NBSIR 76-982

Data Processing and Data Analysis Procedures for Fire Load and Live Load Survey Program

Robert M. McCabe
Center for Consumer Product Technology
Charles Culver
Center for Building Technology
Institute for Applied Technology
National Bureau of Standards
Washington, D. C.
and
Larry T. Lee
Joseph G. Hirschberg
J. H. Wiggins Co.
Redondo Beach, California

December 1975
Interim Report, June 1973 - December 1975
Prepared for
Building Research Advisory BoardNational Research CouncilNational Academy of SciencesNational Academy of Engineering
and the
Public Buildings ServiceGeneral Services AdministrationWashington, D. C.

DATA PROCESSING AND DATA ANALYSIS PROCEDURES FOR FIRE LOAD AND LIVE LOAD SURVEY

Robert M. McCabe
Center for Consumer Product Technology
Charles Culver
Center for Building Technology
Institute for Applied Technology
National Bureau of Standards
Washington, D. C.
and
Larry T. Lee
Joseph G. Hirschberg
J. H. Wiggins Co.
Redondo Beach, California
\section*{December 1975}
Interim Report, June 1973 - December 1975
Prepared for
Building Research Advisory Board
National Research Council
National Academy of Sciences
National Academy of Engineering
and the
Public Buildings Service
General Services Administration
Washington, D. C.

U.S. DEPARTMENT OF COMMERCE, Rogers C.B. Morton, Secretary

James A. Baker, III, Under Secretary
Dr. Betsy Ancker-Johnson, Assistant Secretary for Science arid Technology

$+2$

Abstract

Data collection and data processing procedures utilized in connection with a nationwide fire load and live load survey program are described. The techniques developed for transferring the field survey data to a form suitable for computer processing are discussed. Procedures adopted for data analysis are included. Documentation of the computer programs developed for this purpose is also presented.

Keywords: buildings; computers; data processing; fire loads; load surveys.

Note:
This report, to the Building Research Advisory Board, National Research Council, National Academy of Sciences-National Academy of Engineering, is the second in a series of three reports prepared by the Center for Building Technology, Institute for Applied Technology, National Bureau of Standards, Washington, D.C., under Subcontract No. BRAB 27-73-53 between the National Academy of Sciences and the National Bureau of Standards. It is being distributed to the professional community to keep it advised of the data processing and analysis procedures being used in conjunction with the survey of office buildings. The results obtained from this survey will be presented at a later date.

SI Conversion Units

In recognition of the position of the U.S.A. as a signatory to the General Conference of Weights and Measures, which gave official status to the metric SI system of units in 1960, the authors assist readers interested in making use of the coherent system of SI units by giving conversion factors applicable to U.S. units used in this paper.

Length
1 in = 0.0254* meter
$1 \mathrm{ft}=0.3048^{*}$ meter
Area
$1 \mathrm{in}^{2}=6.4516^{*} \times 10^{-4} \mathrm{~meter}^{2}$

Force
1 lb (lbf) $=4.448$ newton

Pressure, Stres's

1 psf $=47.88$ pascal
Thermal
1 Btu $=1.054 \times 10^{3}$ joule

* Exactly
PAGE
ABSTRACT i
SI CONVERSION UNITS. ii

1. INTRODUCTION 1
2. DATA COLLECTION PROCEDURE 1
3. DATA PROCESSING PROCEDURE AND PROGRAM DESCRIPTION. 5
3.1 General 5
3.2 Data Retrieval. 5
3.2.1 Introduction 5
3.2.2 Document Scanning. 5
3.2.3 Program SCAN - 1 8
3.2.4 Program SCAN - 2 9
3.2.5 Program FIRM 9
3.3 Room Selection. 10
3.3.1 Introduction 10
3.3.2 Method of Selection. 12
3.3.3 Program ROOM 17
3.4 Data File 1 21
3.4.1 Introduction 21
3.4.2 Program FILTER-EDPACK. 21
3.4.3 Program SURVEY 25
3.4.4 Program DTCOPY 27
3.5 Data File 2 35
3.5.1 Introduction 35
3.5.2 Method Used to Determine Wall Coordinates. 36
3.5.3 FOSDIC Processing 38
3.5.3.1 Program SCAND 40
3.5.3.2 Program SCANP 41
3.5.4 Central Computer Processing. 43
3.5.4.1 Program PLANS 46
3.5.4.2 Program EDIT. 49
3.5.4.3 Program FTCOPY. 51
4. DATA ANALYSIS 53
4.1 General 53
4.2 Weight Determination (Program MAKER). 56
4.2.1 Introduction 56
4.2.2 Operating Techniques 76
4.2.2.1 Program Capabilities. 76
4.2.2.2 Statistical Techniques 77
4.2.2.2.1 Percentages 77
4.2.2.2.2 Book and Paper Pile Weights 81
4.2.2.2.3 Accumulated Variances 83
4.2.2.3 Computational Techniques 84
4.2.2.4 Transfer Functions. 86
4.2.3 Operating Logic. 88
4.2.3.1 DRIVE Operating Logic 88
4.2.3.2 FORMA Operating Logic 89
4.2.3.3 FORMB Operating Logic 89
4.2.3.4 FORMC Operating Logic 90
4.2.3.5 RMCONT Operating Logic 90
4.2.3.6 FSEAP Operating Logic 91
4.2.3.7 BONCOM Operating Logic. 91
4.3 Data Retrieval and Display (Programs SEEKER and HISTOG) 92
4.3.1 Introduction 92
4.3.2 Operational Techniques 95
4.3.2.1 Program Capability and Limitations 95
4.3.2.2 Selection Procedure 97
4.3.2.3 Diagnostic Messages 98
4.3.2.4 Program Output 98
4.3.3 Operating Logic 100
4.3.3.1 Read and Check Data Cards and Initialize All Parameters 100
4.3.3.2 Perform Input and Output Operations Not Involving Card Data 102
4.3.3.3 Find the Parameter That Is To Be Tested and Test It 103
4.3.3.4 Select the Desired Parameter. 103
4.3.3.5 Process the Selected Parameter. 104
4.3.3.6 Examples of Selection Cases 104
4.3.3.7 Further Description Statistics Derived with the HISTOG Program 111
4.4 Data Retrieval (Program READER) 116
4.4.1 Introduction 116
4.4.2 Operational Techniques 116
4.4.2.1 Program Capabilities 116
4.4.2.2 Selection Procedures 117
4.4.2.3 Program Output. 120
4.4.2.4 Diagnostic Messages 125
4.4.3 Operation Logic. 127
4.4.3.1 Reading Input Room Data 127
4.4.3.2 Selection of Rooms 127
4.4.3.3 Examples of Selection Cases 130
4.5 Regression Analysis (Program BMDO2R) 131
4.5.1 Introduction 131
4.5.2 Program Description. 131
4.6 Building Analysis (Program BUILDER) 133
4.6.1 Introduction 133
4.6.2 Operational Techniques 135
4.6.2.1 Input Data. 135
4.6.2.2 Error Checking 136
4.6.2.3 Load Model 137
4.6.2.4 Output 138
4.6.3 Operating Logic 142
4.6.3.1 MAIN Operating Logic 142
4.6.3.2 FLMOD Operating Logic 142
5. ACKNOWLEDGMENTS 145
6. REFERENCES 146
APPENDICES
APPENDIX A - Data Processing Forms and Instructions 147
APPENDIX B - Computer Programs: User's Manuals 161
7. Data Layout for Census Data Tape 161
8. Format of Building Characteristic Data 168
9. Input Record Format for Data File 2 169
10. Program MAKER 171
11. Output Record Format for Data File 2. 261
12. Program SEEKER 262
13. Program READER 309
14. Program BUILDER 321

1. INTRODUCTION

In 1973 the National Bureau of Standards, working with the National Academy of Sciences and the General Services Administration, initiated a comprehensive nationwide survey program to determine fire loads and live loads in office buildings. Considerations involved in planning the program, the type of data collected, development of the data collection techniques and the sampling plan adopted for the survey were discussed in a report by Culver and Kushner (1).*

Special data processing procedures and computer programs were developed in connection with this survey. These procedures have broad applicability and should be useful for other surveys. In addition, some of the techniques may be useful for other applications. Recognizing this and the fact that the survey data obtained would be of long-lasting use, particularly with respect to research studies, complete documentation of the data processing procedures was deemed advisable. Such documentation should facilitate use of this extensive data bank.

The purpose of this report is to fully describe the data collection and data processing procedures. Program descriptions and instructions for their use are included. Analysis of the data obtained from buildings included in the project is contained in a separate report (2).

2. DATA COLLECTION PROCEDURE

Data obtained for the buildings in this survey are indicated in Figure 1 and included:

1. Building Characteristic Data
2. Building Occupancy Data
3. Room Data

Criteria used to establish this data, survey forms, and instructions for completing the forms are presented elsewhere (1).

The procedure adopted for collecting the data is shown in Figure 2.
The initial step involved obtaining copies of the building floor plans. All areas in the building were then numbered for reference purposes. An initial survey of the building was then conducted to obtain the

[^0]

Figure 2 - Data Collection Procedure
building characteristic data and occupancy data. In addition, each area was classified according to use, size and the type of firm utilizing the space. This information was written directly on the floor plans using a three digit coding scheme (1). The floor plans were compared with prevailing conditions during the initial survey and necessary changes made to reflect any changes due to remodeling or renovation.

Following collection of the building characteristic data, occupancy data and area classification data, the information was processed and the rooms to be surveyed were selected. This involved keypunching the building characteristic and occupancy data, and transcribing the code numbers from the floor plans to the FOSDIC (Film Optical Scanning Device for Input to Computers) Area Classification Docunient presented in the Appendix. Keypunching and transcription of the FOSDIC documents was done at the National Bureau of Standards. Microfilming and scanning of the FOSDIC documents and transcription on magnetic tape was handled by the Bureau of The Census. Complete instructions for preparing these FOSDIC documents are included in Appendix A.

The rooms to be surveyed were selected in accordance with the sampling plan developed for this project (1). The computer program (Program ROOM) described in Chapter 3 was used for this purpose. A second survey of the building was then conducted to obtain detailed information about the room and its contents for the selected rooms. FOSDIC documents were also used to record the data in accordance with specially developed instructions (1). These documents were then microfilmed, the microfilm was scanned using an electro-optical scanning device and the data transferred to magnetic tape for processing. The microfilm provided a permanent record of the data.

Prior to analyzing the data, the two data files shown in Figure 2 were created. The first file consisted of the building characteristic data, the occupancy data and the room survey data. All the data were combined on magnetic tapes. As discussed in Chapter 3, this file was used to determine the fire load and live load for the surveyed rooms and to study the effects of various factors such as building height, building location, room use, etc., on the loads.

The second data file consisted of the same building characteristic data and occupancy data as on the first file plus information on the spatial orientation of all areas within the building (building geometry). The specially developed procedure for preparing the building geometry data is described in Appendix A. This file was used in connnection with studies concerning the distribution of loads throughout the entire building.

3.1 General

Several special computer programs were developed to process and analyze the field survey data. Programs for the initial data processing, for the creation of Data files 1 and 2 and for the room selection program are described in this chapter. The final data processing and the data analysis programs are described in Chapter 4.

3.2 Data Retrieval

3.2.1 Introduction

The majority of the data used to form file 1 and file 2 was collected and recorded on special FOSDIC documents. The Area Classification Documents, Forms 1 through 7, and Forms A through C(1) were all FOSDIC documents. The data collection forms for the building and occupancy characteristics were not FOSDIC documents. Figure 3 is an overview of the retrieval of these data. The FOSDIC documents were processed by the Bureau of The Census to convert the data to a machine readable (digital) form. As indicated in figure 3a, high-speed cameras were used to microfilm the survey documents to provide a convenient and permanent record of the data. The microfilm was then input to a FOSDIC. scanner system which created standard Census 7 track BCD tapes at. 8 no bpi with even parity. A hard copy listing of the data was also produced. The microfilming and scanning procedure for this project was similar to that used hy the Bureau of The Census in all their data processing work The scanning procedures and computer programs developed to produce these tapes are described in Sections 3.2.2, 3.2.3, and 3.2.4. Based on Census' extensive experience with this equipment, an error rate of less than one percent. due to mechanical or electrical malfunctions was anticipated. Rather than discard any of the data, it was decided to provide a means for correcting these errors. Computer programs described in Section 3.4 were written for this purpose.

The building and occupancy data were keypunched on cards and processed through program firll as shown in Figure 3b. These data were retained in a mass storage file in the computer for later processing. The machine readable FOSDIC data and data from program FIRM were used to select the rooms to be surveyed (Section 3.3) and to create Data Files 1 and 2 (Sections 3.4 and 3.5).

3.2.2 Document Scanning

Each microfilmed FOSDIC document was initially fed through a scanner, and a calibration procedure automatically executed.

(a) FOSDIC DOCUMENTS
Figure 3 - Data Retrieval

(b) BUILDING AND OCCUPANCY CHARACTERISTICS
Figure 3-Data Retrieval (contd.)

Preprinted calibration marks appearing on the documents enabled automatic calihration of each document. This calibration compensated for mechanical errors such as the shrinkage or expansion of the document, the whiteness and blackness of the document and the tilt of the document with respect to the edge of the film. In addition to document calibration, document position (top and left edges) with respect to the scanning surface was determined.

After the calibration process was completed, the scanner extracted the data using appropriate read operations. For each character of information recorded, a group of data positions, generally a column of numbers, was scanned. The precise position of this group was ascertained by searching for the exact position of the preprinted calibrating patterns (Index Marks) on the document and then moving a pre-determined distance from this mark to the group of data. Each position in the group was read, the strongest reading selected as the proper answer, and this answer encoded to a BCD character and placed in the output buffer. After completion of the scanning, the buffer was recorded on a 7 track magnetic tape. Two programs, SCAN-1 and SC,AN-2, described in subsequent sections were written to perform this scanning operation. Appendix B.l illustrates the layout of the data on the tape for each survey document.

3.2.3 Program SCAll-1

Program SCAll-1 was developed by the Bureau of The Census to read the data from the Area Classification Documents. Along the left side of each Area Classification Document a column of digits from one to eight was preprinted with the number "l" havino heen filled in during the printing process. After calihration of the document was completed, this column was read and checked for the filled in "l". If the condition was true a "U" was recorded in the first character position of the record, otherwise this position was left blank.

The second position of the record contained an indication of the success of the calibration procedure. If blank, the calinration was totally successful. If the position contained an "F" the calibration was a total failure. A failure in finding any index was denoted by an "M" in this position. For the data read from a missed index an "M" was recorded in the corresponding positions of the record.

Having completed the calibration procedure, the huilding numher and floor number were extracted from the document and placed in the output buffer. Data from each of the eighteen rooms hlocks on the document were scanned using the index marks as positional
reference points. When the document was completed the scanned data was recorded on tape with a blocking factor of 1.

3.2.4 Program SCAN-2

Program SCAN-2 was developed by Bureau of The Census to read Forms 1 through 7 and Forms A, B, and C. A unique 3 character identifier was precoded along the left side of each of the ten forms. SCAN-2 read this identifier, recoded it into the proper $B C D$ character $(A-T)$ and entered it in the first character position of the tape record. The second position indicated the calibration result in the same form as SCAN-l.

Once the form was identified, the proper subroutines were called to scan and record the data on the output record. After scanning both sides of 3 forms and storing the data in memory, the record was outputted to magnetic tape.

3.2.5 Program FIRM

The keypunched building and occupancy characteristic data were stored on a single file called BLDFRM. This file was comprised of one element per building. For example, the element called B024 pertained only to building 24 , the NBS Administration Building. Each element differed only by the three digits at the end of the name. As data were gathered for the different buildings, additional elements were added to the file. Each building element had the same form. The first 4 card images contained the building characteristics as found on the huilding characteristics data collection form. Following these 4 header cards, there was 1 card for each firm occupying space in that building. Finally the data set was terminated by a "REOF" card.

Appendix B. 2 illustrates the required format for the input cards for an element of BLDFRM.

All the data entered into BLDFRM were processed using program FIRM. Program FIRM was developed to check the data from BI.DFRM and output it to a mass stoarge file. During processinn, a new file, AXXX, was created where XXX denoted the huilding number. A hard copy output file was also generated on the line printer listing the input data, diagnostics and summary tahles of the firms in the buildings.

The building characteristics were read by the program and checks performed to insure legality of the entries. If errors were. detected, a diagnostic was generated, appropriate default conditions implemented, and the data were put in a mass storage
file. The firm characteristic data were then processed. As each firm characteristic card was read, the firm number, firm type and firm age were checked. If the age of the firm was greater than the age of the building, the age was set equal to the age of the building. The data were then put on a mass storage file. Tahle 1 lists the possible diagnostics produced and the default conditions generated. After processing all the firm data for a building, the data were tabulated by firm type and age and summary tables produced.

3.3 Room Selection

3.3.1 Introduction

The room selection program, Program ROOM, was developed to select the rooms to be surveyed in Phase I in accordance with the sampling plan established (1). Input data for the program consisting of the building characteristics, occupancy data, and area classification data were obtained from the file created hy Program FIRM. For each area in the building this provided identification of:

1. Room Use - General office, file room, conference room, etc.
2. Firm Type Occupying Area - Agricultural, mining, etc.
3. Size of Area - less than 200 sq . ft. or less and more than $200 \mathrm{sq}$. ft.

Use of seven room use categories, ten firm types and the two area classifications provided a total of 140 separate cateqories into which the rooms in a building were grouped (e.g. neneral offices occupied by agricultural type firms with an area less than $20 n$ sq. ft.). After grouping the rooms into these categories, the program randomly selected the rooms to be surveyed in accordance with the procedure described in Section 3.3.2.

The program printed a list of the specific rooms selected and several summary tables. These tables summarized the number of rooms in each of the 140 categories and provided a check on the selection procedure. They were used to insure that the ronm sample selected was representative of areas contained in the building. The computer listing identifying the rooms selected was provided to the field surveyors for use in conducting the room surveys.

TABLE 1 DIAGHOSTICS AND DEFAULT CONDITIONS FOR PROGRAM FIRM

DI AGNOSTIC

1) ERROR IN MOHTH ** MO=
2) ERROR IN STATE CODE ** $S T=$
3) ERROR IN TYPE RESISTING SYSTEM **=
4) ERROR IN MATERIAL TYPE ** MATERIAL=
5) ERROR IN OCCUPANCY TYPE **
6) **ILLEGAL FIRM NO.
7) **NEXT ENTRY IS A DUPLICATE FIRM NO.
8) **NEXT ENTRY CONTAINS A PUNCH ERROR IN

FIRM TYPE
9) *A VERY OLD FIRM * AGE =
10) ** CARD READ ERROR **
11) OEDF CARD FOUND IN DATA

DEFAIILT

January
Alaska
Column
Concrete
Federal Government
1000
Previous Data Lost

Firm type $=98$
Age of Building
Firm Characteristics Discarded

Program Terminates Normally

3.3.2 Method of Selection

The general procedure for selecting rooms consisted of systematically choosing approximately 22.5 percent of the room in each of the 140 use-type-area categories, using a formally randomized starting point for each category. An index number from 1 to 140 was assigned to each possible combination using the following relation:

$$
\text { Index Number }=20 *(\text { Firm Type }-1)+\text { Area }
$$

where

```
Area = 1 for rooms less than 200 sq. ft.
    =2 for rooms greater than 200 sq. ft.
```

The randomized starting point for each category was chosen using a random number generator which allowed the user to input a number and returned to the user a random number from n.n to 1.0 . The time of day in seconds was added to the run-time-elapsed (in 1/10th msec.) to produce a starting number for each execution of the program. This starting number was required in order to insure obtaining a different set of random numbers for each building. Every subsequent number delivered to the nenerator was the last random number received from the generator multiplied by 8192. The frequency of occurrence for each of the 140 categories was then compiled and sampling rates for each catenory determined. A projection of the total number of rooms to be selected was then qenerated. If this projection didn't fall between 21 percent and 25 percent, new sampling rates were established until the 21 to 25 percent criteria was met.

During the room selection process carried out by Program ROOM and discussed in Section 3.3.3, six tables were formed. An index number "J" which was dependent on room use, firm type, and area occupied was used for these tables. The six tables used in the selection algorithm were:

1) Table UTA - the frequency of occurence for each of the 140 unique categories. Inttially, each entry in the table contained a 0 . As the data from each legitimate room in the building was read and checked, the proper J entry in IITA was incremented by 1, i.e. UTA(J) $=U T A(J)+1$.
2) Table TAB2 - the desired number of rooms to be selected by taking 22.5 percent of the number of available rooms for that category, i.e., TAB2(J) $=.225$ *UTA(J).
3) Table TAB3 - values of the increments used for the systematic selection of rooms in each of the 140 categories. Because a 22.5 percent sample was desired, each entry in TAB3 was initially filled with 4.444 (1./0.225). Within a given category after the first room was selected every 4.444 th room was also selected.
4) Table TAB4 - the random number which together with the corresponding entry in TAB3 determined the first room in each of the 140 categories to be selected. Initially, each entry in TAB4 was the product of a random number and the corresponding entry in TAB3. For every entry in TAB4 whose corresponding entry in TAB2 was greater than or equal to 1.0, a random numher was generated, the product with TAB3 obtained, and the result placed in TAB4, i.e.. if
$\operatorname{TAB2}(\mathrm{J}) \geq 1.0$, then $\operatorname{TAB4}(\mathrm{J})=$ Random No.*TAB3(J)
Every entry in TAB4 was less than or equal to 4.444. Those entries in TAB4 whose corresponding entries in TAB2 were less than 1.0 were set to 0.0 initially. Those values in TAB4 whose corresponding value in TAB2=0.0 were set to 0.0 and remained so for the duration of the run, i.e., if $\operatorname{TAB2}(\mathrm{J})<1.0$ then $\operatorname{TAB4}(\mathrm{J})=0.0$.
5) Table TAB5 - the projected number of rooms to be chosen for each of the categories, $\operatorname{TAB5}(J)=(U T A(J)+T A B 4(J)) / T A B 3(J)$.
6) Table TAB6 - the number of rooms chosen for each of the 140 categories. Initially TAB6 was filled with 0.

Due to the method of selection used, few categories with less than 5 rooms would have rooms selected. Truncation error for these categories would result in too small a sample size and would also eliminate too many categories of rooms. If a rounding-up procedure were to be used, too many rooms would he selected. Therefore, upon completion of the formation of UTA, TAB2, TAB3, and TAB4, the entires in TAB2 were reexamined as 70 firm-area pairs. This gave added consideration to rooms with the same use and firm type but different area sizes, and allowed rooms to be chosen from those categories with less than 5 rooms and thus neutralized the truncation error. Both members of each of the pairs were compared to 0.5 and 1.0 and the appropriate action taken. Table 2 is a summary of the nine different results of the pair-wise comparisions. Table 3 explains each of the results.

At the completion of the pair-wise comparisons, a projection of the total number of rooms to be surveyed was determined by summing the projections for each category. If this projection

TABLE 2 RESULTS OF PAIR-WISE COMPARISONS

$$
\text { LET } X=T A B 2(J) \text { and } Y=T A B 2(J+1)
$$

Y.LT. . 5
X.LT. . 5
5.LE.X.LT. 1.
X.GE. 1.0

TEST 2
0,0
TEST 9
1,0
TEST 3 NI,O
.5.LE.Y.LT. 1.0
TEST 8
0,1
TEST 7
1,0; 0.1; 1,1
TEST 5
NI, 1
Y.GE. 1.0

TEST 4
0, N2
TEST 6 1,N2

TEST 1
NI,N2

NOTE*** J and $J+1$ are the small and large area categories respectively within room use and firm type. Nl is the sample size produced by the ordinary rule for the Jth category, i.e., N1 is the integer part of jth category and N2 is the corresponding integer part from the $\mathrm{J}+1$ category.

TABLE 3 DETAILS OF RESULTS

TESTI

TEST2

TEST3

TEST4

TESTS

TEST6

TEST7
X.GE.I.O AND. Y.GE.I.O

Entries in TAB3 and TAB4 of $\mathrm{J}, \mathrm{J}+1$ are correct. N1 rooms will be selected from the Jth category and N2 rooms from the $\mathrm{J}+1$ th category.
X.LT.O.5 AND. Y.LT. O. 5

TAB3 and TAB4 of $\mathrm{J}, \mathrm{J}+1$ are correct. $\mathrm{N} 1=0$ and $\mathrm{N} 2=0$.
X.GE.I.O AND. Y.LT. 0.5

TAB3 and TAB4 of $\mathrm{J}, \mathrm{J}+1$ are correct. $N 2=0$
X.LT.0.5 .AND. Y.GE. 1.0

TAB3 and TAB4 of $\mathrm{J}, \mathrm{J}+1$ are correct. $\mathrm{N}=0$
X.GE.1.0.AND 0.5.LT.Y.LT. 1.0

TAB3 $(\mathrm{J}+1)=$ UTA $(\mathrm{J}+1)$
TAB4 $(\mathrm{J}+1)=$ RA:HDOM NO. *TAB3 $(\mathrm{J}+1)$
$\mathrm{N} 2=1$
0.5.LE.X.LT. 1.0 .AND. Y.GE. 1.0

TAB3(J) = UTA (J)
TAB4 (J) $=$ TAB3 $(\mathrm{J}) *$ RANDOM NO.
$\mathrm{N} \boldsymbol{1}=1$
0.5.LE.X.LT.1.0 .AND. O.5.LE.Y.LT.I.O

If UTA $(J)+11 T A(J+1)$. .GT. 11 then:
TAB3(J) =UTA (J)
TAB4 (J) + TAB3 (J)*RAIIDOM NO.
$\operatorname{TAB3}(\mathrm{J}+\mathrm{L})=\operatorname{UTA}(\mathrm{J}+1)$
$\operatorname{TAB} 4(\mathrm{~J}+1)=\operatorname{TAB} 3(\mathrm{~J}+1)$ *RANDOM NO.
$N 1=1 \quad N 2=2$
If UTA(J) +UTA $(J+1)$.GE. 4
-AND. UTA(J).GE. UTA (J+1)
TAB3(J) = UTA (J)
TAB4 (J) =TAB3 (J)*RANDOM NO.
$N 1=1 \quad N 2=0$
If UTA(J) +UTA (J+I) .GE. 4
.AND. UTA(J+1). GT. UTA(J)
TAB3 $(\mathrm{J}+1)=U T A(\mathrm{~J}+1)$
$\operatorname{TAB4}(\mathrm{J}+\mathrm{l})=\operatorname{TAB3}(\mathrm{J}+\mathrm{l})$ *RANDOM NO.
$\mathrm{N} 1=0 \quad \mathrm{~N} 2=1$

TABLE 3 dETAILS OF RESULTS (Page 2 of 2)

TEST8

TEST9
X.LT.0.5 .AHD. 0.5.LE.Y.LT. 1.0 TAB3 (J+1)UTA(J+1)
$\operatorname{TAB4}(\mathrm{J}+1)=\operatorname{TAB3}(\mathrm{J}) *$ RANDOM HO^{2}. $N 1=0 \quad N 2=1$
0.5.LE. X.LT. 1.0 .AND. Y.LT. 0.5 $\operatorname{TAB3}(\mathrm{J})=$ UTA (J)
TAB4 (J) $=$ TAB3 (J) *RANDOM NO. $N T=1 \quad N 2=0$

Was not between 21 to 25 percent of the legitimate rooms in the bullding, a new cycle value to be used in TAB3 was calculated using:

$$
\text { Cycle (NEW) }=\begin{aligned}
& \text { Cycle(old)*projected no. of rooms } \\
& \\
& .225 * \text { no. of legitimate rooms }
\end{aligned}
$$

For those entries in TAB3 with a corresponding entry in TAB2 which was > 1.0 , the old cycle value in TAB3 was replaced with the new cycle value, and then the number of rooms to be selected was reprojected. If this reprojection did not meet the 21 percent to 25 percent criteria, the new cycle value became the old cycle value and the projecting repeated until the 21 to 25 percent criteria was met.

After the values of TAB3 met the $21-25$ percent criteria, TAB5 was rescanned to insure that at least 1 room had been chosen from each non-empty use group consisting of 20 firm-area categories. If a non-empty use group did exist where at least 1 room had not been projected to be selected, TAB3 and TAB4 were adjusted such that a room was randomly chosen from that use group. The sum of the available rooms in that use group was then multiplied by a random number giving a random integer. This random integer. determined which of the 20 firm-area categories would have a room setected. For that category, TAB3(J) =UTA (J), and TAB4(J)=TAB3(J)*random number. This forced a room to be selected at random from that use group.

Obviously any one building did not have rooms for all of the categories. By varying the selection percentage it was possible to insure that the number of randomly selected rooms did not. exceed the total sample size required for this project.

3.3.3 Program ROOM

Program ROOM selected the rooms to be surveyed in accordance with the procedure described in Section 3.3.2 As previously noted, room selection was based on room use, firm type, and the size of rooms. The Area Classification Documents contained data on room use, room size, and firm number. The building and firm characteristics data (File AXXX) contained the firm type for each firm number. The data file from Program FIRM and the magnetic tape generated by the Bureau of The Census for the Area Classification Documents, therefore, were used as input data. Figure 4 is an overview of the program illustrating the two input files used, building and firm characteristics, and the Area Classification Documents. The primary output of the program was the listing of selected rooms. A diagnostic listing, and a listing of all tables was also produced. An additional 3 mass

Figure 4 - Overview of Program ROOM
storage files were generated. File Bxxx was basically a listing of the area data, File Cxxx was a copy of the tables generated and File RFTxxx was a listing of rooms with their uses and firm numbers. This file was used in subsequent programs.

As each block of area classification data was input to the program, several checks were made for completeness of the data. Table 4 lists the diagnostics generated, the reason for the diagnostic and the action taken. For each block of area classification data an index number was calculated and the data recorded on File $B x x x$. If the block of data was acceptable this index number was between 1 and 140. This process of reading area classification records, checking the data, and rewriting the records to $B x x x$ was repeated until all the area classifficatinn documents were examined. Summary totals of the number of area blocks encountered, the number of areas used for selection, and several other tallys were output to the printer after all area blocks were checked. In addition, a table listing the areas by. use, firm-type, and size was formed and output. For the buildings processed in Phase I, approximately 63 percent of the total area blocks were used for selection. The remainder of the areas were disqualified due to data errors (2 percent), were not areas included in the survey such as stairways, elevators, etc. (30 percent), or were vacant (5 percent).

After Tables UTA, TAB2, TAB3, TAB4, and TAB5 were formed, as explained in Section 3.3.2, data for each room in the building were read from $B x x x$. By use of TAB3 and TAB4 it was determined whether that room was to be selected for surveying. As each room was read, its index "J" was determined and TAB4(J) was incremented by l.0. If TAB4(J) was < TAB3(J) that room was not selected. If TAB4(J) \geq TAB3 that room was selected. The information was output to the printer and TAB4(J) was set to TAB(J)-TAB3(J). This process was recycled until all the rooms were either selected or rejected.

In addition to those rooms explicitly selected, several ronms were to he chosen by the surveyors. On the listing of the rooms selected, approximately 10 percent were specially flagged. The 5 th room on the printout and every 9 th room thereafter were flagged. Each time this flag appeared, the surveyor picked an adjoining room for surveying.
TABLE 4 DIAGNOSTICS AND DEFAIILT CONDITIONS FOR PROGRAM ROOM

Diagnostic	Type of Fallure	Action Taken
Fail Index on Firm	Machine Failure	Area disqualified.
Room Unowned by firm	Firm Not Marked	Room common to many firms.
Illegal Code For Firm	Machine Failure	Area disqualified.
Imbedded Blanks in Firm	Poorly Marked Entries	Area disqualified unless leading blanks.
Unlisted Firm number	Firm Not found in AXXX	Area disqualified.
Fail Index on Room	Machine Failure	Area disqualified.
lllegal Code for Room	Machine Failure	Area disqualified.
Imbedded Blanks in Room	Poorly Marked Entries	Area disqualified unless leading blanks.
Unlisted Room	Room Number Too Large	Area disqualified.
Fail Index on Enclosure	Machine Failure	Area used in selection process.
Fail Index on Imaginary	Machine Failure	Area, used in selection process.
Illegal for Imaginary	Data Error	Area used in selection process.
Fail Index on Room Use	Machine Failure	Area disqualified.
Illegal Room Use	Data Frror	Area disqualified.
Fail Index on Area	Machine Failure	Area disqualified.
Illegal Area Code	Data Error	Area disqualified.

3.4 Data File 1

3.4.1 Introduction

Data File 1 was created for use in converting the room information into useful parameters such as the fire load and live load. Statistical studies of the load magnitudes and determination of the factors affecting the loads were conducted using the data. To facilitate this analysis, it was necessary to edit the field data and correct collation and scanning errors.

Figure 5 is an overview of the programs involved in the generation of Data File 1. Completed survey forms 1 through 7, A, B, and C were microfilmed and scanned by program SCAll 2 producing a magnetic tape (Sec. 3.2.2 and 3.2.4). The data recorded was checked by Program FILTER to determine if any mechanical or electrical malfunctions had occurred during the filming or scanning procedures. Errors detected were corrected automatically hy Program FILTER or with the aid of punch cards by Program EDPACK. Errors in the original survey data and mistakes by field surveyors were corrected by Program SURVEY. The task of merging the corrected data with the building and firm
characteristic data was also accomplished by Program SURVEY which produced the mass storage version of Data File l. Program DTCOPY transferred the mass storage version of Data file 1 to magnetic tape.

The sequential arrangement of this data on magnetic tape is given in Appendix B.4. This tape was then used as input to the data analysis programs described in Chapter 4. Descriptions of Programs FILTER-EDPACK, SURVEY, and DTCOPY follow.

3.4.2 Program FILTER-EDPACK

FILTER-EDPACK is actually two programs designed to detect mechanically or electrically generated scanning malfunctions and to correct the resulting errors. Figure 6 is an overview of this process. Data recorded on the tape generated by Program SCAN 2 was copied into a mass storage file CDxxx. Each physical record on both the tape and.mass storage file contained 6 logical records. Each logical record was one side of one form. Program FILTER performed 3 main functions. First, each physical record (6 logical records) was unblocked to 6 physical records which were written to file SDxxx. Second, each record was checked for errors such as calibration failure and form mis-identification. Finally, the records were checked for proper sequence, e.g. the back side of a form 1 must follow the front side of a Form 1.

Figure 5 - Overview of Data File 1

During execution of FILTER, an error diagnostic was generated for each error detected. As there were 10 different forms and each form has two sides, 20 unique form identifiers were possible. Tallys were kept for each of the 20 identifiers. At the conclusion of the execution, these tallys were printed. Each pair of tallys represented a single form (front and back). The entries within a pair had to be identical. If not, correction card records were entered via EDPACK.

Certain form assembly errors detected were automatically corrected at the time of detection by FILTFR. The majority of errors, however, were corrected by executing EDPACK to substitute the proper data from a punch card for specific records in file SDxxx.

The main errors detected automatically or by FILTER and corrected by EDPACK included the following:

1) Illegal form identifier . A form identifier other than a character between $A-T$ was found.
2) Check bit not blank - The document failed to calibrate or a fail index occurred on the document at the time of scanning.
3) First form was not a Form 1 - The first form on the tape had to be a Form 1 or the data seen until the first Form 1 was lost.
4) Sides of form appear reversed - Apparently the back of a form was filmed hefore the front of that form. Program FILTER automatically reversed the sites of the form so that the data appeared correct.
5) Very bad sequence error - During filming, 2. forms apparently stuck together resulting in the loss of the back of 1 form and the front of the next. Two dummy records were created on the output file.
6) Too many bad sequence errors - More than 100 bad sequence errors occurred for a building. The program stopped. Program EDPACK also packed every 6 records from SDXXX into one record in SDEXXX which was used as input to SURVEY.

It should be noted that the tape file was first read into a mass storage file CDxxx. FILTER operated on CDxxx and generated file SDxxx. In turn. SDxxx was input to EDPACK to generate corrected data in file SDExxx. Upon completion of EDPACK, FILTER was reexecuted using SDExxx as input and generating TEMPX, a temporary
scratch file. This final step was not necessary, but did insure that errors in SDExxx were non-existent.

3.4.3 Program SURVEY

As the errors generated from electrical or mechanical malfunctions were detected and corrected by FILTER-FOPACK, errors in the data due to mistakes by the field surveyors were detected and corrected by SURVEY. Figure 7 is an overview of Program SURVEY illustrating three input files, Bxxx and RFTxxx developed by ROOH, and SDExxx developed by FILTER-EDPACK. A diagnostic listing and a mass storage version of Data File l (WIGXxx) were the two outputs generated by SURVEY. Transferring building and firm characteristic data from Bxxx to WIGxxx was SURVEY's first task. By use of RFTXXx, the firm number of each surveyed room was determined and room use checked. Scanned data from the survey documents were contained on SDExxx. During processing, answers for questions on each form were checked for completeness and validity. For each error detected, a default condition was executed. Correct data, together with defaulted data were reformatted in accordance with the sequence indicated in Appendix B.4. At the conclusion of checking, defaulting, and reformatting of the data from an entire room; a single physical record was outputted to mass storage file WIGxxx. A listing of error diagnostics, room identification, and summary information for each room was generated.

As there was no method for initially determining the amount of data from a room, the output record was of variable length. During execution of SURVEY the amount of core assinned to the run was dynamically increased or decreased as needed.

One main program and several subroutines comprised SURVEY. The main program read a document (hoth sides), determined the form number (Form 1-7, A, B or C), and called the appropriate form subroutine to process the data. There were ten form subroutines in SURVEY. Each subroutine was devoted to processing the data from a single form type. For each subroutine, the data were accepted in a format as specified in Appendix B.l, and outputted in the format referred to above. All answers to questions pertaining to a specific piece of furniture were processed within the proper subroutine. For example, the type and the dimensions of a desk on Form 2 were processed within the Form ? subroutine. For errors detected on Forms 2 thru C, default conditions were assigned such that no forms were discarded.

In general, many of the forms contained large blocks of repetitive data. For example, on Forms 2 thru 5 free contents of paper and books are present. Rather than process these blocks within each subroutine, certain common subroutines were written.

Figure 7 - Overview of Program SURVEY

As a result a single block of coding was exercised to process the same type data regardless of what form the data appeared on. Similarily, default conditions were used for the common subroutines in the same manner as for the form subroutines. These common subroutines were called by the form subroutines. For example, the free contents of paper and books on a Form ? was processed by subroutine PAPER which was called by Form 2. In addition to processing free paper and books, PAPER also processed enclosed paper and books. Subroutine TYCAPH processed typewriter, calculator, and telephone data. Enclosed contents other than paper, books, typewriters, calculators, and phones were processed by ENCAGG. Blocks of seating data from Form 6 were processed by SEAT, while blocks of miscellaneous data from Form 7 were processed by MISC. Table 5 lists the repetitive subroutines called by each of the form subroutines.

During processing by SURVEY, as a Form 1 was read from SDExxx, the floor and room numbers were determined. This information was used as an index pointer to RFTxxx in order to extract the firm number for that room, and also to check that the room use was not changed from the Area Classification Document. When a discrepancy in the use was found, the "use" on Form 1 was accepted as being correct. The remainder of the data on Form 1 were checked for completeness. For certain data errors detected (e.g. errors in room dimension) the room was disqualified from the survey. At the conclusion of the checking of the data from Form l the remaining forms were checked for completness and validity. This was done on a form by form basis. As each form was checked, a corresponding portion of the output record was formed. As a form was input to SURVEY the form identifier ($A-T$) was determined. The form identifier "A" (Form l) indicated a new room. After outputting the first room to WIGXXX, and printing a summary, SURVEy hegan processing the data from the new room. If the identifier was other than an "A" (Form l), the proper form subroutine was called, the errors detected, and the default. conditions applied for hoth the form suhroutines and the common subroutines. Tables 6 and 7 list the errors detected and the default conditions used for each of the subroutines.

This processing continued until an End-0f-File was found on SDExxx at which point a summary of the rooms processed and disqualified was outputted and the program terminated.

3.4.4 Program DTCOPY

Data File 1 was the mass storage file WIGxxx which contained the processed data from Program SURVEY. For further processing of the data, this file had to be transferred to a magnetic tape. Program DTCOPY accomplished this function by directly copying

TABLE 5 SUBROUTINES CALLED BY EACH FORM

Subr. FORIA	PAPER	TYCAPH	ENCAGf	SEAT	MISC
1					
2	x	x	x		
3	x	x	x		
4	x	x	x		
5	x	x	x		
6			x	x	
7			x		x
A	X				
8		x			
C			X		

TABLE 6 TABLE OF DEFAULT CONDITIONS - FORM SUBROUTINES (Page 1 of 5)

Form
Question
Default

1. Bounding Surfaces Form

1. Room Use	Same as use listed on area classification document if present, otherwise General		
2. Normal No.			
Occupants		\quad	3. Wall Types
:---	:---	\quad	Room disqualified
:---			

TABLE 6 TABLE OF DEFAULT COHDITIONS - FORM SUBROUTIIFES (Page 2 of 5)

2. Desk Form

1. Desk Type Double pedestal
2. Proximity to

2 feet or less
3. Desk Material Alternates between wond and metal for entire huilding starting with wood.
4. Number of Drawers

When desk type is single Box=1; File=1; Personal=1 When desk type is douhle Box=4, File=1; Personal=1 When desk type is lens Box=3; File=1; Personal=1
5. Desk Top Length 4 feet \cap inches Dimensions Width 3 feet 6 inches
3. Table Form

1. Table Type
2. Proximity to Wall
3. Table Material

With legs
2 feet or less
a) "Single Ped." type

Top=wood; Ped/leqs=metal
b) "With legs" type and both unmarked Top=metal; Ped/legs=metal
c) "With legs" type and only

1 marked, the unmarked is the same as the marked
d) If top = plastic and ped/lens not plastic, Top=metal
4. Table Dimensions

Height: 2 ft . 6 inches Width: 2 ft. 0 inches
Length: 3 ft .0 inches
5. Drawers

TABLE 6 TABLE OF DEFAULT CONDITIONS - FORM SUBROUTINES (Page 3 of 5)
4. Cabinet Form

1. Cabinet type General purpose
2. Proximity to

2 feet or less Wall
3. Cabinet Material Wood
4. No of Drawers Tens $=0$ Units $=0$
5. No of Shelves 0
6. Cabinet Dimensions
7. Drawer Type

> Height: 2 feet 6 inches Width: 5 feet 0 inches Length: 1 foot 6 inches
> (General Purpose Only)
> Box=4; File=1; Personal=n

5. Shelving Form

1. Shelving Category
2. Proximity to Wall
3. Shelving Material
4. Shelving Dimensions
5. No of Shelves (JIC \#1)

Bookcase

2 feet or less

Metal

Height:	3 feet 1 inch	
Width:	3 feet	0 inches
Depth:	1 feet 0 inches	

a) Nothing entered 1 shelf
b) If units, tens, or hundreds hlank, right justify answers present.

6 Seating Form

1. Seating Type Pedestal
2. Proximity to More than 2 feet
3. Number of Seats 01

TABLE 6 TABLE OF DEFAULT CONDITIONS - FORM SUBROUTINES (Page 4 of 5)
4. Material Types
5. Other Characteristics
6. Dimensions

7 Miscellaneous Items Form

1. Comhustability Non-Combustible Code
2. Proximity Code
3. Dimensions
4. Est. Weight

Width: 0 feet 0 inches

Frame=Wood; Seat=Wood; Back=Wood
a) If both the arms and the padded arms questions blankArm=No: Padded Arms=None
b) Otherwise

Arms = yes
Padded seat = Fabric
Padded hack = Fabric
padded arms = Fabric
Height: 2 feet 9 inches
Width: 2 feet 0 inches
Depth: 2 feet 0 inches Depth: 0 feet 0 inches
a) If units, tens, hundreds, and thousands blank: units=0 tens=0 hundreds $=0$ thousands=0
b) If any entry is marked, rinht justify the four entries and 0 fill significant dinits. If 3 entries marker are "Space-2-Space", weinht is set equal to ? pounds.

A Free or Enclosed Paper or Books Form
Extra Sheet/Separate Separate
Misc. Item No. 0
Free/Enclosed Free
Proximity Code 2 feet or less

TABLE 6 TABLE OF DEFAULT CONDITIONS - FORM SUBROUTINES (Page 5 of 5)

B Equipment

Extra Separate	Separate
Misc. Item	0
Free/Enclosed	Free
Proximity Code	2 feet or less

C Free or Enclosed Other Than Paper, Books, Tupewriters, Calculators or Telephones Form

Extra Separate	Extra
Misc. Item No.	0
Free/Enclosed	Free
Comhustability	Non-Comb
Dimensions	Height 0 feet 0 inches Width 0 feet 0 inches Depth 0 feet 0 inches
Weight	Right justify answers and zero fill significant digits

SUBR. QUESTION DEFAULT

PAPFR Free or Enclosed Paper and Books
Size For Form 5 use book size $10 \times 61 / 2$ All other Forms $=81 / 2 \times 11$

Height of Pile The sum of the heights for legitimate piles divided hy the number of piles
\% Compaction The sum of the percentanes of legitimate piles divided by the number of legitimate piles.

TYCAPH Typewriters, Calculators, and Phones
Typewriter
Free/Enclosed Free
Manual/Electric Electric
Ball/Bar Ball
Carriage Length 15" - 16"
Base Dimensions Length: 1 foot 8 inches
Width: 1 foot 3 inches
Calculator
Free/Enclosed Free
Manual/Electric Electric
Tape/No Tape No Tape
Illum RD/Dial RD. Dial
Base Dimensions Length: 1 foot 2 inches
Width: 0 feet 9 inches
Telephones

```
Personal/Call Dir. Personal
No. Buttons
0
No. Phones
1
```

ENCAGif JIC Boxes for Miscellaneous Items
Free/Enclosed Enclosed
Combustible/Non Combustible
Est. Weight Right justify data and zero
fill significant digits
All: 0 feet 0 inches
data images recorded on mass storage file to tape. The tape was recorded using a 7 track, 800 bpi drive with odd parity, a blocking factor of 1 , and without tape labeling. Data from one room was recorded on a single record. As the record length of many records exceeded 2000 words, no standard software copying packages were available. Because of this, records were read from the mass storage file WIGxxx using VTRAN, a software package developed at NBS and designed to operate on variable length records located on a mass storage file without regard to record length (8). Records were then written on tape using NTRAN, a Univac system package (9).

At the conclusion of Program DTCOPY counts of the number of records copied, the number of rooms processed (records copied minus 2), and the maximum record length were printed on the line printer.

3.5 Data File 2

3.5.1 Introduction

Data File 2 was created in order to perform studies on the distribution of loads throughout the building. In addition to the same building characteristic and occupancy data contained on Data File 1, this file also contains for each area in the building:

1) area identification consisting of the building, floor, and room number of each area;
2) the room use (general office, lobby, elevator, etc.);
3) the number of the firm occupying the area; and
4) the geometric coordinates of the area boundaries located with respect to a global coordinate system established for the building.

The area identification data were obtained from the Room Locator documents discussed in Appendix A. Data concerning the room usage and the number of the occupying firm was obtained from Program ROOM (Sec. 3.3.3) which was executed during the generation of Data File 1. Geometric coordinates were obtained from the Plans documents which were tracings of the floor plans of a building denoting the wall positions. These data with corrections were merged with the same building and firm characteristics (Bxxx) also developed during Program ROOM, which was used for Data File 1.

Methods used for the filming and scanning of the Room Locator and Plans documents were similar to those used by the Bureau of The Census for the generation of Data File 1. However, due to the high degree
flexibility of the FOSDIC system at NBS; all filming, scanning, and processing for Data File 2 was done at NBS. Descriptions of the techniques and programs used to scan the Locator and Plans documents and the programs used to process and edit these data using the NBS UNIVAC 1108 computer facility follow.

3.5.2. Method Used to Determine Wall Coordinates

In processing each building, all wall coordinates were referenced to a building origin. During scanning of each plan tracing (Appendix A), two positions on the horizontal axis were known to be certain distances from the building origin. Figure 8 illustrates the building origin ($B 0$), the two horizontal reference marks (HR1 and HR2), and the two vertical reference marks (VR1 and VR2) for a floor plan tracing. In this particular case, the building origin, the first horizontal reference (HR1), and the first vertical reference (VRI) coincide. The scaled distance between HR1 and HR2 in Figure 8 is 60 feet (HR2 - HR1) and between the two vertical reference marks is 48 feet (VR2 - VR1).

Although the four reference positions are expressed in terms of feet from the building origin, the FOSDIC system determines all distances in terms of FOSDIC modules. For this reason, horizontal and vertical scaling factors to convert FOSDIC modules to feet were calculated. The horizontal scaling factor (HSCAL) was calculated as follows:

$$
\text { HSCAL }=\frac{H R 2-H R 1}{\text { FHR2 }- \text { FHR1 }}
$$

where FHR1 and FHR2 are the coordinates for HR1 and HR2 expressed in FOSDIC modules as indicated in Figure 8. The vertical scale factor (VSCAL) was calculated using:

$$
\text { VSCAL }=\frac{V R 2-V R 1}{F V R 2-F V R 1}
$$

where FVR1 and FVR2 are the coordinates for VR1 and VR2 expressed in FOSDIC modules. HSCAL and VSCAL relate distances on the microfilm tracing to actual building dimensions.

