and RMI. When $L=$ LMAX, the integration is stopped and 11 pages of additional information are printed:

Page 1) Values at each grid point of ω, the laboratory spatial variable y in meters, the density in $\mathrm{kg} / \mathrm{m}^{3}$, the mean molecular weight 〈M〉 in $\mathrm{kg} /$ mole, and the total heat release rate in $\mathrm{J} / \mathrm{kg}-\mathrm{s}$.
2) The production rates $R(J, I)$ in moles $/ \mathrm{kg}-\mathrm{s}$ for each species at each grid point.
3) The transport parameters at each grid point; i.e., the array $\operatorname{PREF}(J, I), \Delta_{j} \rho^{2}$ and $\lambda \rho / C_{p}$ in $\mathrm{kg}^{2} / \mathrm{m}^{4}-\mathrm{s}$.

4,5) Values of each rate constant, both forward and reverse rates, at each grid point.

6,7) The rates, forward and reverse, of each reaction at each grid point in moles/kg-s.
8) The maximum rates, forward and reverse, of each reaction and the grid point index at which they occur.
9) A list of the maximum rates of each reaction ranked in decending values. For each maximum rate, its K value and direction are specified.
10,11) Heat release rates, both forward and reverse, of each reaction at each grid point in $\mathrm{J} / \mathrm{kg}-\mathrm{s}$.

OUCPUP begins by printing the step number L, the step size $D X$, and the integration time X. It then prints the heading for the profile colums and follows with $F(J, I), F(J H, I), F S(J I, I), ~ V E L(J), ~ P E I, ~ R M I, ~$ and RME.

It tests for $L=I M A X ;$ if.$T R U E$. , it proceeds by printing the values of the grid parameters, N, NII, NEF, and OMR; the index parameters JH, JRAD, JM, JMR, JT, JIR, JBODIA, JBODYB; the temperature on the cold side of the flame TCOLD, the pressure PRESS, and the value of INPUF.

FIAG(2) is tested; if .FALSE., then the buffer concentration is being kept constant. This means that its production rate $\mathrm{R}\left(J \mathrm{H}_{1} 1, I\right)$ is zero. In this case, the production rate for the next major species $R(J I M 2, I)$ was not calculated by SOIM?. OUPPU'l calculates it from the relation $\sum_{J}^{J H M 1} R(J, I) W T(J)=0.0$. I'his section is skipped if FLAG(2) = .TRUE. .

OUPPUN next calculates the quantities $\operatorname{PUP}(J)=h_{j} M_{j}=h_{j}^{*}$, and $\operatorname{FOR}(I)=\sum J \sum_{J M 1} R(J, I) * P U I^{\prime}(J)$. This later quantity is the total heat release rate in J/kg-s. It then prints $O M(I), Y(I), R H O(I), F S(J M, I)$, and $\operatorname{FOR}(I)$, followed by the arrays $R(J, I)$ and $\operatorname{PREF}(J, I)$.

It then tests FLAG(9); if .TRUE., it prints the rate constants. This requires two pages. Each column represents a grid point whose index value appears as the heading. There are 16.columns per page giving a total of 32 grid positions. This may not be sufficient to cover all the grid points. Since points near the boundaries are not very interesting, we start printing at $I=$ ISTART, where ISTART $=4$ in the present version of OUPPUI. Its value can, oI course, be changed to suit the user's requirements. The next page starts printing at ISTART $=$ ISTART +16 which equals 20 in the present case.

PIAG(10) is then tested; if .TRUE., the reactions rates are calculated at each point in the flamo. Note that FOR(I) which contained the total heat release rate is now used for the forward reaction rate. The rates are calculated from scratch; i.e., from the values of the rate constants RAIE($K, I), \operatorname{RATER}(K, I)$ and the concentrations $F(J, I)$. Also calculated at this time are the heat release rates for the forward and reverse reactions. These are stored in the arrays $H V(K, I)$, and $H W(K, I)$, respectively. Note that we have treated the cases $K=5$ and 10 in the same manner as discussed in SCHM2. To use OUPPUN for flames (other then $\mathrm{H}_{2}-\mathrm{O}_{2}-\mathrm{N}_{2}$) which have more than 4 reactions, it is necessary
to remove the following lines:
OUTO1680
OUT01690
OUT01960
OUT 02100
The reaction rates are then printed on two pages in the same format as the rate constants were printed. Note that ISTART also appears in this portion of the routine.

The maximum rate of each reaction is now determined. This is accomplished by running through the grid index I for each reaction K and setting the variable $\operatorname{XMAX}(K)$ equal to $V(K, I)$ if $V(K, I)$ is greater than the previous value of $\operatorname{XMAX}(K) . \mathrm{V}(\mathrm{K}, \mathrm{I})$ is the rate of the forward reaction and is in single precision. The same thing is done for the reverse reaction and yields $\operatorname{YMAX}(K)$. $X \operatorname{MAX}(K)$ and $\operatorname{YMAX}(K)$ are then printed along with the grid index value to which they correspond.

A new single precision variable $Z(K)$ is then defined; $Z(K)=$ $\operatorname{XMAX}(K)$ and $Z(K+K R A T E)=Y M A X(K)$ for $K=1$, KRATE. Thus $Z(K)$ runs from $K=1$ to 2^{*} KRAATE. The ranking of the maximum values of the rates is accomplished by running through $Z(K)$ and setting $Z T A B=Z(K)$ if $Z(K)$ is greater then the previous value of ZTAB. KTAB is set equal to the value of K for this maximum - maximum rate. Also defined is a logical variable $\operatorname{SKIP}(K), K=1,2 * K R A T E$, set initially to the .FALSE. position. At this point OUCPUP sets $S K I P(K T A B)=. T R U E$. Then the $Z(K)$ are reexmined for the maximum value, but now $Z(K \Gamma A B)$ is omitted. This is accomplished by testing SKIP(K); if .TRUE., then Kl'AB is skipped and the next K value is compared with $Z T A B$. The list from which the maximum value is selected thus becomes smaller as each maximum is removed. In this way the ranking is accomplished. The maximum values of each reaction are then printed in order of decreasing magnitude.

Finally, OUPPU' prints two pages of heat release rates for each reaction. Note that IS'CART appears here also.

OUTPUT (cont.)

IV. I'PGI CASE

As an example of the use of this program we have utilized the $\mathrm{H}_{2}-\mathrm{Br}_{2}$ flame. The input data were taken from a paper by Lovachev and Kaganova. Spalding and Stephenson ${ }^{2}$ have also used the Spalding method for this flame. The following input information wes used:

Thermal conductivity:
$\lambda=\lambda_{u}\left(T / T_{12}\right)^{0.67}$
where λ_{u} is the thermal conductivity at the temperature T_{u} of the unburnt gas. It is assumed to be independent of concentration. For $I_{u}=323^{\circ} \mathrm{K}, \lambda_{u}$ is taken to have the value $3.349 \times 10^{-2} \mathrm{~J} / \mathrm{m}-{ }^{\circ} \mathrm{K}-\mathrm{s}$.

Diffusion Coefficients:
$\Delta_{j}=\Delta_{j u}\left(T / T_{u}\right)^{1.67} / P$
where F is the pressure in atmospheres and the $\Delta_{j u}$ are considered to be independent of concentration and are the values at temperature T_{u}. For $T_{u}=323^{\circ} \mathrm{K}$, we use
$\Delta_{H_{2}}=\Lambda_{13 r_{2}}=\Delta_{\text {HBrua }}=0.101 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$
$\Delta_{\mathrm{Hu}}=1.05 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$
$\Delta_{\text {Bru }}=0.155 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$

Thermodynamic properties:
The specific heat of the mixture is assamed to be independent of temperature and concentration. The value used was $C_{p}=532 \mathrm{~J} / \mathrm{kg}-{ }^{\circ} \mathrm{K}=\mathrm{d}_{j}$. In this case, the coefficients e_{j} and $\hat{i}_{j}=0$ and all species have the same value of a_{j}.
l'he enthalpies of formation as taken from the JANAF tables are,
$h_{B r}^{R}\left(298^{\circ}\right)=1 \cdot 4009 \times 10^{6} \mathrm{~J} / \mathrm{kg}$
$h_{\mathrm{hr}_{2}}^{\mathrm{R}}\left(298^{\circ}\right)=1.93505 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
$h_{H}^{R}\left(298^{\circ}\right)=2.1641 \times 10^{8}$
$h_{\text {HB3r }}^{R}\left(298^{\circ}\right)=-4.4807 \times 10^{5}$
$h_{H_{2}}^{R}\left(298^{\circ}\right)=0.0$

Note that the value for HJr is slifhtly different from the value of $-/ .5304 \times 10^{5} \mathrm{~J} / \mathrm{kg}$ used by Lovachev and Kaganova.
For the program we want values for $h_{j}^{0}=\operatorname{HRFF} \cdot(J)=h_{j}^{R}-d_{j} T_{R}$, where T_{R} is the reference temperature for h_{j}^{R}. We have
$h_{B r}^{0}=1.242540 \times 10^{6} \mathrm{~J} / \mathrm{kg}$
$h_{H}^{\circ}=2.162510 \times 10^{8}$
$\mathrm{h}_{\mathrm{H}_{2}}^{\mathrm{O}}=-1.583691 \times 10^{5}$
$h_{\mathrm{Br}_{2}}^{\circ}=3.513587 \times 10^{4}$
$h_{H B r}^{0}=-6.064374 \times 10^{5}$

Rate Constants:
The reaction scheme used is
ΔH°
$\mathrm{Br}_{2}+\mathrm{M} \nrightarrow \mathrm{Br}+\mathrm{Br}+\mathrm{M}$
$46.09 \mathrm{kcal} / \mathrm{mole}$
$\mathrm{H}_{2}+\mathrm{M} \rightleftarrows \mathrm{H}+\mathrm{H}+\mathrm{M}$
(3) 16.70
$\mathrm{Br}+\mathrm{H}_{2} \geq \mathrm{HH} \mathrm{r}+\mathrm{H}$
$\mathrm{H}+\mathrm{Br}_{2} \not \approx \mathrm{HBr}+\mathrm{Br}$
(4) -41.41

The forward rate constants used were
$\mathrm{k}_{1}=7.03 \times 10^{11} \mathrm{~T}^{-\frac{1}{2}} \exp \left(-2.3655 \times 10^{4} / \mathrm{T}\right) \mathrm{m}^{3} / \mathrm{mole}-\mathrm{s}$
$k_{2}=7.63 \times 10^{13} \mathrm{I}^{-1} \exp \left(-5.1+356 \times 10^{L_{4}} / \mathrm{I}^{\prime}\right)$
$k_{3}=3.46 \times 10^{4} \mathrm{~T} \exp \left(-8.3547 \times 10^{3} / \mathrm{I}\right)$
$k_{L_{4}}=6.42 \times 10^{6} L^{\frac{1}{2}} \exp \left(-5.5866 \times 10^{2} / \mathrm{I}^{1}\right)$
Free energius of reaction in kcal/mole were calculated from the formulas,
$\Delta \mathrm{F}_{1}^{\mathrm{O}}=46.1756-2.49 / 67 \times 10^{-2} \mathrm{I}-6.5671 \times 10^{-7} \mathrm{~T}^{2}$
$\Delta F_{2}^{0}=104.426-2.38954 \times 10^{-2} \mathrm{I}-1.417614 \times 10^{-6} \cdot T^{2}$
$\Delta F_{3}^{0}=16.532-1.49615 \times 10^{-3} \mathrm{~T}-1.91112 \times 10^{-7} \mathrm{~T}^{2}$
$\Delta T_{4}^{\circ}=-41.7184-2.54835 \times 10^{-3} \mathrm{~T}+5.69792 \times 10^{-7} \mathrm{~T}^{2}$

For the reverse reactions Lovachev and Kaganova use
$k_{1}^{1}=3.63 \times 10^{3} \mathrm{~m}^{6} / \mathrm{mole}^{2}-\mathrm{s}$
$\mathrm{k}_{2}^{1}=3.63 \times 10^{3}$
$\mathrm{k}_{3}^{\prime}=9.06 \times 10^{5} \mathrm{~T}^{\frac{1}{2}} \exp \left(-8.606 / \times 10^{2} / \mathrm{Y}\right) \mathrm{m}^{3} / \mathrm{mole}-\mathrm{s}$
$k_{L}^{1}=6.52 \times 10^{4} \mathrm{~T} \exp \left(-2.1440 \times 10^{4} / \mathrm{T}\right)$
These formulas yield values of the reverse rate constants which are slightly different from those calculated with the ΔF° values via the equilibrium constants. For comparison, Table I gives the forward rates, equilibrium constants K_{p}, reverse rates calculated from K_{p}, and the reverse rates of Lovachev and Kaganova.

The other conditions for this test case were, pressure $=1 \mathrm{~atm}$, cold boundary temperature $=$ $323^{\circ} \mathrm{K}$, cold gas composition, $\mathrm{Br}_{2}=40 \mathrm{~mole} \%$, balance, H_{2}.

The format for this input data is shown in Table II. Cards containing the symbol © are control statements for the NBS UNIVAC 1108.

Figure 4
Concentration Profiles for the Major Species

TABLE: I. Rate constants for the $\mathrm{H}_{2}-\mathrm{Br}_{2}$ flame as a function of temperature.

Temperature	k_{1}	$\mathrm{~K}_{\mathrm{p}}$	k_{1}^{\prime}	$\mathrm{k}_{1}^{\mathrm{a}}$
400	7.2918×10^{-16}	1.8963×10^{-20}	1.2621×10^{3}	3.6300×10^{3}
600	2.16688×10^{-7}	5.2174×10^{-12}	2.0447×10^{3}	$" 1$
800	3.5799×10^{-3}	8.9451×10^{-8}	2.6272×10^{3}	$" 1$
1000	1.1850	3.1882×10^{-5}	3.0499×10^{3}	$" 1$
1200	5.5762×10^{1}	1.6384×10^{-3}	3.3513×10^{3}	$"$
1400	8.6271×10^{2}	2.7841×10^{-2}	3.5598×10^{3}	$" 1$
1600	6.6700×10^{3}	2.3689×10^{-1}	3.6967×10^{3}	$"$

Temperature	k_{2}	k_{p}	k_{2}^{\prime}	$k_{2}^{\prime a}$
400	1.8373×10^{-48}	1.9216×10^{-52}	3.1383×10^{2}	3.6300×10^{3}
600	5.7569×10^{-29}	2.3267×10^{-33}	1.2182×10^{3}	$"$
800	2.9600×10^{-19}	8.6949×10^{-24}	2.2348×10^{3}	$" 1$
1000	1.8881×10^{-13}	5.1000×10^{-18}	3.0379×10^{3}	$" 1$
1200	1.3529×10^{-9}	3.7477×10^{-14}	3.5547×10^{3}	$"$
1400	7.4921×10^{-7}	2.2544×10^{-11}	3.8178×10^{3}	$" 1$
1500	8.4011×10^{-5}	2.8378×10^{-9}	3.8868×10^{3}	$"$

Temperature
400
600
800
1000
1200
14,00
1600
k_{3}
1.1753×10^{-2}
2.0411×10^{-9}
2.1356×10^{-6}
6.9745×10^{-5}
5.6918×10^{-4}
2.3220×10^{-3}
6.3739×10^{-3}
1.3658×10^{-2}
k_{3}^{\prime}
5.7582×10^{6}
8.7170×10^{6}
1.1565×10^{7} 1.4303×10^{7} 1.6933×10^{7} 1.9457×10^{7}
2.1881×10^{7}
8.7390×10^{6} 1.2116×10^{7} 1.5319×10^{7} 1.8332×10^{7}
$k_{3}^{1}{ }^{a}$
2.1073×10^{6} 5.2875×10^{6} 2.1163×10^{7}

Temperature 3.1769×10^{7}
600
800
6.1978×10^{7}
9.0324×10^{7}
2.0142×10^{23}
4.7888×10^{15}
7.1752×10^{11}
$1.2942 \times 10^{-8} \quad 1.1838 \times 10^{-8}$
$1.2588 \times 10^{-4} \quad 1.1968 \times 10^{-4}$

TABLE V. Continued.

Temperature	k_{4}	K_{p}	k_{4}^{\prime}	$k_{4}^{\prime}{ }_{4}^{a}$
1000	1.1612×10^{8}	3.5582×10^{9}	3.2634×10^{-2}	3.1826×10^{-2}
1200	1.3962×10^{8}	1.0152×10^{8}	1.3752	1.3611
1400	1.6117×10^{8}	7.8715×10^{6}	2.0475×10^{1}	2.0386×10^{1}
1600	1.8112×10^{8}	1.1402×10^{6}	1.5885×10^{2}	1.5802×10^{2}

${ }^{a}$ Reverse rate constants calculated from the expressions given by Iovachev and Kaganova.

TABIE II. Formet of input data for the $\mathrm{H}_{2}-\mathrm{Br}_{2}$ flame.
TABLE
@RUT, $M /$

@RUT, M/R BROWNT2, 36242-EROWNR, ABCDE, 15,75 @ASG, A FIA'IE.
 @ERT,T FLAME.

@MAF, IS TEST, TEST
IIB FIA'E.
IN SEAID/3, INIII/ $1, \operatorname{TRANS} / 6, \operatorname{RATCN} / 3$, SOHM2/7, CALS/ 1
IN
END
@XQI TEST

DKMIN, DKMAX, STEFS
DXMIN, DXM4X, SIEAS IMAX, LPRINT

ALLPA
KRAT $\operatorname{FRQ}(K), \operatorname{BETA}(K), \operatorname{EACT}(K), \operatorname{BFLAG}(K)$,
$\mid \operatorname{EFLAG}(K), K=1, \operatorname{KRATE}$

$\operatorname{EQA}(K), \operatorname{EQB}(K), \operatorname{EQC}(K), \operatorname{BODI}(K), \operatorname{BOD2}(K)$,
$K=1, K R A T E$

FLAG(I), $I=1,20$
TABLE II. Continued.
$40.17560 \mathrm{D}+0-2.49476 \mathrm{D}-2-6.56710 \mathrm{D}-7 \mathrm{TT}$ $101.4260 \mathrm{D}+\mathrm{O}-2.3895 \angle \mathrm{D}-2-1.41761 \mathrm{D}-6 \mathrm{TI}$
$16.53200 \mathrm{D}+0-1.49615 \mathrm{D}-3-1.91112 \mathrm{D}-7 \mathrm{FF}$ $-41.7184 \mathrm{D}+0-2.5483$ ミコ -3 5.69792D-7FF 0000000000
1234
$\begin{array}{rrrr}4 & 0 & 1 & 1 \\ 3 & 0 & 2 & 2 \\ 1 & 3 & 5 & 2 \\ 2 & 4 & 5 & 1 \\ \text { FTFTTFFTI }\end{array}$
@EOF
@FIN

Since the format of the output makes it unsuitable for reproduction in this report, we shall illustrate some of it in graphic form. The steady-state velocity of this flame is 0.241 m / s and the hot side flame temperature is $1518^{\circ} \mathrm{K}$ for a complete reaction. This velocity is 1.2% lower than that obtained by Spalding and Stephenson; the difference probably arises from the slightly different values used here for the reverse rate constants. (See l'able I.)