Once the scale factors were established for each tracing, the horizontal and vertical coordinates of any point $P\left(P_{H}, P_{V}\right)$ were converted from FOSDIC modules to feet by the following two equations:

Figure 8 Reference Mark Layout for Floor Plan Tracings

$$
\begin{aligned}
& P_{H}=H S C A L *\left(F P_{H}-F H R 1\right)+H R 1+P H 0 \\
& \text { and } \\
& P_{V}=V S C A L *\left(F P_{V}-F V R 1\right)+V R 1+P V O .
\end{aligned}
$$

The terms $F P_{H}$ and $F P_{V}$ were the horizontal and vertical components for Point P expressed in FOSDIC modules. PHO and PVO refer to the distances between the origin used for the tracing and the building origin (Appendix A).

Referring to Figure 8 as an example, the horizontal and vertical scale factors would be:

$$
\begin{aligned}
& \mathrm{HSCAL}=\frac{60-0}{50-10}=1.5 \mathrm{ft} / \mathrm{mod} . \\
& \mathrm{VSCAL}=\frac{48-0}{45-15}=1.6 \mathrm{ft} / \mathrm{mod} .
\end{aligned}
$$

If $P H O=0$ and $P V O=0$ (i.e. the tracing and building origin coincide) and the FOSDIC coordinates of Point P were $(47,37)$, then the distance of P from the building origin in terms of feet would be:

$$
\begin{aligned}
& P_{H}=1.5(47-10)+0+0=55.5 \text { feet } \\
& P_{V}=1.6(37-15)+0+0=35.2 \text { feet. }
\end{aligned}
$$

3.5.3 FOSDIC Processing

Figure 9 is an overview of the filming and scanning operation for creating Data File 2. For each tracing, up to five room locator documents were microfilmed with and preceded each Plans document. This microfilm record was then processed by the FOSDIC computer-scanner system which produced a diagnostic listing of the run together with a binary tape used as input to the processing programs on the Univac 1108 computer.

On each Plans document, which was a tracing of the whole floor or a segment of a floor (Appendix A), as many as nine areas were sketched across and down the tracing. Consequently, as many as 81 (9×9) unique areas were contained on a single Plans document. In order to correlate each area on the Plans document with a specific room number, a Room Locator document (Appendix A) was completed for each 18 areas on the Plans document. One to five completed Room Locator documents, therefore, preceded each Plans document.

Figure 9 Overview of the NBS Filming and Scanning Operation

On the Plans document, each area was referenced by "x" and " y " coordinates which corresponded approximately to the center of the area. Each "x" and " y " had a value between one and nine. For every area on the Plans document, its corresponding room number and " x " and " y " position were noted on a Room Locator document. Furthermore, if the area was to be subtracted from the total room area, then this fact was also indicated on the Room Locator document. A more detailed explanation of the procedure used to make the tracings may be found in Appendix A.

The microfilm record which consisted of groups of Room Locator and Plans documents was processed by the FOSDIC computer-scanner system. Outputs from this processing consisted of a listing of the documents scanned and a binary 7 track magnetic tape in odd parity written with a density of 556 bpi. This tape was the primary input to the Univac 1108 computer which processed the scanned data and generated Data File 2.

One fixed-length record of characters was created on the FOSDIC output tape for each group of Room Locator documents and the single associated Plans document. As listed in Appendix B.3, the format included provision for data from the heading and 18 room identification sections of five Room Locator documents. The space in the record assigned to the Plans document covered 90 rooms, slightly in excess of the expected maximum of " 81. Unused portions of the record were blank filled.

Separate programs were developed for scanner reading of the two document types. These programs were combined for the single-pass scanning operation. The programs were identified as SCAND for Room Locator and SCANP for Plans.

3.5.3.1 Program SCAND

This included the function of:
a) Transport of the films which contained the document images
b) Calibration on document images
c) Identification of document type (Room Locator or Plans), followed by entry to either (d) or (e) below
d) Scanning of Room Locator document
e) Entry to SCANP program whose termination results in film transport (a) above

After initialization and memory clear at the start of SCAND, the film transport was actuated to bring the next image into the scanning operation. The calibration function was then performed on the new document image resulting in stored constants in the FOSDIC circuits so that subsequent scanning actions would be aligned with the position, size, and tilt of the new image. Calibration was attempted three times in succession if an initial failure was found. Failures were rare, being usually due to improper filming. They were corrected by refilming and rescanning.

Calibration on the Room Locator documents was accomplished through the regular FOSDIC pre-printed elements. However, because the Plans document was an unprinted sheet of faintly-ruled paper, calibration material was added artificially. The final arrangement consisted of a mask along the left edge against which the sheets were placed before microfilming. On top of this mask there was cemented a narrow band containing calibration elements cut off from the left edge of a Room Locator document. This was done to move the identification mark to a new position.

Identification of document type was obtained through scanning at the normal and the shifted locations during the program SCAND. When the mark was found at the regular position, the document was assumed to be a Room Locator and entry was made to the appropriate program. Conversely, the presence of the mark in the alternative location caused execution of the SCANP program.

The program for Room Locator documents, SCAND, resulted in storage of the sensed heading information on building and floor numbers, and four reference values for scaling the two axes of the Plans documents. Room data, covering room identification number and an additive/subtractive indicator were also scanned for all 18 sections on the document. As they appeared in sequence on the film, Room.Locator documents were scanned and their data placed in the appropriate storage positions for organization into the output record. As mentioned, up to five such documents could be handled. When the sequence was terminated by the presence of a Plans document, as shown by the identification portion of the paper, execution was transferred to the SCANP program.

3.5.3.2. Program SCANP

SCANP functions were:
a) Location of document reference marks
b) Location of room center marks
c) Location of room walls
d) Editing and reporting errors in the functions a, b, and c
e) Preparation of the output record
f) Typing out a log entry
g) Listing the results on magnetic tape

Document scanning which was limited to functions a, b, and c consisted of searching for marks which were similar in form in all three instances. Identification of document reference marks and room center marks, as such, was possible because they were found in constrained areas. Wall location marks were found anywhere in the scanner field of view except for those narrow areas reserved for document references and room centers. They were indexed by information on the Locator documents and the room center mark locations as determined by function b. The indexing consisted of predicting and utilizing a point inside the room which was vertically and horizontally in line with the wall location marks.

Acceptance of any of the marks on these documents was contingent upon the mark density and the continuity of the mark in a linear manner for 1/4 inch on the original plan. The first marks scheduled for location were the document reference marks which were found anywhere along a horizontal and vertical strip whose locations were specified to the document preparer. These locations were eventually listed on the magnetic tape and used by the programmer to scale the entire document. Two marks had to exist on each axis and failure to detect two was one basis for reporting a problem in scanning the document.

Two other strips were reserved for the room center marks and location of these was the second phase of the Plans document information retrieval. Editing in this area was based on the requirement that the number of room center marks on each axis must equal at least one and not exceed nine. The locations of these marks were stored in a table for later use in finding walls.

The final phase of the scan combined the room center mark coordinates specified on the Locator document (determined in SCAND) with the actual location of the room center marks (determined in function b as described above) to predict a point inside the room. This point was vertically and horizontally in line with the wall locations drawn by the document preparer. Scanning excursions were made in four directions from this point to locate the walls. These locations were reported to the magnetic tape listing along with the room number which was indicated by the Location document. An error flag. was substituted for any wall which could not be found.

Ouring the course of scanning, the scanner central processor had been combining essential information derived from Locator document scan (SCAND) with essential information derived from Plans document scanning (SCANP) and error information developed in editing both scans. The result was record ready for output to a magnetic tape recorder. Prior to recording, however, a log entry was typed out which listed:
a) Building number
b) Floor number
c) Number of rooms scanned
d) Errors found

It was possible for the operator to intervene at this time and attempt a rescan if he felt it advantageous. When he failed to utilize this option, the results were recorded on magnetic tape.

3.5.4 Central Computer Processing

The objective of the processing done by the Univac 1108 was to check for validity, merge, edit where necessary, and reformat all input data in order to produce Data File 2. Scanned plans data from program SCAND-SCANP, the building and firm characteristic data ($B x x x$) produced by Program: ROOM, and the area classification data (RFTxxx) also produced by ROOM. were the main inputs to the processing. PLANS, EDIT, and FTCOPY were programs developed in order to create Data File 2.

Figure 10 is an overview of the procedure used and the sequence of program executions needed for Data File 2. Program PLANS checked the input data for legality and completeness. A mass storage version of Data File 2 was created, as were diagnostics produced for errors in the plans data. Some errors detected by PLANS were corrected directly using an on-line technique of editing Data File 2. Other more serious errors were corrected by refilming and/or rescanning the Room Locator and Plans documents thus producing a correction tape. By use of Program EDIT, data from this tape were merged with the original plans data to produce a corrected version of the plans data. These corrected input data were again processed by PLANS producing an updated mass storage version of Data File 2 and an updated listing of data errors. This process of checking and editing was repeated until an error free mass storage version of Data File 2 existed. This correct Data File 2 was transferred from mass storage to magnetic tape by use of Program FTCOPY. A more detailed description of the operation of each of these programs follows.

Figure 10 Procedure and Sequence for Execution of PLANS, EDIT, and FTCOPY

Figure 11 Overview of PLANS

3.5.4.1 Program PLANS

Errors in the PLANS data due to inaccurate completion of the documents or erroneous scanning were detected by Program PLANS. Figure 11 is an overview of the program illustrating three input files, Bxxx and RFTxxx developed by Program ROOM, and Pxxx, the mass storage version of the PLANS data. A diagnostic listing and a mass storage version of Data File 2 (PLxxx) were the two outputs generated by PLANS.

Transferal of the building and firm characteristics from Bxxx to PLxxx was PLANS' first task. By use of RFTxxx, the firm number and room use of each area in the plans data were merged with the geometry data for that area. During execution of PLANS, scanned data and "Pxxx were checked for completeness and validity. For each error detected, a diagnostic was generated.

For certain errors, detected default conditions were generated; for other errors the entire record of Pxxx was deleted. In addition to error diagnostics, room identification, room number, room use, the four coordinates of the room, the room area, and accumulated areas of the floor and building were listed for each area processed. Fabile 8 and Table 9 list the errors detected and actions taken by PLANS. When an error listed in Table 8 was found in a Pxxx record, ali the data from that record was either deleted completely from Data File 2, or marked for subsequent correction: In contrast those errors listed in Table 9 affect only a particular data of an area where the error occurred.

As previously noted, each record in Pxxx contained data for up to 81 areas. In order for any of these areas to be processed, certain calibration procedures and scaling parameters had to be properly scanned. As the wall coordinates of each area were determined using the horizontal and vertical scaling factors (Section 3.5.2), the FOSDIC coordinates of the horízontal and vertical reference marks had to be present. If any one or more of these four values were missing or flagged to be in error, then none of the area data from that tracing were processed. Furthermore, if no area centers or more than nine centers were found in either direction on the PLANS document, then that record was not processed.

After all the calibration and scaling factors for each record were estab1 ished to be correct, PLANS processed the remainder of the data from each record. The building number was checked for agreement with the building being processed, the floor number was then checked for a match on file RFTxxx. Errors detected during these two checks together, with the actions taken are listed in Table 8. Problems concerned with the room number and the location of the wall coordinates of each area are contained in Table 9. When all the checks were made for accuracy and completeness of the data, an

TABLE 8 RECORD ERRORS

Error No.	Type of Scanning Error (SCAND-SCANP)	Corrective Action (PLANS)
1	Fail calibrate on any of the Room Locator Documents.	Entire Pxxx Record deleted.
2	One or both horizontal references not found on Plans Document (FHRT, FHR2).	Entire Pxxx Record deleted.
3	One or both vertical references not found in Plans Documerit (FVR1, FVR2).	Entire Pxxx Record deleted.
4	Both horizontal references marked to be zero feet on Room Locator Document (HRI $=H R 2=0$).	East and West positions will be the value of the horizontal offset (PHO).
5	Both vertical references marked to be zero feet on Room Locator Document (VR1=VR2=0).	North and South positions will be the value of the vertical offset (PVO).
6	More than 9 or less than 1 horizontal area centers found on Plans Document.	Entire Pxxx Record deleted.
7	More than 9 or less than 1 vertical area centers found on Plans Document.	Entire Pxxx Record deleted.
8	Building number in Pxxx records disagrees with building being processed.	Building number being processed was used.
9	No floor match on RFTxxx	Next record on RFTxxx used for floor number, area use, and firm number for each area in record.

TABLE 9 DATA ERRORS

Error No.	Error	Corrective Action
1	Room number of area on Pxxx is zero.	Room number is zero. Firm number and area use of last area processed is used.
2	Room number from Pxxx does not exist on RFTxxx.	Use of area is "Other," firm number is 999 implying firm type is non-classifiable.
3	The "x" and "y" entries on the Room Locator Document were illegal.	Room deleted from Data File 2.
4	The "x" and "y" entries on the Room Locator Document were not on the Plans Document.	Room deleted from Data File 2.
5	West wall of a room not found by FOSDIC.	West wall coordinate set to zero.
6	East wall of a room not found by FOSDIC.	East wall coordinate set to zero.
7	North wall of a room not found by FOSDIC.	North wall coordinate set to zero.
8	South wall of a room not found by FOSDIC.	South wall coordinate set to zero.
9	West wall was greater than the East wall of an area.	Room deleted from Data File 2.
10	North wall was greater than the South wall of an area.	Room deleted from Data File 2.

output record was generated for each area. This record consisted of building number, floor number, room number, firm occupying room, room use, a flag denoting whether or not the area was additive and the coordinates of each wall calculated using the procedure described in Section 3.5.2. A description of the format of each record is given in Appendix B.5.

Program PLANS also printed a list of summary information. This list included a count of the number of records read from File Pxxx, the total area calculated in the building, and the number of area records written to Data File 2. A table listing the total area of each floor, the sum of the floor areas up to and including each floor, and the percent change in area from floor to floor were also given.

3.5.4.2 Program EDIT

As Program PLANS was developed to detect errors in the plans data (Pxxx), Program EDIT was created in order to substitute correct data for erroneous data and produce a corrected file of the plans data (Pxxx). Data found to be in error were corrected on the Room Locator and Plans document. Those corrected documents were refilmed and the microfilm record rescanned as discussed in Section 3.5.3. These corrected plans data (CPxxx) were then merged with the original plans data ($P_{x x x}$) using Program EDIT. Correction cards were used to direct the manner in which records from Pxxx and CPxxx were merged with each other.

Figure 12 is an overview of Program EDIT. The input consisted of three files. The original plans data on file Pxxx, the rescanned correction plans data on file CPxxx, and the file of correction directions on DPxxx . were operated on by EDIT to produce a corrected version of the plans data, Pxxx, together with a listing of the corrections.

Three distinct editing features were available in this program: substitute, add, and delete. Any record in file CPxxx could be substituted for any record in file Pxxx. Any record in file Pxxx could be deleted. Finally, any record on CPxxx could be added after any record on Pxxx.

Each card in file DPxxx contained the number of the physical record in Pxxx which was keyed upon, and then a record was either added, substituted, or deleted. The action to be taken and the number of the physical record on CPxxx was also contained on each card. With the three available options, file Pxxx was changed in any manner desired providing each change involved only whole physical records. As each change was implemented, a listing of that change was generated. The updated plans data Pxxx were then reprocessed by Program PLANS to form a correct version of Data File 2 (PLxxx).

3.5.4.3 Program FTCOPY

Data File 2 was the mass storage file PLxxx containing the processed data from Program PLANS. For subsequent processing of the data, this file (PLxxx) had to be transferred from a FORTRAN-formatted mass storage file to a binary-formatted magnetic tape. Program PLANS used a FORTRAN format so that minor errors in PLxxx could be corrected using the Univac 1108 on-line EDITOR (ED) processor (10) rather than Program EDIT (Section 3.5.4.2) which was a file editor.

Program FTCOPY read each record from PLxxx with the proper FORTRAN format and then wrote the binary record to magnetic tape using an NTRAN write statement (9).

Table 10 lists the tape parameters for the input and output tapes for Data Files 1 and 2.

TABLE 10 DATA TAPE PARAMETERS

Description	Data File 1		Data File 2	
	Census Input	NBS Output	NBS Input	NBS Output
No. of Tracks	7	7	7	7
Density	800 bpi	800 bpi	800 bpi	800 bpi
Parity	even	odd	odd	odd
Labeled Tape	BCD	no	no	no
Method of Recording	BCD	Unformatted Binary	Unformatted Binary	Unformatted Binary
Blocking Factor	6	1	1	1
Format Specification	See App. B.l	See App. B.4	See App. B.3	See App. B.5
Record Length	Fixed	Variable	Variable	Variable

4.

DATA ANALYSIS

4.1 General

Several special-purpose computer programs were developed to provide the data analyses desired. An overview of the data retrevial procedure and analysis programs is shown in Figure 13. The primary results to be produced by these analysis tools are

- Tables of statistical compilations describing the surveyed rooms and their contents,
- Histograms of the collected information,
- A set of data tapes containing all of the acquired data in a form readily useable for future.studies,
- Statistical models of the fire load and live load in office buildings, and
- A set of data tapes containing live load and fire load models for specific buildings.

The two data files previously described in Chapter 3 provide the primary input to these data analysis and data processing programs. Frogram MAKER first converts the survey data on Data File 1 to fire weights and live weights using the transfer functions discussed in Reference 1. The program then checks the validity of much of the data and restructures it for efficient retrieval. It also provides diagnostic messages and messages highlighting extreme values.

Program SEEKER is used to abstract information from the "processed data files" created by MAKER. The types of output provided by SEEKER are

1) Simple summary type information presented in tabular form,
2) Data files to be used as input to the HISTOG line printer plotting routine, and
3) Data files to be used as input to the BUILDER program where they are used as the data for those rooms which were surveyed in a particular building.

Coding for determining the means, maximum and minimum values, standard deviations, and number of items is included in this program.

Figure 13 Overview of Data Retrieval and Analysis

Program READER is a multipurpose program structured to perform a number of simple data manipulation tasks. In some instances it performs the same operations as SEEKER but because it is much less general than SEEKER it performs them quicker and cheaper. Among other things, READER can be used to mark specific records on the MAKER file so that SEEKER will ignore them. This is useful if the MAKER diqnostic messages indicate that a particular room is erroneous. READER is also used to generate the regression analysis data file needed by the BIOMED-BMDO2R program. Twenty-three specific pieces of information are placed on this data file for each room.

The floor plan data from Data File 2 together with the room survey data from READER and the statistical models for floor loading from BIOMED-BMDO2R are combined by BUILDER to provide information for all areas within the building. For the surveyed rooms, direct values of live load and fire load can be used. For those roons not surveyed, the floor loading models are used to compute values for these quantities. The area of the rooms and their spatial location relative to a fixed coordinate system for the building are provided by Data File 2.

The files created by BUILDER permit future research studies to be made of the loading for an entire building.

Detailed descriptions of each of these programs are presented in subsequent sections.

4.2 Weight Determination (Program MAKER)

4.2.1 Introduction

Program MAKER is one of a series of programs which have been developed to process, manipulate, retrieve, and analyze the fire weight and live load survey data. MAKER's primary purposes are to check for validity and to restructure the survey data into a form that can be accessed by the SEEKER program (Tables 11, 12, and 13).

The survey data collection forms (1) have previously been microfilmed and the data read onto a magnetic tape in the order noted in Table 1 of Appendix B.4. The MAKER program performs the following operations on these data: reads the data, checks it for consistency, converts the data into a more useful form by performing many different calculations. Using weight data and transfer functions, descriptive information about the room contents is transformed into weights. These values are then tested and another magnetic tape is produced which is designed to be used in conjunction with the SEEKER program and statistical analysis programs to provide virtually any statistical analysis of the survey data. The program MAKER consists of a main program called DRIVE and seven subroutines called: FORMA, FORMB, FORMC, RMCONT, FSEAP, BONCOM, and DATA.

DRIVE reads the input data tape, processing the data one room at a time. DRIVE then checks for consistency with the data-collection sheet configuration of the raw data input on Forms 1-7, and calls subroutines FORMA, FORMB, and FORMC for a consistency check of the raw data collected on Form A, B, and C, respectively. Then DRIVE converts this raw data into a form that is used by the RMCONT, BONCOM, and FSEAP subroutines. When these subroutines have analyzed the data, DRIVE writes the output they generate on a magnetic tape.

FORMA is called from DRIVE when data from Form A is found in the input databuffer by DRIVE. This subroutine checks the consistency of the data with the configuration of the data-collection form and assigns it to the proper vector for further analysis. If the data is for a freestanding pile of paper or books, FORMA calls subroutine FSEAP to produce the desired output; if the data is not for such a freestanding pile, control is returned to DRIVE.

FORMB is called from DRIVE when data from Form B is found in the room databuffer by DRIVE. FORMB performs the same function as FORMA except it manipulates equipment data instead of book or paper pile data.

FORMC is identical in function to both FORMA and FORMB described above except that it is used to manipulate miscellaneous objects data and is never used for freestanding objects; thus, it will not call FSEAP.
PAGE 1 OF 11
Sequence \quad Description
Number
F-Format* Codes and Units

1	Number of words of data	6.0	Number, total number of data items stored herein for subject room.
2	Building number	4.0	To be assigned each structure surveyed (1 to 101).
3	Floor number	3.0	Determined as actual height in number of floors (13th is included) above ground level.
4	Room number	5.0	To be assigned to each room in a particular structure.
5	Firm number	3.0	To be assigned to each firm in a particular structure.
6	Firm type	3.0	Standard industrial classification two digit code.
7	Firm age	3.0	Lencth of time the firm has been at this location.
8	Building surveyor code	4.0	To be assigned to each surveyor working on project.
9	Room surveyor code	4.0	To be assigned to each surveyor working on project.
10	State number	3.0	Number (1.0 to 51.0)
11	Building zip code	5.0	

TABLE 11 ROOH PARAMETERS (BOUNDING-SURFACE AND ROOMCOMPOSITE): OUTPUT OF DATA RESTRUCTURING PROGRAM
PAGE 2 OF 1

Sequence Number	Description	F-Format	Codes and Units
12	Date of construction	4.0	Year constructed.
13	Building age at time of survey	4.0	1975 minus construction date (age at time of survey) in years.
14	Building height	3.0	In number of stories above ground level.
15	Vertical load resisting system	2.0	For building: column $=1.0$, bearing wall $=2.0$.
16	Building material	2.0	```Concrete = 1.0, steel = 2.0, masonry = 3.0, wood = 4.0.```
17	Building occupancy type	2.0	Federal Government $=1.0$, State Government $=$ 2.0, Local Government $=3.0$, Private $=4.0$, Private and Government $=5.0$.
18	Number of firms in building	5.0	Number
19	Room use	2.0	```General = 1.0, clerical = 2.0, lobby = 3.0, conference = 4.0, file = 5.0, storage = 6.0, library = 7.0.```
20	Number of occupants	4.0	Normal occupancy, in number of people
21	Wall area (no cutouts for doors or windows)	7.2	ft^{2}, Height * 2 * (Length + Width $)$
22	Door area	7.2	ft^{2}
23	Window area	7.2	ft^{2}

PAGE $30 F 11$

Sequence Number	Description	F-Format	Codes and Units
24	Floor area	7.2	ft^{2}, identical to ceiling area.
25	Room volume	9.2	ft^{3}
26	Ceiling material	2.0	Wood $=1.0$, metal $=2.0$, plastic $=3.0$, acoustical tile $=4.0$, non-combustible $=5.0$.
27	Ceiling trim material	2.0	```Wood = 1.0, metal = 2.0, plastic = 3.0, rubber = 8.0.```
28	Door material	2.0	Wood $=1.0$, metal $=2.0$, plastic $=3.0$.
29	Door trim material	2.0	```Wood = 1.0, metal = 2.0, plastic = 3.0, rubber = 8.0.```
30	Floor material	2.0	$\begin{aligned} & \text { Wood }=1.0, \text { non-combustible }=5.0, \\ & \text { resilient flocr }=6.0, \text { carpet }=7.0 . \end{aligned}$
31	Floor trim material	2.0	Wood $=1.0$, metal $=2.0$, plastic $=3.0$, rubber $=8.0$.
32	Window trim material	2.0	```Wood = 1.0, metal = 2.0, plastic = 3.0, rubber = 8.0.```
33	Wall 1, type	2.0	Full $=1.0$, open $=2.0$, partial $=3.0$.
34	Wall 1, number of windows	2.0	Number.
35	Wall 1, number of doors	2.0	Number.
36	Wall 1, material	2.0	Wood $=1.0$, metal $=2.0$, plastic $=3.0$, non-combustible $=4.0$, plaster $=5.0$, gypsum board $=6.0$.

TABLE 11 ROOH PARAYMETERS (BOUNDING-SURFACE AND ROOMCOHPOSITE): OUTPUT OF DATA RESTRUCTURING PROGRAM
PAGE $40 F 11$
TABLE 11 ROOM PARAMETERS (BOUNDING-SURFACE AND ROOMCOMPOSITE): OUTPUT OF DATA RESTRUCTURING PROGRAM
PAGE 5 OF 1

3.0	Paper $=7.0$, drapes $=8.0$, vinyl $=9.0$, paint $=10.0$, zero for partial height walls or open areas.
5.2	ft, zero for open area.
5.2	ft, zero for open area.
2.0	Full $=1.0$, open $=2.0$, partial $=3.0$.
2.0	Number.
2.0	Number. 2.0\quadWood $=1.0$, metal $=2.0$, plastic $=3.0$, non-combustible $=4.0$, plaster $=5.0$,
gypsum board $=6.0$.	

TABLE 11 ROOM PARAMETERS (BOUNDIN G-SURFACE AND ROOM-
COMPOSITE): OUTPUT OF DATA RESTRUCTURING PROGRAM
PAGE 6 OF 11
5.2
2.0
$\stackrel{2}{\sim}$
Within $2 \mathrm{ft}=1.0$, more than $2 \mathrm{ft}=2.0$.

Within $2 \mathrm{ft}=1.0$, more than $2 \mathrm{ft}=2.0$.

$f t$
ft
Wood $=1.0$, metal $=2.0$, plastic $=3.0$,
fabric $=4.0$.
Within $2 \mathrm{ft}=1.0$, more than $2 \mathrm{ft}=2.0$.
$\Psi 4$
ft

F-Format
 \cdots
5.2
5.2
5.2
2.0
$\stackrel{\circ}{i}$
5.2
$\stackrel{\sim}{\sim}$
$\stackrel{\square}{i}$
$\stackrel{\square}{\sim}$
5.2
$\stackrel{\sim}{i}$

Sequence
Number
Description
$\underset{6}{ }$ \because

- $\widehat{0}$
∞
9
ㅇ
-

iN N 74
75
76
Internal partition 4, height
TABLE 11 ROOM PARAMETERS (BOUNDING-SURFACE AND ROOM-
COMPOSITE): OUTPUT OF DATA RESTRUCTURING PROGRAM
PAGE 7 OF 11
F-Format Codes and Units

[^1]Sequence
Number

77 78 79 80 80 81 82 83 84 85 86 87

TABLE 11 ROOM PARAMETERS (BOUNDING-SURFACE AND ROOM-
PAGE 8 OF 11

Sequence Number	Description***	F-Format	Codes and Units
88	Interior finish fire weight	7.2	1b $\}$ does not include partitions
89	Interior finish fire weight per unit area	6.2	$p s f$
90	Total number of all items in room	3.0	Number of desks, tables, cabinets, shelves, chairs, miscellaneous, and free standing piles of paper, books, and equipment.
91	Total weight estimated by surveyor	7.2	16
92	Fire weight enclosed in metal containers-derated	6.2	\% of total derated fire weight.
93	sd fire weight enclosed in metal containers - derated	6.2	\% of total derated fire weight.
94	\% of furniture and miscellaneous items within 2 ft of the walls	6.2	\% of total number of pieces of furniture and miscellaneous items.
95	\% of freestanding items within 2 ft of the walls	6.2	\% of total number of freestanding items
96	Movable fire weight enclosed within 2 ft of the walls-derated	6.2	\% of total derated fire weight.
97	sd movable fire weight enclosed within 2 ft of the walls-derated	5.2	\% of total derated fire weight.
98	Movable fire weight within 2 ft of the walls-derated - does not includ internal partitions.	6.2	\% of total derated fire weight.

TABLE 11 ROOM PARAMETERS (BOUNDING-SURFACE AND ROOM-
COMPOSITE): OUTPUT OF DATA RESTRUCTURING PROGRAM
PAGE 9 OF 11

$$
\text { F-Format } \quad \text { Codes and Units }
$$

Sequence
Number
ㅇ. 응
101
102
103
 $\stackrel{\circ}{\circ}$ 106 107
$\stackrel{\otimes}{\varnothing}$
109

$$
\begin{aligned}
& \text { sd movable fire weight within } \\
& 2 \mathrm{ft} \text { of the walls-derated } \\
& \text { Total fire weight enclosed- } \\
& \text { derated } \\
& \text { sd total fire weight enclosed- } \\
& \text { derated } \\
& \text { Total fire weight that is paper- } \\
& \text { derated, not including books } \\
& \text { sd total fire weight that is paper- } \\
& \text { derated, not including books } \\
& \text { Total fire weight that is books- } \\
& \text { derated } \\
& \text { sd total fire weight that is books- } \\
& \text { derated } \\
& \text { Total fire weight enclosed in } \\
& \text { plastic } \\
& \text { sd total fire weight enclosed in } \\
& \text { plastic } \\
& \text { Total fire weight in room-derated } \\
& \text { sd total fire weight in room-derated }
\end{aligned}
$$

$$
\begin{array}{ll}
5.2 & \text { \% of total derated fire weight. } \\
6.2 & \text { \% of total derated fire weight. } \\
5.2 & \text { \% of total derated fire weight. } \\
6.2 & \text { \% of total derated fire weight. } \\
5.2 & \text { \% of total derated fire weight. } \\
6.2 & \text { \% of total derated fire weight. } \\
5.2 & \text { \% of total derated fire weight. } \\
6.2 & \text { \% of total derated fire weight. } \\
5.2 & \text { \% of total derated fire weight. } \\
8.2 & \text { 1b } \\
8.2 & \text { 1b }
\end{array}
$$

$$
\begin{aligned}
& \text { Sequence } \\
& \text { Number } \\
& \hline
\end{aligned}
$$

TABLE 11 ROOM PARAMETERS (BOUNDING-SURFACE AND ROOM. COMPOSITE): OUTPUT OF DATA RESTRUCTURING PROGRAM
PAGE 10 OF 11
Codes and Units

Description | $\begin{array}{l}\text { Sequence } \\ \text { Number }\end{array}$ | Description |
| :--- | :--- |
| 110 | $\begin{array}{l}\text { Fire weight per unit area- } \\ \text { derated }\end{array}$ |
| 111 | $\begin{array}{l}\text { sd fire weight per unit area- } \\ \text { derated }\end{array}$ |
| 112 | $\begin{array}{l}\text { Total fire laad - percentage, } \\ \text { derated. }\end{array}$ |
| 113 | $\begin{array}{l}\text { sd total fire load - percentage, } \\ \text { derated. }\end{array}$ |
| 114 | $\begin{array}{l}\text { Number of desks }\end{array}$ |
| 116 | $\begin{array}{l}\text { Number of tables }\end{array}$ |
| 117 | $\begin{array}{l}\text { Number of shelves }\end{array}$ |
| 118 | $\begin{array}{l}\text { Number of chairs }\end{array}$ |
| 119 | $\begin{array}{l}\text { Number of miscellaneous items } \\ 120\end{array}$ | \(\begin{aligned} \& Number of free standing piles of

\& 122\end{aligned}\)
F-Format

$$
\begin{aligned}
& \begin{array}{lllllllllllll}
N & N & N & N & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\dot{0} & \dot{0} & \dot{0} & \dot{0} & \dot{m} & \dot{m} & \dot{m} & \dot{m} & \dot{\sigma} & \dot{m} & \dot{m} & \dot{m} & \dot{m}
\end{array}
\end{aligned}
$$

TABLE 11 ROOM PARAMETERS (BOUNDING-SURFACE AND ROOM-
COMPOSITE): OUTPUT OF DATA RESTRUCTURING PROGRAM
PAGE 11 OF 11
Description F-Format Codes and Units

123	\% of total live weight within 2 ft of the walls	6.2	
124	sd \% of total live weight within 2 ft of the walls	5.2	$\% \int \text { internal partitions. }$
125	Heaviest item in room	6.2	1b
126	\% of wall area that is either window or door	6.2	\%
127	Flag for specifying how room was selected	2.0	0.0 - randomly selected 1.0 - non-randomly selected 2.0 - selected on room use basis 3.0 - selected on room area basis 4.0 - selected for horizontal correlation 5.0 - selected for vertical correlation 6.0 - selected for tail sample
128	Room opening factor ($A \sqrt{H} / A_{T}$). Set to -1.0 if room does not have 4 full height walls.	6.2 6.4	Number ($A=$ total window area; $H=$ average window height; $A_{T}=$ total surface area of room, including ceiling, floor, walls, doors windows).
129	Internal room partition live weight	8.2	1 b
130	sd internal room partition live weight	8.2	10
131	Total room fire weight-underated	8.2	10
132	sd total room fire weight-underated	8.2	1 b

TABLE 12 ROOM-CONTENTS (FURNITURE): OUTPUT OF dATA RESTRUCTURING PROGRAM
PAGE I OF 5
F-Format* Codes and Units

1	Index number	2.0	Desk $=2.0$, table $=3.0$, cabinet $=4.0$, shelf $=5.0$, chair $=6.0$, miscellaneous $=7.0$.	
2	Type	2.0	Desk:	single pedestal $=1.0$, double pedestal $=2.0$, with legs $=3.0$.
			Table:	$\begin{aligned} & \text { single pedestal }=1.0 \text {, with legs } \\ & =2.0 \text {. } \end{aligned}$
			Cabinet:	filing $=1.0$, file safe $=2.0$, blueprint $=3.0$, card file $=4.0$, general purpose $=5.0$.
			Seating:	```pedestal = 1.0, legs = 2.0, up- holstered = 3.0, sofa = 4.0, bench = 5.0, drafting stool = 6.0, classroom chair = 7.0.```
			Shelving	bookcase $=1.0$, free shelving $=2.0$.
			Miscellaneous:	-0.0-
3	Material/number of chairs	2.0	Desk:	$\begin{aligned} & \text { wood }=1.0, \text { metal }=2.0, \text { plastic } \\ & =3.0 . \end{aligned}$
			Table:	material of top, same as desk
			Cabinet:	same as desk

*The output will be written on a magnetic tape in an unformatted binary form.
TABLE 12 ROOM-CONTENTS (FURNITURE): OUTPUT OF DATA RESTRUCTURING PROGRAM Page 2 of 5
Sequence
Number
Description
F-Format Codes and Units

**All fire weights are in equivalent pounds of cellulose (8000 BTU/lb).
OUTPUT OF
TABLE 12
PAGE 3 OF 5
Description F-Format Codes and Units
$\left.\begin{array}{llll}\hline 15 & \text { Surface area of books and papers } & 8.2 & \mathrm{ft}^{2} \\ 16 & \text { sd surface area of books and papers } & 8.2 & \mathrm{ft}^{2} \text {, zero for all } \\ 17 & \text { Enclosed paper live weight } & 8.2 & \mathrm{lb} \\ 18 & \text { sd enclosed paper live weight } & 8.2 & \mathrm{lb}\end{array}\right\}$ zero for shelves and seating.

[^2]PAGE 4 OF 5
F-Format Codes and Units

$\left.\begin{array}{llcl}\text { Number } & \text { Description } & \text { F-Format } & \text { Codes and Units } \\ \hline 31 & \text { Free books fire weight } & 8.2 & 1 \mathrm{lb} \\ 32 & \text { sd free books fire weight } & 8.2 & 1 \mathrm{lb} \\ 33 & \begin{array}{l}\text { Enclosed office equipment* live weight }\end{array} & 8.2 & 1 \mathrm{lb} \\ 34 & \begin{array}{l}\text { sd enclosed office equipment live } \\ \text { weight }\end{array} & 8.2 & 1 \mathrm{lb}\end{array}\right\}$ zero for shelves and seating.-
*Equipment means typewriters, calculators, and telephones.

[^3] DATA RESTRUCTURING PROGRAM
PAGE 5 OF 5
F-Format .Codes and Units

45	Total enclosed fire weight	8.2	1b
46	sd total enclosed fire weight	8.2	16
47	Total free fire weight	8.2	16
48	sd total free fire weight	8.2	1b
49	Flag for specifying how empty weight was computed	2.0	0.0 - standard transfer function, 1.0 - transfer function wherein the weight was estimated without available data for the subject material, type, or size group 2.0 - weight set to zero because (a) size too small; (b) indices incorrect, (c) made of plastic
50	Total fire weight (derated)	8.2	1b
51	sd total fire weight (derated)	8.2	1b

table 13 room contents (Stand-Alone equipment and piles): OUTPUT OF DATA RESTRUCTURING PROGRAM

> Codes and Units

$$
\begin{aligned}
& \text { Paper pile }=1.0 \text {, book pile }=2.0, \\
& \text { typewriter }=3.0 \text {, calculator }=4.0, \\
& \text { telephone }=5.0 \text {, } \\
& \text { Within } 2 \mathrm{ft}=1.0 \text {, outside } 2 \mathrm{ft}=2.0 \text {. } \\
& \text { Number of telephones of this type, } \\
& \text { zero for all other. } \\
& 1 \mathrm{l} \\
& 16 \\
& 1 \mathrm{l}^{\star \star} \\
& 1 \mathrm{~b} \\
& \mathrm{ft}^{2} \\
& \mathrm{psf} \\
& \text { psf }
\end{aligned}
$$

**All fire weights are equivalent pounds of cellulose (8000 BTV/lb).
Index number
2.0
2.0

$0 \cdot 2$

$$
\begin{aligned}
& 6.2 \\
& 6.2
\end{aligned}
$$

3	Proximity to wall
4	Number of telephones
5	Live weight
5	sd* live weight
6	Fire weight
7	sd fire weight
8	Projected floor area
9	Total floor loading
10	sd total floor loading

> * sd = standard deviation
2

Fire weight
$746!$ ам әม! PS

Total floor 1
sd total floor
,

$$
\begin{aligned}
& 6.2 \\
& 6.2
\end{aligned}
$$

$$
6.2
$$

$$
8.2
$$

$$
8.2
$$

$$
8.2
$$

-

$0.2 \quad$ ost r-

RMCONT is called from DRIVE to check and produce output for the furniture and miscellaneous freestanding items in a room (from data collected on Forms $1-7, A-C)$. The RMCONT subroutine produces a total picture of the room contents, not only the furniture size and weight, but also a description of all the contents (the output produced is listed in Table 12).

FSEAP is called from either FORMA or FORMB for the checking and production of data describing freestanding piles of books or paper, or freestanding equipment (the output produced is listed in Table 13).

BONCOM is called at the end of the room analysis to compute and check the room totals and to produce the data to describe the room itself (the output of this subroutine is listed in Table 11).

DATA just provides transfer function data to the other subroutines. A generalized flow chart describing program operation is shown in Figure 14.

When the output described in Tables 11,12 , and 13 is written on a FASTRAND file or on tape, two records are generated for each room. The first is a ten-word record with each word equal to NBUF, the number of words in the output record. The second record is the processed data. It is NBUF words long. When the output is being written on a magnetic tape, up to approximately $3,200,000$ words will be written on one reel. If the capacity of one reel is exceeded, the program will write a ten integer word record of all 999999's at the end of the filled reel. If the room has terminated abnormally, the tenth word of the ten word record is set to zero (see Table 7 of Appendix B. 4 for additional details).

Figure 14 General Flow Chart for Program MAKER

4.2.2 Operating Techniques

4.2.2.1 Program Capabilities

MAKER is designed to read the room data in the order in which the forms for data collection are completed. DRIVE determines which data-collection form is being processed and proceeds to either call subroutines FORMA, FORMB or FORMC, or (for data from forms 1 through 7) to process the raw data in DRIVE. DRIVE makes sure that the raw data values are consistent with the data collection forms. If any discrepancies are found, an error message is printed. Appendix B. 4 lists the messages that are printed along with the conditions which activate them. The occurrence of some errors causes termination of the analysis of this room and requires going on to another. FORMA, FORMB, and FORMC perform similar tests.

DRIVE has two methods for data output: (1) writing the output in an unformatted binary form on a magnetic tape (this option is for minimum output time using the Univac 1108 Fortran V library function NTRAN), or (2) printing the output in a formatted form. Method 2 can be used to check the output, because it does not disturb the output produced by method 1. DRIVE also has an option for the use of the location of room contents in the room. As the survey stands, it is only determined whether or not some portion of the item is within two feet of the well. Exercising this option would make other room location procedures possible, but more programming would be necessary at that time. (Both the options discussed above and the means for exercising them are defined in Appendix B.4.)

RMCONT, FSEAP, and BONCOM perform similar tests to DRIVE, FORMA, FORMB, and FORMC, but these tests usually require a preconceived notion of what data values make sense when different data values are considered together. Even though it is possible to have certain values filled in on the data collection forms, the data may be meaningless when considered in light of other values. For example, consider a) the number of buttons on a telephone and b) whether or not it is a call director. Obviously, a phone with zero buttons cannot be a call director, but the data collection forms allow such an inconsistency. This type of error is checked for by RMCONT, FSEAP, and BONCOM. In addition, checks are made to insure that the subscripts used to access data in a transfer function are meaningful.

Messages are also printed whenever a derived value is improbable or notable even though the input data is consistent. An example of this would be a file room which has been recorded as having more than 11 occupants. Certainly a file room would not be expected to have a high occupancy rate. These tests are made so that such occurrences will be noted and follow-up checks for validity may be made if desired. Many other values are checked in this way. The mnemonics tables in Appendix B. 4 have details
on the form of these checks*.
In addition to checking for abnormalities in the raw and processed data, program MAKER also checks for the use of non-standard transfer function values. These occur when the program must use a transfer function for a size category for which no data was found. Additional data on the transfer functions is given in Section 4.2.2.4.

In order for subroutines RMCONT, FSEAP, and BONCOM to function, they must be supplied with data by the DRIVE, FORMA, FORMB, and FORMC routines. RMCONT, FSEAP, and BONCOM are intermediate data processors and operate only from call statements in the other subroutines. Thus, DRIVE, in coordination with FORMA, FORMB, and FORMC reads the raw data, makes elementary consistency checks, and produces input for RMCONT, FSEAP, and BONCOM. These routines then process the data using transfer functions to calculate the desired load data. DRIVE then writes the complete data set for the room just processed, according to the method selected by the user, and proceeds to the next room.

4.2.2.2 Statistical Techniques

4.2.2.2.1 Percentages

Several of the derived parameters produced by program MAKER involve a percentage and the standard deviation of that percentage. Specifically, the following items (from Table 4 of Appendix B.4) are of this nature:

92, 93 Percentage (and standard deviation) of fire weight enclosed \therefore. in metal containers (derated)
96, 97 Percentage (and standard deviation) of movable fire weight enclosed within two feet of the walls (derated)
98, 99 Percentage (and standard deviation) of movable fire weight within two feet of the walls (derated)
100,101 Percentage (and standard deviation) of total fire weight enclosed (derated)
102,103 Percentage (and standard deviation) of total fire weight that is paper (except books)(derated)
104,105 Percentage (and standard deviation) of total fire weight that is books (derated)

[^4]106,107 Percentage (and standard deviation) of total fire weight that is enclosed in plastic (derated)
123,124 Percentage (and standard deviation) of total live weight within two feet of the walls

All of these items have two important characteristics in common: they involve a ratio wherein both numerator and denominator are random variables and wherein the value of the numerator is formed from a subset of the denominator. Consequently a similar approach can be used for all of the calculations.

If the desired ratio is defined as

$$
z=\frac{u}{x}
$$

and x is defined as

$$
x=u+v
$$

where u and v are independent random variables, a straight forward, albeit approximate, approach can be developed to calculate

```
    \(\bar{z}\) (the expected value of the ratio)
```

and

$$
\sigma_{z} \text { (the standard deviation of the ratio). }
$$

In general both u and v are the sum of a number of independent random variables, each of which is only described by its mean and standard deviation. For example, when x is the total fire weight, it is the sum of the fire weight of each paper pile, each book pile, and each piece of furniture and equipment in the room. With one exception *, all of these individual items have been assumed to be independent. Consequently, the collection of items which make up u is independent of the collection of items which make up v. Consequently

$$
\begin{align*}
& E[x] \equiv \bar{x}=\bar{u}+\bar{v} \tag{1}\\
& E\left[(x-x)^{2}\right] \equiv \sigma_{x}^{2}=\sigma_{u}^{2}+\sigma_{v}^{2} \tag{2}
\end{align*}
$$

The corresponding equations used in program MAKER to calculate \bar{z} and σ_{z} were derived as follows:

$$
\begin{equation*}
z=\frac{u}{x}=\frac{u}{u+v}=\frac{1}{1+y} \tag{3}
\end{equation*}
$$

*See Section 4.2.2.2.3

$$
\begin{equation*}
\text { where } \quad y=v / u \tag{4}
\end{equation*}
$$

Use the first-order approximation technique based on the Taylor series expansion (page 180 of Reference 4 or Section 2.3 of Reference 5):

$$
\begin{align*}
& E[F(x, y)]=F(\bar{x}, \bar{y}) \tag{5}\\
& \operatorname{Var}[F(x, y)] \doteq\left[\frac{\partial F}{\partial x}\right]_{\text {mean }}^{2} \sigma_{x}^{2}+\left[\frac{\partial F}{\partial y}\right]_{\text {mean }}^{2} \sigma_{y}^{2}+2\left[\frac{\partial F}{\partial x}\right]\left[\frac{\partial F}{\partial y}\right]_{\text {mean }} \sigma_{x y} \tag{6}
\end{align*}
$$

Using equation 5, the average of y is given by

$$
\begin{array}{ll}
\bar{y} \doteq \bar{v} / \bar{u} & \tag{7}\\
\text { where } & \bar{v}=\text { average value of } v \quad[v>0] \\
& \bar{u}=\text { average value of } u \quad[u>0]
\end{array}
$$

and the variance of y is given by equation 6

$$
\begin{equation*}
\sigma_{y}^{2} \doteq\left(\frac{\bar{v}}{\bar{u}}\right)^{2}\left(\frac{\sigma_{v}^{2}}{\bar{v}^{2}}+\frac{\sigma_{u}^{2}}{\bar{u}^{2}}\right) \quad\left[\sigma_{v} \ll \bar{v}\right] \tag{8}
\end{equation*}
$$

where $\sigma_{u v}=0$ because u and v are uncorrelated
Next equations 5 and 6 are applied to z

$$
\begin{align*}
& \bar{z} \doteq \frac{1}{(1+\bar{y})}=\frac{\bar{u}}{\bar{u}+\bar{v}} \tag{9}\\
& \sigma_{z}^{2} \doteq\left(\frac{1}{(1+\bar{y})^{4}}\right) \sigma_{y}^{2}=\left(\frac{\bar{u}}{\bar{u}+\bar{v}}\right)^{4}\left(\frac{\bar{v}}{\bar{u}}\right)^{2}\left(\frac{\sigma_{v}{ }^{2}}{\bar{v}^{2}}+\frac{\sigma_{u}{ }^{2}}{\bar{u}^{2}}\right) \\
& \sigma_{z}^{2} \dot{z}\left(\frac{1}{\bar{u}+\bar{v}}\right)^{4}\left(\bar{u}^{2} \sigma_{v}{ }^{2}+\bar{v}^{2} \sigma_{u}^{2}\right) \tag{10}
\end{align*}
$$

The above formulation cannot be applied to two of the derived percentages because they involve quantities which are related to each other by multiplicative constants. These are items 112 and 113 from Table

112,113 Total room fire weight (and standard deviation) as a percentage of the total room live weight

Using an approach analogous to the one just discussed, the mean and variance of this ratio can also be approximated as follows:

$$
\begin{align*}
& \begin{array}{l}
z=v / u \\
\text { where } \quad u=\text { total live weight } \\
v=\text { total fire weight }
\end{array} \\
& u=\sum_{i=1}^{n} u_{i} \\
& v=\sum_{i=1}^{n} c_{i} u_{i} \\
& \text { where } \quad \begin{array}{l}
u_{i}=\text { weight of item } i \\
c_{i}=\text { fire weight conversion factor for item } i
\end{array} \tag{12}
\end{align*}
$$

The u_{i} are statistically independent but u and v are not independent. First equations 5 and 6 are rewritten to accommodate an indefinite number of variables:

$$
\begin{aligned}
& \text { I.a) } E\left[F\left(x_{i}\right)\right]=F\left(\bar{x}_{i}\right) \\
& \text { II.b) } \operatorname{var}\left[F\left(x_{i}\right)\right] \doteq \sum_{i}\left[\left.\frac{\partial F}{\partial x_{i}}\right|_{\text {mean }}\right]^{2} \sigma_{i}^{2}
\end{aligned}
$$

$$
\text { for } x_{i} \text { independent }
$$

Thus

$$
\begin{align*}
& \bar{z} \doteq \bar{v} / \bar{u} \tag{14}\\
& \sigma_{z}{ }^{2} \doteq \sum_{i}(1 / \bar{u})^{2}\left(c_{i}-\bar{v} / \bar{u}\right)^{2} \sigma_{i}{ }^{2} \\
& \vdots\left(1 / \bar{u}^{2}\right) \sum_{i} c_{i}{ }^{2} \sigma_{i}{ }^{2}-\left(2 \bar{v} / \bar{u}^{3}\right) \sum_{i} c_{i} \sigma_{i}{ }^{2}+\left(\bar{v}^{2} / \bar{u} 4\right) \sum_{i} \sigma_{i}{ }^{2} \tag{15}
\end{align*}
$$

4.2.2.2.2 Book and Paper Pile Weights

Errors in the book and paper pile weights involve three considerations: random variations in the basic weight conversion factor (P_{k}, σ_{p}), inexactness in the recorded pile height (h), and inexactness in the recorded pile compaction factor (c). P_{k} and σ_{p} are defined in Reference 1. The inexactness in h and c are due to judgmental errors on the part of the surveyors and the approximations inherent in the data collection forms which only allow h to be recorded to within $\pm .5$ in. and c to be recorded to within ± 10 percent.

The weight of a pile of books or papers is given by

$$
\begin{equation*}
W_{p}=P_{k} h c \tag{16}
\end{equation*}
$$

$$
\text { where } \quad \begin{aligned}
W_{p} & =\text { total weight of pile }-1 b \\
P_{k} & =\text { weight conversion factor for appropriate size } \\
& \text { group }(k)-1 b / \text { in } \\
h & =\text { pile height }- \text { in } \\
c & =\text { percent of compaction }
\end{aligned}
$$

The variance in h can be approximated as follows: the data collection forms allow recording the height to within ± 0.5 inches. Consequently, we can assume a uniform probability distribution over this range and zero probability outside of this range. Under this assumption the variance is (Reference 6)

$$
\begin{equation*}
\sigma_{h}=\frac{(h+.5)-(h-.5)}{3.5}=.2857 \mathrm{in} \tag{17}
\end{equation*}
$$

An analogous argument also can be used to obtain an estimate of the variance in c because here the data collection forms only allow recording the height to within 5 percent. Consequently

$$
\begin{equation*}
\sigma_{c}=\frac{(c+.05)-(c-.05)}{3.5}=.02857 \tag{18}
\end{equation*}
$$

This is not quite exact, because when c is 100 percent, $\sigma_{c}{ }^{2}=\frac{.05}{3.5}=.0143$. The analysis procedure did not include this reduced value for 100 percent compact piles. Consequently, slightly conservative values will be obtained for σ_{w}.
\bar{P}_{k} and $\sigma_{p_{2}}^{2}$ (from Reference 1) together with \bar{c} and $\sigma_{c}{ }^{2}$ (equation 17) and \bar{h} and σ_{h}^{ρ} (equation 18) are used to calculate the expected pile weight \bar{w} and its variance $\sigma_{w}{ }^{2} . P_{k}, h$, and c are assumed to be independent random variables.

$$
\begin{align*}
& \bar{w}=E[w]=E\left[P_{k} h c\right] \\
& =\bar{P}_{k} \overline{\bar{c}} \tag{19}\\
& \sigma_{w}{ }^{2}=E\left[(w-\bar{w})^{2}\right]=E\left[w^{2}\right]-\bar{w}^{2} \\
& =E\left[P_{k}^{2}\right] E\left[h^{2}\right] E\left[c^{2}\right]-\bar{P}_{k}^{2} \bar{h}^{2} \bar{c}^{2} \\
& =\left(\bar{P}_{k}{ }^{2}+\sigma_{p}{ }^{2}\right)\left(\bar{h}^{2}+\sigma_{h}{ }^{2}\right)\left(\bar{c}^{2}+\sigma_{c}{ }^{2}\right)-\bar{P}_{k}{ }^{2} \bar{h}^{2} \bar{c}^{2} \\
& =\bar{h}^{2} \bar{c}^{2} \sigma_{p}{ }^{2}+\left(\sigma_{h}{ }^{2} \bar{c}^{2}+\sigma_{c}{ }^{2} \bar{h}^{2}+\sigma_{h}{ }^{2} \sigma_{c}{ }^{2}\right)\left(\bar{P}_{k}{ }^{2}+\sigma_{p}{ }^{2}\right) \tag{20}\\
& \text { where } \quad \bar{w}=\text { mean total pile weight - lb } \\
& \sigma_{w}{ }^{2}=\text { variance of pile weight }-1 b^{2} \\
& \bar{P}_{\mathrm{k}}=\text { mean weight conversion factor - 1b/in } \\
& \sigma_{p}^{2}=\text { variance of conversion factor - }(1 b / i n)^{2} \\
& \bar{h}=\text { recorded height }- \text { in } \\
& \sigma_{h}{ }^{2}=\text { variance of pile height }-i n^{2}=.08163 \\
& \bar{c}=\text { mean recorded compaction factor } \\
& \sigma_{c}{ }^{2}=\text { variance of compaction factor }=.0008163
\end{align*}
$$

The relative magnitudes of σ_{p}, σ_{h}, and σ_{c} used in this study are such that the height uncertainty $\left(\sigma_{h}\right)$ and the compaction uncertainty (σ_{c}) contribute
very little to the overall uncertainty in the pile weight for all but the very smallest piles. For example, consider the $8-1 / 2 \times 11$ inch size group (height $=12 \mathrm{in}$, compaction factor $=1.0$):

```
\sigma
\mp@subsup{\sigma}{W}{}}=9.82% including \mp@subsup{\sigma}{P}{}\mathrm{ and }\mp@subsup{\sigma}{h}{}\mathrm{ effects
= 9.52% including only op effect
```

Another contributor to uncertainty in the pile weight is the irregularity in the top of the pile. This will, however, contribute even less to the total variance than the uncertainty in compaction or height. Consequently, this effect has been neglected.

4.2.2.2.3 Accumulated Variances

In general all of the items in the room are assumed to be uncorrelated. This being the case, the accumulated variance is just the sum of the individual variances

$$
\begin{equation*}
\sigma^{2}=\sum_{i} \sigma_{i}^{2} \tag{21}
\end{equation*}
$$

There are a few notable exceptions to this general rule. All involve multiple items which are likely to be very similar:

- Multiple desk drawers of the same type (box,file, or personal) in the same desk
- Multiple cabinet drawers in the same cabinet
- Multiple shelves in the same set of shelving
- Multiple chairs of the same type, material, and characteristics

Even though there may be a large variation in, for example, the weight of box drawers in wood, single-pedestal desks considering all manufacturers and all models, one can expect that in any specific desk all of the box drawers will be very close in weight. This is so because in any specific desk, all box drawers will be from the same manufacturer and will probably have been manufactured at about the same time. Consequently, all of this type of drawer in the subject desk can be assumed to have the same weight. A similar assumption has been made for all of the above items including all chairs of the same type found within the same room.

Consequently, in the cases listed above, the individual items were assumed to be perfectly correlated. Then the variance of the sum is given by:

$$
\begin{equation*}
\sigma_{T}^{2}=(n \sigma)^{2} \tag{22}
\end{equation*}
$$

where $\quad n=$ total number of identical items

$$
\sigma^{2}=\text { variance of the individual item. }
$$

4.2.2.3 Computational Techniques

In computing the projected floor area of a freestanding paper pile, the dimensions of the paper size are used with the assumption that paper would be piled on its surface. However, when the floor-area of a freestanding book pile is computed, it was assumed that books would be standing on their shortest edge so that the projected floor area is the shortest edge dimension multiplied times the 'length' of the book pile.

To compute the exposed area of books and papers in a bookcase, it is assumed that one surface of the bookcase is open. Thus, only one side of the book piles in the bookcase is exposed, while the top and one side of the paper piles enclosed are exposed as shown below:

In the case of free shelving, the ends of the book pile and the sides of the paper pile are included in the exposed area of books and papers.

The exposed surface area of a free or freestanding paper pile is computed as the sum of the four sides plus one surface. The exposed surface area of a free or freestanding book pile is the sum of the ends, the front, the back, and the top as shown below:

FREE OR
freestanding books

To compute the total door area of a room, the average door area of the doors in one wall is multiplied times the number of doors in that wall. These values are then summed over each wall in the room. The total window area is computed in the same manner.

To compute the fire weights of the bounding surfaces, it is necessary to find the wall area of each wall and to determine the trim lengths. The wall area is computed by assuming that the length dimension gives the size of walls 2 and 4 and the width dimension gives the size of walls 1 and 3. The wall area listed in the results does not include the effect of door and window cut outs.

The trim lengths are determined from the total perimeters of the doors, windows, the floor, and the ceiling. Ceiling trim length is assumed to be the same as the room perimeter, but floor trim length is computed by subtracting the total door widths from the room perimeter. The window and door trim lengths are computed by adding up the average perimeter of the door and window in each wall times the number of doors and windows in each wall.

The bounding surface fireweight is the fire weight of the ceiling material, ceiling trim, floor material, floor trim, full and partial wall material*, full-wall covering, door material, door trim, window trim, and internalpartition surfaces.

[^5]The opening factor is a parameter of significance in determining the rate of fuel consumption during a fire. It has been calculated here according to the definition given on page 11 of Reference 7.

$$
\begin{aligned}
& \text { Opening Factor }=\frac{A \sqrt{H}}{A_{T}} \\
& \text { where } \quad \begin{aligned}
A & =\text { total } \text { window area } \\
H & =\text { average window height } \\
A_{T} & =\text { total room surface area including the ceiling, } \\
& \text { floor, doors, and windows }
\end{aligned}
\end{aligned}
$$

This parameter is only calculated if the room has four full height walls.

4.2.2.4 Transfer Functions

None of the weight data, either live or fire weight, produced by this study is the result of direct measurement. Instead, an inventorying technique was employed wherein various visual characteristics of the items were recorded. Transfer functions were developed to convert this data into weight for commonly occurring items: paper, books, desks, tables, seating, shelving, cabinets, telephones, typewriters, calculators, and partitions. These transfer functions and the data upon which they were based are described in Chapter 3 of Reference 1. For less common items, a weight estimation was made by the surveyors.

These transfer functions, which provide both a weight mean and standard deviation, are coded in subroutines RMCONT and FSEAP. The data (Tables 8 to 14 of Reference 1) is provided by subroutine DATA. For some categories (for example, metal double pedestal desks 7 to 9.5 ft square in area) no data was found. To allow for the observance of such an item, weight data was generated by extrapolation/interpolation from existing data. This was done for all of the missing categories except plastic items. The weights for these were set to zero. Certain combinations of transfer function indicies should never be accessed but are required to complete the matrix. These values have been set to -999. Any time one of the -999., estimated, or zero weights is used, the program writes a message on the printer. The RMCONT output No. 49 also reflects the occurrence of a zero used for the empty weight of a room content.

Before the room survey data could be converted to weights, the missing data of Tables 8 to 14 of Reference 1 had to be completed. Although most of the missing categories were not expected to be found, provisions had to be made to provide weights for any that were observed. This was done by interpolation or extrapolation from existing data. These interpolations were based on data from similar furniture, but the exact procedure depended on what data was available.

For example, if there was no weight for a wooden file cabinet of a certain area and height, the following procedure viould have beer. followed: First, the adjacent height and area categories would be checked. If data was available here, the missing category would be obtained using linear interpolation. If this was not possible, the next technique attempted would be to scale the missing value from existing data for other area and height categories of wooden file cabinets. If there was still no available data, then the weight of a metal file cabinet in the same size category would be scaled. The scale factor used here would be based on the average difference between metal and wood cabinets. Previously estimated values were never used for these calculations.

The standard deviations used with the extrapolated weights are based on the largest percentage standard deviation among the existing data for the general category under consideration. In the above example, the largest percentage standard deviation among all wood file cabinets would be used to determine the standard deviation for the extrapolated weight.

A complete tabulation of the transfer function data is given in the program listing of the DATA subroutine. All the extrapolated and interpolated values are shown as negative weights. Whenever program MAKER uses one of these negative values, it first writes a diagnostic message to indicate that an extrapolated value is being used and then makes the weight positive. In addition, each time an extrapolated or interpolated value is used, $Y(N B U F+49)$ is set to 1.0 (see Table 12).

4.2.3 Operating Logic

The data for each building must be written on a separate file. Each file consists of the data from the Building Characteristics Data form, followed by the data for each surveyed room within that building. The data for a particular room may be in any sequence except that the data from Form 1 must be first. The data for an individual room are assumed to be contained within one record. The data from each form must be in the sequence specified on the form.

Whenever DRIVE encounters an end-of-file mark on the input tape, it assumes that that building has been completed. It then tries to read data for another Building Characteristic Data form. Whenever two end-of-file marks are encountered in succession, DRIVE assumes that the end of the magnetic tape reel has been reached. It then writes an end-of-tape message and looks for another reel if a multiple reel file is being processed.

4.2.3.1 DRIVE Operating Logic

The program DRIVE is the main program of MAKER. DRIVE reads the raw data. from cards (NAMELIST input), or tape/FASTRAND files. The tape or FASTRAND files are written in unformatted binary form using the UNIVAC 1108 Fortran V library routine NTRAN. The input for one room is placed in a buffer. DRIVE then determines which data collection form provided the data in each successive part of the buffer. If Form 1 was used, the data contained on this form, used in the program output, are placed in the vectors that describe the room characteristics (BUILD, DOOR, NR, PART1, PART2, ROOM, WALL) and are used later as input to BONCOM subroutine.

As these vectors are being filled, checks of the consistency of the data are made to be sure that the form of the raw data is proper. If small errors are discovered, the room will be analyzed, leaving these data blank. If more severe problems arise, the room may be skipped and another room read into the buffer. If the problems are with reading the tape or file, the whole program will be aborted. Table 5 of Appendix B. 4 gives these messages.

If the data encountered are from data collection forms 2-7, the information needed to provide the output data about that room content will be placed in the vectors to be used by subroutine RMCONT. These are CABNG, CALC, DESKG, ENCL, FREE, ITEM, MISC, MPILE, NCALC, NITEM, NPILE, NMISC, NTELE, NTYPE, SEATG, SHELG, TABLG, TELE, TYPE. After the data have been placed in these vectors, checks are performed as described for the data from Form 1. A detailed description of the messages that are printed and the conditions under which they are used can be found in Appendix B.4. Subroutine RMCONT is called and the output data for that particular piece of furniture or miscellaneous object are put into the Y vector.

If the buffer data are from Form A, B, or C, then subroutines FORMA, FORMB, or FORMC are called, respectively. They perform the functions that DRIVE does on Forms 1 to 7. If the data on Form A or B are for freestanding objects, then the subroutine FSEAP is called from either subroutine FORMA or FORMB, and output data are put into the Y vector (i.e., output buffer).

After the data buffer has been completely analyzed, DRIVE calls subroutine BONCOM which computes all the room characteristic data and the room totals that summarize the contents of the room.

When all the output has been developed and readied in the Y output vector for one room, depending on the writing alternatives used, either the library subroutine NTRAN is again called to write the output in unformatted binary, or the output is printed in a formatted form. The next room is then read from the data tape. When the end of an output tape is reached, a message is printed. If any problems arise, the run is aborted, but barring this occurrence, all of the rooms surveyed will be analyzed sequentially.

4.2.3.2 FORMA Operating Logic

FORMA subroutine is called from the DRIVE program when data from a Form A data collection sheet are found in the data buffer. The form A data collection sheet is used either for additional paper or book piles on a particular piece of room content, or for book and paper piles that are not associated with any other room content. These are called freestanding piles and are assumed to be sitting directly on the floor. The output information desired in this case is different from that required when the pile is associated with a piece of furniture. The FORMA subroutine determines the piles' position. If it is data for a freestanding pile, the FSEAP subroutine is called. This subroutine computes weights for freestanding equipment and piles (the input data to FSEAP from FORMA are FREE, MPILE, NPILE) If the use of form A is for paper or book piles on a piece of furniture, control is returned to DRIVE. DRIVE then calls RMCONT to restructure and produce all the output required for that piece of furniture. Like the DRIVE program, FORMA also contains numerous consistancy checks on the data.

4.2.3.3 FORMB Operating Logic

FORMB is very similar to FORMA except this subroutine deals with the data on the Form B collection sheet used for equipment, either freestanding or associated with a piece of furniture. Again, if the equipment is freestanding, FORMB calls subroutine FSEAP to provide the output required for a freestanding piece of equipment. The data which FORMB supplies are: CALC, NCALL, NTELE, NTYPE, TELE, TYPE. If the equipment is on a piece of furniture, control returns to DRIVE directly. The RMCONT subroutine then adds the equipment data into the furniture output (i.e, puts it into the Y vector).

4.2.3.4 FORMC Operating Logic

FORMC is used for data obtained from a Form C data collection sheet. These are designed for miscellaneous items. These items can not be freestanding; Form 7 is used for miscellaneous freestanding items. These are miscellaneous items present on or in a piece of furniture. Values are supplied for MISC and NMISC. After the data on the Form C have been restructured, they are used as input to RMCONT when a piece of furniture is being assessed. Consistency tests and messages are also used in FORMC.

4.2.3.5 RMCONT Operating Logic

The subroutine RMCONT is called from the DRIVE program when data from data collection Forms 2 to 7 are found. These data sheets are used to describe furniture and the furniture's contents.

Data for both the furniture and equipment transfer functions are in the first section of RMCONT.

The second section of RMCONT is designed to determine which type of furniture is present and to direct the control to the portion of the program designed to determine the weights and other required output. The empty furniture weights are determined with the transfer functions. They are checked to see if they are within the limits expected. Checks are also made to see if the data supplied are reasonable. Reference 1 and Appendix B. 4 list the transfer functions used in the computation of the weights along with the definitions of the size and type categories. If in checking the transfer function it is found to be an estimation and not part of the data provided in Reference 1, a message will be written to this effect and an entry of 1.0 will be put in Y (NBUF + 49). Thus"; in using SEEKER, these data so calculated may be determined.

Once the empty weight of the furniture has been computed, the weight of the contents is assessed in the third section of RMCONT using the equipment and pile transfer functions. The values of these weights and the data for the transfer functions are checked. If appropriate, a message is printed.

The last part of RMCONT is used to increment the room totals used later by BONCOM. The total floor loading of the furniture is computed and checked. As the output for RMCONT has been computed, it is put into the Y vector. The value for NBUF, the location along the Y vector at which this piece of room content data is written, is given by the amount of data already processed. Thus, after RMCONT is completed, 52 is added to NBUF to establish the starting point for the next set of output data. The output of RMCONT is given in Table 12.

4.2.3.6 FSEAP Operating Logic

FSEAP is called from FORMA or FORMB to generate the room contents data for output and to add to the room totals used by BONCOM.

FSEAP is set up similarly to RMCONT except that it applies only to equipment, paper piles, and book piles. The transfer functions and the checks are the same as in RMCONT. As in ROMCONT, the value for NBUF (the location along the Y vector where this piece of room content data is written) is increased to establish the starting point for the next computation.

4.2.3.7 BONCOM Operating Logic

BONCOM is called by DRIVE when the end of the room data is reached. The first part of BONCOM is data for the bounding-surface fire weights and the internal-partition live weight. The second part of the subroutine is the computations of the bounding-surface fire weights and the descriptions of the room. These are checked for consistency and for extrema. The elements of vector LMT are the limits used to check on the presence of extreme values.

In the last section of BONCOM, the totals that had been added each time RMCONT and FSEAP had been called are changed to the percentages desired as output. When both the numerator and the denominator of these calculations have standard deviations associated with them, a special function described in the Statistical Techniques section is used. A complete list of this output is available in Table 11. Even though BONCOM is called at the end of the analysis of a room, the output data from BONCOM are placed at the beginning of the output for the room and each room total has a constant location in the Y vector.

The third section of BONCOM computes the derated fire weights for the room.

4.3 Data Retrieval and Display (Programs SEEKER and HISTOG)

4.3.1 Introduction

Program SEEKER is the sixth in a series of programs which have been developed to process, manipulate, retrieve, and analyze the fire and live load survey data. Its primary purpose is to retrieve the processed data generated by program MAKER. The user must provide the program with three basic pieces of information:

- The parameter to be selected,
- The parameters to be tested, and
- The limits that the tested parameters must satisfy before the selection will be made.

The parameter to be selected and the parameters to be tested are identified by means of the code numbers shown in Table 2 of Appendix B. 6.

For example, suppose the user wants to know the live weight in all clerical offices that have been surveyed.

- First, he must determine the live weight code number from Table 2 (code number = 77).
- Second, he must determine the condition code number. In this case, the condition is the "room use" (code number = 19).
- Third, he must determine the range of values which the condition satisfies. In this case, the condition must be "clerical" which, according to Table 2, is represented by the number 2.0 .

When the information is input to the program, the program will search the room-survey data tape and select the live weight of all clerical offices. In other words, the program will select parameter 77 in those rooms where parameter 19 has the value of 2.0.

The program will save all of the selected parameters in a mass-storage or tape file specified by the user. These values can be saved in either coded or binary form, or they need not be saved at all. In addition to selecting and saving the specified parameters, the program also automatically performs the following calculations:

- The number of items found, n
- The sum of the value of all items found. ($\Sigma^{n} x_{j}$, where x_{j} is the actual value of a selected item)
- The sum of the square values of all items found, $\Sigma^{n} x_{i}^{2}$
- The maximum value found, $x_{i}(\max)$
- The minimum value found, $x_{i}(\min)$
- The mean of all items found $\left(\Sigma^{n} x_{j} / n\right)$, and
- The standard deviation for all items found, $\left(\frac{\Sigma^{n} x_{i}^{2}-\frac{\left(\Sigma x_{j}\right)^{2}}{n}}{n}\right)^{1 / 2}$

Additional secondary operations may also be performed (see Section 4.3.2.1).
Another important program capability is the ability to select four room parameters at one time and write them on a file, together with their building number, floor number, and room number. This capability can be used to retrieve the room live load plus standard deviation and the fire load plus standard deviation for all surveyed rooms in any specified building. This will be needed when a total building is to be characterized from a live and fire load standpoint by program BUILDER.

This section has been written with more of a user's manual flavor than the other sections of this report. This has been done because this program will have to be operated by the reader if he desires to retrieve any of the data generated and saved on magnetic tape by program MAKER.

All of the tables referenced in Section 4.3 are to be found in Appendix B.6. A general flow chart of program SEEKER is shown in Figure 15.

Figure 15 General Flowchart for Program SEEKER

4.3.2 Operational Techniques

4.3.2.1 Program Capability and Limitations

Program SEEKER can handle any type of selection problem. For programming purposes, however, the selection procedure is broken down into six types of problems, depending on (1) the type of parameter that is to be selected and (2) the type of condition(s) that must be satisfied.

The parameters stored on the processed-data tape which is being searched by SEEKER are of two types: room descriptors or room-content parameters.

The room descriptors consist of 132 numbers which fully describe the fire and live load characteristics of a room. These 132 values, which are described in Table 2 of Appendix B.6, have been determined by program MAKER for each and every surveyed room. Because the room descriptors exist for all rooms surveyed, regardless of the number of items in the room, they are the easiest to locate. A very simple logic is used in the program to locate room descriptors.

The room-content parameters describe the items in the room. These parameters are further divided into two categories: furniture and stand-alone non-furniture. All furniture items in a room are described on the processeddata tape with 51 parameters each. These parameters, which are also described in Table 2 of Appendix B.6, delineate the type of furniture (desk, table, cabinet, shelving, seating, or miscellaneous) plus all appropriate fire and live load data. The description of all materials in or on the furniture item is included within these 51 values. All stand-alone nonfurniture items are described on the processed-data tape with 11 parameters each. Three types of items are covered by these parameters: stand-alone paper, stand-alone books, or stand-alone equipment (typewriters, calculators, telephones, or unspecified). All known fire and live load parameters are included in these 11 values.

Because the number of room-content parameters stored on the data tape for a given room depends on the number of items in the room, these parameters are more difficult to locate (see Table 7 which shows the form of the room data tape produced by MAKER). The program, therefore, has been structured according to whether the selection is a room descriptor or a room-content parameter and whether the test conditions are room descriptors, room-content parameters, or both. Consequently, the six categories of problems which SEEKER can be used for are as follows. These six categories cover all possible combinations of selection and condition parameters.

*The mnemonics FLAG and TYP are defined in Table 4 of Appendix B.6.

> Whenever a room-content parameter is a condition for a room descriptor, the first room-content array that satisfies this condition is sufficient for the room parameter to be selected. Also, whenever an ".OR." condition-set has both room descriptors and room-content parameters to be tested, the user must insure that all of the room descriptors precede all of the room-content parameters.

In addition to selecting specified parameters meeting specified conditions and performing the operations discussed in Section 4.3.1, the user has some additional options available to him. He may choose to have each selected parameter multiplied by a constant prior to any of the output operations being performed. He does this by setting $\operatorname{KON}(K)=1$ and inputting a value for MULTIP(K)*. Possible reasons to use this capability are

- To convert the data to metric units, or
- To convert percentages to fractions.

Still another option available to the user is to divide the selected parameter by another parameter. Not all parameters can be matched to perform this. A room-content parameter nlay be divided by another room-content parameter or by a room drscriptor; however, a room descriptor cannot be divided by a room content-parameter. This operation is performed by choosing option 3 or 4 and specifying a value for ITEM2(K). A possible reason to use this capability is

- To convert the selected parameter to a percentage or fraction of some other room descriptor.

4.3.2.2 Selectión Procedure

The selection procedure is based upon satisfying one ".OR." condition-set comprised of several ".AND." conditions.

The ".OR." condition-set is a combination of from 1 to 10 conditions, all of which must be satisfied before the ".OR." condition-set is satisfied. The conditions which make up the ".OR." condition-set are called ".AND." conditions. These ".OR." and ".AND." conditions are analogous to the .OR. and .AND. logical operators in the Fortran computer language.

The selection will not be made unless all of the ".AND." conditions within one of the ".OR." condition-sets are satisfied. If more than one ".OR." condition-set is satisfied for the same parameter, that parameter will be double counted.

For example, the program will retrieve the

```
Total Room Live Weight = Parameter to select
in
    Clerical Offices with Floor = ".OR." Condition-Set 1
    Areas Between 100 to 500 ft2 with Two ".AND." Conditions
```

[^6]And in
General Offices with Floor
Areas Between 200 to $400 \mathrm{ft}^{2}$

```
= ".OR." Condition-Set 2
    with Two ".AND." Conditions
```

Up to ten ".OR." condition-sets may be used at one time. All of the items selected for the case during a single run will be co-mingled, regardless of which ".OR." condition-set was satisfied.

The user must take care to insure that each ".OR." condition-set excludes all other ".OR." condition-sets.

4.3.2.3 Diagnostic Messages

Program SEEKER has extensive error checking. The diagnostic messages are as complete as possible and should provide considerable assistance in locating any problem. Many errors will result in program termination prior to the processing of any room-survey data.

A complete listing of all messages is given in Table 5 of Appendix B.6, together with additional explanatory information. Three types of diagnostic messages may be printed. The first category deals with errors and inconsistencies in the card input data. These errors will cause run termination prior to the processing of the room-survey data tape. All of the card images will be scanned, however, prior to termination.

The second category of diagnostic messages deals with data transmission problems under NTRAN control. Any time an abnormal transmission occurs, a message will be printed. In some cases, these errors will cause early termination of the run. The user should be particularly alert to these messages even if they do not cause run termination.

The third category covers miscellaneous items not involving card-data or data-transmission errors.

4.3.2.4 Program Output

The program produces several different types of output, depending on the desires of the user. In all cases, however, the following data will be printed:

- The number of items found, n
- The sum of the value of all items found, $\Sigma^{n} x_{i}$, where x_{i} is the actual value of a selected item
- The sum of the square of all items found, $\sum^{n} x_{i}^{2}$
- The maximum value found, x_{i} (max)
- The minimum value found, x_{i} (min)
- The mean of all items found, $\Sigma^{n} x_{i} / n$, and
- The standard deviation* for all items found, $\left(\frac{\sum^{n} x_{i}^{2}-\frac{\left(\sum^{n} x_{i}\right)^{2}}{n}}{n}\right)^{1 / 2}$

This data is printed in a clear, unambiguous format (see Section 4.3.3.6 for examples).

If the user specifies that the selected items are to be saved (OPT $(K)=1$ or 3), two alternative formats are available. If OUTFLG = 1, the selected items will be written on the designated mass storage file as binary information with 300 words per record except for the last record. The UNIVAC library routine NTRAN is used to perform this writing operation. If OUTFLG $=0$, the selected items will be written on the designated mass storage file as coded information. Each line of data will have 10 values written with a (10E12.5) format.

If the user specifies option 5, a third type of output will be produced. Under this option, four room descriptors will be selected at one time. These are determined by the user when he specifies ITEM(K) and ITEM2(K). The first item selected is ITEM(K); the second is the item next to ITEM(K) which, in many cases, is the standard deviation of the first item; the third item selected is ITEM2(K), and the fourth is the item next to ITEM2 (K). (For example, if $\operatorname{ITEM}(K)=77$ and $\operatorname{ITEM2}(K)=81$, the four parameters would be 77, 78, 81 and 82). The selected items are written on the designated mass storage file, along with the associated building number, floor number, and room number. The data is written as coded information with one room per line using the format (3F10.0, 4E12.6). In addition, the first line in the file will contain the case title and the second line will contain headings for each of the seven pieces of data.

Following completion of the run, the user may transfer the data from the mass storage files to either the printer or the card punch. Instructions for performing this operation are given in Table 6 of Appendix B. 6.
*The equation used for this calculation is $\sigma=\left[\left(\sum^{n} x_{i}^{2}\right) / n-\bar{x}^{-2}\right]^{1 / 2}$

4.3.3 Operating Logic

For discussion purposes, program SEEKER can be conveniently divided into five segments. Although the program is written without subroutines, its operational commands logically fall into these five categories. The input card configurations given in Tables 1 and 3 of Appendix B. 6 provide a useful accessory to the following descriptions. All program mnemonics are described in Table 4 of Appendix B. 6.

4.3.3.1 Read and Check Data Cards and Initialize all Parameters

The first operation that the program performs is to initialize various parameters such as the reel counter and the error flag. Approximately two dozen variables, many of them subscripted, are initialized at this time.

The variables NI, NJ, and NK* are set with a DATA statement at the time program SEEKER is compiled. The user should verify that the values used were identical to the values used by program MAKER which generated the room-survey data tape.

Following these operations, the program reads and checks the card data. First, it reads the CASE card to determine the number of cases to be processed. Included on the same data card are the output flag, OUTFLG; the number-of-rooms flag, NROOMS; and the input data flag, INFLAG. NROOMS is used to minimize running time if; and only if, option 5 is selected for all cases. If option 5 has not been selected for all cases, the program will ignore whatever value has been input for NROOMS. If NROOMS $=0$ this flag is also ignored. A maximum of 20 cases are allowed per run. If more than 20 cases are input, only the first 20 will be processed.

Next, the data for each case is read, one case at a time. The first card gives $\operatorname{ITEM}(X), \operatorname{OPT}(K), \operatorname{NOR}(K), \operatorname{ITEM2}(K)$ and $\operatorname{KON}(K)$, while the second card gives the title for the case. ITEM(K) defines the primary item to be selected, OPT(K) defines the option, $N O R(K)$ defines the number of ".OR." conditions, ITEM2(K) defines the secondary item to be selected, and KON(K) is the multiplier flag. All of these input parameters are defined in detail in Tables 1 and 2 of Appendix B.6. If the user desires to select some room parameter from every surveyed room without any requirements having to be

[^7]met, he may set $\operatorname{NOR}(K)=0$. $K O N(K)$ determines whether the user wishes to multiply each selected item by a constant. OPT(K) and NOR(K) are tested for acceptability. If $K O N(K)=1$, the multiplier constant is read next. Otherwise, the multiplier card is not expected and must not be present.

All ".OR." condition cards for the case are read next. A maximum of 10 ".OR." conditions are allowed with up to 10 ".AND." conditions in each ".OR." condition. The explanation of ".OR." and ".AND." conditions is given in Section 4.3.2.2. The number of ".OR." conditions to be read is given by NOR(K). The data for each ".OR." condition consists of the number of ".AND." conditions, IAND (K, J) which is on the first card of the ".AND." condition set; the location of the item to be tested, $\operatorname{CON}(K, J, I) ;$ plus the upper and lower limits, $\operatorname{LIM}(K, J, I)$ and $\operatorname{LIM} 2(K, J, I)$, for each condition. These are located on the second through the fifth card of the ".OR." condition-set. If the upper limit is zero, the program recalculates the upper and lower limits to be plus and minus one percent from the lower limit input by the user. If both limits are input as zero, they are reset to +.01 and -.01 , respectively. A check is made to insure that the limits have been input in the proper sequence.

When all the input data has been read, a series of compatibility checks are made on ITEM(K) and ITEM2(K). Following this, additional checks are made on ITEM(K) and ITEM2 (K) and the location flags, FLAG(K), are set:

$\operatorname{ITEM}(K) \leq N I$	FLAG $(K)=1$	Room Descriptor
$N I<\operatorname{ITEM}(K) \leq N L^{*}$	FLAG $(K)=2$	Room-Content (Furniture) Parameter
$N L<\operatorname{ITEM}(K)$	FLAG $(K)=3$	Room-Content (Non-Furniture, Stand-Alone) Parameter

ITEM(K) and ITEM2(K) are recalculated at this time to simplify the search procedure performed later.

The last operations performed on the card-input data are to check $\operatorname{CON}(\mathrm{K}, \mathrm{J}, \mathrm{I})$, to set location flags for $\operatorname{CON}(\mathrm{K}, \mathrm{J}, \mathrm{I})$, and to recalculate $\operatorname{CON}(\mathrm{K}, \mathrm{J}, \mathrm{I})$. The $\operatorname{CON}(\mathrm{K}, \mathrm{J}, \mathrm{I})$ define the location of each condition that is to be tested. It is defined by the user on the ".OR." condition cards. The location flag for $\operatorname{CON}(K, J, I)$ is $\operatorname{FLAGC}(K, J, I):$

$\operatorname{CON}(K, J, I) \leq N I$	$\operatorname{FLAGC}(K, J, I)=1$	Room Descriptor
$N I<\operatorname{CON}(K, J, I) \leq N L$	$\operatorname{FLAGC}(K, J, I)=2$	Room Content (Furniture Parameter
$N L<\operatorname{CON}(K, J, I)$	$\operatorname{FLAGC}(K, J, I)=3$	Room Content (Non- Furniture, Stand-Alone) Parameter

[^8]Each CON(K,J,I) is recalculated at this time to simplify the search procedure performed later.

During the preceding operations the program will set an error flag, ERR, to true whenever a fatal error is discovered. This flag will cause program termination following the processing of all of the card input data.

4.3.3.2 Perform Input and Output Operations Not Involving Card Data

The second category of commands in program SEEKER involves input and output operations related to the room-survey data. Table 7 of Appendix B. 6 gives a description of how this data is stored in the input file. First, the program reads a ten word record that has all its elements equal to the length of the next record. The next record contains the data generated for each room. Second, the program reads all of the processed room-survey data for a single room into a storage buffer, Y(15000). If there are over 15000 elements for the room, the dimensions of program SEEKER are exceeded and it will immediately stop execution. Following both reads, which are done with NTRAN, the program checks the status of the transmission by checking the block-statusword (II) set by NTRAN.* If the block-status-word indicates "device error" or "transmission aborted," an error message is printed and execution is stopped. If the block-status-word indicates that the end of the magnetic reel has been reached, the program will switch reels and start processing the next reel of data.

The end-of-tape flag for which the program is looking is a 10 -word record where each word is 999999 . When this is found the program will print a message but will not stop execution. The room-survey data tape created by program MAKER has this 10 word record at the end of each intermediate reel of a multi-reel file.

If the data for a room has been found to be undesirable or erroneous, the tenth word of the ten-word record will have been set to 0 or -1 (see Table 7 of Appendix B.6) SEEKER always tests this tenth word and if a 0 or -1 is found the subsequent data record will be skipped.

Any time the program stops execution early because of a transmission error, it will print the standard output data for each case (see Section 4.3.2.4) and dump all of the partially filled storage buffers onto the mass storage files. Obviously, the data printed and saved will only cover that portion of the room-survey data tape processed prior to the transmission problem.

A part of the output logic is located within the search-and-test DO loops. This logic transfers the data in a storage $\operatorname{buffer} \operatorname{XBUF}(300, K)$ to a mass storage file each time the buffer becomes full. Each column of XBUF is a storage buffer for a different case. The first column is the buffer for Case 1, etc., throught the twentieth case. These operations are found near the end of the program.

[^9]Another type of output operation occurs whenever option 5 has been chosen. Under option 5 the program does not use the storage buffers, XBUF. Instead, it writes the data directly onto the mass storage file. The data written on the file includes (1) the title, (2) the column headings, and (3) seven pieces of information for each room (see Section 4.3.3.5 for additional details).

4.3.3.3 Find the Parameter That is to be Tested and Test It

The heart of program SEEKER is the logic which finds and tests each of the conditions to be tested. Each time a new room is read into the Y-buffer, the program begins its search over. It completes each case before proceeding to the next one. Within each case, it completes each ".OR." conditionset before proceeding to the next one. And within each ".OR." conditionset, it completes each ".AND." condition as fully as possible before proceeding to the next one.

If the condition to be tested is a room descriptor, the program immediately determines where to look. It then tests the value found at this location in the Y buffer and determines if the condition is met (ンLIMl (K,J,I), <LIM2 ($K, J, I)$). If the condition is met, it tests the next ".AND." condition. If the condition is not met, it immediately goes to the next ".OR." condi-tion-set and starts over. When and if it finds an ".OR." condition-set for which all the ".AND." conditions are met, it locates the item to be selected. Once it finds the item, it proceeds to store and/or process the item. Then it proceeds to the next case. When all of the cases have been processed, it reads another room of survey data from the room-survey data tape and starts the search procedure over.

If the conditions to be tested are room-content parameters, the process is essentially the same. The search logic is more complex, however, because the data blocks are not all of the same size. Some items within the room are described with 51 parameters while others are described with only 11 parameters.

When the ".OR" condition-set consists of both room descriptors and roomcontent parameters, additional complexity is introduced. In this instance, the program first sets the condition flag, TYP (K), equal to 1 and searches the room descriptors. If and when these are satisfied, it changes the flag to 2 and searches the room-content parameters.

4.3.3.4 Select the Desired Parameter

The selection of the specified parameters depends on whether the items are room parameters ($\operatorname{FLAG}(K)=1$) or room-content parameters (FLAG(K) $=2$ or 3). If the item is a room parameter, the program immediately determines where to look. It then proceeds to store and/or process the items.

If the item is a room-content parameter, the process is essentially the same. Provisions have been made, however, to account for the different data-block sizes.

4.3.3.5 Process the Selected Parameter

The processing of the selected parameters depends on which option has been selected by the user:

Option 1 - Determines the maximum and minimum values found, the average value, the sum of the items, the standard deviation, and the total number of elements found. Saves the item on a data file for subsequent analyses.

Option 2 - Identical to Option 1 except that the selected item is not saved for future use.

Option 3 - Identical to Option 1 except that the selected item is divided by another specified item prior to processing.

Option 4 - Identical to Option 3 except that the selected item is not saved for future use.

Option 5 - Identical to Cption 1 except that four selected items are written on a file in the following format: building number, floor number, room number, parameter i, parameter $i+1$, parameter j, parameter $j+1$.

Following this, the program determines whether it should go to the next case $(F L A G(K)=1)$, test the next block of data (FLAG(K) >1, $\operatorname{TYP}(K)=2)$, or select another item (FLAG(K) > 1, TYP $(K)=1)$.

4.3.3.6 Examples of Selection Cases

Following are three examples which illustrate the manner in which the user establishes the selection and test parameters. The computer results for these examples follow in Figures 16 and 17.

Example 1

1.
1.

$\$$.
$\stackrel{c}{4}$.

2. $\operatorname{ITEM}(K)=137$; this case is to select the total live weight of furniture. $\operatorname{OPT}(K)=1$; the data is to be saved, either on tape or mass storage as determined on card 1 by the value of OUTFLG. $\operatorname{NOR}(K)=1$; one ".OR." condition-set. $\operatorname{ITEM2}(\mathrm{K})=0$; no second item is to be selected. $\operatorname{KON}(K)=0$; no multiplier is indicated and card 4 is not included.
3. $\operatorname{TITLE}(\mathrm{K}, 13)=$ DESK WEIGHTS IN ROOM 10 FL 3 SURVEYOR NO.5; case title. (First 78 characters on card 3.)
4. Not present because $\operatorname{KON}(\mathrm{K})=0$.
5. $\operatorname{IAND}(K, 1)=4$; there are four ".AND." conditions in ".OR." conditionset one.

6 A. $\operatorname{CON}(K, 1,1)=4, \operatorname{LIM1}(K, 1,1)=10.0, \operatorname{LIM} 2(K, 1,1)=0.0$; the first ".AND." condition is parameter 4 , the room number. The room number must equal 10.
$\operatorname{CON}(K, 1,2)=3, \operatorname{LIM}(K, 1,2)=3.0, \operatorname{LIM2}(K, 1,2)=0.0$; this ".AND." condition is parameter 3, the floor number. The floor number must equal 3.
$\operatorname{CON}(K, 1,3)=9, \operatorname{LIMI}(K, 1,3)=5.0, \operatorname{LIM2}(K, 1,3)=0.0$; the third ".AND." condition is on parameter 9, the surveyor number. This parameter must equal 5.

6B. $\operatorname{CON}(K, 1,4)=133, \operatorname{LIMI}(K, 1,4)=2.0, \operatorname{LIM2}(K, 1,4)=0.0$; the fourth and last ".AND." condition applies to parameter 133, the furniture type. This parameter must equal 2 , a desk.

Note: The furniture condition is after the room-descriptor conditions.
Note: Example 1 selects the total live weight, including contents, of every desk in rooms on floor number 3 with a room number of 10 and surveyed by surveyor number 5 .

Example 2^{+}

2.

2. $\operatorname{ITEM}(K)=77$; this case is to select item 77. (Item 77 is the total live weight in a room.)* $\operatorname{OPT}(K)^{\#}=3$; select two items, then divide the first by the second and save the result on an output file. (The type of file is determined by card 1). $\operatorname{NOR}(K)=1$; one ".OR." condition means that the first ".AND." condition set must be met for the item to be selected). ITEM2(K) = 86; the second item to select. Because option 3 was selected, item 86 will be divided into item 77 (item 86 is the occupied floor area). $\operatorname{KON}(K)=1$; the multiplier flag is equal to 1 . (This is set to 1 when the selected item is to be multiplied by some factor; if this is zero, card 4 is to be omitted.)
3. $\operatorname{TITLE}(K, 13)=$ AVG FLOOR LOADING OF ALL ITEMS IN RMS FA=180-190, SURV=2, (IN KG/METER SQ). This is the title of this case. The program cannot read more than the first 78 characters of one card.
4. $\operatorname{MULTIP}(K)=.456 E 1$; this card gives the value of the multiplier to be used to convert the data (in this case the multiplier is the conversion from pounds per square feet to kilograms per square meter).
5. $\operatorname{IAND}(K, 1)=2$; the number of ".AND." conditions in ".OR." conditionset 1 (there are two ".AND." conditions in this case). When IAND $(K, 1)$ is greater than 3, item 6 A will require more than one card.

6A. $\operatorname{CON}(K, 1,1)=24, \operatorname{LIMI}(K, 1,1)=180.0, \operatorname{LIM2}(K, 1,1)=190.0$; the first ".AND." condition is parameter 24, the floor area of the room. The lower limit is 180 square feet and the upper limit is 190 square feet (rooms with area between 180 and 190 square feet will satisfy this condition).
$\operatorname{CON}(K .1 .2)=9, \operatorname{LIMI}(K, 1,2)=2.0, \operatorname{LIM}(K, 1,2)=0.0$; the second ".AND." condition is parameter 9, the surveyor number. The lower limit is 2.0 and the upper limit is zero. When the upper limit is zero, the parameter must equal the lower limit to satisfy this condition.
${ }^{+}$Card 1 of the run set-up is not included herein. See Table 1 of Appendix B. 6 for data on card 1.
*Refer to the selection code table, Table 2 in Appendix B. 6.
\#K refers to case number. Up to 20 cases may be processed on one run.

2. $\quad \operatorname{ITEM}(K)=137$; select item 137. (Item 137 is the live weight of a room-content.) $\operatorname{OPT}(K)=2$; option 2 means the output will not be saved but the totals will be computed. $N O R(K)=2$; two sets of ".OR." conditions are specified. (ITEM(137) will be selected if either is met.) ITEM2(K) $=0$; no second item is to be selected because $\operatorname{OPT}(K) \neq 3,4$, or 5 . $\operatorname{KON}(K)=0$; the items selected are not to be multiplied by a constant. (Thus, card 4 must not be present.)
3. $\operatorname{TITLE}(K, 13)=$ FILE CAB AND SINGLE PED DSK WEIGHTS SURVEYED BY SURVEYOR NO. 2; this is Case K's title.
4. Card 4 is not present because $\operatorname{KON}(K)=0$.

5i. $\operatorname{IAND}(K, 1)=3$; three ".AND." conditions in first ".OR." condition-set.
6 Ai. $\operatorname{CON}(K, 1,1)=9, \operatorname{LIM1}(K, 1,1)=2.0, \operatorname{LIM2}(K, 1,1)=0.0$; the first ".AND." condition is parameter 9, the surveyor number. The lower limit is 2.0 and the upper limit is zero. When the upper limit is zero, the parameter must equal the lower limit (i.e., must be surveyor number 2) to satisfy this condition
$\operatorname{CON}(K, 1,2)=133, \operatorname{LIM}(K, 1,2)=2.0, \operatorname{LIM} 2(K, 1,2)=0.0$; the second ".AND." condition of the first ".OR." condition-set. The parameter to be tested is item 133, the type of furniture. The lower limit is 2.0 and the upper limit is zero. Thus, furniture type must equal 2.0, a desk.
$\operatorname{CON}(K, 1,3)=134, \operatorname{LIM1}(K, 1,3)=1.0, \operatorname{LIM2}(K, 1,3)=0.0 ;$ the third ".AND." condition applies to parameter 134, the type of desk. The lower limit is 1.0 and the upper limit is zero. Thus desk type must equal 1.0, a single pedestal desk. All three of these ".AND." conditions must be met for the live weight to be selected under the provisions of this ".OR." condition-set.

Note: The first ".AND." condition dealt with a room descriptor (those between 1 to 132). It is necessary for the room parameter to be first when a mixed ".OR." condition-set is used. In this case, the weight of a desk in a room surveyed by surveyor number 2 would be found first by determining. whether the room was surveyed by surveyor number 2. Once this has
been established the search will then begin for a desk. When such an item is found, it is then determined whether ITEM(134) is equal to 2 for a single pedestal desk. If so, then the program will proceed to ITEM(137), the live weight, and choose it as a data point. The order of the room-content conditions is not important (condition 2 could have been condition 3, and 3 could have been 2 ; however, condition 1 must always come before the room-content conditions).

5ii. $\operatorname{IAND}(K, 2)=3$; the second card 5 gives the number of ".AND." conditions in ".OR." condition-set two.

6Aii. $\operatorname{CON}(K, 2,1)=9, \operatorname{LIMI}(K, 2,1)=2, \operatorname{LIM2}(K, 2,1)=0.0$; again, data completed by surveyor number 2 is desired. This is the beginning of ".OR." condition-set two.
$\operatorname{CON}(K, 2,2)=133, \operatorname{LIM1}(K, 2,2)=4.0, \operatorname{LIM} 2(K, 2,2)=0.0$; this furniture type, item 133, must equal 4.0, a cabinet.
$\operatorname{CON}(K, 2,3)=134, \operatorname{LIMI}(K, 2,3)=1.0, \operatorname{LIM} 2(K, 2,3)=0.0$; the third ".AND." condition requires that the type of cabinet must equal 1.0 , a file cabinet.

Note: Example 3 selects the live weight of every single-pedestal desk and every file cabinet in rooms surveyed by surveyor number 2. The weights are co-mingled and treated as a single variable.

$$
1 \text { NPUY D } 1
$$

Figure 16 Input for Examples as SEEKER Reads it
CABE
DESK WEIGHTS IN RODH 10 FL 3 SURVEYOR NO. 5

$$
\text { HARAMETER COOE } 137
$$

TDTAL NUMBER OF ELEMENTS FOUND E
N
THE DATA FDUNO FOR THIS CASE HAS GEEN WRITTEN ON UNIT NO.
IVG FLOOR LOAOING OF ALL ITEMS IN RMS FA3180-190, SURVEZ, (IN KG/HETER BQ)

PARAMETER CODE 77

THE DATA FOUND FOR THIS CASE HAS BEEN WRITTEN ON UNIT NO.
IIE CAB ANO SINGLE PEO OSK WEIGHTS SURVEYED BY SURVEYOR NO. 2

Figure 17 Example Output
PARAMETER CODE 137

4.3.3.7 Further Descriptive Statistics Derived with the HISTOG Program

While SEEKER provides some descriptive statistics, the development of more complex statistics has been left as an option to be exercised through the use of the program HISTOG. HISTOG reads the data files that SEEKER has created and performs computations requiring all of the data at one time. The specific items produced are histograms, fractiles, and medians.