Concentration profiles for the major species are shown in Fig. 4. These are plotted as a function of the laboratory spatial variable y in $m m$ from the hot boundary. Also shown here

Figure 5 is the temperature profile.

Profiles for the two trace species, H and Br , are shown in Fig. 5 along with the enthalpy profile. This latter profile has units of J / kg. The rates of tho major roations are shown in Fig. 6. The + sign in the figure denotros a forward rate. Pigure 7 given the heat release rates for the major reactions and also the total heat release rate as a function of distance through the flame.

0SE000dS 0
0
0
0
0
0
0
0

0 | 0 |
| :---: |
| |
| |
| 0 |
| 0 |
| 0 |
| 0 |
| a |
| u | 0

0
0
0
0
0
0
0
0
0 SPD0 0390 SPD00400

SPD0 0410 | O |
| :--- |
| N |
| + |
| 0 |
| 0 |
| 0 |
| 0 |
| a | 0

n
0
0
0
0
0
a
0

 09toodds $08+000 \mathrm{ddS}$
$0<+000 \mathrm{dS}$ $06 \not 000 \mathrm{ddS}$ 00SOOAdS 0 ISOOAdS ozsoodds oEsooddS 0ヶSOOAdS ossoodds 09S00GdS $0 \angle$ SOOUdS 08S000dS 065000ds 00900 ddS 019000dS 029000dS 0ع900 dds $0 \rightarrow 900 \mathrm{ddS}$ 05900ddS 09900dds 0 2900 ddS SPD00680 069006dS
 HDRM／645＊．ODO／，TRCP／645＊．0DO／．DR2M／645＊．ODO／
A．PARAMETERS AND CGNTREL INDICES． AEAD（5，2000）（RUNID（M），M＝1，12）

FERMAT（12A6）
$\operatorname{READ}(5,2001)(H E A \operatorname{DNG}(M), M=1,126)$
FERMAT（63A1） READ（5， 2002 ）LH，LG，L日H，LHe2，LH2日2，LX，LHX，IX2，Le2，LH2日，LH2，LN2 FORMAT（14I2） PEAD（5，450） $\operatorname{READ}(5,450)$
$\operatorname{READ}(5,450)$ READ（5，450） FGRMATC LTAEB＝0 LTABC＝0 READ（5，500）N，NII，NEE，OMR FERMAT（312，D5．1） FERMAT
NP1 $=N+1$ $\mathrm{NP} 2=\mathrm{N}+2$ NP3 $=\mathrm{N}+3$

ㅇ

M
in

$\begin{array}{lll}\text { N } & M & - \\ 0 & 0 \\ \text { in } & 0\end{array}$

READ（5，502）（XI（J），J＝JRADP 1，JHM1）

READ（5，502）（XE（J），J＝JRADP1，JHM1）
FGRMAT（5D7．3）
READ（5， 103 ）（IPRFL（J），J＝JRADP1，JHM1）

TCALD，PRESS，YWIDTH
 D6．2，D5．1）

 FORMAT（511）（ +09 ）IVkà
JHM $3=\mathrm{JH}-3$
FERMAT（ DG
$\begin{array}{lll}0 & \vec{O} & N \\ 0 & O & O \\ \sim & O & 0 \\ N & N & N\end{array}$

0
0

504 FERMAT(4D12.6, D10.2)
READ(5,506) DXMIN, DXMAX, STEPS FORMAT(2D5.0, D6.0) FAC2 $=($ DXMAX-DXMIN)/STEPS READ (5,508) LMAX, LPRINT FORMAT(213) READ (5,510) ALPHA FARMAT F3,2) READ (5,512). KRAT (RATE $\operatorname{READ}(5,514)$ (FRQ(K), BETA(K), EACT(K), BFLAG(K), EFLAG(K), $K=1, K R A T E)$ F GRMAT(D6,2, D7,2,D8,2,2L1) READ (5,515) (EQA(K) FORMAT(3D11.5, 2L1)
DE $517 \mathrm{~K}=1, \mathrm{KRATE}$ $E Q A(K)=E Q A(K) \# 5.03297 D 2$
 EQC(K) $=$ EQC(K) 4.03297 D 2 . $\operatorname{READ}(5,516)$ (ITEST(M), $M=1,10$) PGRM(1011)

READ $(5,512)$ INPUT

READ (5,2002) (LGRDER(J), J=1, JHM2) READ (5,2003) (SPECIE(J),J=1,JHM2) FORMAT(14L1)
READ(5,2005)(REACT(K), K=1, KRATE)
PEAD (5,2005) (FELAG(R) $\mathrm{K}=1$ KRATE)
READ (5, 2005) (RFLAG(R), $K=1, K R A T E)$
READ (5,354) (LA(K), LB(K), LRA(K), LRB(K), $K=1, K R A T E)$ FGRMAT(4I2)
READ (5,2005) (FLAG(I), $I=1,20)$
IF(.NOT.FLAG(1)) CALL DIFUSE(PRESS) JSTOP=J HM3
506
∞
0
0

510

512
$\stackrel{-}{n}$
515
516
2003
2005
+
n
m

	IF(FLAG(2)) JSTEP=JHM2	SPD01050
		SPD01060
	$\mathrm{L}=0$	SPD01070
	LCEUNT $=0$	SPD01080
	X=. ODO	SPD01090
	DX=DXMIN	SPDO 1100
C		SPDO 1110
C		SPD01120
C	B. GRID PROPERTIES, CROSS STREAM DISTANCE, RATE CONSTANTS。AND	SPDO1130
C	TRANSPGRT PRGPERTIES.	SPDO1140
C		SPD01150
C	Calculation ef grid.	SPDO 1160
	CALL OMEGA	SPDO1170
C		SPDO1180
C	-. TEST 1	-SPD01190
	IF(ITESI(1).EQ. 1) GO TO 700	SPDO 1200
	GO TO 702	SPDO1210
700	WRITE(6,650)	SPD01220
650	FORMAT($1 \mathrm{X}, 7$ ENII, NEE)	SPDO 1230
	WRITE (6,600) NII, NEE	SPD01240
600	Fermat 1X, 213)	SPDO 1250
	WRITE(6,604)	SPD01260
604	FGRMAT 1H)	SPDO1270
	WRITE(6,651)	SPD01280
651		SPD0 1290
		SPD01300
601	FGRMAT(1X, 5D14.5)	SPD01310
	WRITE (6,604)	SPDO1320
	WRITE (6,652)	SPDO 1330
652	FORMAT($1 \mathrm{X}, 7$ HOMI, OME)	SPDO 1340
	WRITE (6,602) ©MI, OME	SPDO1350
602	FGRMAT(1X, 2D14.5)	SPDO 1360
C		-SPD01370
C		SPDO 1380
C	CALCULATION GF INITIAL CONDITIGNS/ OR IF INPUT=1, THEY ARE READ	SPD01390

SPDO 1400

SPDO 1410 SPD01420 SPDO 1430 SPDO1440 OSもIOddS 09もI OddS $0<$ LOAdS 08ヵT0dds 06tiodds oostodds SPDO 1500
SPDO 1510 SPDO 1520 SPDO 1530 SPDO 1540 osstodds 095 lodds OLSIOUdS SPDO1580 SPDO1590 009 IOddS 0 I9 Iodds 0 29I0のdS 0
0
0
0
0
0
0
0
0
0
0
0
0 $0 \rightarrow 9$ IOdds SPDO 1650 SPDO 1660 0
$\hat{0}$
0
0
0
0
0
0 SPDO 1680 059 I0das 00LIOddS 0 TLIOGdS OELIOGdS
OZLIOGdS

IF（INPUT．EQ．O）CALL INITI －－0－0．－．－．0．0．0．0．0．0．0．0 TEST IF（ITEST（2）．EQ．1）GO TO 704 Ge Te 706 WRITE 6,604 ） WRITE（ 6,604 ）
WRITE 6,653 ）

＋

0
SPDO 1740
SPDO 1750 SPD01760 SPDO 1770 SPDO 1780 SPDO 1790 SPDO 1800 SPDO 1810 SPDO 1820 0ع8IOCdS SPDO 1840 SPDO 1850
SPDO 1860 SPDO1860
SPDO 1870 088 I0GdS SPDO 1890 $006100 d S$ SPDO1910 SPDO 1920 SPDO 1930
SPDO 1940 OS6IOCdS SPDO 1960 SPDO 1970 SPDO 1980 SPDO 1990
SPDO 2000 SPDO 2000
SPDO 2010 02020ddS oع0Z 0ads SPD0 2040 SPDO 2050 $0 \angle 0 Z 00 d S$
$090200 d S$ 3 TEST 708 (F(ITEST(3).EQ.1) GO TO GE TO 710
 FGRMAT($1 \mathrm{X}, 30$ H(($\left.\left.\left.\operatorname{HDRM}(J, I), J=1, J H_{M} 1\right), I=1, N P 3\right)\right)$ WRITE $(6,610)$ (($\operatorname{HDRM}(J, I), J=1, J H M 1), I=1, N P 3)$ FORMAT(1X, 5D14.5) WRITE 6,604) FARMAT(30 ($\operatorname{TRCP}(J, I), J=1, J H M 1), I=1, N P 3)$) WRITE 6,610) ((TRCP(J, I), J=1,JHM1), I=1,NP3) FORMAT($1 \mathrm{X}, 30 \mathrm{H}($ ($\operatorname{DR2M}(J, I), J=1, J H M 1), I=1, N P 3))$ WRITE(6,610) ((DR2M(J,I), J=1, JHM1), I=1,NP3)

∞	

∞
0
0
0
n
0
0
0
0
0
0
0
0
\hat{n}
0
0 WRITE(6,604) WRITE 6,658) WRI TE $(6,604)$
WRITE 6,657$)$ WRITE(6,604)

$$
0
$$

SPD0 2420
SPD0 2430 0ヵゅて0はdS 0Sゅてouds SPDO2460 $0<ゅ$ OOdS 08ャ 000 dS SPDO 2490 ooszodds 0こSて0đdS oESZ0のdS ots ocodds 05sट0dds $095200 d S$ $0 \angle 5200 d S$ 08szodds 06S己OddS 00920ddS $019200 d S$ 0 29200dS oع9200ds 0t920ddS os920dds $09920 d d s$ 0 L9200dS 089209dS 05920ads 00LZOdds 0 IL200dS 0 己 L OOddS oと 1 ZOのdS $09 \angle 200 d S$
0 SLZOAdS
0 DLZOAdS
SPD02770
SPD02780
06LZOddS
SPD02800 SPDO 2810 02820ddS 0ع8 OUdS
 098200dS 0<8 20 0 ds 088200 ds 06820 CdS 00620ads 0i620ad SPDO 2920 0ع6ट0 OdS 0ヶ6己 OddS oS620ddS 0962 0ads SPD02970 SPD02980 0
0
a
N
N
0
0
a
0
\sim SPDO 3000 SPDO 3010 ozorodds ococoads SPDO 3040 SPDO 3050 SPDO 3060 SPDO 3070 SPDO 3080 SPDO 3090 \circ
$\stackrel{0}{0}$
\cdots
0
0
0
0
0 OIIEOddS
o己IEOGdS
PD03130
PDO 3140
SPD0 3150
SPD0 3160
70 08 عodd 081ع0のd 061 EOdd SPD03200 SPDO 3210 o己己EOđdS 0عटとOはd 0ヶटとOのdS SPDO 3250 0 L 己とOのdS
 o
α
N
N
0
α
a
u
u ooveodds O IEEOUdS 00
N_{1}
M
M
M
0
0
0
0
u^{2}
u oとعとOのオS
 osعとOđdS 09と先のdS
 $\begin{array}{ll}0 & 0 \\ 0 & 0 \\ m & m \\ m & m \\ 0 & 0 \\ 0 & 0 \\ a_{n} & 0 \\ u & \end{array}$

 SPDO 3430 OカカモOUdS

SPDO 3470

08ゅع0のdS

ooseodds
 oEseodds 0tseodds osseodds 09SE00dS SPDO 3570 SPDO 3580
SPDO 3590 009E0はdS 0 I9ع0のdS oع9と0đdS $0 ゅ 9$ عodds
0 ocgeodds os9E0UdS 099E0才dS SPDO 3670
SPDO 3680 069E0GdS SPD03700 OILEOGdS o己 \angle EOGdS oELEOGdS 0tLEOOdS os LeOUdS SPD0 3760 SPD0 3770 $06 L E O T d S$
$08 \angle E O Q d S$ Ol8EOGdS
008 OOd
0

$\mathrm{X}=1, \mathrm{KH} \mathrm{M} 3$

SUM $=$ SUM＊F（E，I）$\#$ WI（K）
 IF（ITEST（9）．EQ．1）GO TO 731

352	D6 $352 \mathrm{E}=1, \mathrm{KH}$（3）
	SUM＝SUM＋F（ J BM 1，I \＃\＃WT（ JHM 1 ）
	$F(J B M 2, I)=(1 . D O-S U M) / W T(J H M 2)$
351	CEntinde
	GE IE 300
353	De $340 \quad 1=2, N P 2$
	SUM $=.0 \mathrm{DO}$
	De $350 \mathrm{E}=1, \mathrm{KHM} 2$
350	
	$F(J H M 1, I)=(1 . D 0-S U M) / W T(J H M 1)$
340	CONTINUE
300	centinue
C	
C	－0－0－0－0－0．0．0．TEST

$\begin{array}{ccc}\vec{M} & 0 & 0 \\ \sim & 0 & 0 \\ & 0 & 0\end{array}$
00
006E0ddS
ol6EOddS o己6EOAdS
 SPDO3820 SPD03830 SPD03840 SPD0 3850 098E0ddS 0 18 ع OUdS 088E0のdS 068E00dS
－ OS6EOUdS
 0 L6E0ddS SPD0 3980 066ع0ads 000 OAdS SPD04010 OZOゅOはdS 0عOヶOGdS

SPD0 4050 SPDO 4060 SPD0 4070 SPD04080 SPDO 4090 SPD04100 SPD04110 SPD04120 SPD04130 SPD04140

[^0]CGEFFICIENTS FGR THE ENTHALPY HAVE NOW BEEN CALCULATED．
 CALL ENTRN（J，1）
735

SGLVE FER DGWNSTREAM ENTHALPIES．
ENTHALPY EQUATION． CEEFFICIENTS FGR IF（LC．EQ．0）GO TO 999
IF（L．LT．LC）GO TO 406 LTABC＝LTABC＋1 IF（LTAEC．EQ．LDELC）GO TO 407 Ge Te 408

LTABC $=0$
CALL SENTP
CONTINOE －2．DO\＃SEN（I）

1	0	∞
0	0	
	\circ	

00
N

> ENTHALPY） WRITE 6,626 ）（ $\mathrm{C}(\mathrm{JH}, \mathrm{I}), \mathrm{I}=3, \mathrm{NP} 1$ ）
FQRMAT $1 \mathrm{X}, \mathrm{D} 14.5$ ）

00

$$
\text { Ge Ie } 734
$$

$$
\begin{aligned}
& \operatorname{WRITE}(6,604) \\
& \text { WRITE } 6,604) \\
& \text { WRITE } 6,667)
\end{aligned}
$$

626
O

$\stackrel{m}{N}$	
\sim	

1
100

OELT, SIB ABCDE*FLAME(2).SWITCH, . 141371132312 SWHO 0010
SWHOOO20
SWHOOO
SWHOOO
SWHO
SWHO
SWHO
SWHO
SWHO
SW

DELT, SIB ABCDE*FLAME(2). DIFUSE, . 141343132312

$\begin{aligned} & \text { D IF00010 } \\ & \text { DIF00020 } \end{aligned}$	
DIF00030	
DIFO0040	
	0
060	
70	
DIF00080	
	DIF00090
DIF00100	
DIF00110	
00	
F00140	
	0
DIF00160	
DIF00170	
DIFOO180	
DIF00190	
DIF00200	
DIF00210	
DIF00220	
DIF00230	
DIFO 0240	
DIFO0250	
DIF00260	
DIF00270	
DIF00280	
DIF00290	
DIF00300	
DIF00310	
DIF00320	
DIF00330	
	F0340

 SUBRQUTINE DIFUSE(PRESS) DEUBLE PRECISION TDIV, DA, DB, PRESS

SUBREUTINE DIFUSE(PRESS)
FMASS=(M(I)+M(J))/(M(I)*M(J)) FMASS=SQRT(FMASS) EKIJ = SQRT(EK(I) \#EK(J)) EKA=EKIJ휼. 44
EKB=EKIJ*击. 17
$S 2=.5 *(S(I) \cdot S(J))$
S2=s2*S2
TCUT=3. \#EKIJ
D=1.26E-7\#FNASS/(S2\#EKA)
IF(FLAG(3)) DA(I,J)=DA(I,J)/PRESS $D=1.66 E-7$ *FMASS/(S2*EKB)
IF(FLAG(3)) DB(I,J)=DB(I,J)/PRESS 43 CENTINUE
GMGOOO1O OMGO 0020 0عOOODK GMGOOO4O GMGOOO50 बMG00060 0 2000 OK GMG00080 060000NO 001000 NO GMGOO110 OMGOO120 oहIOODR $0 ヵ 10$ ODFの OSTOODNO 09 IO Oこれの $0 \angle 1000 \%$ 081000\％я 06 โо оожя －огооэкө

 оعटо оэжจ 0ゅてO ODN 052000N0 09 OOODF $0 \angle 2000 \mathrm{NO}$ 082000NO 06200010

[^1]बELT, SIH ABCDE\#FLAME(2). OMEGA. . 141377132312

OELT，SIB ABCDE＊FLAME（2）．INITL／1，， 107650032113 SUBREUTINE INITL

0 ¢ ¢00才II															
OZとOOTII ${ }^{\text {O }}$															
0 IEOOTII GתNILNPS OOI															
00عOOTII（n）															
062001LI（I）Ne－Oa＊$\tau=0$															
09 O001II 00I OL 00															
$0 ゅ$ 2001LI（I）NQ＝															
002001LI terretdavar＝r 00t od															
061001 L															
09100751															
0 OOOOTII（Z－日＇H－V）8＊TVEX IIOITdMI															
0 I0001LI TLINI GNIInextas															

ITLO0360 ITL00370 I TLO 0380 ITL00390 ITLO0400 OIb007LI 0 0ても007LI $0 \varepsilon 巾 001 \mathrm{LI}$ I TLO 0440 ITLOO450 $09 \nabla 007 \mathrm{JI}$ $0<6001 \mathrm{LI}$ $08 ヵ 001 \mathrm{II}$ 05 $\quad 0001 \mathrm{LI}$ 005001 II ITLO 0510 OZS007LI oES007LI I TLO 0540 0SSOOTLI 095001 L 0 LSOOTLI 0850071 085007 LI 065007LI 009007 II 0190071 I 0 29007LI $0+9007 \mathrm{LI}$
0 ع 9007 LI 099007 LI I TL00670 089001II I TLO 0690 00＜001LI
 Z（J）＝F（J， 2 ） \boldsymbol{H} WT（J） $A=A+\operatorname{BREP}(J) * Z(J)$ B＝B＊DCP（J）※Z（J） $C 2=C 2+E C P(J) * Z(J)$ D3 $=\mathrm{D} 3+F C P(\mathrm{~J}) * Z(\mathrm{~J})$ C＝C2 1.5 DO

$$
D=D 3 \% \cdot 333333 D 0
$$ $0 \angle 8007 \mathrm{II}$ 088001 II 068001 I I 068007 I 006001 LI

$$
T=(F(J H, 2)-A) / B
$$ I TL00920 ITL00930 TL00940 I TLO 0960

$$
\text { ICAUNT }=0
$$ ITL00910 TL00950 ITL00970 TLO 0980 066007 II 000 ：07II

\square
in
0
I NPOOO1O

 SUBREUTINE INPRFL(F, JRAD,N) IMPLICIT REAL,

C+N= टd
(SI)J NOISNEKI
NP NP2
$\begin{array}{lll}10 & I=2, N P 2 \\ 20 & J=1,4\end{array}$
$(J, I)=.1 D-4$
DO 21 J=5, 50
$F(J, I)=1, D-50$
CONTINUE
D-50
$22 J=$
$)=1$
N
2
2
-
○ N
N
N

TRNO 0010 TRNO 0020 TRNOOO3O TRNO 0040 TRNOOO50 TRNOO060 0 LOOONXI TRNO 0080 TRNO 0090 OOIOONEI OITOONEI O己 TOONXI OETOONYL TRNOO140 TRNOO150 TRNOO150
TRNOO160 OLTOONEL 08 IO ONXI O6I OONEL OOZOONEI TRNO 0210 0 己 ZOONEI 0 ع 20 ONXI 0 OZOONXI OSZOONEI 0920 ONEL OLCOONXI 08ZOONYI 06टOONXI OOEOONXI 0 IEOONCI O EEOON: I OEEOONXI

[^2]
FS(JM,I)=1.DO/WTAV

DENSITY AT GRID POINTS.
 RHE(I) $=1.21867 \mathrm{D} 4 \mathrm{FS}(\mathrm{JM}, \mathrm{I}) \# F S(J T R, I)$

 IF(FLAG(3)) RHE(I)=RHO(I)*PRESS RH2 (I) $=$ RHO(I $)$ *RHOC(I) EFFECTIVE DIFFUSION COEFFICIENTS AT GRID POINTS.THIS SECTION CALCULATES PREF AT GRID POINTS FGR
THIS SECTIEN CALCULATES PREF AT GRID POINTS FOR O3 FLAME.
LEWIS NUMBER . 94 .
IF(. NOT.FLAG(7)) GO TO 211 CPMIX=B*T* (C2•D3*T)
PREF (JH, I) $=2.2026 \mathrm{D}-3$ 를 DSQRT(T)
$\operatorname{PREF}(J H, I)=\operatorname{PREF}(J H, I) \in \operatorname{RH} \theta(I) / C P M I X$ XLEWIS=. 94 DO

De $212 \mathrm{~J}=1, \mathrm{~J}$ HM 1
PREF(J, I)=FAC
GE TE 57
CONTINUE
$\stackrel{N}{\mathrm{~N}} \stackrel{\rightharpoonup}{\mathrm{~N}}$
OOLO ONEI 0

0
0
0
0
μ
μ
H O CLOONXI OELO ONXI

OSLOON甘
O 9LOONEL $0 \angle L O$ ONXI $08 \angle 0$ ONXI $06 \angle O$ ONXI
0080 ONEI
0 IBOON\＆L
0 Z80 ONはI
OEBOONEI

OSBOONXI
0980 ONAL
$0 \angle 80$ ONXI
0880 ONXI
0680 ONAI
OO600N8I
0 IGOONXI 0 O6OONXI OESO ONAI TRNO 0940 TRNO 0950 TRNO 0960 0 L60 ONXI 0860 ON\＆ 0660 ONAI TRNO 1000 O IO I ONXI TRNO1 020 OEOIONAL $0 \rightarrow O$ IONYI OSOIONXI
FLAME．

－ 13 ®ロ （VALUES GF PREF APPEAR IN A DATA STATENENT IN SPALD．） IF（FLAG（1））GO TO 10 R2DM＝RH2（I）\＃FS（JMR，I）

COMPOSITION DEPENDENT SECTION THAT FGLLOWS．

BINARY DIFFUSIGN COEFFICIENTS CALCULATED AT TEMPERATURE T． TAGA $=$. FALSE． TAGB＝．FALSE。 De $37 \mathrm{KI}=1, \mathrm{~J}$ HM2 DO 37 KJ＝JRADP1，JHM1 IF（KI．GE．KJ）G® T® 37 IF（（T．LI．TDIV（KI，KJ））．AND．（．N®T．TAGA））GO TO 32 Ge te 33

TA＝T＊＊1．94
TAGA $=. T R U E$ ．
THE
M
N
000

215
214

33	IP(T.LT.TDIV(EI,EJ)) G Ge Te 35
34	DD(KI,KJ) $=\mathrm{DA}(K I, \mathrm{KJ})=T A$ Ge Te 30
35	IF(TAGB) GO TO 36
	TAGE ${ }^{\text {a }}$. TRUE.
36	
30	CONTINUE
37	CONTINUE

TRNO 1060 08 IIONXI
IF(J.GT.JRAD) PREF(J,I)=(1.DO-F(J,I)*FS(JM,I))*PREF(J, I) TRNO 1070
TRNO 1080
TRNO1090
TRNO1100
TRNO11110
TRNO1120
TRNO1130
TRNO1140
TRNO1150
TRNO1160
TRNO1170 TRNO1190
TRNO1200
TRNO1200
TRNO1210 TRNO1210
TRNO1220 TRNO1220

$$
\begin{aligned}
& \text { CONTINUE } \\
& \operatorname{PREF}(J, I)=\operatorname{R2DM} / \operatorname{PREF}(J, I)
\end{aligned}
$$ TRNO1260 TRNO1270 TRNO1 280 TRNO 1290 TRNO 1300 TRNO 1310 0

N
M
-
Z
N
H 0
m
m
m
0
2
n
n

 TRNO 1360 OLEIONXI 08EIONAI
 TRNO1400
 TION STEPS T ${ }^{*} \# 1.94$ AND T\#\# 1.67 ARE CALCULATED ONLY GNCE AT EACH
In the next sectien, pref $J, I)$ IS Calculated for the full model. IN TBE NEXT SECTION,
DE $38 \mathrm{~J}=1, \mathrm{JHM}$, $000^{\circ}=(1, f)$ agad DE $39 \mathrm{~K}=\mathrm{JRADPI}$, JHM! IF (J.EQ.K) Ge TE 39 IF(J.GT.K) $D D(J, K)=D D(K, J)$ $\operatorname{PREF}(J, I)=\operatorname{PREF}(J, I)+F(K, I) / D D(J, K)$ CONTINUE
THIS SECTION CALCULATES THE THERMAL CONDUCTIVITY FOR THE MIXTURE ACCERDING TG LINDSAY AND BROMLEY, IND. AND ENG. CHEM. VOL. 42 , P. 1508. the a($1, J$) values have been calculated separately for THE FOUR MAJOR SPECIES, G2, H2O, H2,N2. the teramal cenductivities for the four pure species are CALCULATED FIRST. $T 2=T * T$
O 「カTONさ」

0
+
+
0
0
0
0

 $0<6$ IONaI
08ヵTONAI
06tIONAI OOSTONAL OISIONAL OZSTONAL OESIONXI OゅSIONZL OSSIONAI O9SIONXI OLSIONAL OBSIONXI O6STONAL 009 IONAI 0 I9IONZI OZ9 I ONAI 0ع9IONAL Oカ9IONCI TRNO 1650 \circ
0
0
0
0
0
品
H

069 I ONXI TRNO1700
 TRNO1720 TRNO1730 TRNO 1740 TRNO 1750

 MIXTURE，IS CALCULATED． FIRST，HGWEVER，THE MIXTURE HEAT CAPACITY AT THE GRID POINTS IS CALCULATED．ALSO CALCULATED，IS THE SPECIES MOIAR ENTHALPY WHICH THIS LATTER

ヨDanes XdTVBING
OWEVER，GNLY IF THE ENTHALPY S夭URCE
THIS GPTION IS TRIGGERED BY FLAG（5）＝T．
MIXTURE THERMAL CONDUCTIVITY AT GRID POINTS．
PREF（JH，I $=.0 D O$ CPMIX＝B＊T（C2＊D3＊T） MIXTURE HEAT CAPACITY．
09LIONXI
 08LIONEI OSLIONAI 008IONAI OL8 IONEI 0 ع8 IONAL

 OS8I ONXI 098 ION\＆I $0 \angle 8$ IONXI 088 I ONXI 068 IONEI TRNO 1900 OIGIONAI OZSIONXI OEGIONXI OカSI ONCI OS6IONAL 096 IONXI 0 L6IONEI | 0 |
| :--- |
| ∞ |
| 0 |
| 0 |
| 0 |
| 0 |
| 2 |
| |

 OOOZONEI OIOZON\＆I OZOZONXI OEOZONはL OセOZON\＆I OSOZONXI 0902ONCI OLOZCNEI

De 50 KI＝JRADPI，JHM1

$\operatorname{SUM}(E I)=.0 \mathrm{DO}$
DE $52 \mathrm{KJ}=\mathrm{JRADP} 1, \mathrm{JHM} 1$
IF（EI．EQ．KJ）GE TO 52
$I F(K I, E Q, R J)$ GO TO 52
SUM $(K I)=S U M(E I) \neq D D(K I, K J) \& F(K J, I)$
$S U M(K I)=1, D O+S U M(K I) / F(K I, I)$ $\operatorname{PREF}(J H, I)=\operatorname{PREF}(J H, I)+C O N(K I) / S O M(X$ IF（FLAG（5））GO TO 57

Ge te 10

melar ebthalpy at grid peints．

70 ENT（J，I）＝FAC\＆WT（J）
10 CONTINUE

N

in
in
70 ENT（J，I ）＝FAC』WT（J）
10 CONTINUE
IF（ICALC．EQ．O）Ge TO 300

$$
\begin{aligned}
& \text { TERM. } \\
& \text { (NUE } \\
& \text { RETURN } \\
& \text { EDRM (} J, I)=E N T L P Y \text { PREF }(J, I) \sharp R M B(I) \\
& \operatorname{TRCP}(J, I)=E N T L P Y * P R E F(J H, I) \\
& \operatorname{DR} 2 \mathrm{M}(\mathrm{~J}, \mathrm{I})=\operatorname{PREF}(\mathrm{J}, \mathrm{I}) \sharp \operatorname{RMB}(\mathrm{I}) \\
& \text { ENTLPY }=.5 \text { * (ENT(J,I) } \operatorname{ENT}(J, I+1))
\end{aligned}
$$

\circ
ㅇ
0
$\stackrel{\infty}{\infty}$
$\circ \circ$
응
0
0
DELT，SIH ABCDEFFLAME（2）．RATCN／3，．， 132060133512 RCNOOO1O
RCNOOO20
RCNOOO30 R RCNO 0070 06000NOX OOIOONDE RCNOO110 O己IOONOX OEIOONDE RCNOO 140 RCNO 0150 RCNOO160 RCNOO170 RCNOO180 RCNO 0190 RCNOO200 RCNOO210 RCNO 0220 oع 20 ONO OゅZOOND OSZOOND 09200 ND RCNO 0270 RCNO 0280 RCNO 0290 OOEOONDX RCN00310 OटEOONO RCNO 0330 0 カعO OND甘

Ge Te 40

ENT00010 ENTOOO20 oEOOOLNG ENTO 0040 OSOOOLNE 09000INE ENT00070 ENT00080 ENT00080 ENT00090 ENTOO100 OIIOOLNE ENTOO120 OEIOOLNE OもlOOLNE OSIOOLNE O9IOOLNG OLIOOLNG 08 IOOLNE 06 IOOLNE 00200INE 0 IZOOLNG 0 こ己OOLNJ OEटOOLNG Oヵ2OOLNE OSZOOLNE 09200LNE O LZOOLNE $082001 N G$ 06200ING OOEOOLNJ 0 IEOOLNG O CEOOLNE OもEOOLNE
OEEOOLNJ

 IF（IFOW．EQ．1）GO T® 500 RMI $=($ H－BH $)$ \＃FAC\＃100．DO
RMI $=$ DABS（RMI） RMI＝RMI＊＊ALPHA RMI＝2．DO－RMI RMI＝SUM＊RMI

RME＝（CC－C）\＃FAC＊100．D0
RME＝DABS（ RME）

OELT，SIH ABCDEFFLAME（2）．ENTRN／3，． 141333132312 SUBRGUTINE ENTRN（J，IFUW） IMPLICII REAL\＃ 8 （ $A-H, \theta-Z$ ） REAL ALPHA
CGMMON／IVALS／N，NP1，NP2，NP3 $\stackrel{N}{\sim}$ 웅

SC100010
SC100020
SC100030
SC100040
SC100050
SC100060
SC100070
SC100080
SC100090
SC100100
SC100110
SC100120
SC100130
SC100140
SC100150
SC100160
SC100170
SC100180
SC100190
SC100200
SC100210
SC100220
SC100230
SC100240
SC100250

OELT，SIH ABCDE＊PLAME（2）．SCEM2／7，．． 141405132312

SC200030
SC200040 SC200050 SC2 00060 \circ
○
O
O
N
N
un SC200080 06000 20s SC200100
SC200110 \circ
N
N
O
O
N
U SC200130

0
0
0
0
0
N
U

0
0
0
0
N
U

U | 0 |
| :---: |
| \sim |
| \sim |
| 0 |
| 0 |
| N |
| U |
| | SC200180 SC200190 SC200200 0

N
0
0
N
N
un 0
N
N
O
N
U
ט SC200230 \circ
$\stackrel{+}{N}$
0
0
N
N
U \circ
in
N
0
N
N
U 0
0
N
N
N
N
U 0く200こうS 08200 2วs 0620025s 008002Js oleoozos o 2 ロOODJS $\begin{array}{ll}\circ & 0 \\ M & \\ M & \\ 0 & 0 \\ 0 & 0 \\ N & \\ U & \\ u & \end{array}$ 0
O
M
0
0
N
U
un

CGMMEN／GSTITC G1（ 30,15 ）G2（30，15），G3（30，15） COMMEN／REACT／LA（30），LB（30），LRA（30），LRB（30） CEMMEN／RTPARM／FRQ（30），BETA（30），EACT（30） －，BOD1（ 30 ），Bed2（ 30 ），REACT（ 30 ） DIMENSI EN FER（43），REV（43） DE $60 \mathrm{I}=2, \mathrm{NP} 2$
$\operatorname{SU}(J, I)=.0$ DO $\operatorname{SD}(J, I)=.0$ DO DE $18 \mathrm{~K}=1$, RRATE
IF（．NOT．GI（R，J）GO TO 18 LAKKK＝LA（K）

LBKKK＝LB（K）

LRAKKK＝LRA（K）
LREKKK＝LRB（K） IF（K．EQ．5）Ge

IF（K．EQ．10）GO TO 48 IF（BEDI（K））GO TO 41 De $50 \mathrm{I}=2, \mathrm{NP} 2$ FeR（I）＝RATE（K，I ）\＃F（LABKK，I）\＃F（LBRKK，I）
$\operatorname{REV}(I)=R A T E R(K, I) \# F(L R A K K K, I) \# F(L R B K K K, I)$ Ge Te 40

IF（ BED2（K））GO TO 42 De $51 \quad I=2$, NP2 －
0sعoozDs 09ع002つS \circ
\uparrow
M
0
0
N
N
U 0
0
M
0
0
N
U
0
0 SC200390 SC200400 SC200410 SC200420 SC200430 SC200440 SC200450 SC2 00460 $0<ゅ 00205$ 08 80025s 06ゅ0025s \circ
0
0
0
0
N
0
0 0ISOOZDS \circ
N
N
O
N
N
U oعSOOZDS 0ヶS00 2うs ossoozos 095002つs 0＜S0020s 085002Js 065002つs 0090025 S 01900 20s 0 0290020s oع90020s SC200640 SC200650
SC200660 SC200660
SC200670 06900 2JS

 Ge Te 40

 Ge Te 40

 $\operatorname{REV}(I)=\operatorname{RATER}(K, I) \# F(L R A K K K, I) \# F S(J B G D Y A, I)$ GO TE 40
 $\operatorname{REV}(I)=R A T E R(K, I) * F(\operatorname{LRAKXK}, I) * F S(J B O D Y B, I)$ CONTINUE
IF（G3（K，J））GE TO 19
$\operatorname{SU}(J, I)=\operatorname{SU}(J, I)+\operatorname{REV}(I)$
$\operatorname{SD}(J, I)=\operatorname{SD}(J, I)-\operatorname{FOR}(I)$
Ge Te 18
$\operatorname{SU}(J, I)=\operatorname{SU}(J, I)+\operatorname{FGR}(I)$
$\operatorname{SD}(J, I)=\operatorname{SD}(J, I)-\operatorname{REV}(I)$
Ge Te 18
IF（G2（K，J））GO TO 21
$\operatorname{SU}(J, I)=\operatorname{SU}(J, I)+2 . \operatorname{DO\# }(\operatorname{FGR}(I)+\operatorname{REV}(I))$ $\operatorname{SD}(J, I)=\operatorname{SD}(J, I)-4 . \operatorname{DO} F \operatorname{FOR}(I)$
Ge Te 18
$\operatorname{SU}(J, I)=\operatorname{SU}(J, I)+2 \cdot \operatorname{DO}(\operatorname{FGR}(I)+\operatorname{REV}(I))$ $\operatorname{SD}(J, I)=S D(J, I)-4, D 0 * R E V(I)$
De $30 \quad I=2, N P 2$

i ㅇ
ก
$-$
${ }_{\sim}^{\infty}$
$\stackrel{9}{0} \boldsymbol{\infty}$
DELT, SIH ABCDE*FLAME (2).CALC/1,.. 137751133112
 , JTR, JBODYA, JBEDYB

SUBREUTINE SENTP SNPOOO1 0 O2000dNS SNPOO030 SNPOOO40 SNPOOO50 SNPOOO6O SNP00070 SNPO 0080 SNPO 0090 SNPOO 100 OIIOOdNS OZ IOOdNS oEloodns | 0 |
| :--- |
| $寸$ |
| |
| 0 |
| 0 |
| 0 |
| 0 |
| z |
| z |
| 0 |
| 0 | ostoodns 09 IOOdNS OLIOOdNS 08IOOdNS O6IOOdNS OOZOOdNS OI ZOOdNS SNPO 0220 oعZOOdNS OSZOOdNS

oゅZOOdNS
DELT,SIE ABCDE\#FLAME(2).SENTP/1... 141375132312 COMMEN/JVALS/JH, JHM1, JHM2, JRAD, JRADP1, JM, JMR, JT, JTR, JBODYA, JBGDYB COMMON/EMEGA2/OM(43), OMD(43), OMI, OME, ROMD(43) CAMMON/TRANS2/RME(43), PREF(15,43), HDRM(15,43), TRCP(15,43) *, DR2M(15,43)
COMMON/TRANS3/RBO(43), RU(43), RH2(43) COMMON/VAR1/F(15.43),FS(15.43)