HISTOG is a separate program, but it is designed so that it may be run after SEEKER either as a separate run or in the same run. When PLTFLG $\neq 0$ in input card number 1 of SEEKER, a one line summary of information is written on unit 4. This is used as input to HISTOG to scale the histograms being created. The description of the input data in Table 9 describes the procedure for using HISTOG. HISTOG may also be used when a data file was created by SEEKER with PLTFLG $=0$ and no such descriptive data was created. In this instance, the needed information must be taken from the printed output produced by the SEEKER run.

The HISTOG program is made up of five subroutines. Three of these are modifications of UNIVAC 1108 Stat-Pack programs, and the other two are written to facilitate data input and to do further computations.

The driving subroutine is called HSTART. This subroutine reads the card and data file input and calls the other subroutines. If the user desires, this subroutine can also be used to punch a card deck of the data.

If a histogram is to be created, HSTART truncates the group size so that it is a multiple of hundredths, ones, tens, or hundreds depending on the actual step size computed from the number of groups warranted by the sample size using the following formula:

$$
\text { Number of Groups }=\left(3.3^{*} \log \text { (number of data pts) }+1\right)
$$

The user can override the number of groups by setting NFINE=-1 and inserting the Namelist card STEPS with the new step size for each case.

Then HISTA is called. HISTA is a modified version of the UNIVAC routine HIST. The basic modification has been in the output format. HISTA then calls GROUPA, a modified verison of the UNIVAC routine GROUP, to group the data. GROUPA has been modified so that the first group can never start with values less than zero. PLOTIA is then used to plot the histogram; PLOTIA is identical to the UNIVAC routine PLOTI.

If the fractiles and the median are also desired, HSTART will call FRACT to order the data and to determine the upper 90 percent and 99 percent fractiles and the lower 5 percent and 1 percent fractiles. FRACT also calculates the median as the middle value if the number of data points is odd or the average of the two middle data points if the number of data points is even. A further HISTOG option exercised in FRACT is the listing in descending order of all the data points present for a particular case. This option may be requested on the first HISTOG data card or it will be furnished when the fractiles are desired and less than 100 data points are present.

Figure 18 gives a general overview of the logic of HISTOG. Figures 19 and 20 show examples of the output generated by HISTOG. These two histograms are from the same data, the first has the number of groups dictated by the sample size, while the second has half the step size giving a bit more detail.

DESK WEIGHTS IN ALL ROOMS AVERAGE 316,230
MIN VALUE 28.4600
STEPE 80.00000
CENYERPOINT OF INIT
CENTERPOINT OF FINA
K FACTOR: 2,1 T

4.4 READER Program Description

4.4.1 Introduction

Program READER is designed to process the output from MAKER by accomplishing a series of tasks that cannot be performed with SEEKER.

Whereas SEEKER is designed to find the same room parameter in rooms with certain characteristics, READER is designed to retrieve all or part of the room data and to either print it or copy it onto another tape (or mass storage device). Thus, READER is oriented toward dealing with the data by room instead of by type of data.

4.4.2 Operational Techniques

4.4.2.1 Program Capabilities

READER has been designed as a multipurpose program that can be used to perform certain data manipulations that have proved necessary in using the data created by MAKER. In addition, it can also extract data needed for analyses other than those accomplished with SEEKER. Below is a listy of these capabilities:

- To provide a one-line or summary listing of the data for all rooms or for particular rooms
- To produce a listing of all of the room data (including all data on room contents) for all rooms or for particular rooms
- To create an output file of selected room parameters that can be used as input to the UCLA Biomedical Statistics Program BMDO2R or other statistical programs in that series (Table 14)
- To create an NTRAN output file for all rooms or for particular rooms
- To extract specific rooms or blocks of rooms from the data tape
- To perform any operation desired by user. A blank subroutine, called DUMMY, is incorporated into READER to provide a location for a user supplied subroutine.
- Each room is described on the data tape with two records (see Section 4.2.1). The tenth word of the first record is an error flag used to identify a room with erroneous data. READER can be used to set this flag to mark room data which the user feels are erroneous.
- To print the room parameters (i.e., the first 132 elements of the data record as described in Table 1 of Section 4.2) for particular rooms
- To write a new output tape (in binary) with only the room parameters (elements 1 to 132) for particular rooms

The above described functions of READER are summarized in Table 15.
READER consists of the main program READ and three subroutines: DATAC2, WRITER, and DUMMY. The READ program reads the input tape and selects those rooms to be used. It also produces the new output tape and prints a oneline summary.

DATAC2 is called from READ. It sets up a data file using specific parameters for each room. This subroutine also dichotomizes data that are of a non-continuous nature. For example, there are seven room types with each type corresponding to an integer number from one to seven. To use these data in a linear regression requires defining six dichotomized variables. DATAC2 performs this dichotomization on seven different room parameters. It was designed specifically to facilitate the use of the UCLA Biomedical programs for data analysis.

WRITER is used to list either the entire data record or only the room parameters. The format used to list the entire data record is the same as program MAKER would have used.

DUMMY is a blank subroutine. It provides a means by which the user can tailor the operation to suit his own needs. All he need do is replace DUMMY with his own FORTRAN source deck. DUMMY can be used with the selection processes in READER in the same manner that WRITER and DATAC2 are called.

4.4.2.2 Selection Procedures

There are three methods of room selection available for most of the operations performed by READER.

The first method selects those rooms that have their identifiers input to the program in the NAMELIST variable RNUM. Each room to be selected must be identified by building number, floor number, and room number. The order of the rooms in the vector RNUM is unimportant.

The second method selects all of the rooms between specified limits. Such a case would be when the user wanted only the rooms from the fourth building on the data tape. He would then specify the number of rooms preceding the desired building and the number of rooms in the desired building. The control variables NSKIP and NO are used for this purpose. Multiple skips and reads may be accomplished (up to 10).
A. Dichotomized Data

```
Room use
    1. General
    2. Clerical
    3. Lobby
    4. Conference
    5. File
    6. Storage
    7. Library
Building vertical load system
    1. Column
    2. Bearing wall
Building building material
    1. Concrete
    2. Steel
    3. Masonry
    4. Wood
Building occupancy type
    1. Federal government
    2. State government
    3. Local government
    4. Private
    5. Private and government
Firm type (SIC code)
    1. Agriculture, forestry, and fishing
    2. Mining
    3. Construction
    4. Manufacturing
    5. Transportation, communication, electric, gas, and sanitation
        services
    6. Wholesale and retail trade
    7. Finance, insurance, and real estate
    8. Services
    9. Public administration
    10. Non-classifiable establishments
```

Table 14. REGRESSION ANALYSIS DATA FILE (Page 2 of 2)

Geographic location using ZIP code

1. Northeast $0<Z I P \leq 19999$
2. North central $42801 \leq$ IIP ≤ 58999 or $60000 \leq Z I P \leq 69999$
3. South $20000 \leq Z I P \leq 42800$ or $70000 \leq Z I P \leq 79999$
or ZIP $=99999$
4. West $\quad \overline{80} 000 \leq Z I P \leq 99998$ or $59000 \leq Z I P \leq 59999$

Surveyor numbers, from 0 to 24
B. Continuous Data

Floor number
Firm age
Age of building at time of survey
Building height
Number of firms in building
Number of occupants in room
Room area
Room volume
Live load PSF
Fire load PSF (derated)
Fire load PSF (un-derated)
Percent of floor area covered
Total number of items in the room
Total weight estimated by surveyor
Weight of heaviest item in room
Room opening factor

The third selection procedure is a combination of the other two. It allows the user to select specific rooms from a predetermined block of rooms. A case where this third option will prove useful is when certain rooms are desired from near the middle of the tape. Skipping to the first room and stopping the search after the last increases the efficiency of the computer.

Table 15 gives a summary of the sixteen different functions READER can perform. The OPTION values delineate the different selection procedures discussed above.

4.4.2.3 Program Output

READER can produce four different types of printed output, ranging from a one-line summary to a complete listing. The user determines the type of output by setting LAM in the NAMELIST input file, \$INPUT.

- Type 1 - a complete listing. Set LAM $=2$. Both the room parameters and the room-content parameters are provided. See Tables 1, 2, and 3 of Section 4.2 for a complete data description. Figure 21, which is an example of the Type 2 output is applicable to room parameter portion of Type 1 output.
- Type 2 - a listing of only the room parameters. Set LAM $=1$. The room parameters are the first 132 words on the data record. These data include the description of the bounding surfaces and various room totals. See Table l of Section 4.2 for detailed data description. Figure 21 is an example of Type 2 output.
- Type 3 - a data summary. Set LAM = 4. Only the most important room descriptors and room totals are provided. Figure 22 has an example of this output.
- Type 4 - a one-line data summary. Set LAM = 5. Figure 22 has an example of this output using only one room. The heading is listed only once per page. Thirty-five rooms can be accommodated on each page. This option is designed to produce a summary list of all the data on the data file. If the optional REAL statement is used to diminish core size, this can be an efficient method for determining what data are present.

In addition to printed output, READER can produce two kinds of modified data tapes. The control variables LAM, RNUM can be used to set the room error flag to -1 (erroneous data) on specified rooms

- Type 1 - entire data record copied to new tape. Set LAM $=3$. When OPTION is set to 0 , those rooms identified in the RNUM vector are marked as erroneous by setting the error flag to -1 .

Table 15. READER CAPABILITY
(Page 1 of 1)

OPTION = $0 \quad$ OPTION $=1$

$L A M=1$	Use WRITER to print the first 132 words of room data for those rooms in RNUM from NSKIP(jk) to NSKIP(jk) + NQ(jk)	Use WRITER to print the first 132 words of room data for all rooms from NSKIP(jk) to NSKIP(jk) + NQ(jk)
LAM $=2$	Use WRITER to print all the words of the rooms in RNUM from NSKIP(jk) to NSKIP (jk) + NQ (jk)	Use WRITER to print all the words of the rooms from $\operatorname{NSKIP}(j k)$ to $\operatorname{NSKIP}(j k)+$ NQ(jk)
LAM $=3$	Write a new tape in NTRAN binary with error flag set to -1 for those rooms in RNUM from NSKIP (jk) to NSKIP(jk) + NQ(jk)	Write a new tape in NTRAN binary that has all the rooms from $\operatorname{NSKIP(jk)}$ to NSKIP(jk) + NQ(jk)
LAM $=4$	Print a set of summary data for all rooms in RNUM form NSKIP(jK) to NSKIP(jk) + NQ(jk)	Print a set of summary data for all rooms from NSKIP(jk) to $\operatorname{NSKIP(jk)+NQ(jk)~}$
$L A M=5$	Print a one-line summary for all rooms in RNUM from $\operatorname{NSKIP}(j k)$ to $\operatorname{NSKIP}(j k)+$ NQ(jk)	Print a one-line summary for all rooms from NSKIP(jk) to $\operatorname{NSKIP(jk)}+N Q(j k)$
$L A M=6$	Write a new tape in NTRAN binary with only the first 132 words for all rooms in RNUM from NSKIP(jk) to NSKIP(jk) + NQ(jk)	Write a new tape in NTRAN binary with only the first 132 words for all rooms from $\operatorname{NSKIP}(j k)$ to $\operatorname{NSKIP}(j k)+$ NQ(jk)
LAM $=7$	Call DATAC2 to create a data file of those rooms in RNUM from NSKIP (jk) to $\operatorname{NSKIP}(j k)+N Q(j k)$	Call DATAC2 to create a data file of those rooms from $\operatorname{NSKIP(jk)}$ to $\operatorname{NSKIP(jk)}$ $+\mathrm{NQ}(j k)$
LAM $=8$	Call the user-designed subroutine DUMMY for those rooms in RNUM from NSKIP (jk) to $\operatorname{NSKIP}(j k)+N Q(j k)$	Call the user-designed subroutine DUMMY for those rooms from $\operatorname{NSKIP}(j k)$ to NSKIP(jk) $+N Q(j k)$

The mnemonics used here are defined in Appendix B.7, Tables 1 and 2.
OPTION $=0$ - select only the rooms specified explicitly.
OPTION = 1 - select all rooms in the specified block.

Example of Type 3 Output

$$
\begin{aligned}
& \text { Number of desks } \\
& \text { Number of tables } \\
& \text { Number of cabinets } \\
& \text { Number of chairs } \\
& \text { Number of miscellaneous objects } \\
& \text { Number of free-standing paper piles } \\
& \text { Number of free-standing book piles } \\
& \text { Number of free-standing pieces of office equipment } \\
& \star \star=\text { good data } \\
& 0=\text { bad data, error flag set by MAKER } \\
& -1=\text { bad data, error flag set by READER } \\
& \text { Room use: } \\
& \text { GEN General office } \\
& \text { CLE Clerical office } \\
& \text { LOB Lobby } \\
& \text { CON Conference room } \\
& \text { FL } \\
& \text { STO Sile room } \\
& \text { LIB Library room }
\end{aligned}
$$

Figure 22. Sample of Type 3 and Type 4 READER Output

If OPTION is set to 1 , the room data files are copied verbatim although specific rooms or blocks of rooms can be selected using the NSKIP and NQ control variables previously discussed

- Type 2 - only room parameters (first 132 words) copied to new tape. Set LAM $=6$.

The final type of output produced by READER is a regression analysis data file. This data file contains all of the information anticipated to be needed to perform a regression analysis of the live load and fire loads in office buildings. This option is selected by setting LAM $=7$. Each room is described with 23 types of information arranged into four lines (or four cards if the data are punched). DATAC2 is used to generate this data file.

Part of the data is non-continuous data (i.e., variables with only integer values) that are dichotomized and part is continuous data that are transferred directly to the new data file.

The dichotomized data are given a value of either 1., 0., or -1. Below is an example of the dichotomization method used:

- For building material, the alternative values are:

```
} = concrete
2 = steel
3 = masonry
4 = wood
```

- DATAC2 will write three variables: X1(8), XI(9), X1(10):

	Values		
Type	X1 (8)	XI(9)	$\underline{X 1}(10)$
1	1.	0.	0.
2	0.	1.	0.
3	0.	0.	1.
4	z	z	Z

The value of Z is -1 . in DATAC2. It may be set to another value by changing the DATA statement. This method is used for all of the aforementioned dichotomized variables.

The format of the output file is on four lines. The first line is the dichotomized room descriptions, except for surveyor number and geographic location:

The second line of output is the remaining dichotomized room description and part of the continuous data:

The third line consists of the remaining continuous data:

FIIE LOAO			total	total Esfimateo			FIag loat
live loat	PSF	* of Flool	muyes of	TEIGHT	nėVIESt	Roou	PSF
PsF	(DEPATED)	AREA COYEREO	lieys im rooy	In Room	ITEM	OPEmING FACTIOR	(unograteo)
$=21.052$	$=.348$	$=30.148$	$=8$	$=14$	$=115.33$	$=-1$	$=17.435$
21.052	. $3+9$	30.14t	A.rio)	14.00	115.330	- : Cnuc\%	17.4.5

The last line is the dichotomized room surveyor number, from 0 to 24:

surveyor muabe $=0$

The output file from DATAC2 will be written on the unit specified on the NAMELIST input card as the value of NOUT. The four lines shown above are all less than 80 characters long, so that the assigned unit may be a card punch.

4.4.2.4 Diagnostic Messages

The diagnostic messages in READER are of three types:

- Messages concerning the NAMELIST input data,
- Messages relating to the NTRAN operations, and
- Messages relating to the values of data to be processed in DATAC2.

Table 3 in Appendix B. 7 gives these messages and the conditions under which they are printed. It should be consulted on encountering any such message.

The messages relating to data processed by DATAC2 do not imply the termination of the run. They do mean, however, that processing of that particular room will not be continued and that room will not be added to the output file.

4.4.3 Operating Logic

READER first reads the function options from the NAMELIST card, \$INPUT. It then reads the data tape, applying the selective procedures to determine which rooms shall be processed. It processes the selected rooms according to the function options. Figure 23 is a general flow chart of the operation of READER.

4.4.3.1 Reading the Room Data

The room data being read by READER were created by program MAKER. The data are binary, odd parity, 800 bpi density and were written with the UNIVAC system routine, NTRAN. Tables 1, 2, and 3 of Section 4.2 together with Table 7 of Appendix B. 4 describe the data. Two records are used for each room. The first record has 10 words, each of which gives the length of the second record. If, however, the data were flawed when MAKER processed them, the tenth word of the record will be 0 . The second record is the data produced by MAKER describing the room. If the user later decides, for any reason, that he does not want to use a particular room in his analysis, he may use READER to set this error flag (i.e., the tenth word of record one) to -1 . This is done by setting OPTION $=1$ and LAM $=3$. The new tape generated by READER will be identical to the input tape except that the error flag will have been set to -1 for the specified rooms. The NAMELIST control variable, RNUM, is used to specify the room to be flagged. Up to 50 rooms can be flagged on one run.

If this error flag has previously been set to -1 by READER or to 0 by MAKER, that room will be skipped when the DATAC2 subroutine is used to create a regression analysis data file (see Section 4.4.2.3).

The control variables, NSKIP and NQ, are used to skip over blocks of data. This results in lower computer costs by reducing the number of tape read operations required. This requires some knowledge as to where on the tape the rooms of interest are located. Another way to reduce the computer cost is to redimension Y whenever LAM options 1, 4, 5, 6, and 7 are used. Since these options (see Table 15) only operate on the room parameters, only the first 132 words of the data record need be read. Consequently, for these cases Y should be redimensioned to $Y(132)$ from the nominal $Y(15000)$. This can be done by changing the DIMENSION statement in the source deck and recompiling the program.

4.4.3.2 Selecting the Rooms

Room selection can be accomplished either by specifying groups of rooms (OPTION $=1$) or by specifying particular rooms (OPTION $=0$).

Figure 23. General Flow Chart for READER

To select groups of rooms the user must first determine where on the input tape each group begins and how many rooms are to be included in the group. NSKIP gives the number of rooms to be skipped from the end of the previous group, or from the beginning of the tape; $N Q$ is two times the number of rooms to be selected.

A graphic representation of this operation is shown below:

Up to ten separate groups may be selected in one run. Additional groups may be obtained by stacking runs. If all the room on the input tape are to be processed, NSKIP must equal 10*0 and NQ must equal 90000, 9*0. NSKIP and NQ are each vectors dimensioned for 10 elements. Thus ($10 * 0$) means each element is set to zero and ($90000,9^{*} 0$) means the first element is set to 90000 and the rest are set to 0 . These are the default values.

Particular rooms can be chosen by specifying the building number, floor number, and room number for each room to be selected. The control variable RNUM is used for this information. Up to 50 rooms can be specified. This selection procedure can be used in conjunction with the first procedure for situations where all the specified rooms are in a particular building. NSKIP is given a value to carry the read to the beginning of the building. If the rooms are located in definable areas, this method should speed up the selection process. This cannot be used for LAM $=3$ because all the rooms are to be written on the new tape. To use this procedure, OPTION must be set to 0 . The program checks each room against the input data and selects those for which a match is obtained. An example of this procedure (OPTION $=0$) is given below.
\$INPUT RNUM $=2,3,5,10,20,1,25,3,50, N C=9$, LAM $=$? $\$ E N D$
would select room 5 on floor 3 in building 2, room 1 on floor 20 in building 10, room 50 on floor 3 in buildng 25.

NC must equal three times the number of rooms; LAM may be any of the 8 available options.

4.4.3.3 Examples of Selection Cases

Example 1

\$INPUT LAM $=1$, NSKIP $=5$, NQ $=1 \$$ END
LAM $=1$ calls WRITER to print the first 132 words of room data; NSKIP(1) $=5$ skips the first five rooms on the input tape assigned to unit 9 ; $N Q(1)=1$ reads only one room after the first skip (the default value of NQ (2 to 10$)=0$, so after reading this one room, the read will stop); OPTION = 1 by default.

Example 2
\$INPUT LAM $=3$, OPTION $=1$, RNUM $=1,1,3,25,3,50, N C=6$, NOUT = 10 \$END
LAM $=3$ writes a new tape; OPTION $=1$ selects those rooms in RNUM and writes them with the tenth word in the first record as a -1 ; RNUM $=1$, 1,3,25,3,50 - the rooms to be selected are building 1, floor 1, room 3 and building 25, floor 3, room 50 ; $N C=6$, NC must equal three times the number of rooms; NOUT $=10$, the tape output file is a tape assigned to unit 10 with the input, by default, a tape assigned to unit 9.

Example 3

NO INPUT CARD PRESENT
Since OPTION $=1$, NIN $=9$, NSKIP $=0, N Q(1)=90000$ and LAM $=5$ by default, a one-line summary will be printed for all the data on the input tape assigned to unit 9.

Example 4

$\$$ INPUT NSKIP $=10,50,30,7 * 0$, NQ $=5,17,85,7 * 0$ \$END
NSKIP = 10 skips 10 rooms; NQ $=5$ reads 5 rooms;
NSKIP $=50$ skips 50 rooms; $N Q=17$ reads 17 rooms;
NSKIP $=30$ skips 30 rooms; NQ $=85$ reads 85 rooms;
OPTION $=1$, LAM $=5$ by default, produces a one line summary for each room;
NIN $=9$ by default, means the input tape is assigned to unit 9.

4.5 Regression Analysis (Program BMDO2R)

4.5.1 Introduction

The data created by Program MAKER is amenable to analysis by any statistical analysis technique desired. Programs SEEKER and READER have been designed to retrieve this data efficiently and to save it for analysis. In doing so, they also provide some of the basic statistical parameters which characterize the data (Sections 4.3 and 4.4). For the specific purposes of this study, however, use was made of the Biomedical Computer Program, BMDO2R, to perform stepwise regression analyses of the PSF live load and the PSF un-derated fire load. Although the results of the regression analyses are reported in Reference 2, a brief description of the BMDO2R computer program is provided here.

The results of these regression analyses were subsequently incorporated into Program BUILDER (Section 4.6) to provide a statistical model of the live load and fire load in offices.

4.5.2 Program Description

The program computes a sequence of multiple linear regression equations in a stepwise manner. At each step one variable is added to the regression equation. The variable added is the one which makes the greatest reduction in the error sum of squares. Equivalently it is the variable which has highest partial correlation with the dependent variable partialed on the variables which have already been added; and equivalently it is the variable witich, if it were added, would have the highest F value. In addition, variables can be forced into the regression equation. Non-forced variables are automatically removed when their F values become too low. Regression equations with or without the regression intercept may be selected.

Output from the program includes:
(1) At each step:
(a) Multiple R
(b) Standard error of estimate
(c) Analysis-of-variance table
(d) For variables in the equation:

1. Regression coefficient
2. Standard error
3. F to remove
(e) For variables not in the equation
4. Tolerance
5. Partial correlation coefficient
6. F to enter
(2) Optional output prior to performing regression:
(f) Means and standard deviations
(g) Covariance matrix
(h) Correlation matrix
(3) Optional output after performing regression:
(i) List of residuals
(j) Plots of residuals vs. input variables
(k) Summary table

A complete description of program operation, computational procedures and operating instructions is provided in Reference 11.

4.6 Building Analysis (Program BUILDER)

4.6 .1

Introduction
The function of Program BUILDER is to recreate the psf live load and the psf fire load in every room of a specified building. It does this by using the statistical models previously developed (Sections 4.5 and 4.6) for those rooms for which survey data is not available. If there are rooms in the building for which the user knows the loads (for instance, if a room was surveyed during this study), the program will use the actual load if that is desired.

The program is arranged into a main program and one subroutine (FLMOD). The main program performs all input and output operations, all data checking, all calculations on rooms with known loads, and all calculations of floor and building totals. The subroutine performs the load calculations using the statistical model. If the user desires to perform a live load or fire load study using a different statistical model, he will have to modify the FLMOD subroutine.

If desired, the program will print the complete description of each room or room segment. Included here are such things as the east, west, north, and south wall locations; the room use; firm data; psf live load; and psf fire load. In addition to this optional output, the program always prints a number of floor and building totals.

The program is dimensioned for up to 600 room or room segments per floor. The general program flow is shown in Figure 24.

Figure 24. General Flow Chart for Program BUILDER

4.6.2 Operational Techniques

4.6.2.1 Input Data

Three types of input data are required for Program BUILDER. The first type is a set of run parameters defining the type of input and output desired. The second type of data is the room-plan information (including building and firm characteristics), and the third type is load data for specific rooms. The first two data sets are always required but the third is optional.

The run parameters are all logical variables input on one NAMELIST input record. This record is always required, although none of the variables need to be specified if the user desires to use the default values. These variables define:

- Whether load data for specific rooms is being used,
- Whether all of the output is to be printed,
- Whether the room-plan data is to be read from a NAMELIST input record, a binary tape file, or a binary FASTRAND file, and
- Whether the output is to be written on a binary tape file, a binary FASTRAND file, or nowhere.
The specific details required by the user are given in Appendix B. 8 (Table 2).

BUILDER is designed to read the room-plan data tape (Data File 2) according to the tape format described in Table 1 of Appendix B.8. Each file on the tape represents a single building. The first record contains the building characteristic data (25 words) and the next record contains the firm information (8 words per firm). Each subsequent record contains data for one room or room segment (34 words). The tape must be in binary format and must have been created with the NTRAN software for the UNIVAC 1108. All of the rooms or room-segments for a specific floor must be adjacent to one another, but within a given floor the rooms may be in any order.

To facilitate program checkout and to provide additional flexibility, the program will also read the above data from cards (in NAMELIST form). The data must be in the same sequence as required for the magnetic tape. A separate NAMELIST input record is required for each data record. The building characteristic record is called TESTI, the firm data record is called TEST2, and each room-plan record is called TEST3. The arrangement of this data is described in Appendix B. 8 (Table 2).

Load data may also be used for specific rooms if the user so desires. This is done by setting the run parameter SURDAT = TRUE and providing the required data on cards. For each room being given a specific loading, the following information must be provided:

- Building number
- Floor number
- Room number
- PSF live load
- Standard deviation of live load
- PSF fire load
- Standard deviation of fire load

This data must be provided in the specified format ($1 \mathrm{Hb}, 3 F 10.0,4 \mathrm{El2.6}$).
If more than one building is being processed on the same run, the surveyed data may all be placed on one file or a separate file may be used for each. building. Two title cards are required at the beginning of each file and an end-of-file card is required at the end of each file. The building sequence in the surveyed-data must match the building sequence in the roomplan data. Program SEEKER (See Section 4,3) has a special option for generating the surveyed data in the required form.

4.6.2.2 Error Checking

The program performs a number of data checks to insure that the data is internally consistent. If it finds inconsistent data, an error message is printed, but generally the run is allowed to proceed.

On the building characteristic data, the following items are checked:

- Building number should be less than 102,
- State number should be less than 52,
- The construction date should be between 1800 and 1974,
- The number of stories should be less than 101,
- The vertical load resisting system, the building materials, and occupancy type should be one of the designated indices.

On the firm data, the following program checks are made:

- That the firm number is less than 1001,
- That the firm type is one of the standard industrial classifications,
- That the firm age is less than 175 years.

The program also checks the load data being input for specific rooms and the room-plan data against the building-characteristic data. If an inconsistency is found here, the run is terminated. The items checked are:

- The building number,
- The floor number,
- The substitution flag (0 or 1),
- The room use flag (1 to 12).

4.6.2.3 Load Model

The live loads (psf) and fire loads (psf) produced by BUILDER are developed in three ways depending on the room use and on whether specific data was input for the subject room. If specific data was input, that data is used without modification. If the room is designated as a stairway (use index $=8$), elevator (use index $=9$), corridor (use index $=10$), other (use index = 11), or vacant (use index = 12), the loads and their standard deviations are set to zero.

If, however, the room is one of the types of rooms covered by the survey (use index $=1$ to 7), the statistical model discussed in Section 4.5 and in Reference 2 is used to generate the floor loading. Subroutine FLMOD performs this determination.

The fire and live Toad models incorporated into BUILDER depend only on the room use. Other"possible variables were investigated but found to be unimportant compare to the effect of rocm use. The details of this investigation and the mols themselves are discussed in detail in Reference 2. FLMOD simply select's the desired floor loading from the following list which defines the models in their entirety.

	Use Index	PSF Live Load	PSF Fire Load Un-derated
Use	1	9.2	7.5
General	2	10.1	6.4
Clerical	3	4.0	4.4
Lobby	4	5.7	5.2
Conference	5	25.3	16.8
File	6	15.8	12.7
Storage	7	26.4	24.7

The standard deviations of the live load and fire load are 7.82 and 6.22, respectively, irrespective of the room use.

4.6.2.4 Output

The room-plan data is provided to the program on a room or room-segment basis. Because each room-plan record only contains data for a rectangular area, several records are required to describe non-rectangular rooms. The addition flag (0 or $2=$ add, 1 or $3=$ subtract) defines whether the area should be added or subtracted from other elements with the same floor and room number. The results produced by program BUILDER retain the same data blocks as existed in the input. Each room will be described by one or more records just as it was on the input tape. The sequence of these data blocks may be rearranged because all blocks with the same floor and room number. will be adjacent to one another in the output.

The items included in the output are described in Table 16. Most of the information included on the input tape will also appear in the output. Instead of having a firm number, however, each room will now have a firm type and a firm age. The printing of this data is optional.

When the output data is being written on a magnetic tape or FASTRAND file, the first record will be the building characteristic data and all subsequent records will be the room-plan and load data. After all room records for a single building have been recorded, a single "end-of-file" mark will be . recorded. When the last building being processed is complete, another "end-of-file" mark will be recorded on the tape. If the data is being.written on tape, the UNIVAC software, NTRAN, is used. However, if the data is being. written on a FASTRAND file then a normal Fortran binary write is used.

In addition to the data shown in Table 16 , the printed output also contains several floor and building totals. For each floor, the program produces:

- total live load (1b)
- total fire load (1b)
- total live load determined from surveyed data (lb)
- total fire load determined from surveyed data (1b)
- total area (ft ${ }^{2}$)
- total surveyed area (ft ${ }^{2}$)
- total area of stairways, corridors, elevators, and other ($\mathrm{ft}{ }^{2}$)
- total room area broken down into 12 use categories (ft2)

For each building - all of the items listed above, plus

- number of firms broken down into 10 type categories
- number of rooms broken down into 8 use categories (not including stairways, corridors, elevators, and other)

All of these floor and building summaries are always printed.

TABLE 16. ROOM PARAMETERS: OUTPUT OF BUILDER (Page 1 of 2)

Building Characteristics (Record 1)

1 Surveyor No. (001 to 999)
2 Building No. (001 to 200)
3 State No. (01 to 51)
4 Zip No. (00001 to 99999)
5 Year Built (1700 to 1974)
6 Number of Stories Above Ground Level (00 to 99)
7 Vertical Load Resisting System
1 = column
2 = bearing wall
8 Building Material
1 = concrete
2 = steel
3 = masonry
$4=\operatorname{wood}$
9 Occupancy Type
1 = federal government
2 = state government
3 = local government
4 = private
5 = private and government
10 Number of Firms in Building (001 to 999)

TABLE 16. ROOM PARAMETERS: OUTPUT OF BUILDER (Page 2 of 2)

Room Data (Record 2 and Subsequent)

1 Floor No. (00 to 99)
2 Room No. (000 to 999)
3 West coordinate (ft)
4 East coordinate (ft)
5 North coordinate ($f t$)
6 South coordinate (ft)
With respect to building origin

7 Flag
$0=$ add area, not surveyed
1 = subtract area, not surveyed
2 = add area, surveyed
3 = subtract area, surveyed
8 Firm type (00 to 99)
9 Firm age (000 to 200)
10 Room Use
1 = general
2 = clerical
3 = lobby
4 = conference
5 = file
$6=$ storage
7 = library
8 = stairway
$9=$ elevator
$10=$ corridor
11 = other
12 = vacant
11 Mean fire load for room (psf)
12 Standard deviation of mean fire load (psf)
13 Mean live load for room (psf)
14 Standard deviation of mean live load (psf)
15 Area of room (i.e., room segment)

4.6.3 Operating Logic

4.6.3.1 MAIN Operating Logic

Almost all of the operations required for the program are contained within the main program. This includes all input and output, and most data manipulation. Whenever an end-of-file mark is encountered on the input tape, the program assumes that the building has been completed. It then tries to read data for another building. Whenever two end-of-file marks are encountered in succession, the program assumes that the job is complete.

The operation of program BUILDER is described graphically in the flow chart of Figure 25. The major operations of the main program are as follows (shown sequentially):

- Initialize parameters and read \$INPUT
- Read, manipulate, and test building-characteristic data
- Read, manipulate, and test data for surveyed rooms
- Read, manipulate, and test firm data; form firm totals
- Read and test room data until floor number changes
- Determine all load parameters for the floor just read
+ If room was surveyed, use that load data
+ If room is a stairway, corridor, elevator, other, or vacant, set loads to zero
+ Call FLMOD to determine load parameter for remaining rooms
- Write the output on printer and/or tape or FASTRAND file
- Calculate floor and building totals
- Write floor and/or building totals on printer
- Proceed to next floor or building

4.6.3.2 FLMOD Operating Logic

FLMOD was structured in anticipation that the fire and live loads would depend on a number of parameters such as room use, room area, and firm type. Consequently it determines the true area of each room prior to determining the loads. In the final formulation, however, the loads are only a function of the room use. Consequently, FLMOD simply uses the Use Index to select the proper load (mean and standard deviation) from a table compiled into the program. The Use Index varies from 1 for a general office to 7 for a library. The desired loads are placed in the MODEL2 matrix for output purposes.

Figure 25. Detailed Flow Chart for Program BUILDER

5. ACKNOWLEDGMENTS

Several staff members at NBS and the Bureau of The Census contributed to the development of the computer programs contained in this report. The program for scanning the FOSDIC documents was written by Alex Courtney, Bureau of The Census. The authors developed the computer programs described in Chapters 3 and 4. Leighton Greenough and Irvin Pulaski, from the Product Engineering Division, NBS, wrote the computer program for scanning the floor plan tracings. Dr. Joan Rosenblatt, .. Applied Mathematics Division, NBS, provided continual guidarice on selection of the room survey sample and the mathematical procedures adopted to reduce the survey data. Newton Breese, Center for Fire Research, assisted in debugging the computer programs, preparing the floor plan tracings, and processing the survey data.

6. REFERENCES

1. Culver, Charles; Kushner, Jill, "A Program for Survey of Fire Loads and Live Loads in Office Buildings," NBS Technical Note 858, May 1975.
2. Culver, Charles, "Survey Results for Fire Loads and Live Loads in Office Buildings," NBS report in preparation.
3. Standard Industrial Classification Manual, U.S. Bureau of the Budget, Office of Statistical Standards, Washington, DC, 1967.
4. Benjamin, J.R.; Cornell, C.A., Probability, Statistics and Decision for Civil Engineers, McGraw-Hill Book Company, 1970.
5. Ku, H.H., "Notes on the Use of Propagation of Error Formulas," Journal of Research of the National Bureau of Standards, Vol. 70C, October December 1966.
6. Natrella, M.G., Experimental Statistics, National Bureau of Standards Handbook 91, August 1, 1963, Pages 2-9.
7. Robertson, A.F.; Gross, Danie1, "Fire Load, Fire Severity, and Fire Endurance," ASTM Special Publication 464, 1970.
8. VTRAN - NBS Developed Subroutine, Computer Services Division, National Bureau of Standards, May.1, 1974.
9. NTRAN - UNIVAC 1100 Series, FORTRAN V Library, Programmer Reference UP-7876, Section 4.18.
10. Text EDITOR (ED) - UNIVAC 1100 Series, Operating System, Programmer Reference UP-4144, Rev. 3, Section 18.4.
11. Dixon, W. J., Editor, BMD - Biomedical Computer Programs, University of California Press, 1968.

APPENDIX A

DATA PROCESSING FORMS AND INSTRUCTIONS
The forms and instructions used to collect data in the rooms surveyed were presented in a previous report (1). In addition, special procedures were developed to randomly select the rooms to be surveyed in the 23 buildings in Phase I and process information on the building geometry. Instructions for preparing the Area Classification Documents used for the room selection and the Plans Document used to generate the geometric coordinates for all areas within the building are included in this Appendix.

Instructions for Completion of Area Classification Document

The Area Classification Document is a FOSDIC form used for camputer processing of information on the firms occupying the building and the use of each area within the building. Information to be recorded on this document is obtained from the building floor plan blueprints used in the initial survey of the building. After completion, this document is used as input to a computer program which randomly selects the specific rooms to be surveyed within a given building.

The building number and floor number are recorded on each sheet of the floor plans. Each area (room, corridor, elevator, etc.) on a given floor has been assigned a number. This number is circled on the plans. For each circled room number, a one or three part code number, e.g. $3-2-2$, 11 , or $5 / 1 / 10$, has also been recorded on the plans. This code corresponds to the different sections to be filled in on the Area Classification Document.

Each digit in the code number represents a different section of the FOSDIC form. The first number is the firm number, the second tells whether it is an enclosed or open room, and the third tells what the room is used for. In some cases, the code will be only one number. In that case, the code number represents room use. Most of the time this one digit number will occur in elevator spaces and statrwells and the like where firm numbers are not appropriate. A single digit code is also used for vacant rooms.

Using the floor plans, fill out the Area Classification Documents. On each Area Classification Document, first fill out the building and floor number at the top of the page. There is no specific order required for recording the rooms on the document, i.e. numerical order of rooms is not necessary. However, only rooms from the same floor may be on the same sheet. A floor may have more rooms than can be recorded on one sheet. In that case, after campleting a sheet, just fill out another sheet with the same building and floor information at the top and continue.

Flirst, flll in the firm number in the section entitled FIRM using the first number in the code.

Next, fill in the circled room number in the section entitled ROOM NUMBER. Do not use the special mark in this section indicated for subtraction.

Next, fill in enclosed or open roam using the second number in the code:

```
l - fully enclosed
2 - open: with partitions
3-open: without partitions
```

Skip the section entitled NO. IMAG. ROOMS.
Next, fill in the room use using the third number in the code:
1-general
2 - clerical
3- lobby
4 - conference
5-file
6 - storage
7 - library
8 - stairway
9 - elevator
10 - corridor
11 - other
For vacant rooms, indicated on the plans as 12, the ROOM USE should not be marked but the number 5 should be marked in the Z column. Where there is only one number in the code, do not fill in anything for firm number or enclosed or open room.

The X and Y columns should be left blank in all cases.
Next, fill in the Z column using 0 if the room is less than or equal to 200 square feet and 1 if it is more than 200 square feet. (The area of the room is usually marked on the plans as so many "sq. ft." or "ゅ" or the Z value has been indicated.) If there is only one number in the code, the square footage need not be marked in the Z colum. If a room has the same firm number as the room before it, the "same as before" circle may be marked in lieu of firm number. If an area having no firm number comected with it, such as an elevator, comes within a group of rooms of the same firm number, "same as before" must also be marked. 'When starting a new sheet, the firm number should be marked in block l even if it is the same as the last block filled out on the previous sheet.

In the top section of the form, the blocks labeled 1 through 11 , "HOR.REF.1,""HOR.REF.2,""VERT.REF.1," and "VERT.REF.2" should be ignored.

The Area Classification Documents for each building should be stacked together in order by floor.

The following is an example of a record for one room.

The following data was recorded on the floor plans:
BLDG 24
FLR 5
18
$\left.\begin{array}{l}88 / 1 / 2 \\ 287 \text { ゅ }\end{array}\right\} \begin{aligned} & \text { in the individual } \\ & \text { room or area }\end{aligned}$
The completed section of the Area Classification Document is as follows:

I. PLANS DOCUMENT

The Plans Document is a $17{ }^{\prime \prime} \times 22^{\prime \prime}$ sheet of tracing paper with eight squares to the inch. To make the document, first, lay out the original size floor plans. The plans should be fastened down and the graph paper fastened over it. (In order to make the tracing simpler, a light table should be used, if available).

Document Origin

The document is laid out using horizontal and vertical axes. The horizontal axis is on the long (22") side; the vertical axis is on the short (17") side. The origin is the point 3" down from the horizontal edge and $2^{\prime \prime}$ in from the vertical edge. See Figure 1. The origin should be placed over the starting point on the plans, the axes should be lined up parallel to outside walls on the plans and the sheet should be fastened down so it will not shift.

Horizontal and Vertical References
After the document is fastened in position, the horizontal and vertical reference marks should be made. The references are two pairs of marks which an electronic scanner will later use to locate and scale rooms on the document.

The horizontal reference marks are $3 / 4^{\prime \prime}$ long and are located along the horizontal side as follows: HOR. REF. 1 - parallel to and 2 inches in from the vertical edge and between 1 and 2 inches down from the horizontal edge. HOR. REF. 2 - between 1 and 2 .jnches down from the horizontal edge and parallel to the vertical edge, and about $15^{\prime \prime}$ to $18^{\prime \prime}$ from HOR. REF. 1. (The largest, most convenient distance between the two referneces is preferred).

The vertical references follow the same idea as the horizontal references. VERT. REF. 1 is located parallel to and 3 inches down from the horizontal edge, and between the vertical edge and 1 inch in from the vertical edge. VERT. REF. 2 is also between the vertical edge and 1 inch in from the vertical edge and parallel to the horizontal edge, and about 10" to $13^{\prime \prime}$ from VERT. REF. 1. See Figure 2.

Scaling the References

In order for the electronic scanner to know the distance the two marks represent, the references must be scaled. In the lower right hand corner of the floor plans you will find the scale for the drawing. It will tell you what part of an inch on the drawing is equal to 1 foot in reality, e.g. $1 / 4^{\prime \prime}=1$. The number assigned to a particular reference mark is the scaled distance from the origin
to the reference mark. Using the example scale of $1 / 4^{\prime \prime}=1^{\prime}$, assume HOR. REF. 2 is $15^{\prime \prime}$ from HOR. REF. 1. HOR. REF. 1 is at the origin and, therefore, equals zero. HOR. REF. 2 is $15^{\prime \prime}$ in the horizontal direction away from the origin and, therefore, using the scale $15^{\prime \prime}=60^{\prime}$ and HOR. REF. 2 equals 60 . The process is repeated for the vertical references.

The useful work area of the Plans Document is $18^{\prime \prime}$ horizontally from the origin by 13 " vertically from the origin.

In most cases, one sheet will not be enough to cover one floor on the floor plans. When this happens, another document with another set of references will have to be added. The locations of the reference marks will be the same, however, the number assigned to the marks may change.

Assume that you have finished the first Plans Document, but, in order to cover the whole floor plan, another sheet is needed that is $10^{\prime \prime}$ lower than the first. Using the example scale, $1 / 4^{\prime \prime}=1$, HOR. REF. 1 still equals 0 and HOR. REF. 2 still equals 60 because the new sheet was moved down, but not to the right, i.e. it was only moved in the vertical direction. Now, the new VERT. REF. 1 is $10^{\prime \prime}$ from the origin. Using the scale, $10^{\prime \prime}=40^{\prime}$ the new VERT. REF. 1 equals 40 . If you have made the new VERT. REF. 2 another $10^{\prime \prime}$ from VERT. REF. 1 , the VERT. REF. 2 equals 40 (from VERT. REF. 1) plus 40 (for additional 10") or, in other words, the new VERT. REF. 2 equals 80.

Room Boundaries

Each area on the floor plans contains a circled red number. The space could be an office, an elevator, a janitor's closet, a corridor, or whatever. This is unimportant for preparing the Plans Document.

To show the boundaries of a room, all you need is four marks. The marks should be placed so that a vertical line passes perpendicularly through two of them and a horizontal line passes perpendicularly through the other two. See Figure 3.

When marking the boundary marks, the wall will often times be shown as a thick section. When it is shown in that way, it is legitimate to draw the boundary mark in between the two surfaces. See Figure 3.

All room boundary marks must be located within the useful work area of the Plans Document.

Multi-Area Rooms

Not all rooms are rectangular in shape. In Figure 4, we see an L-shaped room made up of two areas, A and B. There are two different methods of handling odd shaped rooms like this. The first method is
to add the two pieces, A and B, by treating each as the same room on the Plans Document. Put in boundaries for each piece and in filling out the Room Locator Document (described later) call both pieces by the same room number.

The second method is pick a rectangle that contains the room and subtract the part that doesn't belong. See Figure 5. The subtracted part should have the same room number as the area from which it is subtracted. The procedure for indicating subtraction is discussed in the Room Locator Document instructions.

Room Boundaries for Groups of Rooms

When dealing with groups of rooms, which is more often the case, instead of single rooms, it is important to note that the sarme room boundary may be used for more than one room. Keep in mind, however, that the boundary marks for a room or area must be on the same horizontal or vertical line. Figure 6 shows a group of three rooms. As you can see, Rooms 1 and 2 share boundary mark A while Rooms 2 and 3 share boundary mark B. It is possible to expand the concept in order to handle much larger groups of rooms.

Area Coordinate Marks

At the same time the room or area boundary marks are being put in place, the area coordinate marks should be positioned.

The electronic scanner uses these horizontal and vertical area coordinate marks to find the inside of an area. Once inside the area, the scanner goes off in a horizontal line and in a vertical line until it comes to an area boundary mark. Since the area boundary marks were laid out so that a horizontal or vertical line would cross them, the area coordinate marks can be considered as a sort of pointer for those lines.

Figure 7 shows the area on the document reserved for the coordinate marks.

Figure 8 is an example of the position for several coordinate marks.
You can have a maximum of nine marks in each direction. Number the marks starting in the upper left hand corner with one and going left to right for the horizontal coordinates and top to bottom for the vertical coordinates. See Figure 8.

On each new document begin numbering the area coordinate marks over again beginning with one.

Overlapping Documents

As indicated before, one Plans Document will probably not be sufficient to contain an entire floor, and successive documents will be required for that floor. For convenience these documents may overlap.

However, data should not be repeated. If a room has been recorded once, it should not appear again.

General Notes

It should be noted that two parallel, adjacent marks that are to be scanned as individual entries, cannot be closer than $3 / 8^{\prime \prime}$ apart. This includes room boundaries and coordinate marks. Although it is possible to use freehand, a straight edge is recommended for drawing the marks on the document. After the Plans Document is complete, it should be left in place unitl the Room Locator Document is done. This allows for much easier identification of rooms and fewer mistakes on the latter document.

It would be advisable to use some method of identifying to which Room Locator Documents the Plans Documents are tied.

II. ROOM LOCATOR DOCUMENT

Once the Plans Document is completed, the Room Locator Document can be filled out.

Heading Section

In many cases there will be several Room Locator Documents for each Plans Document.

At the top of each document, record the building number, floor number, and complete Block 3. In Block 3 the two columns represent "sheet
\qquad of \qquad ." The first column is the sheet number and the second column is the total number of sheets used with a particular Plans Document.

On the first sheet only of the group of Room Locator Documens for each Plans Document, in Block l record the horizontal distance from the primary origin to the secondary origin. In Block 2, record the vertical distance from the primary origin to the secondary origin. Also on the first sheet only, using the block labeled "HOR. REF. 1," "HOR. REF. 2," "VERT. REF. 1," and "VERT. REF. 2," record the appropriate numbers used to label the reference marks on the Plans Document.

Room Section

Some rooms may have been traced as several areas on the Plans Document. Each area must have its own block on the Room Locator Document. Each of the areas for one room must also have the same room number. It is convenient to subtract an area in order to find the size and shape of a room, that subtracted area must have the same room number as the area you are subtracting it from. In some cases, such as corridors, an area will be divided between two or more Plans Documents. These areas still have the same room number.

In each numbered block, fill in the room number and whether the area is subtracted. Also, fill in Columns X and Y, corresponding respectively to the horizontal and vertical coordinates utilized in that area on the Plans Document.

Do not fill in the blocks headed "FIRM,""FULLY ENCLOSED,""NO. IMAG. ROOMS,""ROOM USE," or Column Z.

When all the Plans Documents and Room Locator Documents for one building are completed, stack them in order by floor with the Room Locator Document(s) followed by the Plans Document associated with it.