YD(43), YAV(43), RPEI

$F A C=H D R M(J, I) \#(F(J, I+1) \neq F S(J M, I+1)-F(J, I) \neq F S(J M, I)) \neq R \Theta M D(I)$
FAC=FAC-HDRM(J,I-1)*(F(J,I)\#FS(JM,I)-F(J,I-1)\#FS(JN,I-1))
1 \#RGMD (I-1)
FAC=FAC-TRCP(J,I)*(F(J,I+1)-F(J,I))\&RGMD(I)
FAC=FAC-TRCP(J,I-1)*(F(J,I)-F(J,I-1))\#ROMD(I-1) SEN(I)=SEN(I)+FAC
CONTINUE
$\operatorname{SEN}(I)=\operatorname{SEN}(I) \notin R P E I$
20 CONTINUE
01000702

COMMON／CMEGA2／OM（43），बMD（43），बMI，OME，ROMD（43） CEMMON／INIT／XI（15），XE（15），IPRFL（15），TCOLD，PRESS，YWIDTH COMMON／TRANS1／HREF（15），DCP（15），ECP（15），FCP（15），WT（15），ITER，ITER1 43） － ）， $\operatorname{TRCP}(15$,
 OUTOO180 06 loolne 002001～ 0 I2001の日 Oこと001の日 oとzoolna 0 ャ 2001Ω の बUT0 0250
बUTO 0260 0
N
N
O
H
0
0 0
O
N
0
0
0
0
0
0

0 | \circ |
| :--- |
| 0 |
| N |
| N |
| 0 |
0

GUT00350 09800Ino बUT00370 बUT0 0380 बUT00390 00ゅOOL』の OUT00410 0己ゃ0 OL』の $0 \varepsilon ャ 00 \mathrm{Ln}$－ 0 －$\downarrow 00 \mathrm{LO} \theta$ | \circ |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| -1 |
| 0 | बUT0 0460 $0<巾$ OLIの 08ヤ001の日 06ヶ0 OL』の OOSOOLNA OISOOLAO OZSOOLの日 0ESOOLnO 0 tSOOLnの OSSOOLRO बUT00560 OLSOOLNO 08SOOLnO 05SOOL』の 009001nの 0 I 90 OLnの बUT00620 8UT00630 OUT00640 0S9001』日 099001n日 0＜9001』の 089001no 069001n日

EUT00700

OUTO 1400 GUTO1410 | \circ |
| :---: |
| N |
| + |
| 0 |
| 0 |
| |
| 0 | OとかIOL』の 0カゅIOJの日 OStI OLNO 09カIOIn日 $0<力$ IOLの日 OUTO 1480 06tiOLne OOSIOLNO OISIOLNO OZSIOLAO OESIOLAO $0 \rightarrow$ SIOLNA oss lolne OUTO 1560 $0 \angle S$ IOLAO OBSIOLNE OSS IOLAO 009 IOLA日 OI9IOL』A oz9Iolno 0ع9 IOL』A o +9 rolno euto 1650 099 IOLn $0<9$ IOLne 089 IOLne 069 IOLne 00LIOL』の －ILIOLの日 ozlloino $0 ヶ L I O L \cap \theta$

$0 \varepsilon \angle I O L \cap \theta$
RATER．

OSLIOLNO बUTO 1760 बUT01770 GUTO 1780 06LIOLD日 008 10lan 0 18IOLの日 0 ことT0Iの日 $0 \varepsilon 8$ IOLの बUTO 1840 GUTO 1850 098 IOLnの $0 \angle 8$ OLn 6UTO1880 058 IOLne 006 IOLn9 eUtol910 बUTO1920 0ع6IOLnの 0ヵ6IOL』の OS6IOL』O 096 IOL』の $0 \angle 6$ IOLRO 086 IOLnO 065 IOLの日 \begin{tabular}{l}
\circ

0

0

N

0

0

\hline

\hline 0

0

 －Iozolno OZOZOLnの OعOZ OL』の 0ヶ0てOL』の

0

0

0

N

0

0

0

\hline 0
\end{tabular} 0

0
0
0
N
ㅇ
B
0
0 080 OLNO
$0 \angle O$ ZOLの 060 己OL』の
CONTINUE

DO $200 \mathrm{~K}=1$, KRATE De $200 \quad I=2, N P 2$ $V(K, I)=B V(K, I)$
$V(K, I)=B W(K, I)$

ISIARI
 t= LYVLSI
 ISTEP=ISTART*15

 ICEUNT=0($\mathrm{N} 日$ ILOVaは
\circ
0
0
N
209
-3
$\stackrel{0}{N}$ WRITE 6,69)
WRITE 6,44) (I,I=ISTART, ISTEP)
WRITE(6,250) (K, ($\mathrm{HV}(\mathrm{K}, \mathrm{I}), I=I S T A R T, I S T \Theta P)$) WRITE(6,250$)\left(K_{,},(H W(K, I), I=I S T A R T, I S T \Theta P)\right)$ FERMAT($1 \mathrm{X}, \mathrm{I} 2,1 \mathrm{X}, 16 \mathrm{E} 8.3$)
CONTINUE
IF(ICEUNT.EQ.2) ISTART=20
GE TE 209
99 FETURN

RRFERFNCES

1) Patankar, S. V. and Spalding, D. H., Heat and Mass Transfer in Boundary Iayers (Intertext Books, Iondon, 197C).
2) Lovachev, L. A. and Kaganova, Z. I., Dokl. Akad. Nauk SSSR 188, 1087 (1969).
3) Spalding, D. B. and Stephenson, P. L., Proc. Roy. Soc. Lond. A324, 315 (1971).
4) Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B., Molecular Theory of Gases and Liquids (Wiley, New York, 1954).
5) Lindsay, A. L. and Brornley, L. A., Ind. Eng. Chem. 42, 1508 (1950).

APPENDIX A.

DERIVATION OF T'HE ONE-DIMENSIONAL LAMINAR FLAME EQUATIONS

Consider a control volume $\delta \mathrm{V}$ oriented as shown in Fig. A1. Since the flame is one-dimensional, there will be gradients only in the y-direction. T'he gas mixture flows from right to left through the + face of the control volume and out through the - face. The area of each face is $\delta \mathrm{A}$, and the length of the volume is δy. The velocity of the mixture v is the mass average flow velocity defined by the equation

Figure A1.
Orientation of control volume
$v=\rho^{-1} \sum_{j} C_{j} M_{j} \bar{v}_{j}$
where \bar{v}_{j} is the average velocity, C_{j} the concentration, and M_{j} the.
molecular weight of each chemical species; ρ is the density of the mixture.

There are three conservation equations to be derived;
a) the conservation of total mass;
b) the conservation of each chemical species;
c) the conservation of energy.
a) Conservation of total mass

Let ρ_{+}be the density of the gas mixture entering the + face of δV, and let $\rho_{\text {_ }}$ be the density of. the gas leaving at the - face. Let v_{+}and v_{-}be the mass average velocities of the gas at the + and faces. If ρ is in units of $\mathrm{kg} / \mathrm{m}^{3}$ and v in m / s, then the number of kg of gas entering δV per second is $\delta \mathrm{Av}_{+} \rho_{+}$, and the amount leaving is

SAv_p_. The difference between these two quantities gives the rate at which the mass of gas in $\delta \mathrm{V}$ changes. This is $\delta \rho \delta \mathrm{V} / \delta t$, where $\delta \rho$ is the change in the average density of the gas in $\delta \mathrm{V}$ in the time interval δt. Thus we get the equation,
$\delta \rho \delta \mathrm{V} / \delta t=-\delta A\left(\mathrm{v}_{+} \rho_{+}-\mathrm{v}_{-} \rho_{-}\right)$.
Note that v_{+}and v_{-}are negative numbers because the flow is from right to left. Dividing this equation by $\delta \mathrm{V}$, we obtain the expression
$\delta \rho / \delta t=-\left(v_{+} \rho_{+}-v_{-} \rho_{-}\right) / \delta y$, since $\delta V=\delta A \quad \delta y$. If δy is sufficiently small, this equation can be written in derivative notation;

$$
\begin{equation*}
\partial \rho / \partial t=-\partial(\rho v) / \partial y \tag{A1}
\end{equation*}
$$

This is the mass conservation equation.

b) Species conservation equations

Let Y_{j} be the mass fraction of the chemical species j. Then $Y_{j}{ }^{\rho}$ is the density of species j in the mixture. We can derive the same type of equation for the rate at which the mass of j changes in $\delta \mathrm{V}$ as we did for the change of total mass. We get,
$\delta\left(\rho Y_{j}\right) \delta V / \delta t=-\delta A\left[\left(v+V_{j}\right)_{+}\left(\rho Y_{j}\right)_{+}-\left(v+V_{j}\right)_{-}\left(\rho Y_{j}\right)_{-}\right]+R_{j} \delta V$.
Here, V_{j} is the diffusion velocity of species j, and R_{j} is the mass production rate of species j arising from chemical reactions in $\delta \mathrm{V}$. Dividing this equation by $\delta \mathrm{V}$ and passing over to derivative notation, we get the species conservation equations,

$$
\begin{equation*}
\partial\left(\rho Y_{j}\right) / \partial t=-\partial \bar{\partial}\left[\left(v+V_{j}\right)\left(\rho Y_{j}\right)\right]+R_{j}, \quad j=1, n-1 \tag{A2}
\end{equation*}
$$

There will be one of these equations for each species except one. The mass fraction of the n 'th species is related to the mass fractions of the remaining species by the requirement that the sum of all the mass fractions equal unity; i.e. $\sum_{j}^{n_{j}}=1$.

c) Energy conservation equation

Let h_{j} be the enthalpy per unit mass of the pure species j at the temperature T. The enthalpy of the mixture is then $h=\sum_{-10} Y_{j} h_{j}$. Let λ be the thermal conductivity of the mixture ($\mathrm{J} \mathrm{m}^{-1} \mathrm{~s}^{-10} \mathrm{~K}^{-1}$). The rate at which energy enters the + face of the control volume due to heat conduction arising from a temperature gradient $(\partial T / \partial y)_{+}$ at the + face is $(\lambda \partial T / \partial y)_{+} \delta A$. In addition, energy is carried into δV through the + face by species j. This occurs at a rate $\left(v+V_{j}\right)_{+}\left(\rho Y_{j} h_{j}\right)_{+} \delta A$. Equating the rate of change in the total energy in $\delta \mathrm{V}$ to the difference between the amount entering and leaving by heat conduction and the amounts carried in and out by each species, we get,
$\delta(\rho h) \delta V / \delta t=\delta A\left[(\lambda \partial T / \partial y)_{+}-(\lambda \partial T / \partial y)_{-}\right]$

$$
-\delta A\left\{\sum_{j}\left(v+V_{j}\right)_{+}\left(\rho Y_{j} h_{j}\right)_{+}-\sum_{j}\left(v+V_{j}\right)_{-}\left(\rho Y_{j} h_{j}\right)_{-}\right\} .
$$

Dividing this equation by $\delta \mathrm{V}$ and going to derivative notation, we obtain the energy conservation equation,

$$
\begin{equation*}
\partial(\rho h) / \partial t=\frac{\partial}{\partial y}\left(\lambda \partial l^{\prime} / \partial y\right)-\frac{\partial}{\partial y}\left(\sum_{j}\left(v+V_{j}\right) Y_{j} \rho h_{j}\right) . \tag{A3}
\end{equation*}
$$

APPENDIX B.

DE'IERMINATION OF TIE VELOCI'IY OF A STEADILY PROPAGATING FLAME

The equations derived in Appendix A give the time dependence per unit volume of the total mass, the masses of each chemical species, and the total energy in the system. For a steadily propagating flame, the time derivatives will be zero in a coordinate system which moves with the velocity of the flame front. Let us consider the consequences of allowing the time derivatives in E_{1}. A1, $A 2$, and $A 3$ to vanish. From A1 we get $\partial(\rho v) / \partial y=0$; thus $\rho v=M$ is constant throughout the flame. M is the mass flow rate in the steady flame $\left(\mathrm{kg} \mathrm{m}^{-2} \mathrm{~s}^{-1}\right)$. From A2, we get,

$$
\frac{\partial}{\partial y}\left(v+V_{j}\right)\left(\rho Y_{j}\right)=R_{j} .
$$

Integrating this equation from the hot to the cold side of the flame gives,

$$
\int_{H}^{C} \frac{\partial}{\partial y}\left(v+V_{j}\right)\left(\rho Y_{j}\right) d y=\int_{H}^{C} R_{j} d y=\left(v+V_{j}\right)_{C}\left(\rho Y_{j}\right)_{C}-\left(v+V_{j}\right)_{H}\left(\rho Y_{j}\right)_{H}
$$

If the integration extends sufficiently far intothe hot and cold regions, the diffusion velocities $\left(V_{j}\right)_{C}$ and $\left(V_{j}\right)_{H}$ become negligible compared to v_{C} and v_{H} since the concentration gradients become small. Thus, we can write this equation as,

$$
\int_{H}^{C} R_{j} d y=\left(\rho v Y_{j}\right)_{C}-\left(\rho v Y_{j}\right)_{H}=M\left(Y_{j C}-Y_{j H}\right)
$$

since $(\rho v)_{C}=(\rho v)_{H}=M$ from the steady-state mass conservation equation A1. Any of the integrals $\int R_{j} d y$ can be used to calculate M or v_{C}, which is the steady flame velocity referred to the cold side of the flame. Thus, the equation for ${ }_{C}$ is,
$v_{C}=\int_{H}^{C} R_{j} d y /\left[\rho_{C}\left(Y_{j C}-Y_{j H}\right)\right]$.
The solution of the flame equations in the steady-state limit yields the mass fractions Y_{j} of each chemical species as a function of y, the distance through the flame. From these values the mass production rates
R_{j} can be calculated as a function of y. If the flame equations have been solved correctly, each of the integrals $\int R_{j} d y$ should yield the same value for ${ }^{\mathrm{V}} \mathrm{C}$.

Consider now an adiabatic steadily propagating flame. In this situation there is no heat conducted through the cold or hot boundaries. Thus the temperature gradients vanish at the boundaries; i.e., $(\partial \mathrm{T} / \partial \mathrm{y})_{\mathrm{C}}=(\partial \mathrm{T} / \partial \mathrm{y})_{\mathrm{Hl}}=0$. From this, together with the condition $\left(V_{j}\right)_{C}=\left(V_{j}\right)_{H}=0$, we get from the steady-state form of the energy equation A3, the relation,
$\sum_{j}\left(\rho v Y_{j} h_{j}\right)_{C}=\sum_{j}\left(\rho v Y_{j} h_{j}\right)_{H^{*}}$
Since ρv is a constant this becomes,

$$
\sum_{j}\left(Y_{j} h_{j}\right)_{C}=\sum_{j}\left(Y_{j} h_{j}\right)_{H}, \quad \text { or simply, } \quad h_{C}=h_{H}
$$

Therefore, in an adiabatic flame, the enthalpy of the gas mixture is the same at the hot and cold boundaries. Inside the flame, however, the enthalpy will generally be different from h_{C} because $\partial T / \partial y$ and the diffusion velocities V_{j} are not zero therf. There exists, however, a condition in which h remains constant throughout the flame. If the energy flux from heat conduction $\lambda \partial T / \partial y$ equals the energy flux from diffusion $\rho \sum_{j} V_{j} Y{ }_{j} h_{j}$ at each point in the flame, then we see from A3 that the quantity $\rho v h$ is constant throughout the flame. Since we know from A1 that ρv is invarient, then h must also be invarient. This condition is equivalent to assuming that the Lewis number $D_{\rho} C_{p} / \lambda$ for the mixture is equal to unity at all points in the flame. The reason for this equivalence will be discussed in Appendix G. Although this condition is only approximately satisfied by real flames, it is often envoked to avoid having to solve the energy equation.

APPENDIX C.

CALCULATION OF DIFFUSION VEIOCITIES

To solve the species conservation equations it is necessary to assume that Fick's law adequately represents the mass diffusion processes in the flame. This law assumes that a particular diffusion velocity V_{j} is proportional to the concentration gradient of species j only. If we consider each species in the mixture in turn to be one component of a binary mixture, with all the other species lumped together as the other component, then it is possible to derive an expression for the proportionality factor in Fick's law from the kinetic theory of gases. This factor will be a function of all the possible binary diffusion coefficients in the mixture and the concentrations of all the species.

According to Fick's law, the diffusion velocity of species j is given by the equation,
$V_{j}=-\Delta_{j} x_{j}^{-1} \partial x_{j} / \partial y$,
where Δ_{j} is an effective diffusion coefficient for species j in the mixture, and x_{j} is its mole fraction. Our task is to find an expression for Δ_{j} in terms of the mole fractions x_{j} of all the species and the binary diffusion coefficients $D_{j i}$ for all possible pairs of species in the mixture.

The kinetic theory of gases ${ }^{4}$ gives the following expression for $\partial x_{j} / \partial y$ in terms of the binary diffusion coefficients and the diffusion velocities of the different species j;

$$
\frac{\partial x_{j}}{\partial y}=x_{j} \sum_{i \neq j} \frac{x_{i}}{D_{j i}}\left(V_{i}-V_{j}\right)=x_{j}\left[\sum_{i \neq j} \frac{x_{j} V_{i}}{D_{j i}}-V_{j} \sum_{i \neq j} \frac{x_{j}}{D_{j i}}\right] \cdot j=1, n \text { (A6) }
$$

These equations are subject to the condition,

$$
\begin{equation*}
\sum_{j}^{x_{j} V_{j}}=0 \tag{A7}
\end{equation*}
$$

We now assume that all of the diffusion velocities except V_{j} have the same value V^{*}. Then $A 6$ becomes,
$\partial x_{j} / \partial y=x_{j}\left(V^{*}-V_{j}\right) \sum_{i \neq j} x_{i} / D_{j i}$.
From A7 we get the relation,
$V^{*}=-x_{j} V_{j}\left(1-x_{j}\right)^{-1}$.
Substituting this expression for V^{*} into A8 gives,
$\frac{\partial x_{j}}{\partial y}=-\left(\frac{x_{j}}{1-x_{j}}\right) v_{j} \sum_{i \neq j} \frac{x_{i}}{D_{j i}}$.
Solving for V_{j}, we get
$V_{j}=-\frac{\left(1-x_{j}\right)}{\sum_{i \neq j} \frac{1}{x_{i}}} \frac{\partial x_{j}}{x_{j}} \frac{\partial y}{\partial y}$.
The proportionality factor Δ_{j} in Hick's law is thus,
$\Delta_{j}=\frac{\left(1-x_{j}\right)}{\sum_{i \neq j} \frac{x_{i}}{D_{j i}}}$.

CALCULATION OF THE THERMAL CONDUCTIVITY OF THE FLAME

An empirical equation was used to calculate the thermal conductiveity of the mixture of gases in the flame. This was developed by Lindsay and Bromley. It requires a knowledge of the pure component conducetivities, heat capacities., boiling points, and molecular weights.
The expression for λ is,
$\lambda=\sum_{i} \lambda_{i}\left[x_{i} \sum_{i} A_{i j} x_{j}\right]$,
where λ_{i} is the thermal conductivity of species i, and the quantities $A_{i j}$ are given by the formula,
$A_{i j}=\frac{1}{4}\left\{1+\left[\frac{\mu_{i}\left(\frac{M_{j}}{M_{j}}\right)^{\frac{3}{4}}}{\left(1+\frac{S_{i}}{T}\right)} \frac{\left(1+\frac{S_{j}}{T}\right)}{\left(1+\frac{S_{i}}{T}\right)}\right]^{\frac{1}{2}}\right\}^{2\left(1+\frac{S_{i} j}{T}\right)}$.
The viscosity ratio μ_{i} / μ_{j} is given by the expression,
$\mu_{i} / \mu_{j}=\left(\lambda_{i} / \lambda_{j}\right)\left(C_{p j}+1.25 R / M_{j}\right)\left(C_{p i}+1.25 R / M_{i}\right)^{-1}$,
where $C_{p i}$ and $C_{p j}$ are the heat capacities, and M_{i} and M_{j} the molecular weights of species i and j. R is the gas constant. The quantities S_{i} and S_{j} are the Sutherland constants of i and j. For hydrogen, the value is $79^{\circ} \mathrm{K}$. For other pure gases it is taken to be $1.5 \mathrm{~T}_{\mathrm{B}}$ where T_{B} is the boiling point at 1 atmosphere pressure. The constant $S_{i j}$ is the geometrice mean of S_{i} and S_{j} except when one gas is strongly polar; then $S_{i j}=0.733\left(S_{i} S_{j}\right)^{-\frac{1}{2}}$.

APPENDIX E.

VEN MISE TRANSFORMATION OF THE FLAME EQUATIONS

Preliminaries

Before applying the vol Muses transformation to the flame equations let u_{s} insert Pick's diffusion formula into the species conservation equation and eliminate temperature from the energy equation.

Substitution of $A 5$, the expression for V_{j}, into the species conservation equations A2 yields the equation,
$\rho \frac{\partial Y_{j}}{\partial t}+\rho v \frac{\partial Y}{\partial y}=\frac{\partial}{\partial y}\left(\Delta_{j} \rho \frac{Y}{x_{j}} \frac{\partial x_{j}}{\partial y}\right)+R_{j}$.
Using the identity,
$\frac{Y_{j}}{x_{j}} \partial \frac{x_{j}}{\partial y}=\frac{\partial Y}{\partial y}+\frac{Y}{\langle M\rangle} \frac{\partial\langle M\rangle}{\partial y}$,
where $\langle M\rangle=\sum_{j} x_{j} M_{j}$ is the average molecular weight of the mixture we obtain,
$\rho \frac{\partial Y}{\partial t}+\rho v \frac{\partial Y}{\partial y}=\frac{\partial}{\partial y}\left(\Delta_{j} \rho \frac{\partial Y_{j}}{\partial Y}\right)+\frac{\partial}{\partial y}\left(\Delta_{j} \rho \frac{Y}{\langle M\rangle} \frac{\partial\langle M\rangle}{\partial Y}\right)+R_{j} \cdot$
Consider next the energy equation (A3). The enthalpy h is a function of the mass fractions Y_{j} and the temperature T; ie., $h=f\left(Y_{j}, T\right)$. The partial derivative of h with respect to y is,

$$
\begin{equation*}
\frac{\partial h}{\partial y}=\sum_{j} \frac{\partial h}{\partial Y} \frac{\partial Y}{j} \frac{j}{\partial Y}+\frac{\partial h}{\partial T} \frac{\partial T}{\partial y}=\sum_{j} \frac{\partial Y_{j h}}{\partial Y}+C_{p} \frac{\partial T}{\partial y} \tag{A13}
\end{equation*}
$$

where we used the relations $\partial h / \partial Y_{j}=h_{j}$ and $\partial h / \partial I=C_{p}$, the heat capacity of the mixture at constant pressure. Solving A13 for $\partial T / \partial y$, and substituting this as well as A5 into the energy conservation eqation A3, we get after some algebraic manipulation,
$\rho \frac{\partial h}{\partial t}+\rho v \frac{\partial h}{\partial y}=\frac{\partial}{\partial Y}\left(-\frac{\lambda}{C_{p}} \frac{\partial h}{\partial y}\right)+\frac{\partial}{\partial y}\left(\sum h_{j}\left[\frac{\Delta_{j} \rho}{\langle M\rangle} \frac{\partial\left(Y_{j}\langle M\rangle\right.}{\partial Y}-\frac{\lambda^{C_{p}}}{\partial Y} \frac{\partial Y}{\partial y}\right]\right)$. (AT)

We now change from mass fractions to a different concentration variable φ_{j} defined as $\varphi_{j} \equiv Y_{j} / M_{j}$.
This has units of moles $/ \mathrm{kg}$. The species and energy conservation equations then take the form,
${ }^{\rho} \frac{\partial \varphi_{j}}{\partial t}+\rho v \frac{\partial \varphi_{j}}{\partial y}=\frac{\partial}{\partial y}\left(\Delta_{j} \rho \frac{\partial \varphi_{j}}{\partial y}\right)+\frac{\partial}{\partial y}\left(\Delta_{j} \rho \frac{\varphi_{j}}{\langle M\rangle} \frac{\partial\langle M\rangle}{\partial y}\right)+\frac{R_{j}}{M_{j}}$
$\rho \frac{\partial h}{\partial t}+\rho v \frac{\partial h}{\partial y}=\frac{\partial}{\partial y}\left(\frac{\lambda}{C_{p}} \frac{\partial h}{\partial y}\right)+\frac{\partial}{\partial y}\left\{\sum_{j} h_{j}^{\prime \frac{1}{j}}\left[\frac{\Delta_{j} \rho}{\langle M\rangle} \frac{\partial\left(\varphi_{j}\langle M\rangle\right)}{\partial y}-\frac{\lambda}{C_{p}} \frac{\partial \varphi_{j}}{\partial y}\right]\right\}$
In A17 the quantities $h_{j}^{*}=h_{j} M_{j}$ are the enthalpies of the pure species in $\mathrm{J} / \mathrm{mole}$.

Non Mines Transformation
We introduce a new spatial variable ψ in place of y. It is defined by the equations,
$\partial \psi / \partial y=\rho$, and $\partial \psi / \partial t=-\rho v$.
Applying this transformation to A1G and A17 eliminates the convection terms $\rho v \partial \varphi_{j} / \partial y$ and $\rho v \partial h / \partial y$. The mass conservation equation $A 1$ is satisfied automatically because of the relations,
$\partial \rho / \partial t=\partial^{2} \psi / \partial t \partial y=\partial^{2} \psi / \partial y \partial t=-\partial(\rho v) / \partial y$.
We are left with only the species and energy equations in the form,

$$
\begin{equation*}
\frac{\partial \varphi_{j}}{\partial t}=\frac{\partial}{\partial \psi}\left(\Delta_{j} \rho^{2} \frac{\partial \varphi_{j}}{\partial \psi}\right)+\frac{\partial}{\partial \psi}\left(\Delta j_{j}{ }^{2} \frac{\varphi_{j}}{\langle M\rangle} \frac{\partial\langle M\rangle}{\partial \psi}\right)+\frac{R_{j}}{\rho M_{j}} \tag{A19}
\end{equation*}
$$

$\frac{\partial h}{\partial t}=\frac{\partial}{\partial \psi}\left(\frac{\lambda \rho}{C_{p}} \frac{\partial h}{\partial \psi}\right)+\frac{\partial}{\partial \psi}\left\{\sum_{j} h_{j}^{*} \frac{\Delta_{j} \rho^{2}}{\langle M\rangle} \frac{\partial\left(\varphi_{j}\langle M\rangle\right)}{\partial \psi}-\frac{\lambda \rho}{C_{p}} \sum_{j} h_{j} \frac{\partial \varphi_{j}}{\partial \psi}\right\}$

APPENDIX F.

SPALDING'S TRANSFORMATION OF THE FLAME EQUATIONS

The technique developed by Patankar and Spalding for solving the two-dimensional boundary-layer equations can be applied to the solution of the flame equations. To apply this method, a new spatial variable ω is introduced. This is defined by the equation,
$\omega=\left(\psi-\psi_{\mathrm{H}}\right) /\left(\psi_{\mathrm{C}}-\psi_{\mathrm{H}}\right)$.
The quantities $\psi_{C} \& \psi_{H}$ are the values of $\psi_{\text {at }}$ the cold and hot boundaries of the flame. They are functions of time only. The advantage of using ω is that if the calculation procedure is limited to the range $0 \leqq \omega \leqq 1$, then it is automatically limited to that part of space where the important changes in the dependent variables φ_{j} and h occur.

After the transformation, the species and energy equations A19 and A20 become,

$$
\begin{equation*}
\frac{\partial \varphi_{j}}{\partial t}+\left(\frac{a+b \omega}{\eta}\right) \partial \frac{\partial \varphi_{j}}{\partial \omega}=\frac{1}{\eta^{2}} \frac{+\partial}{\partial \omega}\left(\Delta_{j} 0^{2} \frac{\partial \varphi_{j}}{\partial \omega}\right)+\frac{1}{\eta^{2}} \frac{\partial}{\partial \omega}\left(\Delta_{j} \rho^{2} \frac{\varphi_{j}}{\langle M\rangle} \frac{\partial\langle M\rangle}{\partial \omega}\right)+\frac{R_{j}}{\rho M_{j}} \tag{A22}
\end{equation*}
$$

$$
\begin{align*}
\frac{\partial h}{\partial E}+\left(\frac{a+b \omega}{\eta}\right) \frac{\partial h}{\partial \omega} & =\frac{1}{\eta^{2}} \frac{\partial}{\partial \omega}\left(\frac{\lambda_{\rho}}{C_{p}} \frac{\partial h}{\partial \omega}\right) \\
& +\frac{1}{\eta^{2}} \frac{\partial}{\partial \omega}\left\{\sum_{j} h_{j}^{*}\left[\frac{\Delta_{j} \rho^{2}}{\langle M\rangle} \frac{\partial\left(\varphi_{j}\langle M\rangle\right)}{\partial \omega}-\frac{\lambda_{\rho}}{C_{p}} \frac{\partial \varphi_{j}}{\partial \omega}\right]\right\} \tag{A23}
\end{align*}
$$

where $\eta=\psi_{C}-\psi_{H}$. In making the transformation we have used the relation for $\partial \omega / \partial t$ in the ψ, t coordinate system, $\partial \omega / \partial t=(a+b \omega) / \eta$. The quantities a and b are defined by,

$$
a=-d \psi_{H} / d t, \quad b=-d \psi_{C} / d t+d \psi_{H} / d t
$$

The derivatives $d \psi_{C} / d t$ and $d \psi_{H} / d t$ are the mass flow rates across the cold and hot boundaries. In the steady-state flame they have the same constant
value. When this limit is reached $\partial \varphi_{j} / \partial t \rightarrow 0, b \rightarrow 0$, and A22, integrated from $\omega=0$ to 1, becomes,
$\rho_{C} \nabla_{C}\left(\varphi_{C}-\varphi_{H}\right)=\eta \int_{0}^{1_{R} \frac{j}{\rho M_{j}}}$.
This relation arises because $a=\rho_{H} v_{H}=\rho_{C} v_{C}$ in the steady-state limit (see A18); also the gradients of φ_{j} and $\langle M\rangle$ are assumed to vanish at the hot and cold boundaries. This gives an equation for ${ }_{C}$ in terms of R_{j} expressed in the w, t coordinate system which is analogous to A_{4} derived for R_{j} in the y, t system. For V_{C} we have,
$v_{C}=\left(\eta \int_{0}^{1} \frac{R_{j}}{\rho} d \omega\right)\left[\rho_{C}{ }_{j}\left(\varphi_{C}-\varphi_{H}\right)\right]^{-1}$.

APPENDIX G.

UNITY LEWIS NUMBER APPROXIMATION

In Appendix B we demonstrated that in the adiabatic flame, if the energy flux from heat conduction equals that from species diffusion at each point in the flame, then the enthalpy remains constant throughout the flame. We stated that this assumption was equivalent to the assumpdion that the Lewis number was unity at all points. We shall now demonstrate how this equivalence arises.

The Lewis number is defined for all species pairs as,
$L e_{i j} \equiv \rho C_{p} D_{i j} / \lambda$,
where $D_{i j}$ is the binary diffusion coefficient for species pair io and C_{p} is the average specific heat at constant pressure for the mixture. If we assume that $L e=1$ for all species pairs, then we must assume that all the binary diffusion coefficients $D_{i j}$ are equal. Suppose that $D_{i j}=D$. When this is substituted into A9, the expression for Δ_{j}, we get,
$\Delta_{j}=\frac{1-x_{j}}{\frac{1}{D} \sum_{i} x_{i}}=D, \quad$ since $1-x_{j}=\sum_{i \neq j} x_{i}$.

Thus, the assumption Le $=1$ gives,
$\rho C_{p} D / \lambda=\rho C_{p} \Delta_{j} / \lambda=1$; or $\quad D_{\rho}^{2}=\Delta_{j} \rho^{2}=\lambda \rho / C_{p}$.
Consider the energy equation A23 in the ω, t coordinate system under steady-state conditions. Here, $\partial h / \partial t=0, b=0$, and h is a function of ω only. We must make one further assumption, namely that the change in the average molecular weight 〈M〉 is negligible throughout the flame. Then the last term in A23 vanishes when $\Delta_{j} \rho^{2}=\lambda \rho / C_{p}$ and in the steadystate A23 becomes,
$a \frac{d h}{d \omega}=\frac{1}{\eta} \frac{d}{d \omega}\left(\frac{\lambda \rho}{C_{p}} \frac{d h}{d \omega}\right)$.

Next, insert into A26 the variable $U \equiv d h / d \omega$. We get, $a U=\frac{1}{\eta} \frac{d}{d \omega}\left(\frac{\lambda \rho}{C_{p}}\right) U+\frac{1}{\eta} \frac{\lambda \rho}{C_{p}} \frac{d U}{d \omega}$.

Solving for $d U / d \omega$ we obtain,
$\frac{1}{U} \frac{d U}{d \omega}=\frac{\eta C_{p}}{\lambda \rho}\left[a-\frac{1}{\eta} \frac{d}{d \omega}\left(\frac{\lambda \rho}{C_{p}}\right)\right] \equiv f(\omega)$.
Integrating this expression starting from the cold side of the flame we get,
$\ln \left(U / \omega_{0}\right)=\int_{0}^{\omega} f(\omega) d \omega, \quad$ or $U=U_{b} \exp \left[\int_{0}^{\omega} f(\omega) d \omega\right]$,
where H_{6} is the value of $\mathrm{dh} / \mathrm{d} \omega$ at the cold boundary. For the adiabatic flame $U_{0}=0$ at the cold side; from A27 we see that if $U_{0}=0$, then $U=d h / d \omega$ is zero for all values of ω. Thus h remains unchanged throughout the flame.

Therefore, if the enthalpy is to remain constant in the adiabatic flame we must assume that $\Delta_{j} \rho^{2}=\lambda \rho / C_{p}$ and that $\frac{d\langle M\rangle}{d \omega}=0$; it is not necessary to assume that λ_{ρ} / C_{p} remains constant. $\frac{d \omega}{}$

APPENDIX H.

FINITE-DIFFERENCE FORMS OF THE FLAME EQUATIONS

The species and energy conservation equations A22 and A23 have the same general form;
$\frac{\partial \Phi}{\partial t}+(\alpha+\beta \omega) \frac{\partial \Phi}{\partial \omega}=\frac{\partial}{\partial \omega}\left(\gamma \frac{\partial \Phi}{\partial \omega}\right)+\mathcal{A}_{\mathrm{m}}+\mathcal{A}$,
where $\alpha=a / \eta, \beta=b / \eta, \gamma$ is the transport coefficient, α_{m} is a source term arising from the diffusion of average molecular weight, and \mathscr{A} is a source term arising from chemical reaction in the species equation, and from the difference between conductive and diffusional transport of enthalpy in the energy equation. γ, \mathscr{A}, and \mathcal{A} are shown explicitly below;

To set up a finite-difference equation for A28, we divide the ω axis between 0 and 1 into N strips which need not have the same widths. The profile of the dependent variable Φ is assumed to be linear between grid points. We consider control volumes whose boundaries lie midway between the grid points. A portion of the grid is shown in Fig. A2. This shows the control volume and illustrates the linearprofile assumption. Equation 428 is now integrated over the control volume shown in Fig. A2. This leads to the following equation;

$$
\begin{align*}
& {\left[\int_{-}^{+} \Phi d \omega-\int_{-}^{+} \Phi_{P} \mathrm{~d} \omega\right] / \delta t+\left[\{(\alpha+\beta \omega) \Phi\}_{+}-\{(\alpha+\beta \omega) \Phi\}\right]-\beta \int_{-}^{+} \Phi d \omega} \\
& =\left[\left(\gamma \frac{\partial \Phi}{\partial \omega}\right)_{+}-\left(\gamma \frac{\partial \Phi}{\partial \omega}\right)_{-}\right]+\int_{-}^{+} \mathscr{S}_{m} d \omega+\int_{-}^{+} \mathscr{\&} d \omega \tag{A29}
\end{align*}
$$

The subscript P on Φ is used to denote its value before the time step δt is taken. An unscripted Φ refers to its value after the time step.

It can be shown after some surprisingly lengthly algebra that the integral over the control volume of any function like Φ, which is assumed to be linear between grid points has the value,

$$
\begin{aligned}
& \int_{-}^{+} \Phi \mathrm{d} \omega=\frac{1}{8}\left(3 \Omega \Phi+\Omega_{+}\right. \\
& \text {where } \Omega=\omega_{i+1} \\
& \Omega_{+}=\omega_{i+1}-\omega_{i} \\
& \Omega_{-}=\omega_{i-}-\omega_{i-1}
\end{aligned}
$$

Note that $\omega_{+}=\frac{1}{2}\left(\omega_{i+1}+\omega_{i}\right)$
and $\omega_{-}=\frac{1}{2}\left(\omega_{i}+\omega_{i-1}\right)$. We introduce some additional symbols
$P \equiv V / \delta t$

Figure A2.
$G \equiv-\eta \beta=b$
$L_{+} \equiv \eta\left(\alpha+\beta \omega_{+}\right)=a-\omega_{+} G$
$L_{-} \equiv a-\omega_{-} \mathrm{C}$
The derivatives of Φ at the control volume boundaries are approximated by $\left(\frac{\partial \Phi}{\partial \omega}\right)_{+}=\frac{\Phi_{++}-\Phi}{\omega_{i+1}-\omega_{i}}$, and $\left(\frac{\partial \Phi}{\partial \omega}\right)_{-}=\frac{\Phi-\Phi_{--}}{\omega_{1}-\omega_{i-1}}$
Next, we define T_{+}and I_{-}by the equations
$\eta\left(\gamma \frac{\partial \Phi}{\partial \omega}\right)_{+}=T_{+}\left(\Phi_{++}-\Phi\right), \quad$ and $\eta\left(\gamma \frac{\partial \Phi}{\partial \omega}\right)_{-}=T_{-}\left(\Phi-\Phi_{--}\right)$.