NOTE: IT IS NOT NECESSARY TO MARK THE ORIGIN
Figure 8 A Sample of a Plans Document

APPENDIX B.I

data layout for census data tape

AREA CLASSIFICATION DOCUMENT

$\frac{\text { LOG. }}{\text { REC }} .$	$\begin{aligned} & \text { CHAR. } \\ & \text { POS. } \end{aligned}$	IDENTIFIER
1	1	Area Calssification Document "U"
	2	Calibration Indication
	4-6	Building Number
	11-12	Floor Number
2	15-17	Firm No. Block 1
	18-21	Room No.
	22	Subtraction Flag
	23	Enclosure
	26	Room Use
	29	Area Size
	30	Vacant Room
	33-48	Same as 15-30 For Block 2
	51-66	Same as 15-30 for Block 3
	69-84	Same as 15-30 For Block 4
	87-102	Same as 15-30 For Block 5
	105-120	Same as 15-30 For Block 6
3	15-120	Same as Log. Rec. 2 for Blocks 7-12
4	15-120	Same as Log. Rec. 2 for Blocks 13-18

$\frac{\mathrm{LOG}}{\mathrm{REC}} .$	$\frac{\text { QUES }}{\text { NO. }}$	CHAR.	IDEMTIFIFR
1		1	Form 1 - Front "A"
		2	Calitration
		5-7	Building Number
		9-10	Floor Number
		13-16	Room Number
		19-21	Surveyor Code
	1	31	Room use
	2	33	No. Occupants
	3	35-38	Wall Types
	4	4n- 46	Material at. Ceilinns
			Floors Doors and Trims
	5	47-54	Wall Material \& Covering
	6	55-66	No. of Donrs and Windows and
			Dimensions for Both (Wall 1)
	6	73-84	Same as 55-6n (Wall 2)
	6	91-102	Same as 55-66 (Wall 3)
	6	109-120	Same as 55-66 (Wall 4)
2		1	Form 2 - Back "B"
		2	Calibration
	7	4-8	Partial Ht. Partion Material
			Length and Height (Wall l)
			Length and Height (Wall 2)
		16-20	Length and Height (Wall 3)
		22-26	l.ength and Height (Hall 4)
		28-33	Internal Partion \#1
		35-40	Internal Partion \#2
		42-47	Internal Partion \#3
		49-54	Internal Partion $\# 4$
	8	60-68	Room Dimensions
		75-84	JIC \#1 (Comb. Dim. Wt.)
		87-96	JIC \#2
		99-108	JIC \#3
		111-120	JIC \# 4

FORM 2 - DESKS

$\frac{L O G}{R E C} .$	$\frac{\text { QUES }}{\text { NO. }}$	$\begin{aligned} & \text { CHAR. } \\ & \text { POS. } \end{aligned}$	IDENTIFIER
1		1	Form 2 - Front "C" Calihration Indication
		2	
	1	4	Desk Type
	2	6	Proximity To Wall
	3	8	Desk Material Type
	4	10-12	Number of nrawers
	5	14-17	Desk Top Dimensions
	6	21-24	Free Paper and Books Pile \#1 (Piles \#2 to \#10)
		27-78	
	7	79-86	Typewriter \#1
		88-95	Typewriter \#2
		97-104	
		106-113	Calculator $\# 2$
		118-120	Telephones
2		1	Form 2 - Back "0"
		2	Calibration Indication
	8	9-66	Enclosed Paper and Books (Piles l-10) JIC \#1, \#2, \#3, \#4 (Same as Form l-Back)
		75-120	

$\frac{L O G}{\text { REC }} .$	$\frac{\text { QUES }}{\text { NO. }}$	$\begin{aligned} & \text { CHAR. } \\ & \text { POS. } \end{aligned}$	IDEHTIFIFR
1		1	Form 3 - Front "E"
		2	Calibration Indication
	1	3	Table Type
	2	5	Proximity to Hall
	3	7-8	Material Type Top Ped/l.ens
	4	10-15	Table Dimensions
	5		Drawers
		21-120	Same as form 2 - Front.
2		1	Form 3 - Back "F"
		2	Calihration Indication
		9-120	Same as Form 2 - Back

FORM 4 - CARINET
1.

2
1
2
3
4
5
$6-\quad 7$
$9-14$
$9-15$
$15-17$
$21-120$

1
9-120

Form 4 - Front "G"
Calibration Indication
Cabinet Type
Proximity to Wall
Cabinet Material Type
No. of Drawers
No. of Shelves
Cabinet Dimensions
Gen. Purp. Nrawer Type
Same as Form 2 - Front
Form 4 - Back "H"
Calibration Indication
Same as Form ? - Back

FORM 5 - SHEL.VING

$\frac{\text { LOG. }}{\text { REC. }} .$	$\frac{\text { QUES }}{\text { NO. }}$	$\begin{aligned} & \text { CHAR. } \\ & \text { POS. } \end{aligned}$	IDENTIFIFR
1		1	Form 5 - Front "I"
		2	Calibration, Indication
	1	4	Shelving Category
	2	6	Proximity to Wall
		8	Shelving Material Type
	4	10-15	Shelving Dimensions
		21-120	Same as Form 2 - Front.
2		1	Form 5 - Back "J"
		2	Calibration Indication
			Same as Form ? - Back
		FORM 6 - SEATING	
1		1	Form 6-Front "K"
		2	Calibration Indication
		13	Seating Type - Block 1
	3	14-15	Number of above type.
	2	16	Proximity to wall
	4	17-19	Material Types (Frame-Seat-Back)
	5	20-23	Arms and Padding
	6	24-2.9	Dimensions
			Blank
		31-120	Same as Ahove for Blocks ? thru
2		1	Form 6 - Back "K"
			Calibration Indication
		$\begin{aligned} & 13-66 \\ & 75-120 \end{aligned}$	Same as Front for Blocks 7 thru 9 Same as Form 1 - Back

FORM 7 - MISCELLANEOUS

$\frac{\text { LOG. }}{\text { REC. }}$	$\begin{aligned} & \text { CHAR. } \\ & \hline \text { POS. } \end{aligned}$	IDENTIFIFR
1	1	Form B - Front "? "
	2	Calibration Indication
	3	Extra/Sep
	5	Misc. Item : l o.
	8-15	Typewriter \#1
	18-25	Typewriter \#2
	28-35	Typewriter \#3
	38-45	Calculator \#1
	48-55	Calculator \#2
	58-65	Calculator \#3
	67-70	Telephone \#1
	71-74	Telephone \#2
2	1	Form B - Back "R"
	2-74	Same as Form 8 Front
	75-120	Same as Form 1 Back
	FORM C - OTHER	
1	1	Form C - Front "S"
	2	Calibration Indication
	3	Extra Sheet.
	5	Misc. Item No.
	7-18	nata Form Block \#1
	19-66	Same as Block \#l for Blocks
2.		Form C - Back "T"
	2-66	Same as Form C - Front
	75-120	Same as Form 1 - Back

The following is a breakdown of the data contained on each of the card images, and the proper order in which the card images must be inputted:

Card	Column	Identifier	Example
1	$\begin{aligned} & 4-6 \\ & 7-12 \\ & 16-18 \\ & 20-54 \end{aligned}$	SURVEYOR CODE DATE BLDG NO. BLDG NAME	$\begin{aligned} & 999 \\ & 092474 \\ & 024 \\ & \text { ADMINISTRATION BLDG. } \end{aligned}$
2	1-72	BLDG ADDRESS	BUILDING 101
3	$\begin{aligned} & 1-18 \\ & 23-24 \\ & 25-29 \end{aligned}$	CITY-STATE STATE CODE ZIP CODE	WASHINGTON DC 18 20234
4	$\begin{aligned} & 3-6 \\ & 11-12 \\ & 18 \end{aligned}$	YEAR OF COMPLETION NO. FLRS. ABOVE GND. LOAD SYSTEM TYPE	$\begin{aligned} & 1964 \\ & 12 \text { (COLIIMM) } \end{aligned}$
	$\begin{aligned} & 24 \\ & 30 \end{aligned}$	MATERIAL OCCUPANCY TYPE	$\begin{array}{ll} 2 & \text { (STFFLL) } \\ 1 & \text { (GOVERNMENT) } \end{array}$
5	$\begin{aligned} & 4-6 \\ & 8-30 \\ & 35-36 \\ & 40-42 \end{aligned}$	```FIRM NUMBER FIRM NAME FIRM TYPE(SPEC) FIRM AGE```	001 NATIONAL BUREAU STAHDARDS 91 010

USE ONE CARD FOR EACH•FIRM IN BUILDING.........

LAST 1-4 EOF CARD OEOF

APPENDIX B. 3

INPUT RECORD FORMAT FOR DATA FILE 2

Each input record has a fixed record length of 220 UNIVAC 1108 words or 1,320 characters. The first 240 characters are devoted to data retrieved from the Room Locator Documents, while the remaining 1,080 characters convey data from the Plans Document for up to 81 areas.

As many as five Room Locator Documents were scanned for each Plans document. The data across the top of each Room Locator Document was scanned and recorded in the first 240 characters. For each document 44 characters were directly recorded. The next four were devoted to a specific FOSDIC measurement or error code.

The remainder of the record was devoted to each individual area scanned. Although only 81 areas are possible on a Plans Document, space has been allocated for up to 90 rooms. Each Room Locator Document contains 18 rooms. The position in the record of each area corresponds to the position on the Room Locator Document and to the particular Room Locator Document accompaning the Plans Document. Therefore, although $90(18 \times 5)$ Room Locator blocks are present, only 81 may be used.

All the data records from a particular building were terminated by an EOF mark on the tape. Each tape was terminated by a double EOF mark.

The following is a breakdown of each particular record:
Character Field Description
13 Building number on Room Locator Document \#1
4
2
Floor number
6
9
3
Question \#1
12
3
Question \#2
Horizontal ref. \#1 in feet
153 Horizontal ref. \#2 in feet
18
Vertical ref. \#l in feet
21
Vertical ref. \#2 in feet
24
26
28
29
30
31
33
36
3
2 Question \#3
2 Question \#4
1 Question \#5
1 Question \#6
1 Question \#7
2 Question \#8
3 Question \#9
4 Question \#10

Character	Field	Description
40	5	Question \#11
45	4	Horizontal ref. \#l in FOSDIC modules
49	44	Same as positions 1 to 44 above as scanned from Room Locator Document \#2 (if present)
93	4	Horizontal ref. \#2 in FOSDIC modules
97	44	Same as positions 1 to 44 above as scanned from Room Locator Document \#3 (if present)
141	4	Vertical ref. \#1 in FOSDIC modules
145	44	Same as positions 1 to 44 as scanned from Room \therefore Locator Document \#4 (if present)
189	4	- Vertical ref. \#2 in FOSDIC modules
193	44	Same ás positions 1 to 44 as scanned from Room Locator Document \#5 (if present)
237	1	Contains 48 if normal
		Contains 49 if no horizontal references were found by FOSDIC
		Contains 50 if only one horizontal reference found
238	1	Contains 48 if normal
		Contains 49 if no vertical references found
		Contains 50 if only one vertical reference found
239	1	Contains 48 if normal
		Contains 49 if no horizontal centers found
		Contains 50 if more than 9 horizontal centers found
240	1	Contains 48 if normal Contains 51 if no vertical centers found
		Contains 52 if more than 9 vertical centers found

For the remainder of the record, if no area is present, each of the twelve characters contain a 48.

241	1	Contains 16 if area from first block is to be added
242	3	Contains 48 if area to be subtracted 245^{*}
$247 *$	2	Wentains room number
249^{*}	2	East wall in modules
$257 *$	2	North wall in modules
253	12	South wall in modules
265	12	Data from block \#2
1309	12	Data from block \#3
	Data from block \#90	

*If wall is missing, position contains 2624
If room coordinates missing, position contains 2560
If coordinate illegal, position contains 0000

APPENDIX B. 4

Program MAKER

Part A - User's Manual and Operating Instructions

1. Data Sequence and Format for Tape 1
2. Card Data Input for MAKER
A. \$INPUT1
B. \$TEST1
C. \$TEST2
D. \$TEST3
E. @EOF
3. Mnemonics Used in MAKER
A. GENERAL
B. DRIVE
C. FORMA
D. FORMB
E. FORMC
F. RMCONT
G. FSEAP
H. BONCOM
4. Transfer Functions Used in MAKER
I. Furniture Transfer Functions
A. Desk
B. Table
C. All purpose cabinet
D. Specialized cabinet
E. Free shelving
F. Bookcase
G. Seating
II. Equipment and Pile Transfer Functions
A. Paper pile
B. Book pile
C. Telephone
D. Typewriter
E. Calculator
F. Room partition
5. Limit and Error Messages
A. DRIVE
B. FORMA
C. FORMB
D. FORMC
E. FSEAP
F. BONCOM
G. RMCONT
6. Run Cards for Univac 1108, Exec 8, 1975
7. Processed Room Survey Data Tape

Table 1. Data Sequence and Format for Tape 1 (the unprocessed room survey data)
Input for Data Restructuring Program
(Page 1 of 18)

Building Characteristics (Record 1)

	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~b} \\ & \mathrm{c} \end{aligned}$	Surveyor No.	-	$\begin{array}{r} 100 \text { 's } \\ 10 \text { 's } \\ 1 \text { 's } \end{array}$
2	a	Building No.	-	100's
	b		-	10's
	c		-	1's
3		State No.	-	10's
	b		-	1's
4	a	zip Code	-	10000 's
	b		-	1000's
	c		-	100's
	d		-	10's
	e		-	1's
5	a	Year Built	-	1000 s
	b		-	100's
	c		-	10's
	d		-	1's

6 a Number of Stories above Ground Level - lo's
b - l's
7 Vertical Load Resisting System
$1=$ column
2 = bearing wall
Building Material
$1=$ concrete
2 = steel
3 = masonry
$4=$ wood
9
Occupancy Type
1 f federal government
2 = state government
3 = local government
4 = private
5 = private and government

[^10]```
Table 1. Data Sequence and Format for Tape l
 (the unprocessed room survey data)
 Input for Data Restructuring Program
 (Page 2 of 18)
```

10 | $a$ |  |
| :--- | :--- |
| $b$ |  |
| $c$ |  |
| $c$ |  |

Firm Data (Record 2)


Room No./Firm No. Data

| 14 | Deleted |
| :--- | :--- |
| 15 | Deleted |
| 16 | Deleted |

Room Survey Data (Record 3 and Subsequent)
Repeat for each room surveyed with one record for each room. The sequency of data, by Form, need not be as shown here. However, within a form the data sequency must be exactly as shown


Table 1. Data Sequence and Format for Tape 1 (the unprocessed room survey data) Input for Data Restructuring Program

```
(Page 3 of 18)
```

21 a Surveyor Code - 100 's
b - 10's
c - l's
22 Room Selection Flag
0 - selected on a random basis
1 - selected on a non-random basis
2 - selected on room use basis
3 - selected on room area basis
4 - selected for horizontal correlation
5 - selected for vertical correlation
6 - selected for tail sample

26 a Wall Type - wall 1

- wall 2
- wall 3
- wall 4

```
 l = full
 2 = open
 3 = partial
```

Table 1. Data Sequence and Format for Tape 1 (the unprocessed room survey data) Input for Data Restructuring Program
(Page 4 of 18 )

| 27 |  | Ceiling Material |
| ---: | :--- | ---: | :--- |
| 28 | Floor Material |  |
| 29 |  | Door Material |
| 30 | Ceiling Trim |  |
| 31 | Floor Trim |  |
| 32 |  | Door |

Table 1. Data Sequence and Format for Tape 1 (the unprocessed room survey data) Input for Data Restructuring Program (Page 5 of 18)


Table l. Data Sequence and Format for Tape 1 (the unprocessed room survey data) Input for Data Restructuring Program
(Page 6 of 18 )

55 a Room Length - ft x 10
b - ft x l
c - in

56
Type of Room Content
2 = Desk
57 Desk Type
$1=$ single pedestal
2 = double pedestal
3 = with legs
Proximity to Wall
$1=$ within 2 ft
2 = more than 2 ft
Desk Material
$1=$ wood
2 = metal
3 = plastic
60 a Number of Drawers - Box
b - File
c - Personal
61 a Desk Length - ft
b - in
62 a Desk Width - ft
b - in
63 No. Free Contents Piles
0 to 1C

Book and Paper Sizes
$1=8-\frac{1}{2} \times 11$ paper
$2=8-\frac{1}{2} \times 15$ paper
$3=11 \times 15$ paper
$4=>15 \times 20$ paper
$5=<7 \times 7 \frac{1}{4}$ book
$6=7 \times 7 \frac{1}{4}$ to $10 \times 6 \frac{1}{2}$ book
$7=>10 \times 6 \frac{1}{2}$ book
a Pile Height - ft
b - in
Percent Compaction - \%
67 No. of Typewriters 0 to 2

```
Table 1. Data Sequence and Format for Tape 1 (the unprocessed room survey data) Input for Data Restructuring Program (Page 7 of 18)
```



Table 1. Data Sequence and Format for Tape 1 (the unprocessed room survey data) Input for Data Restructuring Program (Page 8 of 18)

|  | 81 | No. of Telephone Data Records 0 or 1 |
| :---: | :---: | :---: |
|  | 82 | Type of Telephone |
|  |  | $\begin{aligned} & 1=\text { personal } \\ & 2=\text { call director } \end{aligned}$ |
|  | 83 | No. of Buttons |
|  |  | $0=0$ $1=6$ buttons $1=6$ buttons |
|  |  | $2=10$ buttons |
|  |  | $3=12$ buttons |
|  |  | $4=18$ buttons |
|  |  | $6=30$ buttons |
|  | 84 | No. of Telephones |
|  | 85 | No. of Enclosed Contents Piles 0 to 10 |
|  | 86 | Book and Paper Sizes see item 64 for code |
| $\begin{array}{cc} \substack{0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0} \\ 0 \end{array}$ | 87 | Pile Height - ft |
|  |  | Percent Compaction - \% |

Type of Room Content
3 = table
Table Type
$1=$ single pedestal
2 = with legs
91
Proximity to Wall see item 58 for code
Table Material - Top
see item 59 for code
93
Table Material - Pedestal/Legs see item 59 for code

94 a Table Height - ft
b - in
95
a Table Width -ft
b

Table 1. Data Sequence and Format for Tape 1
(the unprocessed room survey data) Input for Data Restructuring Program (Page 9 of 18)


Table 1. Data Sequence and Format for Tape 1 (the unprocessed room survey data) Input for Data Restructuring Program
(Page 10 of 18 )

same as items 86 to 88

124 Type of Room Content
4 = cabinet
125
Cabinet Type
$1=$ filing 2 = file safe 3 = blueprint 4 = card file 5 = general purpose
126 Proximity to Wall see item 58 for code
127 Cabinet Material see item 59 for code
128 a No. of Drawers - 10's
b - l's
129 No. of Shelves
130 a Cabinet Height - ft
b - in
131 a Cabinet Width - ft
b - in
132 a Cabinet Depth -ft
b - in


134 No. of Free Contents Piles 0 to 10
same as items 64 to 66

No. of Typewriters
0 to 2

```
Table 1. Data Sequence and Format for Tape 1 (the unprocessed room survey data) Input for Data Restructuring Program
(Page 11 of l8)
```



160

161

162
163

Type of Room Content
5 = Shelving
Shelving Category
1 = Bookcase
2 = Free Shelving
Proximity to Wall
see item 58 for code
Shelving Material
see item 59 for code

Table 1. Data Sequence and Format for Tape 1 (the unprocessed room survey data) Input for Data Restructuring Program (Page 12 of 18 )


Table 1. Data Sequence and Format for Tape 1 (the unprocessed room survey data) Input for Data Restructuring Program
(Page 13 of 18)


193 a No. of Shelves - $100^{\prime}$ s b - $10^{\prime} \mathrm{s}$
c - l's $^{\prime}$

Type of Room Content
6 = seating
195 No. of Seating Data Blocks on Form 6 (both sides of page) 0 to 9

Table 1. Data Sequence and Format for Tape 1 (the unprocessed room survey data) Input for Data Restructuring Program (Page 14 of 18 )
196
Seating Type
1 = pedestal
2 = legs
3 = upholstered
4 = sofa
5 = bench
6 = drafting stool
7 = classroom chair
Proximity to Wall
see item 58 for code
198 a No. of Above Type - 10's
b - l's
199 a Seating Material - Frame
b - Seat
c - Back
see item 59 for code
200
Arms
$1=$ yes
0 or $2=$ no
201
b
Padding - Seat
- Back
- Arms
$0=$ none
l $=$ vinyl
$2=$ fabric
$3=$ wood
202 a Seat Height - ft
b - in
203 a Seat Width - ft
b - in
204 a Seat Depth - ft

Table l. Data Sequence and Format for Tape 1 (the unprocessed room survey data) Input for Data Restructuring Program (Page 15 of 18)

205

206

207

208

209

210

211

212

213
a Item Weight
b
c
d
Aggregation Flag 0 to 8

Fire Category

Proximity to Wall
a Item Height - ft
b - in
a Item Width - ft
b - in
a Item Depth - ft
b - in

Type of Room Content
7 = miscellaneous item
$0=$ normal items
$1=$ aggregation of various items on furniture
No. of Miscellaneous Items on Form 7 (both sides of page)

1 = Combustible
$0=$ Non-combustible

See item 58 for code

Item Weight - lb x 1000

- 1b x 100
- 1bx 10
- 1b x 1

Type of Room Content
8 = Form A - Books and Paper

215

216

217

Extra Sheet or Separate Item
$0=$ extra sheet
1 = separate item
Miscellaneous Item or Seating-Data-Block No. 0 to 8, 0 if no item indicated
No. of Items on Page (Form A)
0 to 15 (each side of page considered to be a separate form)

Table 1. Data Sequence and Format for Tape 1 (the unprocessed room survey data) Input for Data Restructuring Program
(Page 16 of 18)

|  | 218 | Free or Enclosed see item 68 for code |
| :---: | :---: | :---: |
|  | 219 | Proximity to Wall Only if item $215=1$ |
| M Oid | 220 | See item 58 for code |
| H0 | $221 \mathrm{a}, \mathrm{b}$ | same as items 64 to 66 |

223 Type of Room Content 9 = Form B - Equipment
224 Extra Sheet or Separate Item see item 215 for code

225 Miscellaneous Item or Seating-Data-Block No. 0 to 9, 0 if no item indicated
226 No. of Typewriters on Form B
0 to 3 (each side of page considered to to a separate form)
Free or Enclosed Typewriter see item 68 for code

228 Proximity to Wall see item 58 for code,only if item $224=1$

229
230
231
$232 a, b$
233a,b)
same as items 69 to 73

Table 1. Data Sequence and Format for Tape 1 (the unprocessed room survey data) Input for Data Restructuring Program
(Page 17 of 18 )

No. of Calculators on Form B 0 to 3 (each side of page considered to be a separate form)


Free or Enclosed Calculator see item 75 for code

236 Proximity to Wall see item 58 for code only if item $224=1$
same as items 76 to 80

242
No. of Telephone Data Records
0 to 2 (each side of page considered to be a separate form)
Proximity of Telephone to Wall
see item 58 for code, only if item $224=1$
same as items 82 to 84

247

248

Type of Room Content
$10=$ Form C - Miscellaneous Equipment
Extra Sheet Indicator

```
0 = extra sheet
 l = (not to be used)
```

```
Table 1. Data Sequence and Format for Tape l
(the unprocessed room survey data)
Input for Data Restructuring Program
(Page 18 of 18)
```

    249 Miscellaneous Item or Seating-Data-Block No.
        0 to 9, 0 is no item indicated
    250 No. of Items on Sheet
        0 to 5 (each side of page considered to
                        be a separate form)
    251 Free or Enclosed
        see item 68 for code
    Fire Category
        see item 208 for code
    253 a Height - ft
    254
    255
    Depth
        - ft
    256 a Weight - 1b \(\times 100\)
    b - Ib x 10
    c \(\quad-1 b x \quad 1\)
    Table 2. Card Data Input for Data Restructuring Program (MAKER)
(Page 1 of 2 )

## Namelist Format

A. $\$$ INPUT1

This card is always required
WRT=. TRUE. - list all of the processed data on the printer
WRT=.FALSE. - do not list the room contents data on the printer, default value
WRT2=.TRUE. - list the bounding surface and room composite data on the printer
WRT2=.FALSE. - do not list any of the processed data on the printer, default value
RMS =. TRUE. - use room sector data (replaces the "within 2 feet of wall" indicator)
RMS =.FALSE. - do not use room sector data, default value

CDDTI=. TRUE. - read the input data from a magnetic tape or FASTRAND file (binary)
CDDTI=.FALSE. - read the input data from cards (namelist format), default value

CDDTø=.TRUE. - write the processed data on a magnetic tape or FASTRAND file (binary)
CDDT $\varnothing=. F A L S E$. - do not write the processed data on a magnetic tape or FASTRAND file, default value

FILEI=. TRUE. - use magnetic tape for input file
FILEI=.FALSE. - use FASTRAND file for input file, default value

FILE $\varnothing=$.TRUE. - use magnetic tape for output file
FILE $\varnothing=$.FALSE. - use FASTRAND file for output file, default value

NORL=.TRUE. - use multiple reel file on input
NORL=.FALSE. - do not use a multiple reel file for input, default value

Table 2. Card Data Input for Data Restructuring Program (MAKER)
(Page 2 of 2 )
B. $\$$ TESTI
$\mathrm{X}=$ building characteristic data
II $=$ number of words of data $=25$
Need only if CDDTI=.FALSE. (see \$INPUTl)
C. $\$$ TEST2
$\mathrm{X}=\mathrm{firm}$ data
$I=$ number of words of data
Need only if CDDTI=.FALSE. (see \$INPUTl)
D. \$TEST3
$\mathrm{X}=$ room survey data
$I=$ number of words of data
Need only if CDDTI=.FALSE. (see \$INPUTl)
Need one file for each room
E. @EOF

End of file card required after each building

Table 3．Mnemonics for Data Restructuring Program（MAKER）
（Page 1 of 32）
A．GENERAL MNEMONICS，These mnemonics are used throughout
（MAKER），in different subroutines．

```
BUILD (16)
 Building Descripters (Form l)
 row
 l Building surveyor code
 2 Building number (also BUILDN, NR(l))
 3
 4
 5
 6
 7
 8
 Building ccupency (in⿴囗十,
 O
 10 Number of firms in building (also NO)
 11 Floor number (also FLOORN, NR(2))
 12 Room number (also ROOMN, NR(3))
 13 Room surveyor code
 14 Firm number
 15 Firm type
 16 Firm age
```


## BUILDN Building Number

CABNG（15）Cabinet Descripters（Form 4）
row
1 Cabinet type (in code)*
2 Proximity to wall (in code)*
3 Material (in code)*
4
5
6 Number of shelves
7 Height - ft
8
9
13
14
15
see Table 1 for code

Table 3. Mnemonics for Data Restructuring Program (MAKER)
(Page 2 of 32)

```
CAIC (9,12,9) Calculator Descripters (Forms 2-6,B)
 row
 1 Free (1) or enclosed (2)
 2 Manual (1) or electric (2)
 3 Paper tape (1) or no paper tape (2)
 4
 5
 6
 7
 8
 9
DESKG (10) Desk Descripters (Form 2)
 row
 1 Type (in code)*
 2 Proximity to wall (in code)*
 3 Material (in code)*
 4
 5
 6
 Number of drawers - box
 - file
 - personal
 Length - ft
 - in
 Width - ft
 - in
DOOR (12,4) Door and Window Descripters (Form l)
 row
 1 Number of doors in wall
 2 Door height - ft
 3 - in
 4 Door Width - ft
 5
 6
11
12
```

* see Table 1 for code

Table 3. Mnemonics for Data Restructuring Program (MAKER)
(Page 3 of 32 )

```
ENCL (5,50,9) Enclosed Book and Paper Pile Descripters (Forms 2-5)
row
 l Book/paper size (in code)*
 2 Height - ft
 3 - in
 4 \text { Percent compaction}
 5 Proximity to wall (in code)*
ERR Error Flag
FLAG Flag for Stand-Along Items
FLOORN Floor Number (From BUILD)
FREE (5,50,9)
 row
 1 Book/paper size (in code)*
 2 Height - ft
 3 - in
 4 \text { Percent compaction}
 5 Proximity to wall (in code)*
I Counter for Locating Input Data in X
IFLAGl Flag Used with Stand Alone Items
INDEX,IND,INX Room Content Identifier (Forms l-6, A-C)
I0 NTRAN Status Word for Output Data
```

Table 3. Mnemonics for Data Restructuring Program (MAKER)
(Page 4 of 32 )


* see Table 1 for code

Table 3. Mnemonics for Data Restructuring Program (MAKER)
(Page 5 of 32 )


Table 3. Mnemonics for Data Restructuring Program (MAKER)
(Page 6 of 32 )

RMS
Room Selection Flag
ROOM (21) General Room Descripters (Form 1)
row
1 Room Use
2 Normal number of occupants
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 21

ROOMN
Room number (Form 1)
SEATG (17,9) Seating Descripters (Form 6)
row
1 Type (in code)*
2 Proximity to wall (in code)*
3 Number of this type - 10's
4 - 1's
5 Material - frame (in code)*
- back (in code)*
Arms - with or without (in code)*
Padding - seat (in code)*
- back (in code)*
11 - arms (in code)*
12 Height - ft
13 - in
14 Width - ft
15 - in
16 Depth - ft
17 - in

* see Table 1 for code

Table 3. Mnemonics for Data Restructuring Program (MAKER)
(Page 7 of 32 )

```
SHELG (12) Shelf Descripters (Form 5)
 row
 l Category (in code)*
 2 Proximity to wall (in code)*
 3 Material (in code)*
 4 Height - ft
 5 - in
 6 Width - ft
 7 - in
 8 Depth - ft
 9 - in
 10 Number of shelves - 100's
 l1 - 10's
 12 - 1's
TABLG (11) Table Descripters (Form 3)
 row
 l Type (in code)*
 2 Proximity to wall (in code)*
 3 Material - top (in code)*
 4 ~ - ~ p e d e s t a l / l e g s ~ (i n ~ c o d e) * ~
 5 Height - ft
 6 - in
 7 Width - ft
 8 - in
 9 Length - ft
10 - in
1 1 \text { With drawers (1) or without drawers}(2)
TELE (4,25,9) Telephone Descripters (Forms 2-6,B)
row
 l Personal (l) or call director(2)
2 Number of buttons (in code)*
3 Number of telephones
4 Proximity to wall
```

[^11]```
Table 3. Mnemonics for Data Restructuring Program (MAKER)
(Page 8 of 32 )
```


[^12]Fire Weight in a Metal Furniture Item sd of Fire Weight in a Metal Furniture Item Number of Furniture and Misc. Objects within 2 Feet of the Walls

Total Number of Furniture and Misc. Objects in Room

Number of Free Standing Objects within 2 Feet of the Wall

Total Number of Free Standing Objects in Room
Total Fire Weight Enclosed within 2 Feet of Walls (Derated)
sd of Total Fire Weight Enclosed within 2 Feet of Walls

Total Movable Fire Weight within 2 Feet of Walls (Derated)
sd of Total Movable Fire Weight within 2 Feet of Walls (Derated)

Total Fire Weight Enclosed (Derated)
sd of Total Fire Weight Enclosed (Derated)
Total Paper Fire Weight (Derated)
sd of Total Paper Fire Weight (Derated)
Total Book Fire Weight (Derated)
sd of Total Book Fire Weight (Derated)
Total Fire Weight Enclosed in Plastic
sd of Total Fire Weight Enclosed in Plastic
I(sd of Fire Weight x sd of Live Weight)
Live Weight Within 2 Feet of Walls
sd of Live Weight Within 2 Feet of Walls

Table 3. Mnemonics for Data Restructuring Program (MAKER)
(Page 10 of 32)
B. MNEMONICS UNIQUE TO MAIN PROGRAM DRIVE

AGGRE
CDDTI, CDDTO

END (10)

FILEI, FILEO

FIRMNO
FIRMT (100)
IDUM

II
INDX
INPUTI
J
JJ
K
K2
R3

I,IA. II
NO
NWTAPE
NB, NBT

Aggregation Flag for Miscellaneous Items
Flags for Specifying File Type (Cards or NonCards) for Input and Output Files

Ten Word Record of 999999 to Indicate End of Tape

Flags for Specifying File Type (Tape or FASTRAND) for Input and Output Files

Firm Number
Firm Type of all Firms in Building
Indicator of Position in Program for Error Messages

NTRAN Status Word for Input Data
INDEX-7
Namelist Input Record
Do Loop Parameters
Do Loop Parameters
Do Loop Parameters
Temporary Name for Different Array Names
NTRAN Parameter, Temporary Storage Location for Firm Type

Do Loop Parameters
Number of Firms in Building
Number of Words Written on Tape
Counters Used in Writing Output on Printer

Table 3. Mnemonics for Data Restructuring Program (MAKER)
(Page 11 of 32)

N1	Number of Rooms Surveyed in Building
N2	Do Loop Parameter
NOFILE	Number of Files (i.e., Buildings) Processed
NORECD	Number of Data Records Processed for Subject Building
OUTBND (76)	Output from the Subroutine BONCOM: = Y Vector from $\underline{Y(1)} \rightarrow \underline{Y(76)}$ (Table 1 in Report)
OUTCMP (56)	Output from the Subroutine BONCOM: Y Vector from $Y(77) \rightarrow \underline{Y(132)}$ (Table \bar{l} in Report)
OUTCON (9868)	Output from the Subroutines RMCONT and FSEAP of the Y Vector from $\underline{Y(133)} \rightarrow \underline{Y(10000)}$ (Table 2 or 3 in Report)
REEL	Number of Reel of Output Data
RMFIRM(3,1000) Firm Description Data	
row	
$\begin{array}{ll} 1 & \text { Firm number } \\ 2 & \text { Firm type } \\ 3 & \text { Firm age } \end{array}$	
RSFG	Room Selection Flag
$\frac{\text { TEST1 }}{\text { TEST3 }} \cdot \text { TEST2 }$	Namelist Input Records
WRT, WRT2	Formatted Output Flags

Table 3. Mnemonics for Data Restructuring Program (MAKER)
(Page 12 of 32)
C. MNEMONICS UNIQUE TO SUBROUTINE FORMA

I A Do Loop Counter

J
J2
K
R1
K2
MP
N

NI
NP
TEMP (J)
(J ≤ 100)

A Do Loop Counter
A Counter Equal to $J 1+K 1+1$
A Counter Equal to $X(I)$
A Counter Equal to $1+K 2$
A Counter Equal to $6 *(J-1)$
A Do Loop Maximum Defined as MPILE (ITEM)
A Counter Equal to $X(I)$
A Counter Equal to 6 * N
A Do Loop Maximum Defined as NPILE (ITEM)
Equal to $X(I)$

\underline{J}	A Do Loop Counter
\underline{K}	A Do Loop Counter
N	A Do Loop Maximum Equal to $X(I)$
NC	A Subscript of CALC Equal to NCACL (ITEM)
NT	A Subscript of TYPE Equal to NTYPE (ITEM)
NTE	A Subscript of TELE Equal to NTELE (ITEM)

```
Table 3. Mnemonics for Data Restructuring Program (MAKER)
(Page 14 of 32 )
```

E. MNEMONICS UNIQUE TO SUBROUTINE FORMC

Do Loop Counter
Temporary Subscript Equal to NMISC (ITEM)
Do Loop Counter
Temporary Subscript Equal to X(I)

Table 3. Mnemonics for Data Restructuring Program (MAKER)
(Page 15 of 32)
F. MNEMONICS UNIQUE TO SUBROUTINE RMCONT (DATA)

BKFWT (I) Bookcase and Free Shelving Fire weight Coefficient I Material types* (3)

BKSD (M,L,I) sd of Bookcase Type Shelving Data for Transfer Function M,L,I Same as for BK
$\underline{C} \quad$ Used as a Substitute for $\underline{C A B}(K, M, L, I)$

CA Used as a Substitute for CAAB(K,M,I)

CAAB (K,J,I) All Purpose Cabinet Transfer Function Data
K Size (area) groups* (6)
J Height groups* (5)
I Material groups* (3)

CAABSD (K,J,I) sd of All Purpose Cabinet Transfer Function Data K, J, I Same as for CAAB

CAB(K,M,L,I) Specialized Cabinet Transfer Function Data
K Size (area) groups* (6) (not all used for every type cabinet)
M Height groups* (5) (not all used for every type cabinet)
L Type of cabinet* (4)
I Material types* (3)

[^13]```
Table 3. Mnemonics for Data Restructuring Program (MAKER)
(Page 16 of 32)
```



[^14]Table 3. Mnemonics for Data Restructuring Program (MAKER)
(Page 17 of 32 )


Table 3. Mnemonics for Data Restructuring Program (MAKER)
(Page 18 of 32 )


Table 3. Mnemonics for Data Restructuring Program (MAKER)
(Page 19 of 32)

| DEKFWT (I) | Desk Fire Weight Coefficient |
| :---: | :---: |
| I | Material type*(3) |
| DEKSD (I,J,K) sd of Desk Transfer Function Data |  |
| $I, J, K$ | Same as DEK |
| DEPTH | Shelving or Miscellaneous Item Depth |
| DESKL (5) | Limits to Desk Data |
| row |  |
| 1 | Limit to personaldrawers when DESKL (4) is exceeded, 2. |
| 2 | Limit to a desk's area, 30 sq ft |
| 3 | blank, 0 |
| 4 | Limit to the number of box drawers feasible in a desk when DESKL(1) is met or exceeded, 4 |
| 5 | Limit to empty desk weight, 400 lb |
| DKS | The Area of a Desk [Y(NBUF+9)] |
| DRF ( $I, J$ ) | Derating Factor for Enclosed Paper and Book Piles in Metal Furniture |
| $\begin{aligned} & I \\ & J \end{aligned}$ | Compaction factor category* (3) <br> Type of furniture*(7) (not all are applicable) |
| ENCLL | Limit to the Height of an Enclosed Paper or Book Pile, 5 ft. |
| ENWB | Total Weight of Enclosed Books |
| ENWBSD | sd of Total weight of Enclosed Books |
| ENWL | Limit to the Weight of Enclosed Piles of Books and Papers Combined, 400 lb . |
| ENWP | Total Weight of Enclosed Paper |
| ENWPSD | sd of Total Weight of Enclosed Paper |
| $\underline{F}$ | Temporary Alternative Name for FS ('I, m) |
| FREBSD | sd of Total Free Book weight |

[^15]```
Table 3. Mnemonics for Data Restructuring
            Program (MAKER)
                                    (Page 20 of 32)
```

FREEL	Limit to the Height of a Free Pile of Books or Paper, 5 ft .
FRELDB	Total Weight of Free Books
FRELDP	Total Weight of Free Paper
FREPSD	sd of Total Free Paper Weight
$F S(M, I)$	Data for Free Shelving Transfer Function
	Size (area) group of shelving*(5) Material type* (3)
$\underline{\operatorname{FSSD}}(\mathrm{M}, \mathrm{I})$	sd of Data for Free Shelving Transfer Function
M, I	Same as for FS
FWTL	Limit to Free Paper or Book Pile Weight, 400 lb .
HEIGHT	Height of Piles of Books or Paper, Shelving Height
I	Do Loop Counter also the Subscript in Transfer Functions Usually used for Material Type
IR	Calculator Read Out Tape, $=$ CALC (4,N6,NI)
IT	The Presence of Tape on a Calculator, $=\operatorname{CALC}(3, N 6, N \mathrm{~S})$
ITMFWT (I)	The Fire Weight Coefficient for Miscellaneous Items
I	Material types*(2)
J	Subscript Used in Transfer Functions
JB	Subscript for the Derating Transfer Function of Books Enclosed in Metal
JP	Subscript for the Derating Transfer Function of Paper Enclosed in Metal
\underline{R}	Subscript Used in Transfer Functions

[^16]Table 3. Mnemonics for Data Restructuring

I	Subscript used in Transfer Functions
LA	Do Loop Counter
LB	Do Loop Counter
LENGTH	Shelving Length
M	Subscript used in Transfer Functions
MISFT (2)	Total Miscellaneous Object Fire Weight
row	
1	Free object
2	Enclosed object
MISLT (2)	Limits to Miscellaneous Item Output
	l-Limit to miscellaneous item area, 30 sq ft 2-Limit to miscellaneous empty weight, 500 lb

MISWT (2)	Total Weight of Miscellaneous Object
row	
1 Free object 2 Enclosed object	

MIWTSD (2) sd of Total Weight of Miscellaneous Object
row

1	Free object
2	Enclosed object

MP

MWT

MWTLT

NA
Number of Piles of Papers or Books in Item NI, =MPILE (NI)
Weight of Each Miscellaneous Object
Limit to the Weight of a Miscellaneous Object, 300 lb
Do Loop Counter

[^17]Table 3. Mnemonics for Data Restructuring Program (MAKER)
(Page 22 of 32)

NAMEE (5)	Alphanumeric Data for Equipment Used in Error Messages	
row		
1	'P-PILE'	' paper pile
2	'B-PILE'	' book pile
3	' TYPWRT'	, typewriter
4	'Calc. '	, calculator
5	'PHONE'	telephone
NAMEF (7)	Alphanumeric Data for Furniture Used in Error Messages	
row		
1	'ERROR'	unused position
2	'DESK'	desk
3	'TABLE'	table
4	'CAB'	cabinet
5	'SEAT'	seating
6	'SHELF'	shelving
7	'MISC'	miscellaneous
NB		Do Loop Counter
NC		Error Indicator for Calculation Transfer Functions
NCA		Total Number of Calculators in or on an Item, =NCAL (NI)
ND		Do Loop Counter
NDKS		Error Indicator for Desk Transfer Function Data
NI		Item Number Used for Denoting Which Contents Data for which Item
NIA		Number of Items on Either Form 6 or 7, = NITEM
NJ		Do Loop Counter
NMI		The Number of Miscellaneous Objects on or in Item NI, $=$ NMISL (NI)
NOS		Number of Shelves in Shelving

[^18]Table 3. Mnemonics for Data Restructuring Program (MAKER)
(Page 23 of 32)

NP	Number of Piles of Paper or Books on Item NI, =NPILE (NI)
NQ	Indicator of Bookcase Transfer Function Subscript Errors
NT	Indicator of Errors in Typewriter Transfer Function Data Subscripts
NTE	Number of Telephones on Item $\mathrm{NI},=$ NTELE $(\underline{\mathrm{NI}}$)
NTY	Number of Typewriters on or in Item NI, $=$ NTYPE(NI)
NX	Indicator that the Limit to Bookcase Transfer Function Data has been reached.
N2	Indicator of Subscript Errors in all Purpose Cabinet Transfer Function
N3	Do Loop Counter
N4	Do Loop Counter
N5	Do Loop Counter
N6	Do Loop Counter
N7	Do Loop Counter
PEE (K)	The Weight Coefficient for Paper Piles
K	The paper (area) size group* (4)
PEESD (K)	The Standard Deviation of the Paper Pile Weight Coefficient
K	Same as for PEE
PH (I)	Telephone Transfer Function Data
I	Telephone size groups*(7)
PHFWT	Telephone Fire Weight Coefficient

[^19]Table 3. Mnemonics for Data Restructuring Program (MAKER)
(Page 24 of 32)

Table 3. Mnemonics for Data Restructuring Program (MAKER)
(Page 25 of 32)


```
Table 3. Mnemonics for Data Restructuring
Program (MAKER)
(Page 26 of 32)
```


* see transfer function for code
G. MNEMOMICS UNIQUE TO SUBROUTINE FSEAP (DATA)

Table 3. Mnemonics for Data Restructuring Program (MAKER)
(Page 28 of 32)

[^20]
Table 3. Mnemonics for Data Restructuring Program (MAKER)
 (Page 29 of 32)

```
TYPSD(L,I) sd of TYpewriter Transfer function data
L,I same as for TYP
```

* see transfer function for code

Table 3. Mnemonics for Data Restructuring Program (MAKER)
(Page 30 of 32)
H. MNEMONICS UNIQUE TO SUBROUTINE BONCOM (DATA)

CFW (I)
Data for Ceiling Fire Loads
I The ceiling material types (5)

DEPTH The Room Depth, the Length of Walls 2 and 4

DOORHT The Height of the Doors in a Particular Wall

DOORP The Total Perimeter of the Doors in a Room

DOORWT The Average Width of the Doors in a Particular Wall

FLFW(I) Data for Floor Material Fire Loads
I
Floor material types (7)

HEIGHT The Room Height

I Subscripts used in Transfer Function Computation
I Subscripts used in Transfer Function Computation

LMT (19)
Room Composite Limits
row
1 Limit to the number of doors in a wall, 2
2 Limit to the number of windows in a wall, 5
3 Limit to occupancy in file and storage rooms, 3
4 Limit to the of walls that is windows or doors $Y(126)$, 80\%
5 Limit to the fire weight of movable room contents/unit area $Y(83), 10$ psf
6 Limit to the of that fire load is of live load $Y(112), 90 \%$
7
8 9 Limit to the of fire weight enclosed or enclosed in metal containers, 70\%
10 The upper bound of the percentage of live loads within 2 ft of the wall Y(123), 90\%

[^21]Table 3. Mnemonics for Data Restructuring Program (MAKER)
(Page 31 of 32)

11	The lower bound of the percentage of live loads within 2 ft of the wall $Y(123), 108$
12	The upper bound of the percentage of fire weight and enclosed fire weight within 2 ft of the walls $\mathrm{Y}(96), 90 \%$
13	The lower bound of the percentage of fire weight within 2 ft of the wall $\mathrm{Y}(98)$, 30 \%
14	The percentage of enclosed live weight enclosed in plastic Y(106), 50\%
15	Limit to the percentage of total fire weight that is paper $Y(103), 50 \%$.
16	Limit to the percentage of total fire weight that is books Y(l04), 50\%
17	Limit to the total fire weight per unit area $Y(110)$, 10 psf
18	Limit to the total live weight per unit area $\mathrm{Y}(79), 15 \mathrm{psf}$
19	Limit to no. of normal occupants of any room, ll
NA	Do Loop Counter
NB	Do Loop Counter
NI	Do Loop Counter
NN	Do Loop Counter
PAR(L, M	Data for Transfer Function of Internal Partition Weights
L	Height groups* (4)
M	Material group* (4)
PARFWT	(M) Data for Internal Partition Fire Weight Coefficient
	Material group* (4)
PARSD (L	Data for the sd of the Internal Partition Transfer Function
\underline{L}	Height groups* (4)
M	Material groups* (4)
SA	Total Surface Area of the Walls, Floors and Ceiling
TRIMFT	Total Length of Floor or Ceiling Trim

[^22]Table 3: Mnemonics for Data Restructuring Program (MAKER)
(Page 32 of 32)

TRMFW (I)	$)$ Floor Trim Fire Weight
I	Material types* (8)
WA	Total Wall Areas
WIDTH	Room Width, the Length of Walls 1 and 3
WINDHT	Average Window Height in one Wall
WINDN	Total No. of Windows in All Walls
WINDP	Total Window Parameter in Room
WINDW	Total Window Width in all Walls
WINDWT	Average Window Width in one Wall
WLCFW (I)) Data for Wall Covering Fire Loads
I	Material types* (10)
WLMFW(I) Data for Wall Material Fire Loads	
I	Material types* (6)
$\underline{V A B}$	The Height of Room Partitions

[^23]I. The Transfer Functions Used to Determine the Live Loads of Furniture
A. Desk Weight Transfer Function

```
weight = \underline{DEK(I,J,K) + [DESKG(4) * DDB(I)] +[\underline{DESKG(5) *}}\mathbf{|}=\underline{DES}
    DDF}(I)] + [Q * (DESKG(6) - 1) * DDP(I)] +
    [Q* DCD (I)]
\(\begin{aligned} & \text { sd of } \\ & \text { weight }\end{aligned}=\left\{[\underline{\operatorname{DEKSD}}(I, J, K)]^{2}+\left[\underline{\operatorname{DESKG}(4) * \underline{\operatorname{DDBSD}}(I)\}^{2}+}\right.\right.\) \([\overline{\operatorname{DESKG}}(5) * \operatorname{DDFSD}(I)]^{2}+[0 * \overline{(\operatorname{DESKG}}(6)-1)\) \(* \operatorname{DDPSD}(I)]^{2}+[2 * \operatorname{DCDSD}(I)]^{2} \mid \overline{1 / 2}\)
```

$$
\text { where: } \begin{aligned}
& I= \text { Material of Desk } \\
& 1=\text { wood } \\
& 2=\text { metal } \\
&=\text { plastic } \\
& J= \text { Desk Type } \\
& 1=\text { single pedestal } \\
& 2=\text { double pedestal } \\
& 3=\text { legs } \\
& K= \text { Size Groups (area in/ft }{ }^{2} \text {) } \\
& 1=7.0-9.5 \\
& 2=9.6-12.0 \\
& 3=12.1-14.5 \\
& 4=>14.6
\end{aligned}
$$

DEK, DDB, DDF, ${ }^{2}, \frac{D D P}{D D E}, D C D, ~ D E K S D, ~ D D B S D, ~ D D F S D$, DDPSD, DCDSD, are defined in the RMCONT mnemonics table

DESKG is defined in the general mnemonics table.