Thus we have
$T_{+}=\eta \gamma /\left(\omega_{i+1}-\omega_{i}\right)$ and $T_{-}=\eta_{Y} /\left(\omega_{i}-\omega_{i-1}\right)$.
We further define
$S_{m} \equiv \eta \int_{-}^{+} \mathscr{S}_{m}^{+} d \omega \quad$ and $S \equiv \eta \int_{-}^{+} d \omega$.
For the species chemical source term \mathcal{L} only, we take S to have the form $S($ species $)=S_{P}+S_{F} \Phi$, where Φ is the value after the time step δt is taken. S, and S_{F} will be functions of all the Φ for the different species, but the values will be taken as the prestep ones. For all of the other source terms, only the prestep values of the variables are used. Thus for these, $S_{F}=0$.
Let us then generalize S_{P} somewhat, and consider it to be compounded as follows;
$S_{P}=S_{m}($ species $)+S_{m}($ energy $)+S($ energy $)+S_{p}($ species $)$
$S_{F}=S_{F}$ (species)
Thus,
$S_{m}+S=S_{P}+S_{F} \Phi$,
where S_{P} and S_{F} are defined by $A 36$.
We now multiply A29 by η and insert into it the quantities defined by A30, A31, A34, A35, and A37. The resulting equation is linear in the poststep values of Φ; it can be solved for Φ at a particular grid point interms of the values of Φ at the grid points on each side of it. The equation one obtains has the form

$$
\begin{equation*}
\Phi=A \Phi_{++}+B \Phi_{--}+C \tag{A38}
\end{equation*}
$$

The coefficients A, B, and C corttain only prestep values of Φ, and are given by

$$
\begin{align*}
A & \equiv A^{\prime} / D \\
B & \equiv \mathrm{~B}^{\prime} / \mathrm{D} \\
\mathrm{C} & \equiv \mathrm{C}^{\prime} / \mathrm{D} \\
\mathrm{~A}^{\prime} & \equiv 2 \mathrm{~T}_{+}-\mathrm{L}_{+}-\frac{1}{4}(\mathrm{P}+\mathrm{G}) \Omega_{+} \\
\mathrm{B}^{\prime} & \equiv 2 \mathrm{~T}_{-}+\mathrm{L}_{-}-\frac{1}{4}(\mathrm{P}+\mathrm{G}) \Omega_{-} \\
\mathrm{C}^{\prime} & \equiv \frac{1}{4} \mathrm{P}\left(3 \Phi_{\mathrm{P}} \Omega+\Phi_{\mathrm{P}++} \Omega_{+}+\Phi_{\mathrm{P}--} \Omega_{-}\right)+2 \mathrm{~S}_{\mathrm{P}} \\
\mathrm{D} & \equiv 2\left(\mathrm{~T}_{+}+\mathrm{T}_{-}\right)+\mathrm{L}_{+}-\mathrm{L}_{-}+\frac{3}{n}(\mathrm{P}+\mathrm{G}) \Omega-2 \mathrm{~S}_{\mathrm{F}^{\prime}} \\
& =\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{P} \Omega-2 \mathrm{~S}_{\mathrm{F}}
\end{align*}
$$

According to Spalding, these finite difference coefficients have a defect. This can appear if $\frac{1}{2}\left|L_{ \pm}\right|$, (the convective flux terms), become greater than $\mathrm{l}_{ \pm}$, (the diffu $u_{i j i v e ~ f l u x ~ t e r m s) . ~ I t ~ i s ~ n o t ~ c l e a r ~ t o ~ m e ~ a t ~}^{\text {n }}$ the present time why this problem exists. Spalding does discuss the problem at length, so the reader can look there for an explanation. The defect is remedied by replacing $\mathrm{T}_{ \pm}$in the formulas $\mathrm{A}_{4} \mathrm{O}$ with the quantity $T_{ \pm}^{*}$ defined by,
$T_{ \pm}^{*} \equiv \frac{1}{2}\left[T_{ \pm}+\left|\frac{1}{2} L_{ \pm}\right|+\left|T_{ \pm}-\left|\frac{1}{2} L_{ \pm}\right|\right|\right]$.
This has the following consequences;
i) If $\left|\frac{1}{2} L_{ \pm}\right| \leqq T_{ \pm}$, then $2 T_{ \pm}^{*} \mp L_{ \pm}=2 T_{ \pm} \mp L_{ \pm}$.

Thus $T_{ \pm}^{*}=T_{t}$ and the replacement of $T_{ \pm}$by T_{t}^{*} has no effect.
ii) If $\frac{1}{2} I_{ \pm}>\mathrm{I}_{t}$, then $2 \mathrm{~T}_{+}^{*}-\mathrm{I}_{+}=0$ and $2 \mathrm{I}_{-}^{*}+\mathrm{I}_{-}=2 \mathrm{~L}_{-}$.
iii) If $\frac{1}{2} L_{ \pm}<-I_{ \pm}$, then $2 I_{+}^{*}-L_{+}=-2 I_{+}$and $2 I_{-}^{*}+L_{-}=0$.

This modification of the formulas $A_{4} O$ has the effect of neglecting the diffusion term in the flame equations whenever it becomes somewhat smaller than the convection term.

Let us now see how the difference equations A38 are solved.

Consider the equation for grid point i;

$$
\begin{equation*}
\Phi_{i}=A_{i} \Phi_{i+1}+B_{i} \Phi_{i-1}+C_{i} \tag{4}
\end{equation*}
$$

We consider $N+1$ grid points. (Remember that N is the number of strips into which the ω axis is divided.) The hot boundary is arbitrarily set a grid point $i=2$; thus the cold boundary will fall at $i=N+2$. The grid points $i=1$ and $N+3$ will not be used in the present calculations. Equations $A_{4} 2$ can be written in the form

$$
\begin{equation*}
\Phi_{i}=A_{i}^{*} \Phi_{i+1}+B_{i}^{*}, \quad i=3, N+1 \tag{A43}
\end{equation*}
$$

where
$A_{3}^{*} \equiv A_{3}$
$\mathrm{B}_{3}^{*} \equiv \mathrm{~B}_{3} \Phi_{2}+\mathrm{C}_{3}$
$A_{i}^{*} \equiv A_{i} /\left(1-B_{i} A_{i-1}^{*}\right)$
$B_{i}^{*} \equiv\left(B_{i} B_{i-1}^{*}+C_{i}\right) /\left(1-B_{i}^{A^{*}}{ }_{i-1}\right)$.
After calculating A_{i}^{*} and B_{i}^{*} for $i=3, N+1$, one can easily calculate the Φ_{i} from $A_{4} 3$ starting from $\Phi_{N+1}=A_{N+1}^{*} \Phi_{N+2}+B_{N+1}^{*}$ and working down to Φ_{3}. Note that the values of Φ_{2} and Φ_{N+2} will be determined by the boundary conditions as discussed in Appendix K.

Spalding uses the grid points $i=1$ and $i=N+3$ in the boundary-layer problem in a special way to cope with large gradients in Φ at the boundaries. Because such gradients do not arise in the flame equations, this particular treatment is unnecessary. Although we could have started the grid at $i=1$, thi: fact was not realized until later and so the computer program was written with the hot boundary starting at $i=2$.

APPENDIX I.

CALCULATION OF THE SOURCE TERMS

There are four source terms to be calculated; \mathscr{A}_{m} for energy and species arises from the diffusion of average molecular weight; (these are normally quite small and can usually be neglected;) and \mathscr{C} for energy and species, which arises from the difference between diffusion and conduction in the enerm case, and from chemical reaction in the species case. By far the most important source term is that for the species. As described in Appendix H, this term is given special treatment. Because this term can undergo very large changes during a time step it is necessary to estimate at the beginning of a step its value at the end of the time step. The chemical source term for a particular species j is a function of the concentrations of the various species and the temperature; $\mathscr{L}_{j}=\mathscr{L}_{j}\left(\varphi_{j}, \varphi_{k}, \ldots \ldots, T\right)$. Thus we could approximate a change in $\mathscr{\&}_{j}$ by a linear expression,
$\delta \mathscr{L}_{j} \approx \frac{\partial \mathscr{L}_{j}}{\partial \varphi_{j}} \delta \varphi_{j}+\frac{\partial \mathscr{L}_{j}}{\partial \varphi_{k}} \delta \varphi_{k}+\ldots \ldots \ldots+\frac{\partial \mathscr{L}_{j}}{\partial T} \delta T$.
$\operatorname{Th} u_{s}\left(\mathscr{A}_{j}\right)_{F} \approx\left(\mathscr{A}_{j}\right)_{P}+\delta \mathscr{Q}_{j}$.
Instead of $u_{\text {sing }}\left(\mathscr{S}_{j}\right)_{p}$, the prestep value of \mathscr{Q}_{j}, in the difference equation, we want to $u_{s e}\left(\mathcal{S}_{j}\right)_{F}$, the poststep value. We should, in principle, use the above equation to calculate $\delta \mathcal{C l}_{j}$. This, however, involves the poststep concentrations of the other species as well as j, and would make the difference equations; unpleasantly complex. What we do then is neglect all of the terms but the first, and write, $\left(\alpha_{j}\right)_{F} \approx\left(\alpha_{j}\right)_{P}+\frac{\partial \mathscr{L}_{j}}{\partial \varphi_{j}} \delta \varphi_{j}$.
Spalding has found this approximation to be satisfactory. In actuality, we need only a rough estimate, because when the steady-state condition is reached \mathscr{S}_{j} ceases to change with time. In fact, it would probably be possible to solve the difference equations using only the prestep value for \mathscr{A}_{j}, but then much smaller time steps would be needed.

This treatment is unnecessary for the other source terms because they change little with time.

We shall first show how the chemical source term is calculated. A typical two reaction mechanism will be used to illustrate the method. Next, the source term for the energy flux will be calculated, and finally, the source terms arising from the diffusion of average molecular weight.
a) Calculation of the chemical source term

To show how the species source term is calculated, consider a reaction mechanism consisting of two reactions

k_{1}	
	$+B+D$
k_{1}^{\prime}	

$A+A+M \underset{k_{2}^{\prime}}{\stackrel{k_{2}}{2}} E+M$
Reaction (1) is a second order reaction in both the forward and reverse directions, while reaction (2) is third order in the forward direction and second order in the reverse. These represent the two types of reactions which we shall consider in the flame chemistry.

Consider the rate at which species A is formed. This is
$[\dot{A}]=-k_{1}[A][B]+k_{1}^{\prime}[C][D]-2 k_{2}[A]^{2}[M]+2 k_{2}^{\prime}[E][M]$.
The bracketed quantities signify concentrations in moles $/ \mathrm{m}^{3}$. We wish to express $\mathcal{S}(A)$, the source term for species A, in terms of the concerntration variables φ (moles $/ \mathrm{kg}$). From the table on page A15, we see that
$\mathscr{Q}_{A}=R_{A} /\left(\rho M_{A}\right)$ moles $\mathrm{kg}^{-1} S^{-1}$.
(Remember that R_{A} is the mass production rate of A in $\mathrm{kg} \mathrm{m}^{-3} \mathrm{~S}^{-1}$.)

From a dimensional analysis, we have
$\alpha_{A}=[\dot{A}] / \rho, \quad$ and $[A]=\rho \varphi_{A}$.
Thus we need only divide $A \not{ }_{4} 3$ by ρ and substitute for each of the concentrations their equivalent values in terms of φ; $A 43$ becomes,
$\mathscr{L}_{A}=[\dot{A}] / \rho=-k_{1} \rho \varphi_{A} \varphi_{B}+k_{1}^{\prime} \rho \varphi_{C} \varphi_{B}-2 k_{2} \rho 2 \varphi_{A}^{2} \varphi_{M}+2 k_{2}^{\prime} \rho \varphi_{E} \varphi_{M}$
Let us now calculate S (species) $=\eta \int_{-}^{+} \& d \omega$. To do this we will assume that \mathscr{L} is constant throughout the control volume. Thus we can write,
$S($ species $)=\eta \mathscr{\&}\left(\omega_{+}-\omega_{-}\right)=\eta \mathcal{D}^{\frac{1}{2}}\left(\omega_{++}-\omega_{--}\right)=\eta \mathcal{L}^{\frac{1}{2} \Omega}$
Note that we could have assumed that $\mathscr{\mathcal { L }}$ was linear between the grid points as we did for the concentration variables φ (see Fig. A2). This would have given (see A30),
$S($ species $)=\eta \frac{1}{8}\left(3 \Omega \mathscr{A}+\Omega_{+} \mathscr{A}_{+}+\Omega_{-\mathcal{L}}\right)$
Thus $A_{4} 7$ uses the values of \mathcal{A} at three grid points to approximate the integral $\int \mathscr{L} d \omega$, whereas $A_{4} 6$ uses only the value at one point. We first work out the implications of the one point approximation in terms of our two reaction model $A \not / 2$. This is the approximation used in the computer program. Afterward, we shall show how the three point approximation could be incorporated into the calculation.

1) One point approximation to the chemical source term integral.

As discussed earlier in this section, we want to express the chemical source term as the sum of two terms,
$S($ species $)=S_{P}+S_{F} \varphi=\frac{1}{2} \eta \mathscr{\&} \Omega$.
here φ denotes the poststep value of the concentration of the particular species, erg., species A in $A 45$; and we use $A 46$ to approximate.S(species). Let u_{s} expand $\mathscr{\&}$ in a Taylor series in φ about the point φ_{P}, the pere-

$$
\begin{align*}
& \text { step value. } \\
& \left.\qquad \begin{array}{l}
\mathscr{L}(\varphi) \\
\\
\approx \mathscr{\mathscr { L }}\left(\varphi_{P}\right)+\left(\frac{d \mathscr{L}}{d \varphi}\right)_{1}\left(\varphi-\varphi_{P}\right)=\left[\mathscr{L}\left(\varphi_{P}\right)-\left(\frac{d \mathscr{L}}{d \varphi}\right)_{p} \varphi_{P}\right]+\left(\frac{d \mathscr{L}}{d \varphi}\right)_{p} \varphi \\
\end{array}\right)=\sigma_{P} \varphi,
\end{align*}
$$

where
$\sigma_{P}=\mathscr{A}\left(\varphi_{P}\right)-\left(\frac{d d}{d \varphi}\right)_{P} \varphi_{P}$ and $\sigma_{F}=\left(\frac{d \mathscr{d}}{d \varphi}\right)_{P}$.
All these terms with the P subscript have prestep values.
As an example, let us calculate σ_{P} and σ_{F} for the two reaction model $\mathrm{A} / 2$. Iaking the derivative of A 45 with respect to φ_{A} we get,
$\sigma_{F}(A)=\left[-k_{1} \rho \varphi_{B}-\iota_{t} k_{2} \rho^{2} \varphi_{M} \varphi_{A}\right]_{P}$,
and
$\sigma_{P}(A)=\left[k_{1}^{\prime} \rho \varphi_{C} \varphi_{D}+2 k_{2} \rho^{2} \varphi_{A}^{2} \varphi_{M}+2 k_{2}^{\prime} \rho \varphi_{E} \varphi_{M}\right]_{P}$.
The subscript P means that all of the quantities have prestep values. For this case, we thus have,
$S(A)=\frac{1}{2} \eta \Omega O_{P}(A)+\frac{1}{2} \eta \Omega \sigma_{F}(A)\left(\varphi_{A}\right)_{F}=S_{P}(A)+S_{F}(A)\left(\varphi_{A}\right)_{F}$,
where $\left(\varphi_{A}\right)$ F is the poststep value of φ_{A}.
2) Three point approximation to the chemical source term integral.

If we were to approximate $S($ species) by $A 47$, the finite difference coefficients of $A 40$ for the species equations become,
$A^{\prime} \equiv 2 I_{+}^{\prime}-L_{+}-\frac{1}{4}(P+G) \Omega_{+}+\frac{3}{4} \eta \sigma_{F++} \Omega_{+}$
$B^{\prime} \equiv 2 T T_{-}+L_{-}-\frac{1}{4}(P+G) \Omega_{-}+\frac{1}{4} \eta \sigma_{F--} \Omega_{-}$
$C^{\prime} \equiv \frac{1}{4} \mathrm{P}\left(3 \varphi_{\mathrm{P}} \Omega+\varphi_{\mathrm{P}++} \Omega_{+}+\varphi_{\mathrm{P}--} \Omega_{-}\right)$
$+2 \mathrm{~S}_{\mathrm{m}}($ species $)+\frac{3}{4} \eta \sigma_{\mathrm{P}} \Omega+\frac{1}{4} \eta \sigma_{\mathrm{P}++} \Omega_{+}+\frac{1}{4} \eta \sigma_{\mathrm{P}--} \Omega_{-}$
$D \equiv 2\left(T_{+}+T_{-}\right)+L_{+}-L_{-}+\frac{3}{4}(P+G) \Omega-\frac{3}{4} \eta_{\sigma_{\Gamma}} \Omega$.
These equations are not significantly more complicated than A4O, and should be more accurate. They have not, however, been incorporated into the present computer program.

b) Calculation of the energy source term

The energy source term is easily calculated. From A35 and the table on page A15, we have

$$
\begin{align*}
S & =\eta \int_{-}^{+} d \omega=\frac{1}{\eta} \int_{-}^{+} \frac{\partial}{\partial \omega}\left[\sum_{j} h_{j}^{*} \Delta_{j} \rho^{2}-\frac{\lambda \rho}{C_{p}} \frac{\partial \varphi_{j}}{\partial \omega}\right] d \omega \\
& =\frac{1}{\eta}\left[\sum_{j} h_{j}^{*}\left(\Delta_{j} \rho^{2}-\frac{\lambda \rho}{C_{p}}\right) \frac{\partial \varphi_{j}}{\partial \omega}\right]+-\frac{1}{\eta}\left[\sum h_{j}^{*}\left(\Delta_{j} \rho^{2}-\frac{\lambda \rho}{C_{p}}\right) \frac{\partial \varphi_{j}}{\partial \omega}\right]- \tag{A55}
\end{align*}
$$

As usual the \pm subscripts refer to values at the control volume boundaries. For the first term we have
$\left[h_{j}^{*}\left(\Delta_{j} \rho^{2}-\frac{\lambda \rho}{C_{p}}\right)\right]+=\frac{1}{2}\left[h_{j}^{*}\left(\Delta_{j} \rho^{2}-\frac{\lambda \rho}{C_{p}}\right)\right]+++\frac{1}{2}\left[h_{j}^{*}\left(\Delta_{j} \rho^{2}-\frac{\lambda \rho}{C_{p}}\right)\right]$,
and for the derivative
$\left(\frac{\partial \varphi_{j}}{\partial \omega}\right)_{+}=\frac{\varphi_{j++}-\varphi_{j}}{\omega_{++}-\omega}$
The - boundary is treated the same way.
c) Calculation of source terms arising from diffusion of molecular weight

From A35 and the table on page A15, we have for the source terms arising from the diffusion of the average molecular weight
$S_{m}=\eta \int_{-}^{+} \mathscr{S}_{m} d \omega=\frac{1}{\eta}\left[\sum_{j} h_{j}^{*} \Delta_{j} \rho^{2} \frac{\varphi_{i}}{\langle M\rangle} \frac{\partial\langle M\rangle}{\partial \omega}\right]_{+}-\frac{1}{\eta}\left[\sum_{j} h_{j}^{*} \Delta_{j} \rho^{2} \frac{\varphi_{i}}{\langle M\rangle} \frac{\partial\langle M\rangle}{\partial \omega}\right]_{-}$
for the energy equation, and
$S_{m}=\frac{1}{\eta}\left[\Delta_{j} \rho^{2} \frac{\varphi_{j}}{\langle M\rangle} \frac{\partial\langle M\rangle}{\partial \omega}\right]_{+}-\frac{1}{\eta}\left[\Delta_{j} \rho^{2} \frac{\varphi_{j}}{\langle M\rangle} \frac{\partial\langle M\rangle}{\partial \omega}\right]_{-}$
for the species equation.
It is worth noting at this point that we have been somewhat careless about how we calculate quantities at the control volume boundaries. Ihroughout Appendix H and I, we have frequently been confronted with expressions involving products of various quantities
which are to be evaluated at the control volume boundaries. For example, let $Q_{t}=\left(q_{1} q_{2} q_{3} \ldots \ldots . q_{n}\right)_{ \pm}$where the q_{k} are various quantities like $\rho, h_{j}^{*}, \Delta_{j}, \lambda$, etc. All of these quantities can be expressed in terms of the values of φ_{j} and h at the grid points; indeed, this is how they are evaluated at the end of every time step. This, of course, yields their values at the grid points. The values at the control volume boundaries are always taken to be the average of the values at the two grid points on each side of the boundary in question. Thus, for the + boundary we take
$q_{k^{+}}=\frac{1}{2}\left(q_{k^{++}}+q_{k}\right)$
To calculate Q_{+}we of ten take products of the $q_{k^{+}}$.
$Q_{+}=q_{1+} q_{2+} q_{3+} \cdot \cdots \cdot q_{n+}$
Actually we should evaluate Q_{+}from the expression
$Q_{+}=\frac{1}{2}\left[\left(q_{1} q_{2} q_{3} \ldots \ldots q_{n}\right)_{++}+\left(q_{1} q_{2} q_{3} \ldots . . q_{n}\right)\right]$
If the q_{k} do not change much from grid point to grid point, the two ways of calculating Q_{+}would give about the same answer.

Let u_{S} consider a case where Q is a product of two terms and compare the two methods of evaluating Q_{+}.
Suppose that
$q_{1++}=q_{1}+\Delta q_{1} \quad$ and $q_{2++}=q_{2}+\Delta q_{1_{2}}$
l'he correct way to calculate Q_{+}gives
$Q_{+}=\frac{1}{2}\left(q_{1} q_{2}\right)_{++}+\frac{1}{2}\left(q_{1} q_{2}\right)=q_{1} q_{2}+\frac{1}{2}\left(q_{1} \Delta q_{2}+q_{2} \Delta q_{1}\right)+\frac{1}{2} \Delta q_{1} \Delta q_{2}$
The approximate method gives
$Q_{+}($appr $)=\frac{1}{2}\left(q_{1++}+q_{1}\right) \frac{1}{2}\left(q_{2++}+q_{2}\right)=q_{1} q_{2}+\frac{1}{2}\left(q_{1} \Delta q_{2}+q_{2} \Delta q_{1}\right)+\frac{1}{4} \Delta q_{1} \Delta q_{2}$
$T h u_{s} Q_{+}($appr $)=Q_{+}-\frac{1}{4} \Delta q_{1} \Delta q_{2}$
For Δq_{k} values encountered in the present calculations, the difference between the two methods of calculating products at the boundaries is negligible.

APPENDIX J

CALCULATION OF THE ENTRAINMENT RATES

The so-called entrainment rates are the mass flow rates across the hot and cold boundaries. In the steady-state flame, these will naturally be equal to each other. During the calculation, however, they are automatically adjusted to keep the grid centered on the flame front. As discussed in Appendix F, the mass flow rate across the hot boundary is
$a=-d \psi_{H} / d t \equiv \dot{m}_{H}$
Across the cold boundary it is
$\mathrm{a}+\mathrm{b}=-\mathrm{d} \psi_{\mathrm{C}} / \mathrm{dt} \equiv \dot{\mathrm{m}}_{\mathrm{C}}$
Consider a position somewhere near the hot boundary; let φ_{HH} be the value of a concentration of one of the species at this point. Let $\varphi_{C C}$ be its value at a point near the cold boundary. The entrainment rates are calculated from the following formulas
$\dot{m}_{C}=\dot{m}_{m}\left[\frac{\varphi_{C C}-\varphi_{C}}{\varphi_{H}-\varphi_{C}} \times 100\right]^{\nu}$
$\dot{m}_{H}=\dot{m}_{\mathrm{m}}\left[2-\left\{\frac{\varphi_{\mathrm{H}}-\varphi_{\mathrm{HH}}}{\varphi_{\mathrm{H}}-\varphi_{\mathrm{C}}} \times 100\right\}\right]$
$\dot{m}_{m} \equiv-\left|\eta \int_{0}^{{ }^{1} R_{j}} \frac{\rho_{j}^{M}}{\rho_{j}}\right| /\left|\varphi_{H}-\varphi_{C}\right|$
where φ_{C} and φ_{II} are the values of φ at the cold and hot boundaries.
Note that $\varphi_{C}, \varphi_{C C}, \varphi_{H 1}$, and $\varphi_{\text {IIII }}$ have an implied subscript j which denotes the species used to calculate the entrainnent rates. In principle, any species could be used because the integral in \dot{m}_{m} will be the sane for all the species. However, it is best to choose one of the major species for this purpose since the numerical evaluation of this integral will not be as accurate if the species is a trace one.

To see how A58 and A59 automatically control the entrainment rates,
and thus the grid width, consider the situation in which the concentrations φ_{CC} and φ_{HH} differed from φ_{C} and φ_{H} by 1% of the total difference in φ across the grid. Then $\left(\varphi_{C C}-\varphi_{C}\right) /\left(\varphi_{H}-\varphi_{C}\right)$ and $\left(\varphi_{H}-\varphi_{H H}\right)$ $/\left(\varphi_{H}-\varphi_{C}\right)$ would equal 0.01 and from A58 and A59 we have $\dot{m}_{C}=\dot{m}_{H}=\dot{m}_{m}$. This would be the situation in the steady-state. Suppose this condition arose by accident at some early time in the calculation. Suppose also that as the calculation proceeded $\left(\varphi_{\mathrm{CC}}-\varphi_{\mathrm{C}}\right) /\left(\varphi_{\mathrm{H}}-\varphi_{\mathrm{C}}\right)$ increased. Then \dot{m}_{C} would become somewhat greater than \dot{m}_{m} and cold gas would be pulled into the flame front at an increased rate. If \dot{m}_{H} had not changed, this would mean that the grid would start increasing in width. Increasing the grid width would tend to lower $\varphi_{C C}$ for future times thus bringing $\dot{\mathrm{m}}_{\mathrm{C}}$ back to $\dot{\mathrm{m}}_{\mathrm{m}}$ thereby slowing down the rate of increase of grid size. Through the use of A58 and A59, the grid is automatically adjusted after every time step in such a way as to make $\left(\varphi_{C C}-\varphi_{C}\right) /$ $\left(\varphi_{H}-\varphi_{C}\right)$ and $\left(\varphi_{H}-\varphi_{H H}\right) /\left(\varphi_{E}-\varphi_{C}\right)$ tend to 0.01 . This condition will finally be reached in the steady-state when all the φ cease to change with time.

The parameter ν in A58 and A59 is used to control the effect that departures in the 1% condition have on $\dot{\mathrm{m}}_{\mathrm{C}}$ and $\dot{\mathrm{m}}_{\mathrm{H}}$. For a stable calculation v must be of the order of 0.1. Note that v is purely a numerical device. We desire only to have some relation between $\dot{\mathrm{m}}_{\mathrm{C} / \mathrm{H}}$ and the φ values such that $\dot{m}_{C / H} \rightarrow \dot{m}_{\mathrm{m}}$ when the φ reach certain specified values. Other relationships which served a similar purpose could no doubt have been devised to perform the functions of A58 and A59.

It remains to show how the integral $\int\left(R_{j} / \rho M_{j}\right) d \omega$ is calculated. Recalling that $R_{j} / \rho M_{j}=\&_{j}$ (see page A21), we used the three point approximation $A_{4} 7$ to give
$\int_{0}^{1} \mathscr{S}_{j} d \omega=\frac{1}{8}\left(3 \Omega \mathscr{S}_{j}+\Omega_{+} \mathscr{Q}_{j++}+\Omega_{-} \mathscr{Q}_{j--}\right)$.
The \mathscr{C}_{j} values used in A61 are calculated from the values of φ at the end of each time step.

APPENDIX K

BOUNDARY CONDITIONS

Consider the finite-difference forms of the flame equations in final form. This is Eq. A 43 derived in Appendix H.
$\Phi_{i}=A_{i}^{*} \Phi_{i+1}+B_{i}^{*}$
The subscripts refer to the grid points. There is one of these equations for each species and one for the enthalpy. 'lo solve these equations we must assign a value to $\Phi_{\mathrm{N}+2}$, the grid point on the cold side of the flame. Furthermore, to calculate $\mathrm{B}_{3} \equiv \mathrm{~B}_{3} \Phi_{2}+\mathrm{C}_{3}$ we need to specify a value for Φ_{2}. This section is about how Φ_{2} and $\Phi_{\mathbb{N}+2}$ are to be chosen. The values will depend on the boundary conditions. We consider two types of flames; a) the freely propagating flame, and b) a flame stabilized on a burner.
a) Boundary conditions for a freely propagating flame

On the cold side of the species equations we set φ_{N+2} equal to their values in the cold incoming gas. On the hot side, we assume that the concentration gradient vanishes; thus we set $\varphi_{2}=\varphi_{3}$. For the enthalpy, we calculate h_{N+2} from the temperature and composition of the cold gas mixture. Since the freely propagating flame is considered to be adiabatic, the value on the hot side is the same as that on the cold side. Thus we set $h_{2}=h_{N+2}$.
b) Boundary conditions for a flame stabilized on a burner

The situation here is considerably more complicated than that occuring in the freely propagating flame. Consider the cold side of the grid. Locate the grid point $\mathrm{N}+2$ at the surface of the burner. Figure A3 shows this portion of the grid along with the burner and the last control volume. The burner is considered to be made of some porous material which allows free passage of stable species, but not radicals. Cold reactant gases at a temperature T_{∞} enter the porous
material at a rate $\dot{\mathrm{m}}_{\infty}\left(\mathrm{kg} / \mathrm{m}^{2} \mathrm{~s}\right)$. The composition and enthalpy of the mixture at this point is $\varphi_{j \infty}$ and h_{∞}. Since the porous plug is absorbing heat from the flame, there will be a temperature gradient within it. The temperature of the gas will thus increase to some extent as it passes through the plug. It is also conceivable that the concentrations

Figure A3. φ_{j} on the warm side of the plug may be somewhat different from $\varphi_{j \infty}$ because of diffusion into and from the flame zone. Thus on the warm side of the plug which is located at the last grid point the gas properties have the values $\varphi_{j C}, h_{C}$, and T_{C}. These values are not known beforehand, but must be determined by solving the flame equations.

Consider first the boundary conditions for the species equations. Suppose $Y_{j C}$ is the mass fraction of species j at the flame side of the plug. The mass flux of j at this point will be $\left(v+V_{j}\right)_{C}\left(p Y_{j}\right)_{C}$. This must be equal to the rate at which j emerges from the plug. This will be equal to the rate at which j enters the cold side of the plug, i.e., $\left(\rho v Y_{j}\right)_{\infty}$. As an additional source or sink for j we might also consider radicals diffusing out of the flame zone and combining on the burner surface. This effect is likely to be of importance, however, only for H atoms because of their large diffusion coefficient. To include this process in the model we define a surface distruction or production rate for the species j. Call this Θ_{j}. If Θ_{j} is in units of moles $/ \mathrm{m}^{2}$, then $M_{j}{ }^{\oplus}{ }_{j}$ will be the mass rate in $k g / m^{2} s$. For the particular case of H atoms recombining to give H_{2}, we can let $\Theta_{H}=-B_{H}\left(C_{H}\right)_{C}$, where $\left(C_{H}\right)_{C}$ is the concentration of H at the burner surface, and B_{H} is a rate constant for surface recombination. We will let negative values of Θ
correspond to destruction of the species: For the H_{2} formed as a result of this, we would have $\Theta_{H_{2}}=\frac{1}{2} B_{H}\left(C_{H}\right)$. In general then, there will be an additional source of j equal to $-M_{j}^{\Theta}{ }_{j}$, and so we must have $\left(v+V_{j}\right)_{C}\left(\rho Y_{J}\right)_{C}=\left(\rho v Y_{j}\right)_{\infty}-M_{j} \Theta_{j}$
Since v is negative and denotes a flux from right to left along the y axis, $-M_{j} \Theta_{j}$ for $\Theta_{j}>0$ also gives a negative flux which corresponds to production of j.

Since $\rho v=\dot{\mathrm{m}}_{\infty}$ throughout the flame (note that $\dot{\mathrm{m}}_{\infty}$ will be specified as part of the experimental conditions), A62 becomes
$\dot{m}_{\infty} Y_{j C}+\left(\rho V_{j} Y_{j}\right)_{C}=\dot{m}_{\infty} Y{ }_{j \infty}-M_{j}{ }^{\Theta}{ }_{j}$
Inserting the expression for V_{j} (Eq. A5) into A63, we get
$\left(\Delta_{j} \rho_{X_{j}} \frac{\partial x_{i}}{\partial y}\right)_{C}=\dot{m}_{\infty}\left(Y_{j C}-Y_{j \infty}\right)+M_{j}{ }_{j}{ }_{j}$
Using the identity shown on page A9 and dividing the resulting equation by M_{j} gives
$\left(\Delta_{j} \frac{\partial \varphi_{j}}{\partial \mathrm{y}}+\Delta_{j} \rho \frac{\varphi_{j}}{\langle M\rangle} \frac{\partial\langle M\rangle}{\partial \mathrm{y}}\right)_{C}=\dot{m}_{\infty}\left(\varphi_{j C}-\varphi_{j \omega}\right)+M_{j} \Theta_{j}$
If the gradient of 〈M〉 is neglected, this becomes
$\left(\Delta_{j} \rho \frac{\partial \varphi_{j}}{\partial y}\right)_{C}=\dot{m}_{\infty}\left(\varphi_{j C}-\varphi_{j \infty}\right)+M_{j}{ }_{j}$
Transforming to the ω, t system with the relation $\partial / \partial y=(\rho / \eta) \partial / \partial \omega$ gives $\frac{1}{\eta}\left(\Delta_{j} \rho^{2 \partial \varphi_{j}} \frac{\partial}{\omega}\right)_{C}=\dot{m}_{\infty}\left(\varphi_{j C}-\varphi_{j \infty}\right)+M_{j}{ }_{j}$

Since the φ profile is assumed to be linear between grid points (see Fig. A3), the concentration gradient at point C, i.e., $i=N+2$, will be the same as that at the mid-point between $i=N+1$ and $N+2$. Thus
$\binom{\partial \varphi_{j}}{\partial \omega}_{C}=\binom{\partial \varphi_{j}}{\partial \omega}_{+}=\frac{\varphi_{j++}-\varphi_{j}}{\omega_{++}-\omega}=\frac{\varphi_{j N+2}-\varphi_{j N+1}}{\omega_{N+2}-\omega_{N+1}}$
Inserting this into $A 64$ and solving for $\varphi_{j N+2}=\varphi_{j C}$, we get

$$
\begin{align*}
\varphi_{j N+2} & =\left[\frac{\Delta_{j} j^{2}}{\eta\left(\omega_{N+2}-\omega_{N+1}\right.}\right)^{\varphi} j N+1 \\
& \div\left[\frac{\dot{m}_{\infty} \varphi_{j \infty}}{}+M_{j} \Theta_{j} j^{2}\right] \tag{A66}\\
\eta\left(\omega_{N+2}-\omega_{N+1}\right) & \left.-\dot{m}_{\infty}\right]
\end{align*}
$$

At the hot boundary we assume $\partial \varphi / \partial \omega=0$, and thus we set $\varphi_{2}=\varphi_{3}$ as in the freely propagating flame.

Next we consider the boundary conditions on the energy equation. The net flux of energy at the burner surface will be the sum of that caused by the mass flow of the reactant mixture, the flow caused by diffusion of species to and from the surface, and the flow arising from a temperature gradient in the gas at the surface. Let $\left(F_{h}\right)_{C}$ be this net energy flux at the burner.

$$
\begin{align*}
\left(F_{h}\right)_{C} & =-\left(\lambda \frac{\partial T_{y}}{\partial y_{C}}+\sum_{j}\left[\left(v+V_{j}\right)^{\prime} \rho Y_{j} h_{j}\right]_{C}\right. \\
& =-\left(\lambda \partial_{\partial \bar{Y}}^{\partial}\right)_{C}+\dot{m}_{\infty} h_{C}+\sum_{j}\left(V_{j} \rho Y_{j} h_{j}\right)_{C} \tag{A67}
\end{align*}
$$

Introducing the expression for V_{j} and the identity on page A9, neglecting the gradient of $\langle M\rangle$, converting to φ_{j} concentration units, and going to the ω, system, we get

$$
\begin{equation*}
\left(F_{h}\right)_{C}=-\frac{1}{\eta}\left(\frac{\lambda \rho}{c_{p}} \frac{\partial h}{\partial}\right)_{C}+\dot{m}_{\infty} h_{C}-\frac{1}{\eta} \sum{ }_{j}\left[\left\{\Delta_{j} \rho^{2}-\frac{\lambda \rho}{C_{p}}\right\}_{j}^{*} \frac{\partial \varphi_{j}}{\partial \omega}\right]_{C} \tag{A68}
\end{equation*}
$$

Since this is the net flux of energy into the cold side of the flame front, it must be equal to the net flux out of the flame on the hot side. Because we assume that $\partial T / \partial y$ and $\partial \varphi_{j} / \partial y=0$ there, this flux out is $\dot{m}_{\infty} h_{H}$ where h_{H} is the enthalpy of the hot gas mixture. Assuming a Iinear variation of h between grid points gives
$\binom{\partial h}{\partial \omega}_{C}=\binom{\partial h}{\partial \bar{\omega}}_{+}=\frac{h_{N+2}-h_{N+1}}{\omega_{N+2}-\omega_{N+1}}=\frac{h_{C}-h_{N+1}}{\omega_{C}-\omega_{N+1}}$

Inserting this into $A 68$, and setting $\left(F_{h}\right)_{C}=\dot{m}_{\infty} h_{H}$, gives $\dot{m}_{\infty} h_{H}=-\frac{1}{\eta}\left\{\frac{\lambda_{\rho}}{C_{p}}\right\}_{C}\left\{\frac{h_{C}-h_{N+1}}{\omega_{C}-\omega_{N+1}}\right\}+\dot{m}_{\infty} h_{C}-\frac{1}{\eta} \sum_{j}\left[\left\{\Delta_{j} \rho^{2}-\frac{\lambda \rho}{C_{p}}\right\}^{\prime} h_{j} \frac{\partial \varphi_{j}}{\partial \omega}\right]_{C}$

This equation can be solved to give $h_{N+2}\left(=h_{C}\right)$ in terms of h_{N+1} and h_{H}, and other known quantities. The enthalpy at the hot side can be calculated from the measured final flame temperature and its composition. From h_{C} and the calculated composition $\left(\varphi_{j}\right)_{C}$ at the burner surface, we can also evaluate T_{C}.