Table 4. Transfer Functions Used in MAKER
(Page 2 of 14)

B. Table Weight Transfer Function

weight $=\operatorname{TEE}(I, J, K)+[\underline{T D L}(I) *(T A B L G(11)-1)]$

where: $I=$ Material of Table Top
1 = wood
2 = metal
3 = plastic

$$
\begin{aligned}
& J=\text { Table Type } \\
& \text { l = pedestal } \\
& 2 \text { = legs } \\
& K=\text { Size Groups (area in } f t^{2} \text {) } \\
& 1=4.0-9.0 \\
& 2=9.1 \text { - } 11.9 \\
& 3=12.0-12.5 \\
& 4=12.6-15.9 \\
& 5=16.0-18.0 \\
& 6=18.1-26.9 \\
& 7=27.0-44.9 \\
& 8=\geq 45.0 \\
& 9=1.0-4.0
\end{aligned}
$$

TEE, TDL, TEESD, TDLSD, are defined in the mnemonic tables for RMCONT

TABLG is defined in the general mnemonics table

Table 4. Transfer Functions Used in MAKER

C. All Purpose Cabinet Weight Transfer Function

```
weight \(=\underline{\text { CAAB }}(K, M, I)+[\underline{C A B N G}(13) *\) CBD \((I)]+\)
    \([\) CABNG (14) * CDF (I)] \(+[\underline{C A B N G(15) * \operatorname{CDP}(I)]+}\)
    [CABNG (6) * CAS \((K, M, I]\)
```

```
sd of
weight \(=\left\{\underline{\left.\left.[\operatorname{CAABSD}(K, M, I)]^{2}+\underline{[\operatorname{CABNG}(13)} \star \operatorname{CBDSD}_{2}^{\operatorname{CI}}\right)\right]^{2}+}\right.\)
    \([\operatorname{CABNG}(14) * \operatorname{CDFSD}(I)]^{2}+[\underline{C A B N G}(15) * \operatorname{CDPSD}(I)]^{2}+\)
        \(\left.[\overline{\operatorname{CABNG}}(6) * \underline{\operatorname{CASSD}}(K, M, I)]^{2}\right\}^{1 / 2}\)
```

```
where: \(I=\) Material of All Purpose Cabinet
    \(1=\) wood
    2 = metal
    3 = plastic
    \(K=\) All Purpose Cabinet Size (area in \(f t^{2}\) )
        \(1=2.0-2.9\)
        \(2=3.0-3.9\)
        \(3=4.0-6.9\)
        \(4=7.0-9.9\)
        \(5=10.0-11.9\)
        \(6=\geq 12.0\)
    \(M=\) All Purpose Cabinet Height Group (in ft)
    \(1=1.58-2.32\)
    \(2=2.33-2.91\)
    \(3=2.92-4.15\)
    \(4=4.16-5.83\)
    \(5=>5.83\)
```

CAAB, CBD, CDF, CDP, CAS, CAABSD, CBDSD, CDFSD, CDPSD, CASSD are defined in the mnemonics table for RMCONT

CABNG, is defined in the general mnemonics table

Table 4. Transfer Functions Used in MAKER (Page 4 of 14)

```
    D. Specialized Cabinet Weight Transfer Function
weight = CAB (K,M,L,I)
sd of
weight = CABSD(K,M,L,I)
```

where: I = Material of Specialized Cabinets
1 = wood
$2=$ metal
3 = plastic
L = Specialized Cabinet Type; M, and K are Defined
Differently Depending on Type of cabinet
1 = File cabinet
$\mathrm{M}=$ Height groups (in/ft)
$1=1.00-1.66$
$2=1.67-3.00$
$3=3.01-3.75$
$4=3.76-4.66$
$5=>4.66$
$\mathrm{K}=$ Size groups (area in ft^{2})
$1=2-2.9$
$2=3-3.9$
$3=4-4.9$
$4=\geq 5.0$
2 = Card Cabinet
$M=$ height groups (in/ft)
$1=<1.66$
$2=\overline{1} .67-3.00$
$3=3.01-3.75$
$4=\geq 4.66$
$K=$ Size Groups (area in ft^{2})
$1=2.0-2.9$
$2=\geq 3.0$

Table 4. Transfer Functions Used in MAKER (Page 5 of 14)

$$
\begin{aligned}
& 3 \text { = Blueprint Cabinet } \\
& M=\text { height groups (in ft) } \\
& 1=1-1.66 \\
& 2=1.67-3.00 \\
& K=\text { Size Groups (area in } f t^{2} \text {) } \\
& 1=2.0-2.9 \\
& 2=3.0-3.9 \\
& 3=4.0-6.9 \\
& 4=7.0-9.9 \\
& 5=10.0-11.9 \\
& 6=\geq 12.0 \\
& 4 \text { = File Safe } \\
& M=\text { height groups (in/ft) } \\
& 1=1-1.66 \\
& 2=1.67-3.00 \\
& 3=3.01-3.75 \\
& 4=>3.75 \\
& K=\text { Size Groups (area in } f t^{2} \text {) } \\
& 1=2.0-2.9 \\
& 2=3.0-3.9 \\
& 3=\geq 4.0
\end{aligned}
$$

$C A A B, C A A B S$ are defined in the mnemonics table for RMCONT

Table 4. Transfer Functions Used in MAKER (Page 6 of 14)
E. Free Shelving Weight Transfer Function

```
weight = NOS * FS (M,I)
sd of
weight = NOS * FSSD (1,I)
    where: I = Material Type of Free Shelving
    l = wood
    2 = metal
    3 = plastic
    M=Size Group (area in ft '
    I=2.0-2.9
    2=3.0-3.9
    3=4.0-5.9
    4=6.0-7.9
    5=\geq8.0
```

NOS, FS, FSSD are defined in the mnemonics table FOT RMCONT

Table 4. Transfer Functions Used in MAKER (Page 7 of 14)

F. Bookcase Weight Transfer Function

$$
\begin{aligned}
& \text { weight }=\underline{B K}(M, L, I)+\underline{N O S} * \operatorname{SHL}(M, I) \\
& \text { sd of } \\
& \text { weight }=\left\{[\underline{B K S D}(M, L, I)]^{2}+\left[\underline{N O S} * \underline{\left.\operatorname{SHLSD}(M, I)]^{2}\right\} 1 / 2}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { where: } I=\text { Material Types } \\
& 1=\text { wood } \\
& 2 \text { = metal } \\
& 3 \text { = plastic } \\
& I=\text { Height Groups (in } f t \text {) } \\
& 1=2.33-3.08 \\
& 2=3.09-4.16 \\
& 3=4.17-5.46 \\
& 4=>5.46 \\
& M=\text { Size Groups (area in } f t^{2} \text {) } \\
& 1=2.0-2.9 \\
& 2=3.0-3.9 \\
& 3=4.0-4.9 \\
& 4=\geq 5.0
\end{aligned}
$$

BK, NOS, SHL, BKSD, SHLSD are defined in the mnemonics table for RMCONT

Table 4. Transfer Functions Used in MAKER
(Page 8 of 14)

```
            G. Seating Weight Transfer Function
weight = CEE(I,J) * Y(NBUF + 3)
sd of
weight = CEESD (I,J) * Y(NBUF + 3)
```

```
where: I = Frame Material Types
```

where: I = Frame Material Types
1 = wood
1 = wood
2 = metal
2 = metal
3 = plastic
3 = plastic
J = Types of Seating (increments in ft)
J = Types of Seating (increments in ft)
l = legs with arms
l = legs with arms
2 = legs without arms
2 = legs without arms
3 = pedestal with arms and height < 3.21
3 = pedestal with arms and height < 3.21
4 = pedestal with arms and height > 3.21
4 = pedestal with arms and height > 3.21
5 = pedestal without arms
5 = pedestal without arms
6 = upholstered
6 = upholstered
7 = sofa 4.00 - 5.92 long
7 = sofa 4.00 - 5.92 long
8 = sofa 6.00 - 7.50 long
8 = sofa 6.00 - 7.50 long
9 = sofa \geq 7.58 long
9 = sofa \geq 7.58 long
10 = bench
10 = bench
11 = drafting stool
11 = drafting stool
12 = classroom chair
12 = classroom chair
Y(NBUF+3) The number of chairs.
CEE, CEESD are defined in the mnemonics table for
RMCONT

```
```

Table 4. Transfer Functions Used in MAKER (Page 9 of 14)

```
II. Transfer Functions for Equipment and Partitions
A. Paper Pile Weight Transfer Function
weight \(=\underline{\text { PEE }}(\mathrm{K})\) * HEIGHT \(*\) ( \(\%\) compaction)
sd of \(=\left((\% \text { COMPACTION })^{2} *(\text { HEIGHT } * \operatorname{PEESD}(K))^{2}+.0816\left[(\underline{\text { PEE }}(\mathrm{K}))^{2}\right.\right.\) \(+\left(\underline{\left.\operatorname{PEESD}(K))^{2}\right]}\right)^{1 / 2}\)
where: \% compaction \(=\) either \(\operatorname{FREE}(4, N 3\), NI) or ENCL \((4, N 3, N I)\)
\[
\begin{aligned}
\mathrm{K}= & \text { Size of Paper (area in } \left.\mathrm{ft}^{2}\right) \\
& 1=.65 \quad(8.5 \times 11 \text { inches) } \\
& 2=.89 \quad(8.5 \times 15 \text { inches) } \\
& 3=1.1 \quad(11 \times 15 \text { inches) } \\
& 4=>2.08(15 \times 70 \text { inches) }
\end{aligned}
\]

PEE, PEESD, HEIGHT, are defined in the mnemonics table for RMCONT, FSEAP

FREE, ENCL, are defined in the general mnemonics table.

Table 4. Transfer Functions Used in MAKER
(Page 10 of 14)
B. Book Pile Weight Transfer Function
weight \(=\underline{B E E}(\mathrm{~K}) * \underline{H E I G H T}\) * (\% compaction)
sd of \(=\left((\% \text { COMPACTION })^{2} *(\operatorname{HEIGHT} * \operatorname{BEESD}(K))^{2}+.0816\left[(\operatorname{BEE}(\mathrm{~K}))^{2}\right.\right.\)
\(+(\underline{\operatorname{BEESD}(K)}) 2]) 1 / 2\)
where: \% compaction \(=\) either \(\operatorname{FREE}(4, N 3, N I)\) or \(\operatorname{ENCL}(4, N 3, N I)\)
\(K=\) Size of Books (area in \(f t^{2}\) )
\(1=<.35\) ( \(<7.0 \times 7.25\) inches)
\(2=.35-.45 \quad(7.0 \times 7.25-10 \times 6.5\) inches \()\) \(3=>.45(10.0 \times 6.5\) inches)

BEE, BEESD, HEIGHT are defined in the mnemonics table for RMCONT, FSEAP

FREE, ENCL are defined in the general mnemonics table

Table 4. Transfer Functions Used in MAKER (Page 11 of 14 )

\section*{C. Telephone Weight Transfer Function}
```

weight = PH(J) * TELE(3,N7,NI)
sd of
weight = Not applicable for telephones, no standard deviation
in weight.

```
where: \(\operatorname{TELE}(3, N 7, N I)=\) the number of telephones
    \(J=\) The Type of Phone
        \(1=\) no buttons
        \(2=6\) buttons
        3 = 10 buttons
        \(4=12\) buttons
        \(5=18\) buttons
        \(6=20\) buttons
        \(7=30\) buttons
        \(\underline{\mathrm{PH}}\) is defined in mnemonics for RMCONT, FSEAP
```

Table 4. Transfer Functions Used in MAKER
(Page 12 of 14)

```

\section*{D. Typewriter Weight Transfer Function}
```

weight = TYP(L,J)
sd of
weight = TYPSD(L,J)

```
```

where: L = Carriage Size Groups (in inches)
1 = 11 - 14
2=15-16
3=17-20
4=2l-24
5=25-30
J = Power Source
1 = manual
2 = electric
TYP, TYPSD are defined in the mnemonics for RMCONT, FSEAP

```

Table 4. Transfer Functions Used in MAKER
```

 E. Calculator Weight Transfer Function
 weight = CAL (J,K)
sd of
weight = CALSD(J,K)

```
where: \(K=\) Type of Calculator
    \(1=\) illuminated read-out
        2 = illuminated read-out with tape
        3 = dial read-out
    \(J=\) (for the types above) The Size Groups (area in \(\mathrm{ft}^{2}\) )
        \(1=.069-.458\)
        \(2=.459-.735\)
        \(3=.736-.951\)
        \(4=.952-1.187\)
        5 = > 1.187
    K = Type of Calculator
        4 = tape output only
            \(J=\) (for tape output only type) The Size Groups (area in \(f t^{2}\) )
        \(1=.625\) - . 833
        \(2=.834-1.076\)
        \(3=1.077-1.388\)
        \(4=>1.388\)

CAL, CALSD, are defined in mnemonics table for RMCONT, FSEAP

Table 4. Transfer Functions Used in MAKER (Page 14 of 14 )

\section*{F. Room Partition Weight Transfer Function}
```

weight = PAR(L,I)
sd of
weight = PARSD(I,I)

```
where: \(I=\) Material Type
    1 = steel
    2 = fabric
    3 = plastic
    4 = wood
    \(I=\) Height Group (in \(f t\) )
        \(1=<4.00\)
        \(2=4.00-4.99\)
        \(3=5.0-5.99\)
        \(4=>6.00\)

PAR, PARSD are defined in the mnemonics table for BONCOM

Table 5. Error and Limit Messages in MAKER (Page 1 of 21 )
A. Error and Limit Messages in DRIVE
\(\frac{\text { Format No. }}{100}\)
cond.
cond.
102
cond.
103
cond.
104
cond.
105
cond.
106
cond.
cond.
108
cond.
cond.
110
cond.

101 'IMPOSSIBLE STATE NUMBER: BUILDING (BUILDN)'

107 'THE NUMBER OF FIRMS IS OUTSIDE ACCEPTABLE RANGE: BUILDING (BUILDN)'
'BUILDING NUMBER IS TOO LARGE: (BUILDN)' If BUILDN > 101 If \(1>\) BUILD (3) or 51 < BUILD (3)
'IMPROBABLE CONSTRUCTION DATA: BUILDING (BUILDN)' If BUILD \((5)\) < 1800 or BUILD(5) > 1974
'IMPROBABLE HEIGHT: BUILDING (BUILDN)' If BUILD (6) > 100
'IMPOSSIBLE VERTICAL LOAD RESISTING SYS: BUILDING (BUILDN)' \(\underline{\operatorname{BUILD}}(7)<1, \underline{\operatorname{BUILD}}(7)^{j}>2\)
'IMPOSSIBLE BUILDING MATERIAL: BUILDING (BUILDN)' \(\operatorname{BUILD}(8)<1, \underline{\operatorname{BUILD}}(8)>2\)
'IMPOSSIBLE OCCUPANCY CODE: BUILDING (BUILDN)' \(\underline{\operatorname{BUILD}}(9)<1, \underline{\operatorname{BUILD}}(9)>5\) NO < 1, NO > 1000; STOP

FIRM (J) BUILDING (BUILDN) HAS AN IMPOSSIBLE TYPE NO.'.

FIRMT (J) NOT IN STANDARD INDUSTRIAL CLASSIFICATION
```

 'BUILDING NO. AND BUILDING NO. WITH ROOM NOT
 CONSISTENT: BUILDING (BUILDN); FLOOR (FLOORN),
 ROOM (ROOMN)
 BUILD \((10) \neq\) BUILDN
 'THIS FLOOR NUMBER IS TOO LARGE: BUILDING (BUILDN)'
 BUILD(11) > BUILD(6)
    ```

Table 5. Error and Limit Messages in MAKER
(Page 2 of 21 )


Table 5. Error and Limit Messages in MAKER
\(\frac{\text { Format No. }}{123}\)
cond.
cond.

127
cond.

128
cond.
cond.

131
cond.
'CALCULATOR DATA IN ERROR: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'

If \(\operatorname{CALC}(3, K, L)=2\) and \(\operatorname{CALC}(4, K, 1)=0\).
'DATA ERROR, FATAL ERROR DISCOVERED IN DESK: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)' If ERR \(=\).TRUE. and INDEX \(=2\), After return from subroutine RMCONT
'DATA ERROR, FATAL ERROR, DESKG(1,2, or 3) TOO LARGE OR TOO SMALL: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'

If DESKG(1) > 3, or DESKG(1) < l, or DESKG(2) > 2 or \((\) DESKG \((2)<1\), and RMS \(=\). FALSE.) or DESKG(3) \(>3\), or DESKG \((3)<1\)
'DATA ERROR, FATAL ERROR DISCOVERED IN TABLE: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)' If \(E R R=. T R U E\). and INDEX \(=3\), After return from subroutine RMCONT
'DATA ERROR, FATAL ERROR, TABLE (1,2,3 or 4) TOO
LARGE OR TOO SMALL: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN).'

If TABLG(1) > 2 , or TABLG(1) < 1 , or TABLG(2) > 2 , or (TABLG(2) < 1, and RMS \(=\).FALSE.), or TABLG(3) \(>3\), or TABLG(3) < 1 , or TABLG(4) > 3, or TABLG(4) < 1
'DATA ERROR, FATAL ERROR DISCOVERED IN CABINET: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)' If ERR = .TRUE. and INDEX \(=4\), After return from subroutine RMCONT
'DATA ERROR, FATAL ERROR, CABNG (1,2, or 3) TOO LARGE OR TOO SMALL: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'

If \(\operatorname{CABNG}(1)>5\), or \(\operatorname{CABNG}(1)<1\), or \(\operatorname{CABNG}(2)>2\), or (CABNG (2) < 1 and RMS =.FALSE.), or CABNG(3) \(>3\), or CABNG \((3)<1\)

Table 5. Error and Limit Messages in MAKER
(Page 4 of 21 )

\section*{Format No.}

132
cond.
cond.
cond.
cond.
cond.
cond.
'DATA ERROR, FATAL ERROR, DISCOVERED IN SHELF: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)' If \(E R R=. T R U E\). and INDEX \(=5\), After returning from subroutine RMCONT
'DATA ERROR, FATAL ERROR, SHELG(1,2 or 3) TOO LARGE OR TOO SMALL: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'

134 'DATA ERROR, FATAL ERROR DISCOVERED IN SEAT: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN) If ERR \(=\).TRUE. and INDEX \(=6\), After returning from subroutine RMCONT
'THIS COMMENT SHOULD NEVER BE PRINTED SOMETHING IS WRING. LINE NO.', (IDUM),' STATUS WORD',(II) NA
' DATA ERROR, FATAL ERROR DISCOVERED IN MISC ITEM: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN) '
cond. If ERR \(=\).TRUE. and INDEX \(=7\), After returning from subroutine RMCONT
'DATA ERROR, FATAL ERROR DISCOVERED ON FORM A: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)' If \(E R R=\).TRUE., After returning from FORMA subroutine
'DATA ERROR, FATAL ERROR DISCOVERED ON FORM B: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)' If \(E R R=\).TRUE., After returning from FORMB subroutine

142 'DATA ERROR, FATAL ERROR DISCOVERED ON FORM C: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)' If \(E R R=\).TRUE., After returning from FORMC subroutine

Table 5. Error and Limit Messages in MAKER
(Page 5 of 21 )

Format No.

144 'DATA ERROR, NUMBER OF MISCELLANEOUS ITEMS
GREATER THAN 8 ON FORM 7: BUILDING (BUILDN),
FLOOR (FLOORN), ROOM (ROOMN)'
cond.
If NITEM \(>8\) and INDEX \(=7\)
'DATA ERROR, INDEX DOES NOT SHOW BOUNDING SURFACE DATA FIRST: THIS ROOM NOT PROCESSED. BUILD-
ING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'
If INDEX \(>1\) when reading first form
148 'DATA ERROR, INDEX IS 1 WHEN IT SHOULD NOT BE: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'
cond.
cond.
cond.
'DATA ERROR, THE NUMBER OF ITEMS IS LESS THAN 1 ON FORM 6 OR 7: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'
cond.
cond.

160 'TRANSMISSION FROM INPUT DATA ABORTED OR ERRONOUS./ STATUS WORD (II), BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN) If \(I I=-4\), or \(I I=-3\)

Table 5. Error and Limit Messages in MAKER
(Page 6 of 21 )

Format No.
162 'END-OF-TAPE ON INPUT DATA/STATUS WORD (II) AFTER BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)' If II \(=-2\)

166
cond.
170
cond.

176
cond.
178
cond.
180
cond.
182
cond
'TRANSMISSION TO OUTPUT FILE ABORTED OR ERRONEOUS./ STATUS WORD (IO) BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'

If \(I O<-2\)
'END-OF-TAPE, ABOUT 3,584,000 WORDS WRITTEN ON REEL/REEL (REEL), BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)

After 3,584,000 words have been processed on one tape reel.
' (REEL) REELS OF PROCESSED DATA HAVE BEEN GENERATED /JOB COMPLETE BECAUSE END-OF FILE MARK FOUND ON INPUT TAPE.'

If IO \(=-2\)
'WHILE WRITING THE SPECIAL END-OF-TAPE RECORD AN ABNORMAL OR ABORTED TRANSMISSION ENCOUNTERED./ STATUS WORD (IO), REEL (REEL)BUILDING (BUILDN), FLOOR (FLOORN), ROOM ( \(\overline{R O O M N}\) )'

If IO \(=-4\), or \(I O=-3\), or IO \(=-2\)
'SPECIAL END-OF-TAPE RECORD WRITTEN SUCESSFULLY BUT WITH AN INCORRECT NUMBER OF WORDS./STATUS WORD (IO), REEL (REEL), BUILDING (BUILDN), FLOOR (FLOORN), ROOM ( \(\overline{R O O M N}\) )

If IO > -1 and IO \(\neq 10\)
'THIS ROOM MAY HAVE TOO MUCH DATA TO BE PROCESSED WITH THIS PROGRAM./ROOM NOT PROCESSED. BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN), FILE (NOFILE), RECORD (NORECD)'

If II > 10000

Table 5. Error and Limit Messages in MAKER
(Page 7 of 21 )

Format No.

183
cond.
```

'THE INDEX NUMBER IS EITHER TOO HIGH OR TOO
LOW = (INDEX) AT LINE NO. (IDUM)/BUILDING
(BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'
If Index < l or Index > 7

```
    'THE STATUS WORD IS LESS THAN -l WHEN RETURN-
    ING FROM WRITING THE 10 WORD RECORD (IO)
BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'
    \(I O<-1\)

186 'THE SHORT RECORD HAS BEEN WRITTEN BUT WITH LESS THAN 10 WORDS'
cond.

190
cond.
191
cond.
cond.
cond.
cond.
\(I O>-1\) and \(I O<10\)
'FIRM NO. IS (RMFIRM(1,J)) FOR (J)TH FIRM BUILDING (BUILD(2))

If \(\underline{\operatorname{RMFIRM}(1, J)}>1000\)
'FIRM TYPE IS (RMFIRM(2,J) FOR (J)TH FIRM BUILDING (BUILD(2))

If \(\operatorname{RMFIRM}(2, J)>100\)
'FIRM AGE IS (RMFIRM(3,J)) FOR (J)TH FIRM BUILDING (BUILD(2))

If RMFIRM(3,J) > 200
'DEVICE ERROR, TRANSMISSION ABORT, OR END-OF-FILE/FOUND WHILE TRYING TO READ FIRM DATA MAY/ATTEMPT TO SWITCH REEL AND START OVER AT BLDG DATA'

If II < - 1
'DEVICE ERROR, TRANSMISSION ABORT, OR END-OF-FILE/FOUND WHILE TRYING TO READ DATA FOR FIRST ROOM./PROGRAM WILL ATTEMPT TO SWITCH REELS AND START OVER.'

If II<-2
'Y RECORD TOO LARGE TO WRITE ON FASTRAND FILE. ONLY FIRST 9999 WORDS WRITTEN.'
If \(\underline{N B U F}>10000\) and \(\underline{F I L E \varnothing ~}=\).TRUE.

Table 5. Error and Limit Messages in MAKER
(Page 8 of 21 )
B. Error Messages in Subroutine FORMA

\section*{Format No.}
\begin{tabular}{|c|c|c|}
\hline & \multirow[t]{2}{*}{100} & 'THE NUMBER OF PILES IS TOO LARGE FOR PROGRAM: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)' \\
\hline \multirow[t]{2}{*}{cond.} & & If MPILE(ITEM) > 25 or NPILE(ITEM) > 25 \\
\hline & 110 & ' DATA ERROR, FREE/ENCLOSED INDEX UNEQUAL TO O OR 1: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)' \\
\hline \multirow[t]{2}{*}{cond.} & & If TEMP (K1) > 1 , or TEMP (K1) > 0 \\
\hline & 120 & 'DATA ERROR, NUMBER OF PILES IS ZERO ON FORM A: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)' \\
\hline \multirow[t]{2}{*}{cond.} & & If \(\underline{N}=0\) \\
\hline & 130 & 'DATA ERROR, NUMBER OF PILES ON FORM A EXCEEDS NUMBER POSSIBLE: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)' \\
\hline \multirow[t]{2}{*}{cond.} & & If \(\mathrm{N}>15\) \\
\hline & 140 & 'DATA ERROR, FORM INDICATOR INCOMPATIBLE WITH FORM. A: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN) \\
\hline cond. & & If \(K \neq 0\) and \(K \neq 1\) \\
\hline
\end{tabular}

\section*{C. Error Messages in Subroutine FORMB}

\section*{Format No.}

100 'DATA ERROR, FORM-B NOT INDICATED TO BE FREESTANDING OR EXTRA ITEM: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'
cond.
110 'DATA ERROR, NUMBER OF TYPEWRITERS LARGER THAN POSSIBLE ON FORM B: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'

If \(\underline{N}>3\)
120 'NUMBER OF TYPEWRITERS EXCEEDS PROGRAM CAPABILITY: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)' If NTYPE(ITEM) > 12

130 'DATA ERROR, NUMBER OF CALCULATORS LARGER THAN POSSIBLE ON FORM B: BUILDING (BUILDN), FLOOR (FLOORN) \(\because\) ROOM (ROOMN)'

If \(\underline{N}>3\)
140 'NUMBER OF CALCULATORS EXCEEDS PROGRAM CAPABILITY: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)' If NCAL (ITEM) > 12

150 'DATA ERROR, NUMBER OF TELEPHONE DATA LINES LARGER THAN POSSIBLE ON FORM B: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'
cond. If \(\underline{N}>2\)

160 'NUMBER OF TELEPHONES EXCEEDS PROGRAM CAPABILITY: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)' If NTELE (ITEM) \(>25\)
161 'IN FORM B A STAND-ALONE ITEM IS ASSOCIATED WITH A PIECE OF FURNITURE: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'
cond.

Table 5. Error and Limit Messages in MAKER
```

(Page 10 of 21)

```

\section*{D. Error Messages in Subroutine FORMC}

Format No.
100 'DATA ERROR, FORM-C NOT INDICATED TO BE AN EXTRA SHEET: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'
cond.
cond.
cond.
130 'THE NUMBER OF MISCELLANEOUS ITEMS IS TOO LARGE FOR PROGRAM: BUILDING (BUILDN), FLOOR (FLOORN), ROOM \(\left(^{\text {ROOMN }}\right)^{\prime}\)
cond.
If NMISC(ITEM) > 10
E. Error Messages in Subroutine FSEAP

Format No.
cond.
cond.
'A FREE-STANDING PAPER PILE OF (HEIGHT) FEET HIGH: BUILDING (BUILDN), FLOOR ( \(\overline{\text { FLOORN }}\) ), ROOM (ROOMN)'
```

If HEIGHT > FREEL

```
    'THE NUMBER OF BUTTONS FOR A FREE-STANDING PHONE
    IS INCONSISTENT WITH PHONE TYPE: BUILDING (BUILDN),
FLOOR (FLOORN), ROOM (ROOMN)'
    If \(\{\operatorname{TELE}(1, N 7,1)=1\), and \(\operatorname{TELE}(2, N 7,1)>2]\), or
    \([\operatorname{TELE}(1, N 7,1)=2\), and \(\operatorname{TELE(2,N7,1)<3]}\)
'THERE IS A TRANSFER FUNCTION SUBSCRIPT OF INCORRECT FORM FOR A FREE-STANDING (NAMEE (I))/ THE WEIGHTS FOR THIS ITEM HAVE BEEN SET TO ZERO: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'

For NAMEE:
If:
'P-PILE' \(\quad K<1\)
'B-PILE' \(\bar{K}>3\)
'TYPWRT' \(\bar{J}<1\) or \(\underline{J}>2\) or \(\bar{M} 1\) or \(\underline{M}>2\)
'CAIC' \(\quad \underline{K} 1^{-}\)or \(K>5\)
'PHONE' \(\overline{\mathrm{J}} 1\) or \(\overline{\mathrm{J}}>7\)
'TRANSFER DATA FOR A FREE-STANDING (NAMEE(I)) IS AN ESTIMATE OF [A. see below] LBS: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'

For NAMEE:
Values of \(A:\) If:
\begin{tabular}{ll} 
'TYPWRT' & \(\operatorname{TYP}(\underline{L}, \underline{J})\) \\
'CALC.' & \(\underline{\operatorname{TYP}}(\underline{L}, \underline{J})<0\) \\
\(\underline{\operatorname{CAL}}(\underline{J}, \underline{K})<0\)
\end{tabular}
'THE DIMENSIONS OF A FREE-STANDING (NAMEE (I)) NO.(A.) ARE TOO SMALL TO CONFORM TO THE SIZE CRITERIA OF'/"THE TRANSFER FUNCTION AND THE WEIGHT OF THIS ITEM HAS BEEN SET TO ZERO: BUILDING (BUILDN),. FLOOR (FLOORN), ROOM (ROOMN)'

For NAMEE \(=:\) CALC. If: \(\mathrm{K}<4\).AND. CALA<. 069 .OR
\(\bar{K}=4\). AND. CALA<. 624

Table 5. Error and Limit Messages in MAKER (Page 12 of 21 )

\section*{Format No.}

F. Error Messages in Subroutine BONCOM

Format No.
cond.
cond.
cond.
cond.
cond.
cond.
cond.
'BUILD (BUILDN), FL (FLOORN), RM (ROOMN), THE LENGTH OF A ROOM PARTITION IS \((\mathrm{Y}(57+\mathrm{NA}))\) FT. WHICH IS LONGER THAN THE DEPTH AND WIDTH OF THE ROOM'

If \(\underline{Y(57+N A)}<\underline{\text { WIDTH }}\) and \(\underline{Y(57+N A)}>\) DEPTH
' BUILD (BUILDN), FL (FLOORN), RM (ROOMN), THE HEIGHT OF A ROOM PARTITION IS (Y(59+NA) \()\) FT. WHICH IS HIGHER THAN THE ROOM'

If \(\underline{Y(59+N A)}>\underline{H E I G H T}\)
'BUILD (BUILDN), FL (FLOORN), RM (ROOMN), THE NUMBER OF DOORS IN ONE WALL IS (DOOR(I,NN))'

If \(\operatorname{DOOR}(1, N N)>\operatorname{LMT}(1)\)
'BUILD (BUILDN), FL (FLOORN), RM (ROOMN), THE NUMBER OF WINDOWS IN ONE WALL IS \(\overline{D O O R}(6, N N)\) '
```

If DOOR(6,NN) > LMT(2)

```
'BUILD (BUILDN), FL (FLOORN), RM (ROOMN), THE NORMAL OCCUPANCY OF A FILE ROOM OR A STORAGE ROOM IS, ( \(\underline{Y(20)})^{\prime}\)
```

If 4<Y(19)<7 and Y(20) > LMT(3)

```
'BUILD (BUILDN), FL (FLOORN), RM (ROOMN), IN A (Y(14)) STORY BUILDING THERE IS A ROOM ON FLOOR NUMBER ( \(Y(3)\) )
```

If Y(3) > Y(14)

```
'BUILD (BUILDN), FL (FLOORN), RM (ROOMN), (Y(126)) PERCENT OF THE WALL AREA IS DOORS AND WINDOWS

If \(\mathrm{Y}(126)>\operatorname{LMT}(4)\)
'BUILD' (BUILDN), FL (FLOORN), RM (ROOMN),THE LIVE LOAD/SQ FT IS (Y(79)) PSF'

If \(\underline{Y(79)}>\mathrm{LMT}(18)\)

Table 5. Error and Limit Messages in MAKER
(Page 14 of 21 )

\section*{Format No.}

158 'BUILD (BUILDN), FL (FLOORN), RM (ROOMN), THE FIRE LOAD/SQ FT IS (Y(83)) PSF'
cond.
cond.
cond.
cond.
cond.
cond.
cond.
'BUILD (BUILDN), FL (FLOORN), RM (ROOMN) Y Y (106) PERCENT OF THIS ROOMS FIRE LOAD IS ENCLOSED IN PLASTIC'

If \(\underline{Y(106)}>\underline{\operatorname{LMT}(14)}\)
\({ }^{\prime}\) BUILD (BUILDN), FL (FLOORN), RM (ROOMN), (Y(102)) PERCENT OF TOTAL ROOM FIRE WEIGHT IS PAPER' If \(\mathrm{Y}(102)>\) LMT (15)

Table 5. Error and Limit Messages in MAKER (Page 15 of 21 )

Format No.
168 'BUILD (BUILDN), FL (FLOORN), RM (ROOMN), Y(104) PERCENT OF TOTAL ROOM FIRE WEIGHT IS BOOK -
cond.
169 'BUILD (BUILDN), FL (FLOORN), RM (ROOMN), THE TOTAL FIVE LOAD OF THE ROOM INCLUDING THE FINISH IS (Y(110)) LBS'
cond.
If \(\underline{Y(110)}>\underline{L M T(17)}\)
170 ' (Y(96)) PERCENT OF THE ENCLOSED FIRE WEIGHT IS W/N 2 FT OF THE WALL: BUILD (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'
cond.
If \(\underline{Y(96)}\) > LMT(12)
171 ' (Y(100)) PERCENT OF THE TOTAL FIRE WEIGHT IS ENCLOSED: BUILD (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'
cond.
172
cond.
If \(\underline{Y(100)}>\underline{\text { LMT (9) }}\)
'BUILD (BUILDN), FL (FLOORN), RM (ROOMN), THE NORMAL OCCUPANCY OF THIS ROOM IS Y(20)'

If \(\underline{Y(20)}>\underline{L M T}(19)\)

Table 5. Error and Limit Messages in MAKER
(Page 16 of 21 )
G. Error Messages in Subroutine RMCONT

\section*{Format No.}

150 'OVER (DESKL (4)) BOX, (DESKL (4)) FILE AND (DESKL (4)) PERSONAL DRAWERS IN ONE DESK: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)' If \(\operatorname{DESK}(4)>\operatorname{DESKL}(4)\) and \(\operatorname{DESKG}(5)>\operatorname{DESKL}(4)\) and DESKG(3) > DESKL (1)
'OVER DESKL(l) BOX AND DESKL(1) FILE DRAWERS IN ONE DESK: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'

If DESKG(4) > DESKL(1) and DESKG(5) > DESKL(1)
ONE DESK AREA OF (Y(NBUF+9)) SQFT: BUILDING (BUILDN), FLOOR (FLOORii), ROOM (ROOMN)

If \(\underline{Y(N B U F+9)}>\underline{\operatorname{DESKL}(2)}\), or \(\underline{Y(N B U F+9)}>\operatorname{DESKL(3)}\)
'A TABLE TOP AREA OF (Y(NBUF+9)) FT: BUILDING
(BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'
cond.
If \(\underline{Y(N B U F+9)}>\underline{T A B L E L(1)}\) or \(\underline{Y(N B U F+9)}<1\).
'A CABINET WITH A TOP SURFACE OF (Y(NBUF+9)) SQ
FT: BUILDING (BUILDN), FLOOR (FLOOVRN), ROOM (ROOMN)'
cond.
cond.
'SEATING WITH A SURFACE AREA OF (Y (NBUF+9)) SQ FT: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'
cond.
cond. If \(\underline{Y(N B U F+9)}>\) SEATL (1)
'A DESK WITH AN EMPTY WEIGHT OF (Y(NBUF+9)) LBS BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)' If \(\underline{Y(N B U F+5)}>\underline{\operatorname{DESKL}(5)}\) or \(\underline{Y(N B U F+5)}<1\).

Table 5. Error and Limit Messages in MAKER
(Page 17 of 21 )

Format No.
158 'A TABLE WITH AN EMPTY WEIGHT OF (Y (NBUF+5)) LBS: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'
cond.
159 ' (CDRAW) DRAWERS IN A CABINET: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'

If CDRAW \(>\) CABL(2)
'A FREE PAPER PILE (HEIGHT) FEET HIGH ON (NAMEF (I)) NO. Y(112+INDEX); BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)' If HEIGHT > FREEL
'FREE BOOK AND PAPER PILE WEIGHT ON NAMEE (INDEX) NO. Y(112+INDEX) WEIGHS (WTF)LB: BUILDING (BUILDN). FLOOR (FLOORN), ROOM (ROOMN)'
cond.
If WTF > FWTL
```

'ENCLOSED PAPER PILE THAT IS (HEIGHT) FEET HIGH
ON (NAMEF (I)) NO. Y(112+INDEX); BUILDING (BUILDN),
FLOOR (FLOORN), ROOM (ROOMN)'

```
cond.
HEIGHT > ENCLL
'ENCLOSED WEIGHT OF BOOKS AND PAPER IS (WTE) LBS ON (NAMEF (I)) NO. Y(I12+INDEX); BUILDING (BUILDN). FLOOR (FLOORN) , ROOM (ROOMN)'
cond.
cond.
165 'THE NUMBER OF BUTTONS AND PHONE TYPE ARE INCONSISTENT ON (NAMEF(I)) NO. Y(112+INDEX); BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'
cond. If \((\operatorname{TELE}(1, N 7, N I)=1\) and \(\operatorname{TELE}(2, N 7, N I)>2)\), or \((\overline{\operatorname{TELE}(1, N 7, N I})=2\) and \(\overline{\operatorname{TELE}(2, N 7, N I)<3)}\)

Table 5. Error and Limit Messages in MAKER
(Page 18 of 21 )

Format No.

166

170
cond.
171
cond.
cond.
173
cond.
174
cond.

175
cond.
cond.
180
cond.
'THE WEIGHT OF A MISCELLANEOUS ITEM ON (NAMEF(I)) NO. Y(112+INDEX) IS (MWT) LBS: BUILDING (BUILDN), FLOOR (FLOURN), ROOM (ROOMN)'

If MWT > MWTLT
'A CABINET WITH AN EMPTY WEIGHT OF (Y (NBUF+5)) LBS: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'

If \(\underline{Y(N B U F+5)}>\) CABL (3)
'EMPTY SHELVING WITH A WEIGHT OF (Y(NBUF+5)) LBS: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)' If \(\underline{Y(N B U F+5)}>\underline{\text { SHELFL (2) }}\)
'EMPTY SEATING WEIGHT OF (Y(NBUF+5)) LBS: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'

If \(\underline{Y(N B U F+5)}>\) SEATL (2.)
'A PLASTIC DESK IS PRESENT: BUILDING (BUILDN) FLOOR (FLOORN) ROOM (ROOMN)'

If \(\underline{\operatorname{DESKG}(6)}=3\)
'SHELVING TOO LONG TO FIT IN ROOM: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'

If LENGTH > [(ROOM (19) * 10 + ROOM (20) + (ROOM(21)/
12)] and LENGTH >[(ROOM(16) * \(10+(\underline{R O O M}(17)\) ROOM (18)/12)]
'MISCELLANEOUS ITEM WEIGHS (Y(NBUF+5)) LBS: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'
```

If Y(NBUF+5) > MISLT(2)

```
'MISCELLANEOUS ITEM WITH A PROJECTED AREA OF (Y (NBUF+9) SQ FT: BUILDING (BUILDN), FLOOR' (FLOORN), ROOM (ROOMN)'

If \(\underline{Y(N B U F+9)}>\underline{M I S L T(1)} . O R<0.1 \mathrm{lb}\)
'TRANSFER DATA FOR ' (NAMEF (I)) 'NUMBER (A) IS AN ESTIMATION OF ', (B) LBS: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'

FOT NAMEE =:
(A)
(B)

If:
'DESK'
'TABLE' ' \(C A B{ }^{\prime}\)
'Shelf' 'Shelf' 'seat '
\begin{tabular}{|c|c|c|c|}
\hline \(Y\) (114) & DEK (I, J,K) & DEK (I,J,K) & < \\
\hline Y(115) & TEE (I, J,K) & TEE (I, J,K) & < \\
\hline Y(116) & CAB ( \(\mathrm{R}, \mathrm{M}\), & \(\overline{C A B}(\mathrm{~K}, \mathrm{M}\) ) & \\
\hline & L, I) & L, I) & < \\
\hline \(Y\) (117) & BK (M,L,I) & BK ( \(M, L, I)\) & < \\
\hline \(Y(117)\) & FS ( \(1, M\) ) & FS (I, M) & < \\
\hline Y(118) & CEE (I, J) & CEE (I, J) & < \\
\hline
\end{tabular}

Table 5. Error and Limit Messages in MAKER
(Page 19 of 21 )

Format No.

181 'THE DIMENSIONS, TYPE, OR MATERIAL OF (NAMEE (I)) 'NUMBER' (A) IS NOT POSSIBLE ACCORDING TO THE DEFINITIONS OF THE TRANSFER FUNCTION DATA: BUILDING (BUILDN),FLOOR (FLOORN), ROOM (ROOMN)'
cond.
For NAMEF = :
(A.)
If:
\({ }^{\prime} \mathrm{CAB} .{ }^{\prime} \quad Y(116) \quad \mathrm{CAB}(\mathrm{K}, \mathrm{M}, \mathrm{I}, \mathrm{I})=-999\).
'THE DIMENSIONS OF (NAMEF(I)) 'NUMBER' (A.)ARE TOO SMALI TO CONFORM TO THE SIZE CRITERIA OF THE TRANSFER FUNCTION /THE WEIGHTS FOR THIS ITEM HAVE BEEN SET TO ZERO: BUIIDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'
cond.*
For NAMEF (I) \(=\); A: If:


183 'THERE IS A TRANSFER FUNCTION SUBSCRIPT OF INCORRECT FORM EITHER TOO LARGE OR ZERO FOR (NAMEF (I) NUMBER (A.)/THE WEIGHT FOR THIS ITEM HAS BEEN SET TO ZERO: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'
cond.

* Units in ft. or sq. ft.

Table 5. Error and Limit Messages in MAKER
(Page 20 of 21 )

Format No.

184
cond.

185
cond.

186
cond.
'THERE IS A TRANSFER FUNCTION SUBSCRIPT OF INCORRECT FORM FOR A, (NAMEE(I)) 'ON OR IN '(NAMEF (INDEX)' NUMBER ( \(\underline{(112+\overline{\text { INDEX }})}) / T H E\) WEIGHTS FOR THIS ITEM HAVE BEEN SET TO ZERO: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'

For NAMEE (I) \(=\);
If:
'P-PILE'
K<1 J<1 .OR. J>2 .OR. M<1 .OR. \(M>2\).OR. L<1 .OR. L>5
\(\begin{array}{llll}\text { 'R-PILE' } & \mathrm{K}>3 & & \\ \text { 'TYPWRT' } & \mathrm{J}<1 & . O R . \mathrm{J}>2 \\ & \mathrm{M}>2 & . O R . \mathrm{L}<1 \\ \text { 'CALC.' } & \mathrm{K}<1 & .0 R . & \mathrm{K}>5 \\ \text { 'PHONE' } & \mathrm{J}<1 & .0 R . \quad \mathrm{J}>7\end{array}\)
\(\begin{array}{llll}\text { 'R-PILE' } & \mathrm{K}>3 & & \\ \text { 'TYPWRT' } & \mathrm{J}<1 & . O R . \mathrm{J}>2 \\ & \mathrm{M}>2 & . O R . \mathrm{L}<1 \\ \text { 'CALC.' } & \mathrm{K}<1 & .0 R . & \mathrm{K}>5 \\ \text { 'PHONE' } & \mathrm{J}<1 & .0 R . \quad \mathrm{J}>7\end{array}\)
\(\begin{array}{llll}\text { 'R-PILE' } & \mathrm{K}>3 & & \\ \text { 'TYPWRT' } & \mathrm{J}<1 & . O R . \mathrm{J}>2 \\ & \mathrm{M}>2 & . O R . \mathrm{L}<1 \\ \text { 'CALC.' } & \mathrm{K}<1 & .0 R . \mathrm{K}>5 \\ \text { 'PHONE' } & \mathrm{J}<1.0 R . \quad \mathrm{J}>7\end{array}\)
'PHONE'
    'TRANSFER DATA FOR A (NAMEE (I)'ON OR IN (NAMEF (INDEX)
        NUMBER (Y(112+INDEX) IS AN ESTIMATE OF ' ( \(\bar{A}\).\() LBS:\)
                BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'
            For NAMEE (I) \(=\); \(A\) : If:
            'TYPWRT' TYP(L,J) TYP(L,J) 0.
            'CALC.' CAL (J,K) CAL (J,K) 0.
            'THE DIMENSIONS OF A (NAMEE (I))'ON OR IN'(NAMEF (INDEX))
            'NUMBER' (Y(112+INDEX)) 'ARE TOO SMALL TO CONFORM TO
            THE SIZE CRITERIA OF'/'THE TRANSFER FUNCTION AND THE
                WEIGHT OF THIS ITEM HAS BEEN SET TO. ZERO:BUILDING
                (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'
            For NAMEE (I) =; If:
                            'CALC.' \(\mathrm{K}<4\).AND. CALA< 069
                                or \(\quad \underline{K} \geq 4\).AND. \(\underline{\text { CALA }}<.624\)

Table 5. Error and Limit Messages in MAKER
(Page 21 of 21 )

Format No.
188 'NBUF HAS A VALUE OF (NBUF) NO MORE RMCONT DATA CAN BE PROCESSED, ERR SET TO .TRUE. RETURN TO DRIVE: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'

If NBUF > 9950 at start of RMCONT
189 'THE PSF LOADING FOR A (NAMEF (I)) EQUALS (RCWTPF) BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN) '

If RCWTPF > RCWTL
'INDEX NO. = (INDEX) IN RMCONT: BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)' If INDEX < 2 or INDEX > 7

191 'THE VARIABLE NITEM IS OUT OF RANGE. BUILDING (BUILDN), FLOOR (FLOORN), ROOM (ROOMN)'
cond. NITEM > 10
QRUN（etc） \(\begin{aligned} & \text { use to start run }\end{aligned}\)
QMSG PLEASE MOUNT TAPE NO．iii WITHOUT WRITE RING
EASG，T NAME1，T，iii
QMSG PLEASE MOUNT TAPE NO．iii WITHOUT WRITE RING
＠ASG，T NAME1，T，iii
use 2 and 3 to mount and assign tape file when survey data on magnetic tape NAMEI
QASG，A use 4 when survey data on a FASTRAND file
GUSE 8，NAMEI
use 5 to assign program unit number to magnetic tape or FASTRAND file on input ＠MSC PLEASE MOUNT TAPE NO．jjj WITH WRITE RING
＠ASG，T NAME2，T，jjj
use 6 and 7 to mount and assign magnetic tape for output
NANE2，F2／／／500
use 8 when output is to be put on a FASTRAND file already cateloged
eERS NAME2
CUSE 9 ，NAME 9 to clear output FASTRAND file
use 10 to assign program unit number to magnetic tape or FASTRAND file on output
EXQT MAKER．ATOT
execute program with relocateable stored as element ATOT of file MAKER
execute program with relocateable stored as element ATOT of file MAKER
（data）
required
（data）
（data）
（data）
（data）
（data）
（data）
EFIN end card
\＄INPUT
\＄TEST1
\＄TEST2
\＄TEST3
\＄TEST1
\＄TEST2
\＄TEST 3
equired NAMELIST input file（see Table 2）
SEND
号号
SEND
号
1 bits．This word is assumed to be included in the word count（II），
（2）The use of FASTRAND files for input as described here are based on the published NTRAN
 number of words to be read is specified prior to running．This requires a change in


11
12
13
Э
Table 7. Processed Room Survey Data Tape
This data is arranged on a room by room basis with two records for each room.
Record 1 - Constant Length Record

\section*{10 integer words}
Each word is set equal to NBUF, the number of word in record 2 , unless
a) The room was terminated prematurely due to a "fatal" error in the MAKER input data. In this case, the loth word is set to zero (integer).
b) The user may set the tenth word to -1 by using Program READER.
c) This is the end of the tape. In this case, all 10 words have been set to 999999 (integer).
Record 2 - Variable Length Record
Words 1 to 132 are the room parameters
Words 133 to NBUF are arranged in 52 and 11 word groups. Each group describes one piece of furniture or one free-standing item.

\section*{APPENOIX B. 5}

OUTPUT RECORD FORMAT FOR DATA FILE 2

The data in each word of the following items is right justified and in a binary format. Each digit of a field occupies one word. For multiple digit items, the most significant digit is first.

Each file on the tape represents a single building. The first record contains the building characteristics ( 25 words). The next record contains the firm information (8* number of firms in building). The remaining records of the file contain the data for each room in the building ( 30 words) with one record devoted to each single room. After all the room records have been recorded in a file, only a single "EOF" mark is put on the tape.

After the last building has been recorded on tape, an extra "EOF" mark is recorded.