APPENDIX L.

TRANSFORMATION FROM THE ω, t COORDINATE SYSTEM BACK TO THE y,t SYSTEM
The steady-state solution of the species and energy equations A22 and A23 in the ω, t coordinate system yields values of φ_{j} and h as fundtions of ω, where $0 \leqq \omega \leqq 1$. If we want to compare these profiles with experimental ones we must express φ_{j} and h in terms of y, the laboratory spatial variable.

The variable φ is a function of ψ and t, and ψ is a function of y and t; thus,
$\omega=\omega(\psi, t)=\omega(\psi(y, t), t)$
A small change in ψ can be expressed as
$d \psi=\frac{\partial \psi}{\partial y} d y+\frac{\partial \psi}{\partial t} d t=\rho d y-\rho v d t$
Here we have used A18, the expressions defining ψ. A small change in ω can likewise be written

$$
\begin{aligned}
d \omega & =\frac{\partial \omega}{\partial \psi} d \psi+\frac{\partial \omega}{\partial t} d t=\frac{\partial \omega}{\partial \psi}(\rho d y-\rho v d t)+\frac{\partial \omega}{\partial t} d t \\
& =\frac{\partial \omega}{\partial \psi} \rho d y+\left(-\rho v \frac{\partial \omega}{\partial \psi}+\frac{\partial \omega}{\partial t}\right) d t
\end{aligned}
$$

$U_{s i n g}$ the facts that $\frac{\partial \omega}{\partial \psi}=\frac{1}{\eta}$ and $\frac{\partial \omega}{\partial t}=\frac{a+b \omega}{\eta}$, we ret,
$d \omega=\frac{\rho}{\eta} d y+\left(-\frac{\rho v}{\eta}+\frac{a+b \omega}{\eta}\right) d t$
In the steady state $b \rightarrow 0$ and $a \rightarrow \dot{m}_{C}=\rho v$. Therefore $d \omega \rightarrow \frac{\rho}{\eta} d y$.
Solving this for $d y$ and integrating from $\omega=0$ (the hot side) to some arbitrary ω value, we get
$\int_{y_{H}}^{y} d y=\eta \int_{0}^{\omega} \frac{d \omega}{\rho}=y-y_{H}$
In the present calculation, we arbitrarily set $y_{H}=0$. Thus we can calculate the value of y which corresponds to a particular value of ω by evaluating the integral
$y=\eta \int_{0}^{\omega} \frac{d \omega}{\rho}$

This integral is approximated in the computer program by the summation

$$
\begin{equation*}
y_{j}=2 \pi \sum_{i=2}^{j} \frac{\left(\omega_{i+1}-\omega_{i}\right)}{\rho_{i+1}-\rho_{i}}, \tag{A70}
\end{equation*}
$$

where the subscripts refer to the grid points.

APPENDIX M.
CALCULATION OF THERMAL AND TRANSPORT PROPERTIES FOR PURE SPECIES
An expression for the effective diffusion coefficient Δ_{j} of a particular species in the flame has been derived in Appendix C (eq. A9). This gives Δ_{j} in terms of the concentrations of the various species and the binary diffusion coefficients for all possible pairs of species. In practice, the summation in the denominator of A9 need not be evaluated over all the species since x_{i}, the mole fraction, is large only for the major species. Thus, we must calculate only the binary diffusion coefficients between major species, and between major and minor species. Those coefficients involving pairs of minor species need not be evaluated. In Appendix D we showed how the thermal conductivity of the flame was calculated. The expression used contains the thermal conductivities of the pure species, and also their heat capacities. The heat capacities of the pure species are also needed to calculate C_{p}, the average heat capacity of the flame. This quantity occurs in the energy equation. For the energy equation, we also require values for the enthalpies of the pure species. Thus, we must evaluate the following properties involving the pure species (or pairs of species in the diffusion case):
a. Binary diffusion coefficients $D_{i j}$
b. Thermal conductivities λ_{j}.
c. Heat capacities C_{pj}.
d. Enthalpies $h_{j}\left(\right.$ or $h_{j}^{*}=h_{j} M_{j}$).
a) Binary diffusion coefficients

For the diffusion coefficients, we used Lennard-Jones potentials. This potential function has two parameters σ_{j} and $\epsilon_{j} / k . \quad \sigma_{j}$ gives the distance in \AA where the potential goes from repulsive the attractive, and ε_{j} / k in ${ }^{\circ} K$ gives the depth of the potential well. σ_{j} and ε_{j} refer the the interaction between two molecuiles of the same species. For the diffusion coefficients, we require analogous parameters for the interaction between molecules of different species. If σ_{i}, σ_{j} and $\varepsilon_{i}, \varepsilon_{j}$ are the parameters for the species i and j, we take as the
parameters for the interaction between i and j to be
$\sigma_{i j}=\frac{1}{2}\left(\sigma_{i}+\sigma_{j}\right) \quad$ and $\varepsilon_{i j}=\sqrt{\varepsilon_{i}} \epsilon_{j}$
I'he formula for the binary diffusion coefficient is
$D_{i j}=\frac{1.86 \times 10^{-7}\left[\left(M_{i}+M_{j}\right) / M_{j} M_{j}\right]^{\frac{1}{2}} I^{1.5}}{{P \sigma_{i j}^{2}}_{\Omega_{i j}(1,1)^{*}}}$
where P is the pressure in atmospheres, M_{i} and M_{j} are the molecular weights, and $\Omega_{i j}(1,1)^{*}$ is a function of a reduced temperature $T^{*}=T k / \epsilon_{i j}$. To a good approximation this function is proportional to T^{a} where a takes on two constant values, one in the range $T \geqq 3 \epsilon_{i j} / k$ and another for $T<3 \varepsilon_{i j} / k$. We have calculated $D_{i j}$ from either of the following formulas depending on whether the temperature was greater of less than $3^{\varepsilon}{ }_{i j} / k$.

$D_{i j}=\frac{1.26 \times 10^{-7}\left[\left(M_{i}+M_{j}\right) / M_{i} M_{j}\right]^{\frac{1}{2}} T^{1.94}}{{P \sigma_{i j}^{2}}^{2}\left(\varepsilon_{i j} / k\right)^{0.44}}$

$$
\begin{equation*}
T<3 \varepsilon_{i j} / k \tag{A73}
\end{equation*}
$$

These formulas will give $D_{i j}$ in units of $\mathrm{m}^{2} / \mathrm{s}$.
b) Thermal conductivities

Lennard-Jones potentials can also beused to calculate the thermal conductivities of the pure species. The formula for the thermal conductivity is similar to that for the diffusion coefficients. In a like manner we have found that it is possible to express it approximately in terms of a constant power of T, where the appropriate value of the exponent depends on whether the temperature is above or below $3 \varepsilon{ }_{j} / \mathrm{k}$. The formulas obtained were, $\lambda_{j}=\frac{1.604 \times 10^{-4} M_{j}^{-\frac{1}{2}} T^{0.67}}{\sigma_{j}^{2}\left(\epsilon_{j} / k\right)^{0.17}}$

$$
\begin{equation*}
T \geqq 3 \varepsilon_{j} / k \tag{A74}
\end{equation*}
$$

$\lambda_{j}=\frac{1.23110^{-4 M_{j}^{-\frac{1}{2}} T^{0.94}}}{\sigma_{j}^{2}\left(\epsilon_{j} / \mathrm{k}\right)^{0.44}}$

$$
\begin{equation*}
T<3 \varepsilon_{j} / k \tag{A75}
\end{equation*}
$$

These two formulas give the thermal conductivities in units of cal/cm-deg-s. To be usable in the program they would have to be converted to J / m-deg-s units.

In the present version of the program, experimental thermal conductivity data were used for the major species in the $\mathrm{H}_{2} \mathrm{O}_{2}$ flame. The data wero fit by a least squares calculation to a power series in T and the least squares coefficients were used in the program to calculate the λ_{j} values.

c) Heat Capacities

Heat capacity data from the JANAF Tables were fit by least squares calculations to a power series in T. Terms up to the second power were used. Thus, heat capacities were calculated from the formula
$C_{p j}=d_{j}+e_{j} T+f_{j} T^{2}$
where d_{j}, e_{j}, and f_{j} have values such that the $C_{p j}$ are in units of $\mathrm{J} / \mathrm{kg}-\mathrm{deg}$.
d) Enthalpies

The enthalpy of a species ju J / kg is given by the formula
$h_{j}=h_{j}^{R}+\int_{T_{R}^{\prime}}^{T^{\prime}} C_{p j} d^{\prime I^{\prime}}$
where h_{j}^{R} is the enthalpy at the reference temperature T_{R}. Substituting A76. into A77, we get

$$
\begin{align*}
h_{j} & =\left(h_{j}^{R}-d_{j} T^{\prime} R-\frac{1}{2} e_{j} T_{R}^{2}-\frac{1}{3} f_{j} R_{k}^{3}\right)+d_{j} T+\frac{1}{2} e_{j} T^{2}+\frac{1}{3} f_{j} T^{3} \tag{A78a}\\
& =h_{j}^{0}+d_{j} I^{\prime \prime}+\frac{1}{2} e_{j} T^{2}+\frac{1}{3} f_{j} T^{3} \tag{A78b}
\end{align*}
$$

This formula was used in the program to calculate h_{j} values. Values of h_{j}^{0} were calculated from h_{j}^{R} values taken from the JANAF Tables, the T_{R} values, and the heat capacity coefficients d_{j}, e_{j}, and f_{j}.

APPENDIX N.

INITIAL PROFIIES

The mixture of cold gases through which the flame will propagate is naturally thermodynamically unstable. Nevertheless, in most systems of practical interest the rate of approach to equilibrium at low temperatures is negligibly slow. This is because the free radical reactions which destroy the reactants normally have large activation energies. There are two ways to speed up these reactions. One can raise the temperature of the system or introduce a sufficiently high concentration of the necessary radicals. For a flame steadily propagating into a cold unstable gas mixture, both of these processes occur. The cold gases receive heat by thermal conduction and radicals by molecular diffusion from the flame region. To solve the time dependent flame equations, one must begin with the system in such a state that the radical reactions are proceeding at an appreciable rate. Furthermore, it is desirable to start the calculation with concentration and energy profiles which are similar to those expected in the final steady state to minimize the number of steps required for the integration.

These goals were satisfied by starting the calculations with S-shaped profiles for temperature and for the concentration of the major species. These profiles were obtained by using the followirg function of ω, the spatial variable in the Spalding coordinate system:
$P_{d}(\omega)=10 \omega^{3}-15 \omega^{4}+6 \omega^{5}$
This has the boundary values, $P_{d}(0)=0$, and $P_{d}(1)=1$. Since $\omega=0$ corresponds to the hot side of the flame, A79 represents a decay profile. Formation profiles were obtained from the function
$P_{f}(\omega)=10(1-\omega)^{3}-15(1-\omega)^{4}+6(1-\omega)^{5}$
At the start of the calculation, we specify the mole fractions of a major species on tho hot and cold sides of the flame. The former is calculated by assuming that the overall reaction has gone to completion. Also specified is whether the species decays or grows as we go from the cold to the hot side of the flame.

For example, suppose the mole fraction of species j is $x_{j C}$ and $x_{j H}$ for $\omega=1$ and 0 , and also suppose that $x_{j C}>x_{j H}$, i.e., we have a decay profile; then
$x_{j}(\omega)=x_{j H}+\left(x_{j C}-x_{j H}\right)\left(10 \omega^{3}-15 \omega^{4}+6 \omega^{5}\right)$
To calculate an initial temperature profile, we first calculate the enthalpy on the cold side from the cold side temperature T_{C} with the expression,
$h_{C}=\sum_{j=j_{R}+1} M_{j} \varphi_{j C}\left(h_{j}^{0}+d_{j} T_{C}+\frac{1}{2} e e_{j} T_{C}^{2}+\frac{1}{3} f_{j} T_{C}^{3}\right)$
φ_{jC} is the concentration of j on the cold side in units of mole/kg. We then set the enthalpy on the hot side equal to that on the cold side. (Note that j_{R} is the index of the last radical species; i.e., we sum over the major species only.) The expression for the hot side enthalpy is

$$
\begin{align*}
h_{H}=h_{C} & =\sum \sum_{j=j_{R}+1} M_{j} \varphi_{j H}\left(h_{j}^{0}+d_{j} T_{H}+\frac{1}{2} e_{j} T_{H}^{2}+\frac{1}{3} f_{j} T_{H}^{3}\right) \tag{A82}\\
& =A+B T_{H}+\frac{1}{2} C T_{H}^{2}+\frac{1}{3} D T_{H}^{3}
\end{align*}
$$

where
$A=\sum_{j=j_{R}+1}^{n} M_{j} \varphi_{j H^{h}}{ }_{j}^{\circ}$
$B=\sum_{j=j_{R}+1}^{n} M_{j} \varphi_{j H}{ }^{d}{ }_{j}$
$c=\sum \sum_{j=j_{R}+1} M_{j} \cdot \varphi_{j H^{e}}{ }_{j}$
$D=\sum_{j=j_{R}+1}^{n} M_{j} \varphi_{j H^{f}}{ }_{j}$
We want to calculate T_{H} in terms of h_{H}. This was done by finding the appropriate root of the equation
$\mathrm{F}\left(\mathrm{T}_{\mathrm{H}}\right)=\mathrm{A}+\mathrm{BI}_{\mathrm{H}}+\frac{1}{2} \cdot \mathrm{CT}_{\mathrm{H}}^{2}+\frac{1}{3} \mathrm{DT}_{\mathrm{H}}^{3}-\mathrm{h}_{\mathrm{H}}=0$
A good first approximation to the desired root can be gotten by neglecting the non-linear portion of A82. This gives $T_{H}^{(1)}=\left(h_{H}-A\right) / B$.

The Newton-Raphson method was used to get a better approximation. The second approximation is
$T_{H}^{(2)}=T_{H}^{(1)}-F\left(T_{H}^{(1)}\right) / F^{\prime}\left(T_{H}^{(1)}\right)$

$$
=\mathrm{T}_{\mathrm{H}}^{(1)}+\left\{\mathrm{h}_{\mathrm{H}}-\left(\mathrm{A}+\mathrm{BT}_{\mathrm{H}}^{(1)}+\frac{1}{2} \mathrm{CT}_{\mathrm{H}}^{(1)^{2}}+\frac{1}{3} \mathrm{DT}_{\mathrm{H}}^{(1) 3}\right)\right\} /\left(\mathrm{B}+\mathrm{CT}_{\mathrm{H}}^{(1)}+\mathrm{DT}_{\mathrm{H}}^{(1)^{2}}\right)
$$

In practice, $T_{H}^{(3)}$ was a sufficiently accurate value for T_{H}.
The Newton-Raphson method was also used in the main part of the program to calculate the temperature from the enthalpy value at a particular grid point.

An S-shaped starting temperature profile was calculated from the formula
$T(\omega)=T_{C}+\left(T_{H}-T_{C}\right)\left(10(1-\omega)^{3}-15(1-\omega)^{4}+6(1-\omega)^{5}\right)$
For the enthalpy, a constant starting profile $h(\omega)=h_{C}$ was used. It should be noted that this profile is not consistent with the starting temperature profile. The enthalpy profile should be calculated from the temperature and concentration starting profiles. It would be worthwhile to examine what effect, if any, the starting enthalpy profile has on the course of the calculation.

The radical concentrations were set to zero on the cold boundary and remained so throughout the calculation, since the cold boundary concentrations of all species are never modified. Throughout the rest of the flame they initially were set to some constant value comparable to their average expected steady-state concentrations. For flames like O_{3} decomposition and $\mathrm{H}_{2}-\mathrm{Br}_{2}$ the initial radical concentrations can be set to zero throughout the flame zone. This is possible because the radical generating reactions like $\mathrm{Br}_{2}+\mathrm{M} \npreceq 2 \mathrm{Br}+\mathrm{M}$ proceed rapidly on the hot side of the flame. For the $\mathrm{H}_{2}-\mathrm{O}_{2}$ flame however, such reactions are too slow for cool flames to initially generate enough radicals. The flame dies out before the radical concentrations become high enough to sustain the flame. Thus, one must begin the calculation with non-zero radical concentrations.
U.S. DEPT. OF COMM BIBLIOGRAPHIC DATA SHEET
4. TITI.I: ANI) SUBTITI.I:

A Numerical Solution of the Time Dependent Partial Differential Equations which Describes a one-dimensional, Laminar, Premixed Flame
7. AUTHLR(Brown
9. PERFORAME ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234
12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)
2. Gov't Accession 3. Recipient's Accession No. No.
5. Publication Date January 1976
6. Performing Organization Code
8. Performing Organ. Report No. NBSIR 76-994
10. Project/Task/Work Unit No. 3162675
11. Contract/Grant No.
13. Type of Report \& Period Covered

Final
14. Sponsoring Agency Code
15. SUPPI.EMENTARY NOTES
16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.)

The set of time dependent, parabolic differential equations, which describe the physical and chemical processes in a one-dimensional, laminar, premixed flame is solved by adapting a solution procedure originally developed to solve the twodimensional steady state boundary layer equations. The flame equations are integrated by an implicit method until the steady state is reached. This corresponds to a flame propagating steadily through a mixture of combustible gases. By a suitable choice of boundary conditions, it is also possible to model a flame which is stabilized on a burner. Solution of the flame equations yields the concentration profiles of the different chemical species as well as the temperature profile. From these one can also calculate the production rates of each species, the rate of each chemical reaction, and the heat release rate at each point in the flame. The velocity of the freely propagating flame can be calculated from the integrals over the whole flame zone of any of the species production rates. The model incorporates realistic thermodynamic data and transport property data that are functions of both temperature and concentration. A complete documentation of the computerprogram which accomplishes the integration is presented.
17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated ly semicolons) Combustion; differential equations; flame chemistry;
flame modeling; laminar flames; numerical solution of flame equations
18. AVAILABILITY X Unlimited
[For Official Distribution. Do Not Release to NTIS
[Order From Sup. of Doc., U.S. Government Printing Office Washington, D.C. 20.402, SD Cat. No. C13
X Order From National Technical Information Service (NTIS) Springfield, Virginia 22151
\(\left.$$
\begin{array}{|l|c|}\hline \begin{array}{c}\text { 19. SECURITY CLASS } \\
\text { (THIS REPURT) }\end{array}
$$ \& 21. NO. OF PAGES

UNCL ASSIFIED\end{array}\right]\)| 175 |
| :--- |
| 20. SECURITY CLASS
 (THIS PAGE)
 UNCLASSIFIED |

[^0]: SPD04160

[^1]: OOEOODNO

[^2]: TRNO0340