The blocking factor for the tape is one. The following was the format used to record each of the three records described above:

\section*{Building Characteristics: (Record 1)}
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \text { I tem } \\
& \text { No. }
\end{aligned}
\] & \begin{tabular}{l}
Length \\
(Words)
\end{tabular} & Description \\
\hline 1 & 3 & Surveyor code (001-999) \\
\hline 2 & 3 & Butlding number (001-200) \\
\hline 3 & & State code (01-51) \\
\hline 4 & & Zip code (00001-99999) \\
\hline 5 & & Year building built (1700-1974) \\
\hline 6 & 2 & No. of stories above ground level (00-99) \\
\hline 7 & 1 & \[
\begin{aligned}
& \text { Vertical load resisting system } \\
& \begin{array}{l}
1=\text { Column } \\
2=\text { Bearing wall }
\end{array}
\end{aligned}
\] \\
\hline 8 & 1 & ```
Building material
    1 = Concrete
    2 = Steel
    3 = Masonry
    4 = Wood
``` \\
\hline 9 & 1 & \begin{tabular}{l}
Occupancy type \\
1 = Federal government \\
\(2=\) State government \\
3 = Local goverment \\
4 = Private
\end{tabular} \\
\hline 10 & 3 & Number of firms in building (001-999) \\
\hline
\end{tabular}

APPENDIX B.6

PART A - User's Manual and Operating Instructions
1. Input Data for Data Retrieval Program, SEEKER
2. Code Numbers to be Used When Specifying Items to be Selected and Tested by the Data-Retrieval Program, SEEKER
3. Input Card Configurations
4. Mnemonics for Data Retrieval Program, SEEKER
5. Diagnostic Messages
6. Run Cards for UNIVAC 1108, EXEC 8, 1975
7. Processed Room Survey Data Tape
8. Mnemonics for Program HISTOG
9. Input Data for HISTOG

Table 1. Input Data for Data Retrieval Program, SEEKER (Page 1 of 5)

CARD 1
CASES, OUTFLG, NROOMS, INFLAG, PLTFLG Card Format: [5I4]
\begin{tabular}{|c|c|c|}
\hline Col. 1-4 & CASES & \(=\) Number of cases being run. A maximum of 20 cases are allowed in one run. \\
\hline & & When OPT(K) is equal to either 2 or 4 no unit need be assigned for these cases. The unit no. is determined by: case no. \(+6=\) unit no. Where the case number is the order of deck or input cards after a card 1. \\
\hline Col. 5-8 & OUTFLG & \begin{tabular}{l}
\(=\) Option flag for data to be saved. \\
1 - save data in binary using NTRAN on a mass storage or tape file. \\
0 - save data in coded form using a format statement on a mass storage file or tape.
\end{tabular} \\
\hline C01. 9-12 & NROOMS & \(=\) The total number of rooms (sum of all cases) to be selected when \(\operatorname{OPT}(K)=5\) for all cases. Causes early program termination to save computer costs. Not required, even if \(\operatorname{OPT}(K)=5\) for all cases. \\
\hline Co1. 13-16 & INFLAG & \[
\begin{aligned}
= & 1 \text { - mass storage input } \\
& 2 \text { - tape input }
\end{aligned}
\] \\
\hline & & Input uses unit no. 3 \\
\hline Col. 17-20 & PLTFLG & \begin{tabular}{l}
= 0 - no data written for plots \\
\(\neq 0\) - data written on unit no. 4 for each plot to be created.
\end{tabular} \\
\hline
\end{tabular}

Repeat Cards 2 through 60 for each case being run.

\section*{CARD 2}
\(\operatorname{ITEM}(K), \operatorname{OPT}(K), \operatorname{NOR}(K), \operatorname{ITEM2}(K), \operatorname{KDN}(K)\) Card Format: [5I4]
Co1. 1-4 \(\operatorname{ITEM}(K)=\) Item to be selected [See Table 2]
Col. 5-8 \(\operatorname{OPT}(K)=\) Option flag
1 - Save the selected items on a data file for subsequent use.
2 - Do not save the selected items.
3 - Divide the selected items, ITEM(K), by ITEM2 (K), and save the results on a data file.

Table 1. Input Data for Data Retrieval Program, SEEKER (Page 2 of 5)

4 - Divide the selected items, ITEM(K), by ITEM2(K), but do not save the results.
5 - Select four room parameters. Save the following for all selected items: Building No., Floor No., Room No., Parameter (One), Parameter (One + 1), Parameter (Two), Parameter (Two + 1).
When option 5 is chosen OUTFLG must be 0 .
Col. 9-12 NOR(K) = Number of ".OR." condition-sets. Zero is an acceptable value. (When zero is specified, no conditions are specified and all elements are included, thus cards 5-9 must not be included.) A maximum of 10.0 R . condition-sets per case. are allowed.

Co1. 13-16 \(\operatorname{ITEM2}(K)=\operatorname{OPT}(K)=1\) or 2: Not used
\(\operatorname{OPT}(K)=3\) or 4: Item by which the selected item, \(\operatorname{ITEM}(K)\), is to be divided. ITEM2 \((K)\) can be a room parameter when ITEM(K) is a furniture or stand-alone item. But ITEM2(K) cannot be a furniture or stand-alone item when \(\operatorname{ITEM}(K)\) is a room parameter.
\(\operatorname{OPT}(K)=5\) : The second room parameter to be selected for each appropriate room.

Col. 17-20 \(\operatorname{KON}(K)^{\text {. Multiplier Flag }}\)
1 - Multiply the selected items by a constant given on card 4.
0 - Do not multiply the selected item by a constant.

\section*{CARD 3}

TITLE (K)
Col. 1-78 TITLE = Alphanumeric titie. Limited to one line (first 78 characters of the card).

\section*{CARD 4}

MULTIP (K)
Card Format: [E12.5]
Col. 1-12 MULTIP \((K)=\) The multiplier with which each selected item

Table 1. Input Data for Data Retrieval Program, SEEKER (Page 3 of 5)
will be multiplied before any calculations are performed.

NOTE: This card not included unless \(\operatorname{KON}(K)=1\).
CARD 5
IAND(K,J) Card Format: [I4]
Col. 1-4 IAND (K, J) = Number of ".AND." conditions in ".OR." condi-tion-set J. A maximum of 10 and a minimum of 1 are allowed.

NOTE: This card not included unless NOR \((K)>0\)

\section*{CARD 6A}
\(\operatorname{CON}(K, J, 1), \operatorname{LIM}(K, J, 1), \operatorname{LIM2}(K, J, 1)\), through \(\operatorname{CON}(K, J, 3), \operatorname{LIMI}(K, J, 3)\),
LIM2 (K, J, 3) Card Format: [4X,3(I4,2F8.2)]
(where third index = "..AND." condition number)
\(\operatorname{CON}(K, J, I)=\) Item to be tested [See Table 2].
\(\operatorname{LIMI}(K, J, I)=\) Lower limit for item to be tested. Unless \(\operatorname{CON}(K, J, I)\) is greater-than or equal-to \(\operatorname{LIMI}(\mathrm{K}, \mathrm{J}, \mathrm{I})\), the corresponding ITEM(K) shall be rejected. F - format number.
\(\operatorname{LIM} 2(K, J, I)=\) Upper 1 imit for item to be tested. Unless \(\operatorname{CON}(K, \mathrm{~J}, \mathrm{I})\) is less-than or equal-to \(\operatorname{LIM} 2(\mathrm{~K}, \mathrm{~J}, \mathrm{I})\), the corresponding ITEM(K) shall be rejected. If \(\operatorname{LIM} 2(K, J, I)=0\), the test is set-up to be an equality. In this case, ITEM(K) shall be rejected unless \(\operatorname{CON}(K, J, I)\) is within 1 percent of \(\operatorname{LIM} 1(K, J, I)\). F - format number

Col. 5-8 \(\operatorname{CoN}(\dot{K}, J, 1)\)
Co1. 9-16 \(\operatorname{LIM}(K, J, 1)\)
Col. 17-24 LIM2 (K, J, 1)
\(\left.\begin{array}{ll}\text { Col. 25-28 } & \operatorname{CON}(K, J, 2) \\ \operatorname{Col} .29-36 & \operatorname{LIMI}(K, J, 2) \\ \operatorname{Col} \cdot 37-44 & \operatorname{LIM2}(K, J, 2)\end{array}\right\}\) Not included unless \(\operatorname{IAND}(K, J) \geq 2\)

Table 1. Input Data for Data Retrieval Program, SEEKER (Page 4 of 5)
\(\left.\begin{array}{ll}\text { Col. 45-48 } & \operatorname{CON}(K, J, 3) \\ \operatorname{Col} .49-56 & \operatorname{LIM} 1(K, J, 3) \\ \operatorname{Col} .57-64 & \operatorname{LIM} 2(K, J, 3)\end{array}\right\}\) not included unless \(\operatorname{IAND}(K, J) \geq 3\)

NOTE: This card is not included unless NOR \((K)>0\)
CARD 6B
```

CON(K,J,4), LIM1(K,J,4), LIM2(K,J,4) through CON(K,J,6), LIM1(K,J,6),
LIM2(K,J,6) Card Fommat: [3(I4,2F8.2)
Col. 1-4 CON(K,J,4)
Col. 5-12 LIM1(K,J,4)
Col. 13-20 LIM2(K,J,4)
Col. 21-24 1- }$$
\begin{array}{ll}{\operatorname{CON}(K,J,5)}\\{\operatorname{Col.25-32 }}&{\operatorname{LIMI}(K,J,5)}\\{\operatorname{Col. 33-40 }}&{\operatorname{LIM2}(K,J,5)}\end{array}
$$}\mathrm{ not included unless IAND (K,J) \5
$\left.\begin{array}{ll}\operatorname{Co1.~41-44} & \operatorname{CON}(K, J, 6) \\ \operatorname{Col.~45-52} & \operatorname{LIM1}(K, J, 6) \\ \operatorname{CoT.~53-60} & \operatorname{LIM2}(K, J, 6)\end{array}\right\}$ not included unless $\operatorname{IAND}(K, J) \geq 6$

```

NOTE: This card is not included unless \(\operatorname{IAND}(K, J)>\),3 , and \(\operatorname{NOR}(K)>0\) CARD 6C
```

CON(K,J,7), LIM1(K,J,7), LIM2(K,J,7) through CON(K,J,9), LIM1(K,J,9),
LIM2(K,J,9)
Card Format: [3(14,2F8.2)]
Col. 1-4 CON(K,J,7)
Col. 5-12 LIM1(K,J,7)
Coi. 13-20 LIM2(K,J,7)
Col. 21-24 CON(K,J,8)
Col. 25-32 LIM1(K,J,8) } not included unless IAND(K,J) \geq8
Col. 33-40 LIM2(K,J,8)

```
```

Table 1. Input Data for Data Retrieval Program, SEEKER

``` (Page 5 of 5 )
\(\left.\begin{array}{ll}\text { Col. 41-44 } & \operatorname{CON}(K, J, 9) \\ \operatorname{Col} .45-52 & \operatorname{LIMI}(K, J, 9) \\ \operatorname{Col} .53-60 & \operatorname{LIM2}(K, J, 9)\end{array}\right\}\) not included unless \(\operatorname{IAND}(K, J) \geq 9\)

NOTE: This card is not included unless \(\operatorname{IAND}(\mathrm{K}, \mathrm{J})>6\) and NOR(K)>0 CARD 6D
\(\operatorname{CON}(K, J, 10), \operatorname{LIM}(K, J, 10), \operatorname{LIM} 2(K, J, 10)\) Card Format: [14,2F8.2]
Col. 1-4 \(\operatorname{CON}(K, J, 10)\)
Cot. 5-12 \(\operatorname{LIMI}(K, J, 10)\)
Co1. 13-20 LIM2 (K, J, 10)
NOTE: This card is not included unless \(\operatorname{IAND}(\mathrm{K}, \mathrm{J})=10\) and \(\operatorname{NOR}(K)>0\)
A separate set of cards (5-6A, B, C, D) must be used for each ".OR." condition-set.
Table 2. Code Numbers to be Used When Specifying 1 tens to be Selected and

Codes and Units Program, SEEKER Tested by the Data-Retrieval Table
\begin{tabular}{c}
Code No. \\
(Program \\
SEEKER)
\end{tabular}
1
2
3
4
6
7
8
9
10
11
*Code No. - parameter identifier to he used when specifying either the items to be selected or the
parameters to be tested.
\#Sequence No. relates these parameter identifiers to Tables 1,2 , and 3 of Section 4.2 where the MAKER output is defined.
Table 2. Code Numbers to be Used When Specifying Items to be Selected and
Federal Government \(=1.0\), State Government \(=\) 2.0, Local Government \(=3.0\), Private \(=4.0\),
Private and Government \(=5.0\).
Humber.
General \(=i .0\), clerical \(=2.0\), lobby \(=3.0\), conference \(=4.0\), file \(=5.0\), storage \(=6.0\),
library \(=7.0\).
Normal occupancy, in number of people
\(\mathrm{ft}^{2}\), Height * 2 * (Length + Width \()\)
\(\underset{ \pm}{\sim} \underset{ \pm}{\leftrightarrows}\) Codes and Units
Year constructed.
1975 minus construction date (age at
tine of survey) in years.
In number of stories above ground level.
For building: column \(=1.0\), bearing
wall \(=2.0\).
Concrete \(=1.0\), steel \(=2.0\), masonry \(=3.0\), wood \(=4.0\).
-
\(\square\)
4.0
1.0
3.0
2.0
5.0 2.0 \(\begin{array}{lll}0 & N & N \\ \dot{\circ} & N\end{array}\) Wall area (no cutouts for doors or windows)
Door area Door area
Window area Building height
Vertical load resisting system
Building age at time of survey Vertical load resisting system
Building material
Building occupancy type Number of firms in building Room use Room use .
Number of occupants Wall area (no cutouts
or windows) Code No.
(Program
SEEKER) \(\qquad\)
\(N_{1}\)
13
コ \(\stackrel{\sim}{n}\) 16 \(\square\)
17
18
19 20 21 22 23
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Code No. \\
(Program \\
SEEKER)
\end{tabular}} & \multicolumn{4}{|l|}{Table 2. Code Numbers to be Used When Specifying Items to be Selected and Tester! by the Data-Retrieval Program, SEEKER (Page 3 of 17)} \\
\hline & Sequence No (Program MAKER) & Description & F-Format & Codes and Units \\
\hline 24 & 24 & Fioor area & 7.2 & \(\mathrm{ft}^{2}\), identicai to cefling area. \\
\hline 25 & 25 & Room volume & 9.2 & \(\mathrm{ft}^{3}\) \\
\hline 26 & 26 & Ceiling material & 2.0 & Wood = 1.0, metal \(=2.0\), plastic \(=3.0\), acoustical tile \(=4.0\), non-combustible \(=5.0\). \\
\hline 27 & 27 & Ceiling trim material & 2.0 & ```
hood = 1.0, metal = 2.0, plastic = 3.0,
rubber = 8.0.
``` \\
\hline 28 & 28 & Door material & 2.0 & Wood \(=1.0\), metal \(=2.0\), plastic \(=3.0\). \\
\hline 29 & 29 & Door trim material & 2.0 & ```
hood = 1.0, metal = 2.0, plastic = 3.0,
rubber = 8.0.
``` \\
\hline 30 & . 30 & Floor material & 2.0 & \begin{tabular}{l}
Wood \(=1.0\), non-combustible \(=5.0\), resilient \\
floor \(=6.0\), carpet \(=7.0\).
\end{tabular} \\
\hline 31 & 31 & Floor trim material & 2.0 & ```
Wcot = 1.0, metal = 2.0, plastic = 3.0,
rubber = 8.0.
``` \\
\hline 32 & 32 & Window trim material & 2.0 & ```
Wood = 1.0, metal = 2.0, plastic = 3.0,
rubber = 8.0.
``` \\
\hline 33 & 33 & Wall 1, type & 2.0 & Full \(=1.0\), open \(=2.0\), partial \(=3.0\). \\
\hline 34 & 34 & Wall 1, number of windows & 2.0 & Number. \\
\hline 35 & 35 & Wall 1, number of doors & 2.0 & Number. \\
\hline 36 & 36 & Wall 1, material & 2.0 & Wood \(=1.0\), metal \(=2.0\), plastic \(=3.0\), non-combustible \(=4.0\), plaster \(=5.0\), gypsum board \(=6.0\). \\
\hline
\end{tabular}
Table 2. Code Numbers to be Used When Specifying Items to be Selected and
 Paper \(=7.0\), drapes \(=8.0\), vinyl \(=9.0\),
paint \(=10.0\), zero for partial height walls or open areas.
Codes and Units
\begin{tabular}{|c|c|c|c|c|}
\hline Code No. (Program SEEKER) & Sequence No. (Program MAKER) & Description & (Page 4 of 17) F-Format & Codes and Units \\
\hline 37 & 37 & Wall 1, covering & 3.0 & Paper \(=7.0\), drapes \(=8.0\), vinyl \(=9.0\), paint \(=10.0\), zero for partial height walls or open areas. \\
\hline 38 & 38 & Hall 1, height & 5.2 & \(f t, z e r o\) for open area: \\
\hline 39 & 39 & Wall 1, length & 5.2 & \(f t\) zero for open area. \\
\hline 40 & 40 & Wall 2, type & 2.0 & Full \(=1.0\), open \(=2.0\), partial \(=3.0\). \\
\hline 41 & 41 & Wall 2, number of windows & 2.0 & Number. \\
\hline 42 & 42 & Wall 2, number of doors & 2.0 & Number. \\
\hline 43 & 43 & Wall 2, material & 2.0 & Hood \(=1.0\), metal \(=2.0\), plastic \(=3.0\), non-combustible \(=4.0\), plaster \(=5.0\), gypsum board \(=6.0\). \\
\hline 44 & - 44 & Wall 2, covering & 3.0 & Paper \(=7.0\), drapes \(=8.0\), vinyl \(=9.0\), paint \(=10.0\), zero for partial height walls or open areas. \\
\hline 45 & 45 & Wall 2, height & 5.2 & \(f t, z e r o\) for open areas. \\
\hline 46 & 46 & Wall 2, length & 5.2 & \(f t, z e r o f o r ~ o p e n ~ a r e a s . ~\) \\
\hline 47 & 47 & Wall 3, type & 2.0 & Full \(=1.0\), open \(=2.0\), partial \(=3.0\). \\
\hline 48 & 48 & Wall 3, number of windows & 2.0 & Number. \\
\hline 49 & 49 & Wall 3, number of doors & 2.0 & Number. \\
\hline 53 & 50 & Wall 3, material & 2.0 & Wood \(=1.0\), metal \(=2.0\), plastic \(=3.0\), non-combustible \(=4.0\), plaster \(=5.0\), gypsum board \(=6.0\). \\
\hline
\end{tabular}

Table 2. Code Numbers to be Used When Specifying Items to be Selected and Program, SEEKER Tested by the Data-Retrieval
(Page 6 of 17)
요
\(\stackrel{\circ}{\circ}\)
\(\infty\)
옹
Internal partition 3, proximity
to wall
Internal partition 3, length

Internal partition 4, proximity
to wall
Internal partition 4, length

Internal partition 2, proximity to wall
\(\cdots\)
\(n\)
\(n\)
\(\stackrel{i}{i}\)
\(\stackrel{i}{i}\)
\(\cdots \quad N\)
\(\stackrel{\circ}{i}\)
2.0
No ~
\[
\begin{aligned}
& \text { Wood }=1.0 \text {, metal }=2.0, \text { plastic }=3.0 \text {, } \\
& \text { fabre }:=4.0 \text {. }
\end{aligned}
\]
Within \(2 \mathrm{ft}=1.0\), more than \(2 \mathrm{ft}=2.0\).
ft
Wood \(=1.0\) metal \(=2.0\), plastic \(=3.0\),
fabric \(=4.0\).
Within \(2 \mathrm{ft}=1.0\), more than \(2 \mathrm{ft}=2.0\).
Wood \(=1.0\), metal \(=2.0\), plastic \(=3.0\),
fabric \(=4.0\).
Within \(2 \mathrm{ft}=1.0\), more than \(2 \mathrm{ft}=2.0\).
\(\ddagger 4\)
\(\stackrel{\circ}{i}\)
2.0
\(\stackrel{\circ}{i}\)
 Description
-
Internal partition 2, length
Internal partition 2, height
Internal partition 3, material
to wall
Internal
웅

Table 2. Code Numbers to be Used When Specifying Items to be Selected and Tested by the Data-Retrieval Program, SEEKER
\((\) Page 7 of 17) \(\begin{array}{cc}\begin{array}{c}\text { Sequence No. } \\ \text { (Program } \\ \text { MAKER) }\end{array} & \text { Description }\end{array}\) \(\begin{array}{cc}\begin{array}{c}\text { Sequence No. } \\ \text { (Program } \\ \text { MAKER) }\end{array} & \text { Description }\end{array}\)
\[
68
\]
8.2
It, does noi include occupants, does in-
clude weight of internal partitions.
Ib
psf, dces not include occupants, does include
weight of internal partitions. psf ib)
ib \(\}\) does not include weight of internal
psf
psf \(\left\{\begin{array}{l}\text { does not include weight of internal } \\ \text { partitions. } \\ \text { 1b (equals live weight). }\end{array}\right.\)
\(\mathrm{ft}^{2}\), does not include internal partitions \% of total floor area.
*The live weight of the movable room contents is the total live weight in the room.
* \(s d=\) standard deviation of the predicted weight based on uncertainties in the transfer function.
 include only the derated portion of the enclosed fire weight in metal furniture.
\(\begin{array}{llllllllll}\wedge & \infty \\ \infty & \infty\end{array}\)
Live weight*
8.2
\(2 \cdot 9\) Z•9 2.8 8.2 6.2
6.2
7.2
7.2 6.2 sd** Iive weight
Live weight per unit area Live weight per unit area sd live weight per unit area Total movable fire weight-derated рағеләр-746fวм วлff วโqR^ow lełof ps Total movable fire weight per unit sd total rovable fire weight per Total paper and book fire weight
Total paper and book fire weight underated
Occupied floor area
abequasiad - eare \(1001 f\) poidnovo
Codes and Units
F-Formal . ,
Code no.
Progran
SEEKER)

Table 2. Code Numbers to be Used when Specifying Items to be Selected and
Tested by the Data-Retrieval Program, SEEKER

> \% of total derated fire weight.
> \% of total derated fire weight.
> \% of total derated fire weight. include only the derated fortion of the enclosed fire weight in metal furniture.
the valls-derated - does not include
internal partitions. Movable fire weight enclosed within
2 ft of the wa?ls-derated
sd movable fire weight enclosed .
within 2 ft of the walls-derated

Movable fire weight within 2 ft of
\% of furniture and miscellaneous
items within 2 ft of the walls
\% of freestanding items within 2 ft of the walls Movable fire weight enclosed within
2 ft of the wa?ls-derated
sd movable fire weight enclosed .
within 2 ft of the walls-derated
7.2
6.2
3.0

Interior finish fire weight
Interior finish fire weight per unit area
room surveyor

Fire weight enclosed in metal containers-deri.ted
\(\infty \quad \infty\)
요
\(\bar{a}\)
๙ 93

94
in) \& ***
All fire weights are equ valent pounds of cellulose (8000 BTU/Ib); the composite fire weight totals - -
6.2 \% of total derated fire weight. partitions.
Table 2. Code Numbers to be Used When Specifying Items to be Selected and Program, SEEKER (Page 9 of 17) Sequence No.
(Program
MAKER) \(\quad\) Description
5.2
\% of tctal derated fire weight.
Codes and Units

Table 2．Code Numbers to be Used When Specifying Items to be Selected and Program．SEEKER （Page 10 of 17）
```

                                    Msff
    \begin{array} { l } { 6 . 2 } \\ { 6 . 2 } \\ { 6 . 2 } \\ { 6 . 2 } \\ { 3 . 0 } \\ { 3 . 0 } \\ { 3 . 0 } \\ { 3 . 0 } \\ { 4 . 0 } \\ { 3 . 0 } \\ { 3 . 0 } \\ { 3 . 0 } \\ { 3 . 0 } \end{array}
        Fire weight per unit area- 
                                \congミ\cong\cong\cong\cong\congミ\cong\congここご
    ```

Table 2. Code Numbers to be L'sed When Specifying Items to be Selected and

6.2
5.2
6.2
6.2
2.0
sd \% of total live weight within
2 ft of the walls
Floor loading for heaviest item
in room
Window or door
Flag for specifying how room was
selected
6.2
6.4
8.2
 Room opening factor (\(\mathrm{A} \sqrt{\mathrm{H}} / \mathrm{A}_{\mathrm{T}}\)).
Set to -1.0 if room does not have 4 full height walls.
.0 - non-randomly selected
0 - selected on room use basis
0 - selected on room area basis
4.0- selected for horizontal correlation
5.0 - selected for vertical correlation
6.0 - selected for tail sample
Number \((A=\) total window area; \(H=\) average windows).
b \(\stackrel{\sim}{2}\) 1 b
\[
\begin{aligned}
& \text { Sequence No. } \\
& \text { (10noram }
\end{aligned}
\]
\(\underset{\sim}{\cong}\)
124
125
126
N
\(\stackrel{\sim}{\sim}\)
윽
을
픈
~
Code No.
\(\underset{\sim}{\mathrm{N}}\)
124
125
126
127
128
푹
픅
Table 2. Code Numbers to be Used When Specifying Itens to be Selected and

\section*{Codes and Units}
table \(=3.0\), cabinet \(=4.0\),
0, chair \(=6.0\), miscellaneous \(=7.0\).
single pedestal \(=1.0\), double
pedestal \(=2.0\), with legs \(=3.0\).
single pedestal \(=1.0\), with legs
\(=2.0\). blueprint \(=3.0\), card file \(=4.0\),
general purpose \(=5.0\).
pedestal \(=1.0\), legs \(=2.0\), up-
Cabinet:
Table:
Seating:
holstered \(=3.0\), sofa \(=4.0\),
berich \(=5.0\), drafting stool \(=6\).
berch \(=5.0\), drafting stool \(=6.0\),
classroom chair \(=7.0\).
Shelving: bookcase \(=1.0\), free shelving \(=2.0\). Miscel-
laneous:
wood \(=1.0\), metal \(=2.0\), plastic
\(=3.0\).
material of top, same as desk
u
\(\tilde{u}\)
\(\sim\)
\(\sim\)
0
0
0
0
Tested by the Data-Retrieval
\[
\text { (Page } 12 \text { of 17) }
\]
```

            F-Format
    ```
2.0
2.0 Seating. Desk:
Desk: Table: Cabinet:

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Index number}} \\
\hline & & & & & & & & & \\
\hline
\end{tabular}
133
134
135
Table 2. Code Numbers to be Used When Specifying Items to be jelected and Program, SEEKER Tested by the Data-Retrieval
(Page 13 of 17) -Seqūence No 2.0
Codes and Units \(\begin{array}{ll}\text { Shelf: } & \text { same as desk. } \\ \text { Chair: } & \\ & \text { number of chairs of same type. } \\ \text { Miscel- } & \\ \text { laneous: } & \\ & \begin{array}{l}\text { combustible }=1.0, \text { non-combustible } \\ \\ \\ \text { Other: }\end{array} \\ & -0.0-\end{array}\) Within \(2 \mathrm{ft}=1.0\), more than \(2 \mathrm{ft}=2.0\). 1 b
lb, zero for miscellaneous items. \(\qquad\) Ib \(\}^{\text {no }}\) derating factor applied :ere \(\mathrm{ft}^{2}\) psf psf Chair Chair frame
Table top Chair seat Table legs Chat: tack
 8.2
8.2 8.2
8.2
8.2
8.2
8.2
2.0 2.0 Total fire weight (including contents) \({ }^{*}\) .sd total fire weight Projected floor area Total floor loading sd total floor loading Material Proximity to wall Total live weight (including contents) sd* total live weight Mal Material Material \(\sigma \infty \infty \sim \infty \quad \infty \quad \infty\) *sd means standard deviation.

135 (CONT'D) 136 138 139 140 \(\exists\) 142 M
\[
\begin{aligned}
& 145 \\
& 146
\end{aligned}
\]
\[
\underset{\sim}{\mathrm{A}}
\]
舟 尽 윽
\[
\begin{aligned}
& 151 \\
& 152
\end{aligned}
\]
\[
153
\]
Table 2．Code Numbers to be Used When Specify fing Items to be selected and
codes and Units
\[
\begin{array}{lll}
15 & \text { Surface area of books and papers } & 8.2 \\
16 & \text { sd surface area of books and papers } & 8.2 \\
17 & \text { Enclosed paper live weight } & 8.2 \\
18 & \text { sd enclosed paper live weight } & 8.2 \\
19 & \text { Enclosed paper fire weight (not derated) } & 8.2 \\
20 & \text { sd enclosed paper fire weight } & 8.2 \\
21 & \text { Enclosed books live weight } & 8.2 \\
22 & \text { sd enclosed books live weight } & 8.2 \\
23 & \text { Enclosed books fire weight (not derated) } & 8.2 \\
24 & \text { sd enclosed books fire weight } & 8.2 \\
25 & \text { Free paper live weight } & 8.2 \\
26 & \text { sd free paper live weight } & 8.2 \\
27 & \text { Free paper fire weight } & 8.2 \\
28 & \text { sd free paper fire weight } & 8.2 \\
29 & \text { Free books live weight } & 8.2 \\
30 & \text { sd free books live weight } & 8.2
\end{array}
\]苟 155 156 157 158
 － No
Table 2. Code Numbers to be Used When Specifying Items to be Selected and Sequence No.
\(\begin{gathered}\text { (Program } \\ \text { MAKER) }\end{gathered}\)
-
8.2
1 b
1b \(\}\) zero for shelves and seating. 1b \(\}\)

B
16
10
. 1 b
8.2
8.2
8.2
8.2
8.2
5.2 5.2 5.2 5.2 \% weighted average of all free paper piles

 \% compaction of free paper
\% compaction of enclosed books
\% compaction of enclosed paper \% compaction of free paper
\% compaction of enclosed books
\& compaction of enclosed paper \% compaction of free paper
\% compaction of enclosed books
\& compaction of enclosed paper sd enclosed office equipment
fire weight
Free office equipment live weight
sd free office equipment live weight
Free office equipment fire weight
sd free office equipment fire weight
Free office equipment live weight
sd free office equipment live weight
Free office equipment fire weight
sd free office equipment fire weight
Free office equipment live weight
sd free office equipment live weight
Free office equipment fire weight
sd free office equipment fire weight
Free office equipment live weight
sd free office equipment live weight
Free office equipment fire weight
sd free office equipment fire weight * compaction of free books \%, weighted average of all free book plles. \(\%\), weighted average of all free paper piles. \(\%\), weighted average of all free book piles.? Free books fire weight sd free books fire weight 8.2 Enclosed office equipment* live v:eight 8.2
8.2
Enclosed office equipment fire weight 8.2 (not derated)
 sd enclosed office equipment live
weight
 Table 2. Costed by the Data-Recirieval Program, SEEKER Sequence No. (Page 15 of 17) \(\qquad\) sd enclosed office equipment
fire weight
 \begin{tabular}{c}
Code No. \\
(Program \\
SEEKER) \\
\hline
\end{tabular} 163
164
165
166
157
168
169
170
171
172
173
174
175
176 - :
Table 2. Code Numbers to be Used When Specifying Items to be Selected and
Tested by the Data-Retrieval Program, SEEKER
(Page 16 of 17)
ested by Test
Sequence No.
(rogram
Codes and Units

\(\cdots \underset{\infty}{\sim}\)
8.2
8.2
\(\infty\)
~
\(\stackrel{i}{i}\)
Code No.
\[
\mathfrak{y} \ddagger \mathfrak{y} \text { ํㅜㄴ }
\]
sd total free fire weight
Flag for specifying how empty
weight was computed
sd total enclosed fire weight
Total free fire wetght
Description

> Total enclosed fire welght
MAKER)
우
N \(\underset{\sim}{\infty} \underset{\sim}{\infty}\) ふ \(\infty\)
182
183
Table 2. Code Numbers to be Used When Specifying Items to be Selected and "ested by the Data-Retrieval Program, SEEKER
(Page 17 of 17) Sequence No.
(Program
MAKER)
Code No.
(Program
SEEKER)
184
185

186
187
188
189
190
191
192
193
194
* \(s d=\) standard deviation.
** All fire weights are equivalent pounds of celluluse (\(8000 \mathrm{BTU} / 1 \mathrm{~b}\)). * Stand-alone equipment and pile descriptors begin here.
Table 3. Input Card Configurations

NOTE; This card is obligatory, and must be the first card in the input deck.
Table 3. Input Card Configurations

NOTE: This card is needed for each case and must be the first card of each case.
Table 3. . Input Card Configurations

NOTE: This must be the second card for each case.

NOTE: If \(N O R(K)=0\) on card 5 , this card is not included in the deck.
Table 3. Input Card Configurations

NOTES: 1. If \(N O R(K)=0\); this card is not included in the deck.
2. As many . AND. condition limits are present as denoted on card 5 .
Table 3. Input Card Configurations

NOTES: 1. If \(\operatorname{IAND}(K, J)<4\), this card is not included in the deck.
2.
Table 3. Input Card Configurations

Table 4. Mnemonics for Data Retrieval Program, SEEKER (Page 1 of 7)

CASES \(\quad=\) The number of cases to be processed during the subject run. A maximum of 20 are allowed.
\(\operatorname{CON}(\mathrm{K}, \mathrm{J}, \mathrm{I})\)
\(\operatorname{CON}(20,10,10)=\) Code numbers identifying the items for which conditions are being imposed (for all .OR. condition-sets of all cases). Specified by user.
1 to 132 - Designates a room parameter (either a bounding-surface or room-composite value as defined in Table 2).

133 to 183 - Designates a room-content parameter (specifically a furniture parameter as defined in Table 2).
184 to 194 - Designates a room-content parameter (specifically a non-furniture, stand-alone, item parameter as defined in Table 2).

DUM \(\quad=\) One percent of the lower limit. DUM is subtracted from the lower limit and added to the upper limit to set up the limits that are tested when upper limit has been specified by user as zero.

ERR \(\quad\) A flag which is set to .TRUE. when a fatal error is discovered in the run-dependent input data. Causes program termination.

ERR2 \(=\) A flag which is set to .TRUE. when an error is discovered in \(\operatorname{CON}(K, J, I)\) which causes \(\operatorname{CON}(K, J, I)\) to be inconsistent. Causes an error message țo be printed.

ERR3 = A flag which is set to .TRUE. when an error is discovered in \(\operatorname{CON}(K, J, I)\) which causes \(\operatorname{CON}(K, J, I)\) to be inconsistent. Causes an error message to be printed.

FLAG(K) = Flags, set by the program, which indicate the type of FLAG(20) parameter being selected for each case.
1 = A bounding-surface or room-composite parameter. Items 1 to 132 in Table 2.
\(2=\) A furniture parameter. Items 133 to 183 in Table 2.
\(3=A\) stand-alone item not specifically identified as furniture. Items 184 to 194 in Table 2.

Table 4. Mnemonics for Data Retrieval Program, SEEKER (Page 2 of 7)
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{\(\operatorname{FLAGC}(\mathrm{K}, \mathrm{J}, \mathrm{I})\)} & = Flags, set by the program, which indicate the type of condition being tested. \\
\hline & \(1=\) A bounding-surface or room-composite parameter. Items 1 to 132 in Table 2. \\
\hline & \(2=\) A furniture parameter. Items 133 to 183 in Table 2. \\
\hline & 3 = A stand-alone item not specifically identified as furniture. Items 184 to 194 in Table 2. \\
\hline I & \(=\) An index which refers to the .AND. condition being processed. \\
\hline \[
\begin{aligned}
& \operatorname{IAND}(K, J) \\
& \operatorname{IAND}(20,10)
\end{aligned}
\] & \(=\) The number of .AND. conditions in .OR. condition-set \(J\) of case K. Specified by the user. \\
\hline IBUF (10) & \(=\) The array used to store the data indicating the length of the room data input record. \\
\hline IDUM & \(=\) Variable used at various points in the program for intermediate calculations or storage. \\
\hline IE & \(=\) The NTRAN status word used in the last NTRAN write on an output file written in NTRAN. \\
\hline II & \(=\) The number of elements read into \(Y\) by NTRAN. \\
\hline \multirow[t]{3}{*}{INFLAG} & \(=\) The flag that determines the type of device the input data is stored on. \\
\hline & 1 = Input data written on mass storage unit. \\
\hline & \(2=\) Input data written on tape unit. \\
\hline 10 & \(=\) The NTRAN output status word checked after the use of the NTRAN routine for the writing out of a data buffer. \\
\hline IRECND (10) & \(=\) The end-of-record vector for the identification of the end of a mass storage file for NTRAN reads. \\
\hline ISUM & \(=\Sigma \operatorname{XCOUNT}(\mathrm{K})\) \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \operatorname{ITEM}(K) \\
& \operatorname{ITEM}(20)
\end{aligned}
\]} & \(=\) The code number identifying the item specified to be selected. Specified by the user. \\
\hline & 1 to 132 - Designates a room parameter (either a bounding-surface or room-composite value as defined in Table 2). \\
\hline
\end{tabular}

Table 4. Mnemonics for Data Retrieval Program, SEEKER
(Page 3 of 7)

133 to 183 - Designates a room-content parameter (specifically a furniture parameter as defined in Table 2).
184 to 194 - Designates a room-content parameter (specifically a non-furniture, stand-alone, item parameter as defined in Table 2).

ITEST \(\quad=\) Variable used at various points in the program for

ITEM2 (K)

I1

12

J

J2
\(=\) If \(\operatorname{OPT}(K)=1\) or 2 , not used. If \(\operatorname{OPT}(K)=3\) or 4, gives the code number identifying the item by which ITEM \((K)\) is to be divided. ITEM2(K) can be either a room parameter, a furniture parameter or a stand-alone item. However, if \(\operatorname{ITEM}(K)\) is a furniture parameter, ITEM2 (K) cannot be a stand-alone item; if ITEM(K) is a stand-alone item, ITEM2 (K) cannot be a furniture parameter; and if ITEM(K) is a room parameter, ITEM2 \((\mathrm{K})\) can only be a room parameter.

1 to 132 - Designates a room parameter (either a bounding-surface or room-composite value as defined in Table 2).
133 to 183 - Designates a room-content parameter (specifically a furniture parameter as defined in Table 2).
184 to 194 - Designates a room-content parameter (specifically a non-furniture, stand-alone, item parameter as defined in Table 2).
If \(\operatorname{OPT}(K)=5\), specifies the second item to be selected for each room along with the items next to ITEM(K) and ITEM2(K). intermediate calculations or storage.
\(=\) NTRAN status word used in reading first input record.
\(=\) Variable used at various points in the program for intermediate calculations or storage.
\(=\) An index which refers to the.\(O R\). condition-set being processed.
\(=\) Variable used at various points in the program for intermediate calculations or storage.

Table 4. Mnemonics for Data Retrieval Program, SEEKER
(Page 4 of 7)
\begin{tabular}{|c|c|}
\hline K & \(=\) An index which refers to the case being \\
\hline KI & \(=\) Do loop counter in the implifed do loop used in reading and writing of the TITLE case name. \\
\hline \[
\begin{aligned}
& \operatorname{KON}(K) \\
& \operatorname{KON}(20)
\end{aligned}
\] & \(=\) Flags, specified by the user, which indicate whether or not a multiplier, MULTIP(K), is to be used for case K. \\
\hline K2 & \(=\) Variable used at various points in the program for intermediate calculations or storage. \\
\hline \[
\begin{aligned}
& \operatorname{LIM1}(K, J, I) \\
& \operatorname{LIM1}(20,10,10)
\end{aligned}
\] & \(=\) The lower limit to be used to test .AND. condition I of .OR. condition-set \(J\) of case K. If \(\operatorname{LIM2}(K, J, I)\) is zero the lower limit is changed to \(.99 \operatorname{LIMI}(K, J, I)\). Specified by the user. \\
\hline \[
\begin{aligned}
& \operatorname{LIM2}(K, J, I) \\
& \operatorname{LIM} 2(20,10,10)
\end{aligned}
\] & \(=\) The upper limit to be used to test . AND. condition I of .OR. condition-set \(J\) of case K. If \(\operatorname{LIM} 2(K, J, I)\) is zero or not given, the upper 1 imit is taken to be 1.01 \(\operatorname{LIMI}(K, J, I)\). Specified by the user. \\
\hline \begin{tabular}{l}
LMTFG2(K) \\
LMTFG2 (10)
\end{tabular} & = Set to 1 when \(\operatorname{ITEM2}(K)\) is a room parameter and \(\operatorname{ITEM}(K)\) is furniture or a stand-alone item. \\
\hline LOCC & \(=\) The location, in the \(Y\)-vector, of the item being tested by the program. \\
\hline LOCI & \(=\) The location, in the \(Y\)-vector, of the item being selected by the program. \\
\hline LOCI2 & \(=\) The location, in the \(Y\)-vector, of the \(\operatorname{ITEM2}(K)\) value to be used in processing the selected item, ITEM(K). \\
\hline L1 & ```
= The second parameter written when OPT (K) = 5, equal
 to LOCI + 1.
``` \\
\hline L2 & ```
= The fourth parameter written when OPT}(K)=5\mathrm{ , equal to
    LOCI2 + 1.
``` \\
\hline \[
\begin{aligned}
& \text { MULTIP (K) } \\
& \text { MULTIP(20) }
\end{aligned}
\] & \(=\) The value, specified by the user, by which the selected item, ITEM(K), is to be multiplied prior to any processing. \\
\hline \(N\) & = A temporary name for Nl (K) \\
\hline
\end{tabular}

Table 4. Mnemonics for Data Retrieval Program, SEEKER (Page 5 of 7)
\begin{tabular}{|c|c|}
\hline NBUF & \(=A\) counter used to keep track of the location in the \(Y\)-vector that is being searched. \\
\hline NOUM & \(=\) Variable used at various points in the program for intermediate calculations or storage. \\
\hline NI & \(=\) The number of room parameters (see Table 7). Defined by the program using a DATA statement. \\
\hline NJ & \(=\) The number of room-content, furniture parameters (see Table 7). Defined by the program using a DATA statement. \\
\hline NK & \(=\) The number of room-content, stand-alone, non-furniture parameters (see Table 7). Defined by the program using a DATA statement. \\
\hline NL. & \(=\mathrm{NI}+\mathrm{NJ}\) \\
\hline NM & \(=N I+N J+N K\) \\
\hline NN & = A temporary name for \(\mathrm{N} 1(\mathrm{~K})\). \\
\hline \[
\begin{aligned}
& \text { NOR }(K) \\
& \text { NOR }(20)
\end{aligned}
\] & \(=\) The number of.\(O R\). condition-sets being used in the selection process for case K. Specified by the user. \\
\hline NROOMS & \(=\) The total number of rooms for which data is to be selected. Used only if \(\operatorname{OPT}(K)=5\) for all cases. Used to terminate run early and save computer costs. \\
\hline NTF & = A counter used in the search through the room contents part of the input data. \\
\hline NUNIT & = A unit number to identify the output file. \\
\hline \[
\begin{aligned}
& \mathrm{Ni}(\mathrm{~K}) \\
& \mathrm{Nl}(20)
\end{aligned}
\] & = Counters which keep track of the number of items stored in \(\operatorname{XBUF}(300,20)\). When \(\mathrm{NI}(\mathrm{K})\) exceeds 300 , XBUF \((300, K)\) is written onto a file. \\
\hline \[
\begin{aligned}
& \text { OPT }(K) \\
& \text { OPT (20) }
\end{aligned}
\] & \begin{tabular}{l}
\(=\) The option, specified by the user, for each case. \\
\(1=\) The program searches the processed room-survey data and extracts the desired items for subsequent analyses. It counts, sums, and determines maximums, minimums, averages, sums-of-squares, and variances for each case.
\end{tabular} \\
\hline
\end{tabular}
2 = Identical to option 1 except that the data is not saved on a file for subsequent analyses.
\(3=\) Identical to option 1 except that the designated item is divided by a second designated item before it is processed.
4 = Identical to option 3 except that designated items are not saved on a file for subsequent analyses.

5 = The program searches the processed room-survey data. For those rooms meeting the specified requirements, it saves on a file the following data: Building No., Floor No., Room No., Parameter One. Parameter One + 1, Parameter Two, Parameter Two + 1. Thus if Parameter One is 77 (live weight), Parameter One +1 will be 78 (standard deviation of live weight); if Parameter Two is 81, Parameter Two +1 will be 82.
\begin{tabular}{|c|c|}
\hline OUTFLG & = A flag, specified by the user, which determines whether the saved output will be binary (using NTRAN) or coded using format 139. \\
\hline PLTfLG & \(=A\) flag, specified by the user, when a set of output data is to be written on the file assigned to unit no. 4, to set up the data needed for HISTOG. \\
\hline REEL & \(=\) The sequential reel no. for the processed room-survey data which is being read from magnetic tape. \\
\hline TERMAN & \(=A\) flag, set by program, used to cause early program termination when OPT \((K)=5\) for all cases. \\
\hline \[
\begin{aligned}
& \operatorname{TITLE}(K, K I) \\
& \operatorname{TITLE}(20,13)
\end{aligned}
\] & \(=\) The alphanumeric title of each case being analyzed. Up to one line (78 characters) is allowed for each title. Specified by the user. \\
\hline \[
\begin{aligned}
& \operatorname{TITLEF}(K) \\
& \text { TITLEF }(20)
\end{aligned}
\] & = A flag, set by program, which causes the case title to be placed at the beginning of the saved output when \(\operatorname{OPT}(K)=5\). \\
\hline TTITLE(13) & \(=\) The temporary buffer used to write the title of a case using an NTRAN write. \\
\hline \[
\begin{aligned}
& \operatorname{TYP}(K) \\
& \operatorname{TYP}(20)
\end{aligned}
\] & = A parameter, set by the program, which identifies the type of conditions being input for the subject case. \\
\hline & \(1=\) The conditions being specified are room parameters (bounding-surface or room-composite). \\
\hline
\end{tabular}

Table 4. Mnemonics for Data Retrieval Program, SEEKER (Page 7 of 7)
\(2=\) The conditions being specified are room-content parameters (both furniture and non-furniture).
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& X(K I) \\
& X(300)
\end{aligned}
\] & = A temporary storage location used when transferring data from XBUF to the output file. \\
\hline XAVE & \(=\) The average value of the data collected for one case. \\
\hline \[
\begin{aligned}
& \operatorname{XBUF}(N N, K) \\
& \operatorname{XBUF}(300,20)
\end{aligned}
\] & \(=\) Storage buffers for the selected items. Column \(K\) is used for case \(K\) items. When a column is completely filled or at the end of the run, the data is written onto mass storage files. \\
\hline \[
\begin{aligned}
& \text { XCOUNT (K) } \\
& \text { XCOUNT (20) }
\end{aligned}
\] & = A counter which gives the number of items that have been selected for each case K. \\
\hline \[
\begin{aligned}
& \operatorname{XMAX}(K) \\
& X \operatorname{MAX}(20)
\end{aligned}
\] & \(=\) The maximum value that has been selected for each case K. \\
\hline \[
\begin{aligned}
& \text { XMIN }(K) \\
& \operatorname{XMIN}(20)
\end{aligned}
\] & \(=\) The minimum value that has been selected for each case K. \\
\hline \[
\begin{aligned}
& \operatorname{xSUM}(K) \\
& X \operatorname{SUM}(20)
\end{aligned}
\] & \(=\) The sum of all items that have been selected for each case K. \\
\hline XVAR & \(=\) The variance of the average value of the data collected for one case. \\
\hline \[
\begin{aligned}
& \operatorname{X2SUM}(K) \\
& \operatorname{X2SUM}(20)
\end{aligned}
\] & \(=\) The sum of the square of all items that have been selected for each case K. \\
\hline \(Y(15000)\) & \(=\) The storage buffer into which the room survey data is placed prior to its being searched by the program. \\
\hline YTEMP & \(=\) Temporary counter for the data collected for output. \\
\hline
\end{tabular}
Table 5. Diagnostic Messages
A. Data Errors
A. Data Errors
1-Case XX has an .OR. condition-set with 0 . AND. conditions.
EXPLANATION
Self-explanatory.
Program terminated run and was trying to
put the partially filled storage buffers
onto the mass storage files using NTRAN
when an abnormal transmission occurred.
During program execution the program was
trying to put a filled storage buffer onto
a mass storage file using NTRAN when an
abnormal transmission occurred.
When reading the first record in the two-
record set, the block-status-word returned
was < 10 .
Self-explanatory.

\footnotetext{

Self-explanatory.
}
Table 5. Diagnostic Messages (Page 2 of 2\()\)
3 - \(\begin{aligned} & \text { NTRAN read - device error or aborted transmission. Status } \\ & \text { word } X X \text { - stop execution. } \\ & 4 \text { - Abnormal transmission while trying to empty a partially } \\ & \\ & \quad \text { filled output buffer. Status word } X X \text { unit } X X \text {. }\end{aligned}\)
5 - Abnormal transmission while trying to empty a full buffer.
Status word XX unit \(X X\).
6 - In the attempt to read the first record a status word of
XX was received. The room before was Bld XX FI XX Rm XX . XX was received. The room before was Bld XX FI XX Rm XX.
7 - In the attempt to write an end-of-record word on unit XX
the NTRAN status word \(X X\) was received.
C. Miscellaneous Diagnostic Messages
1 - Error someplace - this comment should never be printed.
Status word \(X X\) unit \(X X\). parameters. Program dimensions exceeded.
ing \(X X\) Floor \(X X\) Room \(X X\).

3 - The room just read from the data tape has over 15000 parameters. Program dimensions exceeded. Stop. Build-
** \(i n e\) numbers refer to program statement numbers. See program listing.

Table 6. Run Cards for UNIVAC, EXEC 8, 1975 (Page 1 of 2)

NO.
1 @RUN (etc.)
use to start run
2 @MSG PLEASE MOUNT TAPE NO. iii WITHOUT WRITE RING
3 @ASG,T INPUT,T,iii
use 2 and 3 to mount and assign tape file when input data is on tape.

4 @ASG,A INPUT,F2///500
use 4 to assign mass storage when input data is on a FASTRAND file

5 @USE 3,INPUT
use 5 to indicate that unit 3 is the input file, INPUT
6 @ASG,A ØTPTO1,F2///500
@ASG,A QTPTO2,F2///500
. . . .
@ASG, A ©TPT20,F2///500
use 6 to assign the output files for up to 20 cases. Use only for those cases which have \(\operatorname{OPT}(K)=1,3\), or 5 .

7 @USE 7,ØTPTOI
@USE 8,@TPTO2

QUSE 26,صTPT20 use 7 to assign units 7 to 26 as output files for cases 1 to 20

8 @ASG,A PLTOUT,F2///500
9 @USE 4,PLTOUT
use 8 and 9 to assign an output file (unit number 4) when a histogram plot is to be made

10 @XQT SEEKER.ATOT
execute program with relocatable stored as element ATOT of file SEEKER

Table 6. Run Cards for UNIVAC 1108, EXEC 8, 1975 (Page 2 of 2)

NO.
11 INPUT CARD 1
the first card which tells how many cases are to be processed.

INPUT CARDS \(2 \rightarrow 60\) as needed for each case. the input data to set up the cases of data to be selected.

Two cards for each case. Up to 20 cases may be run at one time.

14 @XQT HISTOG.ATOT
execute HISTOG program with relocatable stored as element ATOT of file HISTOG if plots are to be made.
optional
15 \$CASES NCASE=XX, INUNIT=XX; NFINE=XX \(\quad\) PPUNCH \(=X\), FRT \(=X\) \$END NAMELIST card options used in program HISTOG.

16 @FIN
end card
17 @

Table 7. Processed Room Survey Data Tape (Page 1 of 1)

Output from MAKER
Input to SEEKER

This data is arranged on a room by room basis with two records for each room.

Record 1 - constant length
- 10 integer words
- Each word is set equal to NBUF, the number of words in record 2, unless
a) the room was terminated prematurely due to a "fatal" error in the MAKER input data. In this case, the l0th word is set to zero (integer).
b) this is the end of the tape. In this case, all 10 words have been set to 999999 (integer).
c) the room data was considered undesirable for some reason and READER was used to make the 10th word equal to -1 (integer).

Record 2 - variable length
- NBUF words long
- Real numbers
- Words 1 to 132 are the room parameters.
a) words 1 to \(76=\) room descriptors (1 to 76 of selection code)
b) words 77 to \(132=\) room totals (77 to 132 of selection code)
- Words 133 to NBUF are arranged 51 and 11 word groups. Each group describes one piece of furniture or one free-standing item.
a) 51 word group \(=\) furniture descriptors (133 to 183 of selection code)
b) 11 word group = free-standing objects (184 to 194 of selection code)

Table 8. Mnemonics for Program HISTOG
(Page 1 of 3)
Subroutine HSTART

AVERAG
\begin{tabular}{|c|c|}
\hline CASES & \(=\) Namelist input to program which gives the value of NCASES, NUNIT, NFINE, and FRT. \\
\hline \(F(20)\) & \(=\) The frequency in each group. \\
\hline FRT & \(=\) The flag which indicates whether or not fractiles are desired. \\
\hline I & \(=\) Do loop counter . \\
\hline InUNIT & \(=\) The number of the input unit on which the data for all cases are written (only one unit). \\
\hline J & = Do loop counter. \\
\hline \(N\) & = Used in the call to HISTA to have GROUPA called to group the input data. \\
\hline NC & \(=\) Do loop counter equal to the case number. \\
\hline NCASES & \(=\) The number of cases to be plotted. \\
\hline NFINE & \(=\) The multiple of the number of groups to make the histogram plot have more resolution. \\
\hline NG & \(=\) The input number of groups in the case. \\
\hline ngroup & \(=\) The computed number of groups in the case. \\
\hline NPUNCH & \(=\) The flag used when a punched deck is desired from all cases in the run. \\
\hline NUMBER & \(=\) The number of data points in a case. \\
\hline NUNIT & \(=\) The unit number for a particular case's data. \\
\hline S10 & \(=\) The step size increment. \\
\hline S05 & \(=\) Half the step size increment. \\
\hline SIGMA & \(=\) The standard deviation of the data in the case. \\
\hline
\end{tabular}

Table 8. Mnemonics for Program HISTOG (Page 2 of 3)
\begin{tabular}{|c|c|}
\hline STEP & \(=\) The computed step size of the histogram. \\
\hline TITLE (13) & \(=\) The title of the case . \\
\hline X(10000) & \(=\) The buffer used to store the data being used for the histogram. \\
\hline XMAX & \(=\) The maximum value of the data for this case. \\
\hline XMIN & \(=\) The minimum value of the data for this case. \\
\hline XSTEP & \(=\) The temporary counter used to determine the step size. \\
\hline XM & = A dummy name for XMIN. \\
\hline XMN & = A dummy name for XMAX. \\
\hline XX & = A dummy name for XMAX. \\
\hline
\end{tabular}

Table 8. Mnemonics for Program HISTOG (Page 3 of 3)

Subroutine FRACT
\begin{tabular}{ll}
DUM & \(=\) Temporary storage position for values of \(X\). \\
FRT & \(=\) \\
& Flag to determine whether a listing of all data in \\
& descending order is desired. \\
\(J\) & \(=\) Do loop counter. \\
\(J 1\) & \(=\) Do loop counter. \\
N07 & \(=\) Do loop delineator. \\
N05 & \(=\) Location of lowest \(1 \%\) fractile. \\
N95 & \(=\) Location of lowest \(5 \%\) fractile. \\
N99 & \(=\) Location of upper \(95 \%\) fractile. \\
NUMBER & \(=\)
\end{tabular}

Table 9. Input Data for HISTOG (Page 1 of 3)

The input data for HISTOG consists of one or two NAMELIST cards and \(n+1\) mass storage files (where \(n=\) the number of cases).

The NAMELIST card CASES is described below. All the data is optional, except NCASES, and can be in any order. All variables defined on this card must be integers.
\$CASES NCASES = "XX", (INUNIT="XX"), (NFINE="XX"), (NPUNCH="X"), (FRT="X")\$END
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
NCASES = "XX" \\
(Obligatory)
\end{tabular} & The number of cases in this run. Each case is a separate set of data for a particular item, equivalent to a case in SEEKER. \\
\hline \begin{tabular}{l}
INUNIT = "XX" \\
(Optional)
\end{tabular} & The unit number for the location of the set-up data that was created by SEEKER when PLTFCG was set \(\neq 0\). (The default value is 4). \\
\hline \[
\begin{aligned}
& \text { NFINE = "XX" } \\
& \text { (Optional) }
\end{aligned}
\] & The multiple by which the number of groups will be multiplied to produce a second, finer histogram. (The default value is 1 ; if 1 is used only one histogram will be printed for each case.) If NFINE is set to -1 the program reads the number of groups from NAMELIST card STEPS. \\
\hline \begin{tabular}{l}
NPUNCH = "X" \\
(Optional)
\end{tabular} & \begin{tabular}{l}
The flag to cause the deck to be punched. \\
The default value where no cards are punched.
\end{tabular} \\
\hline \(=1\) & No histograms will be created, but the data file will be punched in a \(6 E 12.5\) format with the first card as the title. \\
\hline \(=2\) & Both a punched deck and the histograms will be created. \\
\hline \[
\begin{aligned}
& \text { FRT = "X" } \\
& \text { (Optional) }
\end{aligned}
\] & The flag to determine whether the upper \(99 \%\) and \(95 \%\) fractiles and the lower \(5 \%\) and \(1 \%\) fractiles will be listed along with the median value. \\
\hline \(=0\) & The default value; no fractiles or median will be calculated. \\
\hline
\end{tabular}

Table 9. Input Data for HISTOG
(Page 2 of 3)
\[
\begin{array}{rll}
\text { FRT }=1 & \text { Fractiles and median will be calculated. } \\
=2 \quad \begin{array}{ll}
\text { Fractiles and median will be calculated along } \\
& \text { with the listing in descending order of all the } \\
\text { data points. }
\end{array}
\end{array}
\]

NAMELIST card STEPS. Only to be used if NFINE is set to -1 on NAMELIST card CASES.
\$STEPS STEPX = "XX.X" \$END
STEPX = "XX.X" The number of groups. Overrides the number of groups calculated by the program.

Sometines a SEEKER output data-file may have been made without setting PLTFG \(=0\) and it is later decided that a histogram plot is wanted. Then by setting INUNIT \(=5\) on the CASES NAMELIST card, the set-up data file otherwise created by SEEKER can be input as punching cards for each case. These cards must be inserted into the run stream after the NAMELIST data, CASES. One card is required for each case.
\begin{tabular}{|c|c|c|}
\hline Col. 2-11 & \begin{tabular}{l}
NUMBER \\
(integer)
\end{tabular} & \(=\) The number of data points in this case. \\
\hline Col. 12-13 & NG (integer) & \(=\) The number of groups if not to be determined by the formula. Number of groups \(=\) 3.3. * \(\log (\) NUMBER \()+1\). \\
\hline Col. 14-15 & \begin{tabular}{l}
NUNIT \\
(integer)
\end{tabular} & \(=\) The unit from which the data is to be read. \\
\hline Col. 16-27 & \begin{tabular}{l}
XMIN \\
(E format)
\end{tabular} & = The minimum value of the data. \\
\hline Col. 28-39 & \begin{tabular}{l}
XMAX \\
(E format)
\end{tabular} & = The maximum value of the data. \\
\hline Col. 40-51 & \begin{tabular}{l}
AVERAG \\
(E format)
\end{tabular} & \(=\) The average value of the data. \\
\hline Col. 52-63 & \begin{tabular}{l}
SIGMA \\
(E format)
\end{tabular} & \(=\) The standard deviation of the data. \\
\hline NOTE: If and & hat is desir are the on & is to punch a deck (NPUNCH=1), NUMBER necessary inputs. \\
\hline
\end{tabular}

\section*{Table 9. Input Data for HISTOG (Page 3 of 3)}

The input data is written on a Fortran file. The first line is an alphanumeric title (l3A6 format) and the following lines are the data written in a (10E12.5) format. This file is created with the standard output options for SEEKER, (OPT \(=1\) or 3).

\section*{APPENDIX B. 7}

PART A - User's Manual and Operating Instructions
1. Card Data Input for Data Reduction Program, READER
A. \$INPUT
2. Mnemonics for Data Reduction Program, READER
A. READ
B. WRITER
C. DATAC2
3. Diagnostic Messages
A. READ
B. DATAC2
4. Run Cards for UNIVAC 1108 , EXEC 8, 1975

PART B - Program Listing
1. READ
2. WRITER
3. DATAC2
4. DUMMY

Table 1. Card Data Input for Data Reduction Program, READER
(Page 1 of 2)

Namelist Format
A. \$INPUT

This card is not required.
LAM = 1 - call WRITER to print first 132 words of room data

LAM \(=2\)
- call WRITER to print all room data
\(L A M=3\)
- write on a new tape:
when OPTION \(=0\), write the exclusion flag on those rooms in RNUM when OPTION \(=1\), write all data from input tape

LAM \(=4\)
- print a summary of the room data

LAM \(=5 \quad\) - print a one-line summary of each room with data selected, default value

LAM \(=6\)

LAM \(=7\)
\(L A M=8\)
- call DUMMY (a subroutine of the user's design)

OPTION \(=0\)

OPTION \(=1\)

NC = \(\quad\) - the number of rooms times \(3=\) the number of data points, default \(=0\)
\(N Q=\)
- the number of input binary records to be read, default values \(=90000,9 * 0\)

RNUM \(=\)
- the building no., floor no., and room no. of those rooms to be printed or to be flagged for exclusion

\section*{Table 1. Card Data Input for Data Reduction Program, READER}
(Page 2 of 2)
\begin{tabular}{|c|c|}
\hline NIN \(=\) & - the input unit (NIN \(=9\), a tape), default value \(=9\) \\
\hline NOUT = & - the output unit (NOUT \(=10\), a tape for NTRAN writing), default value \(=11\) \\
\hline NSKIP \(=\) & - the number of rooms to be skipped before data is to be read counting from the beginning of the tape \\
\hline
\end{tabular}

Table 2. Mnemonics for Data Reduction Program, READER (Page 1 of 6)
A. Mnemonics for the Main Program, READ

I

II,JI,JJ,JO = Do loop counters.
LAM \(\quad=\) Flag which determines the activity of the run.
\(1=\) Call WRITER to print first 132 words of room data.
2 = Call WRITER to print all room data.
3 = Write on a new tape (see OPTION).
4 = Print a summary of the room data.
5 = Print a one-line summary of each room data selected (default value).

6 = Write a new tape with only the first 132 words of room description.
7 = Call DATAC2 (to write a data file for correlation analysis).
\(8=\) Call DUMMY (a subroutine of the user's design).
\(\operatorname{LWBN}(50) \quad=\) The building number minus 0.1 (see RNUM).
LWFN(50) = The floor number minus 0.1 (see RNUM).
\(\operatorname{LWRN}(50) \quad=\) The room number minus 0.1 (see RNUM).
M, MM, MMM = Do loop counters.
\(N(20) \quad=A n\) integer vector used in writing out the one-line summary
NB(10) \(\quad=\) The first record of the room data. Each word equals the length of the second record except for the tenth word which acts as a flag to specify whether the data is good or bad.*

NB (tenth = Flag specifying whether data valid or invalid.
\(-1=\) READER has set the flag to ignore the data
\(0=\) MAKER has set the flag to ignore the data
NBD(10) = The first record of the room data which has the tenth word equal to 132. This is used only when the first 132 words are to be written on the output tape
*Each room is described by two records on the data tape. The first record defines the size of second record and the validity of the data. The second record contains the data (see Table 7 of Appendix B. 4 for more details).

Table 2. Mnemonics for Data Reduction Program, READER
(Page 2 of 6)
\begin{tabular}{|c|c|}
\hline NC & = The number of rooms specified in RNUM. \\
\hline NDUM & \(=A\) variable used to identify the location of the occurrence of an NTRAN call which caused the status word to be in error. \\
\hline NIN & \(=\) The input unit (NIN \(=9\), a tape), default \(=9\). \\
\hline NN & \(=\) The number of non-zero entries in RNUM. \\
\hline nout & \(=\) The output unit (if NOUT \(=10\), a tape), default \(=11\). \\
\hline NP, NPP & = Counters used in writing the one-line summary of room data. \\
\hline NQ(10), NQQ & \(=\) The number of rooms to be read and analyzed. Up to 10 blocks of rooms can be specified using NQ and NSKIP. \\
\hline NRD & \(=\) The number of words to be read. If only the first 132 words are to be used, only 132 words are read from the second room record. \\
\hline NSKIP(10) & \(=\) The number of rooms to be skipped. These rooms are skipped from the beginning of the tape or from the end of the last read. A maximum of 10 skips are allowed (see NQ). \\
\hline NTOT & \(=\) The number of words read between NSKIP(JJ) + NSKIP(JJ)+NQ(JJ). \\
\hline NU & \(=\) The location in the vector USE of the data for the particular room being printed. \\
\hline OPTION & \begin{tabular}{l}
\(=\) Selection flag. \\
0 = Select only those rooms specified in RNUM, default value
\end{tabular} \\
\hline & 1 = Select \(N Q(J J)\) rooms starting at the location specified by NSKIP(JJ). \\
\hline RNUM(150) & \(=\) The building number, floor number, and room number of those rooms to be printed or to be flagged for exclusion. Up to 50 rooms can be specified. \\
\hline UPBN(50) & \(=\) The building number plus 0.1 (see RNUM). \\
\hline
\end{tabular}

Table 2. Mnemonics for Data Reduction Program, READER (Page 3 of 6)
\begin{tabular}{|c|c|}
\hline UPFN(50) & = The floor number plus 0.1 (see RNUM). \\
\hline UPRN(50) & \(=\) The room number plus 0.1 (see RNUM). \\
\hline USE (7) & = A vector with the alphanumeric abbreviation for the types of rooms: \\
\hline 1 & GEN, General \\
\hline 2 & CLE, Clerical \\
\hline 3 & LOB, Lobby \\
\hline 4 & CON, Conference \\
\hline 5 & FL, File room \\
\hline 6 & STO, Storage room \\
\hline 7 & LIB, Library \\
\hline \(Y(15000)\) & \(=\) The room description vector (can be redimensioned to 132 if only the room totals and boundary surface descriptions are needed). \\
\hline Y39 & \(=\) The width of the room computed if an open wall is present. (Otherwise equal to \(Y(39)\)). \\
\hline \(Y 1042\) & \(=\) The total fire weight that is paper and books. \\
\hline
\end{tabular}

Table 2. Mnemonics for Data Reduction Program, READER
(Page 4 of 6)
B. Mnemonics for Subroutine WRITER

I,L \(\quad=\) Do loop counters used in write statements.
NB, NBT \(\quad=\) Counters used in determining place in variable-length data record.

NBUF \(\quad=\) Total number of words in data record, \(Y(15000)\).
NR(3) \(\quad=\) Room identifiers
1 Building number
2 Floor number
3 Room number

Table 2. Mnemonics for Data Reduction Program, READER
C. Mnemonics for Subroutine DATAC2

I \(=\) Do loop counter.
LOOP = Indicator of whether the geographic location is in either NORTHEAST, NORTH CENTRAL, SOUTH, or WEST.
\(N(7) \quad=\) Integer values of variables being dichotomized.
\(N(1)=Y(19) \quad\) Room use
\(N(2)=Y(15) \quad\) Building vertical load system
\(N(3)=Y(16) \quad\) Building material
\(N(4)=Y(17) \quad\) Building occupancy type
\(N(5)=Y(6) / 10 .+1\). Firm type S.I.C.* code in tens + one
\(N(6)=Y(9) \quad\) Surveyor number
\(N(7)=Y(11) \quad\) Geographic location - ZIP code
NAM(7) = The abbreviated names of the dichotomized variables. NAM(1) = RM USE Room use

NAM(2) = VT SYT Building vertical load system
\(\operatorname{NAM}(3)=\) BD MAT Building material
\(\operatorname{NAM}(4)=B D\) OCP Building occupancy type
NAM(5) \(=\) FM TYP Firm type
NAM(6) = SUV NO Surveyor number
\(\operatorname{NAM}(7)=\) GEO LC Geographical location
ND = Location of each dichotomized variable.
XI(30) \(\quad=\) Output vector for dichotomized data.
XI(1-6) Room use

XI(7)
XI(8-10)
X] (11-14)
XI(15-24)
\(\times 1\) (24)
X] (25-27)
XI(28-30)

Vertical load system
Building material
Building occupancy type
Firm type
Not Used
Geographic area
Not Used
*Standard Industrial Code

Table 2. Mnemonics for Data Reduction Program, READER (Page 6 of 6)
\begin{tabular}{|c|c|}
\hline \(\times 2(30)\)
\(\times 3(30)\) & \begin{tabular}{l}
\(=\) Output vector for dichotomized surveyor numbers. Only first 25 locations used. \\
= Output vector for continuous data.
\end{tabular} \\
\hline & X3(1) Floor number \\
\hline & x3(2) Firm age \\
\hline & X3(3) Building age \\
\hline & x3(4) Building height \\
\hline & X3(5) Number of firms in building \\
\hline & X3(6) Number of occupants in room \\
\hline & X3(7) Room area \\
\hline & X3(8) Room volume \\
\hline & X3(9) Live load PSF \\
\hline & X3(10) Fire load PSF (derated) \\
\hline & X3(11) Percent of floor area covered \\
\hline & x3(12) Total number of items in room \\
\hline & x3(13) Total weight estimated by surveyor \\
\hline & X3(14) Weight of heaviest item in roolis \\
\hline & X3(15) Room opening factor \\
\hline & X3(16) Fire Load PSF (un-derated) \\
\hline & X3(17-30) Not used \\
\hline \(z\) & = Value of all dichotomized variables if the maximum value is given (= -1). \\
\hline
\end{tabular}

Table 3. Diagnostic Messages
A. Subroutine READ

The diagnostic messages included in READ note the occurrence of improper input data, either on card input or on the input data tape. These messages are listed below:
'THERE IS SOMETHING WRONG WITH THE NAMELIST INPUT'
Conditions (LAM > 8 or LAM < 1 or OPTION > 1 or OPTION < 0) or (\(\mathrm{NC}=0\) and OPTION = 0) or
(RNUM(NN) <.1 and NC \(\neq 0\))
'I = ', I, 'AT LINE' NOUM
Conditions (NOUM \(=10\) and \(I \neq 10\)) or (NOUM \(=20\) and \(I<1\)) or
(NOUM \(=30\) and \(\mathrm{I} \neq 05\)) or (NOUM \(=40\) and \(\mathrm{I} \neq \mathrm{NB}(5)\)) or
(NOUM \(=50\) and \(\mathrm{I} \neq 10\)) or (NOUM \(=60\) and \(\mathrm{I} \neq 132\))
B. Subroutine DATAC2

The diagnostic messages in DATAC2 note occurrence of data that cannot be dichotomized
'A Nam(ND)' WITH A VALUE OF 'NC(ND)' WHICH IS OUT OF RANGE
'BUILDING', Y(2), 'FLOOR', Y(3), 'ROOM' Y(4)
Conditions
\((N(1)>7\) or \(N(1)<1)\) or
\((N(2)>2\) or \(N(2)<1)\) or
\((N(3)>4\) or \(N(3)<1)\) or
\((N(4)>7\) or \(N(4)<1)\) or
\((N(5)>10\) or \(N(5)<1)\) or
\((N(7)>99999\) or \(N(7)<0)\)
'ROOM DATA FOR BL' Y(2), 'FL' Y(3), 'RM' Y(4) 'NOT PROCESSED BY DATAC2'
Condition \(\quad(Y(125)<-.001)\) or (\(N B \leq 0\))

Table 4. Run Cards for UNIVAC 1108, EXEC 8, 1975
(Page 1 of 2)

NO.
1 @RUN (etc.)
use to start run. The options, priority, and other information are site dependent.

2 QMSG PLEASE MOUNT TAPE NO. iii WITHOUT WRITE RING
3 @ASG,T INTAPE,T,iii
use 2 and 3 to mount and assign input tape file. iii is the tape number at that site and INTAPE is the name of the temporary file assigned to the tape.
@uSE 9,INTAPE
use 4 to indicate that unit number 9 is data file INTAPE.
Program READER uses Unit 9 as the input data. (See NIN on namelist input card, 9 is the default value of NIN).
@ASG,T OUTAPE,T,jjj
7 @USE 10,OUTAPE
use 5 and 6 to mount and assign a magnetic tape for output. Tape number jjj is given the local name OUTAPE.
Use 7 to indicate that unit number 10 will be output file, OUTAPE. Unit 10 is only used for NTRAN writes on tape (see NOUT on namelist input card, 10 is not the default value of NOUT).
@ASG,UP OUT,F2///500
9 @USE 11 ,OUT
use 8 and 9 to assign a new FASTRAND file OUT, for output, and to assign unit number 11 to that file. This file is used for both NTRAN and formatted output (see NOUT on namelist. input card, 11 is the default value of NOUT).
@XQT READER.TOTAL
execute program with relocatable stored as element TOTAL of file READER.
\$INPUT (data) \$END optional NAMELIST input file that specifies various operational parameters. If not used, program uses default values (see Table 1).

Table 4. Run Cards for UNIVAC 1108, EXEC 8, 1975 (Page 2 of 2)

NO.

12 QFIN
end card
13 ẹ

\section*{APPENDIX B. 8}

Part A - User's Manual and Operating Instructions
1. Data Sequence and Format for Tape 2 (Floor Plan Data)
2. Card Data Input for BUILDER
A. \$INPUTI
B. \$TESTI
C. Data for Surveyed Rooms
D. STEST2
E. \$TEST3
F. @EOF
3. Mnemonics for Building Reconstruction Program (BUILDER)
4. Limit and Error Messages
5. Run Cards for UNIVAC 1108, EXEC. 8, 1975

Table 1. Data Sequence and Format for Tape 2 (The Unprocessed Room Plan Data) Input for Building Reconstruction Program (Page 1 of 2)

Building Characteristics (Record 1)
\begin{tabular}{lll}
ITEM & LENGTH \\
NO. & (Words) & \\
\hline
\end{tabular}
13 Surveyor code (001-999)
23 Building number (001-200)
32 State code (01-51)
 \(4 \quad 5 \quad\) Zip code (0001-99999)
 \(5 \quad 4 \quad\) Year building built (1700-1974)
 \(6 \quad 2 \quad\) No. of stories above ground level (00-99)
 \(7 \quad 1 \quad\) Vertical load resisting system
 1 = Column
 2 = Bearing wall
 8
 1
 Building material
 1 = Concrete
 2 = Steel
 3 = Masonry
 4 = Wood
 9
 1
Occupancy type
 1 = Federal Government
 2 = State Government
 3 = Local Government
 4 = Private
 5 = Private and Government
103 Number of firms in building (001-999)

Firm Data (Record 2)
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \text { ITEM } \\
& \text { NO. }
\end{aligned}
\] & \begin{tabular}{l}
LENGTH \\
(Words)
\end{tabular} & DESCRIPTION \\
\hline 11 & 3 & Firm number (001-999) \\
\hline 12 & 2 & Firm type (00-99) \\
\hline 13 & 3 & Firm age (000-200) \\
\hline
\end{tabular}

Items \(11,12,13\) are repeated for the number of firms in item 10. Record 2 length \(=8 *(\) Item 10). Tape must be odd parity and high density (800 BPI).

Table 1. Data Sequence and Format for Tape 2 (The Unprocessed Room Plan Data) Input for Building Reconstruction Program (Page 2 of 2)

Room Usage and Plans (Record 3 and Subsequent)
\begin{tabular}{|c|c|c|}
\hline \[
\begin{gathered}
\text { ITEM } \\
\text { NO. } \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
LENGTH \\
(Words)
\end{tabular} & DESCRIPTION \\
\hline 14 & 3 & Building number (000-200) \\
\hline 15 & 2 & Floor number (00-99) \\
\hline 16 & 3 & Room number (000-999) \\
\hline 17 & 3 & Firm number (000-999) \\
\hline 18 & 1 & ```
Subtraction flag
O = Calculated area is to be added
1 = ~ C a l c u l a t e d ~ a r e a ~ i s ~ t o ~ b e ~ s u b t r a c t e d ~
``` \\
\hline 19 & 1 & ```
Room Usage
        l = General
        2 = Clerical
        3 = Lobby
        4 = Conference
        5 = File
        6 = Storage
        7 Library
        8 = Stairway
        9 = Elevator
10 = Corridor
11 = Other
12 = Vacant
``` \\
\hline 20 & 5 & West coordinate from building origin (tenths of feet) \\
\hline 21 & 5 & East coordinate from building origin (tenths of feet) \\
\hline 22 & 5 & North coordinate from building origin(tenths of feet) \\
\hline 23 & 5 & South coordinate from building origin(tenths of feet) \\
\hline 24 & 1 & Spare field \\
\hline
\end{tabular}

Table 2. Card Data Input for Building Reconstruction Program, BUILDER
(Page 1 of 3)
Namelist Format Except for Item C
A. \$INPUT1

This card is always required. The format of this card, or these cards, must follow the standard conventions for Fortran IV Namelist data. WRT \(=\). TRUE.
- write the building and room data (including the load data) on the printer

WRT \(=\).FALSE. - do not write the building and room data on on the printer, default value

CDDTI \(=\).TRUE. \(\quad-\) read building and room-plan data from magnetic tape or FASTRAND file

CDDTI \(=\). FALSE.
- read building and room-plan data from cards (namelist format), default value

FILEI = .TRUE. - use magnetic tape for building and room-plan data

FILEI = .FALSE. - use FASTRAND file for building and room-plan data, default value
\begin{tabular}{|c|c|}
\hline CDDTO \(=\). TRUE. & - write the building and room data on magnetic tape or FASTRAND file \\
\hline CDDTO \(=\). FALSE. & - do not write the building and room data on magnetic tape or FASTRAND file, default value \\
\hline FILEO \(=\). TRUE. & - use magnetic tape for output file \\
\hline FILEO \(=\). FALSE. & - use FASTRAND file for output, default value \\
\hline SURDAT \(=\). TRUE. & - use data for surveyed rooms (from cards), default value \\
\hline SURDAT \(=\). FALSE. & - do not use data for surveyed rooms (no cards required) \\
\hline FILEF1 \(=\). TRUE. & - if several buildings are being processed on one run and all the surveyed data is on one file, set this variable to true. If the data is on separate files or only one building is being processed, set the variable to false. False is the default value. \\
\hline
\end{tabular}

FILEF2 = .FALSE. - see above

\section*{Table 2. Card Data Input for Building Reconstruction Program, BUILDER (Page 2 of 3)}

NUMBL - number of building to be processed--Default = 1000 , in which case run terminates on reading the second end-of-file.

PUNCH \(=\).TRUE. \(\quad-\) punch the room data (including the load data), default value \(=\).FALSE.
B. \$TEST1 Need only if CDDTI = .FALSE. (see \$INPUT1)
\(X=\) building characteristic data
II \(=\) number of words of data \(=25\)
C. Data for Surveyed Rooms

Card \(1=\) Title (78 columns, alphanumeric)
Card \(2=\) Headings (78 columns, alphanumeric)
Card 3 (and subsequent) = Room data (1H ,3F10.0,4E12.6)
\begin{tabular}{c}
Field \\
\hline 1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7
\end{tabular}

Item
Building No.
Floor No.
Room No.
PSF Live Load
PSF Live Load - sd
PSF Fire Load
PSF Fire Load - sd
End card = @EOF
Surveyed data for one or more buildings may be placed on the same file. However, only two alphariumeric cards are required and allowed per file.
If the room-plan data is read from cards (using \$TEST1, \$TEST2, and \$TEST3), each set of surveyed data must be separate as indicated by the required sequence. The sequence of buildings in the surveyed data must match the building sequence in the roam-plan data.
D. \(\$\) STEST2 Need only if CDDTI \(=\). FALSE. (see \(\$\) INPUT1)
\(\mathrm{XI}=\) firm data
II = number of words of data

\section*{Table 2. Card Data Input for Building Reconstruction Program, BUILDER (Page 3 of 3)}
E. \$TEST3 Need only if CDDTI = .FALSE. (see \$INPUT), need one file for each room
\(X=\) room usage and plans
II = number of words of data \(=34\)
F. @EOF

End of file card required after each building when CDDTI \(=\). FALSE.

Repeat items \(B\) through \(F\) for each building being processed. A second end of file card must follow the last building if CDDTI = .FALSE.

Items B through E must follow the standard conventions for fortran IV NAMELIST data.

\section*{Table 3. Mnemonics for Building Reconstruction Program, BUILDER (Page 1 of 5)}
\begin{tabular}{|c|c|}
\hline BLDG1 & \(=\) Total live load in one building - 1 b \\
\hline BLDG2 & \(=\) Total fire load in one building - lb \\
\hline BLDG3 & \(=\) Total floor area in one building - sq. ft. \\
\hline BLDG4 & \(=\) Total surveyed area in one building - sq. ft. \\
\hline BLDG5 & \(=\) Total area of halls, corridors, elevators, stairways and other \\
\hline BLDG6 & \(=\) Total live load determined from surveyed data for subject building - lb \\
\hline BLDG7 & = Total fire load determined from surveyed data for subject building - lb \\
\hline \(B L D G(10)\) & = Building characteristic data \\
\hline 1 & Surveyor no. \\
\hline 2 & Building no. (also BUILDN) \\
\hline 3 & State no. \\
\hline 4 & ZIP code (also NZIP) \\
\hline 5 & Year built \\
\hline 6 & Number of stories above ground level \\
\hline 7 & Vertical load resisting system (1 to 2) \\
\hline 8 & Building material (1 to 4) \\
\hline 9 & Occupancy type (1 to 5) \\
\hline 10 & Number of firms in building \\
\hline \[
\begin{aligned}
& \text { BUILDN, NBLDG, } \\
& \text { NX21 }
\end{aligned}
\] & = Building no. (also BUILD(2)) \\
\hline CDDTI, FILEI & ```
= Flags for specifying whether room-plan data on cards,
 tape, or FASTRAND file
``` \\
\hline DATA1 \((500,3)\) & = Data on surveyed rooms (integer) \\
\hline \[
\begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}
\] & Floor no. Room no. Blank \\
\hline
\end{tabular}

Table 3. Mnemonics for Building Reconstruction Program BUILDER (Page 2 of 5)
\(\operatorname{DATA} 2(500,4)=\) Data on surveyed rooms (real)
1 PSF live load
2 Standard deviation of PSF live load 3 PSF fire load
4 Standard deviation of PSF fire load
DUM1, DUM2 = Temporary storage locations.
ERR \(\quad=F l a g\) to signal erroneous input data.
FILEI = Flags for specifying whether room-plan data on cards, tape, or FASTRAND file.

FILEF1 = Flag to describe whether more than one building is included in the surveyed-data data file.

FILEF2 \(=\) Flag used in reading the surveyed-data data file.
FIRELD \(\quad\) Total fire load on one floor - 1b; or fire load in one room - psf

FIRMNO = Firm no.
FIRMT(100) = Flags defining acceptable firm types
FLAREA \(=\) Total floor area - sq. ft.
FLFLAG = Flag to signal when building is complete
FRLDSY \(\quad\) Total fire load determined from surveyed data for subject floor

HEAD(13) = Alphanumeric title read from cards with surveyed data

HAAREA \(=\) Total area of halls, corridors, elevators, and other on one floor - sq. ft.

I1, IO = NTRAN status word
I,J,K,M,N2 = Do-loop indices
J,K,M,N2,I = Do-loop indices

Table 3. Mnemonics for Building Reconstruction Program, BUILDER
(Page 3 of 5)
\begin{tabular}{|c|c|}
\hline K, I, J, M, N2 & \(=\) Do-loop indices. \\
\hline K3 & \(=\) Amount of firm data to be read or firm type. \\
\hline LIVELD & ```
= Total live load on one floor - lb; or live load in one
    room - psf
``` \\
\hline LVLDSY & = Total live load determined from surveyed data for subject floor \\
\hline M, I, J, N2, K & \(=\) Do-loop indices \\
\hline \(\operatorname{MODEL}(10,600)\) & \(=\) Output (integer). \\
\hline 1 & Floor no. \\
\hline 2 & Room no. \\
\hline 3 & West coordinate \\
\hline 4 & East coordinate \\
\hline 5 & North coordinate \\
\hline 6 & South coordinate \\
\hline 7 & Flag* \\
\hline 8 & Firm type (also NFT) \\
\hline 9 & Firm age (also NRU) \\
\hline 10 & Room use (also NRU) \\
\hline \(\operatorname{MODEL} 2(5,600)\) & = Output (real). \\
\hline 1 & PSF live load \\
\hline 2 & Standard deviation of PSF live load \\
\hline 3 & PSF fire load \\
\hline 4 & Standard deviation of PSF fire load \\
\hline 5 & Room area \\
\hline N2, I, J, K, M & \(=\) Do-loop indices \\
\hline NBLDG, BUILDN, NX21 & = Building no. (also BUILD(2)) \\
\hline
\end{tabular}

\footnotetext{
\#Flag \(=0\) add area, not surveyed
\(=1\) subtract area, not surveyed
\(=2\) add area, surveyed
= 3 subtract area, surveyed
}

\title{
Table 3. Mnemonics for Building \\ Reconstruction Program, BUILDER \\ (Page 4 of 5)
}

NFL, NFLOOR = Floor no
NFT \(\quad=\) Firm type (also MODEL (8, I)).
NOFILE \(=\) Number of files (i.e., buildings) processed.
NORECD \(\quad\) Number of records processed in subject building.
NR \(=\) Room no.
NRU = Room use (also MODEL(10, I)).
NRS \(\quad=\) Number of rooms surveyed in subject building
NUMBL = Number of buildings to be processed.
NWTAPE \(\quad=\) Flag to signal when output magnetic tape is full.
NX21, BUILDN,
NBLDG = Building no. (also BUILD(2))
NZIP \(\quad=\) Building ZIP code (also BUILD(4)).
PUNCH = Flag for generating punch card output.
\(\operatorname{RMFIRM}(3,1000)=\) Firm data.
\begin{tabular}{ll}
1 & Firm no. \\
2 & Firm type \\
3 & Firm age
\end{tabular}
\(\operatorname{ROOM}(10)=\) Room data.
Building no.
2 Floor no.
4 Firm no.
5 Substitution flag (\(0=\) add, \(1=\) subtract \()\)
6 Room use

RUSE(12) = Area on floor given to each of the 12 designated uses.
SRAREA \(=\) Total surveyed area on floor - sq. ft.
SURDAT \(\quad=\) Flag to signal whether data from surveyed rooms is being used.

TEMP1 to
TEMP10 \(=\) Temporary storage locations for \(\operatorname{MODEL}(\mathrm{I}, 600), \mathrm{I}=1\) to 10.

Table 3. Mnemonics for Building
Reconstruction Program, BUILDER (Page 5 of 5)
\(\operatorname{TEMP}(15)=\) Temporary storage locations for \(\operatorname{MODEL}(10,600)\) and MODEL2 \((5,600)\) during output operation.

TEMPT \(=\) Temporary storage location.
TITLE(13) = Alphanumeric title read from cards with surveyed data.
USEB(12) = Area in building given to each of the 12 designated uses.
WRT \(\quad=\) Flag for writing output on printer.
X(30) \(\quad=\) Temporary storage locations.
XI(10000) \(=\) Temporary storage locations for firm data.
X2(7) \(\quad\) Temporary storage location for survey data.
\(X B(7) \quad=\) Live load constant
XBI(7) \(\quad=\) Standard deviation of live load constant
\(\mathrm{XC}(7) \quad=\) Live load area coefficient
XCI(7) \(\quad=\) Standard deviation of live load area coefficient
XD(7) \(\quad=\) Fire load constant
XDI(7) \(=\) Standard deviation of fire load constant
XE(7) \(\quad=\) Fire load area coefficient
XEI(7) \(\quad=\) Standard deviation of fire load area coefficient

Table 4. Limit and Error Messages*
(Page 1 of 3)

Format No.
100 'BUILDING NUMBER IS TOO LARGE,' BUILDN
cond. If BUILD(2) > 101

101 'IMPOSSIBLE STATE NUMBER; BUILDING' BUILDN
cond.
102
cond. If BUILD(3) > 51 or < 1
'IMPROBABLE CONSTRUCTION DATE; BUILDING' BUILDN If BUILD(5) > 1975 or < 1800
'IMPROBABLE HEIGHT; BUILDING' BUILDN
cond.
104 'IMPOSSIBLE VERTICAL LOAD RESISTING SYS; BUILDING' BUILDN
cond.
105 'IMPOSSIBLE BUILDING MATERIAL; BUILDING' BUILDN
cond.
106
cond.
107
cond. BUILDING' BUILDN

If BUILD(10) > 1000 or < 1
108
cond.
109
cond.
110
cond.
113
cond.
115
cond.
116
'fIRM J BUILDING BU'ILD(2) HiAS AN IMPOSSIBLE TYPE NO.' If \(\operatorname{FIRM}(K 3)\) not in Standard Industrial Classification
'BUILDING NO. AND BUILDING NO. WITH ROOM NOT CONSISTENT BUILDING ROOM(1) FLOOR (ROOM(2) ROOM 'ROOM(3)' If \(\operatorname{ROOM}(1) \overline{\operatorname{FBILD}}(2)\)
'THIS FLOOR NUMBER IS TOO LARGE, FLOOR NO.' \(\quad \mathrm{x}(2)\) If DATAl(NRS,2) > BUILD(6)
'CARD DATA FOR DIFFERENT BUILDING, PROGRAM STOPPED' If Building No. on Room Surveyed Data \(\neq\) BUILD(2)
'FLOOR NO. GREATER THAN NO. OF STORIES, FLOOR NO =' ROOM(2) If ROOM(2) > BUILD(6)
'SUBSTITUTION FLAG INVALID, FLAG =' ROOM(5)
cond. If \(\operatorname{ROOM}(5) \neq 0\) or 1
*Underlining indicates a program mnemonic. These are all defined in Table 3.

Table 4. Limit and Error Messages
(Page 2 of 3)

Format No.
- 117
```

'ROON USE CODE INVALID. USE=' ROOM(6)
If ROOM(6) > 11 or < 1
'FLOOR CANNOT BE PROCESSED BECAUSE ERR = TRUE. STOP'
Self explanatory
'ERROR TERMINATION WHEN WRITING BLDG CHAR DATA WITH

```
'ERROR TERMINATION WHEN WRITING ROOM DATA WITH NTRAN
INDEX \(=1\) IO \(\operatorname{FLOOR}=\) MODEL (1, NRM \() ~ R O O M ~=~ M O D E L(2, N R M) ~\)
cond.
 135
cond.
 136
cond.
 188
cond.
 189
cond.
 190
cond.
 191
cond.
 192
cond.
 193 'DEVICE ERROR, TRANSMISSION ABORT, OR END-OF-FILE
FOUND WHILE TRYING TO READ FIRM DATA.'
 If II < - 1
 'DEVICE ERROR OR TRANSMISSION ABORT ON READING FIRST ROOM'
 If II < -2
 'DEVICE ERROR OR TRANSMISSION ABORT ON READING SUBSEQUENT'
 ROOMS. 'II =' II ROOM NO.' , NRM
 If II \(<-2\)
 'END OF FILE FOUND AT 400. NO. BUILDINGS PROCESSED \(=1\)
 If II = -2

Table 4. Limit and Error Messages
(Page 3 of 3)

\section*{Format No.}

198 'FLOOR MODEL(1, I) ROOM MODEL (2, I) FLMOD FOUND ROOM USE OUT OF RANGE, ALL ROOM USE VARIABLES SET TO ZERO.'

If NFT < 1 or NFT > 99
199 'FLOOR MODEL (1, I) ROOM MODEL (2, I) FLMOD FOUND FIRM TYPE OUT OF RANGE, ALL FIRM TYPE VARIABLES SET TO ZERO.'
cond.
If NRU < 1 or NRU > 7

Table 5. Run Cards for UNIVAC 1108, EXEC 8, 1975
(Page 1 of 2)

\section*{NO.}

1 @RUN (etc.)
use to start run
2 QMSG PLEASE MOUNT TAPE NO. iii WITHOUT WRITE RING
3 @ASG,T NAMEI,T,iii
use 2 and 3 to mount and assign tape file when room-plan data on magnetic tape

4 @ASG,A NAME1
use 4 when room-plan data on a FASTRAND file
5 QUSE 8,NAME1
use 5 to assign program unit number to magnetic tape or FASTRAND file on input

6 @MSG PLEASE MOUNT TAPE NO. jjj WITH WRITE RING
7 @ASG,T NAME2,T,jjj
use 6 and 7 to mount and assign magnetic tape for output
8 @ASG,A NAME2,F2///500
use 8 when output is to be put on a FASTRAND file already catalogued.

9 @ERS NAME2
use 9 to clear output FASTRAND file
10 @USE 9,NAME2
use 10 to assign program unit number 9 to magnetic tape or FASTRAND file on output

11 QXQT BUILDER.TOT
execute program with relocateable stored as element TOT of file BUILDER

12 \$INPUTI (data) \$END
required NAMELIST input file (see Table 2)
13 \$TEST1 (data) \$END NAMELIST input data, for test case only

Table 5. Run Cards for UNIVAC 1108, EXEC 8, 1975 (Page 2 of 2)

14 Data for surveyed rooms
15 @EDF
end of file for surveyed-room data
16 \$TEST2 (data) \$END
\(\begin{array}{cc}\text { \$TEST3 } & \text { (data) } \\ \vdots & \vdots \\ \vdots\end{array}\)
\$TEST3 (data) \$END
NAMELIST input data, for test case only
@EOF end of file after each building, test case only

18 @EOF second end of file after last building, test case only

19 @FIN end card

20 @@

N8S.114A (REV. 7.73)
\begin{tabular}{|c|c|c|c|}
\hline U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET & 1. PUBLICATION OR REPORT NO. NBSIR 76-982 & 2. Gov't Accession No. & 3. Recipient's Accession No. \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
4. TITLE AND SUBTITLE \\
Data Processing and Data Analysis Procedures for Fire Load and Live Load Survey Program
\end{tabular}} & \begin{tabular}{l}
5. Publication Date \\
January 1976 \\
6. Performing Organization Code
\[
460.03
\]
\end{tabular} \\
\hline 7. AUTHOR(S) Robert McCabe, Cha & Culver, Larry Lee, Jos & irschberg & 8. Performing Organ. Report No. \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
9. PERFORMING ORGANIZATION NAME AND ADDRESS \\
NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20234
\end{tabular}} & \begin{tabular}{l}
10. Project/Task/Work Unit No. \\
4605506 \\
11. Contract/Grant No. \\
BRAB 27-73-53 \\
\hline
\end{tabular} \\
\hline 12. Sponsoring Organization National Acad Building Resea 2100 Pennsylva Washington, DC & \begin{tabular}{l}
me and Complete Address (Street, City of Sciences \\
Advisory Board \\
a Avenue
\[
20418
\]
\end{tabular} & \[
e, Z I P)
\] & \begin{tabular}{l}
13. Type of Report \& Period Covered June 1973 Dec. 1975 \\
14. Sponsoring Agency Code \\
B1dg. Research Advisory
\end{tabular} \\
\hline
\end{tabular}
16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.)

Data collection and data processing procedures utilized in connection with a nationwide fire load and live load survey program are described. The techniques developed for transferring the field survey data to a form suitable for computer processing are discussed. Procedures adopted for data analysis are included. Documentation of the computer programs developed for this purpose is also presented.
17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolons)
buildings; computers; data processing; fire loads; load surveys.
18. AVAILABILITY \(X\) Unlimited
\(\square\) For Official Distribution. Do Not Release to NTIS
[Order From Sup. of Doc., U.S. Government Printing Office Washington, D.C. 20402, SD Cat. No. C13
\(\square\) Order From National Technical Information Service (NTIS) Springfield, Virginia 22IS1
\begin{tabular}{|l|c|}
\hline 19. SECURITY CLASS \\
(THIS REPURT) \\
UNCL ASSIFIED
\end{tabular}\(\quad\) 21. NO. OF PAGES \(\mid\) 336```

[^0]: * Figures in brackets refer to references listed in Chapter 6.

[^1]: *The live weight of the movable room contents is the total live weight in the room.
 ** $s d=$ standard deviation of the predicted weight based on uncertainties in the transfer function.
 *** All fire weights are equivalent pounds of cellulose (8000 BTU/lb) ; the composite fire weights totals include only the derated portion of the enclosed fire weight in metal furniture. (a)

[^2]: OUTPUT OF
 TABLE 12 ROOM-CONTENTS (FURNTIURE):

[^3]: OUTPUT OF
 TABLE 12 ROOM-CONTENTS (FURNITURE):

[^4]: * In FSEAP limit mnemonics are: FREEL(1)

 In BONCOM limit mnemonics are: LMT (19)
 In RMCONT limit mnemonics are: CABL (3), DESRL(5), EWCLL, ENWL, FREEL, FWTL, MWTLT, SHELFL(2), TABLEL (2)

[^5]: *The material types for internal partitions and partial height walls will be the same as for wall materials, except for fabric which is assumed to have the same fire load per square foot as drapes.

[^6]: *See Appendix B. 6 for detailed instructions.

[^7]: *NI = Number of room parameters (132).
 $N J=$ Number of room-content, furniture parameters (51).
 NK = Number of room-content, stand-alone non-furniture parameters (11).

[^8]: $N L=N I+N J$

[^9]: Reference (9)

[^10]: One building per file, one room per record. Tape must be odd parity and high density (800 bpi).

[^11]: \% see Table 1 for code

[^12]: * see Table 1 for code

[^13]: * see transfer function for code

[^14]: * see transfer function for code

[^15]: * see transfer function for code

[^16]: * see transfer function for code

[^17]: * see transfer function for code

[^18]: * see transfer function for code

[^19]: * see transfer function for code

[^20]: * see transfer function for code

[^21]: * see transfer functions for code

[^22]: * see transfer functions for code

[^23]: * see transfer functions for code

